NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2017-11-01
An approach to calculating the effects of fluctuations in density that considers the collective motions of molecules in small condensed phases (e.g., droplets, microcrystals, adsorption at microcrystal faces) is proposed. Statistical sums of the vibrational, rotational, and translational motions of molecules are of a collective character expressed in the dependences of these statistical sums on the local configurations of neighboring molecules. This changes their individual contributions to the free energy and modifies fluctuations in density in the inner homogeneous regions of small bodies. Interactions between nearest neighbors are considered in a quasi-chemical approximation that reflects the effects of short-range direct correlations. Expressions for isotherms relating the densities of mixture components to the chemical potentials in a thermostat are obtained, along with equations for pair distribution functions.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Density fluctuation in HT-6M tokamak by CO2 laser scattering
NASA Astrophysics Data System (ADS)
Zeng, Lei; Cao, Jinxiang; Zhu, Guoliang; Ding, Weixing; Yu, Chang-Xuan; Zhang, Daqing; Li, Youyi
1993-09-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a wide range of nqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time (tau) E decreases with the fluctuation level increasing in the region where (tau) E linearly increases with nq0.5a and satisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
The statistics of primordial density fluctuations
NASA Astrophysics Data System (ADS)
Barrow, John D.; Coles, Peter
1990-05-01
The statistical properties of the density fluctuations produced by power-law inflation are investigated. It is found that, even the fluctuations present in the scalar field driving the inflation are Gaussian, the resulting density perturbations need not be, due to stochastic variations in the Hubble parameter. All the moments of the density fluctuations are calculated, and is is argued that, for realistic parameter choices, the departures from Gaussian statistics are small and would have a negligible effect on the large-scale structure produced in the model. On the other hand, the model predicts a power spectrum with n not equal to 1, and this could be good news for large-scale structure.
High-sensitivity density fluctuation detector
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Hoeft, T.
1987-01-01
A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.
Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar
2016-04-27
Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).
Double inflation - A possible resolution of the large-scale structure problem
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman
1987-01-01
A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Ding, W. X.; Brower, D. L.
2010-10-15
Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less
Microturbulence in HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Zeng, Lei; Yu, Changxuan; Cao, Jinxiang; Zhu, Guoliang; Zhang, Daqing; Li, Youyi
1993-08-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a range of bar neqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time τE decreases with the fluctuation level increasing in the region where τE linearly increases with bar neqa and statisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchev, Nikolay; Batanov, German; Petrov, Alexandr
2008-10-15
A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr
We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less
Electron-cyclotron wave scattering by edge density fluctuations in ITER
NASA Astrophysics Data System (ADS)
Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas
2009-11-01
The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.
Homogeneous buoyancy-generated turbulence
NASA Technical Reports Server (NTRS)
Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R.
1992-01-01
Using a theoretical analysis of fundamental equations and a numerical simulation of the flow field, the statistically homogeneous motion that is generated by buoyancy forces after the creation of homogeneous random fluctuations in the density of infinite fluid at an initial instant is examined. It is shown that analytical results together with numerical results provide a comprehensive description of the 'birth, life, and death' of buoyancy-generated turbulence. Results of numerical simulations yielded the mean-square density mean-square velocity fluctuations and the associated spectra as functions of time for various initial conditions, and the time required for the mean-square density fluctuation to fall to a specified small value was estimated.
NASA Technical Reports Server (NTRS)
Matthaeus, William H.; Goldstein, Melvyn L.; Roberts, D. Aaron
1990-01-01
Assuming that the slab and isotropic models of solar wind turbulence need modification (largely due to the observed anisotropy of the interplanetary fluctuations and the results of laboratory plasma experiments), this paper proposes a model of the solar wind. The solar wind is seen as a fluid which contains both classical transverse Alfvenic fluctuations and a population of quasi-transverse fluctuations. In quasi-two-dimensional turbulence, the pitch angle scattering by resonant wave-particle interactions is suppressed, and the direction of minimum variance of interplanetary fluctuations is parallel to the mean magnetic field. The assumed incompressibility is consistent with the fact that the density fluctuations are small and anticorrelated, and that the total pressure at small scales is nearly constant.
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
Density Fluctuations in a Polar Coronal Hole
NASA Astrophysics Data System (ADS)
Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf
2018-06-01
We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.
Stochastic transport models for mixing in variable-density turbulence
NASA Astrophysics Data System (ADS)
Bakosi, J.; Ristorcelli, J. R.
2011-11-01
In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.
Origin of density fluctuations in extended inflation
NASA Technical Reports Server (NTRS)
Kolb, Edward W.; Salopek, David S.; Turner, Michael S.
1990-01-01
The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies.
Forest type affects predation on gypsy moth pupae
A.M. Liebhold; K.F. Raffa; A.L. Diss; A.L. Diss
2005-01-01
Predation by small mammals has previously been shown to be the largest source of mortality in low-density gypsy moth, Lymantria dispar (L.), populations in established populations in north-eastern North America. Fluctuations in predation levels are critical in determining changes in population densities. We compared small mammal communities and levels of predation on...
New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic.
Henriques, R B; Nedzelskiy, I S; Malaquias, A; Fernandes, H
2012-10-01
The tokamak ISTTOK havy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10(7) V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.
Generation of large-scale density fluctuations by buoyancy
NASA Technical Reports Server (NTRS)
Chasnov, J. R.; Rogallo, R. S.
1990-01-01
The generation of fluid motion from a state of rest by buoyancy forces acting on a homogeneous isotropic small-scale density field is considered. Nonlinear interactions between the generated fluid motion and the initial isotropic small-scale density field are found to create an anisotropic large-scale density field with spectrum proportional to kappa(exp 4). This large-scale density field is observed to result in an increasing Reynolds number of the fluid turbulence in its final period of decay.
Gravitational lensing in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Narayan, Ramesh; White, Simon D. M.
1988-01-01
Gravitational lensing due to mass condensations in a biased cold dark matter (CDM) universe is investigated using the Press-Schechter (1974) theory with density fluctuation amplitudes taken from previous N-body work. Under the critical assumption that CDM haloes have small core radii, a distribution of image angular separations for high-z lensed quasars with a peak at about 1 arcsec and a half-width of a factor of about 10. Allowing for selection effects at small angular separations, this is in good agreement with the observed separations. The estimated frequency of lensing is somewhat lower than that observed, but the discrepancy can be removed by invoking amplification bias and by making a small upward adjustment to the density fluctuation amplitudes assumed in the CDM model.
Two Point Space-Time Correlation of Density Fluctuations Measured in High Velocity Free Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta
2006-01-01
Two-point space-time correlations of air density fluctuations in unheated, fully-expanded free jets at Mach numbers M(sub j) = 0.95, 1.4, and 1.8 were measured using a Rayleigh scattering based diagnostic technique. The molecular scattered light from two small probe volumes of 1.03 mm length was measured for a completely non-intrusive means of determining the turbulent density fluctuations. The time series of density fluctuations were analyzed to estimate the integral length scale L in a moving frame of reference and the convective Mach number M(sub c) at different narrow Strouhal frequency (St) bands. It was observed that M(sub c) and the normalized moving frame length scale L*St/D, where D is the jet diameter, increased with Strouhal frequency before leveling off at the highest resolved frequency. Significant differences were observed between data obtained from the lip shear layer and the centerline of the jet. The wave number frequency transform of the correlation data demonstrated progressive increase in the radiative part of turbulence fluctuations with increasing jet Mach number.
Quasi-Lagrangian measurements of density surface fluctuations and power spectra in the stratosphere
NASA Technical Reports Server (NTRS)
Quinn, Elizabeth P.; Holzworth, Robert H.
1987-01-01
Pressure and temperature data from eight superpressure balloon flights at 26 km in the southern hemisphere stratosphere are analyzed. The balloons, which float on a constant density surface, travel steadily westward during summer and eastward during winter, as expected from local climatology. Two types of fluctuations are observed: neutral buoyancy oscillations (NBO) of around 4 min, and 0.1- to 1-hour oscillations that are characterized as small-amplitude density surface fluctuations. Lapse rates and densities are calculated and found to agree well with the expected values. Examples of wave damping and simultaneous fluctuation at two nearby balloons are presented. Spectral analysis is performed clearly showing the NBO and that the majority of the power is in the mesoscale range. Spectral slopes of power versus frequency are measured to be on the average -2.18 + or - 0.24 for pressure and -1.72 + or - 0.24 for temperature. These slopes are compared to the predictions of turbulence theories and the theory of a universal gravity wave spectrum.
Engen, Steinar; Saether, Bernt-Erik
2017-01-01
In a stable environment, evolution maximizes growth rates in populations that are not density regulated and the carrying capacity in the case of density regulation. In a fluctuating environment, evolution maximizes a function of growth rate, carrying capacity and environmental variance, tending to r-selection and K-selection under large and small environmental noise, respectively. Here we analyze a model in which birth and death rates depend on density through the same function but with independent strength of density dependence. As a special case, both functions may be linear, corresponding to logistic dynamics. It is shown that evolution maximizes a function of the deterministic growth rate r 0 and the lifetime reproductive success (LRS) R 0 , both defined at small densities, as well as the environmental variance. Under large noise this function is dominated by r 0 and average lifetimes are small, whereas R 0 dominates and lifetimes are larger under small noise. Thus, K-selection is closely linked to selection for large R 0 so that evolution tends to maximize LRS in a stable environment. Consequently, different quantities (r 0 and R 0 ) tend to be maximized at low and high densities, respectively, favoring density-dependent changes in the optimal life history. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Extended MHD modeling of tearing-driven magnetic relaxation
NASA Astrophysics Data System (ADS)
Sauppe, J. P.; Sovinec, C. R.
2017-05-01
Discrete relaxation events in reversed-field pinch relevant configurations are investigated numerically with nonlinear extended magnetohydrodynamic (MHD) modeling, including the Hall term in Ohm's law and first-order ion finite Larmor radius effects. Results show variability among relaxation events, where the Hall dynamo effect may help or impede the MHD dynamo effect in relaxing the parallel current density profile. The competitive behavior arises from multi-helicity conditions where the dominant magnetic fluctuation is relatively small. The resulting changes in parallel current density and parallel flow are aligned in the core, consistent with experimental observations. The analysis of simulation results also confirms that the force density from fluctuation-induced Reynolds stress arises subsequent to the drive from the fluctuation-induced Lorentz force density. Transport of the momentum density is found to be dominated by the fluctuation-induced Maxwell stress over most of the cross section with viscous and gyroviscous contributions being large in the edge region. The findings resolve a discrepancy with respect to the relative orientation of current density and flow relaxation, which had not been realized or investigated in King et al. [Phys. Plasmas 19, 055905 (2012)], where only the magnitude of flow relaxation is actually consistent with experimental results.
Measurements of surface-pressure fluctuations on the XB-70 airplane at local Mach numbers up to 2.45
NASA Technical Reports Server (NTRS)
Lewis, T. L.; Dods, J. B., Jr.; Hanly, R. D.
1973-01-01
Measurements of surface-pressure fluctuations were made at two locations on the XB-70 airplane for nine flight-test conditions encompassing a local Mach number range from 0.35 to 2.45. These measurements are presented in the form of estimated power spectral densities, coherence functions, and narrow-band-convection velocities. The estimated power spectral densities compared favorably with wind-tunnel data obtained by other experimenters. The coherence function and convection velocity data supported conclusions by other experimenters that low-frequency surface-pressure fluctuations consist of small-scale turbulence components with low convection velocity.
Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak
Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; ...
2016-09-21
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less
Large Fluctuations for Spatial Diffusion of Cold Atoms
NASA Astrophysics Data System (ADS)
Aghion, Erez; Kessler, David A.; Barkai, Eli
2017-06-01
We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density Pt(x ) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.
Jumping the gap: the formation conditions and mass function of `pebble-pile' planetesimals
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-03-01
In a turbulent proto-planetary disc, dust grains undergo large-density fluctuations and under the right circumstances, grain overdensities can collapse under self-gravity (forming a `pebble-pile' planetesimal). Using a simple model for fluctuations predicted in simulations, we estimate the rate of formation and mass function of self-gravitating planetesimal-mass bodies formed by this mechanism. This depends sensitively on the grain size, disc surface density, and turbulent Mach numbers. However, when it occurs, the resulting planetesimal mass function is broad and quasi-universal, with a slope dN/dM ∝ M-(1-2), spanning size/mass range ˜10-104 km (˜10-9-5 M⊕). Collapse to planetesimal through super-Earth masses is possible. The key condition is that grain density fluctuations reach large amplitudes on large scales, where gravitational instability proceeds most easily (collapse of small grains is suppressed by turbulence). This leads to a new criterion for `pebble-pile' formation: τs ≳ 0.05 ln (Q1/2/Zd)/ln (1 + 10 α1/4) ˜ 0.3 ψ(Q, Z, α) where τs = ts Ω is the dimensionless particle stopping time. In a minimum-mass solar nebula, this requires grains larger than a = (50, 1, 0.1) cm at r=(1, 30, 100) au}. This may easily occur beyond the ice line, but at small radii would depend on the existence of large boulders. Because density fluctuations depend strongly on τs (inversely proportional to disc surface density), lower density discs are more unstable. Conditions for pebble-pile formation also become more favourable around lower mass, cooler stars.
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
NASA Astrophysics Data System (ADS)
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).
NASA Technical Reports Server (NTRS)
Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.
1987-01-01
Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.
On the large scale structure of X-ray background sources
NASA Technical Reports Server (NTRS)
Bi, H. G.; Meszaros, A.; Meszaros, P.
1991-01-01
The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.
Multiplicity fluctuations and collective flow in small colliding systems
NASA Astrophysics Data System (ADS)
Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi
2017-11-01
Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.
NASA Astrophysics Data System (ADS)
Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; Van Zeeland, M. A.
2016-11-01
Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI-interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz
Detection limit for rate fluctuations in inhomogeneous Poisson processes
NASA Astrophysics Data System (ADS)
Shintani, Toshiaki; Shinomoto, Shigeru
2012-04-01
Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.
Detection limit for rate fluctuations in inhomogeneous Poisson processes.
Shintani, Toshiaki; Shinomoto, Shigeru
2012-04-01
Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.
Anomaly detection in reconstructed quantum states using a machine-learning technique
NASA Astrophysics Data System (ADS)
Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki
2014-02-01
The accurate detection of small deviations in given density matrices is important for quantum information processing. Here we propose a method based on the concept of data mining. We demonstrate that the proposed method can more accurately detect small erroneous deviations in reconstructed density matrices, which contain intrinsic fluctuations due to the limited number of samples, than a naive method of checking the trace distance from the average of the given density matrices. This method has the potential to be a key tool in broad areas of physics where the detection of small deviations of quantum states reconstructed using a limited number of samples is essential.
Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma
NASA Technical Reports Server (NTRS)
Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.
1999-01-01
In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.
Enhanced hyperuniformity from random reorganization.
Hexner, Daniel; Chaikin, Paul M; Levine, Dov
2017-04-25
Diffusion relaxes density fluctuations toward a uniform random state whose variance in regions of volume [Formula: see text] scales as [Formula: see text] Systems whose fluctuations decay faster, [Formula: see text] with [Formula: see text], are called hyperuniform. The larger [Formula: see text], the more uniform, with systems like crystals achieving the maximum value: [Formula: see text] Although finite temperature equilibrium dynamics will not yield hyperuniform states, driven, nonequilibrium dynamics may. Such is the case, for example, in a simple model where overlapping particles are each given a small random displacement. Above a critical particle density [Formula: see text], the system evolves forever, never finding a configuration where no particles overlap. Below [Formula: see text], however, it eventually finds such a state, and stops evolving. This "absorbing state" is hyperuniform up to a length scale [Formula: see text], which diverges at [Formula: see text] An important question is whether hyperuniformity survives noise and thermal fluctuations. We find that hyperuniformity of the absorbing state is not only robust against noise, diffusion, or activity, but that such perturbations reduce fluctuations toward their limiting behavior, [Formula: see text], a uniformity similar to random close packing and early universe fluctuations, but with arbitrary controllable density.
Continuous description of fluctuating eccentricities
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Broniowski, Wojciech; Ollitrault, Jean-Yves
2014-11-01
We consider the initial energy density in the transverse plane of a high energy nucleus-nucleus collision as a random field ρ (x), whose probability distribution P [ ρ ], the only ingredient of the present description, encodes all possible sources of fluctuations. We argue that it is a local Gaussian, with a short-range 2-point function, and that the fluctuations relevant for the calculation of the eccentricities that drive the anisotropic flow have small relative amplitudes. In fact, this 2-point function, together with the average density, contains all the information needed to calculate the eccentricities and their variances, and we derive general model independent expressions for these quantities. The short wavelength fluctuations are shown to play no role in these calculations, except for a renormalization of the short range part of the 2-point function. As an illustration, we compare to a commonly used model of independent sources, and recover the known results of this model.
NASA Astrophysics Data System (ADS)
Morozov, A. N.
2017-11-01
The article reviews the possibility of describing physical time as a random Poisson process. An equation allowing the intensity of physical time fluctuations to be calculated depending on the entropy production density within irreversible natural processes has been proposed. Based on the standard solar model the work calculates the entropy production density inside the Sun and the dependence of the intensity of physical time fluctuations on the distance to the centre of the Sun. A free model parameter has been established, and the method of its evaluation has been suggested. The calculations of the entropy production density inside the Sun showed that it differs by 2-3 orders of magnitude in different parts of the Sun. The intensity of physical time fluctuations on the Earth's surface depending on the entropy production density during the sunlight-to-Earth's thermal radiation conversion has been theoretically predicted. A method of evaluation of the Kullback's measure of voltage fluctuations in small amounts of electrolyte has been proposed. Using a simple model of the Earth's surface heat transfer to the upper atmosphere, the effective Earth's thermal radiation temperature has been determined. A comparison between the theoretical values of the Kullback's measure derived from the fluctuating physical time model and the experimentally measured values of this measure for two independent electrolytic cells showed a good qualitative and quantitative concurrence of predictions of both theoretical model and experimental data.
Energy dynamics in a simulation of LAPD turbulence
NASA Astrophysics Data System (ADS)
Friedman, B.; Carter, T. A.; Umansky, M. V.; Schaffner, D.; Dudson, B.
2012-10-01
Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k∥=0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k∥≠0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k∥=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data. This indicates the importance of the nonlinear instability in producing experimentally consistent turbulence.
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.
2005-01-01
Recent advancement in the molecular Rayleigh scattering based technique allowed for simultaneous measurement of velocity and density fluctuations with high sampling rates. The technique was used to investigate unheated high subsonic and supersonic fully expanded free jets in the Mach number range of 0.8 to 1.8. The difference between the Favre averaged and Reynolds averaged axial velocity and axial component of the turbulent kinetic energy is found to be small. Estimates based on the Morkovin's "Strong Reynolds Analogy" were found to provide lower values of turbulent density fluctuations than the measured data.
Solar Wind Turbulence and the Role of Ion Instabilities
NASA Astrophysics Data System (ADS)
Alexandrova, O.; Chen, C. H. K.; Sorriso-Valvo, L.; Horbury, T. S.; Bale, S. D.
Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field, with the Kolmogorov scaling k_{perp}^{-5/3} for the perpendicular cascade and k_⊥^{-2} for the parallel one. Solar wind turbulence is compressible in nature: density fluctuations at MHD scales have the Kolmogorov spectrum. Velocity fluctuations do not follow magnetic field ones: their spectrum is a power-law with a -3/2 spectral index. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuation spectrum has a local flattening. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established. It is characterized by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to -2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed (for time intervals without quasi-parallel whistlers) indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by ˜ k_{perp}^{-α}exp(-k_{perp}elld), with α≃8/3 and the dissipation scale ℓ d close to the electron Larmor radius ℓ d ≃ρ e . The nature of this small scale cascade and a possible dissipation mechanism are still under debate.
The statistics of peaks of Gaussian random fields. [cosmological density fluctuations
NASA Technical Reports Server (NTRS)
Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Squire, J.; Bhattacharjee, A.
2015-11-02
Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less
Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 to 2 GHz
NASA Technical Reports Server (NTRS)
Tan, Shurun; Aksoy, Mustafa; Brogioni, Marco; Macelloni, Giovanni; Durand, Michael; Jezek, Kenneth C.; Wang, Tian-Lin; Tsang, Leung; Johnson, Joel T.; Drinkwater, Mark R.;
2015-01-01
We investigate physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica. We find that because ice particle grain sizes are very small compared to the 0.5-2 GHz wavelengths, volume scattering effects are small. Variations in firn density over cm- to m-length scales, however, cause significant effects. Both incoherent and coherent models are used to examine these effects. Incoherent models include a 'cloud model' that neglects any reflections internal to the ice sheet, and the DMRT-ML and MEMLS radiative transfer codes that are publicly available. The coherent model is based on the layered medium implementation of the fluctuation dissipation theorem for thermal microwave radiation from a medium having a nonuniform temperature. Density profiles are modeled using a stochastic approach, and model predictions are averaged over a large number of realizations to take into account an averaging over the radiometer footprint. Density profiles are described by combining a smooth average density profile with a spatially correlated random process to model density fluctuations. It is shown that coherent model results after ensemble averaging depend on the correlation lengths of the vertical density fluctuations. If the correlation length is moderate or long compared with the wavelength (approximately 0.6x longer or greater for Gaussian correlation function without regard for layer thinning due to compaction), coherent and incoherent model results are similar (within approximately 1 K). However, when the correlation length is short compared to the wavelength, coherent model results are significantly different from the incoherent model by several tens of kelvins. For a 10-cm correlation length, the differences are significant between 0.5 and 1.1 GHz, and less for 1.1-2 GHz. Model results are shown to be able to match the v-pol SMOS data closely and predict the h-pol data for small observation angles.
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team
2018-01-01
In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Sumit, E-mail: sumit.basu@cern.ch; Chatterjee, Rupa; Nayak, Tapan K.
Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.
Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing
NASA Astrophysics Data System (ADS)
Singh, Aman K.; Yadava, R. D. S.
2018-05-01
The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.
Reionization and the cosmic microwave background in an open universe
NASA Technical Reports Server (NTRS)
Persi, Fred M.
1995-01-01
If the universe was reionized at high reshift (z greater than or approximately equal to 30) or never recombined, then photon-electron scattering can erase fluctuations in the cosmic microwave background at scales less than or approximately equal to 1 deg. Peculiar motion at the surface of last scattering will then have given rise to new anisotropy at the 1 min level through the Vishniac effect. Here the observed fluctuations in galaxy counts are extrapolated to high redshifts using linear theory, and the expected anisotropy is computed. The predicted level of anisotropies is a function of Omega(sub 0) and the ratio of the density in ionized baryons to the critical density and is shown to depend strongly on the large- and small-scale power. It is not possible to make general statements about the viability of all reionized models based on current observations, but it is possible to rule out specific models for structure formation, particularly those with high baryonic content or small-scale power. The induced fluctuations are shown to scale with cosmological parameters and optical depth.
Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution
NASA Technical Reports Server (NTRS)
Kil, Hyosub; Heelis, R. A.
1998-01-01
We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.
NASA Astrophysics Data System (ADS)
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.
2018-05-01
Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.
Unsteady density and velocity measurements in the 6 foot x 6 foot wind tunnel
NASA Technical Reports Server (NTRS)
Rose, W. C.; Johnson, D. A.
1980-01-01
The methods used and the results obtained in four aero-optic tests are summarized. It is concluded that the rather large values of density fluctuation appear to be the result of much higher Mach number than freestream and the violent turbulence in the flow as it separates from the turret. A representative comparison of fairing on-fairing off rms density fluctuation indicates essentially no effect at M = 0.62 and a small effect at M = 0.95. These data indicate that some slight improvement in optical quality can be expected with the addition of a fairing, although at M = 0.62 its effect would be nil. Fairings are very useful in controlling pressure loads on turrets, but will not have first order effects on optical quality. Scale sizes increase dramatically with increasing azimuth angle for a reprensentative condition. Since both scale sizes and fluctuation levels increase (total turbulence path length also increases) with azimuth angle, substantial optical degradation might be expected. For shorter wave lengths, large degradations occur.
A simple phenomenological model for grain clustering in turbulence
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-01-01
We propose a simple model for density fluctuations of aerodynamic grains, embedded in a turbulent, gravitating gas disc. The model combines a calculation for the behaviour of a group of grains encountering a single turbulent eddy, with a hierarchical approximation of the eddy statistics. This makes analytic predictions for a range of quantities including: distributions of grain densities, power spectra and correlation functions of fluctuations, and maximum grain densities reached. We predict how these scale as a function of grain drag time ts, spatial scale, grain-to-gas mass ratio tilde{ρ }, strength of turbulence α, and detailed disc properties. We test these against numerical simulations with various turbulence-driving mechanisms. The simulations agree well with the predictions, spanning ts Ω ˜ 10-4-10, tilde{ρ }˜ 0{-}3, α ˜ 10-10-10-2. Results from `turbulent concentration' simulations and laboratory experiments are also predicted as a special case. Vortices on a wide range of scales disperse and concentrate grains hierarchically. For small grains this is most efficient in eddies with turnover time comparable to the stopping time, but fluctuations are also damped by local gas-grain drift. For large grains, shear and gravity lead to a much broader range of eddy scales driving fluctuations, with most power on the largest scales. The grain density distribution has a log-Poisson shape, with fluctuations for large grains up to factors ≳1000. We provide simple analytic expressions for the predictions, and discuss implications for planetesimal formation, grain growth, and the structure of turbulence.
NASA Astrophysics Data System (ADS)
Henríquez, Paula; Donoso, Denise S.; Grez, Audrey A.
2009-11-01
Habitat fragmentation results in new environmental conditions that may stress resident populations. Such stress may be reflected in demographical or morphological changes in the individuals inhabiting those landscapes. This study evaluates the effects of fragmentation of the Maulino forest on population density, sex ratio, body size, and fluctuating asymmetry (FA) of the endemic carabid Ceroglossus chilensis. Individuals of C. chilensis were collected during 2006 in five locations at Los Queules National Reserve (continuous forest), in five forest fragments and in five areas of surrounding pine plantations (matrix). In each location, once a season, 40 pitfall traps (20 in the centre, 20 in the edge), were opened for 72 h. Population density of C. chilensis was higher in the small fragments than in the pine matrix, with intermediate densities in the continuous forest; sex ratio did not differ significantly from 1:1 in the three habitats. Individuals from the centre of fragments were smaller than those from the centre of continuous forest, and FA did not vary significantly among habitats. These results suggest that small forest fragments maintain dense populations of C. chilensis and therefore they must be considered in conservation strategies. Although the decrease of the body size suggests that small remnants should be connected by managing the structure of the surrounding matrix, facilitating the dispersion of this carabid across the landscape and avoiding possible antagonistic interactions inside small fragments.
On the Computation of Sound by Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Streett, Craig L.; Sarkar, Sutanu
1997-01-01
The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T(sub ij). The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.
Hirotani, Hiroshi; Yu, Ma; Yamada, Takeshi
2013-01-01
Fluctuation of bacteriophage and Escherichia coli densities in naturally developed riverbed biofilms were investigated for a 1-year period. E. coli ranged from 1,500 to 15,500 most probable number (MPN)/100 mL and from 580 to 18,500 MPN/cm(2) in the main channel in the river water and biofilms, respectively. However, the fluctuations were much greater in the tributary, ranging from 0.8 to 100 MPN/100 mL and from 0.3 to 185 MPN/cm(2) in water and biofilms, respectively. The fluctuations of coliphages were also greater in the tributary than in the main channel. FRNA phage serotyping results indicated no significant differences in the source type of the fecal contamination in the main channel and tributary sampling stations. Significant correlations between phage groups in biofilms and water were found at both main channel and tributary. It was assumed that natural biofilms developed in the streambed captured and retained somatic phages in the biofilms for a certain period of time in the main channel site. At the location receiving constant and heavy contamination, the usage of phage indicators may provide additional information on the presence of viruses. In the small tributary it may be possible to estimate the virus concentration by monitoring the E. coli indicator.
Ding, W X; Lin, L; Duff, J R; Brower, D L
2014-11-01
Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.
Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology
NASA Technical Reports Server (NTRS)
Adams, P. J.; Canuto, V.
1975-01-01
The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.
Quantifying Density Fluctuations in Volumes of All Shapes and Sizes Using Indirect Umbrella Sampling
NASA Astrophysics Data System (ADS)
Patel, Amish J.; Varilly, Patrick; Chandler, David; Garde, Shekhar
2011-10-01
Water density fluctuations are an important statistical mechanical observable and are related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been proposed as a measure of its hydrophobicity. These fluctuations can be quantified by calculating the probability, P v ( N), of observing N waters in a probe volume of interest v. When v is large, calculating P v ( N) using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in N) leads to undesirable impulsive forces. Patel et al. (J. Phys. Chem. B 114:1632, 2010) have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain P v ( N) in cuboidal volumes. Here, we present and demonstrate an extension of that approach to volumes of other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate P v ( N) distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.
NASA Astrophysics Data System (ADS)
Hoogenboom, M.; Beraud, E.; Ferrier-Pagès, C.
2010-03-01
This study quantified variation in net photosynthetic carbon gain in response to natural fluctuations in symbiont density for the Mediterranean coral Cladocora caespitosa, and evaluated which density maximized photosynthetic carbon acquisition. To do this, carbon acquisition was modeled as an explicit function of symbiont density. The model was parameterized using measurements of rates of photosynthesis and respiration for small colonies with a broad range of zooxanthella concentrations. Results demonstrate that rates of net photosynthesis increase asymptotically with symbiont density, whereas rates of respiration increase linearly. In combination, these functional responses meant that colony energy acquisition decreased at both low and at very high zooxanthella densities. However, there was a wide range of symbiont densities for which net daily photosynthesis was approximately equivalent. Therefore, significant changes in symbiont density do not necessarily cause a change in autotrophic energy acquisition by the colony. Model estimates of the optimal range of cell densities corresponded well with independent observations of symbiont concentrations obtained from field and laboratory studies of healthy colonies. Overall, this study demonstrates that the seasonal fluctuations, in symbiont numbers observed in healthy colonies of the Mediterranean coral investigated, do not have a strong effect on photosynthetic energy acquisition.
Maximum one-shot dissipated work from Rényi divergences
NASA Astrophysics Data System (ADS)
Yunger Halpern, Nicole; Garner, Andrew J. P.; Dahlsten, Oscar C. O.; Vedral, Vlatko
2018-05-01
Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.
Maximum one-shot dissipated work from Rényi divergences.
Yunger Halpern, Nicole; Garner, Andrew J P; Dahlsten, Oscar C O; Vedral, Vlatko
2018-05-01
Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.
1987-01-01
A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.
Ploetz, Elizabeth A; Karunaweera, Sadish; Smith, Paul E
2015-01-28
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.
NASA Astrophysics Data System (ADS)
Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.
