Small-scale density variations in the lunar crust revealed by GRAIL
NASA Astrophysics Data System (ADS)
Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W.; Milbury, C.; Kiefer, W. S.; Soderblom, J. M.; Zuber, M. T.
2017-07-01
Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that ∼98% of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2% of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10‧s of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by ± 10% over scales ranging from centimeters to 100‧s of kilometers.
Small-Scale Density Variations in the Lunar Crust Revealed by GRAIL
NASA Technical Reports Server (NTRS)
Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W., III; Milbury, C.;
2017-01-01
Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that approximately 98 percent of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2 percent of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10's of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by plus or minus 10 percent over scales ranging from centimeters to 100’s of kilometers.
Estimating Small-Body Gravity Field from Shape Model and Navigation Data
NASA Technical Reports Server (NTRS)
Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam
2008-01-01
This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
Hopkins, William D.; Pilger, John F.; Storz, Rachel; Ambrose, Alex; Hof, Patrick R.; Sherwood, Chet C.
2012-01-01
The corpus callosum (CC) is the major white matter tract that connects the two cerebral hemispheres. Some have theorized that individual differences in behavioral and brain asymmetries are linked to variation in the density of axon fibers that traverse different sections of the CC. In this study, we examined whether variation in axon fiber density in the CC was associated with variation in asymmetries in the planum temporale (PT) in a sample of 20 post-mortem chimpanzee brains. We further tested for sex differences in small and large CC fiber proportions and density in the chimpanzees. We found that the distribution of small and large fibers within the CC of chimpanzees follows a similar pattern to those reported in humans. We also found that chimpanzees with larger asymmetries in the PT had fewer large fibers in the posterior portion of the CC, particularly among females. As has been reported in human brains, the findings reported here indicate that individual differences in brain asymmetries are associated with variation in interhemispheric connectivity as manifest in axon fiber density and size. PMID:22766214
VARIATION OF PATHOGEN DENSITIES IN URBAN STORMWATER RUNOFF WITH LAND USE
Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three land use areas (high-density residential, low-density residential, and landscaped commercial). The concentrations of organisms in ...
Electric fields and current densities under small Florida thunderstorms
NASA Technical Reports Server (NTRS)
Deaver, Lance E.; Krider, E. P.
1991-01-01
Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.
2017-01-01
Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal density and remotely-sensed environmental covariates in shrub-steppe and grassland ecosystems in Wyoming, USA. We sampled four sciurid and leporid species groups using line transect methods, and used hierarchical distance-sampling to model density in response to variation in vegetation, climate, topographic, and anthropogenic variables, while accounting for variation in detection probability. We created spatial predictions of each species’ density and distribution. Sciurid and leporid species exhibited mixed responses to vegetation, such that changes to native habitat will likely affect prey species differently. Density of white-tailed prairie dogs (Cynomys leucurus), Wyoming ground squirrels (Urocitellus elegans), and leporids correlated negatively with proportion of shrub or sagebrush cover and positively with herbaceous cover or bare ground, whereas least chipmunks showed a positive correlation with shrub cover and a negative correlation with herbaceous cover. Spatial predictions from our models provide a landscape-scale metric of above-ground prey density, which will facilitate the development of conservation plans for these taxa and their predators at spatial scales relevant to management. PMID:28520757
Fluid flow near the surface of earth's outer core
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy; Jackson, Andrew
1991-01-01
This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.
Bret C. Harvey; Jason L. White; Rodney J. Nakamoto
2005-01-01
We observed significant habitat-scale variation in the density, survival, and growth of 811 passive integrated transponder tagged rainbow trout (Oncorhynchus mykiss) enclosed for 63—68 days at natural density in 59 individual habitats (pools and riffles) in a small coastal California stream in summer 2001. The initial habitat-scale...
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Atmospheric density (surface). [distribution with altitude at launching bases
NASA Technical Reports Server (NTRS)
Daniels, G. E.; Brown, S. C.
1973-01-01
The variation of the density of the atmosphere at the surface from the average for any one station, and between the areas of interest, is small and should have no important effect on preflight spacecraft operations. The median density at the surface for five test ranges is given.
NASA Astrophysics Data System (ADS)
Mota-Santiago, P.; Vazquez, H.; Bierschenk, T.; Kremer, F.; Nadzri, A.; Schauries, D.; Djurabekova, F.; Nordlund, K.; Trautmann, C.; Mudie, S.; Ridgway, M. C.; Kluth, P.
2018-04-01
The cylindrical nanoscale density variations resulting from the interaction of 185 MeV and 2.2 GeV Au ions with 1.0 μm thick amorphous SiN x :H and SiO x :H layers are determined using small angle x-ray scattering measurements. The resulting density profiles resembles an under-dense core surrounded by an over-dense shell with a smooth transition between the two regions, consistent with molecular-dynamics simulations. For amorphous SiN x :H, the density variations show a radius of 4.2 nm with a relative density change three times larger than the value determined for amorphous SiO x :H, with a radius of 5.5 nm. Complementary infrared spectroscopy measurements exhibit a damage cross-section comparable to the core dimensions. The morphology of the density variations results from freezing in the local viscous flow arising from the non-uniform temperature profile in the radial direction of the ion path. The concomitant drop in viscosity mediated by the thermal conductivity appears to be the main driving force rather than the presence of a density anomaly.
VARIATION OF PATHOGEN DENSITITES IN URBAN STORMWATER RUNOFF WITH LAND USE
Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three land use areas (high-density residential, low-density residential, and landscaped commercial). The concentrations of organisms in ...
NASA Astrophysics Data System (ADS)
Mount, Christopher P.; Titus, Timothy N.
2015-07-01
Small-scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct end-members across the NPSC: (1) Snow deposits may anneal to form an overlying slab layer that fractures. These low-density deposits maintain relatively constant densities over springtime. (2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high-density deposits dramatically increase in density over time. The end-members appear to be correlated with latitude.
Mount, Christopher P.; Titus, Timothy N.
2015-01-01
Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.
VARIATIONS OF MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF WITH LAND USE AND SEASONS
Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential, and landscaped commercial)....
Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle
NASA Technical Reports Server (NTRS)
Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.
Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar
2016-04-27
Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).
DOT National Transportation Integrated Search
1972-07-01
An experimental color system was tested as an adjunct to the X-ray fluoroscopy system already in use. Shades of gray were translated into various colors as a means of enhancing small defects normally observed with difficulty, and to provide for more ...
Andrew M. Liebhold; Derek M. Johnson; Ottar N. Bj& #248rnstad
2006-01-01
Explanations for the ubiquitous presence of spatially synchronous population dynamics have assumed that density-dependent processes governing the dynamics of local populations are identical among disjunct populations, and low levels of dispersal or small amounts of regionalized stochasticity ("Moran effect") can act to synchronize populations. In this study...
Packing microstructure and local density variations of experimental and computational pebble beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.
2012-07-01
In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less
Vyboishchikov, Sergei F
2016-12-05
We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Natal movement in juvenile Atlantic salmon: a body size-dependent strategy?
Sigurd Einum; Anders G. Finstad; Grethe Robertsen; Keith H. Nislow; Simon McKelvey; John D. Armstrong
2012-01-01
If competitive ability depends on body size, then the optimal natal movement from areas of high local population density can also be predicted to be size-dependent. Specifically, small, competitively-inferior individuals would be expected to benefit most from moving to areas of lower local density. Here we evaluate whether individual variation in natal movement...
NASA Astrophysics Data System (ADS)
Huang, X.; Aldering, G.; Biederman, M.; Herger, B.
2017-11-01
For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (≳ 10 {pc}) will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent widths, and of extinction, would be small. As a result, we conclude that nonuniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power-law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Aldering, Gregory; Biederman, Moriah; Herger, Brendan
2018-01-01
For Type Ia supernovae (SNe Ia) observed through a non-uniform interstellar medium (ISM) in its host galaxy, we investigate whether the non-uniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (>~ 10 pc) will translate to much smaller fluctuations on the scales of a SN photosphere. Therefore the typical amplitude of time variation due to non-uniform ISM, of absorption equivalent widths and of extinction, would be small. As a result, we conclude that non-uniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2002-01-01
A recently developed variationally stable quasi-relativistic method, which is based on the low-order approximation to the method of normalized elimination of the small component, was incorporated into density functional theory (DFT). The new method was tested for diatomic molecules involving Ag, Cd, Au, and Hg by calculating equilibrium bond lengths, vibrational frequencies, and dissociation energies. The method is easy to implement into standard quantum chemical programs and leads to accurate results for the benchmark systems studied.
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
Computing the Polarimetric and Photometric Variability of Be Stars
NASA Astrophysics Data System (ADS)
Marr, K. C.; Jones, C. E.; Halonen, R. J.
2018-01-01
We investigate variations in the linear polarization as well as in the V-band and B-band color–magnitudes for classical Be star disks. We present two models: disks with enhanced disk density and disks that are tilted or warped from the stellar equatorial plane. In both cases, we predict variation in observable properties of the system as the disk rotates. We use a non-LTE radiative transfer code BEDISK (Sigut & Jones) in combination with a Monte Carlo routine that includes multiple scattering (Halonen et al.) to model classical Be star systems. We find that a disk with an enhanced density region that is one order of magnitude denser than the disk’s base density shows as much as ∼ 0.2 % variability in the polarization while the polarization position angle varies by ∼ 8^\\circ . The ΔV magnitude for the same system shows variations of up to ∼ 0.4 mag while the Δ(B–V) color varies by at most ∼ 0.01 mag. We find that disks tilted from the equatorial plane at small angles of ∼ 30^\\circ more strongly reflect the values of polarization and color–magnitudes reported in the literature than disks tilted at larger angles. For this model, the linear polarization varies by ∼ 0.3 % , the polarization position angle varies by ∼ 60^\\circ , the ΔV magnitude varies up to 0.35 mag, and the Δ(B–V) color varies by up to 0.1 mag. We find that the enhanced disk density models show ranges of polarization and color–magnitudes that are commensurate with what is reported in the literature for all sizes of the density-enhanced regions. From this, we cannot determine any preference for small or large density-enhanced regions.
Equatorial ozone characteristics as measured at Natal (5.9 deg S, 35.2 deg W)
NASA Technical Reports Server (NTRS)
Kirchhoff, V. W. J. H.; Hilsenrath, E.; Motta, A. G.; Sahai, Y.; Medrano-B, R. A.
1982-01-01
Ozone density profiles obtained through electrochemical concentration cell (ECC) sonde measurements at Natal were analyzed. Time variations, as expected, are small. Outstanding features of the data are tropospheric densities substantially higher than those measured at other stations, and also a total ozone content that is higher than the averages given by satellite measurements.
2015-12-22
not shown). The relatively small differences were likely associated with differences in surface albedo and longwave radiation from soil surface. Ground...SECURITY CLASSIFICATION OF: Soil density is commonly treated as static in studies on land surface property dynamics. Magnitudes of errors associated...with this assumption are largely unknown. Objectives of this preliminary investigation were to: i) quantify effects of soil density variation on soil
NASA Astrophysics Data System (ADS)
von Stetten, Eric Carl
The electron-positron momentum density has been measured by the two dimensional angular correlation of annihilation radiation (2D ACAR) technique for single crystal and polycrystalline (sintered powder) YBa_2 Cu_3O_{7-x} samples. For sintered superconducting and nonsuperconducting samples, the shape and temperature variation of the momentum density was investigated using the high sensitivity 2D ACAR technique. The possible existence of Fermi surfaces (FS's) in the YBa_2Cu _3O_{7-x} system was investigated in high precision 2D ACAR experiments on an oriented (twinned) single crystal superconducting YBa_2Cu _3O_{7-x} (x ~ 0.1) sample, at temperatures above and below the superconducting transition temperature (~85 K). These experiments were performed in the c-axis projection, in order to observe the theoretically predicted cylindrical FS's (if they exist) in a single experiment, without a full reconstruction of the three dimensional momentum density. Large differences were observed between the room temperature 2D ACAR spectra for superconducting and nonsuperconducting sintered powder samples, and smaller differences were observed between the spectra for similarly prepared superconducting samples. For sintered superconducting samples, complex sample dependent temperature variations of the momentum density were observed, in contrast to the small linear temperature variation observed for a sintered powder nonsuperconducting sample. These results are interpreted as manifestations of the theoretically predicted preferential sampling of the linear Cu-O chain region by the positron in the YBa _2Cu_3O _{7-x} system. High precision experiments on the single crystal superconducting sample revealed a nearly isotropic 2D ACAR spectrum, with only four small (~3% of the height at p_{x} = p _{y} = 0) peaks centered along the (110) symmetry lines. A small narrowing of the 2D ACAR spectrum was observed above T_{c}. The Brillouin-zone-reduced momentum density was formed using the "Lock-Crisp-West folding" technique, in order to identify possible FS signatures; several small features were observed that could possibly be due to FS's. A computer study of statistical noise propagation in 2D ACAR data, however, found that the possible FS signatures in the experimental data are similar in shape and magnitude to noise produced features.
NASA Technical Reports Server (NTRS)
Rees, D.; Fuller-Rowell, T. J.
1989-01-01
A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling.
Densities and eccentricities of 139 Kepler planets from transit time variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadden, Sam; Lithwick, Yoram
2014-05-20
We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018{sub −0.004}{sup +0.005}, and planets smaller than 2.5 R {sub ⊕} are around twice as eccentric as those bigger than 2.5 R {sub ⊕}. We also find a best-fit density-radius relationshipmore » ρ ≈ 3 g cm{sup –3} × (R/3 R {sub ⊕}){sup –2.3} for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R {sub ⊕} are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.« less
Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak
Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; ...
2016-09-21
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less
High-sensitivity density fluctuation detector
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Hoeft, T.
1987-01-01
A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.
Reduced streamflow lowers dry-season growth of rainbow trout in a small stream
Bret C. Harvey; Rodney J. Nakamoto; Jason L. White
2006-01-01
A wide variety of resource management activities can affect surface discharge in small streams. Often, the effects of variation in streamflow on fish survival and growth can be difficult to estimate because of possible confounding with the effects of other variables, such as water temperature and fish density. We measured the effect of streamflow on survival and growth...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.; Ayers, P.W.; Zhang, Y.
2009-10-28
The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these twomore » terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.« less
Xu, Laixiang; Xue, Huiliang; Song, Mingjing; Zhao, Qinghua; Dong, Jingping; Liu, Juan; Guo, Yu; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shushen; Yang, Hefang; Zhang, Zhibin
2013-01-01
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984-1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.
Huang, Xinru; Roth, Connie B
2016-06-21
Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.
Time Periods of Unusual Density Behavior Observed by GRACE and CHAMP
NASA Astrophysics Data System (ADS)
McLaughlin, C. A.; Fattig, E.; Mysore Krishna, D.; Locke, T.; Mehta, P. M.
2011-12-01
Time periods of low cross correlation between precision orbit ephemeris (POE) derived density and accelerometer density for CHAMP and GRACE are examined. In particular, the cross correlation for GRACE dropped from typical values near 0.9 to much lower values and then returned to typical over the time period of late October to late December of 2005. This time period includes a maneuver where GRACE-A and GRACE-B swapped positions. However, the drop in cross correlation begins and reaches its low point before the maneuvers begin. In addition, the densities were found using GRACE-A, but GRACE-B did most of the maneuvering. The time period is characterized by high frequency variations in accelerometer density of the same magnitude as the daylight to eclipse variations over the course of an orbit. However, the daylight to eclipse variations are particularly small during this time period because the orbit plane is near the terminator. Additionally, the difference between the accelerometer and POE derived densities are not unusually large during this time period. This implies the variations are not unusual, just more significant when the orbit plane is near terminator. Cyclical variations in correlation of the POE derived densities with accelerometer derived densities are seen for both GRACE and CHAMP, but the magnitude of the variations are much larger for GRACE, possibly because of the higher altitude of GRACE. The cycles seem to be phased so that low correlations occur with low beta angle when the orbit plane is near the terminator. The low correlation is possibly caused by the lower amplitude of the daylight to eclipse signal making higher frequency variations relatively more important. However, another possible explanation is terminator waves in density that propagate to the thermosphere from lower in the atmosphere. These waves have been observed in CHAMP accelerometer data and global circulation model simulations. Further investigation is needed to see if the variations correspond to terminator waves or if they represent typical high frequency signal from another source that is more apparent when the orbit plane is near the terminator. 1. C. A. McLaughlin, E. Fattig, D. Mysore Krishna, and P. M. Mehta, "Time Periods of Anomalous Density for GRACE and CHAMP," AAS/AIAA Astrodynamics Specialists Conference, AAS 11-613, Girdwood, AK, August 2011. 2. C. A. McLaughlin, A. Hiatt, and T. Lechtenberg, "Calibrating Precision Orbit Derived Total Density," Journal of Spacecraft and Rockets, Vol. 48, No. 1, January-February 2011, pp. 166-174.
Peromyscus ranges at high and low population densities
Stickel, L.F.
1960-01-01
Live-trapping studies at the Patuxent Wildlife Research Center, Maryland, showed that the ranges of wood mice were larger when the population density was lower and smaller when the population density was higher. When the population density was about 1.3 male mice per acre in June 1954, the average distance recorded between traps after four or more captures was 258 feet. When the population density was about 4.1 male mice per acre in June 1957, the average distance was 119 feet. Differences were statistically significant. Females were so scarce at the low that comparisons could not be made for them. Examples from the literature also show that home range of a species may vary with population density. Other examples show that the range may vary with habitat, breeding condition and food supply. These variations in range size reduce the reliability of censuses in which relative methods are used: Lines of traps sample the population of a larger area when ranges are large than they do when ranges are small. Direct comparisons therefore will err in some degree. Error may be introduced also when line-trap data are transformed to per acre figures on the basis of home-range estimates made by area-trapping at another place or time. Variation in range size also can make it necessary to change area-trapping plans, for larger quadrants are needed when ranges are larger. It my be necessary to set traps closer together when ranges are small than when ranges are large.
NASA Astrophysics Data System (ADS)
Mathijssen, Paul; Knorr, Klaus-Holger; Gałka, Mariusz; Borken, Werner
2017-04-01
Peat carbon cycling is controlled by both large scale factors, such as climate and hydrological setting, and small scale factors, such as microtopography, vegetation, litter quality, and rooting depth. These small scale factors commonly vary within peatlands, causing variation in the carbon balance at different locations within the same site. Understanding the relationship between small scale carbon cycling and vegetation helps us to assess the variation of carbon dynamics of peatlands, because vegetation composition acts as an integrator of factors such as microtopography, hydrology, and nutrient level. Variation in vegetation illustrates spatial variation of these underlying factors. Furthermore, the presence of certain plant species affects carbon cycling directly through litter quality or aeration through root tissues. In order to understand these within-site variations in terms of carbon cycling, we investigated carbon accumulation, decomposition, and biogeochemistry of pore waters along a transect of peat cores with changing vegetation and water levels in an ombrotrophic peatland in southern Patagonia. The transect ran from a Sphagnum magellanicum dominated spot with relatively high water table, to intermediately wet spots with mixed Sphagnum/shrubs vegetation, or dominated by Cyperaceae, eventually to a more elevated and drier spot dominated by cushion plants (mainly Astelia pumila). There were large differences in peat accumulation rates and peat densities, with faster peat growth and lower densities under Sphagnum, but overall carbon accumulation rates were quite similar in the various microenvironments. At most plots C/N ratios decreased with depth, concurrent with increasing humification index derived from FT-IR spectra. But under cushion plants this relation was opposite: more humification with depth, but also C/N ratios increases. This reflected the differing source material at depth under the cushion plants, and that the cushion plant peat layers were formed on top of Sphagnum peat. The divergent source material throughout a peat core makes it difficult to use C/N ratios to indicate peat decomposition rates. Although the low peat density and higher C/N ratios indicate that overall carbon turnover is slow at Sphagnum plots, pore water methane concentrations were elevated. At cushion plant plots, however, higher redox potentials exist until greater depths due to aerenchymous roots, inhibiting methane production and release. Our results demonstrate that large variation exists within pristine bogs, in terms of decomposition patterns, organic matter quality, and carbon turnover pathways, corresponding to variation in surface moisture levels and vegetation. Furthermore, variation in carbon cycling properties are maintained in buried peat layers and reflect more the organic material of that layer, than the current surface carbon dynamics.
Regional variations in degradation and density of Martian craters.
NASA Technical Reports Server (NTRS)
Mcgill, G. E.; Wise, D. U.
1972-01-01
Martian craters visible on Mariner 6 and 7 imagery show a spectrum of topographic types from very fresh to highly degraded. A method of numerical scoring of rim, wall, and floor is proposed to yield a degradation number to classify each crater. Plots of degradation class vs density of large craters are similar for all four regions studied, whereas similar plots for small craters show marked differences between regions. The data suggest general continuity of crater formation and degradation, along with locally sporadic formation and/or degradation of the smallest craters classified. Deucalionis Regio, with an excess of fresh, small craters, experienced an episode of small crater formation (or nondegradation) most recently; Margaritifer Sinus was similarly disturbed at some more remote time. Meridiani Sinus and Hellespontus-Noachis show little or no sign of excess fresh, small craters.
NASA Astrophysics Data System (ADS)
Sandrini-Neto, L.; Lana, P. C.
2012-06-01
Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10 s km, km, 10 s m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10 s m to km scales. Densities of commercial size crabs differed at the scales of 10 s m and 10 s km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.
SANS contrast variation study of magnetoferritin structure at various iron loading
NASA Astrophysics Data System (ADS)
Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter
2015-03-01
Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
Tygert, Mark
2010-09-21
We discuss several tests for determining whether a given set of independent and identically distributed (i.i.d.) draws does not come from a specified probability density function. The most commonly used are Kolmogorov-Smirnov tests, particularly Kuiper's variant, which focus on discrepancies between the cumulative distribution function for the specified probability density and the empirical cumulative distribution function for the given set of i.i.d. draws. Unfortunately, variations in the probability density function often get smoothed over in the cumulative distribution function, making it difficult to detect discrepancies in regions where the probability density is small in comparison with its values in surrounding regions. We discuss tests without this deficiency, complementing the classical methods. The tests of the present paper are based on the plain fact that it is unlikely to draw a random number whose probability is small, provided that the draw is taken from the same distribution used in calculating the probability (thus, if we draw a random number whose probability is small, then we can be confident that we did not draw the number from the same distribution used in calculating the probability).
NASA Astrophysics Data System (ADS)
Atoyan, Levon; Pikuz, Sergei; Shelkovenko, Tania; Hammer, David; Byvank, Tom
2017-10-01
On the 20 MA Z machine, the seed for the MRT instability was mitigated in the Magnetized Liner Inertial Fusion experiment using a thick dielectric coating. We have used high-resolution radiography to study the development of small-scale ( 10-30 μm) features in thin foils on the 1 MA, 100-200 ns COBRA pulsed power generator. We examined those features quantitatively in a 16 µm thick cylindrical Al liner, where we show areal density variation of up to 40-50%. We then show how the features' wavelength decreases when the material is changed from Al to Ni, Cu, and Ti, going from 21 +/-4 µm for Al to 11 +/-2 µm for Ti. Moreover, we show that expansion inhibition on both sides by dielectric material reduces small-scale feature size and density, and we show how pattern seeding can affect those parameters. This work is supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement DE-NA0001836 as well as by the Department of Energy Grant Number DE-NA0002952.
NASA Technical Reports Server (NTRS)
Thronson, Harley A., Jr.; Latter, William B.; Black, John H.; Bally, John; Hacking, Perry
1987-01-01
A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting 'carbon' stars shows no variation with Galactocentric radius, while the evolved 'oxygen' star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars.
The statistics of primordial density fluctuations
NASA Astrophysics Data System (ADS)
Barrow, John D.; Coles, Peter
1990-05-01
The statistical properties of the density fluctuations produced by power-law inflation are investigated. It is found that, even the fluctuations present in the scalar field driving the inflation are Gaussian, the resulting density perturbations need not be, due to stochastic variations in the Hubble parameter. All the moments of the density fluctuations are calculated, and is is argued that, for realistic parameter choices, the departures from Gaussian statistics are small and would have a negligible effect on the large-scale structure produced in the model. On the other hand, the model predicts a power spectrum with n not equal to 1, and this could be good news for large-scale structure.
Olff, H; Hoorens, B; de Goede, R G M; van der Putten, W H; Gleichman, J M
2000-10-01
We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex arenaria locally alternated in abundance, with different sites close together behaving out of phase, resulting in a shifting mosaic. The net effect of killing all soil biota on the growth of these two species was investigated in a greenhouse experiment using gamma radiation, controlling for possible effects of sterilization on soil chemistry. Both plant species showed a strong net positive response to soil sterilization, indicating that pathogens (e.g., nematodes, pathogenic fungi) outweighed the effect of mutualists (e.g., mycorrhizae). This positive growth response towards soil sterilization appeared not be due to effects of sterilization on soil chemistry. Growth of Carex was strongly reduced by soil-borne pathogens (86% reduction relative to its growth on sterilized soil) on soil from a site where this species decreased during the last decade (and Festuca increased), while it was reduced much less (50%) on soil from a nearby site where it increased in abundance during the last decade. Similarly, Festuca was reduced more (67%) on soil from the site where it decreased (and Carex increased) than on soil from the site where it increased (55%, the site where Carex decreased). Plant-feeding nematodes showed high small-scale variation in densities, and we related this variation to the observed growth reductions in both plant species. Carex growth on unsterilized soil was significantly more reduced at higher densities of plant-feeding nematodes, while the growth reduction in Festuca was independent of plant-feeding nematode densities. At high plant-feeding nematode densities, growth of Carex was reduced more than Festuca, while at low nematode densities the opposite was found. Each plant species thus seems to be affected by different (groups of) soil-borne pathogens. The resulting interaction web of plants and soil-borne pathogens is discussed. We hypothesize that soil disturbances by digging ants and rabbits may explain the small-scale variation in nematode densities, by locally providing "fresh" sand. We conclude that soil-borne pathogens may contribute to plant diversity and spatial mosaics of plants in grasslands.
Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overy, Catherine; Blunt, N. S.; Shepherd, James J.
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamicmore » itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.« less
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.
Further developments in orbit ephemeris derived neutral density
NASA Astrophysics Data System (ADS)
Locke, Travis
There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere. The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two. There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.
Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K
2008-09-01
To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats may generate extremely high densities of animals, resulting in high density-dependent mortality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr
We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less
Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces
NASA Astrophysics Data System (ADS)
Sun, Zhuting
We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a reduction of ionization energy and shift the donor energy level ED upward, accompanying conduction band EC shift downward due to band gap narrowing for doped semiconductor material. The theoretical results are in a reasonable agreement with previous experimental data. I also find that when the material reduces to nanoscale, dielectric confinement and surface depletion compete with both Coulomb screening and dielectric screening that shift the donor level ED down towards the band gap. The calculation should be appropriate for all types of semiconductors and dopant species.
Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use.
Long, Ryan A; Wambua, Alois; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M
2017-07-01
Large mammalian herbivores (LMH) strongly shape the composition and architecture of plant communities. A growing literature shows that negative direct effects of LMH on vegetation frequently propagate to suppress the abundance of smaller consumers. Indirect effects of LMH on the behaviour of these consumers, however, have received comparatively little attention despite their potential ecological significance. We sought to understand (i) how LMH indirectly shape small-mammal habitat use by altering the density and distribution of understorey plants; (ii) how these effects vary with climatic context (here, seasonality in rainfall); and (iii) the extent to which behavioural responses of small mammals are contingent upon small-mammal density. We tested the effects of a diverse LMH community on small-mammal habitat use using 4 years of spatially explicit small-mammal trapping and vegetation data from the UHURU Experiment, a replicated set of LMH exclosures in semi-arid Kenyan savanna. Small-mammal habitat use was positively associated with tree density and negatively associated with bare (unvegetated) patches in all plots and seasons. In the presence of LMH, and especially during the dry season, small mammals consistently selected tree cover and avoided bare patches. In contrast, when LMH were excluded, small mammals were weakly associated with tree cover and did not avoid bare patches as strongly. These behavioural responses of small mammals were largely unaffected by changes in small-mammal density associated with LMH exclusion. Our results show that LMH indirectly affect small-mammal behaviour, and that these effects are influenced by climate and can arise via density-independent mechanisms. This raises the possibility that anthropogenic LMH declines might interact with changing patterns of rainfall to alter small-mammal distribution and behaviour, independent of numerical responses by small mammals to these perturbations. For example, increased rainfall in East Africa (as predicted in many recent climate-model simulations) may relax constraints on small-mammal distribution where LMH are rare or absent, whereas increased aridity and/or drought frequency may tighten them. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
NASA Technical Reports Server (NTRS)
Kohn, W.
1983-01-01
It is shown that if n(r) is the discrete density on a lattice (enclosed in a finite box) associated with a nondegenerate ground state in an external potential v(r) (i.e., is 'v-representable'), then the density n(r) + mu(r), with m(r) arbitrary (apart from trivial constraints) and mu small enough, is also associated with a nondegenerate ground state in an external potential v'(r) near v(r); i.e., n(r) + m(r) is also v-representable. Implications for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.
Cryogenic High-Sensitivity Magnetometer
NASA Technical Reports Server (NTRS)
Day, Peter; Chui, Talso; Goodstein, David
2005-01-01
A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.
Tunno, Brett J; Shmool, Jessie L C; Michanowicz, Drew R; Tripathy, Sheila; Chubb, Lauren G; Kinnee, Ellen; Cambal, Leah; Roper, Courtney; Clougherty, Jane E
2016-12-15
Capturing intra-urban variation in diesel-related pollution exposures remains a challenge, given its complex chemical mix, and relatively few well-characterized ambient-air tracers for the multiple diesel sources in densely-populated urban areas. To capture fine-scale spatial resolution (50×50m grid cells) in diesel-related pollution, we used geographic information systems (GIS) to systematically allocate 36 sampling sites across downtown Pittsburgh, PA, USA (2.8km 2 ), cross-stratifying to disentangle source impacts (i.e., truck density, bus route frequency, total traffic density). For buses, outbound and inbound trips per week were summed by route and a kernel density was calculated across sites. Programmable monitors collected fine particulate matter (PM 2.5 ) samples specific to workweek hours (Monday-Friday, 7 am-7 pm), summer and winter 2013. Integrated filters were analyzed for black carbon (BC), elemental carbon (EC), organic carbon (OC), elemental constituents, and diesel-related organic compounds [i.e., polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes]. To our knowledge, no studies have collected this suite of pollutants with such high sampling density, with the ability to capture spatial patterns during specific hours of interest. We hypothesized that we would find substantial spatial variation for each pollutant and significant associations with key sources (e.g. diesel and gasoline vehicles), with higher concentrations near the center of this small downtown core. Using a forward stepwise approach, we developed seasonal land use regression (LUR) models for PM 2.5 , BC, total EC, OC, PAHs, hopanes, steranes, aluminum (Al), calcium (Ca), and iron (Fe). Within this small domain, greater concentration differences were observed in most pollutants across sites, on average, than between seasons. Higher PM 2.5 and BC concentrations were found in the downtown core compared to the boundaries. PAHs, hopanes, and steranes displayed different spatial patterning across the study area by constituent. Most LUR models suggested a strong influence of bus-related emissions on pollution gradients. Buses were more dominant predictors compared to truck and vehicular traffic for several pollutants. Overall, we found substantial variation in diesel-related concentrations in a very small downtown area, which varied across elemental and organic components. Copyright © 2016. Published by Elsevier B.V.
Infrared temperature measurements over bare soil and vegetation - A HAPEX perspective
NASA Technical Reports Server (NTRS)
Carlson, Toby N.; Perry, Eileen M.; Taconet, Odile
1987-01-01
Preliminary analyses of aircraft and ground measurements made in France during the HAPEX experiment show that horizontal radiometric surface temperature variations, as viewed by aircraft, can reflect the vertical profile of soil moisture (soil versus root zone) because of horizontal variations in vegetation density. Analyses based on one day's data show that, although horizontal variations in soil moisture were small, the vertical differences between a dry surface and a wet root zone were large. Horizontal temperature differences between bare soil, corn and oats reflect differences in the fractional vegetation cover, as seen by the radiometer. On the other hand, these horizontal variations in radiometric surface temperature seem to reflect real horizontal variations in surface turbulent energy fluxes.
The effects of large- and small-scale density structures on the radio from coronal streamers
NASA Astrophysics Data System (ADS)
Thejappa, G.; Kundu, M. R.
1994-01-01
The radio observations of the coronal streamers obtained using Clark Lake radioheliograph at 73.8, 50.0, and 38.5 MHz during a period of minimum activity in September 1986 are presented. Streamers appear to correlate with two prominent disk sources whose intensites fluctuated randomly. The variations in half-power diameter of the radio Sun are found to correspond with the variations in the white-light extents of the coronal streamers. It appears that the shape of the radio Sun is not a function of the phase of the solar cycle; instead it depends on the relative positions of the streamers in the corona. The observed peak brightness temperatures, TB, of the streamers are found to be very low, being approximately equal to 6 x 104 K. We compute the brightness temperature distribution along the equator by tracing the rays in the coronal plasma. The rays are deflected away by the streamers before reaching the critical density level, whereas they penetrate deeper into the coronal hole for small angles between the line of sight and the streamer axis. As a consequence, it is found that the streamers and coronal holes appear in the calculated equatorial brightness distribution as irregular brightness depressions and enhancements, respectively. The fine structures are found to disappear when the scattering due to small-scale density inhomogeneities is included in the ray-tracing calculations. The required relative level of density fluctuations, epsilon1 = (delta N)/N, is found to be greater than 12% to reduce the peak brightness temperature from 106 K to 6 x 104 K for all the three frequencies.
Great Lakes Region Morphology and Impacts of March 17, 2015 SED Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Heine, T.; Moldwin, M.; Zou, S.
2015-12-01
Under quiet geomagnetic conditions, the mid-latitude ionosphere is relatively uniform with little spatial variation in electron density. However, during intense geomagnetic storms, density gradients associated with Storm Enhanced Density (SED) plumes and Sub-auroral Polarization Streams (SAPS) can move across the dayside mid-latitude ionosphere producing small spatial scale density structure that may be connected to ionospheric scintillation. The evolution of the SED plume during the March 17, 2015 "St. Patrick's Day Storm" is investigated using aggregated data from high resolution GPS receivers at the University of Michigan and throughout the Great Lakes region. Structural density features in the SED gradient can be observed and compared to GPS scintillation measurements—providing insight into the physical mechanisms behind ionospheric scintillation.
A study of the physics and chemistry of TMC-1
NASA Technical Reports Server (NTRS)
Pratap, P.; Dickens, J. E.; Snell, R. L.; Miralles, M. P.; Bergin, E. A.; Irvine, W. M.; Schloerb, F. P.
1997-01-01
We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestingen-Palm, David; Stanimirović, Snežana; González-Casanova, Diego F.
2017-08-10
We investigate spatial variations of turbulent properties in the Small Magellanic Cloud (SMC) by using neutral hydrogen (H i) observations. With the goal of testing the importance of stellar feedback on H i turbulence, we define central and outer SMC regions based on the star formation rate (SFR) surface density, as well as the H i integrated intensity. We use the structure function and the velocity channel analysis to calculate the power-law index ( γ ) for both underlying density and velocity fields in these regions. In all cases, our results show essentially no difference in γ between the centralmore » and outer regions. This suggests that H i turbulent properties are surprisingly homogeneous across the SMC when probed at a resolution of 30 pc. Contrary to recent suggestions from numerical simulations, we do not find a significant change in γ due to stellar feedback as traced by the SFR surface density. This could be due to the stellar feedback being widespread over the whole of the SMC, but more likely due to a large-scale gravitational driving of turbulence. We show that the lack of difference between central and outer SMC regions cannot be explained by the high optical depth H I.« less
Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes
Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.
2012-01-01
We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.
Seismic Velocity Anomalies in the Outer Core: The Final Frontier
NASA Astrophysics Data System (ADS)
Stevenson, D. J.
2008-12-01
Variation in density along outer core geoid surfaces must be very small (of order one part in a billion) since the resulting fluid motions and buoyancy fluxes would otherwise be prohibitively large for any reasonable choice of outer core viscosity. In any situation where seismic velocity variations are proportional to density variations (a generalized Birch's "law") this means that the resulting seismic travel time variations in the outer core would be unobservable. The largest lateral variations in the outer core are thus likely to arise from the distortion of geoid surfaces caused by density anomalies in the mantle or inner core. However, these do not change on decadal timescales and would be very difficult to separate from the inner core or mantle variations that cause them. Nonetheless, a recent study (Dai and Song, GRL, vol. 35, L16311, doi:10.1029/2008GL034895) provides evidence for time-variable outer core seismic velocity at the level of ten parts per million. Assuming this is real, I argue that the best candidate explanation is that all or part of the outer core is a two-phase medium consisting of a small mass fraction of small (ten or 100 micron-sized) particles of exsolving silicate material suspended in the convecting liquid. The seismic velocity of this two phase medium can vary at the desired level should the size distribution of particles vary from place to place (and with time) as one would expect in a convecting system, even though the mean density of the medium is invariant at the level of a part per billion, as required by dynamical considerations (thus invalidating Birch's "law"). The seismic velocity variation depends on the ratio of diffusion times to seismic periods, where the diffusion times are thermal or compositional for the particles or the particle spacing. This idea is not new (cf. Stevenson, JGR, 1983) but gains increased impetus from recent work on the nature of core formation and the desirability of an additional energy source for driving the geodynamo, as would arise if of order 10km of mantle underplating occurred over all of geologic time. The amount of suspended material will be tiny at any one time, illustrating the remarkable sensitivity of seismic waves to the microstructure of the medium. Consequences of this picture include some dissipation (finite Q) in the outer core and a significant frequency dependence of this effect, but precise predictions are difficult because of uncertainties in particle kinetics and convective velocities. The two-phase region may also influence radial seismic velocity profiles, particularly in the layers immediately adjacent to the boundaries (e.g., the layer just below the core-mantle boundary), an effect that has been suggested in the literature on many occasions. Even so, this explanation for lateral variability remains marginal at best, suggesting that the claimed observation is either not real or that some other explanation still awaits discovery.
Gravel, Dominique; Beaudet, Marilou; Messier, Christian
2008-10-01
Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.
NASA Astrophysics Data System (ADS)
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.
2018-05-01
Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.
Robinson, Paul L; Boscardin, W John; George, Sheba M; Teklehaimanot, Senait; Heslin, Kevin C; Bluthenthal, Ricky N
2009-07-01
The presence of street gangs has been hypothesized as influencing overall levels of violence in urban communities through a process of gun-drug diffusion and cross-type homicide. This effect is said to act independently of other known correlates of violence, i.e., neighborhood poverty. To test this hypothesis, we independently assessed the impact of population exposure to local street gang densities on 8-year homicide rates in small areas of Los Angeles County, California. Homicide data from the Los Angeles County Coroners Office were analyzed with original field survey data on street gang locations, while controlling for the established covariates of community homicide rates. Bivariate and multivariate regression analyses explicated strong relationships between homicide rates, gang density, race/ethnicity, and socioeconomic structure. Street gang densities alone had cumulative effects on small area homicide rates. Local gang densities, along with high school dropout rates, high unemployment rates, racial and ethnic concentration, and higher population densities, together explained 90% of the variation in local 8-year homicide rates. Several other commonly considered covariates were insignificant in the model. Urban environments with higher densities of street gangs exhibited higher overall homicide rates, independent of other community covariates of homicide. The unique nature of street gang killings and their greater potential to influence future local rates of violence suggests that more direct public health interventions are needed alongside traditional criminal justice mechanisms to combat urban violence and homicides.
A comment on the position dependent diffusion coefficient representation of structural heterogeneity
NASA Astrophysics Data System (ADS)
Wolfson, Molly; Liepold, Christopher; Lin, Binhua; Rice, Stuart A.
2018-05-01
Experimental studies of the variation of the mean square displacement (MSD) of a particle in a confined colloid suspension that exhibits density variations on the scale length of the particle diameter are not in agreement with the prediction that the spatial variation in MSD should mimic the spatial variation in density. The predicted behavior is derived from the expectation that the MSD of a particle depends on the system density and the assumption that the force acting on a particle is a point function of position. The experimental data are obtained from studies of the MSDs of particles in narrow ribbon channels and between narrowly spaced parallel plates and from new data, reported herein, of the radial and azimuthal MSDs of a colloid particle in a dense colloid suspension confined to a small circular cavity. In each of these geometries, a dense colloid suspension exhibits pronounced density oscillations with spacing of a particle diameter. We remove the discrepancy between prediction and experiment using the Fisher-Methfessel interpretation of how local equilibrium in an inhomogeneous system is maintained to argue that the force acting on a particle is delocalized over a volume with radius equal to a particle diameter. Our interpretation has relevance to the relationship between the scale of inhomogeneity and the utility of translation of the particle MSD into a position dependent diffusion coefficient and to the use of a spatially dependent diffusion coefficient to describe mass transport in a heterogeneous system.
Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley
2016-01-01
Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales. PMID:27041818
Natural Tissue Microenvironmental Conditions Modulate Adhesive Material Performance
Oliva, Nuria; Shitreet, Sagi; Abraham, Eytan; Stanley, Butch; Edelman, Elazer R.; Artzi, Natalie
2015-01-01
We designed and optimized tissue-responsive adhesive materials by matching material and tissue properties. A two-component material based on dextran aldehyde and dendrimer amine provides a cohesive gel through aldehyde–amine cross-linking and an adhesive interface created by a dextran aldehyde-selective reaction with tissue amines. By altering aldehyde–amine chemistry, we examined how variations in tissue surfaces (serosal amine density in the duodenum, jejunum, and ileum) affect interactions with adhesive materials of varied compositions (aldehyde content). Interestingly, the same adhesive formulation reacts differentially with the three regions of the small intestine as a result of variation in the tissue amine density along the intestinal tract, affecting the tissue–material interfacial morphology, adhesion strength, and adhesive mechanical properties. Whereas tissues provide chemical anchors for interaction with materials, we were able to tune the adhesion strength for each section of the small intestine tissue by altering the adhesive formulation using a two-component material with flexible variables aimed at controlling the aldehyde/amine ratio. This tissue-specific approach should be applied to the broad spectrum of biomaterials, taking into account specific microenvironmental conditions in material design. PMID:23046479
Maloney, K.O.; Feminella, J.W.; Mitchell, R.M.; Miller, S.A.; Mulholland, P.J.; Houser, J.N.
2008-01-01
The concept of landscape legacies has been examined extensively in terrestrial ecosystems and has led to a greater understanding of contemporary ecosystem processes. However, although stream ecosystems are tightly coupled with their catchments and, thus, probably are affected strongly by historical catchment conditions, few studies have directly examined the importance of landuse legacies on streams. We examined relationships between historical land use (1944) and contemporary (2000-2003) stream physical, chemical, and biological conditions after accounting for the influences of contemporary land use (1999) and natural landscape (catchment size) variation in 12 small streams at Fort Benning, Georgia, USA. Most stream variables showed strong relationships with contemporary land use and catchment size; however, after accounting for these factors, residual variation in many variables remained significantly related to historical land use. Residual variation in benthic particulate organic matter, diatom density, % of diatoms in Eunotia spp., fish density in runs, and whole-stream gross primary productivity correlated negatively, whereas streamwater pH correlated positively, with residual variation in fraction of disturbed land in catchments in 1944 (i.e., bare ground and unpaved road cover). Residual variation in % recovering land (i.e., early successional vegetation) in 1944 was correlated positively with residual variation in streambed instability, a macroinvertebrate biotic index, and fish richness, but correlated negatively with residual variation in most benthic macroinvertebrate metrics examined (e.g., Chironomidae and total richness, Shannon diversity). In contrast, residual variation in whole-stream respiration rates was not explained by historical land use. Our results suggest that historical land use continues to influence important physical and chemical variables in these streams, and in turn, probably influences associated biota. Beyond providing insight into biotic interactions and their associations with environmental conditions, identification of landuse legacies also will improve understanding of stream impairment in contemporary minimally disturbed catchments, enabling more accurate assessment of reference conditions in studies of biotic integrity and restoration. ?? 2008 by The North American Benthological Society.
Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Beebe, R. F.; Sneden, C.
1974-01-01
From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.
Diffraction enhance x-ray imaging for quantitative phase contrast studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.
2016-05-23
Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.
Lateral temperature variations at the core-mantle boundary deduced from the magnetic field
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy; Jackson, Andrew
1990-01-01
Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.
Tsunami Speed Variations in Density-stratified Compressible Global Oceans
NASA Astrophysics Data System (ADS)
Watada, S.
2013-12-01
Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.
Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.
Tornow, R P; Stilling, R
1998-01-01
To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.
Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan
Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.
2006-01-01
We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Volland, H.
1971-01-01
A model is proposed in which latitudinal variations in composition and temperature are used to interpret the semiannual effect in the thermospheric density. Two heat sources are postulated for the semiannual circulation: one at high latitudes associated with the semiannual component in the occurance of magnetic storms and a second weaker one that peaks at the equator associated with the semiannual migration between both hemispheres. Depending on the relative magnitude of these sources, the latitude regions in which composition and temperature effects dominate vary. The temperature effects however should be expected weakest at low to mid latitudes where the relative concentration of atomic oxygen is enriched during equinox. At high latitudes the semiannual temperature component would peak, associated with an oxygen depletion in the lower thermosphere during equinox. In combining these features it is shown that the total atmospheric density could still exhibit a relatively small latitude dependence in the semiannual component with the tendency to decrease at high latitudes, in agreement with observations.
Predicting Intra-Urban Population Densities in Africa using SAR and Optical Remote Sensing Data
NASA Astrophysics Data System (ADS)
Linard, C.; Steele, J.; Forget, Y.; Lopez, J.; Shimoni, M.