2015-01-01
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.
Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma
2014-11-18
The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.
Predator-induced synchrony in population oscillations of coexisting small mammal species.
Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero
2005-01-22
Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravleva, I.; Allen, S. W.; Churazov, E. M.
2014-06-10
We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{supmore » 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.« less
Davis, E. M.; Rost, J. C.; Porkolab, M.; ...
2016-08-15
Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. Here, we describe the first-ever implementation of a combined PCI-interferometer. The combined system uses a single 10:6 μm probe beam, two interference schemes, and two detectors to measure electron density uctuations at large spatiotemporal bandwidth (10 kHz < f < 5MHz and 0 cm -1 ≤ k ≤ 20 cm -1), allowing simultaneous measurement of ion- and electron-scale instabilities. Further, correlating our interferometer's measurements with those from DIII-D's pre-existing, toroidally separated interferometer allows core-localized, low-n MHD studies that may otherwisemore » be inaccessible via external magnetic measurements. In the combined diagnostic's small port requirements and minimal access restrictions make it well-suited to the harsh neutron environments and limited port space expected in next-step devices.« less
NASA Astrophysics Data System (ADS)
Huang, X.; Aldering, G.; Biederman, M.; Herger, B.
2017-11-01
For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (≳ 10 {pc}) will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent widths, and of extinction, would be small. As a result, we conclude that nonuniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power-law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Aldering, Gregory; Biederman, Moriah; Herger, Brendan
2018-01-01
For Type Ia supernovae (SNe Ia) observed through a non-uniform interstellar medium (ISM) in its host galaxy, we investigate whether the non-uniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (>~ 10 pc) will translate to much smaller fluctuations on the scales of a SN photosphere. Therefore the typical amplitude of time variation due to non-uniform ISM, of absorption equivalent widths and of extinction, would be small. As a result, we conclude that non-uniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.
Small-scale modification to the lensing kernel
NASA Astrophysics Data System (ADS)
Hadzhiyska, Boryana; Spergel, David; Dunkley, Joanna
2018-02-01
Calculations of the cosmic microwave background (CMB) lensing power implemented into the standard cosmological codes such as camb and class usually treat the surface of last scatter as an infinitely thin screen. However, since the CMB anisotropies are smoothed out on scales smaller than the diffusion length due to the effect of Silk damping, the photons which carry information about the small-scale density distribution come from slightly earlier times than the standard recombination time. The dominant effect is the scale dependence of the mean redshift associated with the fluctuations during recombination. We find that fluctuations at k =0.01 Mpc-1 come from a characteristic redshift of z ≈1090 , while fluctuations at k =0.3 Mpc-1 come from a characteristic redshift of z ≈1130 . We then estimate the corrections to the lensing kernel and the related power spectra due to this effect. We conclude that neglecting it would result in a deviation from the true value of the lensing kernel at the half percent level at small CMB scales. For an all-sky, noise-free experiment, this corresponds to a ˜0.1 σ shift in the observed temperature power spectrum on small scales (2500 ≲l ≲4000 ).
Impact of neutral density fluctuations on gas puff imaging diagnostics
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2017-11-01
A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.
NASA Astrophysics Data System (ADS)
Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.
2017-12-01
We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.
Nature of Kinetic Scale Fluctuations in Solar Wind Turbulence
NASA Astrophysics Data System (ADS)
Salem, C. S.; Chen, C. H.; Sundkvist, D. J.; Chaston, C. C.; Bale, S. D.; Mozer, F.
2012-12-01
We present an investigation of the nature of small-scale turbulent fluctuations in the solar wind. The nature of the dissipation range fluctuations of solar wind turbulence remains a major open question in heliospheric physics. The steepening of the observed (magnetic field) spectra at ion scales was originally attributed to ion cyclotron damping, but it was later suggested that it could well be due to the dispersive nature of fluctuations at these scales. The nature of the dispersive cascade at and below the ion scales is still debated, two leading hypothesis being that these fluctuations have characteristics of Kinetic Alfven Waves (KAW) or whistler waves. Other possible contributions from current sheets and/or kinetic instabilities have been suggested. There is mounting evidence that the fluctuations at these scales are KAW-like. In this study, we analyze several carefully selected unperturbed solar wind intervals, using magnetic field, electric field as well as density measurements from the Cluster spacecraft in order to identify the nature of the wave modes present, how frequent they are and try to determine whether one or more wave modes at different times. We examine the electric to magnetic field fluctuation ratio (δ E/δd B), the magnetic compressibility (δ B∥ /δ B) as well as density fluctuations using newly developed diagnostic techniques by Salem et al (2012) and Chen et al (2012). We look for variations of the nature and properties of these kinetic scale fluctuations with solar wind conditions, such as the plasma beta and the angle between the magnetic field and the flow velocity which controls the measured (spacecraft frame) frequency of the fluctuations. We discuss how these results would impact how the solar wind plasma is heated.
Characterizing pixel and point patterns with a hyperuniformity disorder length
NASA Astrophysics Data System (ADS)
Chieco, A. T.; Dreyfus, R.; Durian, D. J.
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".
Characterizing pixel and point patterns with a hyperuniformity disorder length.
Chieco, A T; Dreyfus, R; Durian, D J
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns-where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2. Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d) for small f, and h=L/2 for f→1. And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L) versus L. We call this approach "hyperuniformity disorder length spectroscopy".
Kurtosis, skewness, and non-Gaussian cosmological density perturbations
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1993-01-01
Cosmological topological defects as well as some nonstandard inflation models can give rise to non-Gaussian density perturbations. Skewness and kurtosis are the third and fourth moments that measure the deviation of a distribution from a Gaussian. Measurement of these moments for the cosmological density field and for the microwave background temperature anisotropy can provide a test of the Gaussian nature of the primordial fluctuation spectrum. In the case of the density field, the importance of measuring the kurtosis is stressed since it will be preserved through the weakly nonlinear gravitational evolution epoch. Current constraints on skewness and kurtosis of primeval perturbations are obtained from the observed density contrast on small scales and from recent COBE observations of temperature anisotropies on large scales. It is also shown how, in principle, future microwave anisotropy experiments might be able to reveal the initial skewness and kurtosis. It is shown that present data argue that if the initial spectrum is adiabatic, then it is probably Gaussian, but non-Gaussian isocurvature fluctuations are still allowed, and these are what topological defects provide.
Measurements of the free stream fluctuations above a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Wood, David H.; Westphal, Russell V.
1987-01-01
This paper investigates the velocity fluctuations in the free stream above an incompressible turbulent boundary layer developing at constant pressure. It is assumed that the fluctuations receive contributions from three statistically independent sources: (1) one-dimensional unsteadiness, (2) free stream turbulence, and (3) the potential motion induced by the turbulent boundary layer. Measurements were made in a wind tunnel with a root-mean-square level of the axial velocity fluctuations of about 0.2 percent. All three velocity components were measured using an X-wire probe. The unsteadiness was determined from the spanwise covariance of the axial velocity, measured using two single wire probes. The results show that it is possible to separate the contributions to the r.m.s. level of the velocity fluctuations, without resorting to the dubious technique of high-pass filtering. The separation could be extended to the spectral densities of the contributions, if measurements of sufficient accuracy were available. The Appendix provides a general guide for the measurement of small free stream fluctuation levels.
Interacting and self-organized two-level states in tunnel barriers
NASA Technical Reports Server (NTRS)
Pesenson, L.; Robertazzi, R. P.; Buhrman, R. A.; Cypher, S. R.; Hunt, B. D.
1991-01-01
The excess low-frequency 1/f noise and discrete two-level resistance fluctuations (TLFs) were studied in small-area NbN-MgO-NbN tunnel junctions with a high, low-temperature density of active defects. Strong and evolving interactions between large TLFs indicate that these fluctuations result from the self-organization of interacting defect elements. In the low-T tunneling regime, an unusual slowing down of the rates and a decrease in amplitude with increasing T is sometimes observed indicative of a thermally induced change in the self-organized two-level state.
NASA Astrophysics Data System (ADS)
Pipich, Vitaliy; Schwahn, Dietmar
2018-04-01
Thermal density fluctuations of supercritical CO2 were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.
Pipich, Vitaliy; Schwahn, Dietmar
2018-04-06
Thermal density fluctuations of supercritical CO_{2} were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Wei; Zhang Bing; Li Hui
The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jetmore » with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Wei; Zhang, Bing; Li, Hui
We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
Deng, Wei; Zhang, Bing; Li, Hui; ...
2017-08-03
We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations
NASA Astrophysics Data System (ADS)
Keenan, Brett D.
Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. In effect, we demonstrate how the diffusive and radiative properties of plasmas with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful tool for the diagnosis of laboratory, astrophysical, and space plasmas.
Seeded hot dark matter models with inflation
NASA Technical Reports Server (NTRS)
Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.
1993-01-01
We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.
The Transport of Density Fluctuations Throughout the Heliosphere
NASA Technical Reports Server (NTRS)
Zank, G. P.; Jetha, N.; Hu, Q.; Hunana, P.
2012-01-01
The solar wind is recognized as a turbulent magnetofluid, for which the properties of the turbulent velocity and magnetic field fluctuations are often described by the equations of incompressible magnetohydrodynamics (MHD). However, low-frequency density turbulence is also ubiquitous. On the basis of a nearly incompressible formulation of MHD in the expanding inhomogeneous solar wind, we derive the transport equation for the variance of the density fluctuations (Rho(exp 2)). The transport equation shows that density fluctuations behave as a passive scalar in the supersonic solar wind. In the absence of sources of density turbulence, such as within 1AU, the variance (Rho(exp 2)) approximates r(exp -4). In the outer heliosphere beyond 1 AU, the shear between fast and slow streams, the propagation of shocks, and the creation of interstellar pickup ions all act as sources of density turbulence. The model density fluctuation variance evolves with heliocentric distance within approximately 300 AU as (Rho(exp 2)) approximates r(exp -3.3) after which it flattens and then slowly increases. This is precisely the radial profile for the density fluctuation variance observed by Voyager 2. Using a different analysis technique, we confirm the radial profile for Rho(exp 2) of Bellamy, Cairns, & Smith using Voyager 2 data. We conclude that a passive scalar description for density fluctuations in the supersonic solar wind can explain the density fluctuation variance observed in both the inner and the outer heliosphere.
Predator-induced synchrony in population oscillations of coexisting small mammal species
Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero
2005-01-01
Comprehensive analyses of long-term (1977–2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5–3 km2) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase. PMID:15695211
Global financial crisis making a V-shaped fluctuation in NO2 pollution over the Yangtze River Delta
NASA Astrophysics Data System (ADS)
Du, Yin; Xie, Zhiqing
2017-04-01
The Yangtze River Delta (YRD), China's main cultural and economic center, has become one of the most seriously polluted areas in the world with respect to nitrogen oxides (NOx), owing to its rapid industrialization and urbanization, as well as substantial coal consumption. On the basis of nitrogen dioxide (NO2) density data from ozone monitoring instrument (OMI) and ground-based observations, the effects of industrial fluctuations due to the financial crisis on local NO2 pollution were quantitatively assessed. The results were as follows. (1) A distinct V-shaped fluctuation of major industrial products, thermal generating capacity, electricity consumption, and tropospheric NO2 densities was associated with the global financial crisis from May 2007 to December 2009, with the largest anomalies 1.5 times more than standard deviations at the height of the crisis period from November 2008 to February 2009. (2) Among all industrial sectors, thermal power plants were mainly responsible for fluctuations in local NO2 pollution during the crisis period. Thermal generating capacity had its greatest decrease of 12.10% at the height of the crisis compared with that during November 2007-February 2008, leading to local tropospheric NO2 density decreasing by 16.97%. As the crisis appeased, thermal generating capacity increased by 29.63% from November 2009 to February 2010, and tropospheric NO2 densities correspondingly increased by 30.07%. (3) Among all industrial sectors in the YRD, the thermal power sector has the greatest coal consumption of about 65.96%. A decline in thermal power of about 10% can induce a decrease of about 30% in NOx emissions and NO2 densities, meaning that a relative small fluctuation in industrial production can lead to a large decrease in tropospheric NO2 densities over industrially developed areas like the YRD region. Since electricity is mainly obtained from local coal-burning thermal plants without NOx-processing equipment, installing NOx-removal devices for all thermal power plants is an important and feasible way of controlling local NOx pollution at present.
Fluctuations, ghosts, and the cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, T.; Holdom, B.
2004-12-15
For a large region of parameter space involving the cosmological constant and mass parameters, we discuss fluctuating spacetime solutions that are effectively Minkowskian on large time and distance scales. Rapid, small amplitude oscillations in the scale factor have a frequency determined by the size of a negative cosmological constant. A field with modes of negative energy is required. If it is gravity that induces a coupling between the ghostlike and normal fields, we find that this results in stochastic rather than unstable behavior. The negative energy modes may also permit the existence of Lorentz invariant fluctuating solutions of finite energymore » density. Finally we consider higher derivative gravity theories and find oscillating metric solutions in these theories without the addition of other fields.« less
Cosmological Implications of Electroweak Monopole
NASA Astrophysics Data System (ADS)
Cho, Y. M.
2018-01-01
In this talk we review the basic features of the electroweak monopole, and estimate the remnant electroweak monopole density of the standard model in the present universe. We show that, although the electroweak phase transition is of the first order, the monopole production comes from the thermal fluctuations of the Higgs field after the phase transition, not the vacuum bubble collisions during the phase transition. Moreover, most of the monopoles produced initially are annihilated as soon as created, and this annihilation continues very long time, longer than the muon pair annihilation time. As the result the remnant monopole density at present universe becomes very small, of 10-11 of the critical density, too small to be the dark matter. We discuss the physical implications of our results on the ongoing monopole detection experiments.
Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations
NASA Astrophysics Data System (ADS)
Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana
2018-05-01
The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.
2017-03-01
A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.
NASA Astrophysics Data System (ADS)
Ye, Xuchun; Xu, Chong-Yu; Li, Xianghu; Zhang, Qi
2018-05-01
The occurrence of flood and drought frequency is highly correlated with the temporal fluctuations of streamflow series; understanding of these fluctuations is essential for the improved modeling and statistical prediction of extreme changes in river basins. In this study, the complexity of daily streamflow fluctuations was investigated by using multifractal detrended fluctuation analysis (MF-DFA) in a large heterogeneous lake basin, the Poyang Lake basin in China, and the potential impacts of human activities were also explored. Major results indicate that the multifractality of streamflow fluctuations shows significant regional characteristics. In the study catchment, all the daily streamflow series present a strong long-range correlation with Hurst exponents bigger than 0.8. The q-order Hurst exponent h( q) of all the hydrostations can be characterized well by only two parameters: a (0.354 ≤ a ≤ 0.384) and b (0.627 ≤ b ≤ 0.677), with no pronounced differences. Singularity spectrum analysis pointed out that small fluctuations play a dominant role in all daily streamflow series. Our research also revealed that both the correlation properties and the broad probability density function (PDF) of hydrological series can be responsible for the multifractality of streamflow series that depends on watershed areas. In addition, we emphasized the relationship between watershed area and the estimated multifractal parameters, such as the Hurst exponent and fitted parameters a and b from the q-order Hurst exponent h( q). However, the relationship between the width of the singularity spectrum (Δ α) and watershed area is not clear. Further investigation revealed that increasing forest coverage and reservoir storage can effectively enhance the persistence of daily streamflow, decrease the hydrological complexity of large fluctuations, and increase the small fluctuations.
High-Energy Emissions Induced by Air Density Fluctuations of Discharges
NASA Astrophysics Data System (ADS)
Köhn, C.; Chanrion, O.; Neubert, T.
2018-05-01
Bursts of X-rays and γ-rays are observed from lightning and laboratory sparks. They are bremsstrahlung from energetic electrons interacting with neutral air molecules, but it is still unclear how the electrons achieve the required energies. It has been proposed that the enhanced electric field of streamers, found in the corona of leader tips, may account for the acceleration; however, their efficiency is questioned because of the relatively low production rate found in simulations. Here we emphasize that streamers usually are simulated with the assumption of homogeneous gas, which may not be the case on the small temporal and spatial scales of discharges. Since the streamer properties strongly depend on the reduced electric field E/n, where n is the neutral number density, fluctuations may potentially have a significant effect. To explore what might be expected if the assumption of homogeneity is relaxed, we conducted simple numerical experiments based on simulations of streamers in a neutral gas with a radial gradient in the neutral density, assumed to be created, for instance, by a previous spark. We also studied the effects of background electron density from previous discharges. We find that X-radiation and γ-radiation are enhanced when the on-axis air density is reduced by more than ˜25%. Pre-ionization tends to reduce the streamer field and thereby the production rate of high-energy electrons; however, the reduction is modest. The simulations suggest that fluctuations in the neutral densities, on the temporal and spacial scales of streamers, may be important for electron acceleration and bremsstrahlung radiation.
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H., E-mail: zhongh14@126.com; Tan, Y.; Liu, Y. Q.
2016-11-15
A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector,more » without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer’s capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.« less
Ho, Hau My; Cui, Bianxiao; Repel, Stephen; Lin, Binhua; Rice, Stuart A
2004-11-01
We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2008-11-01
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.
Test-particle simulations in increasingly strong turbulence
NASA Technical Reports Server (NTRS)
Pontius, D. H., Jr.; Gray, P. C.; Matthaeus, W. H.
1995-01-01
Quasi-linear theory supposes that the energy in resonant fluctuations is small compared to that in the mean magnetic field. This is evident in the fact that the zeroth-order particle trajectories are helices about a mean field B(sub o) that is spatially uniform over many correlation lengths. However, in the solar wind it is often the case that the fluctuating part of the field is comparable in magnitude to the mean part. It is generally expected that quasi-linear theory remains viable for particles that are in resonance with a region of the fluctuation spectrum having only small energy density, but even so, care must be taken when comparing simulations to theoretical predictions. We have performed a series of test-particle simulations to explore the evolution of ion distributions in turbulent situations with varying levels of magnetic fluctuations. As delta-B/B(sub o) is increased the distinctions among absolute pitch angle (defined relative to B(sub o)), local pitch angle (defined relative to B(x)), and magnetic moment become important, some of them exhibiting periodic sloshing unrelated to the nonadiabatic processes of interest. Comparing and contrasting the various runs illustrates the phenomena that must be considered when the premise underlying quasi-linear theory are relaxed.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
Interfacial layering and capillary roughness in immiscible liquids.
Geysermans, P; Pontikis, V
2010-08-21
The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.
NASA Astrophysics Data System (ADS)
White, A. E.
2009-11-01
Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.
1/ f noise from the laws of thermodynamics for finite-size fluctuations.
Chamberlin, Ralph V; Nasir, Derek M
2014-07-01
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.
The origin of density fluctuations in the 'new inflationary universe'
NASA Technical Reports Server (NTRS)
Turner, M. S.
1983-01-01
Cosmological mysteries which are not explained by the Big Bang hypothesis but may be approached by a revamped inflationary universe model are discussed. Attention is focused on the isotropy, the large-scale homogeneity, small-scale inhomogeneity, the oldness/flatness of the universe, and the baryon asymmetry. The universe is assumed to start in the lowest energy state, be initially dominated by false vacuum energy, enter a de Sitter phase, and then cross a barrier which is followed by the formation of fluctuation regions that lead to structure. The scalar fields (perturbation regions) experience quantum fluctuations which produce spontaneous symmetry breaking on a large scale. The scalar field value would need to be much greater than the expansion rate during the de Sitter epoch. A supersymmetric (flat) potential which satisfies the requirement, yields fluctuations of the right magnitude, and allows inflation to occur is described.
NASA Technical Reports Server (NTRS)
Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia
1992-01-01
A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.
Charged-particle transport in turbulent astrophysical plasmas
NASA Technical Reports Server (NTRS)
Newman, C. E., Jr.
1972-01-01
The effect of electromagnetic fluctuations, or plasma turbulence, on the motion of the individual particles in a plasma is investigated. Two alternative methods are used to find a general equation governing the time-evolution of a distribution of charged particles subject to both an external force field and the random fields of the fluctuations. It is found that, for the high-temperature, low-density plasmas frequently encountered in the study of astrophysics, the presence of even a small amount of turbulence can have a very important effect on the behavior of the plasma. Two problems in which turbulence plays an important role are treated.
The effects of large- and small-scale density structures on the radio from coronal streamers
NASA Astrophysics Data System (ADS)
Thejappa, G.; Kundu, M. R.
1994-01-01
The radio observations of the coronal streamers obtained using Clark Lake radioheliograph at 73.8, 50.0, and 38.5 MHz during a period of minimum activity in September 1986 are presented. Streamers appear to correlate with two prominent disk sources whose intensites fluctuated randomly. The variations in half-power diameter of the radio Sun are found to correspond with the variations in the white-light extents of the coronal streamers. It appears that the shape of the radio Sun is not a function of the phase of the solar cycle; instead it depends on the relative positions of the streamers in the corona. The observed peak brightness temperatures, TB, of the streamers are found to be very low, being approximately equal to 6 x 104 K. We compute the brightness temperature distribution along the equator by tracing the rays in the coronal plasma. The rays are deflected away by the streamers before reaching the critical density level, whereas they penetrate deeper into the coronal hole for small angles between the line of sight and the streamer axis. As a consequence, it is found that the streamers and coronal holes appear in the calculated equatorial brightness distribution as irregular brightness depressions and enhancements, respectively. The fine structures are found to disappear when the scattering due to small-scale density inhomogeneities is included in the ray-tracing calculations. The required relative level of density fluctuations, epsilon1 = (delta N)/N, is found to be greater than 12% to reduce the peak brightness temperature from 106 K to 6 x 104 K for all the three frequencies.
Experimental determination of the correlation properties of plasma turbulence using 2D BES systems
NASA Astrophysics Data System (ADS)
Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team
2017-04-01
A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.
LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron
NASA Astrophysics Data System (ADS)
Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.
1994-02-01
The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport
Properties of density and magnetic fluctuations occurring in density striations in the new LAPD
NASA Astrophysics Data System (ADS)
Maggs, J. E.; Morales, G. J.
2001-10-01
Previous studies of density striations (long, narrow magnetic-field-aligned density depletions) in the LAPD plasma device at UCLA revealed an eigenmode structure to fluctuations driven by the pressure gradient in the striation wall (Maggs and Morales, Phys. Plasmas, 4, 1997). The nature of these fluctuations depended on the plasma beta external to the striation, with shear Alfvén wave turbulence developing at betas less than the mass ratio and drift-Alfvén waves at betas above the mass ratio. These fluctuations were found to have a direct connection to turbulence observed at the plasma edge. The new LAPD is 18 meters in length with a background field up to twice previously attainable values. We report on the properties of fluctuations associated with density striations in the new device over a wider range of beta, and compare them to previous results. The behavior of fluctuations in density striations created in flared-field and magnetic-mirror geometries will also be presented. Research sponsored by ONR and NSF
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
On the structure of pressure fluctuations in simulated turbulent channel flow
NASA Technical Reports Server (NTRS)
Kim, John
1989-01-01
Pressure fluctuations in a turbulent channel flow are investigated by analyzing a database obtained from a direct numerical simulation. Detailed statistics associated with the pressure fluctuations are presented. Characteristics associated with the rapid (linear) and slow (nonlinear) pressure are discussed. It is found that the slow pressure fluctuations are larger than the rapid pressure fluctuations throughout the channel except very near the wall, where they are about the same magnitude. This is contrary to the common belief that the nonlinear source terms are negligible compared to the linear source terms. Probability density distributions, power spectra, and two-point correlations are examined to reveal the characteristics of the pressure fluctuations. The global dependence of the pressure fluctuations and pressure-strain correlations are also examined by evaluating the integral associated with Green's function representations of them. In the wall region where the pressure-strain terms are large, most contributions to the pressure-strain terms are from the wall region (i.e., local), whereas away from the wall where the pressure-strain terms are small, contributions are global. Structures of instantaneous pressure and pressure gradients at the wall and the corresponding vorticity field are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arévalo, P.; Churazov, E.; Zhuravleva, I.
X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features that reflect fluctuations in density and/or temperature of the intracluster medium. In this paper we study these fluctuations in M87/Virgo to establish whether sound waves/shocks, bubbles, or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filamentsmore » of gas entrained by buoyantly rising bubbles, extending to 7′ to the east and southwest, and the adiabatic nature of the weak shocks at 40″ and 3′ from the center. For features of ∼5–10 kpc, we show that the central 4′ × 4′ region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30% of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14′ × 14′ region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of ∼30%) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with a model based on feedback from an active galactic nucleus mediated by bubbles of relativistic plasma.« less
Fluctuations and symmetry energy in nuclear fragmentation dynamics.
Colonna, M
2013-01-25
Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zheng; Gohil, Punit; McKee, George R.
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Yan, Zheng; Gohil, Punit; McKee, George R.; ...
2017-09-18
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Nonlinear MHD Waves in a Prominence Foot
NASA Astrophysics Data System (ADS)
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ofman, L.; Knizhnik, K.; Kucera, T.
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evidentmore » as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
Influence of temperature fluctuations on infrared limb radiance: a new simulation code
NASA Astrophysics Data System (ADS)
Rialland, Valérie; Chervet, Patrick
2006-08-01
Airborne infrared limb-viewing detectors may be used as surveillance sensors in order to detect dim military targets. These systems' performances are limited by the inhomogeneous background in the sensor field of view which impacts strongly on target detection probability. This background clutter, which results from small-scale fluctuations of temperature, density or pressure must therefore be analyzed and modeled. Few existing codes are able to model atmospheric structures and their impact on limb-observed radiance. SAMM-2 (SHARC-4 and MODTRAN4 Merged), the Air Force Research Laboratory (AFRL) background radiance code can be used to in order to predict the radiance fluctuation as a result of a normalized temperature fluctuation, as a function of the line-of-sight. Various realizations of cluttered backgrounds can then be computed, based on these transfer functions and on a stochastic temperature field. The existing SIG (SHARC Image Generator) code was designed to compute the cluttered background which would be observed from a space-based sensor. Unfortunately, this code was not able to compute accurate scenes as seen by an airborne sensor especially for lines-of-sight close to the horizon. Recently, we developed a new code called BRUTE3D and adapted to our configuration. This approach is based on a method originally developed in the SIG model. This BRUTE3D code makes use of a three-dimensional grid of temperature fluctuations and of the SAMM-2 transfer functions to synthesize an image of radiance fluctuations according to sensor characteristics. This paper details the working principles of the code and presents some output results. The effects of the small-scale temperature fluctuations on infrared limb radiance as seen by an airborne sensor are highlighted.
Graviton creation by small scale factor oscillations in an expanding universe
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Ford, L. H.
2016-10-01
We treat quantum creation of gravitons by small scale factor oscillations around the average of an expanding universe. Such oscillations can arise in standard general relativity due to oscillations of a homogeneous, minimally coupled scalar field. They can also arise in modified gravity theories with a term proportional to the square of the Ricci scalar in the gravitational action. The graviton wave equation is different in the two cases, leading to somewhat different creation rates. Both cases are treated using a perturbative method due to Birrell and Davies, involving an expansion in a conformal coupling parameter to calculate the number density and energy density of the created gravitons. Cosmological constraints on the present graviton energy density and the dimensionless amplitude of the oscillations are discussed. We also discuss decoherence of quantum systems produced by the spacetime geometry fluctuations due to such a graviton bath.
Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.
2001-01-01
A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.
Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Kevorkian, J.
1978-01-01
The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.
Edge ohmic heating and improved confinement on HT-6M Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.
1995-04-01
An improved confinement has been observed on HT-6M tokamak after application of Edge Ohmic Heating (EOH) which makes plasma current rapidly ramp up from an initial steady state (I{sub p}=55 kA) within a small time scale (0.4 ms) to a second steady state (I{sub p}=60 kA) with a ramp rate of 12 MA/sec. The improved confinement is characterized by (a) increased average density n{sub e}; (b) reduced H{sub alpha} radiation; (c) reduced density fluctuations both in the center and at the edge; (d) a steeper n{sub e} and T{sub e} profile at the edge; (e) the changed profiles of plasmamore » parameters n{sub e}(r), q(r) and j(r); (f) transferred the oscillation modes of the soft-X ray signals from Mirnov fluctuation (12 kHz) to sawtooth oscillation (1.7 kHz). The changes of edge fluctuation, radial electric field and bremsstrahlung during EOH were measured and discussed in details. The measured values of {beta}{sub p}+l{sub i}/2 and soft-X ray sawtooth inversion radius implied the anomalous current penetration. 10 refs., 2 figs.« less
Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.
Liu, Chaoren; Beratan, David N; Zhang, Peng
2016-04-21
System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (
Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I
2006-04-07
We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1980-01-01
The residual spectra of matter and radiation fluctuations in the early universe are investigated, and the evolution of primordial adiabatic and isothermal fluctuations through the decoupling epoch is studied. Amplification of adiabatic density fluctuations during decoupling, or velocity 'overshoot', is largely suppressed by Compton drag. Consequently, the amplitude of density fluctuations entering the horizon prior to decoupling is larger than hitherto assumed in the adiabatic theory. Damping of primordial adiabatic density fluctuations by an order of magnitude occurs on mass-scales of 3 x 10 to the 13th solar masses (Omega = 1) or 10 to the 14th solar masses (Omega = 0.2). Comparison of the residual radiation fluctuations with observational limits indicates that the adiabatic theory is only acceptable if re-ionization of the intergalactic medium results in additional scattering of the radiation after decoupling. Primordial isothermal fluctuations are found to yield radiation fluctuations which are insensitive to the assumed spectrum and lie a factor of about 5 below current limits
Fokker-Planck description of conductance-based integrate-and-fire neuronal networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovacic, Gregor; Tao, Louis; Rangan, Aaditya V.
2009-08-15
Steady dynamics of coupled conductance-based integrate-and-fire neuronal networks in the limit of small fluctuations is studied via the equilibrium states of a Fokker-Planck equation. An asymptotic approximation for the membrane-potential probability density function is derived and the corresponding gain curves are found. Validity conditions are discussed for the Fokker-Planck description and verified via direct numerical simulations.
NASA Astrophysics Data System (ADS)
Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team
2018-05-01
Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.
Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.
2004-01-01
Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.
Investigation of Density Fluctuations in Supersonic Free Jets and Correlation with Generated Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.