2017-12-01
The population of Africa is predicted to double over the next 40 years, driving profound social, environmental and epidemiological changes within rapidly growing cities. Estimations of within-city variations in population density must be improved in order to take urban heterogeneities into account and better help urban research and decision making, especially for vulnerability and health assessments. Satellite remote sensing offers an effective solution for mapping settlements and monitoring urbanization at different spatial and temporal scales. In Africa, the urban landscape is covered by slums and small houses, where the heterogeneity is high and where the man-made materials are natural. Innovative methods that combine optical and SAR data are therefore necessary for improving settlement mapping and population density predictions. An automatic method was developed to estimate built-up densities using recent and archived optical and SAR data and a multi-temporal database of built-up densities was produced for 48 African cities. Geo-statistical methods were then used to study the relationships between census-derived population densities and satellite-derived built-up attributes. Best predictors were combined in a Random Forest framework in order to predict intra-urban variations in population density in any large African city. Models show significant improvement of our spatial understanding of urbanization and urban population distribution in Africa in comparison to the state of the art.
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
Franks, Peter J; Beerling, David J
2009-06-23
Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time
Franks, Peter J.; Beerling, David J.
2009-01-01
Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO2 between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO2 (gcmax) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO2, the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO2 over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest gcmax values required to counter CO2“starvation” at low atmospheric CO2 concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO2 impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO2 regimes. Selection for small S was crucial for attaining high gcmax under falling atmospheric CO2 and, therefore, may represent a mechanism linking CO2 and the increasing gas-exchange capacity of land plants over geologic time. PMID:19506250
Lecerf, Jean-Michel; Luc, Gérald; Marécaux, Nadine; Bal, Sylvie; Bonte, Jean-Paul; Lacroix, Brigitte; Cayzeele, Amélie
2009-01-01
The diet is the first step in managing hypercholesterolemia. The objective of the present study is to assess whether moderate changes in dietary fatty acids improve plasma lipid parameters in mildly hypercholesterolemic outpatients. Using a randomized double-blind study, 121 outpatients within two groups received an isocaloric amount of unsaturated margarine or butter. Clinical and anthropometric measurements and a 3-day food record were made. Chi-square and Fisher's tests were used to compare qualitative variables and the general linear procedure was used to compare the groups. Additional analyses were performed after adjustment. There was a significant difference (P <0.03) in low-density lipoprotein-cholesterol levels between the groups. Total cholesterol, low-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol and apolipoprotein B values decreased in the unsaturated group in comparison with the saturated group. Low-density lipoprotein-cholesterol changes were correlated with the variation in polyunsaturated fatty acid intake and with plasma phospholipid linoleic acid levels. A small change in saturated by polyunsaturated fatty acid intake may improve plasma lipid parameters in mildly hypercholesterolemic subjects.
NASA Astrophysics Data System (ADS)
Jee, G.; Kim, E.; Kwak, Y. S.; Kim, Y.; Kil, H.
2017-12-01
We investigate the climatological characteristics of the ionospheric electron density profiles in the auroral and polar cap regions in comparison with the mid-latitude ionosphere using incoherent scatter radars (ISR) observations from Svalbard (78.15N, 16.05E), Tromso (69.59N, 19.23E), and Millstone Hill (42.6N, 288.5E) during a period of 1995 - 2015. Diurnal variations of electron density profiles from 100 to 500 km are compared among the three radar observations during equinox, summer and winter solstice for different solar and geomagnetic activities. Also investigated are the physical characteristics of E-region and F-region peak parameters of electron density profiles in the auroral and polar cap regions, which are significantly different from the mid-latitude ionosphere. In the polar ionosphere, the diurnal variations of density profiles are extremely small in summer hemisphere. Semiannual anomaly hardly appears for all latitudes, but winter anomaly occurs at mid-latitude and auroral ionospheres for high solar activity. Nighttime density becomes larger than daytime density in the winter polar cap ionosphere for high solar activity. The E-region peak is very distinctive in the nighttime auroral region and the peak height is nearly constant at about 110 km for all conditions. Compared with the F-region peak density, the E-region peak density does not change much with solar activity. Furthermore, the E-region peak density can be even larger than F-region density for low solar activity in the auroral region, particularly during disturbed condition.
NASA Astrophysics Data System (ADS)
Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.
2015-05-01
Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains could explain part of the variations in dust observations. Finally, we show that varying the composition of metallic nano-inclusions in the silicates cannot account for the variations, at the same time showing that the amount of FeS they contain cannot be > 50% by volume. Conclusions: With small variations in the dust properties, we are able to explain most of the variations in the dust emission observed by Planck-HFI in the diffuse ISM. We also find that the small realistic changes in the dust properties that we consider almost perfectly match the anti-correlation and scatter in the observed β - T relation.
Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco.
Marino, Andrea; Baldi, Ricardo
2014-01-01
For large herbivores, predation-risk, habitat structure and population density are often reported as major determinants of group size variation within and between species. However, whether the underlying causes of these relationships imply an ecological adaptation or are the result of a purely mechanistic process in which fusion and fragmentation events only depend on the rate of group meeting, is still under debate. The aim of this study was to model guanaco family and bachelor group sizes in contrasting ecological settings in order to test hypotheses regarding the adaptive significance of group-size variation. We surveyed guanaco group sizes within three wildlife reserves located in eastern Patagonia where guanacos occupy a mosaic of grasslands and shrublands. Two of these reserves have been free from predators for decades while in the third, pumas often prey on guanacos. All locations have experienced important changes in guanaco abundance throughout the study offering the opportunity to test for density effects. We found that bachelor group size increased with increasing density, as expected by the mechanistic approach, but was independent of habitat structure or predation risk. In contrast, the smaller and territorial family groups were larger in the predator-exposed than in the predator-free locations, and were larger in open grasslands than in shrublands. However, the influence of population density on these social units was very weak. Therefore, family group data supported the adaptive significance of group-size variation but did not support the mechanistic idea. Yet, the magnitude of the effects was small and between-population variation in family group size after controlling for habitat and predation was negligible, suggesting that plasticity of these social units is considerably low. Our results showed that different social units might respond differentially to local ecological conditions, supporting two contrasting hypotheses in a single species, and highlight the importance of taking into account the proximate interests and constraints to which group members may be exposed to when deriving predictions about group-size variation.
Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah
2015-11-01
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.
EqualChance: Addressing Intra-set Write Variation to Increase Lifetime of Non-volatile Caches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S
To address the limitations of SRAM such as high-leakage and low-density, researchers have explored use of non-volatile memory (NVM) devices, such as ReRAM (resistive RAM) and STT-RAM (spin transfer torque RAM) for designing on-chip caches. A crucial limitation of NVMs, however, is that their write endurance is low and the large intra-set write variation introduced by existing cache management policies may further exacerbate this problem, thereby reducing the cache lifetime significantly. We present EqualChance, a technique to increase cache lifetime by reducing intra-set write variation. EqualChance works by periodically changing the physical cache-block location of a write-intensive data item withinmore » a set to achieve wear-leveling. Simulations using workloads from SPEC CPU2006 suite and HPC (high-performance computing) field show that EqualChance improves the cache lifetime by 4.29X. Also, its implementation overhead is small, and it incurs very small performance and energy loss.« less
Sensitivity of equilibrium profile reconstruction to motional Stark effect measurements
NASA Astrophysics Data System (ADS)
Batha, S. H.; Levinton, F. M.; Hirshman, S. P.; Bell, M. G.; Wieland, R. M.
1996-09-01
The magnetic-field pitch-angle profile, gamma p(R) identical to tan-1(Bpol/Btor), is measured on TFTR using a motional Stark effect (MSE) polarimeter. Measured pitch angle profiles, along with kinetic profiles and external magnetic measurements, are used to compute a self-consistent equilibrium using the free-boundary variational moments equilibrium code VMEC. Uncertainties in the q profile due to uncertainties in gamma P(R), magnetic measurements and kinetic measurements are found to be small. Subsequent uncertainties in the VMEC-calculated current density and shear profiles are also small
Long-term stability of the Io high-temperature plasma torus
NASA Technical Reports Server (NTRS)
Moos, H. W.; Skinner, T. E.; Durrance, S. T.; Feldman, P. D.; Festou, M. C.
1985-01-01
The short wavelength camera of the International Ultraviolet Explorer satellite was used to measure S II 1256, S III 1199, semiforbidden S III 1729, and semiforbidden S IV 1406 emission from the high-temperature region of the Io plasma torus. Observations over a period of five years (1979-1984) indicate that the Io plasma parameters have relatively small variations, particularly in the case of the mixing ratio for the dominant constituent S(++), and electron temperature. A simple three-dimensional model of the plasma torus was used to obtain the ion mixing ratios and the plasma density for each observation. The results are compared with Voyager 1 data for mixing ratio (ion density divided by electron density); ionization balance; and plasma density. The results of the comparison are discussed in detail.
Invasion speed is affected by geographical variation in the strength of Allee effects
Patrick C. Tobin; Stephanie L. Whitmire; Derek M. Johnson; Ottar N. Bjornstad; Andrew M. Liebhold
2007-01-01
Allee effects can play a critical role in slowing or preventing the establishment of low density founder populations of non-indigenous species. Similarly, the spread of established invaders into new habitats can be influenced by the degree to which small founder populations ahead of the invasion front are suppressed through Allee effects. We develop an approach to use...
Baudrot, Virgile; Perasso, Antoine; Fritsch, Clémentine; Giraudoux, Patrick; Raoul, Francis
2016-07-01
The ability for a generalist consumer to adapt its foraging strategy (the multi-species functional response, MSFR) is a milestone in ecology as it contributes to the structure of food webs. The trophic interaction between a generalist predator, as the red fox or the barn owl, and its prey community, mainly composed of small mammals, has been empirically and theoretically widely studied. However, the extent to which these predators adapt their diet according to both multi-annual changes in multiple prey species availability (frequency dependence) and the variation of the total prey density (density dependence) is unexplored.We provide a new general model of MSFR disentangling changes in prey preference according to variation of prey frequency (switching) and of total prey density (we propose the new concept of "rank switching"). We apply these models to two large data sets of red fox and barn owl foraging. We show that both frequency-dependent and density-dependent switching are critical properties of these two systems, suggesting that barn owl and red fox have an accurate image of the prey community in terms of frequency and absolute density. Moreover, we show that negative switching, which can lead to prey instability, is a strong property of the two systems. © 2016 by the Ecological Society of America.
2014-01-01
Background Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. Results We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. Conclusions During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks. PMID:24886481
Pinot, Adrien; Gauffre, Bertrand; Bretagnolle, Vincent
2014-05-28
Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2015-07-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analysed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode. The Na layer has a nearly constant altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but substantial seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At mid to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the Summer Hemisphere, have lower number densities with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at mid latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
Berlin, Claudia; Busato, André; Rosemann, Thomas; Djalali, Sima; Maessen, Maud
2014-07-03
Avoidable hospitalizations (AH) are hospital admissions for diseases and conditions that could have been prevented by appropriate ambulatory care. We examine regional variation of AH in Switzerland and the factors that determine AH. We used hospital service areas, and data from 2008-2010 hospital discharges in Switzerland to examine regional variation in AH. Age and sex standardized AH were the outcome variable, and year of admission, primary care physician density, medical specialist density, rurality, hospital bed density and type of hospital reimbursement system were explanatory variables in our multilevel poisson regression. Regional differences in AH were as high as 12-fold. Poisson regression showed significant increase of all AH over time. There was a significantly lower rate of all AH in areas with more primary care physicians. Rates increased in areas with more specialists. Rates of all AH also increased where the proportion of residences in rural communities increased. Regional hospital capacity and type of hospital reimbursement did not have significant associations. Inconsistent patterns of significant determinants were found for disease specific analyses. The identification of regions with high and low AH rates is a starting point for future studies on unwarranted medical procedures, and may help to reduce their incidence. AH have complex multifactorial origins and this study demonstrates that rurality and physician density are relevant determinants. The results are helpful to improve the performance of the outpatient sector with emphasis on local context. Rural and urban differences in health care delivery remain a cause of concern in Switzerland.
The influence of synaptic size on AMPA receptor activation: a Monte Carlo model.
Montes, Jesus; Peña, Jose M; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors.
The Influence of Synaptic Size on AMPA Receptor Activation: A Monte Carlo Model
Montes, Jesus; Peña, Jose M.; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors. PMID:26107874
Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.
Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn
2009-01-01
1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.
Intraspecific variation in body size does not alter the effects of mesopredators on prey.
Gallagher, Austin J; Brandl, Simon J; Stier, Adrian C
2016-12-01
As humans continue to alter the species composition and size structure of marine food webs, it is critical to understand size-dependent effects of predators on prey. Yet, how shifts in predator body size mediate the effect of predators is understudied in tropical marine ecosystems, where anthropogenic harvest has indirectly increased the density and size of small-bodied predators. Here, we combine field surveys and a laboratory feeding experiment in coral reef fish communities to show that small and large predators of the same species can have similar effects. Specifically, surveys show that the presence of a small predator ( Paracirrhites arcatus ) was correlated with lower chances of prey fish presence, but these correlations were independent of predator size. Experimental trials corroborated the size-independent effect of the predator; attack rates were indistinguishable between small and large predators, suggesting relatively even effects of hawkfish in various size classes on the same type of prey. Our results indicate that the effects of small predators on coral reefs can be size-independent, suggesting that variation in predator size-structure alone may not always affect the functional role of these predators.
Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L
2014-12-07
We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.
Gravitational circulation in a tidal strait
Smith, P.E.; Cheng, R.T.; Burau, J.R.; Simpson, M.R.; ,
1991-01-01
Eight months of continuous measurements of tidal current profiles with an acoustic Doppler current profiler (ADCP) were made in Carquinez Strait, California, during 1988 for the purpose of estimating long-term variations in vertical profiles of Eulerian residual currents. Salinity stratification near the ADCP deployment site also was analyzed. The strength of density-driven gravitational circulation and the amount of salinity stratification in the strait varied significantly over the spring-neap tidal cycle. Density currents and stratification were greater during neap tides when vertical mixing from the tide is at a minimum. Landward residual currents along the bottom were observed only during neap tides. Simulations made with a three-dimensional model to supplement the field measurements show a significant, tidally induced lateral variation in residual currents across the strait. The Stokes drift of 1-2 cm/s in the strait is small relative to the speed of gravitational currents.
Inter-Diffusion in the Presence of Free Convection
NASA Technical Reports Server (NTRS)
Gupta, Prabhat K.
1999-01-01
Because of their technological importance, establishment of the precise values of interdiffusion coefficients is important in multicomponent fluid systems. Such values are not available because diffusion is influenced by free convection due to compositionally induced density variations. In this project, earth based diffusion experiments are being performed in a viscous fluid system PbO-SiO2 at temperatures between 500-1000 C. This system is chosen because it shows a large variation in density with small changes in composition and is expected to show a large free convection effect. Infinite diffusion couples at different temperatures and times are being studied with different orientations with respect to gravity. Composition fields will be measured using an Electron Microprobe Analyzer and will be compared with the results of a complementary modeling study to extract the values of the true diffusion coefficient from the measured diffusion profiles.
Sinervo, B; Bleay, C; Adamopoulou, C
2001-10-01
When selection acts on social or behavioral traits, the fitness of an individual depends on the phenotypes of its competitors. Here, we describe methods and statistical inference for measuring natural selection in small social groups. We measured selection on throat color alleles that arises from microgeographic variation in allele frequency at natal sites of side-blotched lizards (Uta stansburiana). Previous game-theoretic analysis indicates that two color morphs of female side-blotched lizards are engaged in an offspring quantity-quality game that promotes a density- and frequency-dependent cycle. Orange-throated females are r-strategists. They lay large clutches of small progeny, which have poor survival at high density, but good survival at low density. In contrast, yellow-throated females are K-strategists. They lay small clutches of large progeny, which have good survival at high density. We tested three predictions of the female game: (1) orange progeny should have a fitness advantage at low density; (2) correlational selection acts to couple color alleles and progeny size; and (3) this correlational selection arises from frequency-dependent selection in which large hatchling size confers an advantage, but only when yellow alleles are rare. We also confirmed the heritability of color, and therefore its genetic basis, by producing progeny from controlled matings. A parsimonious cause of the high heritability is that three alleles (o, b, y) segregate as one genetic factor. We review the physiology of color formation to explain the possible genetic architecture of the throat color trait. Heritability of color was nearly additive in our breeding study, allowing us to compute a genotypic value for each individual and thus predict the frequency of progeny alleles released on 116 plots. Rather than study the fitness of individual progeny, we studied how the fitness of their color alleles varied with allele frequency on plots. We confirmed prediction 1: When orange alleles are present in female progeny, they have higher fitness at low density when compared to other alleles. Even though the difference in egg size of the female morphs was small (0.02 g), it led to knife-edged survival effects for their progeny depending on local social context. Selection on hatchling survival was not only dependent on color alleles, but on a fitness interaction between color alleles and hatchling size, which confirmed prediction 2. Sire effects, which are not confounded by maternal phenotype, allowed us to resolve the frequency dependence of correlational selection on egg size and color alleles and thereby confirmed prediction 3. Selection favored large size when yellow sire alleles were rare, but small size when they were common. Correlational selection promotes the formation of a self-reinforcing genetic correlation between the morphs and life-history variation, which causes selection in the next density and frequency cycle to be exacerbated. We discuss general conditions for the evolution of self-reinforcing genetic correlations that arise from social selection associated with frequency-dependent sexual and natural selection.
Interannual variability: a crucial component of space use at the territory level.
Uboni, Alessia; Vucetich, John A; Stahler, Daniel R; Smith, Douglas W
2015-01-01
Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with approximately 20% of observations (n = 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.
Local variations in bone mineral density: a comparison of OCT versus x-ray micro-CT
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Stevens-Smith, Jenna; Scutt, Andrew; Matcher, Stephen J.
2008-02-01
We describe variations in the degree of mineralisation within the subchondral bone plate of the equine metacarpophalangeal joint. A comparison of Optical Coherence Tomography, Micro CT, and SEM techniques was performed. These data are compared between sites on a healthy sample and at points on an osteoarthritically degenerated sample. No significant correlation was found between the optical scattering coefficient and the micro-CT derived BMD for comparisons between different sites on the bone surface. Also OCT demonstrated a larger regional variation in scattering coefficient than did micro CT for bone mineral density. This suggests that the optical scattering coefficient of bone is not related solely to the volume-density of calcium-phosphate. Patches of lower optical scattering coefficient were found in the bone structure that was related to the osteoarthritic lesion area on the overlying cartilage. Areas of microcracking, as revealed by both SEM and micro CT produced distinctive granularity in the OCT images. In further experiments, OCT was compared with micro CT and mechanical strength testing (3-point bending) in a small animal model of cardiovascular disease (cholesterol overload in mice). In the cardiovascular diseased mice, micro-CT of the trabecular bone did not demonstrate a significant change in trabecular bone mineral density before and after administration of the high cholesterol diet. However mechanical testing demonstrated a decrease in mechanical strength and OCT demonstrated a corresponding statistically significant decrease in optical scattering of the bone.
Genetic Alterations Affecting Cholesterol Metabolism and Human Fertility1
DeAngelis, Anthony M.; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle
2014-01-01
ABSTRACT Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. PMID:25122065
Kvaal, Simen; Helgaker, Trygve
2015-11-14
The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francois, Elizabeth Green; Morris, John S; Novak, Alan M
2010-01-01
Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to densitymore » gradients, pressing methods and geometry can be seen on the wave breakout behavior.« less
LIDAR TS for ITER core plasma. Part III: calibration and higher edge resolution
NASA Astrophysics Data System (ADS)
Nielsen, P.; Gowers, C.; Salzmann, H.
2017-12-01
Calibration, after initial installation, of the proposed two wavelength LIDAR Thomson Scattering System requires no access to the front end and does not require a foreign gas fill for Raman scattering. As already described, the variation of solid angle of collection with scattering position is a simple geometrical variation over the unvignetted region. The additional loss over the vignetted region can easily be estimated and in the case of a small beam dump located between the Be tiles, it is within the specified accuracy of the density. The only additional calibration is the absolute spectral transmission of the front-end optics. Over time we expect the transmission of the two front-end mirrors to suffer a deterioration mainly due to depositions. The reduction in transmission is likely to be worse towards the blue end of the scattering spectrum. It is therefore necessary to have a method to monitor such changes and to determine its spectral variation. Standard methods use two lasers at different wavelength with a small time separation. Using the two-wavelength approach, a method has been developed to determine the relative spectral variation of the transmission loss, using simply the measured signals in plasmas with peak temperatures of 4-6 keV . Comparing the calculated line integral of the fitted density over the full chord to the corresponding interferometer data we also have an absolute calibration. At the outer plasma boundary, the standard resolution of the LIDAR Thomson Scattering System is not sufficient to determine the edge gradient in an H-mode plasma. However, because of the step like nature of the signal here, it is possible to carry out a deconvolution of the scattered signals, thereby achieving an effective resolution of ~ 1-2 cm in the outer 10-20 cm.
Structural heterogeneity of milk casein micelles: a SANS contrast variation study.
Bouchoux, Antoine; Ventureira, Jorge; Gésan-Guiziou, Geneviève; Garnier-Lambrouin, Fabienne; Qu, Peng; Pasquier, Coralie; Pézennec, Stéphane; Schweins, Ralf; Cabane, Bernard
2015-01-14
We examine the internal structure of milk casein micelles using the contrast variation method in Small-Angle Neutron Scattering (SANS). Experiments were performed with casein dispersions of different origins (i.e., milk powder or fresh milk) and extended to very low q-values (∼9 × 10(-4) Å(-1)), thus making it possible to precisely determine the apparent gyration radius Rg at each contrast. From the variation of I(q → 0) with contrast, we determine the distribution of composition of all the particles in the dispersions. As expected, most of these particles are micelles, made of casein and calcium phosphate, with a narrow distribution in compositions. These micelles always coexist with a very small fraction of fat droplets, with sizes in the range of 20-400 nm. For the dispersions prepared from fresh milk, which were purified under particularly stringent conditions, the number ratio of fat droplets to casein micelles is as low as 1 to 10(6). In that case, we are able to subtract from the total intensity the contribution of the fat droplets and in this way obtain the contribution of the micelles only. We then analyze the variation of this contribution with contrast using the approach pioneered by H. B. Stuhrmann. We model the casein micelle as a core-shell spherical object, in which the local scattering length density is determined by the ratio of calcium phosphate nanoclusters to proteins. We find that models in which the shell has a lower concentration of calcium phosphate than the core give a better agreement than models in which the shell has a higher density than the core.
NASA Astrophysics Data System (ADS)
Chang, J. S.; Sohn, H. Y.
2012-08-01
Top-blow injection of a gas-solid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas-solid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was small. The overall results including the previous work indicated that the penetration behavior of an annular jet is much less sensitive to the variations in operating variables than that of a circular jet. Correlation equations for the penetration depth that show good agreements with the measured values have been developed.
Electron particle transport and turbulence studies in the T-10 tokamak
NASA Astrophysics Data System (ADS)
Vershkov, V. A.; Borisov, M. A.; Subbotin, G. F.; Shelukhin, D. A.; Dnestrovskii, Yu. N.; Danilov, A. V.; Cherkasov, S. V.; Gorbunov, E. P.; Sergeev, D. S.; Grashin, S. A.; Krylov, S. V.; Kuleshin, E. O.; Myalton, T. B.; Skosyrev, Yu. V.; Chistiakov, V. V.
2013-08-01
The goals of this paper are to compare the results of electron particle transport measurements in ohmic (OH) plasmas by means of a small perturbation technique, high-level gas puff and gas switch off, investigate the phenomenon of ‘density pump out’ during electron cyclotron resonance heating (ECRH) and to correlate density behaviour with turbulence. Two approaches for plasma particle transport studies were compared: the low perturbation technique of periodic puff (δn/ne = 0.3%) and strong density variations (δn/ne < 50%), including density ramp-up by gas puff and ramp-down with gas switch off. The model with constant in time diffusion coefficients and pinch velocities could describe the core density perturbations but failed at the edge. In the case of strong puff three stages were distinguished. Degraded energy confinement and, respectively, low turbulence frequencies were observed during density ramp-up and ramp-down, while enhanced confinement and higher turbulence frequencies were typical for the intermediate stage. Density profile variation during this intermediate phase could be described in the framework of the transport model with constant in time coefficients. The application of ECRH at the density ramp-up phase provided the possibility of postponing the ‘density pump out’. The increase in the low-frequency modes in turbulence spectra was observed at the ‘density pump out’ phase during central ECRH. Although the high- and low-frequency bands of turbulence spectra behaved as trapped electron mode and ion temperature gradient, respectively, they both rotated at the same angular velocity as a rigid body together with magnetohydrodynamic mode m/n = 2/1 and [E × B] plasma rotation.
Surface charging of a crater near lunar terminator
NASA Astrophysics Data System (ADS)
Anuar, A. K.
2017-05-01
Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.
Adiabatic Theorem for Quantum Spin Systems
NASA Astrophysics Data System (ADS)
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Adaptive nest clustering and density-dependent nest survival in dabbling ducks
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.
2014-01-01
Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.
Isaksson, Caroline; Sepil, Irem; Baramidze, Vladimer; Sheldon, Ben C
2013-04-08
Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the host's resistance. Generation of reactive oxygen species (ROS) is one of the host's initial immune responses to combat parasitic invasion. However, long-term ROS exposure can harm the host and the redox response therefore needs to be adjusted according to infection stage and host phenotype. Here we use experimental and correlational approaches to assess the relative importance of host density, habitat composition, individual level variation and redox physiology for Plasmodium infection in a wild population of great tits, Parus major. We found that 36% of the great tit population was infected with Plasmodium (22% P. relictum and 15% P. circumflexum prevalence) and that patterns of infection were Plasmodium species-specific. First, the infection of P. circumflexum was significantly higher in areas with experimental increased host density, whereas variation in P. relictum infection was mainly attributed to age, sex and reproduction. Second, great tit antioxidant responses - total and oxidizied glutathione - showed age- , sex- and Plasmodium species-specific patterns between infected and uninfected individuals, but reactive oxygen metabolites (ROM) showed only a weak explanatory power for patterns of P. relictum infection. Instead ROM significantly increased with Plasmodium parasitaemia. These results identify some key factors that influence Plasmodium infection in wild birds, and provide a potential explanation for the underlying physiological basis of recently documented negative effects of chronic avian malaria on survival and reproductive success.
Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S.
2014-01-01
Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B = −121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B = −7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching. PMID:24626395
Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S
2014-01-01
Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B = -121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B = -7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching.
NASA Astrophysics Data System (ADS)
Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin
2016-10-01
ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.
Forward and inverse functional variations in rotationally inelastic scattering
NASA Astrophysics Data System (ADS)
Guzman, Robert; Rabitz, Herschel
1986-09-01
This paper considers the response of various rotational energy transfer processes to functional variations about an assumed model intermolecular potential. Attention is focused on the scattering of an atom and a linear rigid rotor. The collision dynamics are approximated by employing both the infinite order sudden (IOS) and exponential distorted wave (EDW) methods to describe Ar-N2 and He-H2, respectively. The following cross sections are considered: state-to-state differential and integral, final state summed differential and integral, and effective diffusion and viscosity cross sections. Attention is first given to the forward sensitivity densities δ0/δV(R,r) where 0 denotes any of the aforementioned cross sections, R is the intermolecular distance, and r is the internal coordinates. These forward sensitivity densities (functional derivatives) offer a quantitative measure of the importance of different regions of the potential surface to a chosen cross section. Via knowledge of the forward sensitivities and a particular variation δV(R,r) the concomitant response δ0 is generated. It was found that locally a variation in the potential can give rise to a large response in the cross sections as measured by these forward densities. In contrast, a unit percent change in the overall potential produced a 1%-10% change in the cross sections studied indicating that the large + and - responses to local variations tend to cancel. In addition, inverse sensitivity densities δV(R,r)/δ0 are obtained. These inverse densities are of interest since they are the exact solution to the infinitesimal inverse scattering problem. Although the inverse sensitivity densities do not in themselves form an inversion algorithm, they do offer a quantitative measure of the importance of performing particular measurements for the ultimate purpose of inversion. Using a set of state-to-state integral cross sections we found that the resultant responses from the infinitesimal inversion were typically small such that ‖δV(R,r)‖≪‖V(R,r)‖. From the viewpoint of an actual inversion, these results indicate that only through an extensive effort will significant knowledge of the potential be gained from the cross sections. All of these calculations serve to illustrate the methodology, and other observables as well as dynamical schemes could be explored as desired.
Time-dependent cell disintegration kinetics in lung tumors after irradiation
NASA Astrophysics Data System (ADS)
Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi
2008-05-01
We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.
Y. Zhang; X. Liao; B.J. Butler; J. Schelhas
2009-01-01
The state-level distribution of the size of family forest holdings in the contiguous United States was examined using data collected by the USDA Forest Service in 1993 and 2003. Regressions models were used to analyze the factors influencing the mean size and structural variation among states and between the two periods. Population density, percent of the population at...
Density functional theory and chromium: Insights from the dimers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael
2015-03-28
The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences betweenmore » functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.« less
2014-01-01
Abstract The small cicada Tettigettalna josei (Boulard, 1982) was until recently only known from southern Portugal and was considered endemic to this country. Fieldwork in 2013 led to the first record of the species in Spain, expanding its known eastern range to Andalusia. The northern limits remain poorly defined but it appears that the distribution of Tettigettalna josei is restricted to the south Atlantic coastline in the Iberian Peninsula, with the highest densities found in Algarve. Some notes on behaviour and genetic variation of Tettigettalna josei are also given. PMID:24891819
Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties
NASA Astrophysics Data System (ADS)
Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl
2017-12-01
We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.
NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.« less
Perturbation theory corrections to the two-particle reduced density matrix variational method.
Juhasz, Tamas; Mazziotti, David A
2004-07-15
In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.
Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik
2017-01-01
Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2015-02-01
Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.
Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.
2012-01-01
A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.
NASA Astrophysics Data System (ADS)
Tao, C.; Jin, H.; Shinagawa, H.; Fujiwara, H.; Miyoshi, Y.
2017-12-01
The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.
NASA Astrophysics Data System (ADS)
Tao, Chihiro; Jin, Hidekatsu; Shinagawa, Hiroyuki; Fujiwara, Hitoshi; Miyoshi, Yasunobu
2017-09-01
The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.
Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions
NASA Astrophysics Data System (ADS)
Kim, Ju H.
In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers
NASA Astrophysics Data System (ADS)
Spaethe, Johannes; Brockmann, Axel; Halbig, Christine; Tautz, Jürgen
2007-09-01
The eusocial bumblebees exhibit pronounced size variation among workers of the same colony. Differently sized workers engage in different tasks (alloethism); large individuals are found to have a higher probability to leave the colony and search for food, whereas small workers tend to stay inside the nest and attend to nest duties. We investigated the effect of size variation on morphology and physiology of the peripheral olfactory system and the behavioral response thresholds to odors in workers of Bombus terrestris. Number and density of olfactory sensilla on the antennae correlate significantly with worker size. Consistent with these morphological changes, we found that antennal sensitivity to odors increases with body size. Antennae of large individuals show higher electroantennogram responses to a given odor concentration than those of smaller nestmates. This finding indicates that large antennae exhibit an increased capability to catch odor molecules and thus are more sensitive to odors than small antennae. We confirmed this prediction in a dual choice behavioral experiment showing that large workers indeed are able to respond correctly to much lower odor concentrations than small workers. Learning performance in these experiments did not differ between small and large bumblebees. Our results clearly show that, in the social bumblebees, variation in olfactory sensilla number due to size differences among workers strongly affects individual odor sensitivity. We speculate that superior odor sensitivity of large workers has favored size-related division of labor in bumblebee colonies.
Population status of chimpanzees in the Masito-Ugalla Ecosystem, Tanzania.
Piel, Alex K; Cohen, Naomi; Kamenya, Shadrack; Ndimuligo, Sood A; Pintea, Lilian; Stewart, Fiona A
2015-10-01
More than 75 percent of Tanzania's chimpanzees live at low densities on land outside national parks. Chimpanzees are one of the key conservation targets in the region and long-term monitoring of these populations is essential for assessing the overall status of ecosystem health and the success of implemented conservation strategies. We aimed to assess change in chimpanzee density within the Masito-Ugalla Ecosystem (MUE) by comparing results of re-walking the same line transects in 2007 and 2014. We further used published remote sensing data derived from Landsat satellites to assess forest cover change within a 5 km buffer of these transects over that same period. We detected no statistically significant decline in chimpanzee density across the surveyed areas of MUE between 2007 and 2014, although the overall mean density of chimpanzees declined from 0.09 individuals/km(2) in 2007 to 0.05 individuals/km(2) in 2014. Whether this change is biologically meaningful cannot be determined due to small sample sizes and large, entirely overlapping error margins. It is therefore possible that the MUE chimpanzee population has been stable over this period and indeed in some areas (Issa Valley, Mkanga, Kamkulu) even showed an increase in chimpanzee density. Variation in chimpanzee habitat preference for ranging or nesting could explain variation in density at some of the survey sites between 2007 and 2014. We also found a relationship between increasing habitat loss and lower mean chimpanzee density. Future surveys will need to ensure a larger sample size, broader geographic effort, and random survey design, to more precisely determine trends in MUE chimpanzee density and population size over time. © 2015 Wiley Periodicals, Inc.
Variability in vegetation effects on density and nesting success of grassland birds
Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.
2005-01-01
The structure of vegetation in grassland systems, unlike that in forest systems, varies dramatically among years on the same sites, and among regions with similar vegetation. The role of this variation in vegetation structure on bird density and nesting success of grassland birds is poorly understood, primarily because few studies have included sufficiently large temporal and spatial scales to capture the variation in vegetation structure, bird density, or nesting success. To date, no large-scale study on grassland birds has been conducted to investigate whether grassland bird density and nesting success respond similarly to changes in vegetation structure. However, reliable management recommendations require investigations into the distribution and nesting success of grassland birds over larger temporal and spatial scales. In addition, studies need to examine whether bird density and nesting success respond similarly to changing environmental conditions. We investigated the effect of vegetation structure on the density and nesting success of 3 grassland-nesting birds: clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus) in 3 regions of the northern tallgrass prairie in 1998-2001. Few vegetation features influenced the densities of our study species, and each species responded differently to those vegetation variables. We could identify only 1 variable that clearly influenced nesting success of 1 species: clay-colored sparrow nesting success increased with increasing percentage of nest cover from the surrounding vegetation. Because responses of avian density and nesting success to vegetation measures varied among regions, years, and species, land managers at all times need to provide grasslands with different types of vegetation structure. Management guidelines developed from small-scale, short-term studies may lead to misrepresentations of the needs of grassland-nesting birds.
A Search for Plasma "Fingers" in the Io Torus
NASA Astrophysics Data System (ADS)
Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.
1996-09-01
We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.
Time-Averaged Velocity, Temperature and Density Surveys of Supersonic Free Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.
2005-01-01
A spectrally resolved molecular Rayleigh scattering technique was used to simultaneously measure axial component of velocity U, static temperature T, and density p in unheated free jets at Mach numbers M = 0.6,0.95, 1.4 and 1.8. The latter two conditions were achieved using contoured convergent-divergent nozzles. A narrow line-width continuous wave laser was passed through the jet plumes and molecular scattered light from a small region on the beam was collected and analyzed using a Fabry-Perot interferometer. The optical spectrum analysis air density at the probe volume was determined by monitoring the intensity variation of the scattered light using photo-multiplier tubes. The Fabry-Perot interferometer was operated in the imaging mode, whereby the fringe formed at the image plane was captured by a cooled CCD camera. Special attention was given to remove dust particles from the plume and to provide adequate vibration isolation to the optical components. The velocity profiles from various operating conditions were compared with that measured by a Pitot tube. An excellent comparison within 5m's demonstrated the maturity of the technique. Temperature was measured least accurately, within 10K, while density was measured within 1% uncertainty. The survey data consisted of centerline variations and radial profiles of time-averaged U, T and p. The static temperature and density values were used to determine static pressure variations inside the jet. The data provided a comparative study of jet growth rates with increasing Mach number. The current work is part of a data-base development project for Computational Fluid Dynamics and Aeroacoustics codes that endeavor to predict noise characteristics of high speed jets. A limited amount of far field noise spectra from the same jets are also presented. Finally, a direct experimental validation was obtained for the Crocco-Busemann equation which is commonly used to predict temperature and density profiles from known velocity profiles. Data presented in this paper are available in ASCII format upon request.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2016-01-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros
NASA Technical Reports Server (NTRS)
Thomas, P. C.; Robinson, M. S.
2005-01-01
Impact cratering acts in a variety of ways to create a surprising range of scenery on small satellites and asteroids. The visible crater population is a self-modifying characteristic of these airless objects, and determining the various ways younger craters can add or subtract from the population is an important aspect of small body "geology." Asteroid 433 Eros, the most closely studied of any small body, has two aspects of its crater population that have attracted attention: a fall-off of crater densities below approx.100 m diameter relative to an expected equilibrium population [1] and regions of substantially lower large crater densities [2, 3, 4]. In this work we examine the global variation of the density of craters on Eros larger than 0.177 km, a size range above that involved in small crater depletion hypotheses [1, 5]. We counted all craters on Eros to a size range somewhat below 0.177 km diameter (and different from data used in [3]). The primary metric for this study is the number of craters between 0.177 and 1.0 km within a set radius of each grid point on the 2deg x 2deg shape model of Eros. This number can be expressed as an R-value [6], provided that it is remembered that the large bin size makes individual R values slightly different from those obtained in the usual root-2 bins.
Turner, Monica G; Whitby, Timothy G; Tinker, Daniel B; Romme, William H
2016-05-01
Disturbance and succession have long been of interest in ecology, but how landscape patterns of ecosystem structure and function evolve following large disturbances is poorly understood. After nearly 25 years, lodgepole pine (Pinus contorta var. latifolia) forests that regenerated after the 1988 Yellowstone Fires (Wyoming, USA) offer a prime opportunity to track the fate of disturbance-created heterogeneity in stand structure and function in a wilderness setting. In 2012, we resampled 72 permanent plots to ask (1) How have postfire stand structure and function changed between 11 and 24 yr postfire, and what variables explain these patterns and changes? (2) How has landscape-level (among-stand) variability in postfire stand structure and function changed between 11 and 24 yr postfire? We expected to see evidence of convergence beginning to emerge, but also that initial postfire stem density would still determine trajectories of biomass accumulation. After 24 yr, postfire lodgepole pine density remained very high (mean = 21,738 stems/ha, range = 0-344,067 stems/ha). Stem density increased in most plots between 11 and 24 yr postfire, but declined sharply where 11-yr-postfire stem density was > 72,000 stems/ha. Stems were small in high-density stands, but stand-level lodgepole pine leaf area, foliage biomass, and live aboveground biomass increased over time and with increasing stem density. After 24 yr, mean annual lodgepole pine aboveground net primary production (ANPP) was high (mean = 5 Mg · ha⁻¹ · yr⁻¹, range = 0-16.5 Mg · ha⁻¹ · yr⁻¹). Among stands, lodgepole pine ANPP increased with stem density, which explained 69% of the variation; another 8% of the variation was explained by environmental covariates. Early patterns of postfire lodgepole pine regeneration, which were contingent on prefire serotiny and fire severity, remained the dominant driver of stand structure and function. We observed mechanisms that would lead to convergence in stem density (structure) over time, but it was landscape variation in functional variables that declined substantially. Stand structure and function have not converged across the burned landscape, but our evidence suggests function will converge sooner than structure.
Genetic alterations affecting cholesterol metabolism and human fertility.
DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle
2014-11-01
Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.
NASA Astrophysics Data System (ADS)
Perrone, Loredana; Mikhailov, Andrey; Cesaroni, Claudio; Alfonsi, Lucilla; Santis, Angelo De; Pezzopane, Michael; Scotto, Carlo
2017-09-01
A recently proposed self-consistent approach to the analysis of thermospheric and ionospheric long-term trends has been applied to Rome ionosonde summer noontime observations for the (1957-2015) period. This approach includes: (i) a method to extract ionospheric parameter long-term variations; (ii) a method to retrieve from observed foF1 neutral composition (O, O2, N2), exospheric temperature, Tex and the total solar EUV flux with λ < 1050 Å; and (iii) a combined analysis of the ionospheric and thermospheric parameter long-term variations using the theory of ionospheric F-layer formation. Atomic oxygen, [O] and [O]/[N2] ratio control foF1 and foF2 while neutral temperature, Tex controls hmF2 long-term variations. Noontime foF2 and foF1 long-term variations demonstrate a negative linear trend estimated over the (1962-2010) period which is mainly due to atomic oxygen decrease after ˜1990. A linear trend in (δhmF2)11y estimated over the (1962-2010) period is very small and insignificant reflecting the absence of any significant trend in neutral temperature. The retrieved neutral gas density, ρ atomic oxygen, [O] and exospheric temperature, Tex long-term variations are controlled by solar and geomagnetic activity, i.e. they have a natural origin. The residual trends estimated over the period of ˜5 solar cycles (1957-2015) are very small (<0.5% per decade) and statistically insignificant.
Finite-size effects in the dynamics of few bosons in a ring potential
NASA Astrophysics Data System (ADS)
Eriksson, G.; Bengtsson, J.; Karabulut, E. Ö.; Kavoulakis, G. M.; Reimann, S. M.
2018-02-01
We study the temporal evolution of a small number N of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schrödinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a ‘decay’ of the density variation, and the third is associated with periodic ‘collapses’ and ‘revivals’ of the density variations, with a factor of \\sqrt{N} separating each of them. The last two timescales tend to infinity in the appropriate limit of large N, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.
Information theory lateral density distribution for Earth inferred from global gravity field
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1981-01-01
Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.
NASA Astrophysics Data System (ADS)
Hoogenboom, M.; Beraud, E.; Ferrier-Pagès, C.
2010-03-01
This study quantified variation in net photosynthetic carbon gain in response to natural fluctuations in symbiont density for the Mediterranean coral Cladocora caespitosa, and evaluated which density maximized photosynthetic carbon acquisition. To do this, carbon acquisition was modeled as an explicit function of symbiont density. The model was parameterized using measurements of rates of photosynthesis and respiration for small colonies with a broad range of zooxanthella concentrations. Results demonstrate that rates of net photosynthesis increase asymptotically with symbiont density, whereas rates of respiration increase linearly. In combination, these functional responses meant that colony energy acquisition decreased at both low and at very high zooxanthella densities. However, there was a wide range of symbiont densities for which net daily photosynthesis was approximately equivalent. Therefore, significant changes in symbiont density do not necessarily cause a change in autotrophic energy acquisition by the colony. Model estimates of the optimal range of cell densities corresponded well with independent observations of symbiont concentrations obtained from field and laboratory studies of healthy colonies. Overall, this study demonstrates that the seasonal fluctuations, in symbiont numbers observed in healthy colonies of the Mediterranean coral investigated, do not have a strong effect on photosynthetic energy acquisition.
Janovský, Zdeněk; Mikát, Michael; Hadrava, Jiří; Horčičková, Eva; Kmecová, Kateřina; Požárová, Doubravka; Smyčka, Jan; Herben, Tomáš
2013-01-01
Generalist pollinators are important in many habitats, but little research has been done on small-scale spatial variation in interactions between them and the plants that they visit. Here, using a spatially explicit approach, we examined whether multiple species of flowering plants occurring within a single meadow showed spatial structure in their generalist pollinator assemblages. We report the results for eight plant species for which at least 200 individual visits were recorded. We found that for all of these species, the proportions of their general pollinator assemblages accounted for by particular functional groups showed spatial heterogeneity at the scale of tens of metres. This heterogeneity was connected either with no or only subtle changes of vegetation and flowering species composition. In five of these species, differences in conspecific plant density influenced the pollinator communities (with greater dominance of main pollinators at low-conspecific plant densities). The density of heterospecific plant individuals influenced the pollinator spectrum in one case. Our results indicate that the picture of plant-pollinator interactions provided by averaging data within large plots may be misleading and that within-site spatial heterogeneity should be accounted for in terms of sampling effort allocation and analysis. Moreover, spatially structured plant-pollinator interactions may have important ecological and evolutionary consequences, especially for plant population biology. PMID:24204818
Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots.
Župunski, Vesna; Jevtić, Radivoje; Jokić, Vesna Spasić; Župunski, Ljubica; Lalošević, Mirjana; Ćirić, Mihajlo; Ćurčić, Živko
2017-06-01
Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m 2 plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with χ 2 test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation ( cv ) was achieved if the plots of 1 m 2 contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes.
The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja
We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels acrossmore » each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.« less
Miskell, Georgia; Salmond, Jennifer A; Williams, David E
2018-04-01
Portable low-cost instruments have been validated and used to measure ambient nitrogen dioxide (NO 2 ) at multiple sites over a small urban area with 20min time resolution. We use these results combined with land use regression (LUR) and rank correlation methods to explore the effects of traffic, urban design features, and local meteorology and atmosphere chemistry on small-scale spatio-temporal variations. We measured NO 2 at 45 sites around the downtown area of Vancouver, BC, in spring 2016, and constructed four different models: i) a model based on averaging concentrations observed at each site over the whole measurement period, and separate temporal models for ii) morning, iii) midday, and iv) afternoon. Redesign of the temporal models using the average model predictors as constants gave three 'hybrid' models that used both spatial and temporal variables. These accounted for approximately 50% of the total variation with mean absolute error±5ppb. Ranking sites by concentration and by change in concentration across the day showed a shift of high NO 2 concentrations across the central city from morning to afternoon. Locations could be identified in which NO 2 concentration was determined by the geography of the site, and others as ones in which the concentration changed markedly from morning to afternoon indicating the importance of temporal controls. Rank correlation results complemented LUR in identifying significant urban design variables that impacted NO 2 concentration. High variability across a relatively small space was partially described by predictor variables related to traffic (bus stop density, speed limits, traffic counts, distance to traffic lights), atmospheric chemistry (ozone, dew point), and environment (land use, trees). A high-density network recording continuously would be needed fully to capture local variations. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Muons to Image the Subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz
Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consistsmore » of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .« less
NASA Astrophysics Data System (ADS)
Fathali, M.; Deshiri, M. Khoshnami
2016-04-01
The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.