2000-01-01
The air density fluctuations in the plumes of fully-expanded, unheated free jets were investigated experimentally using a Rayleigh scattering based technique. The point measuring technique used a continuous wave laser, fiber-optic transmission and photon counting electronics. The radial and centerline profiles of time-averaged density and root-mean-square density fluctuation provided a comparative description of jet growth. To measure density fluctuation spectra a two-Photomultiplier tube technique was used. Crosscorrelation between the two PMT signals significantly reduced electronic shot noise contribution. Turbulent density fluctuations occurring up to a Strouhal number (Sr) of 2.5 were resolved. A remarkable feature of density spectra, obtained from the same locations of jets in 0.5< M<1.5 range, is a constant Strouhal frequency for peak fluctuations. A detailed survey at Mach numbers M = 0.95, 1.4 and 1.8 showed that, in general, distribution of various Strouhal frequency fluctuations remained similar for the three jets. In spite of the similarity in the flow fluctuation the noise characteristics were found to be significantly different. Spark schlieren photographs and near field microphone measurements confirmed that the eddy Mach wave radiation was present in Mach 1.8 jet, and was absent in Mach 0.95 jet. To measure correlation between the flow and the far field sound pressure fluctuations, a microphone was kept at a distance of 50 diameters, 30 deg. to the flow direction, and the laser probe volume was moved from point to point in the flow. The density fluctuations in the peripheral shear layer of Mach 1.8 jet showed significant correlation up to the measurement limit of Sr = 2.5, while for Mach 0.95 jet no correlation was measured. Along the centerline measurable correlation was found from the end of the potential core and at the low frequency range (Sr less than 0.5). Usually the normalized correlation values increased with an increase of the jet Mach number. The experimental data point out eddy Mach waves as a strong source of sound generation in supersonic jets and fail to locate the primary noise mechanism in subsonic jets.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Wouchuk, J. G.; Huete Ruiz de Lira, C.
The response of a shock front to small preshock nonuniformities of density, pressure, and velocity is studied theoretically and numerically. These preshock nonuniformities emulate imperfections of a laser target, due either to its manufacturing, like joints or feeding tubes, or to preshock perturbation seeding/growth, as well as density fluctuations in foam targets, ''thermal layers'' near heated surfaces, etc. Similarly to the shock-wave interaction with a small nonuniformity localized at a material interface, which triggers a classical Richtmyer-Meshkov (RM) instability, interaction of a shock wave with periodic or localized preshock perturbations distributed in the volume distorts the shape of the shockmore » front and can cause a RM-type instability growth. Explicit asymptotic formulas describing distortion of the shock front and the rate of RM-type growth are presented. These formulas are favorably compared both to the exact solutions of the corresponding initial-boundary-value problem and to numerical simulations. It is demonstrated that a small density modulation localized sufficiently close to a flat target surface produces the same perturbation growth as an 'equivalent' ripple on the surface of a uniform target, characterized by the same initial areal mass modulation amplitude.« less
NASA Astrophysics Data System (ADS)
De Masi, G.; Predebon, I.; Spagnolo, S.; Meneses, L.; Delabie, E.; Lupelli, I.; Hillesheim, J. C.; Maggi, C.; Contributors, JET
2018-04-01
Density and magnetic fluctuation measurements in low-β type-III ELM discharges are obtained in the Joint European Torus (JET). They are observed during the inter-ELM pedestal evolution, after the LH transition phase, at about 60-70 kHz. Density fluctuations are measured with a correlation reflectometer system installed on the low-field side and they are localized at the pedestal top. Magnetic fluctuations with a spatial scale k_yρ_i˜ 0.1 are measured through a high resolution coil array. The main features and the relations with local plasma parameters are presented. The nature of these fluctuations is discussed along with linear gyrokinetic simulations. Ion temperature gradient (ITG) modes are the dominant instabilities in the frequency range of interest. In terms of radial localization, typical oscillation frequency and qualitative relation with the possible linear drive, ITG modes are consistent with the experimental density fluctuations measurements. Micro-tearing modes (MTMs), found unstable with a lower growth rate, appear a possible explanation for magnetic fluctuations in terms of typical wavenumbers and direction of propagation.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.
2012-01-01
A systematic calculation of the electromagnetic properties (Poynting vector, electromagnetic energy, and pressure) of the collective transverse fluctuations in unmagnetized plasmas with velocity-anisotropic plasma particle distributions functions is presented. Time-averaged electromagnetic properties for monochromatic weakly damped wave-like fluctuations and space-averaged electromagnetic properties for monochromatic weakly propagating and aperiodic fluctuations are calculated. For aperiodic fluctuations, the Poynting vector as well as the sum of the space-averaged electric and magnetic field energy densities vanish. However, aperiodic fluctuations possess a positive pressure given by its magnetic energy density. This finite pressure density pa of aperiodic fluctuations has important consequences for the dynamics of cosmic unmagnetized plasmas such as the intergalactic medium after reionization. Adopting the standard cosmological evolution model, we show that this additional pressure changes the expansion law of the universe leading to further deceleration. Negative vacuum pressure counterbalances this deceleration to an accelerating universe provided that the negative vacuum pressure is greater than 1.5pa, which we estimate to be of the order 2.1 . 10-16 dyn cm-2.
Density dependence in demography and dispersal generates fluctuating invasion speeds
Li, Bingtuan; Miller, Tom E. X.
2017-01-01
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569
Detection of radio frequency perturbations using an ion beam diagnostic (abstract)
NASA Astrophysics Data System (ADS)
Howard, S.; Si, J.; Crowley, T. P.; Connor, K. A.; Schoch, P. M.; Schatz, J. G.
2001-01-01
Presently, experiments are underway at the Plasma Dynamics Laboratory at Rensselaer Polytechnic Institute to demonstrate that the techniques developed for heavy ion beam probe diagnostics (HIBP) can be used to measure radio frequency (rf) fluctuations in plasmas. We hope to measure fluctuations in plasma density and magnetic and electric fields. This will provide a direct measurement of the electric and magnetic fields in the plasma during ICRF heating and thereby improve understanding of heating deposition and wave physics. In addition, the field and the density measurements will be used to determine the plasma reaction to the heating experiments. It is expected that the density measurements will be easiest to interpret, while the electric field measurement will be the most difficult to interpret. The diagnostic issues that will be important in taking data at rf frequencies include faster electronics, signal levels, and path effects. We have used a current to voltage amplifier design to measure 0-500 kHz fluctuations in several previous experiments. By reducing the gain and changing some components, a very similar design is capable of operation at rf frequencies. The modified circuit has been tested up to 15 MHz and worked well. The number of beam ions striking the detector plate in one rf period will be too small to obtain good enough statistics for fluctuation measurements, and therefore, averages over many cycles will be required. We expect to be able to achieve millisecond time resolution in the experiments. The global nature of the modes will tend to make path effects important in the HIBP signals. On the other hand, since the beam will take more than one period to cross the plasma, phase shifts may cancel some of these effects. In addition, a path effect term due to dA/dt will be much more important relative to the electric potential than in lower frequency experiments. The initial experimental plan is to do a series of measurements in which a lithium ion beam passes through an argon helicon plasma. The helicon plasma was chosen because its high density (of order 1019 m-3) will produce a larger HIBP signal than can be obtained from other small plasmas. The helicon plasma is formed within a solenoidal magnetic field of 1 kG on axis. The plasma is excited by an rf antenna that is a modification of the type used in Boswell's experiments.1 The rf power source is presently a 500 W, 13.56 MHz generator. From calculation of final trajectories we have determined that 16-29 keV Li ions can be used to probe a plasma with 1 kG magnetic field on axis. If the signal levels with a lithium beam are too small, a molecular hydrogen source will be used. For testing the basic operation of the ion beam probe we will use a simple plate detector mounted on the output flange. These preliminary experiments will be used to determine the feasibility of measuring density and magnetic field fluctuations. A second set of experiments using a more traditional HIBP energy analyzer as a detector is also planned. This detector will also be able to measure electric field effects on the probing ions. It will also be less sensitive to UV noise from the plasma.
Correlative velocity fluctuations over a gravel river bed
Dinehart, Randal L.
1999-01-01
Velocity fluctuations in a steep, coarse‐bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low‐relief bed forms.
Validating simple dynamical simulations of the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Forbes, Michael McNeil; Sharma, Rishi
2014-10-01
We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and crystallize as they do in the SLDA.
Characterisation of SOL density fluctuations in front of the LHCD PAM launcher in Tore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oosako, T.; Ekedahl, A.; Goniche, M.
2011-12-23
The density fluctuations, modified by Lower Hybrid Wave (LHW), is analyzed in Tore Supra with reference to the injected LHW power, density and the gap between LCFS (Last Closed Flux Surface) and the PAM (passive-active-multijunction) launcher. The density fluctuations are measured with RF probes installed at the PAM launcher front. A density scan at nominal toroidal field (3.8 T) shows that the fluctuations rate stays nearly constant ({approx}50%) for
Mei, Ye; Simmonett, Andrew C.; Pickard, Frank C.; DiStasio, Robert A.; Brooks, Bernard R.; Shao, Yihan
2015-01-01
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in 8 small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development; (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles. PMID:25945749
Mei, Ye; Simmonett, Andrew C.; Pickard, IV, Frank C.; ...
2015-05-06
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed in this study using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Lowdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to computemore » the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. In conclusion, the overall results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.« less
NASA Astrophysics Data System (ADS)
Chandran, B. D. G.; Backer, D. C.
2002-09-01
We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulae for the wave phase structure function Dφ, visibility, angular broadening, diffraction pattern length scales, and scintillation timescale for arbitrary distributions of turbulence along the line of sight and specialize these formulae to idealized cases. In general, Dφ~(δr)5/3 when the baseline δr is in the inertial range of the turbulent density spectrum, and Dφ~(δr)2 when δr is in the dissipation range, just as for an isotropic Kolmogorov spectrum of fluctuations. When the density structures that dominate the scattering have an axial ratio R>>1 (typically R~103), the axial ratio of the broadened image of a point source in the standard Markov approximation is at most ~R1/2, and this maximum value is obtained in the unrealistic case that the scattering medium is confined to a thin screen in which the magnetic field has a single direction. If the projection of the magnetic field within the screen onto the plane of the sky rotates through an angle Δψ along the line of sight from one side of the screen to the other, and if R-1/2<<Δψ<<1, then the axial ratio of the resulting broadened image of a point source is 2(8/3)3/5/Δψ~=3.6/Δψ. The error in this formula increases with Δψ but reaches only ~15% when Δψ=π. This indicates that a moderate amount of variation in the direction of the magnetic field along the line of sight dramatically decreases the anisotropy of a broadened image. When R>>1, the observed anisotropy will in general be determined by the degree of variation of the field direction along the sight line and not by the degree of density anisotropy. Although this makes it difficult to determine observationally the degree of anisotropy in interstellar density fluctuations, observed anisotropies in broadened images provide general support for anisotropic models of interstellar turbulence. Regions in which the angle γ between the magnetic field and line of sight is small cause enhanced scattering due to the increased coherence of density structures along the line of sight. In the exceedingly rare and probably unrealized case that scattering is dominated by regions in which γ<~(δr/l)1/3, where l is the outer scale (stirring scale) of the turbulence, Dφ~(δr)4/3 for δr in the inertial range. In a companion paper (Backer & Chandran) we discuss the semiannual modulation in the scintillation time of a nearby pulsar for which the field direction variation along the line of sight is expected to be moderately small.
The blue lizard spandrel and the island syndrome.
Raia, Pasquale; Guarino, Fabio M; Turano, Mimmo; Polese, Gianluca; Rippa, Daniela; Carotenuto, Francesco; Monti, Daria M; Cardi, Manuela; Fulgione, Domenico
2010-09-20
Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next.In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their mainland relatives. We suspect this is a by-product (spandrel) of the positive selection for increased activity of melanocortins receptors. We contend that when population density is either low or fluctuating annually as a result of environmental unpredictability, it may be advantageous to individuals to behave more aggressively, to raise their rate of food intake, and allocate more energy into reproduction.
The blue lizard spandrel and the island syndrome
2010-01-01
Background Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. Results We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next. In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their mainland relatives. We suspect this is a by-product (spandrel) of the positive selection for increased activity of melanocortins receptors. Conclusions We contend that when population density is either low or fluctuating annually as a result of environmental unpredictability, it may be advantageous to individuals to behave more aggressively, to raise their rate of food intake, and allocate more energy into reproduction. PMID:20854657
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
NASA Astrophysics Data System (ADS)
Yan, Z.; Gohil, P.; McKee, G. R.; Eldon, D.; Grierson, B.; Rhodes, T.; Petty, C. C.
2017-12-01
Measurements of long wavelength ({{k}\\bot }{{ρ }i} < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 1019 m-3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 1019 m-3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 1019 m-3, where P LH is similar for both D and H plasmas. The increased edge fluctuations, increased flow shear, and the dual-band nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of P LH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.
NASA Astrophysics Data System (ADS)
Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao
2018-05-01
Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.
Intermittent strong transport of the quasi-adiabatic plasma state.
Kim, Chang-Bae; An, Chan-Yong; Min, Byunghoon
2018-06-05
The dynamics of the fluctuating electrostatic potential and the plasma density couched in the resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase difference between the potential and the density are positive. Exponential growth of the random small perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in cancelling out the cross phase.
Temperature and density anti-correlations in solar wind fluctuations
NASA Technical Reports Server (NTRS)
Zank, G. P.; Matthaeus, W. H.; Klein, L. W.
1990-01-01
Recent theoretical investigations of low Mach number flows, that describe two distinct approaches by fluids to the incompressible regime are summarized. The first includes the effects of relatively strong density and temperature fluctuations (Type I), while the second places fluctuations in mechanical pressure, density, and temperature on an equal footing (Type II). In the latter case, the relations between density and pressure are recovered, whereas the former case yields departures from incompressible behavior in that density and temperature fluctuations are predicted to be anti-correlated. It is suggested that nearly incompressible fluids can be classified as either Type I or II, and it is shown that the well-known pressure-balanced structures represent a subclass of static solutions within this classification. Two examples from Voyager data illustrate the potential for observing these distinct nearly incompressible dynamical ordering in the solar wind.
Vortex-Density Fluctuations, Energy Spectra, and Vortical Regions in Superfluid Turbulence
NASA Astrophysics Data System (ADS)
Baggaley, Andrew W.; Laurie, Jason; Barenghi, Carlo F.
2012-11-01
Measurements of the energy spectrum and of the vortex-density fluctuation spectrum in superfluid turbulence seem to contradict each other. Using a numerical model, we show that at each instance of time the total vortex line density can be decomposed into two parts: one formed by metastable bundles of coherent vortices, and one in which the vortices are randomly oriented. We show that the former is responsible for the observed Kolmogorov energy spectrum, and the latter for the spectrum of the vortex line density fluctuations.
NASA Technical Reports Server (NTRS)
Samir, U.; Stone, N. H.; Wright, K. H., Jr.
1986-01-01
Recent results regarding the interactions between a body and its environmental space plasma, made by charged particle probes mounted in the bay of the Space Shuttle Orbiter Columbia (STS 3 mission), are compared with earlier results, obtained from small ionospheric satellites, in an attempt to widen our scope of knowledge and understanding regarding such interactions. The objective is to work toward a unified model of body-space plasma interactions in the solar system covering a variety of plasma and body conditions. The comparisons focus mainly on (1) the (wake/ram) current ratio; (2) the generation of charged particle density fluctuations (indicative of plasma turbulence) around the body; and (3) the increase in electron temperature ahead and in the wake of the satellite. The main results of the comparison are that (1) the (wake/ram) current ratio (or current depletion in the wake) for the Orbiter is 1 to 2 orders of magnitude larger than the ratio for small ionospheric satellites; and (2) fluctuations in density (or turbulence) are observed for both 'large body' (Shuttle Orbiter) and 'smaller body' (standard ionospheric satellites). However, the cause of the turbulence may not be the same for both cases; (3) the results for the electronic temperature enhancement due to the Shuttle Orbiter are in contrast with measurements from smaller ionospheric satellites. A path to follow in future Shuttle experiments is suggested and caution that care be taken in interpreting local particle and field measurements.
Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal
Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.
2007-01-01
A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, E. M.; Rost, J. C.; Porkolab, M.
2016-11-15
Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI–interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz
Thermal and active fluctuations of a compressible bilayer vesicle
NASA Astrophysics Data System (ADS)
Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki
2018-05-01
We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.
Traffic jams induced by fluctuation of a leading car.
Nagatani, T
2000-04-01
We present a phase diagram of the different kinds of congested traffic triggered by fluctuation of a leading car in an open system without sources and sinks. Traffic states and density waves are investigated numerically by varying the amplitude of fluctuation using a car following model. The phase transitions among the free traffic, oscillatory congested traffic, and homogeneous congested traffic occur by fluctuation of a leading car. With increasing the amplitude of fluctuation, the transition between the free traffic and oscillatory traffic occurs at lower density and the transition between the homogeneous congested traffic and the oscillatory traffic occurs at higher density. The oscillatory congested traffic corresponds to the coexisting phase. Also, the moving localized clusters appear just above the transition lines.
Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows
NASA Technical Reports Server (NTRS)
Stainback, P. C.; Nagabushana, K. A.
1991-01-01
The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.
Transition between Two Regimes Describing Internal Fluctuation of DNA in a Nanochannel
Su, Tianxiang; Das, Somes K.; Xiao, Ming; Purohit, Prashant K.
2011-01-01
We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel about 50100 nm wide. This local thermodynamic property is key to accurate measurement of distances in genomic analysis. For DNA in 100 nm channels, we observe a critical length scale 10 m for the mean extension of internal segments, below which the de Gennes' theory describes the fluctuations with no fitting parameters, and above which the fluctuation data falls into Odijk's deflection theory regime. By analyzing the probability distributions of the extensions of the internal segments, we infer that folded structures of length 150250 nm, separated by 10 m exist in the confined DNA during the transition between the two regimes. For 50 nm channels we find that the fluctuation is significantly reduced since the Odijk regime appears earlier. This is critical for genomic analysis. We further propose a more detailed theory based on small fluctuations and incorporating the effects of confinement to explicitly calculate the statistical properties of the internal fluctuations. Our theory is applicable to polymers with heterogeneous mechanical properties confined in non-uniform channels. We show that existing theories for the end-to-end extension/fluctuation of polymers can be used to study the internal fluctuations only when the contour length of the polymer is many times larger than its persistence length. Finally, our results suggest that introducing nicks in the DNA will not change its fluctuation behavior when the nick density is below 1 nick per kbp DNA. PMID:21423606
Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks
NASA Astrophysics Data System (ADS)
Vahala, George; Vahala, Linda; Bonoli, Paul T.
1992-12-01
Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].
Brownian Motion with Active Fluctuations
NASA Astrophysics Data System (ADS)
Romanczuk, Pawel; Schimansky-Geier, Lutz
2011-06-01
We study the effect of different types of fluctuation on the motion of self-propelled particles in two spatial dimensions. We distinguish between passive and active fluctuations. Passive fluctuations (e.g., thermal fluctuations) are independent of the orientation of the particle. In contrast, active ones point parallel or perpendicular to the time dependent orientation of the particle. We derive analytical expressions for the speed and velocity probability density for a generic model of active Brownian particles, which yields an increased probability of low speeds in the presence of active fluctuations in comparison to the case of purely passive fluctuations. As a consequence, we predict sharply peaked Cartesian velocity probability densities at the origin. Finally, we show that such a behavior may also occur in non-Gaussian active fluctuations and discuss briefly correlations of the fluctuating stochastic forces.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.
2002-01-01
To locate noise sources in high-speed jets, the sound pressure fluctuations p', measured at far field locations, were correlated with each of radial velocity v, density rho, and phov(exp 2) fluctuations measured from various points in jet plumes. The experiments follow the cause-and-effect method of sound source identification, where
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins.
Nguyen, Bao Linh; Pettitt, B Montgomery
2015-04-14
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
Environmental forcing on jellyfish communities in a small temperate estuary.
Primo, Ana Lígia; Marques, Sónia C; Falcão, Joana; Crespo, Daniel; Pardal, Miguel A; Azeiteiro, Ulisses M
2012-08-01
The impact of biological, hydrodynamic and large scale climatic variables on the jellyfish community of Mondego estuary was evaluated from 2003 to 2010. Plankton samples were collected at the downstream part of the estuary. Siphonophora Muggiaea atlantica and Diphyes spp. were the main jellyfish species. Jellyfish density was generally higher in summer and since 2005 densities had increased. Summer community analysis pointed out Acartia clausi, estuarine temperature and salinity as the main driven forces for the assemblage's structure. Also, Chl a, estuarine salinity, runoff and SST were identified as the major environmental factors influencing the siphonophores summer interannual variability. Temperature influenced directly and indirectly the community and fluctuation of jellyfish blooms in the Mondego estuary. This study represents a contribution to a better knowledge of the gelatinous plankton communities in small temperate estuaries. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantum-state anomaly detection for arbitrary errors using a machine-learning technique
NASA Astrophysics Data System (ADS)
Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki
2016-10-01
The accurate detection of small deviations in given density matrice is important for quantum information processing, which is a difficult task because of the intrinsic fluctuation in density matrices reconstructed using a limited number of experiments. We previously proposed a method for decoherence error detection using a machine-learning technique [S. Hara, T. Ono, R. Okamoto, T. Washio, and S. Takeuchi, Phys. Rev. A 89, 022104 (2014), 10.1103/PhysRevA.89.022104]. However, the previous method is not valid when the errors are just changes in phase. Here, we propose a method that is valid for arbitrary errors in density matrices. The performance of the proposed method is verified using both numerical simulation data and real experimental data.
On optical imaging through aircraft turbulent boundary layers
NASA Technical Reports Server (NTRS)
Sutton, G. W.
1980-01-01
Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.
Fluctuations around equilibrium laws in ergodic continuous-time random walks.
Schulz, Johannes H P; Barkai, Eli
2015-06-01
We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.
Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion
NASA Astrophysics Data System (ADS)
Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.
2018-04-01
The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Gombosi, T. I.; Gary, S. P.; Winske, D.
1991-01-01
The direction of propagation of low frequency magnetic fluctuations generated by cometary ion pick-up is examined by means of 1D electromagnetic hybrid simulations. The newborn ions are injected at a constant rate, and the helicity and direction of propagation of magnetic fluctuations are explored for cometary ion injection angles of 0 and 90 deg relative to the solar wind magnetic field. The parameter eta represents the relative contribution of wave energy propagating in the direction away from the comet, parallel to the beam. For small (quasi-parallel) injection angles eta was found to be of order unity, while for larger (quasi-perpendicular) angles eta was found to be of order 0.5.
Further Progress in Noise Source Identification in High Speed Jets via Causality Principle
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.; Elam, K. A.
2004-01-01
To locate noise sources in high-speed jets, the sound pressure fluctuations p/, measured at far field locations, were correlated with each of density p, axial velocity u, radial velocity v, puu and pvv fluctuations measured from various points in fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering (Seasholtz, Panda, and Elam, AIAA Paper 2002-0827). The technique uses a continuous wave, narrow line-width laser, Fabry-Perot interferometer and photon counting electronics. The far field sound pressure fluctuations at 30 to the jet axis provided the highest correlation coefficients with all flow variables. The correlation coefficients decreased sharply with increased microphone polar angle, and beyond about 60 all correlation mostly fell below the experimental noise floor. Among all correlations < puu; p/> showed the highest values. Interestingly,
, in all respects, were very similar toKagbadouno, S M; Salou, E; Rayaisse, J B; Courtin, F; Sanon, A; Solano, P; Camara, M
2016-05-01
The mangrove area on the Guinea littoral constitutes a favourable habitat for transmission of Trypanosoma brucei gambiens, the parasite causing sleeping sickness also called Human African Trypanosmosis (HAT), due the simultaneous presence of the vector (tsetse flies) and the human hosts. In order to assess the influence of the sea tides on the densities of Glossina palpalis gambiensis (Gpg), major vector of HAT in the mangrove, entomological surveys were performed using two transects, according to tides coefficient (great and small) and tide daily fluctuations (high and low). On each transect, 12 biconical traps were deployed through the mangrove to the continent. In total, up to 612 Gpg were caught, giving a density of 2.13 flies/trap/day (f/t/d). Highest captures were recorded during small tides and more tsetse were caught during the dry season than in the wet season. There were significant differences between captures when considering the different biotopes, and highest tsetse densities were recorded at the junction of the river and the channel of the mangrove (6.17±5.24); and in the channels of mangrove (3.50±3.76), during high tides of small coefficients. The results of this study may be used to improve vector control methods.
Cosmic string with a light massive neutrino
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1992-01-01
We have estimated the power spectra of density fluctuations produced by cosmic strings with neutrino hot dark matter (HDM). Normalizing at 8/h Mpc, we find that the spectrum has more power on small scales than HDM + inflation, less than cold dark matter (CDM) + inflation, and significantly less the CDM + strings. With HDM, large wakes give significant contribution to the power on the galaxy scale and may give rise to large sheets of galaxies.
NASA Astrophysics Data System (ADS)
Zelinsky, N. R.; Kleimenova, N. G.; Malysheva, L. M.
2014-07-01
Ground-based geomagnetic Pc5 (2-7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ˜ 30-50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called "anomaly rectification" in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth's magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zang, L., E-mail: l-zang@center.iae.kyoto-u.ac.jp; Kasajima, K.; Hashimoto, K.
Edge fluctuation in a supersonic molecular-beam injection (SMBI) fueled plasma has been measured using an electrostatic probe array. After SMBI, the plasma stored energy (W{sub p}) temporarily decreased then started to increase. The local plasma fluctuation and fluctuation induced particle transport before and after SMBI have been analyzed. In a short duration (∼4 ms) just after SMBI, the density fluctuation of broad-band low frequency increased, and the probability density function (PDF) changed from a nearly Gaussian to a positively skewed non-Gaussian one. This suggests that intermittent structures were produced due to SMBI. Also the fluctuation induced particle transport was greatly enhancedmore » during this short duration. About 4 ms after SMBI, the low frequency broad-band density fluctuation decreased, and the PDF returned to a nearly Gaussian shape. Also the fluctuation induced particle transport was reduced. Compared with conventional gas puff, W{sub p} degradation window is very short due to the short injection period of SMBI. After this short degradation window, fluctuation induced particle transport was reduced and W{sub p} started the climbing phase. Therefore, the short period of the influence to the edge fluctuation might be an advantage of this novel fueling technique. On the other hand, although their roles are not identified at present, coherent MHD modes are also suppressed as well by the application of SMBI. These MHD modes are thought to be de-exited due to a sudden change of the edge density and/or excitation conditions.« less
Fluctuations and instabilities of a holographic metal
NASA Astrophysics Data System (ADS)
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2013-02-01
We analyze the quasinormal modes of the D2-D8' model of 2+1-dimensional, strongly-coupled, charged fermions in a background magnetic field and at non-zero density. The model is known to include a quantum Hall phase with integer filling fraction. As expected, we find a hydrodynamical diffusion mode at small momentum and the nonzero-temperature holographic zero sound, which becomes massive above a critical magnetic field. We confirm the previously-known thermodynamic instability. In addition, we discover an instability at low temperature, large mass, and in a charge density and magnetic field range near the quantum Hall phase to an inhomogeneous striped phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karsch, F.; Kojo, T.; Mukherjee, S.
Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that atmore » zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical background for the search of the CEP using observables related to fluctuations and correlations. While new data are pouring in from the RHIC low energy scan program, many recent advances have also been made in the phenomenological and lattice gauge theory sides in order to have a better theoretical understanding of the wealth of new data. This workshop tried to create a synergy between the experimental, phenomenological and lattice QCD aspects of the fluctuation and correlation related studies of the RHIC low energy scan program. The workshop brought together all the leading experts from related fields under the same forum to share new ideas among themselves in order to streamline the continuing search of CEP in the RHIC low energy scan program.« less
Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team
2017-10-01
Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.
NASA Technical Reports Server (NTRS)
Smith, M.
1972-01-01
Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.
Electrostatic and magnetic measurements of turbulence and transport in Extrap T2
NASA Astrophysics Data System (ADS)
Möller, Anders; Sallander, Eva
1999-10-01
Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukovic, M.; Harper, M.; Breun, R.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
NASA Astrophysics Data System (ADS)
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
Analysis of fluctuations in semiconductor devices
NASA Astrophysics Data System (ADS)
Andrei, Petru
The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.
NASA Astrophysics Data System (ADS)
Kalb, Wolfgang L.; Haas, Simon; Krellner, Cornelius; Mathis, Thomas; Batlogg, Bertram
2010-04-01
We show that it is possible to reach one of the ultimate goals of organic electronics: producing organic field-effect transistors with trap densities as low as in the bulk of single crystals. We studied the spectral density of localized states in the band gap [trap density of states (trap DOS)] of small-molecule organic semiconductors as derived from electrical characteristics of organic field-effect transistors or from space-charge-limited current measurements. This was done by comparing data from a large number of samples including thin-film transistors (TFT’s), single crystal field-effect transistors (SC-FET’s) and bulk samples. The compilation of all data strongly suggests that structural defects associated with grain boundaries are the main cause of “fast” hole traps in TFT’s made with vacuum-evaporated pentacene. For high-performance transistors made with small-molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric surface. In samples with very low trap densities, we sometimes observe a steep increase in the trap DOS very close (<0.15eV) to the mobility edge with a characteristic slope of 10-20 meV. It is discussed to what degree band broadening due to the thermal fluctuation of the intermolecular transfer integral is reflected in this steep increase in the trap DOS. Moreover, we show that the trap DOS in TFT’s with small-molecule semiconductors is very similar to the trap DOS in hydrogenated amorphous silicon even though polycrystalline films of small-molecules with van der Waals-type interaction on the one hand are compared with covalently bound amorphous silicon on the other hand.
NASA Astrophysics Data System (ADS)
van de Weygaert, R.; van Kampen, E.
1993-07-01
The first results of an extensive study of the structure and dynamics of underdense regions in gravitational instability scenarios are presented. Instead of adopting spherically symmetric voids with some idealized initial density and velocity profile, underdense regions of a given size and depth, embedded in an initial density fluctuation field, are generated. In order to accomplish this in a consistent way, these initial conditions are set up by means of Bertschinger's constrained random field code. The generated particle samples of 64^3^ particles in a box of side 100 Mpc are followed into the non-linear regime by Bertschinger's PM N- body code. In this way we address the dependence of the structure and kinematics of the void both on the initial depth of the void and on the fluctuation field in which it is embedded. In particular, this study provides some understanding of how far fluctuations on small scales modify the dynamics of the large-scale void, and especially of how far the properties of small structures inside the void are affected by the global properties of the void. One of the conspicuous features of the initial density fields inside protovoids appears to be the existence of a `void hierarchy', with small voids embedded in larger voids. The survival of this hierarchy during the riot evolution of the void depends critically on the initial depth as well as on the clustering scenario involved. As well as presenting a qualitative discussion of the structure of underdense regions in initial density fields in different scenarios, and the results of simulations of the ensuing non-linear evolution, we concentrate in particular on a comparison of the global density and velocity fields in voids with predictions from linear theory as well as from the spherical outflow model. The relation between the initial linear depth, the resulting non-linear depth and the excess expansion velocities in voids is addressed. In addition, we find that, while near its centre a void becomes more and more spherical, the shape of its boundary is influenced to a large extent by the structures surrounding the void and therefore is generally more irregular. In this first study we concentrate on single voids in Einstein-de Sitter universes. The underdense regions considered are linear 1 σ_0_, 2 σ_0_ and 3 σ_0_ dips in fields that are Gaussian-smoothed on a scale of R_G_ = 10 h^-1^ Mpc, approximately half the size of the Bootes void. These regions are studied in terms of the Cold Dark Matter and Hot Dark Matter scenarios as well as in terms of the scale-free scenarios P(k) is proportional to k^0^, k^-1^ and k^-2^. The Hubble constant is taken to be H_0_ = 100 h km s^-1^ Mpc^-1^.