Ionospheric E-region electron density and neutral atmosphere variations
NASA Technical Reports Server (NTRS)
Stick, T. L.
1976-01-01
Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.
Scrosati, Ricardo A; Ellrich, Julius A
2017-01-01
Recruitment is a key demographic process for population persistence. This paper focuses on barnacle ( Semibalanus balanoides ) recruitment. In rocky intertidal habitats from the Gulf of St. Lawrence coast of Nova Scotia (Canada), ice scour is common during the winter. At the onset of intertidal barnacle recruitment in early May (after sea ice has fully melted), mostly only adult barnacles and bare substrate are visible at high elevations in wave-exposed habitats. We conducted a multiannual study to investigate if small-scale barnacle recruitment could be predicted from the density of pre-existing adult barnacles. In a year that exhibited a wide adult density range (ca. 0-130 individuals dm -2 ), the relationship between adult density and recruit density (scaled to the available area for recruitment, which excluded adult barnacles) was unimodal. In years that exhibited a lower adult density range (ca. 0-40/50 individuals dm -2 ), the relationship between adult and recruit density was positive and resembled the lower half of the unimodal relationship. Overall, adult barnacle density was able to explain 26-40% of the observed variation in recruit density. The unimodal adult-recruit relationship is consistent with previously documented intraspecific interactions. Between low and intermediate adult densities, the positive nature of the relationship relates to the previously documented fact that settlement-seeking larvae are chemically and visually attracted to adults, which might be important for local population persistence. Between intermediate and high adult densities, where population persistence may be less compromised and the abundant adults may limit recruit growth and survival, the negative nature of the relationship suggests that adult barnacles at increasingly high densities stimulate larvae to settle elsewhere. The unimodal pattern may be especially common on shores with moderate rates of larval supply to the shore, because high rates of larval supply may swamp the coast with settlers, decoupling recruit density from local adult abundance.
Geographic Information System and Geoportal «River basins of the European Russia»
NASA Astrophysics Data System (ADS)
Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.
2018-01-01
Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.
Retraction of cold drawn polyethylene: the influence of lamellar thickeness and density
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1971-01-01
The role of crystal morphology in the retraction of oriented, linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep and relaxation type tests. Characterizations of specimens were made using wide and small angle X-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
Retraction of cold-drawn polyethylene - Influence of lamellar thickness and density.
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1972-01-01
The role of crystal morphology in the retraction of oriented linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep- and relaxation-type tests. Characterizations of specimens were made using wide- and small-angle x-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long-range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An atmospheric model developed by Jacchia, quite accurate but requiring a large amount of computer storage and execution time, was found to be ill-suited for the space shuttle onboard program. The development of a simple atmospheric density model to simulate the Jacchia model was studied. Required characteristics including variation with solar activity, diurnal variation, variation with geomagnetic activity, semiannual variation, and variation with height were met by the new atmospheric density model.
Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods
NASA Technical Reports Server (NTRS)
Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.
1994-01-01
Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.
NASA Technical Reports Server (NTRS)
Smith, J. R.
1969-01-01
Electron work functions, surface potentials, and electron number density distributions and electric fields in the surface region of 26 metals were calculated from first principles within the free electron model. Calculation proceeded from an expression of the total energy as a functional of the electron number density, including exchange and correlation energies, as well as a first inhomogeneity term. The self-consistent solution was obtained via a variational procedure. Surface barriers were due principally to many-body effects; dipole barriers were small only for some alkali metals, becoming quite large for the transition metals. Surface energies were inadequately described by this model, which neglects atomistic effects. Reasonable results were obtained for electron work functions and surface potential characteristics, maximum electron densities varying by a factor of over 60.
Meyer, A M; Hess, B W; Paisley, S I; Du, M; Caton, J S
2014-09-01
We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.
Carbon - Bulk Density Relationships for Highly Weathered Soils of the Americas
NASA Astrophysics Data System (ADS)
Nave, L. E.
2014-12-01
Soils are dynamic natural bodies composed of mineral and organic materials. As a result of this mixed composition, essential properties of soils such as their apparent density, organic and mineral contents are typically correlated. Negative relationships between bulk density (Db) and organic matter concentration provide well-known examples across a broad range of soils, and such quantitative relationships among soil properties are useful for a variety of applications. First, gap-filling or data interpolation often are necessary to develop large soil carbon (C) datasets; furthermore, limitations of access to analytical instruments may preclude C determinations for every soil sample. In such cases, equations to derive soil C concentrations from basic measures of soil mass, volume, and density offer significant potential for purposes of soil C stock estimation. To facilitate estimation of soil C stocks on highly weathered soils of the Americas, I used observations from the International Soil Carbon Network (ISCN) database to develop carbon - bulk density prediction equations for Oxisols and Ultisols. Within a small sample set of georeferenced Oxisols (n=89), 29% of the variation in A horizon C concentrations can be predicted from Db. Including the A-horizon sand content improves predictive capacity to 35%. B horizon C concentrations (n=285) were best predicted by Db and clay content, but were more variable than A-horizons (only 10% of variation explained by linear regression). Among Ultisols, a larger sample set allowed investigation of specific horizons of interest. For example, C concentrations of plowed A (Ap) horizons are predictable based on Db, sand and silt contents (n=804, r2=0.38); gleyed argillic (Btg) horizon concentrations are predictable from Db, sand and clay contents (n=190, r2=0.23). Because soil C stock estimates are more sensitive to variation in soil mass and volume determinations than to variation in C concentration, prediction equations such as these may be used on carefully collected samples to constrain soil C stocks. The geo-referenced ISCN database allows users the opportunity to derive similar predictive relationships among measured soil parameters; continued input of new datasets from highly weathered soils of the Americas will improve the precision of these prediction equations.
NASA Astrophysics Data System (ADS)
Yang, Lei; Paulsson, J. J. P.; Wedlund, C. Simon; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A. I.; Miloch, W. J.
2016-11-01
In 2014 September, as Rosetta transitioned to close bound orbits at 30 km from comet 67P/Churyumov-Gerasimenko, the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) data showed large systematic fluctuations in both the spacecraft potential and the collected currents. We analyse the potential bias sweeps from RPC-LAP, from which we extract three sets of parameters: (1) knee potential, that we relate to the spacecraft potential, (2) the ion attraction current, which is composed of the photoelectron emission current from the probe as well as contributions from local ions, secondary emission, and low-energy electrons, and (3) an electron current whose variation is, in turn, an estimate of the electron density variation. We study the evolution of these parameters between 4 and 3.2 au in heliocentric and cometocentric frames. We find on September 9 a transition into a high-density plasma region characterized by increased knee potential fluctuations and plasma currents to the probe. In conjunction with previous studies, the early cometary plasma can be seen as composed of two regions: an outer region characterized by solar wind plasma, and small quantities of pick-up ions, and an inner region with enhanced plasma densities. This conclusion is in agreement with other RPC instruments such as RPC-MAG, RPC-IES and RPC-ICA, and numerical simulations.
NASA Astrophysics Data System (ADS)
Malavolta, Luca; Borsato, Luca; Granata, Valentina; Piotto, Giampaolo; Lopez, Eric; Vanderburg, Andrew; Figueira, Pedro; Mortier, Annelies; Nascimbeni, Valerio; Affer, Laura; Bonomo, Aldo S.; Bouchy, Francois; Buchhave, Lars A.; Charbonneau, David; Collier Cameron, Andrew; Cosentino, Rosario; Dressing, Courtney D.; Dumusque, Xavier; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Latham, David W.; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Pepe, Francesco; Phillips, David F.; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris
2017-05-01
We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R ⊕, and an upper limit on the mass of 20 M ⊕. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations we obtained a mass of 8.4 ± 1.6 M ⊕ for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M ⊕ for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M ⊕ on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm-3 (0.78 ± 0.16 ρ ⊕) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.
The Solar Cycle Variation of Coronal Temperature and Density During Cycle 21-22
1994-06-15
We notice that a dramatic change in the intensity ratio implies a small change in temperature and therefore the precise calibration of each...The higher temperature material of these zones tends to lie over regions where magnetograph observations indicate a change in polarity of weak large...SPIE, 331,442, 1982. 7. Altrock, LC., Clmate Impact of Solar Variability Greenbelt, MD, NASA Conf. Publ. 3086, p. 287, 1990. 8. Fisher, LRL., McCabe, M
Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field
NASA Astrophysics Data System (ADS)
Yokoyama, Tatsuhiro; Stolle, Claudia
2017-03-01
Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.
Spatial variation and density-dependent dispersal in competitive coexistence.
Amarasekare, Priyanga
2004-01-01
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence. PMID:15306322
NASA Astrophysics Data System (ADS)
Cheng, Xiaolu; Cina, Jeffrey A.
2014-07-01
A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.
The effects of the spatial influence function on orthotropic femur remodelling.
Shang, Y; Bai, J; Peng, L
2008-07-01
The morphology and internal structure of bone are modulated by the mechanical stimulus. The osteocytes can sense the stimulus signals from the adjacent regions and respond to them through bone growth or bone absorption. This mechanism can be modelled as the spatial influence function (SIF) in bone adaptation algorithm. In this paper, the remodelling process was simulated in human femurs using an adaptation algorithm with and without SIF, and the trabecular bone was assumed to be orthotropic. A different influence radius and weighting factor were adopted to study the effects of the SIF on the bone density distribution and trabecular alignment. The results have shown that the mean density and L-T ratio (the ratio of longitudinal modulus to transverse modulus) had an excellent linear relationship with the weighting factor when the influence radius was small. The characteristics of density distribution and L-T ratio accorded with the actual observation or measurement when a small weighting factor was used. The large influence radius and weighting factor led to unrealistic results. In contrast, the SIF hardly affected the trabecular alignment, as the mean variation angles of principal axes were less than 1.0 degree for any influence radius and weighting factor.
Hydrological impact of high-density small dams in a humid catchment, Southeast China
NASA Astrophysics Data System (ADS)
Lu, W.; Lei, H.; Yang, D.
2017-12-01
The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-12-13
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-01-01
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods. PMID:27983577
NASA Technical Reports Server (NTRS)
Humphreys, E. D.; Hager, B. H.
1985-01-01
Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc.
Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 to 2 GHz
NASA Technical Reports Server (NTRS)
Tan, Shurun; Aksoy, Mustafa; Brogioni, Marco; Macelloni, Giovanni; Durand, Michael; Jezek, Kenneth C.; Wang, Tian-Lin; Tsang, Leung; Johnson, Joel T.; Drinkwater, Mark R.;
2015-01-01
We investigate physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica. We find that because ice particle grain sizes are very small compared to the 0.5-2 GHz wavelengths, volume scattering effects are small. Variations in firn density over cm- to m-length scales, however, cause significant effects. Both incoherent and coherent models are used to examine these effects. Incoherent models include a 'cloud model' that neglects any reflections internal to the ice sheet, and the DMRT-ML and MEMLS radiative transfer codes that are publicly available. The coherent model is based on the layered medium implementation of the fluctuation dissipation theorem for thermal microwave radiation from a medium having a nonuniform temperature. Density profiles are modeled using a stochastic approach, and model predictions are averaged over a large number of realizations to take into account an averaging over the radiometer footprint. Density profiles are described by combining a smooth average density profile with a spatially correlated random process to model density fluctuations. It is shown that coherent model results after ensemble averaging depend on the correlation lengths of the vertical density fluctuations. If the correlation length is moderate or long compared with the wavelength (approximately 0.6x longer or greater for Gaussian correlation function without regard for layer thinning due to compaction), coherent and incoherent model results are similar (within approximately 1 K). However, when the correlation length is short compared to the wavelength, coherent model results are significantly different from the incoherent model by several tens of kelvins. For a 10-cm correlation length, the differences are significant between 0.5 and 1.1 GHz, and less for 1.1-2 GHz. Model results are shown to be able to match the v-pol SMOS data closely and predict the h-pol data for small observation angles.
Progress in the application of landform analysis in studies of semiarid erosion
Schumm, Stanley Alfred; Hadley, R.F.
1961-01-01
The analysis of topographic and hydrologic data gathered during studies of erosion in semiarid areas of Western United States show the following relation: (a) Mean annual sediment yield from small drainage basins is related to a ratio of basin relief to length; (b) mean annual runoff from small drainage basins is related to drainage density; (c) mean annual sediment yield per unit area decreases with increase in drainage area; (d) the form of some convex hill slopes is related to surficial creep; (e) asymmetry of drainage basins, including differences in hill-slope erosion and drainage density, is related to microclimatic variations on slopes of diverse exposure; .(f) the cutting of discontinuous gullies is closely related to steepening by deposition of the semiarid valley floor; (g) aggradation in ephemeral streams seems to be most prevalent in reaches where the ratio of contributing drainage area to channel length is relatively small; and (h) streamchannel shape, expressed as a width-depth ratio, is related to the percentage of silt-clay in bed and bank alluvium. The above relations cannot be detected without measurement of terrain characteristics. They further indicate the importance of quantitative terrain analysis in studies of erosion.
Giese, Timothy J; York, Darrin M
2010-12-28
We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.
Kennedy, Theodore A.; Yackulic, Charles B.; Cross, Wyatt F.; Grams, Paul E.; Yard, Michael D.; Copp, Adam J.
2014-01-01
1. Invertebrate drift is a fundamental process in streams and rivers. Studies from laboratory experiments and small streams have identified numerous extrinsic (e.g. discharge, light intensity, water quality) and intrinsic factors (invertebrate life stage, benthic density, behaviour) that govern invertebrate drift concentrations (# m−3), but the factors that govern invertebrate drift in larger rivers remain poorly understood. For example, while large increases or decreases in discharge can lead to large increases in invertebrate drift, the role of smaller, incremental changes in discharge is poorly described. In addition, while we might expect invertebrate drift concentrations to be proportional to benthic densities (# m−2), the benthic–drift relation has not been rigorously evaluated. 2. Here, we develop a framework for modelling invertebrate drift that is derived from sediment transport studies. We use this framework to guide the analysis of high-resolution data sets of benthic density and drift concentration for four important invertebrate taxa from the Colorado River downstream of Glen Canyon Dam (mean daily discharge 325 m3 s−1) that were collected over 18 months and include multiple observations within days. Ramping of regulated flows on this river segment provides an experimental treatment that is repeated daily and allowed us to describe the functional relations between invertebrate drift and two primary controls, discharge and benthic densities. 3. Twofold daily variation in discharge resulted in a >10-fold increase in drift concentrations of benthic invertebrates associated with pools and detritus (i.e. Gammarus lacustris and Potamopyrgus antipodarum). In contrast, drift concentrations of sessile blackfly larvae (Simuliium arcticum), which are associated with high-velocity cobble microhabitats, decreased by over 80% as discharge doubled. Drift concentrations of Chironomidae increased proportional to discharge. 4. Drift of all four taxa was positively related to benthic density. Drift concentrations of Gammarus, Potamopyrgus and Chironomidae were proportional to benthic density. Drift concentrations of Simulium were positively related to benthic density, but the benthic–drift relation was less than proportional (i.e. a doubling of benthic density only led to a 40% increase in drift concentrations). 5. Our study demonstrates that invertebrate drift concentrations in the Colorado River are jointly controlled by discharge and benthic densities, but these controls operate at different timescales. Twofold daily variation in discharge associated with hydropeaking was the primary control on within-day variation in invertebrate drift concentrations. In contrast, benthic density, which varied 10- to 1000-fold among sampling dates, depending on the taxa, was the primary control on invertebrate drift concentrations over longer timescales (weeks to months).
Modeling thermospheric neutral density
NASA Astrophysics Data System (ADS)
Qian, Liying
Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the lifetime of satellites, but also it will increase the amount of space junk.
Local breast density assessment using reacquired mammographic images.
García, Eloy; Diaz, Oliver; Martí, Robert; Diez, Yago; Gubern-Mérida, Albert; Sentís, Melcior; Martí, Joan; Oliver, Arnau
2017-08-01
The aim of this paper is to evaluate the spatial glandular volumetric tissue distribution as well as the density measures provided by Volpara™ using a dataset composed of repeated pairs of mammograms, where each pair was acquired in a short time frame and in a slightly changed position of the breast. We conducted a retrospective analysis of 99 pairs of repeatedly acquired full-field digital mammograms from 99 different patients. The commercial software Volpara™ Density Maps (Volpara Solutions, Wellington, New Zealand) is used to estimate both the global and the local glandular tissue distribution in each image. The global measures provided by Volpara™, such as breast volume, volume of glandular tissue, and volumetric breast density are compared between the two acquisitions. The evaluation of the local glandular information is performed using histogram similarity metrics, such as intersection and correlation, and local measures, such as statistics from the difference image and local gradient correlation measures. Global measures showed a high correlation (breast volume R=0.99, volume of glandular tissue R=0.94, and volumetric breast density R=0.96) regardless the anode/filter material. Similarly, histogram intersection and correlation metric showed that, for each pair, the images share a high degree of information. Regarding the local distribution of glandular tissue, small changes in the angle of view do not yield significant differences in the glandular pattern, whilst changes in the breast thickness between both acquisition affect the spatial parenchymal distribution. This study indicates that Volpara™ Density Maps is reliable in estimating the local glandular tissue distribution and can be used for its assessment and follow-up. Volpara™ Density Maps is robust to small variations of the acquisition angle and to the beam energy, although divergences arise due to different breast compression conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
SURFplus Model Calibration for PBX 9502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2017-12-06
The SURFplus reactive burn model is calibrated for the TATB based explosive PBX 9502 at three initial temperatures; hot (75 C), ambient (23 C) and cold (-55 C). The CJ state depends on the initial temperature due to the variation in the initial density and initial specific energy of the PBX reactants. For the reactants, a porosity model for full density TATB is used. This allows the initial PBX density to be set to its measured value even though the coeffcient of thermal expansion for the TATB and the PBX differ. The PBX products EOS is taken as independent ofmore » the initial PBX state. The initial temperature also affects the sensitivity to shock initiation. The model rate parameters are calibrated to Pop plot data, the failure diameter, the limiting detonation speed just above the failure diameters, and curvature effect data for small curvature.« less
NASA Technical Reports Server (NTRS)
Troy, B. E., Jr.; Maier, E. J.
1973-01-01
The analysis of ion data from retarding potential analyzers (RPA's) is generally done under the planar approximation, which assumes that the grid transparency is constant with angle of incidence and that all ions reaching the plane of the collectors are collected. These approximations are not valid for situations in which the ion thermal velocity is comparable to the vehicle velocity, causing ions to enter the RPA with high average transverse velocity. To investigate these effects, the current-voltage curves for H+ at 4000 K were calculated, taking into account the finite collector size and the variation of grid transparency with angle. These curves are then analyzed under the planar approximation. The results show that only small errors in temperature and density are introduced for an RPA with typical dimensions; and that even when the density error is substantial for non-typical dimensions, the temperature error remains minimal.
Star formation in a hierarchical model for Cloud Complexes
NASA Astrophysics Data System (ADS)
Sanchez, N.; Parravano, A.
The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.
NASA Astrophysics Data System (ADS)
Prettyman, T. H.; Gardner, R. P.; Verghese, K.
1993-08-01
A new specific purpose Monte Carlo code called McENL for modeling the time response of epithermal neutron lifetime tools is described. The weight windows technique, employing splitting and Russian roulette, is used with an automated importance function based on the solution of an adjoint diffusion model to improve the code efficiency. Complete composition and density correlated sampling is also included in the code, and can be used to study the effect on tool response of small variations in the formation, borehole, or logging tool composition and density. An illustration of the latter application is given for the density of a thermal neutron filter. McENL was benchmarked against test-pit data for the Mobil pulsed neutron porosity tool and was found to be very accurate. Results of the experimental validation and details of code performance are presented.
Midlatitude D region variations measured from broadband radio atmospherics
NASA Astrophysics Data System (ADS)
Han, Feng
The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.
Gravity Changes and Internal Processes: Some Results Obtained from Observations at Three Volcanoes
NASA Astrophysics Data System (ADS)
Jentzsch, Gerhard; Weise, Adelheid; Rey, Carlos; Gerstenecker, Carl
Temporal gravity changes provide information about mass and/or density variations within and below the volcano edifice. Three active volcanoes have been under investigation; each of them related to a plate boundary: Mayon/Luzon/Philippines, Merapi/Java/Indonesia, and Galeras/Colombia. The observed gravity changes are smaller than previously expected but significant. For the three volcanoes under investigation, and within the observation period, mainly the increase of gravity is observed, ranging from 1,000 nm-2 to 1,600 nms-2. Unexpectedly, the gravity increase is confined to a rather small area with radii of 5 to 8 km around the summit. At Mayon and Merapi the parallel GPS measurements yield no significant elevation changes. This is crucial for the interpretation, as the internal pressure variations do not lead to significant deformation at the surface. Thus the classical Mogi-model for a shallow extending magma reservoir cannot apply. To confine the possible models, the attraction due to changes of groundwater level or soil moisture is estimated along the slope of Merapi exemplarily by 2-D modelling. Mass redistribution or density changes were evaluated within the vent as well as deeper fluid processes to explain the gravity variations; the results are compared to the model incorporating the additional effect of elastic deformation.
Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas
NASA Astrophysics Data System (ADS)
Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.
2018-02-01
We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.
Mineral content of complementary foods.
Jani, Rati; Udipi, S A; Ghugre, P S
2009-01-01
To document mineral contents iron, zinc, calcium, energy contents and nutrient densities in complementary foods commonly given to young urban slum children. Information on dietary intake was collected from 892 mothers of children aged 13-24 months, using 24 hour dietary recall and standardized measures. Three variations of 27 most commonly prepared recipes were analyzed and their energy (Kcal/g) and nutrient densities (mg/100 Kcal) were calculated. Considerable variations were observed in preparation of all items fed to the children. Cereal-based items predominated their diets with only small amount of vegetables/fruits. Fenugreek was the only leafy vegetable included, but was given to only 1-2% of children. Iron, calcium, zinc contents of staple complementary foods ranged from: 0.33 mg to 3.73 mg, 4 mg to 64 mg, and 0.35 mg to 2.99 mg/100 respectively. Recipes diluted with less water and containing vegetables, spices had higher mineral content. Minerals densities were higher for dals, fenugreek vegetable, khichdi and chapatti. Using the median amounts of the various recipes fed to children, intakes of all nutrients examined especially calcium and iron was low. There is an urgent need to educate mothers about consistency, dilution, quantity, frequency, method of preparation, inclusion of micronutrient-rich foods, energy-dense complementary foods and gender equality.
Royle, J. Andrew; Converse, Sarah J.
2014-01-01
Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.