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
NASA Technical Reports Server (NTRS)
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L
The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Bipolaronic charge density waves, polaronic spin density waves and high Tc superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-01-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call spin resonant bipolaron''. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
Bipolaronic charge density waves, polaronic spin density waves and high {Tc} superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-09-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call ``spin resonant bipolaron``. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
NASA Astrophysics Data System (ADS)
Yang, Lei; Paulsson, J. J. P.; Wedlund, C. Simon; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A. I.; Miloch, W. J.
2016-11-01
In 2014 September, as Rosetta transitioned to close bound orbits at 30 km from comet 67P/Churyumov-Gerasimenko, the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) data showed large systematic fluctuations in both the spacecraft potential and the collected currents. We analyse the potential bias sweeps from RPC-LAP, from which we extract three sets of parameters: (1) knee potential, that we relate to the spacecraft potential, (2) the ion attraction current, which is composed of the photoelectron emission current from the probe as well as contributions from local ions, secondary emission, and low-energy electrons, and (3) an electron current whose variation is, in turn, an estimate of the electron density variation. We study the evolution of these parameters between 4 and 3.2 au in heliocentric and cometocentric frames. We find on September 9 a transition into a high-density plasma region characterized by increased knee potential fluctuations and plasma currents to the probe. In conjunction with previous studies, the early cometary plasma can be seen as composed of two regions: an outer region characterized by solar wind plasma, and small quantities of pick-up ions, and an inner region with enhanced plasma densities. This conclusion is in agreement with other RPC instruments such as RPC-MAG, RPC-IES and RPC-ICA, and numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puibasset, Joël, E-mail: puibasset@cnrs-orleans.fr; Kierlik, Edouard, E-mail: edouard.kierlik@upmc.fr; Tarjus, Gilles, E-mail: tarjus@lptl.jussieu.fr
Hysteresis and discontinuities in the isotherms of a fluid adsorbed in a nanopore in general hamper the determination of equilibrium thermodynamic properties, even in computer simulations. A way around this has been to consider both a reservoir of small size and a pore of small extent in order to restrict the fluctuations of density and approach a classical van der Waals loop. We assess this suggestion by thoroughly studying through Monte Carlo simulations and density functional theory the influence of system size on the equilibrium configurations of the adsorbed fluid and on the resulting isotherms. We stress the importance ofmore » pore-symmetry-breaking states that even for modest pore sizes lead to discontinuous isotherms and we discuss the physical relevance of these states and the methodological consequences for computing thermodynamic quantities.« less
Weak Lensing by Large-Scale Structure: A Dark Matter Halo Approach.
Cooray; Hu; Miralda-Escudé
2000-05-20
Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the cosmological parameters that govern them, but they are currently limited to small fields and subject to selection biases. We show how the expected signal from large-scale structure arises from the contributions from and correlations between individual halos. We determine the convergence power spectrum as a function of the maximum halo mass and so provide the means to interpret results from surveys that lack high-mass halos either through selection criteria or small fields. Since shot noise from rare massive halos is mainly responsible for the sample variance below 10&arcmin;, our method should aid our ability to extract cosmological information from small fields.
Gamma Strength Functions and Level Densities from 300 MeV Proton Scatttering at 0°
NASA Astrophysics Data System (ADS)
von Neumann-Cosel, Peter; Bassauer, Sergej; Martin, Dirk
The gamma strength function (GSF) as well as total level densities (LDs) in 208Pb and 96Mo were extracted from high-resolution forward angle inelastic proton scattering data taken at RCNP, Osaka, Japan, and compared to experimental results obtained with the Oslo method in order to test the validity of the Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance. The case of 208Pb is inconclusive because of strong fluctuations of the GSF due to the small level density in a doubly closed-shell nucleus. In 96Mo the data are consistent with the BA hypothesis. The good agreement of LDs provides an independent confirmation of the approach underlying the decomposition of GSF and LDs in Oslo-type experiments.
Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik
2017-01-01
Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157
Low frequency critical current noise and two level system defects in Josephson junctions
NASA Astrophysics Data System (ADS)
Nugroho, Christopher Daniel
The critical current in a Josephson junction is known to exhibit a 1/falpha low frequency noise. Implemented as a superconducting qubit, this low frequency noise can lead to decoherence. While the 1/f noise has been known to arise from an ensemble of two level systems connected to the tunnel barrier, the precise microscopic nature of these TLSs remain a mystery. In this thesis we will present measurements of the 1/f alpha low frequency noise in the critical current and tunneling resistance of Al-AlOx-Al Josephson junctions. Measurements in a wide range of resistively shunted and unshunted junctions confirm the equality of critical current and tunneling resistance noise. That is the critical current fluctuation corresponds to fluctuations of the tunneling resistance. In not too small Al-AlOx-Al junctions we have found that the fractional power spectral density scales linearly with temperature. We confirmed that the 1/falpha power spectrum is the result of a large number of two level systems modulating the tunneling resistance. At small junction areas and low temperatures, the number of thermally active TLSs is insufficient to integrate out a featureless 1/ f spectral shape. By analyzing the spectral variance in small junction areas, we have been able to deduce the TLS defect density, n ≈ 2.53 per micrometer squared per Kelvin spread in the TLS energy per factor e in the TLS lifetimes. This density is consistent with the density of tunneling TLSs found in glassy insulators, as well as the density deduced from coherent TLSs interacting at qubit frequencies. The deduced TLS density combined with the magnitude of the 1/f power spectral density in large area junctions, gives an average TLS effective area, A ˜ 0.3 nanometer squared. In ultra small tunnel junctions, we have studied the time-domain dynamics of isolated TLSs. We have found a TLS whose dynamics is described by the quantum tunneling between the two localized wells, and a one-phonon absorption/emission switching rate. From the quantum limiting rate and the WKB approximation, we estimated that the TLS has a mass and tunneling distance product consistent with an atomic mass tunneling through crystal lattice distances. At higher temperatures TLSs have been found that obey a simple thermal activation dynamics. By analyzing the TLS response to an external electric field, we have deduced that the TLS electric dipole is in the order of, P ˜ 1 electron-Angstrom, consistent with the TLS having the charge of one electron tunneling through a disorder potential of distances, d ˜ 1 Angstrom.
Constraints for proton structure fluctuations from exclusive scattering
NASA Astrophysics Data System (ADS)
Mäntysaari, H.; Schenke, B.
2017-08-01
We constrain the average density profile of the proton and the amount of event-by-event fluctuations by simultaneously calculating the coherent and incoherent exclusive diffractive vector meson production cross section in deep inelastic scattering. Working within the Color Glass Condensate picture, we find that the gluonic density of the proton must have large geometric fluctuations in order to describe the experimentally measured large incoherent cross section.
Radiative transfer in scattering stochastic atmospheres
NASA Astrophysics Data System (ADS)
Silant'ev, N. A.; Alekseeva, G. A.; Novikov, V. V.
2017-12-01
Many stars, active galactic nuclei, accretion discs etc. are affected by the stochastic variations of temperature, turbulent gas motions, magnetic fields, number densities of atoms and dust grains. These stochastic variations influence on the extinction factors, Doppler widths of lines and so on. The presence of many reasons for fluctuations gives rise to Gaussian distribution of fluctuations. The usual models leave out of account the fluctuations. In many cases the consideration of fluctuations improves the coincidence of theoretical values with the observed data. The objective of this paper is the investigation of the influence of the number density fluctuations on the form of radiative transfer equations. We consider non-magnetized atmosphere in continuum.
Compressible Turbulent Channel Flows: DNS Results and Modeling
NASA Technical Reports Server (NTRS)
Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)
1994-01-01
The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.
The effect of dissipative inhomogeneous medium on the statistics of the wave intensity
NASA Technical Reports Server (NTRS)
Saatchi, Sasan S.
1993-01-01
One of the main theoretical points in the theory of wave propagation in random medium is the derivation of closed form equations to describe the statistics of the propagating waves. In particular, in one dimensional problems, the closed form representation of the multiple scattering effects is important since it contributes in understanding such problems like wave localization, backscattering enhancement, and intensity fluctuations. In this the propagation of plane waves in a layer of one-dimensional dissipative random medium is considered. The medium is modeled by a complex permittivity whose real part is a constant representing the absorption. The one dimensional problem is mathematically equivalent to the analysis of a transmission line with randomly perturbed distributed parameters and a single mode lossy waveguide and the results can be used to study the propagation of radio waves through atmosphere and the remote sensing of geophysical media. It is assumed the scattering medium consists of an ensemble of one-dimensional point scatterers randomly positioned in a layer of thickness L with diffuse boundaries. A Poisson impulse process with density lambda is used to model the position of scatterers in the medium. By employing the Markov properties of this process an exact closed form equation of Kolmogorov-Feller type was obtained for the probability density of the reflection coefficient. This equation was solved by combining two limiting cases: (1) when the density of scatterers is small; and (2) when the medium is weakly dissipative. A two variable perturbation method for small lambda was used to obtain solutions valid for thick layers. These solutions are then asymptotically evaluated for small dissipation. To show the effect of dissipation, the mean and fluctuations of the reflected power are obtained. The results were compared with a lossy homogeneous medium and with a lossless inhomogeneous medium and the regions where the effect of absorption is not essential were discussed.
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins
Nguyen, Bao Linh; Pettitt, B. Montgomery
2015-01-01
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations. PMID:26388706
Light nuclei production as a probe of the QCD phase diagram
NASA Astrophysics Data System (ADS)
Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; Pu, Jie; Xu, Zhangbu
2018-06-01
It is generally believed that the quark-hadron transition at small values of baryon chemical potentials μB is a crossover but changes to a first-order phase transition with an associated critical endpoint (CEP) as μB increases. Such a μB-dependent quark-hadron transition is expected to result in a double-peak structure in the collision energy dependence of the baryon density fluctuation in heavy-ion collisions with one at lower energy due to the spinodal instability during the first-order phase transition and another at higher energy due to the critical fluctuations in the vicinity of the CEP. By analyzing the data on the p, d and 3H yields in central heavy-ion collisions within the coalescence model for light nuclei production, we find that the relative neutron density fluctuation Δρn = 〈(δρn) 2 〉 /〈ρn 〉 2 at kinetic freeze-out indeed displays a clear peak at √{sNN } = 8.8GeV and a possible strong re-enhancement at √{sNN } = 4.86GeV. Our findings thus provide a strong support for the existence of a first-order phase transition at large μB and its critical endpoint at a smaller μB in the temperature versus baryon chemical potential plane of the QCD phase diagram.
Fluctuations and intermittent poloidal transport in a simple toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goud, T. S.; Ganesh, R.; Saxena, Y. C.
In a simple magnetized toroidal plasma, fluctuation induced poloidal flux is found to be significant in magnitude. The probability distribution function of the fluctuation induced poloidal flux is observed to be strongly non-Gaussian in nature; however, in some cases, the distribution shows good agreement with the analytical form [Carreras et al., Phys. Plasmas 3, 2664 (1996)], assuming a coupling between the near Gaussian density and poloidal velocity fluctuations. The observed non-Gaussian nature of the fluctuation induced poloidal flux and other plasma parameters such as density and fluctuating poloidal velocity in this device is due to intermittent and bursty nature ofmore » poloidal transport. In the simple magnetized torus used here, such an intermittent fluctuation induced poloidal flux is found to play a crucial role in generating the poloidal flow.« less
Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST
NASA Astrophysics Data System (ADS)
Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan
2017-10-01
Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.
On the mass function of stars growing in a flocculent medium
NASA Astrophysics Data System (ADS)
Maschberger, Th.
2013-12-01
Stars form in regions of very inhomogeneous densities and may have chaotic orbital motions. This leads to a time variation of the accretion rate, which will spread the masses over some mass range. We investigate the mass distribution functions that arise from fluctuating accretion rates in non-linear accretion, ṁ ∝ mα. The distribution functions evolve in time and develop a power-law tail attached to a lognormal body, like in numerical simulations of star formation. Small fluctuations may be modelled by a Gaussian and develop a power-law tail ∝ m-α at the high-mass side for α > 1 and at the low-mass side for α < 1. Large fluctuations require that their distribution is strictly positive, for example, lognormal. For positive fluctuations the mass distribution function develops the power-law tail always at the high-mass hand side, independent of α larger or smaller than unity. Furthermore, we discuss Bondi-Hoyle accretion in a supersonically turbulent medium, the range of parameters for which non-linear stochastic growth could shape the stellar initial mass function, as well as the effects of a distribution of initial masses and growth times.
NASA Astrophysics Data System (ADS)
Cai, X. D.; O'Brien, Edward E.; Ladeinde, Foluso
1996-11-01
Direct numerical simulation of decaying, isotropic, compressible turbulence in three dimensions is used to examine the behavior of fluctuations in density, temperature, and pressure when the initial conditions include temperature fluctuations larger than pressure fluctuations. The numerical procedure is described elsewhere (Ladeinde, F. et al.,) Phys. Fluids 7(11), pp. 2848 (1995), the initial turbulence Mach number range is subsonic, 0.3 to 0.7, and, following Ghosh and Matthaeus(Ghosh, S. and Matthaeus, W. H. Phys. Fluids A, pp. 148 (1991)), the initial compressible turbulence is characterized as a: mostly solenoidal, b: random, or c: longitudinal. These cases represent, respectively, ratios of initial kinetic energy in the compressible modes to total initial kinetic energy, say \\chi_0, which are either a: very small, b: about 0.6, or c: near unity. Thermodynamic scalings at the lowest values of initial Mach number and \\chi0 follow the predictions of Zank and Matthaeus (Zank, G. P. and Matthaeus, W. H. Phys. Fluids A(3), pp. 69 (1991)), but not otherwise. The relationship between \\chi, Mach number, and compressible pressure predicted by Sarkar et al.(Sarkar, S. et al.,) J. Fluid Mech. 227, pp. 473 (1991) applies, on average, to all cases computed.
Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.
2018-04-01
Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Fluctuations of the gluon distribution from the small- x effective action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, Adrian; Skokov, Vladimir
The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less
Fluctuations of the gluon distribution from the small- x effective action
Dumitru, Adrian; Skokov, Vladimir
2017-09-29
The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less
High-Beta Electromagnetic Turbulence in LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.
2015-11-01
The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.
Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)
NASA Astrophysics Data System (ADS)
Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.
2012-05-01
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.
NASA Astrophysics Data System (ADS)
Collell, Julien; Galliero, Guillaume
2014-05-01
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr
2014-05-21
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less
Environment of Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Hou, K.-c.; Chen, L.-w.
2013-10-01
To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.
Large-Scale Structure and Hyperuniformity of Amorphous Ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto
2017-09-01
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
General framework for fluctuating dynamic density functional theory
NASA Astrophysics Data System (ADS)
Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim
2017-12-01
We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz. Our framework thus provides the formal apparatus for ab initio derivations of fluctuating DDFT equations capable of describing the dynamics of soft-matter systems in and out of equilibrium.
Isocurvature fluctuations through axion trapping by cosmic string wakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layek, Biswanath
2005-03-15
We consider wakelike density fluctuations produced by cosmic strings at the quark-hadron transition in the early universe. We show that low momentum axions which are produced through the radiation from the axionic string at an earlier stage, may get trapped inside these wakes due to delayed hadronization in these overdense regions. As the interfaces, bordering the wakes, collapse, the axions pick-up momentum from the walls and finally leave the wake regions. These axions thus can produce large scale isocurvature fluctuations. We have calculated the detailed profile of these axionic density fluctuations and discuss its astrophysical consequences.
Radiative instabilities in sheared magnetic field
NASA Technical Reports Server (NTRS)
Drake, J. F.; Sparks, L.; Van Hoven, G.
1988-01-01
The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance <ρ'2> (<·> denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density <ρ>, if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance <ρ'2> is generated by the large mean density variation ∂<ρ> coupled with the turbulent mass flux <ρ'u'>. This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂<ρ> and the mean magnetic field B may contribute to the EMF as ≈χ B×∂<ρ> with the turbulent transport coefficient χ proportional to the density variance (χ <ρ'2>). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow shock, the magnetic reconnection rate may be enhanced by this effect. Physical origin of this effect is discussed in some possible geophysical applications.
Reverse flow events and small-scale effects in the cusp ionosphere
NASA Astrophysics Data System (ADS)
Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Clausen, L. B. N.; Moen, J. I.; Abe, T.; Saito, Y.
2016-10-01
We report in situ measurements of plasma irregularities associated with a reverse flow event (RFE) in the cusp F region ionosphere. The Investigation of Cusp Irregularities 3 (ICI-3) sounding rocket, while flying through a RFE, encountered several regions with density irregularities down to meter scales. We address in detail the region with the most intense small-scale fluctuations in both the density and in the AC electric field, which were observed on the equatorward edge of a flow shear, and coincided with a double-humped jet of fast flow. Due to its long-wavelength and low-frequency character, the Kelvin-Helmholtz instability (KHI) alone cannot be the source of the observed irregularities. Using ICI-3 data as inputs, we perform a numerical stability analysis of the inhomogeneous energy-density-driven instability (IEDDI) and demonstrate that it can excite electrostatic ion cyclotron waves in a wide range of wave numbers and frequencies for the electric field configuration observed in that region, which can give rise to the observed small-scale turbulence. The IEDDI can seed as a secondary process on steepened vortices created by a primary KHI. Such an interplay between macroprocesses and microprocesses could be an important mechanism for ion heating in relation to RFEs.
Magnification bias as a novel probe for primordial magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camera, S.; Fedeli, C.; Moscardini, L., E-mail: stefano.camera@tecnico.ulisboa.pt, E-mail: cosimo.fedeli@oabo.inaf.it, E-mail: lauro.moscardini@unibo.it
2014-03-01
In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation,more » galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10{sup −4} nG for values of the PMF power spectral index n{sub B} ∼ 0.« less
NASA Astrophysics Data System (ADS)
Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel
2016-10-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.
INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu
2016-06-20
The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less
Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations
NASA Technical Reports Server (NTRS)
Kaiser, N.; Davis, M.
1985-01-01
It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.
NASA Astrophysics Data System (ADS)
Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu
2017-07-01
The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.
Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu
2017-07-21
The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.
Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement
NASA Astrophysics Data System (ADS)
Shrivastav, Gourav; Remsing, Richard C.; Kashyap, Hemant K.
2018-05-01
Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.
Edge resonant fluctuations and particle transport in a reversed-field pinch
NASA Astrophysics Data System (ADS)
Möller, A.
1998-12-01
Electrostatic fluctuations are measured in the Extrap T2 reversed-field pinch [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 2, pp. 193-199] using a Langmuir probe array. The electrostatic fluctuation, driven particle transport ΓnΦ is derived and found to constitute a large fraction of the total particle transport. The spectral density of all measured quantities exhibits a peak in the frequency range 100-250 kHz, which originates from fluctuations that are resonant close to the edge [n=-(40-80)]. This peak contains only about 10-20% of the total fluctuation power, but is shown to dominate ΓnΦ. The main reason for this is the high toroidal mode number as compared with internally resonant magnetohydrodynamic fluctuations. The edge resonant fluctuations also features a higher coherence (γ=0.5) and close to 90° phase shift between density and potential fluctuations.
Dynamic Responses in a Plant-Insect System to Fertilization by Cormorant Feces
Kolb, Gundula; Hambäck, Peter A.
2015-01-01
Theoretical arguments suggest that increased plant productivity may not only increase consumer densities but also their fluctuations. While increased consumer densities are commonly observed in fertilization experiments, experiments are seldom performed at a spatial and temporal scale where effects on population fluctuations may be observed. In this study we used a natural gradient in soil fertility caused by cormorant nesting. Cormorants feed on fish but defecate on their nesting islands. On these islands we studied soil nutrient availability, plant nutrient content and the density of Galerucella beetles, main herbivores feeding on Lythrum salicaria. In a common garden experiment, we followed larval development on fertilized plants and estimated larval stoichiometry. Soil nutrient availability varied among islands, and several cormorant islands had very high N and P soil content. Plant nutrient content, however, did not vary among islands, and there was no correlation between soil and plant nutrient contents. Beetle densities increased with plant nutrient content in the field study. However, there was either no effect on temporal fluctuations in beetle density or that temporal fluctuations decreased (at high P). In the common garden experiment, we found limited responses in either larval survival or pupal weights to fertilization. A possible mechanism for the limited effect of fertilization on density fluctuations may be that the distribution of L. salicaria on nesting islands was restricted to sites with a lower N and P content, presumably because high N loads are toxic. PMID:26463193
NASA Technical Reports Server (NTRS)
Harvey, W. P.; Hunter, W. D., Jr.
1975-01-01
An experimental study of the initial development region of a hypersonic turbulent free mixing layer was made. Data were obtained at three stations downstream of a M = 19 nozzle over a Reynolds range of 1.3 million to 3.3 million per meter and at a total temperature of about 1670 K. In general, good agreement was obtained between electron-beam and conventional probe measurements of local mean flow parameters. Measurements of fluctuating density indicated that peak root-mean-square (rms) levels are higher in the turbulent free mixing layer than in boundary layers for Mach numbers less than 9. The intensity of rms density fluctuations in the free stream is similar in magnitude to pressure fluctuations in high Mach number flows. Spectrum analyses of the measured fluctuating density through the shear layer indicate significant fluctuation energy at the lower frequencies (0.2 to 5 kHZ) which correspond to large-scale disturbances in the high-velocity region of the shear layer.
Chiang, Chi-Ting; Cieplak, Agnieszka M.; Schmidt, Fabian; ...
2017-06-12
We present the squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ``responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approachmore » to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1-σ constraint is err[f NL]~60. Ability for DESI to measure f NL through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. Lastly, the combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chi-Ting; Cieplak, Agnieszka M.; Schmidt, Fabian
We present the squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ``responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approachmore » to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1-σ constraint is err[f NL]~60. Ability for DESI to measure f NL through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. Lastly, the combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chi-Ting; Cieplak, Agnieszka M.; Slosar, Anže
The squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ''responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approach to themore » cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1−σ constraint is err[ f {sub NL}]∼60. Ability for DESI to measure f {sub NL} through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. The combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steigies, C. T.; Barjatya, A.
Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seenmore » in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashlinsky, A., E-mail: Alexander.Kashlinsky@nasa.gov
LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z ≳ 10, where first luminous sources formed. We quantify the resultant increase in high- z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increasedmore » abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2–5 μ m can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs.« less
NASA Astrophysics Data System (ADS)
Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.
2018-07-01
Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.
Local fluctuations of the signed traded volumes and the dependencies of demands: a copula analysis
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Guhr, Thomas
2018-03-01
We investigate how the local fluctuations of the signed traded volumes affect the dependence of demands between stocks. We analyze the empirical dependence of demands using copulas and show that they are well described by a bivariate K copula density function. We find that large local fluctuations strongly increase the positive dependence but lower slightly the negative one in the copula density. This interesting feature is due to cross-correlations of volume imbalances between stocks. Also, we explore the asymmetries of tail dependencies of the copula density, which are moderate for the negative dependencies but strong for the positive ones. For the latter, we reveal that large local fluctuations of the signed traded volumes trigger stronger dependencies of demands than of supplies, probably indicating a bull market with persistent raising of prices.
Seahorse (Hippocampinae) population fluctuations in the Ria Formosa Lagoon, south Portugal.
Correia, M; Caldwell, I R; Koldewey, H J; Andrade, J P; Palma, J
2015-09-01
Comparisons of three sets of surveys in the Ria Formosa Lagoon, Portugal, over a 13 year period (2001-2002, 2008-2009 and 2010-2013) revealed significant population fluctuations in at least one of the two seahorse (Hippocampinae) species living there, and that those fluctuations were potentially associated with habitat changes in the lagoon. After a significant decline between the first two survey periods (2001-2002 v. 2008-2009), long-snouted seahorse Hippocampus guttulatus populations increased significantly between 2008-2009 surveys and new 2010-2013 surveys. There were no significant differences in H. guttulatus populations between the 2001-2002 and 2010-2013 surveys. In contrast, there were no significant differences in short-snouted seahorse Hippocampus hippocampus densities among the 16 sites surveyed throughout the three sampling periods, although the ability to detect any change was hampered by the low densities of this species in all time periods. Fluctuations in H. guttulatus densities were positively correlated with the percentage of holdfast coverage, but with none of the other environmental variables tested. These results highlight the importance of holdfast availability in maintaining stable seahorse populations. While population fluctuations are certainly more promising than a consistent downward decline, such extreme fluctuations observed for seahorses in the Ria Formosa Lagoon could still leave these two species vulnerable to any additional stressors, particularly during low density periods. © 2015 The Fisheries Society of the British Isles.
Density fluctuations from strings and galaxy formation
NASA Technical Reports Server (NTRS)
Vilenkin, A.; Shafi, Q.
1983-01-01
The spectra of density fluctuations caused by strings in a universe dominated either by baryons, neutrinos, or axions are presented. Realistic scenarios for galaxy formation seem possible in all three cases. Examples of grand unified theories which lead to strings with the desired mass scales are given.
Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J
2016-06-09
Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack.
Fluctuation-Noise Model for PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Denisov, E. S.; Salakhova, A. Sh.; Adiutantov, N. A.; Evdokimov, Yu. K.
2017-08-01
The fluctuation-noise model is presented. This model allows to describe the power spectral density of PEM fuel cell electrical fluctuation. The proposed model can be used for diagnostics of PEM fuel cell state of health.
Size and density distribution of very small dust grains in the Barnard 5 cloud
NASA Technical Reports Server (NTRS)
Lis, Dariusz C.; Leung, Chun Ming
1991-01-01
The effects of the temperature fluctuations in small graphite grains on the energy spectrum and the IR surface brightness of an isolated dust cloud heated externally by the interstellar radiation field were investigated using a series of models based on a radiation transport computer code. This code treats self-consistently the thermal coupling between the transient heating of very small dust grains and the equilibrium heating of conventional large grains. The model results were compared with the IRAS observations of the Barnard 5 (B5) cloud, showing that the 25-micron emission of the cloud must be produced by small grains with a 6-10 A radius, which also contribute about 50 percent to the observed 12-micron emission. The remaining 12 micron flux may be produced by the polycyclic aromatic hydrocarbons. The 60-and 100-micron radiation is dominated by emission from large grains heated under equilibrium conditions.
Detecting protein folding by thermal fluctuations of microcantilevers
Aguilar-Sandoval, Felipe; Bellon, Ludovic; Melo, Francisco
2017-01-01
The accurate characterization of proteins in both their native and denatured states is essential to effectively understand protein function, folding and stability. As a proof of concept, a micro rheological method is applied, based on the characterization of thermal fluctuations of a micro cantilever immersed in a bovine serum albumin solution, to assess changes in the viscosity associated with modifications in the protein’s structure under the denaturant effect of urea. Through modeling the power spectrum density of the cantilever’s fluctuations over a broad frequency band, it is possible to implement a fitting procedure to accurately determine the viscosity of the fluid, even at low volumes. Increases in viscosity during the denaturant process are identified using the assumption that the protein is a hard sphere, with a hydrodynamic radius that increases during unfolding. This is modeled accordingly through the Einstein-Batchelor formula. The Einstein-Batchelor formula estimates are verified through dynamic light scattering, which measures the hydrodynamic radius of proteins. Thus, this methodology is proven to be suitable for the study of protein folding in samples of small size at vanishing shear stresses. PMID:29267316
The Solar Wind as a Magnetofluid Turbulence Laboratory
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.
2011-01-01
The solar wind is the Sun's exosphere. As the solar atmosphere expands into interplanetary space, it is accelerated and heated. Data from spacecraft located throughout the heliosphere have revealed that this exosphere has velocities of several hundred kilometers/sec, densities at Earth orbit of about 5 particles/cu cm, and an entrained magnetic field that at Earth orbit that is about 5 10-5 Gauss. A fascinating feature of the solar wind is that the magnetic field fluctuates in a way that is highly reminiscent of "Alfven waves, i.e., the fluctuating magnetic fields are more-or-less aligned with fluctuations in the velocity of the plasma and, with proper normalization, have approximately equal magnitudes. The imperfect (observed) alignment leads to a variety of complex interactions. In many respects, the flow patterns appear to be an example of fully developed magneto fluid turbulence. Recently, the dissipation range of this turbulence has been studied using search coil magnetometer data from the STAFF instrument on the four Cluster spacecraft. I will attempt to give an overview of selected properties of this large-scale and small-scale turbulence.
Emergence of chaos in a spatially confined reactive system
NASA Astrophysics Data System (ADS)
Voorsluijs, Valérie; De Decker, Yannick
2016-11-01
In spatially restricted media, interactions between particles and local fluctuations of density can lead to important deviations of the dynamics from the unconfined, deterministic picture. In this context, we investigated how molecular crowding can affect the emergence of chaos in small reactive systems. We developed to this end an amended version of the Willamowski-Rössler model, where we account for the impenetrability of the reactive species. We analyzed the deterministic kinetics of this model and studied it with spatially-extended stochastic simulations in which the mobility of particles is included explicitly. We show that homogeneous fluctuations can lead to a destruction of chaos through a fluctuation-induced collision between chaotic trajectories and absorbing states. However, an interplay between the size of the system and the mobility of particles can counterbalance this effect so that chaos can indeed be found when particles diffuse slowly. This unexpected effect can be traced back to the emergence of spatial correlations which strongly affect the dynamics. The mobility of particles effectively acts as a new bifurcation parameter, enabling the system to switch from stationary states to absorbing states, oscillations or chaos.
Measurement of Initial Conditions at Nozzle Exit of High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.
2004-01-01
The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.
Large-scale structure of randomly jammed spheres
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio
2017-05-01
We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.
Electromagnetic turbulence and transport in increased β LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Pueschel, Mj; Jenko, Frank; Terry, Paul; Told, Daniel
2016-10-01
The new LaB6 plasma source in LAPD has enabled the production of magnetized, increased β plasmas (up to 15%). We report on the modifications of pressure-gradient-driven turbulence and transport with increased plasma β. Density fluctuations decrease with increasing β while magnetic fluctuations increase. B ⊥ fluctuations saturate while parallel (compressional) magnetic fluctuations increase continuously with β. At the highest β values Î δ ||/ δ B ⊥ 2 and δ B/B 1%. The measurements are consistent with the excitation of the Gradient-driven Drift Coupling (GDC). This instability prefers k|| = 0 and grows in finite β plasmas due to density and temperature gradients through the production of parallel magnetic field fluctuations and resulting ⊥ B|| drifts. Comparisons between experimental measurements and theoretical predictions for the GDC will be shown. Direct measurements of electrostatic particle flux have been performed and show a strong reduction with increasing β. No evidence is found (e.g. density profile shape) of enhanced confinement, suggesting that other transport mechanisms are active. Preliminary measurements indicate that electromagnetic transport due to parallel magnetic field fluctuations at first increases with β but is subsequently suppressed at higher β values.
Low Density ITB Studies Using the Upgraded C-Mod Reflectometry System
NASA Astrophysics Data System (ADS)
Dominguez, A.; Edlund, E.; Fiore, C. L.; Lin, L.; Marmar, E. S.; Snipes, J. A.; Porkolab, M.; Kramer, G. J.; Rowan, W. L.
2007-11-01
The Alcator C-Mod reflectometry system was recently upgraded in two ways: The low frequency channels were changed from amplitude modulation - in which two microwave signals, slightly separated in frequency, are injected into the plasma - to baseband, where a single frequency is used, in order to improve density fluctuation measurements. The second change, a variable frequency channel operating over the range from 122GHz to 140GHz (with corresponding density cutoffs of 1.84-2.43x10^20m-3) has been installed in collaboration with PPPL. Initial results from the upgraded system are presented, including the study of low density Internal Transport Barriers. Using O-mode waves, the reflectometry system is able to radially localize density fluctuations on the low field side along the tokamak midplane. It can, therefore, be used to probe the foot of low density ITBs. The corresponding reflectometry data will be compared to those of other fluctuation diagnostics, including Phase Contrast Imaging and magnetic pick-up coils.
NASA Astrophysics Data System (ADS)
Nagayama, Yoshio; Yamaguchi, Soichiro; Tsuchiya, Hayato; Kuwahara, Daisuke; LHD Experimental Team
2016-10-01
Visualization of local electron density fluctuations will be very useful to study the physics of confinement and instabilities in fusion plasma. In the Large Helical Device (LHD), the O-mode microwave imaging reflectometry (O-MIR) has been intensively developed in order to visualize the electron density fluctuations. The frequency is 26 - 34 GHz. This corresponds to the electron density of 0.8 - 1.5 × 1019 m-3. The plasma is illuminated by the Gaussian beam with four frequencies. The imaging optics make a plasma image onto the newly developed 2D (8 × 8) Horn-antenna Millimeter-wave Imaging Device (HMID). In HMID, the signal wave that is accumulated by the horn antenna is transduced to the micro-strip line by using the finline transducer. The signal wave is mixed by the double balanced mixer with the local wave that is delivered by cables. By using O-MIR, electron density fluctuations are measured at the H-mode edge and the ITB layer in LHD. This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network, by the NIFS LHD project, by KAKENHI, and by IMS.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
Compressibility of the protein-water interface
NASA Astrophysics Data System (ADS)
Persson, Filip; Halle, Bertil
2018-06-01
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Compressibility of the protein-water interface.
Persson, Filip; Halle, Bertil
2018-06-07
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Extreme fluctuations in stochastic network coordination with time delays
NASA Astrophysics Data System (ADS)
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Response of the Equatorial Ionosphere to the Geomagnetic DP 2 Current System
NASA Technical Reports Server (NTRS)
Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R. De
2016-01-01
The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
Spatial and temporal variability in estuary habitat use by American alligators
Fujisaki, Ikuko; Hart, Kristen M.; Cherkiss, Michael S.; Mazzotti, Frank J.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Brandt, Laura A.
2016-01-01
Estuarine habitat occupied by Alligator mississippiensis, a primarily freshwater species, is spatially and temporally heterogeneous largely due to a salinity gradient that fluctuates. Using long-term night light survey data, we examined seasonal patterns in alligators’ habitat use by size classes in midstream and downstream estuary zones of Shark River, Everglades National Park, in southern Florida. We observed predominantly large-sized alligators (total length ≥ 1.75 m); observations of alligators in the small size classes (0.5 m ≤ total length < 1.25 m) were rare especially in the higher-salinity downstream zone. The density of alligators in the downstream zone was lower than that of the midstream zone during the dry season when salinity increases due to reduced precipitation. Conversely, the density of the large size alligators was higher in the downstream zone than in the midstream zone during the wet season, likely because of reduced salinity. We also found a significant declining trend over time in the number of alligators in the dry season, which coincides with the reported decline in alligator relative density in southern Florida freshwater wetlands. Our results indicated high adaptability of alligators to the fluctuating habitat conditions. Use of estuaries by alligators is likely driven in part by physiology and possibly by reproductive cycle, and our results supported their opportunistic use of estuary habitat and ontogenetic niche shifts.
NASA Astrophysics Data System (ADS)
Jang, Seogjoo
2007-11-01
The Förster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.
Numerical analysis of flow induced noise propagation in supercavitating vehicles at subsonic speeds.
Ramesh, Sai Sudha; Lim, Kian Meng; Zheng, Jianguo; Khoo, Boo Cheong
2014-04-01
Flow supercavitation begins when fluid is accelerated over a sharp edge, usually at the nose of an underwater vehicle, where phase change occurs and causes low density gaseous cavity to gradually envelop the whole object (supercavity) and thereby enabling higher speeds of underwater vehicles. The process of supercavity inception/development by means of "natural cavitation" and its sustainment through ventilated cavitation result in turbulence and fluctuations at the water-vapor interface that manifest themselves as major sources of hydrodynamic noise. Therefore in the present context, three main sources are investigated, namely, (1) flow generated noise due to turbulent pressure fluctuations around the supercavity, (2) small scale pressure fluctuations at the vapor-water interface, and (3) pressure fluctuations due to direct impingement of ventilated gas-jets on the supercavity wall. An understanding of their relative contributions toward self-noise is very crucial for the efficient operation of high frequency acoustic sensors that facilitate the vehicle's guidance system. Qualitative comparisons of acoustic pressure distribution resulting from aforementioned sound sources are presented by employing a recently developed boundary integral method. By using flow data from a specially developed unsteady computational fluid dynamics solver for simulating supercavitating flows, the boundary-element method based acoustic solver was developed for computing flow generated sound.
NASA Astrophysics Data System (ADS)
Al Sawaf, Mohamad Basel; Kawanisi, Kiyosi; Kagami, Junya; Bahreinimotlagh, Masoud; Danial, Mochammad Meddy
2017-10-01
The aim of this study is to investigate the scaling exponent properties of mountainous river flow fluctuations by detrended fluctuation analysis (DFA). Streamflow data were collected continuously using Fluvial Acoustic Tomography System (FATS), which is a novel system for measuring continuous streamflow at high-frequency scales. The results revealed that river discharge fluctuations have two scaling regimes and scaling break. In contrast to the Ranting Curve method (RC), the small-scale exponent detected by the FATS is estimated to be 1.02 ± 0.42% less than that estimated by RC. More importantly, the crossover times evaluated from the FATS delayed approximately by 42 ± 21 hr ≈2-3 days than their counterparts estimated by RC. The power spectral density analysis assists our findings. We found that scaling characteristics information evaluated for a river using flux data obtained by RC approach might not be accurately detected, because this classical method assumes that flow in river is steady and depends on constructing a relationship between discharge and water level, while the discharge obtained by the FATS decomposes velocity and depth into two ratings according to the continuity equation. Generally, this work highlights the performance of FATS as a powerful and effective approach for continuous streamflow measurements at high-frequency levels.
NASA Astrophysics Data System (ADS)
Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.
2017-08-01
Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.
NASA Astrophysics Data System (ADS)
Jiang, M.; Zhong, W. L.; Xu, Y.; Shi, Z. B.; Chen, W.; Ji, X. Q.; Ding, X. T.; Yang, Z. C.; Shi, P. W.; Liang, A. S.; Wen, J.; Li, J. Q.; Zhou, Y.; Li, Y. G.; Yu, D. L.; Liu, Y.; Yang, Q. W.; the HL-2A Team
2018-02-01
The radial profiles of perpendicular flows in the presence of the m/n=2/1 magnetic island were firstly measured in the HL-2A tokamak by hopping the work frequency of the Doppler backward scattering reflectometer system along with a two-dimensional electron cyclotron emission imaging diagnostic identifying the island locations. It has been observed that across the O-point cut the perpendicular flow is quite small at the center of the island and strongly enhanced around the boundary of the island, resulting in a large increase of the flow shear in the outer half island, while across the X-point cut the flow is almost flat in the whole island region. Meanwhile it was found that the density fluctuations are generally weakened inside the island. The results indicate that both the perpendicular flow and the density fluctuation level are modulated by the naturally rotating tearing mode near the island boundary. The cross-correlation between the perpendicular flows and the oscillating electron temperature further reveals that the modulation of the perpendicular flow occurs mainly inside and in the vicinity of the island.
Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapunova, Elena, E-mail: lyapunova@icmm.ru; Ural Federal University, Kuibyishev Str. 48, Ekaterinburg, 620000; Nikituk, Alexander, E-mail: nas@icmm.ru
Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young’s moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithmsmore » (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.« less
NASA Astrophysics Data System (ADS)
Gershman, D. J.; Figueroa-Vinas, A.; Dorelli, J.; Goldstein, M. L.; Shuster, J. R.; Avanov, L. A.; Boardsen, S. A.; Stawarz, J. E.; Schwartz, S. J.; Schiff, C.; Lavraud, B.; Saito, Y.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Moore, T. E.; Burch, J. L.
2017-12-01
Measurements from the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission have enabled unprecedented analyses of kinetic-scale plasma physics. FPI regularly provides estimates of current density and pressure gradients of sufficient accuracy to evaluate the relative contribution of terms in plasma equations of motion. In addition, high-resolution three-dimensional velocity distribution functions of both ions and electrons provide new insights into kinetic-scale processes. As an example, for a monochromatic kinetic Alfven wave (KAW) we find non-zero, but out-of-phase parallel current density and electric field fluctuations, providing direct confirmation of the conservative energy exchange between the wave field and particles. In addition, we use fluctuations in current density and magnetic field to calculate the perpendicular and parallel wavelengths of the KAW. Furthermore, examination of the electron velocity distribution inside the KAW reveals a population of electrons non-linearly trapped in the kinetic-scale magnetic mirror formed between successive wave peaks. These electrons not only contribute to the wave's parallel electric field but also account for over half of the density fluctuations within the wave, supplying an unexpected mechanism for maintaining quasi-neutrality in a KAW. Finally, we demonstrate that the employed wave vector determination technique is also applicable to broadband fluctuations found in Earth's turbulent magnetosheath.
Plasma Turbulence Imaging via Beam Emission Spectroscopy in the Core of the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
McKee, George R.; Fonck, Raymond J.; Gupta, Deepak K.; Schlossberg, David J.; Shafer, Morgan W.; Boivin, Réjean L.; Solomon, Wayne
Beam Emission Spectroscopy (BES), a high-sensitivity, good spatial resolution imaging diagnostic system, has been deployed and recently upgraded and expanded at the DIII-D tokamak to better understand density fluctuations arising from plasma turbulence. The currently deployed system images density fluctuations over an approximately 5 × 7 cm region at the plasma mid-plane (radially scannable over 0.2 < r/a ≤ 1) with a 5 × 6 (radial × poloidal) grid of rectangular detection channels, with one microsecond time resolution. BES observes collisionally-induced, Doppler-shifted Dα fluorescence (λ = 652-655 nm) of injected deuterium neutral beam atoms. The diagnostic wavenumber sensitivity is approximately k⊥ < 2.5 cm-1, allowing measurement of longwavelength (k⊥ρI < 1) density fluctuations. The recent upgrade includes expanded fiber optics bundles, customdesigned high-transmission, sharp-edge interference filters, ultra fast collection optics, and enlarged photodiode detectors that together provide nearly an order of magnitude increase in sensitivity relative to an earlier generation BES system. The high sensitivity allows visualization of turbulence at normalized density fluctuation amplitudes of ‾n/n < 1%, typical of fluctuation levels in the core region. The imaging array allows for sampling over 2-3 turbulent eddy scale lengths, which captures the essential dynamics of eddy evolution, interaction and shearing.
Statistics of spatial derivatives of velocity and pressure in turbulent channel flow
NASA Astrophysics Data System (ADS)
Vreman, A. W.; Kuerten, J. G. M.
2014-08-01
Statistical profiles of the first- and second-order spatial derivatives of velocity and pressure are reported for turbulent channel flow at Reτ = 590. The statistics were extracted from a high-resolution direct numerical simulation. To quantify the anisotropic behavior of fine-scale structures, the variances of the derivatives are compared with the theoretical values for isotropic turbulence. It is shown that appropriate combinations of first- and second-order velocity derivatives lead to (directional) viscous length scales without explicit occurrence of the viscosity in the definitions. To quantify the non-Gaussian and intermittent behavior of fine-scale structures, higher-order moments and probability density functions of spatial derivatives are reported. Absolute skewnesses and flatnesses of several spatial derivatives display high peaks in the near wall region. In the logarithmic and central regions of the channel flow, all first-order derivatives appear to be significantly more intermittent than in isotropic turbulence at the same Taylor Reynolds number. Since the nine variances of first-order velocity derivatives are the distinct elements of the turbulence dissipation, the budgets of these nine variances are shown, together with the budget of the turbulence dissipation. The comparison of the budgets in the near-wall region indicates that the normal derivative of the fluctuating streamwise velocity (∂u'/∂y) plays a more important role than other components of the fluctuating velocity gradient. The small-scale generation term formed by triple correlations of fluctuations of first-order velocity derivatives is analyzed. A typical mechanism of small-scale generation near the wall (around y+ = 1), the intensification of positive ∂u'/∂y by local strain fluctuation (compression in normal and stretching in spanwise direction), is illustrated and discussed.
The H I-to-H2 Transition in a Turbulent Medium
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel
2017-07-01
We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
Study of density distribution in a near-critical simple fluid (19-IML-1)
NASA Technical Reports Server (NTRS)
Michels, Teun
1992-01-01
This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.
Nonequilibrium, large-amplitude MHD fluctuations in the solar wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron; Wiltberger, Michael J.
1995-01-01
Compressible MHD simulations in one dimension with three-dimensional vectors are used to investigate a number of processes relevant to problems in interplanetary physics. The simulations indicate that a large-amplitude nonequilibrium (e.g., linearly polarized) Alfvenic wave, which always starts with small relative fluctuations in the magnitude B of the magnetic field, typically evolves to flatten the magnetic profile in most regions. Under a wide variety of conditions B and the density rho become anticorrelated on average. If the mean magnetic field is allowed to decrease in time, the point where the transverse magnetic fluctuation amplitude delta B(sub T) is greater than the mean field B(sub 0) is not special, and large values of delta B(sub T)/B(sub 0) do not cause the compressive thermal energy to increase remarkably or the wave energy to dissipate at an unusually high rate. Nor does the 'backscatter' of the waves that occurs when the sound speed is less than the Alfven speed result, in itself, in substantial energy dissipation, but rather primarily in a phase change between the magnetic and velocity fields. For isolated wave packets the backscatter does not occur for any of the parameters examined; an initial radiation of acoustic waves away from the packet establishes a stable traveling structure. Thus these simulations, although greatly idealized compared to reality, suggest a picture in which the interplanetary fluctuations should have small deltaB and increasingly quasi-pressure balanced compressive fluctuations, as observed, and in which the dissipation and 'saturation' at delta B(sub T)/B(sub 0) approximately = 1 required by some theories of wave acceleration of the solar wind do not occur. The simulations also provide simple ways to understand the processes of nonlinear steepening and backscattering of Alfven waves and demonstrate the existence of previously unreported types of quasi-steady MHD states.
Random-Phase Approximation Methods
NASA Astrophysics Data System (ADS)
Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp
2017-05-01
Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.
LETTER TO THE EDITOR: The quasi-coherent signature of enhanced Dα H-mode in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Snipes, J. A.; La Bombard, B.; Greenwald, M.; Hutchinson, I. H.; Irby, J.; Lin, Y.; Mazurenko, A.; Porkolab, M.
2001-04-01
The steady-state H-mode regime found at moderate to high density in Alcator C-Mod, known as enhanced Dα (EDA) H-mode, appears to be maintained by a continuous quasi-coherent (QC) mode in the steep edge gradient region. Large amplitude density and magnetic fluctuations with typical frequencies of about 100 kHz are driven by the QC mode. These fluctuations are measured in the steep edge gradient region by inserting a fast-scanning probe containing two poloidally separated Langmuir probes and a poloidal field pick-up coil. As the probe approaches the plasma edge, clear magnetic fluctuations were measured within about 2 cm of the last-closed flux surface (LCFS). The mode amplitude falls off rapidly with distance from the plasma centre with an exponential decay length of kr≈1.5 cm-1, measured 10 cm above the outboard midplane. The root-mean-square amplitude of the fluctuation extrapolated to the LCFS was θ≈5 G. The density fluctuations, on the other hand, were visible on the Langmuir probe only when it was within a few millimetres of the LCFS. The potential and density fluctuations were sufficiently in phase to enhance particle transport at the QC mode frequency. These results show that the QC signature of the EDA H-mode is an electromagnetic mode that appears to be responsible for the enhanced particle transport in the plasma edge.
Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer
NASA Astrophysics Data System (ADS)
Peysson, Y.; Madi, M.; Decker, J.; Kabalan, K.
2015-12-01
In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A.
A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process bymore » finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.« less
Incoherent scatter radar observations of the ionosphere
NASA Technical Reports Server (NTRS)
Hagfors, Tor
1989-01-01
Incoherent scatter radar (ISR) has become the most powerful means of studying the ionosphere from the ground. Many of the ideas and methods underlying the troposphere and stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly understood, the theory of the refractivity fluctuations in the ionosphere, which depend on thermal fluctuations, is known in great detail. The underlying theory is one of the most successful theories in plasma physics, and allows for many detailed investigations of a number of parameters such as electron density, electron temperature, ion temperature, electron mean velocity, and ion mean velocity as well as parameters pertaining to composition, neutral density and others. Here, the author reviews the fundamental processes involved in the scattering from a plasma undergoing thermal or near thermal fluctuations in density. The fundamental scattering properties of the plasma to the physical parameters characterizing them from first principles. He does not discuss the observation process itself, as the observational principles are quite similar whether they are applied to a neutral gas or a fluctuating plasma.
NASA Astrophysics Data System (ADS)
Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.
2017-10-01
The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.
The radio-frequency fluctuation effect on the floating harmonic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaewon; Kim, Kyung-Hyun; Kim, Dong-Hwan
2016-08-15
The radio-frequency (RF) plasma diagnostics with an electrical probe facing a challenge, because the RF fluctuation oscillates the plasma potential and distorts the current-voltage (I-V) curve. As Langmuir probe is widely used in plasma diagnostics, many researchers have been studying the effect of RF fluctuation on probe and compensation methods. On the other hand, there have not been enough studies on the fluctuation effect on the floating harmonic method. Therefore, we investigated the impact of RF fluctuation on the floating harmonic method theoretically and experimentally. When the electrons are in ideal Maxwellian distribution, the floating potential is negatively shifted bymore » the RF fluctuation, but the fluctuation does not distort I-V curve around the floating potential. However, in practical plasmas, the I-V curve and their harmonic components are distorted. This RF fluctuation effect becomes more significant in a low density plasma with a high impedance sheath. The second harmonic current decreases with the RF fluctuation while the first harmonic current is merely affected. Therefore, the electron temperatures measured with the floating harmonic method under low density plasma with uncompensated probe are overestimated than the results obtained with the compensated probe.« less
On creating macroscopically identical granular systems with different numbers of particles
NASA Astrophysics Data System (ADS)
van der Meer, Devaraj; Rivas, Nicolas
2015-11-01
One of the fundamental differences between granular and molecular hydrodynamics is the enormous difference in the total number of constituents. The small number of particles implies that the role of fluctuations in granular dynamics is of paramount importance. To obtain more insight in these fluctuations, we investigate to what extent it is possible to create identical granular hydrodynamic states with different number of particles. A definition is given of macroscopically equivalent systems, and the dependency of the conservation equations on the particle size is studied. We show that, in certain cases, and by appropriately scaling the microscopic variables, we are able to compare systems with significantly different number of particles that present the same macroscopic phenomenology. We apply these scalings in simulations of a vertically vibrated system, namely the density inverted granular Leidenfrost state and its transition to a buoyancy-driven convective state.
Comparing Turbulence Simulation with Experiment in DIII-D
NASA Astrophysics Data System (ADS)
Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.
2000-10-01
Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.
Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiksel, G.; Hartog, D.D.; Cekic, M.
1996-08-01
It has long been recognized that fluctuations in the magnetic field are a potent mechanism for the anomalous transport of energy in confined plasmas. The energy transport process originates from particle motion along magnetic fields, which have a fluctuating component in the radial direction (perpendicular to the confining equilibrium magnetic surfaces). A key feature is that the transport can be large even if the fluctuation amplitude is small. If the fluctuations are resonant with the equilibrium magnetic field (i.e., the fluctuation amplitude is constant along an equilibrium field line) then a small fluctuation can introduce stochasticity to the field linemore » trajectories. Particles following the chaotically wandering field lines can rapidly carry energy across the plasma.« less
NASA Astrophysics Data System (ADS)
Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G. D.; Henderson, M.; Saibene, G.
2018-01-01
We present a numerical investigation of electron cyclotron beams interacting with electron density fluctuations in the ITER 15 MA H-mode scenario. In particular, here we study how the beam from the equatorial launcher, which shall be utilized to influence the sawtooth instability, is affected by the fluctuations. Moreover, we present the theory and first estimates of the power that is scattered from the injected O-mode to a secondary X-mode in the presence of the fluctuations. It is shown that for ITER parameters the scattered power stays within acceptable limits and broadening of the equatorial beams is less than those from the upper launcher.
The topology of large-scale structure. V - Two-dimensional topology of sky maps
NASA Astrophysics Data System (ADS)
Gott, J. R., III; Mao, Shude; Park, Changbom; Lahav, Ofer
1992-01-01
A 2D algorithm is applied to observed sky maps and numerical simulations. It is found that when topology is studied on smoothing scales larger than the correlation length, the topology is approximately in agreement with the random phase formula for the 2D genus-threshold density relation, G2(nu) varies as nu(e) exp-nu-squared/2. Some samples show small 'meatball shifts' similar to those seen in corresponding 3D observational samples and similar to those produced by biasing in cold dark matter simulations. The observational results are thus consistent with the standard model in which the structure in the universe today has grown from small fluctuations caused by random quantum noise in the early universe.
Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence
NASA Astrophysics Data System (ADS)
Andrés, N.; Galtier, S.; Sahraoui, F.
2018-01-01
We derive an exact law for three-dimensional (3D) homogeneous compressible isothermal Hall magnetohydrodynamic turbulence, without the assumption of isotropy. The Hall current is shown to introduce new flux and source terms that act at the small scales (comparable or smaller than the ion skin depth) to significantly impact the turbulence dynamics. The law provides an accurate means to estimate the energy cascade rate over a broad range of scales covering the magnetohydrodynamic inertial range and the sub-ion dispersive range in 3D numerical simulations and in in situ spacecraft observations of compressible turbulence. This work is particularly relevant to astrophysical flows in which small-scale density fluctuations cannot be ignored such as the solar wind, planetary magnetospheres, and the interstellar medium.
Nakaoka, Yasuo; Imaji, Takafumi; Hara, Masahiro; Hashimoto, Noboru
2009-01-01
The ciliated protozoan Paramecium spontaneously changes its swimming direction in the absence of external stimuli. Such behavior is based on resting potential fluctuations, the amplitudes of which reach a few mV. When the resting potential fluctuation is positive and large, a spike-like depolarization is frequently elicited that reverses the beating of the cilia associated with directional changes during swimming. We aimed to study how the resting potential fluctuation is amplified. Simultaneous measurements of the resting potential and intracellular Ca(2+) ([Ca(2+)](i)) from a deciliated cell showed that positive potential fluctuations were frequently accompanied by a small increase in [Ca(2+)](i). This result suggests that Ca(2+) influx through the somatic membrane occurs during the resting state. The mean amplitude of the resting potential fluctuation was largely decreased by either an intracellular injection of a calcium chelater (BAPTA) or by an extracellular addition of Ba(2+). Hence, a small increase in [Ca(2+)](i) amplifies the resting potential fluctuation. Simulation analysis of the potential fluctuation was made by assuming that Ca(2+) and K(+) channels of surface membrane are fluctuating between open and closed states. The simulated fluctuation increased to exhibit almost the same amplitude as the measured fluctuation using the assumption that a small Ca(2+) influx activates Ca(2+) channels in a positive feedback manner.
Observations of fine scale structure in the mesosphere and lower thermosphere
NASA Astrophysics Data System (ADS)
Thrane, E. V.; Grandal, B.
1980-06-01
An electrostatic probe designed to measure ion density with high time resolution and accuracy was flown on a Nike-Apache rocket from Andoeya Rocket Range on March 1 1978. Spectra of the spatial density fluctuations were derived in one kilometer height intervals from 65 to 127 km. Below 95 km the power spectra had a slope of about -5/3, as expected for isotropic turbulence. Above 95 km the fluctuations were stronger and showed a white noise power spectrum. These fluctuations are most likely due to plasma instabilities.
The contribution of transient counterion imbalances to DNA bending fluctuations.
Manning, Gerald S
2006-05-01
A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment considered and is of the order 5-10%. Both classes of fluctuation result in transient bends toward the side of greater counterion density. The bending amplitudes are approximately 15% of the total root-mean-square bends associated with the persistence length of DNA. We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support the idea that counterions may exert some modulating influence on the fine structure of DNA.
Numerical simulation of pressure fluctuation in 1000MW Francis turbine under small opening condition
NASA Astrophysics Data System (ADS)
Gong, R. Z.; Wang, H. G.; Yao, Y.; Shu, L. F.; Huang, Y. J.
2012-11-01
In order to study the cause of abnormal vibration in large Francis turbine under small opening condition, CFD method was adopted to analyze the flow filed and pressure fluctuation. Numerical simulation was performed on the commercial CFD code Ansys FLUENT 12, using DES method. After an effective validation of the computation result, the flow behaviour of internal flow field under small opening condition is analyzed. Pressure fluctuation in different working mode is obtained by unsteady CFD simulation, and results is compared to study its change. Radial force fluctuation is also analyzed. The result shows that the unstable flow under small opening condition leads to an increase of turbine instability in reverse pump mode, and is one possible reason of the abnormal oscillation.
Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, S.; Nguyen, X. V.; Peebles, W. A.
2001-01-01
A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less
NASA Astrophysics Data System (ADS)
Nitta, Ayako; Morita, Takeshi; Saita, Shohei; Kohno, Yuki; Ohno, Hiroyuki; Nishikawa, Keiko
2015-05-01
Aqueous solutions of tetrabutylphosphonium trifluoroacetate ([P4444]CF3COO) exhibit a LCST-type phase transition with the critical point near 0.025 in mole fraction of [P4444]CF3COO at T = 302 K. The phase behavior of [P4444]CF3COO-water mixtures was investigated by evaluating their density fluctuations, which provide quantitative descriptions of the mixing states of the solutions. The concentration dependence of the density fluctuations was investigated at 293 and 301 K for the mixtures without distinguishing the components and for the individual components ([P4444]CF3COO and water). A drastic change in the mixing state was observed for the solution when the critical point was approached.
NASA Astrophysics Data System (ADS)
Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2018-04-01
Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.
Universal characteristics of fractal fluctuations in prime number distribution
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-11-01
The frequency of occurrence of prime numbers at unit number spacing intervals exhibits self-similar fractal fluctuations concomitant with inverse power law form for power spectrum generic to dynamical systems in nature such as fluid flows, stock market fluctuations and population dynamics. The physics of long-range correlations exhibited by fractals is not yet identified. A recently developed general systems theory visualizes the eddy continuum underlying fractals to result from the growth of large eddies as the integrated mean of enclosed small scale eddies, thereby generating a hierarchy of eddy circulations or an inter-connected network with associated long-range correlations. The model predictions are as follows: (1) The probability distribution and power spectrum of fractals follow the same inverse power law which is a function of the golden mean. The predicted inverse power law distribution is very close to the statistical normal distribution for fluctuations within two standard deviations from the mean of the distribution. (2) Fractals signify quantum-like chaos since variance spectrum represents probability density distribution, a characteristic of quantum systems such as electron or photon. (3) Fractal fluctuations of frequency distribution of prime numbers signify spontaneous organization of underlying continuum number field into the ordered pattern of the quasiperiodic Penrose tiling pattern. The model predictions are in agreement with the probability distributions and power spectra for different sets of frequency of occurrence of prime numbers at unit number interval for successive 1000 numbers. Prime numbers in the first 10 million numbers were used for the study.
The neutron skin thickness in nuclei with clustering at low densities
NASA Astrophysics Data System (ADS)
Nooraihan, A.; Usmani, Q. N.; Sauli, Z.; Anwar, K.
2016-11-01
This study concentrates on searching for a dependable, fully microscopic theory to find out new behaviours and understand their consequences for theoretical pictures. The models for nuclear structure are tested, refined and developed by acquiring new data [1][2][3]. This data is useful for astrophysical calculations and predictions. In density functional theories, including the ETF theory, the equation of state (EOS) of symmetric nuclear matter (SNM), is an important measure. Empirically, we receive information about quantities relating to SNM, all these measures are thoroughly tested. In the absence of any unswerving knowledge below this density we shall take that energy still rises up to some density, neglecting possible small fluctuations, as the density is brought down. Our discussion at the moment is without the Coulomb forces applicable only for the hypothetical nuclear matter; they are added finally to correctly portray the actual picture in nuclei. Our approach in this study is macroscopic. This work concludes that the neutron skin thickness in nuclei is found to reduce significantly, for the reason of clustering.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
1993-01-01
Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.