NASA Astrophysics Data System (ADS)
Liu, Ying; Stein, Ori; Campbell, John H.; Jiang, Lijia; Petta, Nicole; Lu, Yongfeng
2017-08-01
Two-photon polymerization (2PP), a 3D nano to microscale additive manufacturing process, is being used for the first time to fabricate small custom experimental packages ("targets") to support laser-driven high-energy-density (HED) physics research. Of particular interest is the use of 2PP to deterministically print low-density, low atomic-number (CHO) polymer matrices ("foams") at millimeter scale with sub-micrometer resolution. Deformation during development and drying of the foam structures remains a challenge when using certain commercial photo-resins; here we compare use of acrylic resins IP-S and IP-Dip. The mechanical strength of polymeric beam and foam structures is examined particularly the degree of deformation that occurs during the development and drying processes. The magnitude of the shrinkage in the two resins in quantified by printing sample structures and by use of FEA to simulate the deformation. Capillary drying forces are shown to be small and likely below the elastic limit of the core foam structure. In contrast the substantial shrinkage in IP-Dip ( 5-10%) cause large shear stresses and associated plastic deformation particularly near constrained boundaries such as the substrate and locations with sharp density variation. The inherent weakness of stitching boundaries is also evident and in certain cases can lead to delamination. Use of IP-S shows marked reduction in deformation with a minor loss of print resolution
Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids
NASA Astrophysics Data System (ADS)
Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo
2012-09-01
Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.
Moez, A Abdel; Aly, S S; Elshaer, Y H
2012-07-01
The low density polyethylene (LDPE) films were irradiated with gamma radiation in the dose range varied from 20 to 400 kGy. The induced changes in the chemical structure and dielectric properties for the irradiated films were investigated. The structure modifications: crystallinity as well as possible molecular changes of the polymer were recognized using Fourier Transform Infrared Spectroscopy (FTIR). The optical results were determined from transmission, reflection and absorption spectra for these films. The dielectric properties of these films were calculated using optical methods. Result indicates small variation in crystallinity which could be increased or decreased depending on the relative importance of the structural and chemical changes. Copyright © 2012 Elsevier B.V. All rights reserved.
Shock-produced olivine glass: First observation
Jeanloz, R.; Ahrens, T.J.; Lally, J.S.; Nord, G.L.; Christie, J.M.; Heuer, A.H.
1977-01-01
Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg0.88Fe 0.12SiO4 recovered from peak pressures of about 56 ?? 109 pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation ofolivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 ?? 109 pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.
X-ray microanalytical surveys of minor element concentrations in unsectioned biological samples
NASA Astrophysics Data System (ADS)
Schofield, R. M. S.; Lefevre, H. W.; Overley, J. C.; Macdonald, J. D.
1988-03-01
Approximate concentration maps of small unsectioned biological samples are made using the pixel by pixel ratio of PIXE images to areal density images. Areal density images are derived from scanning transmission ion microscopy (STIM) proton energy-loss images. Corrections for X-ray production cross section variations, X-ray attenuation, and depth averaging are approximated or ignored. Estimates of the magnitude of the resulting error are made. Approximate calcium concentrations within the head of a fruit fly are reported. Concentrations in the retinula cell region of the eye average about 1 mg/g dry weight. Concentrations of zinc in the mandible of several ant species average about 40 mg/g. Zinc concentrations in the stomachs of these ants are at least 1 mg/g.
The density structure and star formation rate of non-isothermal polytropic turbulence
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Banerjee, Supratik
2015-04-01
The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P˜ ρ ^Γ, T ˜ ρΓ - 1. We use grid resolutions of 20483 cells and compare polytropic exponents Γ = 0.7 (soft EOS), Γ = 1 (isothermal EOS) and Γ = 5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Γ < 1, while Γ > 1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Γ > 1. In contrast, the PDF becomes closer to a lognormal distribution for Γ ≲ 1. We derive and test a new density variance-Mach number relation that takes Γ into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Γ and find that it decreases by a factor of ˜5 from Γ = 0.7 to 5/3.
Garza-Gisholt, Eduardo; Hemmi, Jan M; Hart, Nathan S; Collin, Shaun P
2014-01-01
Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.
Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José
2017-02-01
The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora . We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.
Avifaunal responses to fire in southwestern montane forests along a burn severity gradient
Kotliar, N.B.; Kennedy, P.L.; Ferree, K.
2007-01-01
The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17 351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986-1988, 1990) created a unique opportunity to quantify avifaunal changes in 13 pre-fire transects (resampled in 2002) and to compare two designs for analyzing the effects of unplanned disturbances: after-only analysis and before-after comparisons. Distance analysis was used to calculate densities. We analyzed after-only densities for 21 species using gradient analysis, which detected a broad range of responses to increasing burn severity: (I) large significant declines, (II) weak, but significant declines, (III) no significant density changes, (IV) peak densities in low- or moderate-severity patches, (V) weak, but significant increases, and (VI) large significant increases. Overall, 71% of the species included in the after-only gradient analysis exhibited either positive or neutral density responses to fire effects across all or portions of the severity gradient (responses III-VI). We used pre/post pairs analysis to quantify density changes for 15 species using before-after comparisons; spatiotemporal variation in densities was large and confounded fire effects for most species. Only four species demonstrated significant effects of burn severity, and their densities were all higher in burned compared to unburned forests. Pre- and post-fire community similarity was high except in high-severity areas. Species richness was similar pre- and post-fire across all burn severities. Thus, ecosystem restoration programs based on the assumption that recent severe fires in Southwestern ponderosa pine forests have overriding negative ecological effects are not supported by our study of post-fire avian communities. This study illustrates the importance of quantifying burn severity and controlling confounding sources of spatiotemporal variation in studies of fire effects. After-only gradient analysis can be an efficient tool for quantifying fire effects. This analysis can also augment historical data sets that have small samples sizes coupled with high non-process variation, which limits the power of before-after comparisons. ?? 2007 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Pacheco-Hoyos, Jaime G.; Aguirre-Díaz, Gerardo J.; Dávila-Harris, Pablo
2018-01-01
A lithofacies analysis of the Huichapan ignimbrite has been undertaken to evaluate its depositional history from large pyroclastic density currents. The Huichapan ignimbrite is a massive ignimbrite sheet with a maximum runout of at least 55 km and thickness variations between 6 and 80 m. The lower portion of the Huichapan ignimbrite consists of a large plateau [ 100 km3; 69 km3 as dense-rock equivalent (DRE)] of massive ignimbrites with welding variations from densely welded to partly welded, devitrification, and high-temperature vapor-phase alteration. The lower part grades laterally to moderately welded and non-devitrified ignimbrites. These variations are interpreted as the sedimentation of density-stratified pyroclastic density currents erupted as boiling-over pulses from the Huichapan-Donguinyó caldera complex at a continuous rate, supporting deposition by quasi-steady progressive aggradation of sustained and hot currents. To the north of the caldera, the lower portion of the ignimbrite consists of a small plateau (< 10 km3) in which the densely welded and devitrified lithofacies are absent. Our interpretation is that the pyroclastic density currents flowed late to the north of the caldera and formed a smaller ignimbrite plateau with respect to the western one. This northern ignimbrite plateau cooled faster than the western ignimbrite plateau. Deposition-induced topographic modifications suggest that topographic obstacles, such as remnants of older volcanoes, may have promoted the deviation of the density currents to the north. The upper portion of the ignimbrite is composed of extensive, massive, coarse clast-rich, non-devitrified, and non-welded ignimbrites with abundant fines-poor pipes. This upper part was deposited from largely sustained and rapidly aggrading high-concentration currents in a near end-member, fluid escape-dominated flow boundary zone. The absence of welding in the upper portion may record pyroclastic density currents cooling during the formation of a relatively high pyroclastic fountain at the vent. We have established a depositional model for the Huichapan ignimbrite that explains the differences between the western and northern plateaus. The Huichapan ignimbrite was formed during a large caldera-forming eruption with concentrated pyroclastic fountains. High mass-flow rate was maintained for long periods, promoting the mobility of the pyroclastic density currents.
NASA Astrophysics Data System (ADS)
Atlas, Z. D.; Macorps, E.; Charbonnier, S. J.; Varley, N. R.
2016-12-01
Small-volume pyroclastic density currents (PDCs) occur relatively frequently and pose severe threats to surrounding populations and infrastructures at active explosive volcanoes. They are characterized by short duration and complex multiphase flow dynamics due to time and space variability in their properties, which include amongst others, particle concentration, granulometry, componentry, bulk rheology and velocity. Field investigations of the deposits emplaced by small-volume concentrated PDCs aim to improve our understanding of the transport and depositional processes of these flows: time and space variations in flow dynamics within a PDC moving downslope will reflect on the distribution, grainsize and component characteristics of its deposits. Our study focuses on the recent events of July 10th and 11th, 2015 at Volcán de Colima (Mexico) where the collapse of the recent lava dome complex and a portion of the southern crater rim led to the emplacement of successive pulses of small-volume concentrated PDCs on the southern flank, along the Montegrande and San Antonio ravines. A 3-dimensional field analysis of the PDCs' deposit architecture, total grain size distribution and component properties together with a geomorphic analysis of the affected ravines provide new insights on the lateral and vertical variations of flow dynamics for some of these small-volume concentrated PDCs. Preliminary results reveal three stratigraphic units with massive block, lapilli, ash facies within the valley confined and concentrated overbank deposits with increasing content in fines with distance from the summit, suggesting an increase in fragmentation processes within the PDCs. The middle unit is characterized by a finer grainsize, a higher accidental lithic content and a lower free crystal content. Moreover, direct correlations are found between rapid changes in channel morphology and generation of overbank (unconfined) flows that escaped valley confines, which could provide the basis for defining hazard zonations of key areas at risk from future eruptions at Colima.
Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.
2013-01-01
Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041
NASA Technical Reports Server (NTRS)
Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.
1996-01-01
A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.
Holá, Eva; Košnar, Jiří; Kučera, Jan
2015-01-01
Patterns of genetic variation and spatial genetic structure (SGS) were investigated in Crossocalyx hellerianus, a strictly epixylic dioicous liverwort (Scapaniaceae s.l., Marchantiophyta). Studied populations were located in Fennoscandia and Central Europe, with localities differing in availability of substrate and the population connectivity, and their populations consequently different in size, density, and prevailing reproductive mode. A set of nine polymorphic microsatellites was successfully developed and used. Identical individuals were only found within populations. Especially in large populations, the majority of the individuals were genetically unique. Resampled number of genotypes, mean number of observed alleles per locus after rarefaction, and Nei's gene diversity in large populations reached high values and ranged between 4.41-4.97, 3.13-4.45, and 0.94-0.99, respectively. On the contrary, the values in small populations were lower and ranged between 1.00-4.42, 1.00-2.73, and 0.00-0.95, respectively. As expected, large populations were found to be more genetically diverse than small populations but relatively big diversity of genotypes was also found in small populations. This indicated that even small populations are important sources of genetic variation in bryophytes and processes causing loss of genetic variation might be compensated by other sources of variability, of which somatic mutations might play an important role. The presence of SGS was discovered in all populations. Large populations possessed less SGS, with individuals showing a pronounced decrease in kinship over 50 cm of distance. Apparent SGS of small populations even at distances up to 16 meters suggests the aggregation of similar genotypes, caused predominantly by the deposition of asexually formed gemmae. Although no strong kinship was detectable at the distances over 16 meters in both small and large populations, identical genotypes were occasionally detected at longer distances (20-80 m), suggesting effective dispersal of asexual propagules.
Holá, Eva; Košnar, Jiří; Kučera, Jan
2015-01-01
Patterns of genetic variation and spatial genetic structure (SGS) were investigated in Crossocalyx hellerianus, a strictly epixylic dioicous liverwort (Scapaniaceae s.l., Marchantiophyta). Studied populations were located in Fennoscandia and Central Europe, with localities differing in availability of substrate and the population connectivity, and their populations consequently different in size, density, and prevailing reproductive mode. A set of nine polymorphic microsatellites was successfully developed and used. Identical individuals were only found within populations. Especially in large populations, the majority of the individuals were genetically unique. Resampled number of genotypes, mean number of observed alleles per locus after rarefaction, and Nei’s gene diversity in large populations reached high values and ranged between 4.41–4.97, 3.13–4.45, and 0.94–0.99, respectively. On the contrary, the values in small populations were lower and ranged between 1.00–4.42, 1.00–2.73, and 0.00–0.95, respectively. As expected, large populations were found to be more genetically diverse than small populations but relatively big diversity of genotypes was also found in small populations. This indicated that even small populations are important sources of genetic variation in bryophytes and processes causing loss of genetic variation might be compensated by other sources of variability, of which somatic mutations might play an important role. The presence of SGS was discovered in all populations. Large populations possessed less SGS, with individuals showing a pronounced decrease in kinship over 50 cm of distance. Apparent SGS of small populations even at distances up to 16 meters suggests the aggregation of similar genotypes, caused predominantly by the deposition of asexually formed gemmae. Although no strong kinship was detectable at the distances over 16 meters in both small and large populations, identical genotypes were occasionally detected at longer distances (20–80 m), suggesting effective dispersal of asexual propagules. PMID:26186214
Global exospheric temperatures and densities under active solar conditions. [measured by OGO-6
NASA Technical Reports Server (NTRS)
Wydra, B. J.
1975-01-01
Temperatures measured by the OGO-6 satellite using the 6300 A airglow spectrum are compared with temperatures derived from total densities and N2 densities. It is shown that while the variation of the total densities with latitude and magnetic activity agree well with values used for CIRA (1972), the temperature behavior is very different. While the temperatures derived from the N2 density were in much better agreement there were several important differences which radically affect the pressure gradients. The variation of temperature with magnetic activity indicated a seasonal and local time effect and also a latitude and delay time variation different from previous density derived temperatures. A new magnetic index is proposed that is better correlated with the observed temperatures. The temperature variations at high latitudes were examined for three levels of magnetic activity for both solstices and equinox conditions. A temperature maximum in the pre-midnight sector and a minimum in the noon sector were noted and seasonal and geomagnetic time and latitude effects discussed. Neutral temperature, density, pressure and boundary oxygen variations for the great storm of March 8, 1970 are presented.
NASA Astrophysics Data System (ADS)
Chandran, B. D. G.; Backer, D. C.
2002-09-01
We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulae for the wave phase structure function Dφ, visibility, angular broadening, diffraction pattern length scales, and scintillation timescale for arbitrary distributions of turbulence along the line of sight and specialize these formulae to idealized cases. In general, Dφ~(δr)5/3 when the baseline δr is in the inertial range of the turbulent density spectrum, and Dφ~(δr)2 when δr is in the dissipation range, just as for an isotropic Kolmogorov spectrum of fluctuations. When the density structures that dominate the scattering have an axial ratio R>>1 (typically R~103), the axial ratio of the broadened image of a point source in the standard Markov approximation is at most ~R1/2, and this maximum value is obtained in the unrealistic case that the scattering medium is confined to a thin screen in which the magnetic field has a single direction. If the projection of the magnetic field within the screen onto the plane of the sky rotates through an angle Δψ along the line of sight from one side of the screen to the other, and if R-1/2<<Δψ<<1, then the axial ratio of the resulting broadened image of a point source is 2(8/3)3/5/Δψ~=3.6/Δψ. The error in this formula increases with Δψ but reaches only ~15% when Δψ=π. This indicates that a moderate amount of variation in the direction of the magnetic field along the line of sight dramatically decreases the anisotropy of a broadened image. When R>>1, the observed anisotropy will in general be determined by the degree of variation of the field direction along the sight line and not by the degree of density anisotropy. Although this makes it difficult to determine observationally the degree of anisotropy in interstellar density fluctuations, observed anisotropies in broadened images provide general support for anisotropic models of interstellar turbulence. Regions in which the angle γ between the magnetic field and line of sight is small cause enhanced scattering due to the increased coherence of density structures along the line of sight. In the exceedingly rare and probably unrealized case that scattering is dominated by regions in which γ<~(δr/l)1/3, where l is the outer scale (stirring scale) of the turbulence, Dφ~(δr)4/3 for δr in the inertial range. In a companion paper (Backer & Chandran) we discuss the semiannual modulation in the scintillation time of a nearby pulsar for which the field direction variation along the line of sight is expected to be moderately small.
Linear and non-linear bias: predictions versus measurements
NASA Astrophysics Data System (ADS)
Hoffmann, K.; Bel, J.; Gaztañaga, E.
2017-02-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.
Anomalously strong observations of PKiKP/PcP amplitude ratios on a global scale
NASA Astrophysics Data System (ADS)
Waszek, Lauren; Deuss, Arwen
2015-07-01
The inner core boundary marks the phase transition between the solid inner core and the fluid outer core. As the site of inner core solidification, the boundary provides insight into the processes generating the seismic structures of the inner core. In particular, it may hold the key to understanding the previously observed hemispherical asymmetry in inner core seismic velocity, anisotropy, and attenuation. Here we use a large PKiKP-PcP amplitude ratio and travel time residual data set to investigate velocity and density contrast properties near the inner core boundary. Although hemispherical structure at the boundary has been proposed by previous inner core studies, we find no evidence for hemispheres in the amplitude ratios or travel time residuals. In addition, we find that the amplitude ratios are much larger than can be explained by variations in density contrast at the inner core boundary or core-mantle boundary. This indicates that PKiKP is primarily observed when it is anomalously large, due to focusing along its raypath. Using data in which PKiKP is not detected above the noise level, we calculate an upper estimate for the inner core boundary (ICB) density contrast of 1.2 kg m-3. The travel time residuals display large regional variations, which differ on long and short length scales. These regions may be explained by large-scale velocity variations in the F layer just above the inner core boundary, and/or small-scale topography of varying magnitude on the ICB, which also causes the large amplitudes. Such differences could arise from localized freezing and melting of the inner core.
Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F
2018-02-07
A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.
Energetic and ecological constraints on population density of reef fishes.
Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P
2016-01-27
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).
Energetic and ecological constraints on population density of reef fishes
Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P.
2016-01-01
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. PMID:26791611
Compressible flow at high pressure with linear equation of state
NASA Astrophysics Data System (ADS)
Sirignano, William A.
2018-05-01
Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.
Spectral models for early time SN 2011fe observations
NASA Astrophysics Data System (ADS)
Baron, E.; Hoeflich, P.; Friesen, Brian; Sullivan, M.; Hsiao, E.; Ellis, R. S.; Gal-Yam, A.; Howell, D. A.; Nugent, P. E.; Dominguez, I.; Krisciunas, K.; Phillips, M. M.; Suntzeff, N.; Wang, L.; Thomas, R. C.
2015-12-01
We use observed UV through near-IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal Type Ia supernovae (SNe Ia) and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z⊙/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed-detonation model with a transition density that has been fit to other Branch-normal SNe Ia. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ≈0.1 M⊙ than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colours due to variations in the progenitor metallicity, which suggests that colours are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.
Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea
NASA Astrophysics Data System (ADS)
Park, J. H.; Chang, K. I.; Nam, S.
2016-02-01
Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.
NASA Astrophysics Data System (ADS)
Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong
2015-10-01
This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.
Comparision between crustal density and velocity variations in Southern California
Langenheim, V.E.; Hauksson, E.
2001-01-01
We predict gravity from a three-dimensional Vp model of the upper crust and compare it to the observed isostatic residual gravity field. In general this comparison shows that the isostatic residual gravity field reflects the density variations in the upper to middle crust. Both data sets show similar density variations for the upper crust in areas such as the Peninsular Ranges and the Los Angeles basin. Both show similar variations across major faults, such as the San Andreas and Garlock faults in the Mojave Desert. The difference between the two data sets in regions such as the Salton Trough, the Eastern California Shear Zone, and the eastern Ventura basin (where depth to Moho is <30 km), however, suggests high-density middle to lower crust beneath these regions. Hence the joint interpretation of these data sets improves the depth constraints of crustal density variations.
Murphy, Sean M; Augustine, Ben C; Ulrey, Wade A; Guthrie, Joseph M; Scheick, Brian K; McCown, J Walter; Cox, John J
2017-01-01
Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted.
Guthrie, Joseph M.; Scheick, Brian K.; McCown, J. Walter; Cox, John J.
2017-01-01
Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida’s largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted. PMID:28738077
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.
2014-10-20
In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2017-04-01
We focus on the well-known northern daytime neutral density spikes detected by CHAMP on 25 September 2000 and related coupled magnetospheric-ionospheric-thermospheric processes. We investigate the underlying magnetic events and resultant thermospheric variations plus the state of the ionospheric polar region by employing multi-instrument CHAMP and DMSP data. Results show the unfolding of a weak (SYM-HMin ≈ -27 nT; 0345 UT) magnetic storm during which these northern density spikes occurred. Some smaller southern daytime density spikes were also detected prior to this storm on the previous day. All these density spikes were detected in or near polar convection flow channels (FCs). Each FC was characterized by strong antisunward zonal ion drifts that excited the zonal and meridional neutral winds leaving the signature of FC in the CHAMP neutral wind measurements and thus providing direct observational evidence of FC underlying the density spike. Additional to the small-scale field-aligned current (SS-FAC) filaments, the sudden intensifications of ionospheric closure current in the FC fueled the thermosphere and contributed to the development of upwelling and density spike. Some smaller density increases occurred due to the weak intensification of ionospheric closure currents. Equatorward (poleward) directed meridional neutral winds strengthened (weakened) the density spike by moving the neutral density up and along (down and against) the upwelling fueled by the ionospheric closure current and SS-FAC filaments.
Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana
2013-02-01
It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.
Welsh, H.H.; Droege, S.
2001-01-01
Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.