The effective temperature for the thermal fluctuations in hot Brownian motion
NASA Astrophysics Data System (ADS)
Srivastava, Mayank; Chakraborty, Dipanjan
2018-05-01
We revisit the effective parameter description of hot Brownian motion—a scenario where a colloidal particle is kept at an elevated temperature than the ambient fluid. Due to the time scale separation between heat diffusion and particle motion, a stationary halo of hot fluid is carried along with the particle resulting in a spatially varying comoving temperature and viscosity profile. The resultant Brownian motion in the overdamped limit can be well described by a Langevin equation with effective parameters such as effective temperature THBM and friction coefficient ζHBM that quantifies the thermal fluctuations and the diffusivity of the particle. These parameters can exactly be calculated using the framework of fluctuating hydrodynamics and require the knowledge of the complete flow field and the temperature field around the particle. Additionally, it was also observed that configurational and kinetic degrees of freedom admit to different effective temperatures, THB M x and THB M v, respectively, with the former predicted accurately from fluctuating hydrodynamics. A more rigorous calculation by Falasco et al. [Phys. Rev. E 90, 032131-10 (2014)] extends the overdamped description to a generalized Langevin equation where the effective temperature becomes frequency dependent and consequently, for any temperature measurement from a Brownian trajectory requires the knowledge of this frequency dependence. We use this framework to expand on the earlier work and look at the first order correction to the limiting values in the hydrodynamic limit and the kinetic limit. We use the linearized Stokes equation and a constant viscosity approximation to calculate the dissipation function in the fluid. The effective temperature is calculated from the weighted average of the temperature field with the dissipation function. Further, we provide a closed form analytical result for effective temperature in the small as well as high frequency limit. Since hot Brownian motion can be used to probe the local environment in complex systems, we have also calculated the effective diffusivity of the particle in the small frequency limit. To look into the kinetic temperature, the velocity autocorrelation function is computed from the generalized Langevin equation and the Wiener-Khinchine theorem and numerically integrated to evaluate THB M v as a function of the ratio of particle density and fluid density ρP/ρ0. The two limiting cases of ρP/ρ0 → 0 and ρP/ρ0 → ∞ is also discussed.
High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn.
Ives, Anthony R; Einarsson, Arni; Jansen, Vincent A A; Gardarsson, Arnthor
2008-03-06
Complex dynamics are often shown by simple ecological models and have been clearly demonstrated in laboratory and natural systems. Yet many classes of theoretically possible dynamics are still poorly documented in nature. Here we study long-term time-series data of a midge, Tanytarsus gracilentus (Diptera: Chironomidae), in Lake Myvatn, Iceland. The midge undergoes density fluctuations of almost six orders of magnitude. Rather than regular cycles, however, these fluctuations have irregular periods of 4-7 years, indicating complex dynamics. We fit three consumer-resource models capable of qualitatively distinct dynamics to the data. Of these, the best-fitting model shows alternative dynamical states in the absence of environmental variability; depending on the initial midge densities, the model shows either fluctuations around a fixed point or high-amplitude cycles. This explains the observed complex population dynamics: high-amplitude but irregular fluctuations occur because stochastic variability causes the dynamics to switch between domains of attraction to the alternative states. In the model, the amplitude of fluctuations depends strongly on minute resource subsidies into the midge habitat. These resource subsidies may be sensitive to human-caused changes in the hydrology of the lake, with human impacts such as dredging leading to higher-amplitude fluctuations. Tanytarsus gracilentus is a key component of the Myvatn ecosystem, representing two-thirds of the secondary productivity of the lake and providing vital food resources to fish and to breeding bird populations. Therefore the high-amplitude, irregular fluctuations in midge densities generated by alternative dynamical states dominate much of the ecology of the lake.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.
2003-01-01
Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.
Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J.
2016-01-01
Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack. PMID:27279454
Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, C., E-mail: catherine.krafft@u-psud.fr; Universite´ Paris Sud, 91405 Orsay Cedex; Volokitin, A., E-mail: a.volokitin@mail.ru
2016-03-25
The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-02-01
In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.
Interplay of Anderson localization and quench dynamics
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Vishveshwara, Smitha
2018-06-01
In the context of an isolated three-dimensional noninteracting fermionic lattice system, we study the effects of a sudden quantum quench between a disorder-free situation and one in which disorder results in a mobility edge and associated Anderson localization. Salient post-quench features hinge upon the overlap between momentum states and post-quench eigenstates and whether these latter states are extended or localized. We find that the post-quench momentum distribution directly reflects these overlaps. For the local density, we show that disorder generically prevents the equilibration of quantum expectation values to a steady state and that the persistent fluctuations have a nonmonotonic dependence on the strength of disorder. We identify two distinct types of fluctuations, namely, temporal fluctuations describing the time-dependent fluctuations of the local density around its time average and sample-to-sample fluctuations characterizing the variations of these time averages from one realization of disorder to another. We demonstrate that both of these fluctuations vanish for extremely extended as well as extremely localized states, peaking at some intermediate value.
NASA Astrophysics Data System (ADS)
Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.
2017-12-01
Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical situations. Finally we present initial comparison of our modeling results with GNSS scintillation observed via an array of receivers at Poker Flat.
Study of ion-gyroscale fluctuations in low-density L-mode plasmas heated by NBI on KSTAR
NASA Astrophysics Data System (ADS)
Lee, W.; Ko, S. H.; Leem, J.; Yun, G. S.; Park, H. K.; Wang, W. X.; Budny, R. V.; Kim, K. W.; Luhmann, N. C., Jr.; The KSTAR Team
2018-04-01
Broadband density fluctuations with peak frequency ranging from 150 to 400 kHz were measured using a multichannel microwave imaging reflectometer in core region of the low-density L-mode plasmas heated by neutral beam injection on KSTAR. These fluctuations have been studied by comparing the dominant mode scales estimated from the measurement with those predicted from linear gyrokinetic simulation. The measured poloidal wavenumbers are qualitatively comparable to those of the ‘fastest growing modes’ from simulations, whereas they are larger than those of the ‘transport-dominant modes’ by about a factor of three. The agreement on wavenumbers between the measurement and linear simulation (for the fastest growing modes) is probably due to sufficiently weak E × B flow shear compared to the maximum linear growth rate. Meanwhile, the transport-dominant modes seem to be related to the fluctuations in lower frequencies (˜80-150 kHz) observed in some of the measurement.
Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas
NASA Astrophysics Data System (ADS)
Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.
2018-01-01
Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.
Modeling turbulent/chemistry interactions using assumed pdf methods
NASA Technical Reports Server (NTRS)
Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.
1992-01-01
Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.
van der Valk, Arnold; Mushet, David M.
2016-01-01
Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.
NASA Astrophysics Data System (ADS)
Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team
2017-12-01
Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.
Viking S-band Doppler RMS phase fluctuations used to calibrate the mean 1976 equatorial corona
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.
1977-01-01
Viking S-band Doppler RMS phase fluctuations (noise) and comparisons of Viking Doppler noise to Viking differenced S-X range measurements are used to construct a mean equatorial electron density model for 1976. Using Pioneer Doppler noise results (at high heliographic latitudes, also from 1976), an equivalent nonequatorial electron density model is approximated.
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...
2017-11-15
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
Lebard, David N; Matyushov, Dmitry V
2008-12-01
Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein-water interface, allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at approximately 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line or undergoing a weak first-order transition.
Origin of Stability in Particle Sedimentation
NASA Technical Reports Server (NTRS)
Segre, Philip N.
2003-01-01
Particle Image Velocimetry (PIV) is used to study the slow settling motions of spheres in suspensions ranging from dilute to highly concentrated, 0.0001 less than phi less than 0.50. During sedimentation, particle velocity fluctuations are found to be organized into regions of characteristic size xi approximately 11 a phi (exp -1/3). A simple model, based upon buoyant mass fluctuations DELTAm given by random density fluctuations in a region of size xi, accurately predicts the magnitudes of the velocity fluctuations DELTAV. We also find a new universal relation for particle diffusion during sedimentation. It can be written in a Stokes-Einstein form as Dapproximately(DELTAmxi)/(6pietaxi), where the effective temperature DELTAmgxi is the gravitational potential energy of density fluctuations. In addition related experiments examining inertial effects and transient states, that are aimed at uncovering the origin of the new lengthscale xi, will also be given.
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
Lyman-α forest constraints on decaying dark matter
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Croft, Rupert A. C.; Peter, Annika H. G.; Zentner, Andrew R.; Purcell, Chris W.
2013-12-01
We present an analysis of high-resolution N-body simulations of decaying dark matter cosmologies focusing on the statistical properties of the transmitted Lyman-α (Lyα) forest flux in the high-redshift intergalactic medium (IGM). In this type of model a dark matter particle decays into a slightly less massive stable dark matter daughter particle and a comparably light particle. The small mass splitting provides a nonrelativistic kick velocity Vk=cΔM/M to the daughter particle resulting in free-streaming and subsequent damping of small-scale density fluctuations. Current Lyα forest power spectrum measurements probe comoving scales up to ˜2-3h-1Mpc at redshifts z˜2-4, providing one of the most robust ways to probe cosmological density fluctuations on relatively small scales. The suppression of structure growth due to the free-streaming of dark matter daughter particles also has a significant impact on the neutral hydrogen cloud distribution, which traces the underlying dark matter distribution well at high redshift. We exploit Lyα forest power spectrum measurements to constrain the amount of free-streaming of dark matter in such models and thereby place limits on decaying dark matter based only on the dynamics of cosmological perturbations without any assumptions about the interactions of the decay products. We use a suite of dark-matter-only simulations together with the fluctuating Gunn-Peterson approximation to derive the Lyα flux distribution. We argue that this approach should be sufficient for our main purpose, which is to demonstrate the power of the Lyα forest to constrain decaying dark matter models. We find that Sloan Digital Sky Survey 1D Lyα forest power spectrum data place a lifetime-dependent upper limit Vk≲30-70km/s for decay lifetimes ≲10Gyr. This is the most stringent model-independent bound on invisible dark matter decays with small mass splittings. For larger mass splittings (large Vk), Lyα forest data restrict the dark matter lifetime to Γ-1≳40Gyr. We leave the calibration of IGM properties using high-resolution hydrodynamic simulations for future work, which might become necessary if we consider data with higher precision such as the Baryon Oscillation and Spectroscopic Survey (BOSS) Lyα data. Forthcoming BOSS data should be able to provide more stringent constraints on exotic dark matter, mainly because the larger BOSS quasar spectrum sample will significantly reduce statistical errors.
Small but mighty: Dark matter substructures
NASA Astrophysics Data System (ADS)
Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas
2018-01-01
The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.
Ultraviolet luminosity density of the universe during the epoch of reionization
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-01-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys. PMID:26348033
Ultraviolet luminosity density of the universe during the epoch of reionization
NASA Astrophysics Data System (ADS)
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
Drift of Phase Fluctuations in the ABC Model
NASA Astrophysics Data System (ADS)
Bertini, Lorenzo; Buttà, Paolo
2013-07-01
In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.
Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio
We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less
Moroi, Takeo; Takahashi, Tomo
2004-03-05
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.
Spontaneous density fluctuations in granular flow and traffic
NASA Astrophysics Data System (ADS)
Herrmann, Hans J.
It is known that spontaneous density waves appear in granular material flowing through pipes or hoppers. A similar phenomenon is known from traffic jams on highways. Using numerical simulations we show that several types of waves exist and find that the density fluctuations follow a power law spectrum. We also investigate one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. Lattice gas and lattice Boltzmann models reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a non-linear dependence on density or shear rate as it is the case in traffic or granular flow.
Pawar, Shashikant S; Arakeri, Jaywant H
2016-08-01
Frequency spectra obtained from the measurements of light intensity and angle of arrival (AOA) of parallel laser light propagating through the axially homogeneous, axisymmetric buoyancy-driven turbulent flow at high Rayleigh numbers in a long (length-to-diameter ratio of about 10) vertical tube are reported. The flow is driven by an unstable density difference created across the tube ends using brine and fresh water. The highest Rayleigh number is about 8×109. The aim of the present work is to find whether the conventional Obukhov-Corrsin scaling or Bolgiano-Obukhov (BO) scaling is obtained for the intensity and AOA spectra in the case of light propagation in a buoyancy-driven turbulent medium. Theoretical relations for the frequency spectra of log amplitude and AOA fluctuations developed for homogeneous isotropic turbulent media are modified for the buoyancy-driven flow in the present case to obtain the asymptotic scalings for the high and low frequency ranges. For low frequencies, the spectra of intensity and vertical AOA fluctuations obtained from measurements follow BO scaling, while scaling for the spectra of horizontal AOA fluctuations shows a small departure from BO scaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu
Fast radio bursts (FRBs) have been identified as extragalactic sources that can probe turbulence in the intergalactic medium (IGM) and their host galaxies. To account for the observed millisecond pulses caused by scatter broadening, we examine a variety of possible electron density fluctuation models in both the IGM and the host galaxy medium. We find that a short-wave-dominated power-law spectrum of density, which may arise in highly supersonic turbulence with pronounced local dense structures of shock-compressed gas in the host interstellar medium (ISM), can produce the required density enhancements at sufficiently small scales to interpret the scattering timescale of FRBs.more » This implies that an FRB residing in a galaxy with efficient star formation in action tends to have a broadened pulse. The scaling of the scattering time with the dispersion measure (DM) in the host galaxy varies in different turbulence and scattering regimes. The host galaxy can be the major origin of scatter broadening, but contributes to a small fraction of the total DM. We also find that the sheet-like structure of the density in the host ISM associated with folded magnetic fields in a viscosity-dominated regime of magnetohydrodynamic (MHD) turbulence cannot give rise to strong scattering. Furthermore, valuable insights into the IGM turbulence concerning the detailed spatial structure of density and magnetic field can be gained from the observed scattering timescale of FRBs. Our results favor the suppression of micro-plasma instabilities and the validity of the collisional-MHD description of turbulence properties in the collisionless IGM.« less
Multiple Streaming and the Probability Distribution of Density in Redshift Space
NASA Astrophysics Data System (ADS)
Hui, Lam; Kofman, Lev; Shandarin, Sergei F.
2000-07-01
We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude (σl<~1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which are physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S3, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated.
Ion isotropy and fluctuations in the solar wind
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.; Lin, Naiguo
1997-01-01
The effects of measured fluctuations, with only general considerations as to their source, are considered. Data from interplanetary scintillations and fluctuations in plasma density provided data on electric fields, while fluctuations in magnetic fields are measured directly. Data from the unified radio and plasma experiment (URAP) on Ulysses is used to fill in higher frequency ranges, to assess the variations in the fluctuations with time and space, and to help to identify wave modes. It is shown that electric field fluctuations are of the right order of magnitude to maintain ion isotropy.
THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. I. THE TURBULENT STIRRING RECIPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzumi, Satoshi; Ormel, Chris W., E-mail: okuzumi@geo.titech.ac.jp
2013-07-01
Turbulence in protoplanetary disks affects planet formation in many ways. While small dust particles are mainly affected by the aerodynamical coupling with turbulent gas velocity fields, planetesimals and larger bodies are more affected by gravitational interaction with gas density fluctuations. For the latter process, a number of numerical simulations have been performed in recent years, but a fully parameter-independent understanding has not been yet established. In this study, we present simple scaling relations for the planetesimal stirring rate in turbulence driven by magnetorotational instability (MRI), taking into account the stabilization of MRI due to ohmic resistivity. We begin with order-of-magnitudemore » estimates of the turbulence-induced gravitational force acting on solid bodies and associated diffusion coefficients for their orbital elements. We then test the predicted scaling relations using the results of recent ohmic-resistive MHD simulations by Gressel et al. We find that these relations successfully explain the simulation results if we properly fix order-of-unity uncertainties within the estimates. We also update the saturation predictor for the density fluctuation amplitude in MRI-driven turbulence originally proposed by Okuzumi and Hirose. Combination of the scaling relations and saturation predictor allows us to know how the turbulent stirring rate of planetesimals depends on disk parameters such as the gas column density, distance from the central star, vertical resistivity distribution, and net vertical magnetic flux. In Paper II, we apply our recipe to planetesimal accretion to discuss its viability in turbulent disks.« less
Modeling the Lyα Forest in Collisionless Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorini, Daniele; Oñorbe, José; Lukić, Zarija
2016-08-11
Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present in this paper "Iteratively Matched Statistics" (IMS), a novel method to accurately model the Lyα forest with collisionless N-body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) andmore » the power spectrum of the real-space Lyα forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N-body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Lyα forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N-body simulations with achievable mean inter-particle separations in large-volume simulations. Finally, in addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic "mock" skies for Lyα forest surveys.« less
MODELING THE Ly α FOREST IN COLLISIONLESS SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorini, Daniele; Oñorbe, José; Hennawi, Joseph F.
2016-08-20
Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present “Iteratively Matched Statistics” (IMS), a novel method to accurately model the Ly α forest with collisionless N -body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and themore » power spectrum of the real-space Ly α forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N -body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Ly α forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N -body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic “mock” skies for Ly α forest surveys.« less
NASA Astrophysics Data System (ADS)
Noah, Joyce E.
Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.
Jian, Yun; Silvestri, Sonia; Brown, Jeff; Hickman, Rick; Marani, Marco
2014-01-01
An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.
Spontaneous voltage and current fluctuations in tissue cultured mouse dorsal root ganglion cells.
Mathers, D A; Barker, J L
1984-02-13
Fetal mouse dorsal root ganglion (DRG) neurons were maintained in primary dissociated cell culture for periods of 7 days to 3 months. Intracellular recordings from these cells revealed the presence of spontaneous subthreshold potentials in 101/177 neurons studied. When measured at the resting membrane potential, these spontaneous voltage events took two forms: (a) high frequency potential fluctuations several millivolts in peak-to-peak amplitude and (b) small, discrete hyperpolarizations. Neurons exhibiting either type of event were designated as 'active' DRG cells. No spontaneous potentials were seen in DRG cells hyperpolarized to membrane voltages more negative than -64 +/- 11.5 mV (n = 5 cells). Under voltage-clamp conditions, the subthreshold potentials of active DRG cells were replaced by fluctuations in outward current. The power spectral density, S(f) of these current fluctuations was approximated by an equation of the form S(f) = (S(o)/[1 + (f/fc) alpha] where 2 less than or equal to a less than or equal to 3 and the half-power frequency fc = 11.3 +/- 3.1 Hz at 23 degrees C (n = 17 cells). The spontaneous voltage fluctuations of active DRG cells were abolished in Ca2+-free saline, and of the divalent metal cations Sr2+, Mg2+, Ba2+, Co2+ and Mn2+, only Sr2+ could substitute for Ca2+ in the maintenance of this activity. Tetraethylammonium ions (1-10 mM) reversibly blocked the spontaneous potentials, while caffeine (10 mM) increased the frequency of these events. The spontaneous voltage fluctuations were not dependent on the presence of spinal cord neurons in the culture plate, and they were also observed in cultured DRG cells derived from adult mice.
Strong gravitational lensing statistics as a test of cosmogonic scenarios
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.
1994-01-01
Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the available lensing data, and other open models would presumably do as well as PBI. These preliminary conclusions and the assumptions on which they are based can be tested and the analysis can be applied to other cosmogonic models by straightforward extension of the work presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimoto, Yoshio, E-mail: nishimoto.yoshio@fukui.kyoto-u.ac.jp
2015-09-07
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of themore » third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.« less
Nishimoto, Yoshio
2015-09-07
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.
The H i-to-H{sub 2} Transition in a Turbulent Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il
2017-07-10
We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less
Dynamic measurements in non-uniform flows
NASA Astrophysics Data System (ADS)
Ershov, A. P.
2017-12-01
The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.
DOE R&D Accomplishments Database
Wilczek, Frank; Turner, Michael S.
1990-09-01
If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.
Dynamic measurements in non-uniform flows
NASA Astrophysics Data System (ADS)
Ershov, A. P.
2018-07-01
The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.
A 3D model of polarized dust emission in the Milky Way
NASA Astrophysics Data System (ADS)
Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques
2018-05-01
We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Detection of F-region electron density irregularities using incoherent-scatter radar
NASA Astrophysics Data System (ADS)
Gudivada, Krishna Prasad
Incoherent-scatter radar data from Poker Flat, Alaska has been used to determine size distributions of electron density structures in the evening time sector of the auroral zone. At high latitudes ionospheric plasma typically moves east-west with speeds of several hundred meters per second. Density irregularities that rapidly move through the radar beam are therefore observed as time-varying power fluctuations. The new phased array radar used for this study has been operated with several antenna directions with successive pulses transmitted in each direction. It is therefore possible to observe plasma Doppler velocities in multiple directions and determine the vector direction of the plasma motion. This near-simultaneous observation of the plasma velocity in conjunction with the electron density height profile data enable a new technique to determine the scale sizes of electron density fluctuations that move horizontally through the radar beam. The study focuses on the collision-less F-region ionosphere where the plasma drift is approximately constant with altitude. The experimental technique limits the range of scale sizes that may be studied to relatively large-scale sizes (i.e. greater than few tens of km). Results show that during magnetically disturbed conditions (Kp ≥ 4) when westward plasma velocities are relatively high (500-1000 m/s) the scale sizes of irregularities (often called plasma blobs) are in the range of 100-300 km and predominantly originate from the polar cap and are transported over long distances (˜1000 km) due to the long chemical recombination times (30-90 minutes). Some irregularities are caused by local auroral particle precipitation and have been identified with associated electron temperature enhancements. For cases of low magnetic activity (Kp ≤ 1), when the radar is located in a region of low plasma velocities (100-500 m/s) well south of the auroral oval (essentially a mid-latitude type ionosphere), the density distribution is always biased strongly toward small-scale sizes (less than 50 km).
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; ...
2018-04-19
Smore » mall 3D perturbations to the magnetic field in DIII-D ( δ B / B ~ 2 × 10 - 4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. Finally, the resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.
Smore » mall 3D perturbations to the magnetic field in DIII-D ( δ B / B ~ 2 × 10 - 4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. Finally, the resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.« less
Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
Gamma Strength Functions and Level Densities from High-Resolution Proton Scattering under 0°
NASA Astrophysics Data System (ADS)
von Neumann-Cosel, Peter; Bassauer, Sergej; Martin, Dirk; Tamii, Atsushi
2018-05-01
Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0° provides a novel method to measure gamma strength functions (GSF) in nuclei in an energy range of about 5 - 20 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. Comparison with gamma decay data (e.g. from the Oslo method) allows to test the generalised Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance (PDR) crucial for the modelling of (n,γ) and (γ,n) reactions in astrophysical reaction networks. From the two test cases studied, 208Pb remains inconclusive in the energy region of the PDR because of large Porter-Thomas fluctuations due to the small level density (LD), while the BA hypothesis seems to hold in case of 96Mo. A fluctuation analysis of the high-resolution data also provides a direct measure of the LD in the energy region of the isovector giant dipole resonance (IVGDR) well above the neutron threshold, where hardly any experimental information is available. This permits an independent test of the decomposition of GSF and LD in Oslo-type experiments.
Are metastable, precrystallisation, density-fluctuations a universal phenomena?
Heeley, Ellen L; Poh, C Kit; Li, Wu; Maidens, Anna; Bras, Wim; Dolbnya, Igor P; Gleeson, Anthony J; Terrill, Nicolas J; Fairclough, J Patrick A; Olmsted, Peter D; Ristic, Rile I; Hounslow, Micheal J; Ryan, Anthony J
2003-01-01
In-situ observations of crystallisation in minerals and organic polymers have been made by simultaneous, time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques. In isotactic polypropylene slow quiescent crystallisation shows the onset of large scale ordering prior to crystal growth. Rapid crystallisations studied by melt extrusion indicate the development of well resolved oriented SAXS patterns associated with long range order before the development of crystalline peaks in the WAXS region. Block copolymers self-assemble into mesophases in polymer melts above a critical chain length (or above a critical temperature) and this self-assembly process is shown to be susceptible to an incipient crystallisation. Mesophase formation is observed at anomalously high temperatures in ethylene-oxide containing block copolymers below the normal melting point of the polyoxy ethylene chains. Formation of calcium carbonate from aqueous solutions of sodium carbonate and calcium nitrate is observed to be a two-stage process and precipitation proceeds by the production of an amorphous metastable phase. This phase grows until it is volume filling and leads to the formation of the two polymorphs Calcite and Vaterite. These three sets of results suggest pre-nucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation. In due course, this phase undergoes transformation to "normal" crystals.
NASA Astrophysics Data System (ADS)
Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Christopher E., E-mail: chripa@fysik.dtu.dk; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk
2015-09-14
We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k{sup 2} divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a testmore » set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H{sub 2} molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.« less
Current Fluctuations in Stochastic Lattice Gases
NASA Astrophysics Data System (ADS)
Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.
2005-01-01
We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation theory for the space-time fluctuations of the empirical current which include the previous results. We then estimate the probability of a fluctuation of the average current over a large time interval. It turns out that recent results by Bodineau and Derrida [Phys. Rev. Lett.922004180601] in certain cases underestimate this probability due to the occurrence of dynamical phase transitions.
Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest
NASA Technical Reports Server (NTRS)
Bi, Hongguang; Davidsen, Arthur F.
1997-01-01
We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities approximately 10, 1, and 0.1 times the universal mean baryon density. Perhaps surprisingly, fluctuations whose amplitudes are less than or equal to the mean density still appear as "clouds" because in our model more than 70% of the volume of the IGM at z = 3 is filled with gas at densities below the mean value.
NASA Technical Reports Server (NTRS)
Massey, G. A.; Lemon, C. J.
1984-01-01
A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.
Magnetorotational Turbulence and Dynamo in a Collisionless Plasma.
Kunz, Matthew W; Stone, James M; Quataert, Eliot
2016-12-02
We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an Alfvén-wave cascade at large scales and a kinetic-Alfvén-wave cascade at small scales, with strong small-scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle acceleration, their distribution accurately described by a κ distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.
NASA Technical Reports Server (NTRS)
Singh, C. M.; Krawczonek, W. M.; Roth, J. R.; Hong, J. Y.; Kim, Y. C.; Powers, E. J.
1978-01-01
The strong radial electric field associated with the Penning discharge and the strong toroidal magnetic field give rise to a diversity of E/B phenomena, such as rotating waves and spokes, which in turn manifest themselves as space-time fluctuations of the plasma density and potential. Work is done to further understand the nature and origin of the fluctuations and their connection with fluctuation-induced transport. The approach is to monitor the density and potential fluctuations; to digitize the data; and to generate, with the aid of a computer, various spectral properties by means of the fast fourier transform. Of particular interest is the computer-generated transport spectrum that indicates in a quantitative way which fluctuation spectral components contribute to transport and which do not. All experimental measurements of the spectral characteristics of the plasma are given in absolute units rather than as relative values. Preliminary measurements of the transport spectrum of the ion population are given, and it is shown that the fluctuation-induced transport is in order-of-magnitude agreement with that inferred from the steady state current flowing to the electrodes that generate the plasma.
Active Brownian particles with velocity-alignment and active fluctuations
NASA Astrophysics Data System (ADS)
Großmann, R.; Schimansky-Geier, L.; Romanczuk, P.
2012-07-01
We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case.
Marinoni, Alessandro; Pinsker, Robert I.; Porkolab, Miklos; ...
2017-08-01
Experiments simulating the ITER Baseline Scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the Phase Contrast Imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of Electron Cyclotron Heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed β N . Within 20 msmore » after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz; in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. Furthermore, these results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.« less
NASA Technical Reports Server (NTRS)
Fletcher, Douglas G.; Mckenzie, R. L.
1992-01-01
Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.
Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.
Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less
Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.
2016-12-02
Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less
Impact of Simulated 1/f Noise for HI Intensity Mapping Experiments
NASA Astrophysics Data System (ADS)
Harper, S.; Dickinson, C.; Battye, R. A.; Roychowdhury, S.; Browne, I. W. A.; Ma, Y.-Z.; Olivari, L. C.; Chen, T.
2018-05-01
Cosmology has entered an era where the experimental limitations are not due to instrumental sensitivity but instead due to inherent systematic uncertainties in the instrumentation and data analysis methods. The field of HI intensity mapping (IM) is still maturing, however early attempts are already systematics limited. One such systematic limitation is 1/f noise, which largely originates within the instrumentation and manifests as multiplicative gain fluctuations. To date there has been little discussion about the possible impact of 1/f noise on upcoming single-dish HI IM experiments such as BINGO, FAST or SKA. Presented in this work are Monte-Carlo end-to-end simulations of a 30 day HI IM survey using the SKA-MID array covering a bandwidth of 950 and 1410 MHz. These simulations extend 1/f noise models to include not just temporal fluctuations but also correlated gain fluctuations across the receiver bandpass. The power spectral density of the spectral gain fluctuations are modelled as a power-law, and characterised by a parameter β. It is found that the degree of 1/f noise frequency correlation will be critical to the success of HI IM experiments. Small values of β (β < 0.25) or high correlation is preferred as this is more easily removed using current component separation techniques. Spectral index of temporal fluctuations (α) is also found to have a large impact on signal-to-noise. Telescope slew speed has a smaller impact, and a scan speed of 1 deg s-1 should be sufficient for a HI IM survey with the SKA.
Nonlinear Dynamics and Nucleation Kinetics in Near-Critical Liquids
NASA Technical Reports Server (NTRS)
Patashinski, Alexander Z.; Ratner, Mark A.; Pines, Vladimir
1996-01-01
The objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable.
On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin, E-mail: benjamin.rotenberg@upmc.fr
Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFGmore » tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.« less
Cosmological consequences of grand unified theories on density fluctuations
NASA Astrophysics Data System (ADS)
Lindley, D.
1981-05-01
Recent investigations into the cosmological consequences of grand unified theories (GUTs) of elementary particles have shown that the observed matter-antimatter asymmetry of the Universe can be explained without recourse to the hypothesis of specific initial conditions. It is shown here that the origin of inhomogeneities in the matter distribution, which are thought to be responsible for the later formation of galaxies, cannot be explained by a simple addition of density fluctuations to the standard model. The appearance of these fluctuations, after the epoch when baryon number is fixed, is almost purely adiabatic, any departure from adiabaticity falling off in inverse proportion to the mass of the perturbation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nizami, Lance
2010-03-01
Norwich's Entropy Theory of Perception (1975-present) is a general theory of perception, based on Shannon's Information Theory. Among many bold claims, the Entropy Theory presents a truly astounding result: that Stevens' Law with an Index of 1, an empirical power relation of direct proportionality between perceived taste intensity and stimulus concentration, arises from theory alone. Norwich's theorizing starts with several extraordinary hypotheses. First, 'multiple, parallel receptor-neuron units' without collaterals 'carry essentially the same message to the brain', i.e. the rate-level curves are identical. Second, sensation is proportional to firing rate. Third, firing rate is proportional to the taste receptor's 'resolvablemore » uncertainty'. Fourth, the 'resolvable uncertainty' is obtained from Shannon's Information Theory. Finally, 'resolvable uncertainty' also depends upon the microscopic thermodynamic density fluctuation of the tasted solute. Norwich proves that density fluctuation is density variance, which is proportional to solute concentration, all based on the theory of fluctuations in fluid composition from Tolman's classic physics text, 'The Principles of Statistical Mechanics'. Altogether, according to Norwich, perceived taste intensity is theoretically proportional to solute concentration. Such a universal rule for taste, one that is independent of solute identity, personal physiological differences, and psychophysical task, is truly remarkable and is well-deserving of scrutiny. Norwich's crucial step was the derivation of density variance. That step was meticulously reconstructed here. It transpires that the appropriate fluctuation is Tolman's mean-square fractional density fluctuation, not density variance as used by Norwich. Tolman's algebra yields a 'Stevens Index' of -1 rather than 1. As 'Stevens Index' empirically always exceeds zero, the Index of -1 suggests that it is risky to infer psychophysical laws of sensory response from information theory and stimulus physics while ignoring empirical biological transformations, such as sensory transduction. Indeed, it raises doubts as to whether the Entropy Theory actually describes psychophysical laws at all.« less
Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Juhyung; Terry, P. W.
2013-10-15
The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less
NASA Astrophysics Data System (ADS)
Theodorsen, A.; Garcia, O. E.; Kube, R.; LaBombard, B.; Terry, J. L.
2017-11-01
Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and skewed towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Predictions of a stochastic model, describing the plasma fluctuations as a super-position of uncorrelated pulses, are shown to be in excellent agreement with the measurements. This implies that the pulse duration is the same, while the degree of pulse overlap decreases radially outwards in the scrape-off layer. The universal frequency power spectral density is thus determined by the shape and duration of the large-amplitude bursts associated with blob-like structures. The model also describes the rate of threshold level crossings, for which the exponential tails underline the intermittency of the fluctuations in the far scarpe-off layer.
Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy
Crassee, I.; Martino, E.; Homes, C. C.; ...
2018-03-22
In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less
Nonuniform carrier density in Cd3As2 evidenced by optical spectroscopy
NASA Astrophysics Data System (ADS)
Crassee, I.; Martino, E.; Homes, C. C.; Caha, O.; Novák, J.; Tückmantel, P.; Hakl, M.; Nateprov, A.; Arushanov, E.; Gibson, Q. D.; Cava, R. J.; Koohpayeh, S. M.; Arpino, K. E.; McQueen, T. M.; Orlita, M.; Akrap, Ana
2018-03-01
We report the detailed optical properties of Cd3As2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μ m , they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response is characterized by very small scattering rates (˜1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.
Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crassee, I.; Martino, E.; Homes, C. C.
In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less
Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence
NASA Astrophysics Data System (ADS)
Cheminet, Adam; Blanquart, Guillaume
2011-11-01
Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.
Measurements of the driving forces of bio-motors using the fluctuation theorem
Hayashi, Kumiko; Tanigawara, Mizue; Kishikawa, Jun-ichi
2012-01-01
The fluctuation theorem (FT), which is a recent achievement in non-equilibrium statistical mechanics, has been suggested to be useful for measuring the driving forces of motor proteins. As an example of this application, we performed single-molecule experiments on F1-ATPase, which is a rotary motor protein, in which we measured its rotary torque by taking advantage of FT. Because fluctuation is inherent nature in biological small systems and because FT is a non-destructive force measurement method using fluctuation, it will be applied to a wide range of biological small systems in future. PMID:27857609
Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.
Baars, W J; Hutchins, N; Marusic, I
2017-03-13
Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.
2016-03-01
Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, S.
2000-01-01
In this paper we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been performed using a 3-D implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantisation but also the lateral confinement effects related to current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides.
Kaehler, G; Wagner, A J
2013-06-01
Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.
Shock wave oscillation driven by turbulent boundary layer fluctuations
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1972-01-01
Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.
Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.
Bell, John B; Garcia, Alejandro L; Williams, Sarah A
2007-07-01
The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS solver are compared with theory, when available, and with molecular simulations using a direct simulation Monte Carlo algorithm.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.
2000-01-01
We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Bhatia, S. N.
1999-06-01
The in-plane ( ρab) and out-of-plane ( ρc) resistivities of BSCCO single crystals have been measured by six terminals technique. The ρab and ρc are well described by the fluctuation theory developed by Dorin et al. The main effect of these fluctuations is to cause a reduction in the quasi-particle density of states (DOS), leading to a negative contribution in the fluctuation conductivity Lawrence-Doniach (LD) and Maki-Thompson (MT) contributions. We have analyzed paraconductivity by adding this DOS contribution to LD and MT contributions. The analysis shows that approaches based on the conventional LD model alone cannot explain the paraconductivity along ab-plane and c-axis, even when the MT contribution is included.
Dynamic density functional theory with hydrodynamic interactions and fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@courant.nyu.edu
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absencemore » of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.« less
NASA Astrophysics Data System (ADS)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-05-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvénic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvénic component (in the collisional limit, these compressive fluctuations become the slow and entropy modes of the conventional MHD). In the "dissipation range" below ion gyroscale, there are again two cascades: the kinetic-Alfvén-wave (KAW) cascade governed by two fluid-like electron reduced magnetohydrodynamic (ERMHD) equations and a passive cascade of ion entropy fluctuations both in space and velocity. The latter cascade brings the energy of the inertial-range fluctuations that was Landau-damped at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for all of these cascades. The relationship between the theoretical models proposed in this paper and astrophysical applications and observations is discussed in detail.
Work and heat fluctuations in two-state systems: a trajectory thermodynamics formalism
NASA Astrophysics Data System (ADS)
Ritort, F.
2004-10-01
Two-state models provide phenomenological descriptions of many different systems, ranging from physics to chemistry and biology. We investigate work fluctuations in an ensemble of two-state systems driven out of equilibrium under the action of an external perturbation. We calculate the probability density PN(W) that work equal to W is exerted upon the system (of size N) along a given non-equilibrium trajectory and introduce a trajectory thermodynamics formalism to quantify work fluctuations in the large-N limit. We then define a trajectory entropy SN(W) that counts the number of non-equilibrium trajectories PN(W) = exp(SN(W)/kBT) with work equal to W and characterizes fluctuations of work trajectories around the most probable value Wmp. A trajectory free energy {\\cal F}_N(W) can also be defined, which has a minimum at W = W†, this being the value of the work that has to be efficiently sampled to quantitatively test the Jarzynski equality. Within this formalism a Lagrange multiplier is also introduced, the inverse of which plays the role of a trajectory temperature. Our general solution for PN(W) exactly satisfies the fluctuation theorem by Crooks and allows us to investigate heat fluctuations for a protocol that is invariant under time reversal. The heat distribution is then characterized by a Gaussian component (describing small and frequent heat exchange events) and exponential tails (describing the statistics of large deviations and rare events). For the latter, the width of the exponential tails is related to the aforementioned trajectory temperature. Finite-size effects to the large-N theory and the recovery of work distributions for finite N are also discussed. Finally, we pay particular attention to the case of magnetic nanoparticle systems under the action of a magnetic field H where work and heat fluctuations are predicted to be observable in ramping experiments in micro-SQUIDs.
Characteristic length of glass transition
NASA Astrophysics Data System (ADS)
Donth, E.
1996-03-01
The characteristic length of the glass transition (ξ _α ) is based on the concept of cooperatively rearranging regions (CRR's) by Adam & Gibbs (1965): ξ _α is the diameter of one CRR. In the theoretical part of the talk a formula is derived how this length can be calculated from calorimetric data of the transformation interval. The approach is based on fluctuations in natural functional subsystems. The corresponding thermodynamics is represented e.g. in a book of the author (E. Donth, Relaxation and Thermodynamics in Polymers. Glass Transition, Akademie-Verlag, Berlin 1992). A typical value for this length is 3 nanometers. In the experimental part several examples are reported to enlarge the experimental evidence for such a length: Squeezing the glass transition in the amorphous layers of partially crystallized PET (C. Schick, Rostock), glass transition of small-molecule glass formers in a series of nanoscaled pores of porous glasses (F. Kremer, Leipzig), comparison with a concentration fluctuation model in homogeneous polymer mixtures (E.W. Fischer, Mainz), and, from our laboratory, backscaling to ξ _α across the main transition from the entanglement spacing in several amorphous polymers such as PVAC, PS, NR, and some polymer networks. Rouse backscaling was possible in the α β splitting region of several poly(n alkyl methacrylates) resulting in small characteristic lengths of order 1 nanometer near the onset of α cooperativity. In a speculative outlook a dynamic density pattern is presented, having a cellular structure with higher density and lower mobility of the cell walls. It will be explained, with the aid of different thermal expansion of wall and clusters, how the clusters within the cells maintain a certain mobility far below the glass temperature.
The faint galaxy contribution to the diffuse extragalactic background light
NASA Technical Reports Server (NTRS)
Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph
1992-01-01
Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.
On the thermodynamics of phase transitions in metal hydrides
NASA Astrophysics Data System (ADS)
di Vita, Andrea
2012-02-01
Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.
Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.
2015-01-15
Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less
Azimuthal anisotropy distributions in high-energy collisions
NASA Astrophysics Data System (ADS)
Yan, Li; Ollitrault, Jean-Yves; Poskanzer, Arthur M.
2015-03-01
Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of η / s ≃ 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of η / s is robust against non-linear effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Huang, L. G., E-mail: lingen.huang@hzdr.de
Here, we propose to exploit the low energy bandwidth, small wavelength, and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (resonant coherent X-ray diffraction). In this case, the scattering cross-section dramatically increases somore » that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution, and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation, e.g., hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating, and ultrafast ionization dynamics.« less
Growth and dissolution of spherical density enhancements in SCDEW cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonometto, Silvio A.; Mainini, Roberto, E-mail: bonometto@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it
2017-06-01
Strongly Coupled Dark Energy plus Warm dark matter (SCDEW) cosmologies are based on the finding of a conformally invariant (CI) attractor solution during the early radiative expansion, requiring then the stationary presence of ∼ 1 % of coupled-DM and DE, since inflationary reheating. In these models, coupled-DM fluctuations, even in the early radiative expansion, grow up to non-linearity, as shown in a previous associated paper. Such early non-linear stages are modelized here through the evolution of a top-hat density enhancement. As expected, its radius R increases up to a maximum and then starts to decrease. Virial balance is reached whenmore » the coupled-DM density contrast is just 25–26 and DM density enhancement is O(10 %) of total density. Moreover, we find that this is not an equilibrium configuration as, afterwards, coupling causes DM particle velocities to increase, so that the fluctuation gradually dissolves. We estimate the duration of the whole process, from horizon crossing to dissolution, and find z {sub horizon}/ z {sub erasing} ∼ 3 × 10{sup 4}. Therefore, only fluctuations entering the horizon at z ∼< 10{sup 9}–10{sup 10} are able to accrete WDM with mass ∼ 100 eV—as soon as it becomes non-relativistic—so avoiding full disruption. Accordingly, SCDEW cosmologies, whose WDM has mass ∼ 100 eV, can preserve primeval fluctuations down to stellar mass scale.« less
Nonequilibrium forces following quenches in active and thermal matter.
Rohwer, Christian M; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Nonequilibrium forces following quenches in active and thermal matter
NASA Astrophysics Data System (ADS)
Rohwer, Christian M.; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Density of states and magnetotransport in Weyl semimetals with long-range disorder
NASA Astrophysics Data System (ADS)
Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.
2015-11-01
We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.
High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves
NASA Astrophysics Data System (ADS)
Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.
2017-10-01
We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.
Rayleigh instability at small length scales.
Gopan, Nandu; Sathian, Sarith P
2014-09-01
The Rayleigh instability (also called the Plateau-Rayleigh instability) of a nanosized liquid propane thread is investigated using molecular dynamics (MD). The validity of classical predictions at small length scales is verified by comparing the temporal evolution of liquid thread simulated by MD against classical predictions. Previous works have shown that thermal fluctuations become dominant at small length scales. The role and influence of the stochastic nature of thermal fluctuations in determining the instability at small length scale is also investigated. Thermal fluctuations are seen to dominate and accelerate the breakup process only during the last stages of breakup. The simulations also reveal that the breakup profile of nanoscale threads undergo modification due to reorganization of molecules by the evaporation-condensation process.
Detecting temperature fluctuations at equilibrium.
Dixit, Purushottam D
2015-05-21
The Gibbs and the Boltzmann definition of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite-sized 'small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in the equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant in biophysics and nanotechnology.
Pressure effects on collective density fluctuations in water and protein solutions
Russo, Daniela; Laloni, Alessio; Filabozzi, Alessandra; Heyden, Matthias
2017-01-01
Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces. PMID:29073065
Amplitude of primeval fluctuations from cosmological mass density reconstructions
NASA Technical Reports Server (NTRS)
Seljak, Uros; Bertschinger, Edmund
1994-01-01
We use the POTENT reconstruction of the mass density field in the nearby universe to estimate the amplitude of the density fluctuation power spectrum for various cosmological models. We find that sigma(sub 8) Omega(sub m sup 0.6) = 1.3(sub -0.3 sup +0.4), almost independently of the power spectrum. This value agrees well with the Cosmic Background Explorer (COBE) normalization for the standard cold dark matter model, while alternative models predict an excessive amplitude compared with COBE. Flat, low Omega(sub m) models and tilted models with spectral index n less than 0.8 are particularly discordant.
Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak
Maggs, J. E.; Rhodes, Terry L.; Morales, G. J.
2015-03-05
Analysis of the time series obtained with the Doppler backscattering system (DBS) in the DIII-D tokamak shows that intermediate wave number plasma density fluctuations in low confinement (L-mode) tokamak plasmas are chaotic. Here, the supporting evidence is based on the shape of the power spectrum; the location of the signal in the complexity-entropy plane (C-H plane); and the population of the corresponding Bandt-Pompe probability distributions.
Ultraviolet luminosity density of the universe during the epoch of reionization.
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-08
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
Experimental evaluation of fluctuating density and radiated noise from a high temperature jet
NASA Technical Reports Server (NTRS)
Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.
1973-01-01
An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.
Effects of Density Fluctuations on Weakly Nonlinear Alfven Waves: An IST Perspective
NASA Astrophysics Data System (ADS)
Hamilton, R.; Hadley, N.
2012-12-01
The effects of random density fluctuations on oblique, 1D, weakly nonlinear Alfven waves is examined through a numerical study of an analytical model developed by Ruderman [M.S. Ruderman, Phys. Plasmas, 9 (7), pp. 2940-2945, (2002).]. Consistent with Ruderman's application to the one-parameter dark soliton, the effects on both one-parameter bright and dark solitons, the two-parameter soliton as well as pairs of one-parameter solitons were similar to that of Ohmic dissipation found by Hamilton et al. [R. Hamilton, D. Peterson, and S. Libby, J. Geophys. Res 114, A03104,doi:10.1029/2008JA013582 (2009).] It was found in all cases where bright or two-parameter solitons are present initially, that the effects of density fluctuations results in the eventual damping of such compressive wave forms and the formation of a train of dark solitons, or magnetic depressions.
NASA Astrophysics Data System (ADS)
Sachdev, Subir
2014-03-01
The hole-doped cuprate high temperature superconductors enter the pseudogap regime as their superconducting critical temperature, Tc, falls with decreasing hole density. Experiments have probed this regime for over two decades, but we argue that decisive new information has emerged from recent X-ray scattering experiments. The experiments observe incommensurate charge density wave fluctuations whose strength rises gradually over a wide temperature range above Tc, but then decreases as the temperature is lowered below Tc. We propose a theory in which the superconducting and charge-density wave orders exhibit angular fluctuations in a 6-dimensional space. The theory provides a natural quantitative fit to the X-ray data, and is consistent with other observed characteristics of the pseudogap. Results will also be presented on the microscopic origins of these order parameters. Work in collaboration with Lauren Hayward, Roger Melko, David Hawthorn, and Jay Sau.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
Duality in Phase Space and Complex Dynamics of an Integrated Pest Management Network Model
NASA Astrophysics Data System (ADS)
Yuan, Baoyin; Tang, Sanyi; Cheke, Robert A.
Fragmented habitat patches between which plants and animals can disperse can be modeled as networks with varying degrees of connectivity. A predator-prey model with network structures is proposed for integrated pest management (IPM) with impulsive control actions. The model was analyzed using numerical methods to investigate how factors such as the impulsive period, the releasing constant of natural enemies and the mode of connections between the patches affect pest outbreak patterns and the success or failure of pest control. The concept of the cluster as defined by Holland and Hastings is used to describe variations in results ranging from global synchrony when all patches have identical fluctuations to n-cluster solutions with all patches having different dynamics. Heterogeneity in the initial densities of either pest or natural enemy generally resulted in a variety of cluster oscillations. Surprisingly, if n > 1, the clusters fall into two groups one with low amplitude fluctuations and the other with high amplitude fluctuations (i.e. duality in phase space), implying that control actions radically alter the system's characteristics by inducing duality and more complex dynamics. When the impulsive period is small enough, i.e. the control strategy is undertaken frequently, the pest can be eradicated. As the period increases, the pest's dynamics shift from a steady state to become chaotic with periodic windows and more multicluster oscillations arise for heterogenous initial density distributions. Period-doubling bifurcation and periodic halving cascades occur as the releasing constant of the natural enemy increases. For the same ecological system with five differently connected networks, as the randomness of the connectedness increases, the transient duration becomes smaller and the probability of multicluster oscillations appearing becomes higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinckmann, Jan; Woelfle, Peter
2004-11-01
The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less
Plasma fluctuations as Markovian noise.
Li, B; Hazeltine, R D; Gentle, K W
2007-12-01
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.
Abbott, Ronald E; Doak, Daniel F; Peterson, Megan L
2017-04-01
The mechanisms that stabilize small populations in the face of environmental variation are crucial to their long-term persistence. Building from diversity-stability concepts in community ecology, within-population diversity is gaining attention as an important component of population stability. Genetic and microhabitat variation within populations can generate diverse responses to common environmental fluctuations, dampening temporal variability across the population as a whole through portfolio effects. Yet, the potential for portfolio effects to operate at small scales within populations or to change with systematic environmental shifts, such as climate change, remain largely unexplored. We tracked the abundance of a rare alpine perennial plant, Saussurea weberi, in 49 1-m 2 plots within a single population over 20 yr. We estimated among-plot correlations in log annual growth rate to test for population-level synchrony and quantify portfolio effects across the 20-yr study period and also in 5-yr subsets based on June temperature quartiles. Asynchrony among plots, due to different plot-level responses to June temperature, reduced overall fluctuations in abundance and the probability of decline in population models, even when accounting for the effects of density dependence on dynamics. However, plots became more synchronous and portfolio effects decreased during the warmest years of the study, suggesting that future climate warming may erode stabilizing mechanisms in populations of this rare plant. © 2017 by the Ecological Society of America.
Multiple Streaming and the Probability Distribution of Density in Redshift Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Lam; Kofman, Lev; Shandarin, Sergei F.
2000-07-01
We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude ({sigma}{sub l}(less-or-similar sign)1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which aremore » physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S{sub 3}, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated. (c) 2000 The American Astronomical Society.« less
Large-scale anisotropy of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1981-01-01
Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.
High-mobility strained organic semiconductors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Takeya, Jun; Matsui, H.; Kubo, T.; Hausermann, Roger
2016-11-01
Small molecular organic semiconductor crystals form interesting electronic systems of periodically arranged "charge clouds" whose mutual electronic coupling determines whether or not electronic states can be coherent over fluctuating molecules. This presentation focuses on two methods to reduce molecular fluctuation, which strongly restricts mobility of highly mobile charge in single-crystal organic transistors. The first example is to apply external hydrostatic pressure. Using Hall-effect measurement for pentacene FETs, which tells us the extent of the electronic coherence, we found a crossover from hopping-like transport of nearly localized charge to band transport of delocalized charge with full coherence. As the result of temperature dependence measurement, it turned out that reduced molecular fluctuation is mainly responsible for the crossover. The second is to apply uniaxial strain to single-crystal organic FETs. We applied stain by bending thin films of newly synthesized decyldinaphthobenzodithiophene (C10-DNBDT) on plastic substrate so that 3% strain is uniaxially applied. As the result, the room-temperature mobility increased by the factor of 1.7. In-depth analysis using X-ray diffraction (XRD) measurements and density functional theory (DFT) calculations reveal the origin to be the suppression of the thermal fluctuation of the individual molecules, which is confirmed by temperature dependent measurements. Our findings show that compressing the crystal structure directly restricts the vibration of the molecules, thus suppressing dynamic disorder, a unique mechanism in organic semiconductors. Since strain can easily be induced during the fabrication process, these findings can directly be exploited to build high performance organic devices.
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
NASA Astrophysics Data System (ADS)
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar convection by leading-order 2D Elsässer fluctuations, with critical balance being achieved when Alfvén wave sweeping balances passive scalar convection by leading-order 2D Elsässer fluctuations. Besides yielding predictions of 2D and slab spectra for Elsässer fluctuations, NI MHD shows that density fluctuations are advected by the majority or dominant incompressible velocity fluctuations. In the case of β ∼ 1 or ≪ 1, the density spectrum is Kolmogorov in the perpendicular wave number, thus providing a possible explanation for the observed extended Kolmogorov-like power law spectrum for electron density fluctuations in the interstellar medium.
Linear and non-linear bias: predictions versus measurements
NASA Astrophysics Data System (ADS)
Hoffmann, K.; Bel, J.; Gaztañaga, E.
2017-02-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki
2018-04-01
We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenbuerger, S.; Brandt, C.; Brochard, F.
2010-06-15
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the goodmore » correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.« less
Local time dependence of turbulent magnetic fields in Saturn's magnetodisc
NASA Astrophysics Data System (ADS)
Kaminker, V.; Delamere, P. A.; Ng, C. S.; Dennis, T.; Otto, A.; Ma, X.
2017-04-01
Net plasma transport in magnetodiscs around giant planets is outward. Observations of plasma temperature have shown that the expanding plasma is heating nonadiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and distribution of magnetic fluctuations in giant magnetospheres are poorly understood. In this study we attempt to quantify the radial and local time dependence of fluctuating magnetic field signatures that are suggestive of turbulence, quantifying the fluctuations in terms of a plasma heating rate density. In addition, the inferred heating rate density is correlated with magnetic field configurations that include azimuthal bend forward/back and magnitude of the equatorial normal component of magnetic field relative to the dipole. We find a significant local time dependence in magnetic fluctuations that is consistent with flux transport triggered in the subsolar and dusk sectors due to magnetodisc reconnection.
NASA Astrophysics Data System (ADS)
Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.
2010-06-01
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.
Far-forward collective scattering measurements by FIR polarimeter-interferometer on J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, P.; Chen, J., E-mail: jiech@hust.edu.cn; Gao, L.
The multi-channel three-wave polarimeter-interferometer system on J-TEXT tokamak has been exploited to measure far-forward collective scattering from electron density fluctuations. The diagnostic utilizes far infrared lasers operated at 432 μm with 17-channel vertical chords (3 cm chord spacing), covering the entire cross section of plasma. Scattering laser power is measured using a high-sensitivity Schottky planar diode mixer which can also detect polarimetric and interferometric phase simultaneously. The system provides a line-integrated measurement of density fluctuations with maximum measurable wave number: k{sub ⊥max} ≤ 2 cm{sup −1} and time response up to 350 kHz. Feasibility of the diagnostic has been tested,more » showing higher sensitivity to detect fluctuation than interferometric measurement. Capability of providing spatial-resolved information of fluctuation has also been demonstrated in preliminary experimental applications.« less
Are ultracompact minihalos really ultracompact?
NASA Astrophysics Data System (ADS)
Delos, M. Sten; Erickcek, Adrienne L.; Bailey, Avery P.; Alvarez, Marcelo A.
2018-02-01
Ultracompact minihalos (UCMHs) have emerged as a valuable probe of the primordial power spectrum of density fluctuations at small scales. UCMHs are expected to form at early times in regions with δ ρ /ρ ≳10-3 , and they are theorized to possess an extremely compact ρ ∝r-9 /4 radial density profile, which enhances their observable signatures. Nonobservation of UCMHs can thus constrain the primordial power spectrum. Using N -body simulations to study the collapse of extreme density peaks at z ≃1000 , we show that UCMHs forming under realistic conditions do not develop the ρ ∝r-9 /4 profile and instead develop either ρ ∝r-3 /2 or ρ ∝r-1 inner density profiles depending on the shape of the power spectrum. We also demonstrate via idealized simulations that self-similarity—the absence of a scale length—is necessary to produce a halo with the ρ ∝r-9 /4 profile, and we argue that this implies such halos cannot form from a Gaussian primordial density field. Prior constraints derived from UCMH nonobservation must be reworked in light of this discovery. Although the shallower density profile reduces UCMH visibility, our findings reduce their signal by as little as O (10-2) while allowing later-forming halos to be considered, which suggests that new constraints could be significantly stronger.
Spectral Behavior of Weakly Compressible Aero-Optical Distortions
NASA Astrophysics Data System (ADS)
Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric
2016-11-01
In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.
Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems
NASA Astrophysics Data System (ADS)
Kenedi, C. L.; Leary, P.; Malin, P.
2013-12-01
Geothermal system in situ flow systematics derived from detailed examination of grain-scale structures, fabrics, mineral alteration, and pore connectivity may be extremely misleading if/when extrapolated to reservoir-scale flow structure. In oil/gas field clastic reservoir operations, it is standard to assume that small scale studies of flow fabric - notably the Kozeny-Carman and Archie's Law treatments at the grain-scale and well-log/well-bore sampling of formations/reservoirs at the cm-m scale - are adequate to define the reservoir-scale flow properties. In the case of clastic reservoirs, however, a wide range of reservoir-scale data wholly discredits this extrapolation: Well-log data show that grain-scale fracture density fluctuation power scales inversely with spatial frequency k, S(k) ~ 1/k^β, 1.0 < β < 1.2, 1cycle/km < k < 1cycle/cm; the scaling is a ';universal' feature of well-logs (neutron porosity, sonic velocity, chemical abundance, mass density, resistivity, in many forms of clastic rock and instances of shale bodies, for both horizontal and vertical wells). Grain-scale fracture density correlates with in situ porosity; spatial fluctuations of porosity φ in well-core correlate with spatial fluctuations in the logarithm of well-core permeability, δφ ~ δlog(κ) with typical correlation coefficient ~ 85%; a similar relation is observed in consolidating sediments/clays, indicating a generic coupling between fluid pressure and solid deformation at pore sites. In situ macroscopic flow systems are lognormally distributed according to κ ~ κ0 exp(α(φ-φ0)), α >>1 an empirical parameter for degree of in situ fracture connectivity; the lognormal distribution applies to well-productivities in US oil fields and NZ geothermal fields, ';frack productivity' in oil/gas shale body reservoirs, ore grade distributions, and trace element abundances. Although presently available evidence for these properties in geothermal reservoirs is limited, there are indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.
The microphysics and macrophysics of cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweibel, Ellen G.
2013-05-15
This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmicmore » rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.« less
Pulsational mode fluctuations and their basic conservation laws
NASA Astrophysics Data System (ADS)
Borah, B.; Karmakar, P. K.
2015-01-01
We propose a theoretical hydrodynamic model for investigating the basic features of nonlinear pulsational mode stability in a partially charged dust molecular cloud within the framework of the Jeans homogenization assumption. The inhomogeneous cloud is modeled as a quasi-neutral multifluid consisting of the warm electrons, warm ions, and identical inertial cold dust grains with partial ionization in a neutral gaseous background. The grain-charge is assumed not to vary in the fluctuation evolution time scale. The active inertial roles of the thermal species are included. We apply a standard multiple scaling technique centered on the gravito-electrostatic equilibrium to understand the fluctuations on the astrophysical scales of space and time. This is found that electrostatic and self-gravitational eigenmodes co-exist as diverse solitary spectral patterns governed by a pair of Korteweg-de Vries (KdV) equations. In addition, all the relevant classical conserved quantities associated with the KdV system under translational invariance are methodologically derived and numerically analyzed. A full numerical shape-analysis of the fluctuations, scale lengths and perturbed densities with multi-parameter variation of judicious plasma conditions is carried out. A correlation of the perturbed densities and gravito-electrostatic spectral patterns is also graphically indicated. It is demonstrated that the solitary mass, momentum and energy densities also evolve like solitary spectral patterns which remain conserved throughout the spatiotemporal scales of the fluctuation dynamics. Astrophysical and space environments significant to our results are briefly highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
NASA Astrophysics Data System (ADS)
Schramm, David N.
1992-07-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
NASA Astrophysics Data System (ADS)
Schramm, D. N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER
NASA Astrophysics Data System (ADS)
Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G.; Henderson, M.; Saibene, G.
2018-01-01
We present state-of-the-art computations of propagation and absorption of electron cyclotron waves, retaining the effects of scattering due to electron density fluctuations. In ITER, injected microwaves are foreseen to suppress neoclassical tearing modes (NTMs) by driving current at the q=2 and q=3/2 resonant surfaces. Scattering of the beam can spoil the good localization of the absorption and thus impair NTM control capabilities. A novel tool, the WKBeam code, has been employed here in order to investigate this issue. The code is a Monte Carlo solver for the wave kinetic equation and retains diffraction, full axisymmetric tokamak geometry, determination of the absorption profile and an integral form of the scattering operator which describes the effects of turbulent density fluctuations within the limits of the Born scattering approximation. The approach has been benchmarked against the paraxial WKB code TORBEAM and the full-wave code IPF-FDMC. In particular, the Born approximation is found to be valid for ITER parameters. In this paper, we show that the radiative transport of EC beams due to wave scattering in ITER is diffusive unlike in present experiments, thus causing up to a factor of 2-4 broadening in the absorption profile. However, the broadening depends strongly on the turbulence model assumed for the density fluctuations, which still has large uncertainties.
The wind geometry of the Wolf-Rayet star HD 191765
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. F.; Nordsieck, K. H.; Taylor, M.; Bjorkman, K. S.; Magalhaes, A. M.; Wolff, M. J.
1992-01-01
A time-dependent spectropolarimetric data set of HD 191765 in the wavelength range 3159-7593 A is presented. At all epochs the present observations display a large and strongly wavelength-dependent continuum polarization and reduced levels of polarization across the emission lines. The data imply a significant intrinsic continuum polarization which requires a general deviation of the electron distribution from spherical symmetry. The global shape is quite stable as a function of time; small fluctuations may arise from localized density/temperature changes. The line polarizations are consistent with an axisymmetric wind geometry and ionization stratification. A qualitative model for polarization in a Wolf-Rayet atmosphere is developed. It is argued that the blueward rise of the continuum polarization in HD 191765 can be explained if the density in the wind is high, resulting in a competition of thermal and electron-scattering continuum opacity in the vertical.
Bespyatova, L A; Bugmyrin, S V
2015-01-01
Changes in the population density of two hard tick species, Ixodes (Exopalpiger) trianguliceps Birula, 1895 and Ixodes persulcatus Schulze, 1930, were examined in 1998-2001, and in 2003-2004 near Gomselga Village (Kondopoga District, 62° 04' N, 33° 55' E) in central Karelia. Data on the abundance of ixodid ticks and the species composition of their hosts in 4 forest sites at different stages of post-felling regeneration (secondary succession), i. e. 7-14, 12-19, 25-32, and 80-87 after logging were obtained. I. persulcatus dominated, comprising 73 % of the total tick number in samples. Regenera- tion of the forest resulted in fluctuations of the population density of two examined tick species: I. (Exopalpiger) trianguliceps (larvae 2.8-5.3; nymphs 1.5-2.2; adults 0-0.09) and I. persulcatus (larvae 4.3-10.6; nymphs 0.6-4.2).