2016-01-01
Context An increasing concern in the face of human expansion throughout natural habitats is whether animal populations can respond adaptively when confronted with challenges like environmental change and novelty. Behavioural flexibility is an important factor in estimating the adaptive potential of both individuals and populations, and predicting the degree to which they can cope with change. Study Design This study on the three-spined stickleback (Gasterosteus aculeatus) is an empiric illustration of the degree of behavioural variation that can emerge between semi-natural systems within only a single generation. Wild-caught adult sticklebacks (P, N = 400) were randomly distributed in equal densities over 20 standardized semi-natural environments (ponds), and one year later offspring (F1, N = 652) were presented with repeated behavioural assays. Individuals were challenged to reach a food source through a novel transparent obstacle, during which exploration, activity, foraging, sociability and wall-biting behaviours were recorded through video observation. We found that coping responses of individuals from the first generation to this unfamiliar foraging challenge were related to even relatively small, naturally diversified variation in developmental environment. All measured behaviours were correlated with each other. Especially exploration, sociability and wall-biting were found to differ significantly between ponds. These differences could not be explained by stickleback density or the turbidity of the water. Findings Our findings show that a) differences in early-life environment appear to affect stickleback feeding behaviour later in life; b) this is the case even when the environmental differences are only small, within natural parameters and diversified gradually; and c) effects are present despite semi-natural conditions that fluctuate during the year. Therefore, in behaviourally plastic animals like the stickleback, the adaptive response to human-induced habitat disturbance may occur rapidly (within one generation) and vary strongly based on the system’s (starting) conditions. This has important implications for the variability in animal behaviour, which may be much larger than expected from studying laboratory systems, as well as for the validity of predictions of population responses to change. PMID:26862908
Langenhof, M Rohaa; Apperloo, Rienk; Komdeur, Jan
2016-01-01
An increasing concern in the face of human expansion throughout natural habitats is whether animal populations can respond adaptively when confronted with challenges like environmental change and novelty. Behavioural flexibility is an important factor in estimating the adaptive potential of both individuals and populations, and predicting the degree to which they can cope with change. This study on the three-spined stickleback (Gasterosteus aculeatus) is an empiric illustration of the degree of behavioural variation that can emerge between semi-natural systems within only a single generation. Wild-caught adult sticklebacks (P, N = 400) were randomly distributed in equal densities over 20 standardized semi-natural environments (ponds), and one year later offspring (F1, N = 652) were presented with repeated behavioural assays. Individuals were challenged to reach a food source through a novel transparent obstacle, during which exploration, activity, foraging, sociability and wall-biting behaviours were recorded through video observation. We found that coping responses of individuals from the first generation to this unfamiliar foraging challenge were related to even relatively small, naturally diversified variation in developmental environment. All measured behaviours were correlated with each other. Especially exploration, sociability and wall-biting were found to differ significantly between ponds. These differences could not be explained by stickleback density or the turbidity of the water. Our findings show that a) differences in early-life environment appear to affect stickleback feeding behaviour later in life; b) this is the case even when the environmental differences are only small, within natural parameters and diversified gradually; and c) effects are present despite semi-natural conditions that fluctuate during the year. Therefore, in behaviourally plastic animals like the stickleback, the adaptive response to human-induced habitat disturbance may occur rapidly (within one generation) and vary strongly based on the system's (starting) conditions. This has important implications for the variability in animal behaviour, which may be much larger than expected from studying laboratory systems, as well as for the validity of predictions of population responses to change.
Dumas, Pascal; Jimenez, Haizea; Peignon, Christophe; Wantiez, Laurent; Adjeroud, Mehdi
2013-01-01
No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale (“microhabitats”) for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species PMID:23554965
Szoke, Andrei; Pignon, Baptiste; Baudin, Grégoire; Tortelli, Andrea; Richard, Jean-Romain; Leboyer, Marion; Schürhoff, Franck
2016-07-01
We sought to determine whether significant variation in the incidence of clinically relevant psychoses existed at an ecological level in an urban French setting, and to examine possible factors associated with this variation. We aimed to advance the literature by testing this hypothesis in a novel population setting and by comparing a variety of spatial models. We sought to identify all first episode cases of non-affective and affective psychotic disorders presenting in a defined urban catchment area over a 4 years period, over more than half a million person-years at-risk. Because data from geographic close neighbourhoods usually show spatial autocorrelation, we used for our analyses Bayesian modelling. We included small area neighbourhood measures of deprivation, migrants' density and social fragmentation as putative explanatory variables in the models. Incidence of broad psychotic disorders shows spatial patterning with the best fit for models that included both strong autocorrelation between neighbouring areas and weak autocorrelation between areas further apart. Affective psychotic disorders showed similar spatial patterning and were associated with the proportion of migrants/foreigners in the area (inverse correlation). In contrast, non-affective psychoses did not show spatial patterning. At ecological level, the variation in the number of cases and the factors that influence this variation are different for non-affective and affective psychotic disorders. Important differences in results-compared with previous studies in different settings-point to the importance of the context and the necessity of further studies to understand these differences.
Mud crab ecology encourages site-specific approaches to fishery management
NASA Astrophysics Data System (ADS)
Dumas, P.; Léopold, M.; Frotté, L.; Peignon, C.
2012-01-01
Little is known about the effects of mud crabs population patterns on their exploitation. We used complementary approaches (experimental, fisher-based) to investigate how small-scale variations in density, size and sex-ratio related to the ecology of S. serrata may impact fishing practices in New Caledonia. Crabs were measured/sexed across 9 stations in contrasted mangrove systems between 2007 and 2009. Stations were described and classified in different kinds of mangrove forests (coastal, riverine, and estuarine); vegetation cover was qualitatively described at station scale. Annual catch was used as an indicator of fishing pressure. Middle-scale environmental factors (oceanic influence, vegetation cover) had significant contributions to crab density (GLM, 84.8% of variance), crab size and sex-ratio (< 30%). While small-scale natural factors contributed significantly to population structure, current fishing levels had no impacts on mud crabs. The observed, ecologically-driven heterogeneity of crab resource has strong social implications in the Pacific area, where land tenure system and traditional access rights prevent most fishers from freely selecting their harvest zones. This offers a great opportunity to encourage site-specific management of mud crab fisheries.
Climate and Edaphic Controls on Humid Tropical Forest Tree Height
NASA Astrophysics Data System (ADS)
Yang, Y.; Saatchi, S. S.; Xu, L.
2014-12-01
Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.
Campbell, D L M; Hinch, G N; Dyall, T R; Warin, L; Little, B A; Lee, C
2017-01-01
The number and size of free-range laying hen (Gallus gallus domesticus) production systems are increasing within Australia in response to consumer demand for perceived improvement in hen welfare. However, variation in outdoor stocking density has generated consumer dissatisfaction leading to the development of a national information standard on free-range egg labelling by the Australian Consumer Affairs Ministers. The current Australian Model Code of Practice for Domestic Poultry states a guideline of 1500 hens/ha, but no maximum density is set. Radio-frequency identification (RFID) tracking technology was used to measure daily range usage by individual ISA Brown hens housed in six small flocks (150 hens/flock - 50% of hens tagged), each with access to one of three outdoor stocking density treatments (two replicates per treatment: 2000, 10 000, 20 000 hens/ha), from 22 to 26, 27 to 31 and 32 to 36 weeks of age. There was some variation in range usage across the sampling periods and by weeks 32 to 36 individual hens from the lowest stocking density on average used the range for longer each day (P<0.001), with fewer visits and longer maximum durations per visit (P<0.001). Individual hens within all stocking densities varied in the percentage of days they accessed the range with 2% of tagged hens in each treatment never venturing outdoors and a large proportion that accessed the range daily (2000 hens/ha: 80.5%; 10 000 hens/ha: 66.5%; 20 000 hens/ha: 71.4%). On average, 38% to 48% of hens were seen on the range simultaneously and used all available areas of all ranges. These results of experimental-sized flocks have implications for determining optimal outdoor stocking densities for commercial free-range laying hens but further research would be needed to determine the effects of increased range usage on hen welfare.
NASA Astrophysics Data System (ADS)
Tamrakar, Radha; Varma, P.; Tiwari, M. S.
2018-01-01
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-β plasma using kinetic theory. The effect of density variation of H+, He+ and O+ ions is observed on frequency and damping rate of the wave. The variation of frequency (ω) and normalised damping rate (γ / Ω_{H^{ +}} ) of the wave are studied with respect to k_{ \\bot} ρj, where k_{ \\bot} is the perpendicular wave number, ρj is the ion gyroradius and j denotes H+, He+ and O+ ions. The variation with k_{ \\bot} ρj is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of H+ and He+ ions but remains insensitive to the change in density of O+ ions. For oxygen ion gyration, the frequency of wave varies over a short range only for O+ ion density variation. The wave shows damping at lower altitude due to variation in density of lighter H+ and He+ ions whereas at higher altitude only heavy O+ ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.
NASA Astrophysics Data System (ADS)
Pasmanik, Dmitry; Demekhov, Andrei
We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.
Evans, Edward W; Carlile, Nolan R; Innes, Matthew B; Pitigala, Nadishan
2014-02-01
Scouting at key times in the seasonal development of insect pest populations, as guided by degree-day accumulation, is important for minimizing unwarranted insecticide application. Fields of small grains in northern Utah were censused weekly from 2001 to 2011, to assess infestation by the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), and develop degree-day guidelines for measuring cereal leaf beetle abundance at peak egg and larval densities in any given year. Even in years of high overall numbers of cereal leaf beetle, relatively few fields were heavily infested (with 20 or more cereal leaf beetle eggs + larvae per 0.09 m2) at either egg or larval peak density during the growing season. In individual fields, the number of immature cereal leaf beetle (eggs + larvae) at peak larval density was positively related to the number of immature cereal leaf beetles present earlier at peak egg density. Although there was large variation among years in when cereal leaf beetle egg and larval numbers peaked during the season as measured by degree-day accumulation from 1 January, much of this variation was accounted for by the warmth of the early spring before significant egg laying occurred. Hence, degree-day estimates that account for early spring warmth can guide growers in scouting grain fields at peak egg densities to identify fields at high risk of subsequent economic damage from cereal leaf beetle larval feeding. The relatively low incidence of fields heavily infested by cereal leaf beetle in northern Utah emphasizes the benefit that growers can gain by scouting early before applying insecticide treatments.
The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; ...
2016-12-20
Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain
Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain
Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
de Waal, Pamela J; Gous, Annemarie; Clift, Sarah J; Greeff, Jaco M
2012-06-08
The nematode worm Spirocerca lupi has a cosmopolitan distribution and can cause the death of its final canid host, typically dogs. While its life cycle, which involves a coprophagous beetle intermediate host, a number of non-obligatory vertebrate paratenic hosts and a canid final host, is well understood, surprisingly little is known about its transmission dynamics and population genetic structure. Here we sequenced cox1 to quantify genetic variation and the factors that limit gene flow in a 300 km(2) area in South Africa. Three quarters of the genetic variation, was explained by differences between worms from the same host, whereas a quarter of the variation was explained by differences between worms from different hosts. With the help of a newly derived model we conclude that while the offspring from different infrapopulations mixes fairly frequently in new hosts, the level of admixture is not enough to homogenize the parasite populations among dogs. Small infrapopulation sizes along with clumped transmission may also result in members of infrapopulations being closely related. Copyright © 2011 Elsevier B.V. All rights reserved.
ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, J. E. G.; Schiminovich, David, E-mail: jegpeek@gmail.com
In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV andmore » NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.« less
11- and 22-year variations of the cosmic ray density and of the solar wind speed
NASA Technical Reports Server (NTRS)
Chirkov, N. P.
1985-01-01
Cosmic ray density variations for 17-21 solar activity cycles and the solar wind speed for 20-21 events are investigated. The 22-year solar wind speed recurrence was found in even and odd cycles. The 22-year variations of cosmic ray density were found to be opposite that of solar wind speed and solar activity. The account of solar wind speed in 11-year variations significantly decreases the modulation region of cosmic rays when E = 10-20 GeV.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2016-01-01
During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.
Testing cold dark matter models using Hubble flow variations
NASA Astrophysics Data System (ADS)
Shi, Xiangdong
1999-05-01
COBE-normalized flat (matter plus cosmological constant) and open cold dark matter (CDM) models are tested by comparing their expected Hubble flow variations and the observed variations in a Type Ia supernova sample and a Tully-Fisher cluster sample. The test provides a probe of the CDM power spectrum on scales of 0.02h Mpc^-1<~ k<~ 0.2h Mpc^-1, free of the bias factor b. The results favour a low matter content universe, or a flat matter-dominated universe with a very low Hubble constant and/or a very small spectral index n^ps, with the best fits having Ο_0~ 0.3 to 0.4. The test is found to be more discriminative to the open CDM models than to the flat CDM models. For example, the test results are found to be compatible with those from the X-ray cluster abundance measurements at smaller length-scales, and consistent with the galaxy and cluster correlation analysis of Peacock & Dodds at similar length-scales, if our universe is flat; but the results are marginally incompatible with the X-ray cluster abundance measurements if our universe is open. The open CDM results are consistent with that of Peacock & Dodds only if the matter density of the universe is less than about 60 per cent of the critical density. The shortcoming of the test is discussed, so are ways to minimize it.
Granular flow through an aperture: influence of the packing fraction.
Aguirre, M A; De Schant, R; Géminard, J-C
2014-07-01
For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.
Granular flow through an aperture: Influence of the packing fraction
NASA Astrophysics Data System (ADS)
Aguirre, M. A.; De Schant, R.; Géminard, J.-C.
2014-07-01
For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malavolta, Luca; Borsato, Luca; Granata, Valentina
We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R {sub ⊕}, and an upper limit on the mass of 20 M {sub ⊕}. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations wemore » obtained a mass of 8.4 ± 1.6 M {sub ⊕} for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M {sub ⊕} for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M {sub ⊕} on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm{sup −3} (0.78 ± 0.16 ρ {sub ⊕}) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.« less
Analysis of percent density estimates from digital breast tomosynthesis projection images
NASA Astrophysics Data System (ADS)
Bakic, Predrag R.; Kontos, Despina; Zhang, Cuiping; Yaffe, Martin J.; Maidment, Andrew D. A.
2007-03-01
Women with dense breasts have an increased risk of breast cancer. Breast density is typically measured as the percent density (PD), the percentage of non-fatty (i.e., dense) tissue in breast images. Mammographic PD estimates vary, in part, due to the projective nature of mammograms. Digital breast tomosynthesis (DBT) is a novel radiographic method in which 3D images of the breast are reconstructed from a small number of projection (source) images, acquired at different positions of the x-ray focus. DBT provides superior visualization of breast tissue and has improved sensitivity and specificity as compared to mammography. Our long-term goal is to test the hypothesis that PD obtained from DBT is superior in estimating cancer risk compared with other modalities. As a first step, we have analyzed the PD estimates from DBT source projections since the results would be independent of the reconstruction method. We estimated PD from MLO mammograms (PD M) and from individual DBT projections (PD T). We observed good agreement between PD M and PD T from the central projection images of 40 women. This suggests that variations in breast positioning, dose, and scatter between mammography and DBT do not negatively affect PD estimation. The PD T estimated from individual DBT projections of nine women varied with the angle between the projections. This variation is caused by the 3D arrangement of the breast dense tissue and the acquisition geometry.
Kobayashi, Shingo; Shinomiya, Takayuki; Kitamura, Hisashi; Ishikawa, Takahiro; Imaseki, Hitoshi; Oikawa, Masakazu; Kodaira, Satoshi; Miyaushiro, Norihiro; Takashima, Yoshio; Uchihori, Yukio
2015-01-01
We constructed a new car-borne survey system called Radi-Probe with a portable germanium gamma-ray spectrometer onboard a cargo truck, to identify radionuclides and quantify surface contamination from the accident at Fukushima Dai-ichi Nuclear Power Station. The system can quickly survey a large area and obtain ambient dose equivalent rates and gamma-ray energy spectra with good energy resolution. We also developed a new calibration method for the system to deal with an actual nuclear disaster, and quantitative surface deposition densities of radionuclides, such as (134)Cs and (137)Cs, and kerma rates of each radionuclide can be calculated. We carried out car-borne survey over northeastern and eastern Japan (Tohoku and Kanto regions of Honshu) from 25 September through 7 October 2012. We discuss results of the distribution of ambient dose equivalent rate H(∗)(10), (134)Cs and (137)Cs surface deposition densities, spatial variation of (134)Cs/(137)Cs ratio, and the relationship between surface deposition densities of (134)Cs/(137)Cs and H(∗)(10). The ratio of (134)Cs/(137)Cs was nearly constant within our measurement precision, with average 1.06 ± 0.04 in northeastern and eastern Japan (decay-corrected to 11 March, 2011), although small variations from the average were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.
A salient effect of density on the dynamics of nonaqueous electrolytes.
Han, Sungho
2017-04-24
The mobility and solvation of lithium ions in electrolytes are crucial for the performance and safety of lithium ion batteries. It has been known that a single type of solvent cannot satisfy the requirements of both mobility and solvation simultaneously for electrolytes. Therefore, complex solvent mixtures have been used to optimize both properties. Here we present the effects of density on the dynamics and solvation of organic liquid electrolytes via extensive molecular dynamics simulations. Our study finds that a small variation in density can induce a significant effect on the mobility of electrolytes but does not influence the solvation structure of a lithium ion. It turns out that an adjustment of the density of electrolytes could provide a more effective way to enhance mobility than a control of the solvent mixture ratio of electrolytes. Our study reveals that the density change of electrolytes mainly affects the residence time of solvents in the first solvation shell of a lithium ion rather than the structural change of the solvation sheath. Finally, our results suggest an intriguing point for understanding and designing electrolytes of lithium ion batteries for better performance and safety.
A salient effect of density on the dynamics of nonaqueous electrolytes
NASA Astrophysics Data System (ADS)
Han, Sungho
2017-04-01
The mobility and solvation of lithium ions in electrolytes are crucial for the performance and safety of lithium ion batteries. It has been known that a single type of solvent cannot satisfy the requirements of both mobility and solvation simultaneously for electrolytes. Therefore, complex solvent mixtures have been used to optimize both properties. Here we present the effects of density on the dynamics and solvation of organic liquid electrolytes via extensive molecular dynamics simulations. Our study finds that a small variation in density can induce a significant effect on the mobility of electrolytes but does not influence the solvation structure of a lithium ion. It turns out that an adjustment of the density of electrolytes could provide a more effective way to enhance mobility than a control of the solvent mixture ratio of electrolytes. Our study reveals that the density change of electrolytes mainly affects the residence time of solvents in the first solvation shell of a lithium ion rather than the structural change of the solvation sheath. Finally, our results suggest an intriguing point for understanding and designing electrolytes of lithium ion batteries for better performance and safety.
Terashima, Mikiko; Read Guernsey, Judith; Andreou, Pantelis
2014-02-13
Although efforts have been made to articulate rural-urban health inequalities in recent years, results have been inconsistent due to different geographical scales used in these studies. Small-area level investigations of health inequalities will likely show more detailed pictures of health inequalities among diverse rural communities, but they are difficult to conduct, particularly in a small population region. The objectives of this study were: 1) to compare life expectancy at birth for females and males across small-areas classified by locally defined settlement types for a small province in Canada; 2) to assess whether any of the settlement types explains variations in life expectancy over and above the extent of socioeconomic disadvantage and social isolation; and 3) to examine variations in life expectancies within a (larger) area unit used as the basis of health inequality investigations in previous studies. Seven settlement types were determined for the 'community' units based on population per-kilometre-road density and settlement forms. Mean life expectancies at birth for both genders were compared by settlement type, both for the entire province and within the Halifax Regional Municipality--the province's only census designated metropolitan area, but also contains rural settlements. Linear regression analyses were conducted to assess the statistical associations between life expectancy and the settlement types, adjusting for indicators of community-level deprivation. While types of communities considered as 'rural' generally had lower life expectancy for both genders, the effects of living in any settlement type were attenuated once adjusted for socioeconomic deprivation and social isolation. An exception was the village and settlement cluster type, which had additionally negative effects on health for females. There were some variations observed within the Halifax Regional Municipality, suggesting the importance of further investigating a variety of health and disease outcomes at smaller area-levels than those employed in previous studies. This paper highlighted the importance of further articulating the differences in the characteristics of rural at finer area-levels and the differential influence they may have on health. Further efforts are desirable to overcome various data challenges in order to extend the investigation of health inequalities to hard-to-study provinces.
Tropical small streams are a consistent source of methane
NASA Astrophysics Data System (ADS)
Vihermaa, Leena; Waldron, Susan
2013-04-01
To date only a few studies have quantified diffusive methane emissions from headwater streams therefore the magnitude and seasonal variation of these emissions remain poorly understood. Here we present results from two Western Amazonian small streams (first and second order) in Tambopata National Reserve, Peru. Towards the end of wet season, April-May 2012, the streams were sampled using a static floating chamber to accumulate methane. Samples were drawn from the headspace twice daily over period of four days on three separate occasions. The methane concentrations were analysed using a gas chromatograph and the linear part of concentration increase used to calculate the flux rates. The streams were consistently outgassing methane. The seasonally active first order stream outgassed 6 ±2.4 nmol CH4-C m-2 s-1 and the second order stream 20 ±4.0 nmol CH4-C m-2 s-1. The latter flux rate is comparable to fluxes measured from seasonally flooded Amazonian forest in previous studies. The range measured in our streams is comparable to previous results in temperate streams and the lower end of fluxes observed in some peatland streams. The only other study on Amazonian small streams detected methane fluxes that were 100 times greater than those measured here. Depending on the density of small streams in Amazonian basin and the prevalent flux rate, the fluvial methane fluxes may constitute a significant global warming potential. Upscaling to the Amazon basin, assuming small stream density of 0.2 %, as was found at our field site, and the flux rates detected, yields an annual global warming potential equal to approximately 1.5 Mt of CO2 which is of minor importance compared to aquatic CO2-C flux of 500 Mt yr-1 from the basin. However, if the higher fluxes detected in the previous study were prevalent, the basin wide methane flux could become significant. Further studies are needed to establish the stream density in the Amazon basin and typical methane flux rates.
NASA Astrophysics Data System (ADS)
Siziba, Nqobizitha; Chimbari, Moses J.; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars
2013-12-01
Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean assemblages during large floods when inundated terrestrial patches of wetlands are highly accessible by fish. We predict that a decline in the amount of water reaching the Delta will negatively affect fish recruitment, particularly the cichlids that heavily exploited the rarely flooded wetlands. Cichlids are an important human food source, and their decline in fish catches will negatively affect livelihoods. Hence, priority in the management of the Delta's ecological functioning should be centred on minimising natural water-flow modifications because any changes may be detrimental to fish-recruitment processes of the system.
Siziba, Nqobizitha; Chimbari, Moses J; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars
2013-12-01
Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean assemblages during large floods when inundated terrestrial patches of wetlands are highly accessible by fish. We predict that a decline in the amount of water reaching the Delta will negatively affect fish recruitment, particularly the cichlids that heavily exploited the rarely flooded wetlands. Cichlids are an important human food source, and their decline in fish catches will negatively affect livelihoods. Hence, priority in the management of the Delta's ecological functioning should be centred on minimising natural water-flow modifications because any changes may be detrimental to fish-recruitment processes of the system.
Variable Density Effects in Stochastic Lagrangian Models for Turbulent Combustion
2016-07-20
PDF methods in dealing with chemical reaction and convection are preserved irrespective of density variation. Since the density variation in a typical...combustion process may be as large as factor of seven, including variable- density effects in PDF methods is of significance. Conventionally, the...strategy of modelling variable density flows in PDF methods is similar to that used for second-moment closure models (SMCM): models are developed based on
The factors controlling species density in herbaceous plant communities: An assessment
Grace, J.B.
1999-01-01
This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of disturbance, total community biomass, colonization, the species pool and spatial heterogeneity. The structure of the model leads to two main expectations: (1) while community biomass is important, multivariate approaches will be required to understand patterns of variation in species density, and (2) species density will be more highly correlated with light penetration to the soil surface, than with above-ground biomass, and even less well correlated with plant growth rates (productivity) or habitat fertility. At present, data are insufficient to evaluate the relative importance of the processes controlling species density. Much more work is needed if we are to adequately predict the effects of environmental changes on plant communities and species diversity.