Magnetic fields in turbulent quark matter and magnetar bursts
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim
We analyze the magnetic field evolution in dense quark matter with unbroken chiral symmetry, which can be found inside quark and hybrid stars. The magnetic field evolves owing to the chiral magnetic effect in the presence of the electroweak interaction between quarks. In our study, we also take into account the magnetohydrodynamic turbulence effects in dense quark matter. We derive the kinetic equations for the spectra of the magnetic helicity density and the magnetic energy density as well as for the chiral imbalances. On the basis of the numerical solution of these equations, we find that turbulence effects are important for the behavior of small scale magnetic fields. It is revealed that, under certain initial conditions, these magnetic fields behave similarly to the electromagnetic flashes of some magnetars. We suggest that fluctuations of magnetic fields, described in frames of our model, which are created in the central regions of a magnetized compact star, can initiate magnetar bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qifo; Liu, Yong; Zhao, Hailin, E-mail: zhaohailin@ipp.ac.cn
A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation withmore » a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).« less
Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT
NASA Astrophysics Data System (ADS)
Panda, D. K.; Lenka, T. R.
2017-12-01
In this paper the drain current low-frequency noise (LFN) of E-mode GaN MOS-HEMT is investigated for different gate insulators such as SiO2, Al2O3/Ga2O3/GdO3, HfO2/SiO2, La2O3/SiO2 and HfO2 with different trap densities by IFM based TCAD simulation. In order to analyze this an analytical model of drain current low frequency noise is developed. The model is developed by considering 2DEG carrier fluctuations, mobility fluctuations and the effects of 2DEG charge carrier fluctuations on the mobility. In the study of different gate insulators it is observed that carrier fluctuation is the dominant low frequency noise source and the non-uniform exponential distribution is critical to explain LFN behavior, so the analytical model is developed by considering uniform distribution of trap density. The model is validated with available experimental data from literature. The effect of total number of traps and gate length scaling on this low frequency noise due to different gate dielectrics is also investigated.
Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.
2018-05-01
Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.
Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Philip F.; Conroy, Charlie, E-mail: phopkins@caltech.edu
Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances ofmore » these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.« less
Zavgorodni, S
2004-12-07
Inter-fraction dose fluctuations, which appear as a result of setup errors, organ motion and treatment machine output variations, may influence the radiobiological effect of the treatment even when the total delivered physical dose remains constant. The effect of these inter-fraction dose fluctuations on the biological effective dose (BED) has been investigated. Analytical expressions for the BED accounting for the dose fluctuations have been derived. The concept of biological effective constant dose (BECD) has been introduced. The equivalent constant dose (ECD), representing the constant physical dose that provides the same cell survival fraction as the fluctuating dose, has also been introduced. The dose fluctuations with Gaussian as well as exponential probability density functions were investigated. The values of BECD and ECD calculated analytically were compared with those derived from Monte Carlo modelling. The agreement between Monte Carlo modelled and analytical values was excellent (within 1%) for a range of dose standard deviations (0-100% of the dose) and the number of fractions (2 to 37) used in the comparison. The ECDs have also been calculated for conventional radiotherapy fields. The analytical expression for the BECD shows that BECD increases linearly with the variance of the dose. The effect is relatively small, and in the flat regions of the field it results in less than 1% increase of ECD. In the penumbra region of the 6 MV single radiotherapy beam the ECD exceeded the physical dose by up to 35%, when the standard deviation of combined patient setup/organ motion uncertainty was 5 mm. Equivalently, the ECD field was approximately 2 mm wider than the physical dose field. The difference between ECD and the physical dose is greater for normal tissues than for tumours.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
Rotskoff, Grant M
2017-03-01
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.
NASA Technical Reports Server (NTRS)
Vedantam, Nanda Kishore
2003-01-01
The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.
Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer.
Tyler, Nicholas J C; Forchhammer, Mads C; Øritsland, Nils Are
2008-06-01
Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.
Idrissi, Abdenacer; Vyalov, Ivan; Georgi, Nikolaj; Kiselev, Michael
2013-10-10
We combined molecular dynamics simulation and DBSCAN algorithm (Density Based Spatial Clustering of Application with Noise) in order to characterize the local density inhomogeneity distribution in supercritical fluids. The DBSCAN is an algorithm that is capable of finding arbitrarily shaped density domains, where domains are defined as dense regions separated by low-density regions. The inhomogeneity of density domain distributions of Ar system in sub- and supercritical conditions along the 50 bar isobar is associated with the occurrence of a maximum in the fluctuation of number of particles of the density domains. This maximum coincides with the temperature, Tα, at which the thermal expansion occurs. Furthermore, using Voronoi polyhedral analysis, we characterized the structure of the density domains. The results show that with increasing temperature below Tα, the increase of the inhomogeneity is mainly associated with the density fluctuation of the border particles of the density domains, while with increasing temperature above Tα, the decrease of the inhomogeneity is associated with the core particles.
From density to interface fluctuations: The origin of wavelength dependence in surface tension
NASA Astrophysics Data System (ADS)
Hiester, Thorsten
2008-12-01
The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension γ(q) can be defined and expressed in terms of the direct correlation function c(r,r') , the equilibrium density profile ρ0(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or γ(q) , respectively. This result generalizes the Mecke-Dietrich surface tension γMD(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning γMD(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Chappell, C. R.
1973-01-01
We use OGO 5 measurements made within the plasmapause on May 15, 1969, to investigate the possible association between changes in lightning whistler dispersion characteristics and local density fluctuations. It is shown that groups of whistlers with relatively constant dispersions tended to be detected in regions where the local ion concentration was significantly enhanced. It is assumed that these local density fluctuations represent characteristics of large-scale field-aligned variations. The results are then compared with ray refraction estimates appropriate for low-frequency whistler mode propagation (wave components with frequencies comparable to the local lower hybrid frequency) in a nonuniform medium.
Nazikian, R; Shinohara, K; Kramer, G J; Valeo, E; Hill, K; Hahm, T S; Rewoldt, G; Ide, S; Koide, Y; Oyama, Y; Shirai, H; Tang, W
2005-04-08
A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast with the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
Non scale-invariant density perturbations from chaotic extended inflation
NASA Technical Reports Server (NTRS)
Mollerach, Silvia; Matarrese, Sabino
1991-01-01
Chaotic inflation is analyzed in the frame of scalar-tensor theories of gravity. Fluctuations in the energy density arise from quantum fluctuations of the Brans-Dicke field and of the inflation field. The spectrum of perturbations is studied for a class of models: it is non scale-invarient and, for certain values of the parameters, it has a peak. If the peak appears at astrophysically interesting scales, it may help to reconcile the Cold Dark Matter scenario for structure formation with large scale observations.
Experimental analysis of drift waves destabilization in a toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riccardi, C.; Xuantong, D.; Salierno, M.
1997-11-01
This paper concerns the study of the development of turbulence in a toroidal magnetoplasma [C. Riccardi {ital et al.}, Plasma Phys. {bold 36}, 1791 (1994)]. This analysis has been performed by evaluating wave number, frequency spectra, and bicoherence coefficients of density fluctuations associated to drift wave propagation. Plasma parameters have been changed over a wide range, in order to identify and characterize density fluctuations both in absence and in presence of nonlinear phenomena. {copyright} {ital 1997 American Institute of Physics.}
Correlations and fluctuations: Generalized factorial moments
NASA Astrophysics Data System (ADS)
Bialas, A.
2007-02-01
A systematic study of the relations between fluctuations of the extensive multiparticle variables and integrals of the inclusive multiparticle densities is presented. The generalized factorial moments are introduced and their physical meaning discussed. The effects of the additive conservation laws are analyzed.
NASA Astrophysics Data System (ADS)
Kalb, Wolfgang; Haas, Simon; Pernstich, Kurt; Mathis, Thomas; Batlogg, Bertram
2010-03-01
Our study shows that it is possible to reach one of the ultimate goals of organic electronics: organic field-effect transistors can be produced with trap densities as low as in the bulk of single crystals. Several analytical methods to calculate the spectral density of localized states in the band gap (trap DOS) from measured data were used to clarify, if the different methods lead to similar results. We then compared quantitatively trap DOS information from the literature, correcting for differences due to different calculation methods. In the bulk of single crystals the trap DOS is lower by several orders of magnitude than in thin films. The compilation of all data strongly suggests that structural defects at grain boundaries are the main cause of ``fast'' traps in TFT's made with vacuum-evaporated pentacene. For high-performance transistors made with small molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric. We will discuss to what degree band broadening due to the thermal fluctuations of the intermolecular transfer integral is reflected in the trap DOS very close (<0.15 eV) to the mobility edge.
Density enhancement mechanism of upwind schemes for low Mach number flows
NASA Astrophysics Data System (ADS)
Lin, Bo-Xi; Yan, Chao; Chen, Shu-Sheng
2018-06-01
Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them, the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation \\tilde{ρ {\\tilde{a}} {\\tilde{U}}Δ U}. It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term D^P and the velocity-difference dissipation term in the momentum equation D^{ρ U} to the order of O(c^{-1}) and O(c0) can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme, TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into all-speed compressible flow solvers.
Effect of fluctuations on the NMR relaxation beyond the Abrikosov vortex state
Glatz, A.; Galda, A.; Varlamov, A. A.
2015-08-25
Here, the effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate W = T –1 1 is studied in a complete phase diagram of a two-dimensional superconductor above the upper critical field line H c2(T). In the region of relatively high temperatures and low magnetic fields, the relaxation rate W is determined by two competing effects. The first one is its decrease in the result of suppression of the quasiparticle density of states (DOS) due to formation of fluctuation Cooper pairs (FCPs). The second one is a specific, purely quantum relaxation process of the Maki-Thompson (MT) type, whichmore » for low field leads to an increase of the relaxation rate. The latter describes particular fluctuation processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to phase-breaking length ℓ Φ which becomes possible due to an electron spin-flip scattering event at a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation rate are possible upon approaching the normal-metal–type-II superconductor transition. The character of fluctuations changes along the line H c2(T) from the thermal long-wavelength type in weak magnetic fields to the clusters of rotating FCPs in fields comparable to Hc2(0). We find that below the well-defined temperature T* 0 ≈ 0.6T c0, the MT process becomes ineffective even in the absence of intrinsic pair breaking. The small scale of the FCP rotations ξ xy in such high fields impedes formation of long (≲ℓ Φ) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields and low temperatures to just the suppression of quasiparticle DOS, analogous to the Abrikosov vortex phase below the H c2(T) line.« less
Effect of wave localization on plasma instabilities
NASA Astrophysics Data System (ADS)
Levedahl, William Kirk
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Hypotheses to explain the origin of species in Amazonia.
Haffer, J
2008-11-01
The main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global climatic-vegetational changes affected the biomes of the world not only during the Pleistocene but also during the Tertiary and earlier geological periods. New geoscientific evidence for the effect of dry climatic periods in Amazonia supports the predictions of the Refuge hypothesis. The disturbance-vicariance hypothesis refers to the presumed effect of cold/warm climatic phases of the Pleistocene only and is of limited general relevance because most extant species originated earlier and probably through paleogeographic changes and the formation of ecological refuges during the Tertiary.
Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
NASA Astrophysics Data System (ADS)
Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi
2016-02-15
An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less
Stochastic density functional theory at finite temperatures
NASA Astrophysics Data System (ADS)
Cytter, Yael; Rabani, Eran; Neuhauser, Daniel; Baer, Roi
2018-03-01
Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory (FT-KS-DFT), while frequently used, are computationally expensive due to the partial occupation of a very large number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS orbitals by directly obtaining the density from the KS Hamiltonian. The proposed algorithm scales as O (" close=")N3T3)">N T-1 and is compared with the high-temperature limit scaling O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Rong; Li, Yongdong; Liu, Chunliang
2016-07-15
The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified bymore » comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.« less
NASA Astrophysics Data System (ADS)
McCaffrey, A. M.; Jayachandran, P. T.
2017-06-01
First ever auroral region total electron content (TEC) measurements at 100 Hz using a Septentrio PolaRxS Pro receiver are analyzed to discover ionospheric signatures which would otherwise be unobtainable with the frequently used lower sampling rates. Two types of variations are observed: small-magnitude (amplitude) variations, which are present consistently throughout the data set, and larger-magnitude (amplitude) variations, which are less frequent. Small-amplitude TEC fluctuations are accounted for by the receiver phase jitter. However, estimated secondary ionospheric effects in the calculation of TEC and the receiver phase jitter were unable to account for the larger-amplitude TEC fluctuations. These variations are also accompanied by fluctuations in the magnetic field, which seems to indicate that these fluctuations are real and of geophysical significance. This paper presents a technique and the capability of high-rate TEC measurements in the study of auroral dynamics. Further detailed study is needed to identify the cause of these subsecond TEC fluctuations and associated magnetic field fluctuations.
Exploring cavity-mediated long-range interactions in a dilute quantum gas
NASA Astrophysics Data System (ADS)
Landig, Renate; Mottl, Rafael; Brennecke, Ferdinand; Baumann, Kristian; Donner, Tobias; Esslinger, Tilman
2013-05-01
We report on the observation of a characteristic change in the excitation spectrum of a Bose-Einstein condensate and increased density fluctuations due to cavity-mediated atom-atom interactions. Increasing the strength of the interaction leads to a softening of an excitation mode at finite momentum, preceding a superfluid to supersolid phase transition. The observed behavior is reminiscent of a roton minimum, as predicted for quantum gases with long-range interactions. We create long-range interactions in the BEC using a non-resonant transverse pump beam which induces virtual photon exchange via the vacuum field of an optical cavity. The mode softening is spectroscopically studied across the phase transition using a variant of Bragg spectroscopy. At the phase transition a diverging density response is observed which is linked to increased density fluctuations. Using the cavity dissipation channel we monitor these fluctuations in real-time and identify the influence of measurement backaction onto the critical behavior of the system.
Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background
Floerchinger, Stefan; Martinez, Mauricio
2015-12-11
Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. Here, we examine how the time evolution of linear perturbations depends on the equation of statemore » as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.« less
NASA Technical Reports Server (NTRS)
Mark, W. D.
1977-01-01
Mathematical expressions were derived for the exceedance rates and probability density functions of aircraft response variables using a turbulence model that consists of a low frequency component plus a variance modulated Gaussian turbulence component. The functional form of experimentally observed concave exceedance curves was predicted theoretically, the strength of the concave contribution being governed by the coefficient of variation of the time fluctuating variance of the turbulence. Differences in the functional forms of response exceedance curves and probability densities also were shown to depend primarily on this same coefficient of variation. Criteria were established for the validity of the local stationary assumption that is required in the derivations of the exceedance curves and probability density functions. These criteria are shown to depend on the relative time scale of the fluctuations in the variance, the fluctuations in the turbulence itself, and on the nominal duration of the relevant aircraft impulse response function. Metrics that can be generated from turbulence recordings for testing the validity of the local stationary assumption were developed.
Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2
Ho, Tuan Anh; Ilgen, Anastasia
2017-10-26
Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less
Influence of container shape on scaling of turbulent fluctuations in convection
NASA Astrophysics Data System (ADS)
Foroozani, N.; Niemela, J. J.; Armenio, V.; Sreenivasan, K. R.
2014-12-01
We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 106 and 1010 and the molecular Prandtl number, Pr=0.7 . The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001), 10.1103/PhysRevLett.87.184501] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.
Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Ilgen, Anastasia
Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less
Cosmological density fluctuations produced by vacuum strings
NASA Astrophysics Data System (ADS)
Vilenkin, A.
1981-04-01
Consideration is given to the possible role of vacuum domain strings produced in the grand unification phase transition in the early universe in the generation of the density fluctuations giving rise to galaxies. The cosmological evolution of the strings formed in the grand unification phase transition is analyzed, with attention given to possible mechanisms for the damping out of oscillations produced by tension in convoluted strings and closed loops. The cosmological density fluctuations introduced by infinite strings and closed loops smaller than the horizon are then shown to be capable of giving rise to mass condensations on a scale of approximately 10 to the 9th solar masses at the time of the decoupling of radiation from matter, around which the galaxies condense. Differences between the present theory and that suggested by Zel'dovich (1980) are pointed out, and it is noted that string formation at the grand unification phase transition is possible only if the manifold of the degenerate vacua of the gauge theory is not simply connected.
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido
2017-04-01
By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.
Influence of container shape on scaling of turbulent fluctuations in convection.
Foroozani, N; Niemela, J J; Armenio, V; Sreenivasan, K R
2014-12-01
We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 10(6) and 10(10) and the molecular Prandtl number, Pr=0.7. The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001)] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.; Lander, B.; Seifert, U.
2013-11-28
We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for themore » work still hold albeit for a different, apparent, change of free energy.« less
NASA Astrophysics Data System (ADS)
Timokhin, A. N.; Arons, J.
2013-02-01
We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/jGJ < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current. The 1D results described here characterize the dependence of acceleration and pair creation on the magnitude and sign of current. The dependence on the spatial distribution of the current is a multi-dimensional problem, possibly exhibiting more chaotic behaviour. We briefly outline possible relations of the electric field fluctuations observed in the polar flows (both with and without pair creation discharges) to direct emission of radio waves, as well as revive the possible relation of the observed limit cycle behaviour to microstructure in the radio emission. Actually modelling these effects requires the multi-dimensional treatment, to be reported in a later paper.
NASA Astrophysics Data System (ADS)
Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong
2017-11-01
Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.
Bayesian Analysis of the Power Spectrum of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; O'Dwyer, I. J.; Wandelt, B. D.
2005-01-01
There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background. The sky, when viewed in the microwave, is very uniform, with a nearly perfect blackbody spectrum at 2.7 degrees. Very small amplitude brightness fluctuations (to one part in a million!!) trace small density perturbations in the early universe (roughly 300,000 years after the Big Bang), which later grow through gravitational instability to the large-scale structure seen in redshift surveys... In this talk, I will discuss a Bayesian formulation of this problem; discuss a Gibbs sampling approach to numerically sampling from the Bayesian posterior, and the application of this approach to the first-year data from the Wilkinson Microwave Anisotropy Probe. I will also comment on recent algorithmic developments for this approach to be tractable for the even more massive data set to be returned from the Planck satellite.
Observational Signatures of Parametric Instability at 1AU
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Bale, S. D.; Badman, S.
2017-12-01
Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
NASA Astrophysics Data System (ADS)
Rotskoff, Grant
We show that current fluctuations in stochastic pumps can be robustly mapped to fluctuations in a corresponding time-independent non-equilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also the optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps, similar to the ``housekeeping'' heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps satisfy a universal bound determined by the steady state entropy production. National Science Foundation Graduate Research Fellowship.
Clogging and depinning of ballistic active matter systems in disordered media
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Reichhardt, C. J. O.
2018-05-01
We numerically examine ballistic active disks driven through a random obstacle array. Formation of a pinned or clogged state occurs at much lower obstacle densities for the active disks than for passive disks. As a function of obstacle density, we identify several distinct phases including a depinned fluctuating cluster state, a pinned single-cluster or jammed state, a pinned multicluster state, a pinned gel state, and a pinned disordered state. At lower active disk densities, a drifting uniform liquid forms in the absence of obstacles, but when even a small number of obstacles are introduced, the disks organize into a pinned phase-separated cluster state in which clusters nucleate around the obstacles, similar to a wetting phenomenon. We examine how the depinning threshold changes as a function of disk or obstacle density and find a crossover from a collectively pinned cluster state to a disordered plastic depinning transition as a function of increasing obstacle density. We compare this to the behavior of nonballistic active particles and show that as we vary the activity from completely passive to completely ballistic, a clogged phase-separated state appears in both the active and passive limits, while for intermediate activity, a readily flowing liquid state appears and there is an optimal activity level that maximizes the flux through the sample.
Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties
NASA Astrophysics Data System (ADS)
Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki
2018-01-01
The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.
Population response to climate change: linear vs. non-linear modeling approaches.
Ellis, Alicia M; Post, Eric
2004-03-31
Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.
Bardoczi, Laszlo; Rhodes, Terry L.; Navarro, Alejandro Banon; ...
2017-03-03
We present the first localized measurements of long and intermediate wavelength turbulent density fluctuations (more » $$\\sim\\atop{n}$$) and long wavelength turbulent electron temperature fluctuations ($$\\sim\\atop{T}$$ e) modified by m/n = 2/1 Neoclassical Tearing Mode (NTM) islands (m and n are the poloidal and toroidal mode numbers, respectively). These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient and Trapped Electron Mode scales, respectively. Two regimes have been observed when tracking $$\\sim\\atop{n}$$ during NTM evolution: (1) small islands are characterized by a steep T e radial profile and turbulence levels comparable to those of the background; (2) large islands have a flat T e profile and reduced turbulence level at the O-point. Radially outside the large island, the T e profile is steeper and the turbulence level increased compared to the no or small island case. Reduced turbulence at the O-point compared to the X-point leads to a 15% modulation of $$\\sim\\atop{n}$$ 2 across the island that is nearly in phase with the T e modulation. Qualitative comparisons to the GENE non-linear gyrokinetic code are promising with GENE replicating the observed scaling of turbulence modification with island size. Furthermore, these results are significant as they allow the validation of gyrokinetic simulations modeling the interaction of these multi-scale phenomena.« less
Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring
NASA Astrophysics Data System (ADS)
Nakatsugawa, K.; Fujii, T.; Tanda, S.
2017-09-01
We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.
Thomson scattering measurements from asymmetric interpenetrating plasma flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.
2014-11-15
Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less
NASA Astrophysics Data System (ADS)
Labombard, Brian
2013-10-01
A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.
2017-01-01
We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, C. C.; Kramer, G. J.; Johnson, E.
Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations whenmore » the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver.« less
Effect of stochastic grain heating on cold dense clouds chemistry
NASA Astrophysics Data System (ADS)
Chen, Long-Fei; Chang, Qiang; Xi, Hong-Wei
2018-06-01
The temperatures of dust grains play important roles in the chemical evolution of molecular clouds. Unlike large grains, the temperature fluctuations of small grains induced by photons may be significant. Therefore, if the grain size distribution is included in astrochemical models, the temperatures of small dust grains may not be assumed to be constant. We simulate a full gas-grain reaction network with a set of dust grain radii using the classical MRN grain size distribution and include the temperature fluctuations of small dust grains. Monte Carlo method is used to simulate the real-time dust grain's temperature fluctuations which is caused by the external low energy photons and the internal cosmic ray induced secondary photons. The increase of dust grains radii as ice mantles accumulate on grain surfaces is also included in our models. We found that surface CO2 abundances in models with grain size distribution and temperature fluctuations are more than one order of magnitude larger than those with single grain size. Small amounts of terrestrial complex organic molecules (COMs) can also be formed on small grains due to the temperature spikes induced by external low energy photons. However, cosmic ray induced secondary photons overheat small grains so that surface CO sublime and less radicals are formed on grains surfaces, thus the production of surface CO2 and COMs decreases by about one order of magnitude. The overheating of small grains can be offset by grain growth so that the formation of surface CO2 and COMs becomes more efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Rong; Wu, Yongquan, E-mail: yqwu@shu.edu.cn; Xiao, Junjiang
We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clustersmore » and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.« less
Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions
NASA Astrophysics Data System (ADS)
Castle, James R.
The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 < pT < 3.0 GeV/c and ∥eta∥ < 1.0 by removing finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation-driven differences in the initial-state spatial anisotropy for a given collision centrality that would otherwise be destroyed by event-averaging techniques. Correlations between the first and second moments of p( vn) distributions and event ellipticity are measured for harmonic orders n = 2 - 4 by coupling event-shape engineering to the unfolding technique.
Intermittent Anisotropic Turbulence Detected by THEMIS in the Magnetosheath
NASA Astrophysics Data System (ADS)
Macek, W. M.; Wawrzaszek, A.; Kucharuk, B.; Sibeck, D. G.
2017-12-01
Following our previous study of Time History of Events and Macroscale Interactions during Substorms (THEMIS) data, we consider intermittent turbulence in the magnetosheath depending on various conditions of the magnetized plasma behind the Earth’s bow shock and now also near the magnetopause. Namely, we look at the fluctuations of the components of the Elsässer variables in the plane perpendicular to the scale-dependent background magnetic fields and along the local average ambient magnetic fields. We have shown that Alfvén fluctuations often exhibit strong anisotropic non-gyrotropic turbulent intermittent behavior resulting in substantial deviations of the probability density functions from a normal Gaussian distribution with a large kurtosis. In particular, for very high Alfvénic Mach numbers and high plasma beta, we have clear anisotropy with non-Gaussian statistics in the transverse directions. However, along the magnetic field, the kurtosis is small and the plasma is close to equilibrium. On the other hand, intermittency becomes weaker for moderate Alfvén Mach numbers and lower values of the plasma parameter beta. It also seems that the degree of intermittency of turbulence for the outgoing fluctuations propagating relative to the ambient magnetic field is usually similar as for the ingoing fluctuations, which is in agreement with approximate equipartition of energy between these oppositely propagating Alfvén waves. We believe that the different characteristics of this intermittent anisotropic turbulent behavior in various regions of space and astrophysical plasmas can help identify nonlinear structures responsible for deviations of the plasma from equilibrium.
NASA Astrophysics Data System (ADS)
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Predicting fluctuations-caused regime shifts in a time delayed dynamics of an invading species
NASA Astrophysics Data System (ADS)
Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Dong, Xiaohui; Guan, Lin
2018-03-01
In this paper, we investigate early warning signals (EWS) of regime shifts in a density-dependent invading population model with time delay, in which the population density is assumed to be disturbed by intrinsic and extrinsic fluctuations. It is shown that the time delay and noises can cause the regime shifts between low and high population density states. The regime shift time (RST) as a function of noise intensity exhibits a maximum, which identifies the signature of the noise-enhanced stability of the low density state, while the time delay weakens the stability of the low density state. Applying the Kramers time technique, we also discuss the intersection point of the RST between low and high population density states, i.e., a critical point in the RST is found. Therefore, the critical point may give an EWS of regime shifts from one alternative state to another one for the changes in the noise parameters and time delay.
Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu
2016-10-20
Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers' subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SD F ) and the standard deviation of resultant forces (SD Fy ) in y-direction (F y ) are compared. Results show that the fluctuations of F y are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using the e-nose, the sensors in the sensor box should be in the proper place, i.e., where the fluctuations of the flow-induced forces is relatively small. This plays a significant reference role in determining the optimum design of the e-nose for accurately identifying Chinese liquors.
Saltwater-freshwater mixing fluctuation in shallow beach aquifers
NASA Astrophysics Data System (ADS)
Han, Qiang; Chen, Daoyi; Guo, Yakun; Hu, Wulong
2018-07-01
Field measurements and numerical simulations demonstrate the existence of an upper saline plume in tidally dominated beaches. The effect of tides on the saltwater-freshwater mixing occurring at both the upper saline plume and lower salt wedge is well understood. However, it is poorly understood whether the tidal driven force acts equally on the mixing behaviours of above two regions and what factors control the mixing fluctuation features. In this study, variable-density, saturated-unsaturated, transient groundwater flow and solute transport numerical models are proposed and performed for saltwater-freshwater mixing subject to tidal forcing on a sloping beach. A range of tidal amplitude, fresh groundwater flux, hydraulic conductivity, beach slope and dispersivity anisotropy are simulated. Based on the time sequential salinity data, the gross mixing features are quantified by computing the spatial moments in three different aspects, namely, the centre point, length and width, and the volume (or area in a two-dimensional case). Simulated salinity distribution varies significantly at saltwater-freshwater interfaces. Mixing characteristics of the upper saline plume greatly differ from those in the salt wedge for both the transient and quasi-steady state. The mixing of the upper saline plume largely inherits the fluctuation characteristics of the sea tide in both the transverse and longitudinal directions when the quasi-steady state is reached. On the other hand, the mixing in the salt wedge is relatively steady and shows little fluctuation. The normalized mixing width and length, mixing volume and the fluctuation amplitude of the mass centre in the upper saline plume are, in general, one-magnitude-order larger than those in the salt wedge region. In the longitudinal direction, tidal amplitude, fresh groundwater flux, hydraulic conductivity and beach slope are significant control factors of fluctuation amplitude. In the transverse direction, tidal amplitude and beach slope are the main control parameters. Very small dispersivity anisotropy (e.g., αL /αT < 5) could greatly suppress mixing fluctuation in the longitudinal direction. This work underlines the close connection between the sea tides and the upper saline plume in the aspect of mixing, thereby enhancing understanding of the interplay between tidal oscillations and mixing mechanisms in tidally dominated sloping beach systems.
Thickness of the particle swarm in cosmic ray air showers
NASA Technical Reports Server (NTRS)
Linsley, J.
1985-01-01
The average dispersion in arrival time of air shower particles detected with a scintillator at an impact parameter r is described with accuracy 5-10% by the empirical formula sigma = Sigma sub to (1+r/r sub t) sup b, where Sigma sub to = 2.6 ns, r sub t = 30m and b = (1.94 + or - .08) (0.39 + or - .06) sec Theta, for r 2 km, 10 to the 8th power E 10 to the 11th power GeV, and Theta 60 deg. (E is the primary energy and theta is the zenith angle). The amount of fluctuation in sigma sub t due to fluctuations in the level of origin and shower development is less than 20%. These results provide a basis for estimating the impact parameters of very larger showers with data from very small detector arrays (mini-arrays). The energy of such showers can then be estimated from the local particle density. The formula also provides a basis for estimating the angular resolution of air shower array-telescopes.
Scalings of intermittent structures in magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdankin, Vladimir, E-mail: zhdankin@jila.colorado.edu; Boldyrev, Stanislav; Space Science Institute, Boulder, Colorado 80301
Turbulence is ubiquitous in plasmas, leading to rich dynamics characterized by irregularity, irreversibility, energy fluctuations across many scales, and energy transfer across many scales. Another fundamental and generic feature of turbulence, although sometimes overlooked, is the inhomogeneous dissipation of energy in space and in time. This is a consequence of intermittency, the scale-dependent inhomogeneity of dynamics caused by fluctuations in the turbulent cascade. Intermittency causes turbulent plasmas to self-organize into coherent dissipative structures, which may govern heating, diffusion, particle acceleration, and radiation emissions. In this paper, we present recent progress on understanding intermittency in incompressible magnetohydrodynamic turbulence with a strongmore » guide field. We focus on the statistical analysis of intermittent dissipative structures, which occupy a small fraction of the volume but arguably account for the majority of energy dissipation. We show that, in our numerical simulations, intermittent structures in the current density, vorticity, and Elsässer vorticities all have nearly identical statistical properties. We propose phenomenological explanations for the scalings based on general considerations of Elsässer vorticity structures. Finally, we examine the broader implications of intermittency for astrophysical systems.« less