NASA Astrophysics Data System (ADS)
Fernández-Santos, Belén; Martínez, Carolina; García, Jose A.; Puerto, Angel
2004-10-01
Postfire regeneration in Cytisus oromediterraneus, a Mediterranean-basin mountain matorral species, shows a wide range of possibilities and variations in sexual and asexual regeneration. Its interpretation requires basic information on the below-ground structure of parent plants as well as on the origin and development of seedlings and various ramet (sprout clump) types: rootstock, basal-branch, and lateral-root ramets. Morphology and emergence of such ramets in C. oromediterraneus is similar to that in related species but with some specific features described here in detail. In order to determine if characteristics of 1-year-old populations depended on the age of the burned parent plants, two populations were investigated: (A 7-year-old, and B 14-year-old). In the most frequent populations in our study area, i.e. those from parent populations of ca. 7 years (A): a—plant density and biomass were highly variable and positively correlated; b—frequency distribution differed significantly from normal distribution for plant weight, but not for other parameters such as diameters, perimeter, and height, in which it did, however, show asymmetry; c—perimeter was the best parameter for estimating individuals' weight; d—there was a higher number of seedlings than ramets but their biomass was smaller; e—the size of seedlings and ramets showed wide variation. In comparison with population A (7-year-old) population B (14-year-old) showed: significantly higher density, slightly lower biomass, higher number of small individuals, mainly seedlings, and less vigorous resprouting. In general, 1 year after fire, Cytisus oromeditarraneus population density mainly depends on the germination response, while the above-ground biomass mainly depends on the vegetative response and the intensity of both of them is conditioned by parent plant age.
Putz, Christina M; Schmid, Christoph; Reisch, Christoph
2015-09-01
The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.
Krebs, Justin M.; Bell, Susan S.; McIvor, Carole C.
2014-01-01
To assess the potential influence of coastal development on habitat quality for estuarine nekton, we characterized body condition and reproduction for common nekton from tidal tributaries classified as undeveloped, industrial, urban or man-made (i.e., mosquito-control ditches). We then evaluated these metrics of nekton performance, along with several abundance-based metrics and community structure from a companion paper (Krebs et al. 2013) to determine which metrics best reflected variation in land-use and in-stream habitat among tributaries. Body condition was not significantly different among undeveloped, industrial, and man-made tidal tributaries for six of nine taxa; however, three of those taxa were in significantly better condition in urban compared to undeveloped tributaries. Palaemonetes shrimp were the only taxon in significantly poorer condition in urban tributaries. For Poecilia latipinna, there was no difference in body condition (length–weight) between undeveloped and urban tributaries, but energetic condition was significantly better in urban tributaries. Reproductive output was reduced for both P. latipinna (i.e., fecundity) and grass shrimp (i.e., very low densities, few ovigerous females) in urban tributaries; however a tradeoff between fecundity and offspring size confounded meaningful interpretation of reproduction among land-use classes for P. latipinna. Reproductive allotment by P. latipinna did not differ significantly among land-use classes. Canonical correspondence analysis differentiated urban and non-urban tributaries based on greater impervious surface, less natural mangrove shoreline, higher frequency of hypoxia and lower, more variable salinities in urban tributaries. These characteristics explained 36 % of the variation in nekton performance, including high densities of poeciliid fishes, greater energetic condition of sailfin mollies, and low densities of several common nekton and economically important taxa from urban tributaries. While variation among tributaries in our study can be largely explained by impervious surface beyond the shorelines of the tributary, variation in nekton metrics among non-urban tributaries was better explained by habitat factors within the tributary and along the shorelines. Our results support the paradigm that urban development in coastal areas has the potential to alter habitat quality in small tidal tributaries as reflected by variation in nekton performance among tributaries from representative land-use classes.
The cause of spatial structure in solar He I 1083 nm multiplet images
NASA Astrophysics Data System (ADS)
Leenaarts, Jorrit; Golding, Thomas; Carlsson, Mats; Libbrecht, Tine; Joshi, Jayant
2016-10-01
Context. The He I 1083 nm is a powerful diagnostic for inferring properties of the upper solar chromosphere, in particular for the magnetic field. The basic formation of the line in one-dimensional models is well understood, but the influence of the complex three-dimensional structure of the chromosphere and corona has however never been investigated. This structure must play an essential role because images taken in He I 1083 nm show structures with widths down to 100 km. Aims: We aim to understand the effect of the three-dimensional temperature and density structure in the solar atmosphere on the formation of the He I 1083 nm line. Methods: We solved the non-LTE radiative transfer problem assuming statistical equilibrium for a simple nine-level helium atom that nevertheless captures all essential physics. As a model atmosphere we used a snapshot from a 3D radiation-MHD simulation computed with the Bifrost code. Ionising radiation from the corona was self-consistently taken into account. Results: The emergent intensity in the He I 1083 nm is set by the source function and the opacity in the upper chromosphere. The former is dominated by scattering of photospheric radiation and does not vary much with spatial location. The latter is determined by the photonionisation rate in the He I ground state continuum, as well as the electron density in the chromosphere. The spatial variation of the flux of ionising radiation is caused by the spatially-structured emissivity of the ionising photons from material at T ≈ 100 kK in the transition region. The hotter coronal material produces more ionising photons, but the resulting radiation field is smooth and does not lead to small-scale variation of the UV flux. The corrugation of the transition region further increases the spatial variation of the amount of UV radiation in the chromosphere. Finally we find that variations in the chromospheric electron density also cause strong variation in He I 1083 nm opacity. We compare our findings to observations using SST, IRIS and SDO/AIA data. A movie associated to Fig. 4 is available at http://www.aanda.org
Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi
2017-09-01
Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.
Feasibility of 3D printed air slab diode caps for small field dosimetry.
Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott
2017-09-01
Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.
Spectral models for early time SN 2011fe observations
Baron, E.; Hoeflich, P.; Friesen, Brian; ...
2015-10-13
We use observed UV through near-IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal Type Ia supernovae (SNe Ia) and to examine its individual peculiarities. As a benchmark, we use a delayed-detonationmodel with a progenitormetallicity of Z ⊙/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed-detonation model withmore » a transition density that has been fit to other Branch-normal SNe Ia. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ≈0.1 M ⊙ than does the model. We discuss several explanations for the discrepancies. Lastly, we examine variations in both the spectral energy distribution and in the colours due to variations in the progenitor metallicity, which suggests that colours are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. Here we do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.« less
Density variations of meteor flux along the Earth's orbit
NASA Technical Reports Server (NTRS)
Svetashkova, N. T.
1987-01-01
No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.
NASA Astrophysics Data System (ADS)
Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther
2018-02-01
1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.
Ability of near infrared spectroscopy to monitor air-dry density distribution and variation of wood
Brian K. Via; Chi-Leung So; Todd F. Shupe; Michael Stine; Leslie H. Groom
2005-01-01
Process control of wood density with near infrared spectroscopy (NIR) would be useful for pulp mills that need to maximize pulp yield without compromising paper strength properties. If models developed from the absorbance at wavelengths in the NIR region could provide density histograms, fiber supply personnel could monitor chip density variation as the chips enter the...
NASA Astrophysics Data System (ADS)
Claessens, S. J.
2016-12-01
Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.
Specific material recognition by small peptides mediated by the interfacial solvent structure.
Schneider, Julian; Ciacchi, Lucio Colombi
2012-02-01
We present evidence that specific material recognition by small peptides is governed by local solvent density variations at solid/liquid interfaces, sensed by the side-chain residues with atomic-scale precision. In particular, we unveil the origin of the selectivity of the binding motif RKLPDA for Ti over Si using a combination of metadynamics and steered molecular dynamics simulations, obtaining adsorption free energies and adhesion forces in quantitative agreement with corresponding experiments. For an accurate description, we employ realistic models of the natively oxidized surfaces which go beyond the commonly used perfect crystal surfaces. These results have profound implications for nanotechnology and materials science applications, offering a previously missing structure-function relationship for the rational design of materials-selective peptide sequences. © 2011 American Chemical Society
Evidence of Temporal Variation of Titan Atmospheric Density in 2005-2013
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Lim, Ryan S.
2013-01-01
One major science objective of the Cassini mission is an investigation of Titan's atmosphere constituent abundances. Titan's atmospheric density is of interest not only to planetary scientists but also to mission design and mission control engineers. Knowledge of the dependency of Titan's atmospheric density with altitude is important because any unexpectedly high atmospheric density has the potential to tumble the spacecraft during a flyby. During low-altitude Titan flyby, thrusters are fired to counter the torque imparted on the spacecraft due to the Titan atmosphere. The denser the Titan's atmosphere is, the higher are the duty cycles of the thruster firings. Therefore thruster firing telemetry data could be used to estimate the atmospheric torque imparted on the spacecraft. Since the atmospheric torque imparted on the spacecraft is related to the Titan's atmospheric density, atmospheric densities are estimated accordingly. In 2005-2013, forty-three low-altitude Titan flybys were executed. The closest approach altitudes of these Titan flybys ranged from 878 to 1,074.8 km. Our density results are also compared with those reported by other investigation teams: Voyager-1 (in November 1980) and the Huygens Atmospheric Structure Instrument, HASI (in January 2005). From our results, we observe a temporal variation of the Titan atmospheric density in 2005-2013. The observed temporal variation is significant and it isn't due to the estimation uncertainty (5.8%, 1 sigma) of the density estimation methodology. Factors that contributed to this temporal variation have been conjectured but are largely unknown. The observed temporal variation will require synergetic analysis with measurements made by other Cassini science instruments and future years of laboratory and modeling efforts to solve. The estimated atmospheric density results are given in this paper help scientists to better understand and model the density structure of the Titan atmosphere.
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Reddy, A.
2017-12-01
Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.
Validation of Morphometric Analyses of Small-Intestinal Biopsy Readouts in Celiac Disease
Taavela, Juha; Koskinen, Outi; Huhtala, Heini; Lähdeaho, Marja-Leena; Popp, Alina; Laurila, Kaija; Collin, Pekka; Kaukinen, Katri; Kurppa, Kalle; Mäki, Markku
2013-01-01
Background Assessment of the gluten-induced small-intestinal mucosal injury remains the cornerstone of celiac disease diagnosis. Usually the injury is evaluated using grouped classifications (e.g. Marsh groups), but this is often too imprecise and ignores minor but significant changes in the mucosa. Consequently, there is a need for validated continuous variables in everyday practice and in academic and pharmacological research. Methods We studied the performance of our standard operating procedure (SOP) on 93 selected biopsy specimens from adult celiac disease patients and non-celiac disease controls. The specimens, which comprised different grades of gluten-induced mucosal injury, were evaluated by morphometric measurements. Specimens with tangential cutting resulting from poorly oriented biopsies were included. Two accredited evaluators performed the measurements in blinded fashion. The intraobserver and interobserver variations for villus height and crypt depth ratio (VH:CrD) and densities of intraepithelial lymphocytes (IELs) were analyzed by the Bland-Altman method and intraclass correlation. Results Unevaluable biopsies according to our SOP were correctly identified. The intraobserver analysis of VH:CrD showed a mean difference of 0.087 with limits of agreement from −0.398 to 0.224; the standard deviation (SD) was 0.159. The mean difference in interobserver analysis was 0.070, limits of agreement −0.516 to 0.375, and SD 0.227. The intraclass correlation coefficient in intraobserver variation was 0.983 and that in interobserver variation 0.978. CD3+ IEL density countings in the paraffin-embedded and frozen biopsies showed SDs of 17.1% and 16.5%; the intraclass correlation coefficients were 0.961 and 0.956, respectively. Conclusions Using our SOP, quantitative, reliable and reproducible morphometric results can be obtained on duodenal biopsy specimens with different grades of gluten-induced injury. Clinically significant changes were defined according to the error margins (2SD) of the analyses in VH:CrD as 0.4 and in CD3+-stained IELs as 30%. PMID:24146832
Burtis, James C; Sullivan, Patrick; Levi, Taal; Oggenfuss, Kelly; Fahey, Timothy J; Ostfeld, Richard S
2016-11-25
The incidence of Lyme disease shows high degrees of inter-annual variation in the northeastern United States, but the factors driving this variation are not well understood. Complicating matters, it is also possible that these driving factors may vary in regions with differing histories of Lyme disease endemism. We evaluated the effect of the number of hot (T > 25 °C), dry (precipitation = 0) days during the questing periods of the two immature Ixodes scapularis life stages (larval and nymphal) on inter-annual variation in Lyme disease incidence between 2000 and 2011 in long-term endemic versus recently endemic areas. We also evaluated the effect of summer weather on tick questing activity and the number of ticks found on small mammals between 1994 and 2012 on six sites in Millbrook, NY. The number of hot, dry days during the larval period of the previous year did not affect the human incidence of Lyme disease or the density of questing nymphs the following season. However, dry summer weather during the nymphal questing period had a significant negative effect on the incidence of Lyme disease in the long-term endemic areas, and on the density of questing nymphs. Summer weather conditions had a more pronounced effect on actively questing I. scapularis collected via dragging than on the number of ticks found feeding on small mammals. In recently endemic areas Lyme disease incidence increased significantly over time, but no trend was detected between disease incidence and dry summer weather. Recently endemic regions showed an increase in Lyme disease incidence over time, while incidence in long-term endemic regions appears to have stabilized. Only within the stabilized areas were we able to detect reduced Lyme disease incidence in years with hot, dry summer weather. These patterns were reflected in our field data, which showed that questing activity of nymphal I. scapularis was reduced by hot, dry summer weather.
Behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves
NASA Astrophysics Data System (ADS)
Gangwar, P. K.
2018-05-01
In this paper, CCW method has been used to study the behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves. The strength of overtaking waves is estimated under the assumption that both C+ and C- disturbances propagate in non-uniform region of same density distribution. It is assumed that the dusty gas is the mixture of a real gas and a large number of small spherical solid particles of uniform size. The solid particles are uniformly distributed in the medium. Maintaining equilibrium flow conditions, the expressions for shock strength has been derived both for freely propagation as well as under the effect of overtaking disturbances. The variation of all flow variables with propagation distance, mass concentration of solid particles in the mixture and the ratio of solid particles to the initial density of gas have been computed and discussed through graphs. It is found that the presence of dust particles in the gases medium has significant effects on the variation of flow variables and the shock is strengthened under the influence of overtaking disturbances. The results accomplished here been compared with those for ideal gas.
Compensation of long-range process effects on photomasks by design data correction
NASA Astrophysics Data System (ADS)
Schneider, Jens; Bloecker, Martin; Ballhorn, Gerd; Belic, Nikola; Eisenmann, Hans; Keogan, Danny
2002-12-01
CD requirements for advanced photomasks are getting very demanding for the 100 nm-node and below; the ITRS roadmap requires CD uniformities below 10 nm for the most critical layers. To reach this goal, statistical as well as systematic CD contributions must be minimized. Here, we focus on the reduction of systematic CD variations across the masks that may be caused by process effects, e.g. dry etch loading. We address this topic by compensating such effects via design data correction analogous to proximity correction. Dry etch loading is modeled by gaussian convolution of pattern densities. Data correction is done geometrically by edge shifting. As the effect amplitude has an order of magnitude of 10 nm this can only be done on e-beam writers with small address grids to reduce big CD steps in the design data. We present modeling and correction results for special mask patterns with very strong pattern density variations showing that the compensation method is able to reduce CD uniformity by 50-70% depending on pattern details. The data correction itself is done with a new module developed especially to compensate long-range effects and fits nicely into the common data flow environment.
Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling
NASA Astrophysics Data System (ADS)
Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.
2012-12-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data, thereby rendering this approach promising for application in LES.
Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E
2016-10-26
Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.
The Thermospheric Semiannual Density Response to Solar EUV Heating
2008-01-01
Keystone, CO. Cook, G.E., 1969. The semi-annual variation in the upper atmosphere: a review. Annales de Geophysique 25, 451. Jacchia, L.G., 1966. Density...variations in the heterosphere. Annales de Geophysique 22, 75. Jacchia, L.G., 1971a. Semiannual variation in the heterosphere: a reappraisal. Journal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Hughes, Annie; Schruba, Andreas
2016-11-01
The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high-fidelity, high-resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional “cloud properties” treatment. However, we argue thatmore » our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low- J {sup 12}CO data from recent surveys, we characterize the molecular ISM at 60 pc resolution in the Antennae, the Large Magellanic Cloud (LMC), M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and show galaxy-to-galaxy and intragalaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1 σ width of ∼0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.« less
Ionospheric effects of thunderstorms and lightning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lay, Erin H.
2014-02-03
Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less
Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M; Rodezno, Dayana C; Suarez, Carmen; Amores, Freddy; Feltus, Frank A; Mockaitis, Keithanne; Cornejo, Omar E; Motamayor, Juan C
2017-01-01
Cacao ( Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.
Fajardo, A
2018-05-01
The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Garza-Gisholt, Eduardo; Hemmi, Jan M.; Hart, Nathan S.; Collin, Shaun P.
2014-01-01
Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed ‘by eye’. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation ‘respects’ the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the ‘noise’ caused by artefacts and permits a clearer representation of the dominant, ‘real’ distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome. PMID:24747568
Borren, Alie; Moman, Maaike R; Groenendaal, Greetje; Boeken Kruger, Arto E; van Diest, Paul J; van der Groep, Petra; van der Heide, Uulke A; van Vulpen, Marco; Philippens, Marielle E P
2013-11-01
Focal boosting of prostate tumours to improve outcome, requires accurate tumour delineation. For this, the apparent diffusion coefficient (ADC) derived from diffusion-weighted MR imaging (DWI) seems a useful tool. On voxel level, the relationship between ADC and histological presence of tumour is, however, ambiguous. Therefore, in this study the relationship between ADC and histological variables was investigated on voxel level to understand the strengths and limitations of DWI for prostate tumour delineation. Twelve radical prostatectomy patients underwent a pre-operative 3.0T DWI exam and the ADC was calculated. From whole-mount histological sections cell density and glandular area were retrieved for every voxel. The distribution of all variables was described for tumour, peripheral zone (PZ) and central gland (CG) on regional and voxel level. Correlations between variables and differences between regions were calculated. Large heterogeneity of ADC on voxel level was observed within tumours, between tumours and between patients. This heterogeneity was reflected by the distribution of cell density and glandular area. On regional level, tumour was different from PZ having higher cell density (p = 0.007), less glandular area (p = 0.017) and lower ADCs (p = 0.017). ADC was correlated with glandular area (r = 0.402) and tumour volume (r = -0.608), but not with Gleason score. ADC tended to decrease with increasing cell density (r = -0.327, p = 0.073). On voxel level, correlations between ADC and histological variables varied among patients, for cell density ranging from r = -0.439 to r = 0.261 and for glandular area from r = 0.593 to r = 0.207. The variation in ADC can to a certain extent be explained by the variation in cell density and glandular area. The ADC is highly heterogeneous, which reflects the heterogeneity of malignant and benign prostate tissue. This heterogeneity might however obscure small tumours or parts of tumours. Therefore, DWI has to be used in the context of multiparametric MRI.
Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses
NASA Astrophysics Data System (ADS)
Khasa, S.; Yadav, Arti; Dahiya, M. S.; Seema, Ashima, Agarwal, A.
2015-06-01
The DC conductivities of glasses having composition x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3 (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO.23 Li2O.20Bi2O3.50B2O3 and 7V2O5.23Li2O.20Bi2O3.50B2O3 (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott's small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.
Simple model dielectric functions for insulators
NASA Astrophysics Data System (ADS)
Vos, Maarten; Grande, Pedro L.
2017-05-01
The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.
Feng, Jing; Duan, Wen-Biao; Chen, Li-Xin
2012-07-01
HOBO automatic weather stations were installed in the central parts and at the south, north, east, and west edges of large, medium, and small gaps in a Pinus koraiensis-dominated broadleaved mixed forest in Xiaoxing' anling Mountains to measure the air temperature, relative humidity, and photosynthetic photon flux density (PPFD) in these locations and the total radiation and precipitation in the gap centres from June to September 2010, taking the closed forest stand and open field as the controls. The differences in the microclimate between various size forest gaps and between the gap centers and their edges as well as the variations of the microclimatic factors over time were analyzed, and the effects of sunny and overcast days on the diurnal variations of the microclimatic factors within forest gaps were compared, aimed to offer basic data and practice reference for gap regeneration and sustainable management of Pinus koraiensis-dominated broadleaved mixed forest. The PPFD was decreased in the order of large gap, medium gap, and small gap. For the same gaps, the PPFD in gap centre was greater than that in gap edge. The mean monthly air temperature and total radiation in gap centres were declined in the sequence of July, June, August, and September, and the amplitudes of the two climatic factors were decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. The mean monthly relative humidity in gap centres dropped in the order of August, July, September, and June, and the amplitude of this climatic factor was decreased in the sequence of closed forest stand, small gap, medium gap, large gap, and open field. The total and monthly precipitations for the three different size gaps and open field during measurement period generally decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. In sunny days, the variations of PPFD, air temperature, and relative humidity were greater in large gap than in small gap, but in overcast days, it was in opposite.
NASA Astrophysics Data System (ADS)
Calabia, A.; Matsuo, T.; Jin, S.
2017-12-01
The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.
Enríquez, Susana; Pantoja-Reyes, Norma I
2005-09-01
The variation in seagrass morphology and the magnitude of leaf self-shading within the canopy of Thalassia testudinum, were compared among nine sites in a fringing reef lagoon. We found a significant variation in the growth-form of T. testudinum reflected in a 5.4-fold variation in the attenuation coefficient (K (d)) within the canopy. The largest morphological variation was observed in shoot density. Leaf biomass, leaf area index (LAI), and shoot density were positively associated with canopy-K (d) and with the percentage of surface irradiance received by the top of the seagrass canopy (% Es). These results provide an explanation for the consistent pattern of depth reduction in seagrass leaf biomass and shoot density reported in the literature. Shoot density and shoot size are two descriptors of the growth-form of T. testudinum related to its clonal life-form. Shoot size was not significantly correlated with canopy-K (d), nevertheless, it showed a significant effect on the slope of the relationship between shoot density and canopy-K (d). According to this model, shoot size also contributes to light attenuation within the seagrass canopy by increasing the effect of shoot density. This form-function analysis suggests that light may have a relevant role in the regulation of the optimal plant balance between horizontal (variation in shoot density) and vertical (variation in shoot size) growth of seagrasses. Other environmental factors and interactions also need to be examined to fully understand the mechanistic bases of the morphological responses of seagrasses to the environment.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Ding, Jie; Stopeck, Alison T; Gao, Yi; Marron, Marilyn T; Wertheim, Betsy C; Altbach, Maria I; Galons, Jean-Philippe; Roe, Denise J; Wang, Fang; Maskarinec, Gertraud; Thomson, Cynthia A; Thompson, Patricia A; Huang, Chuan
2018-04-06
Increased breast density is a significant independent risk factor for breast cancer, and recent studies show that this risk is modifiable. Hence, breast density measures sensitive to small changes are desired. Utilizing fat-water decomposition MRI, we propose an automated, reproducible breast density measurement, which is nonionizing and directly comparable to mammographic density (MD). Retrospective study. The study included two sample sets of breast cancer patients enrolled in a clinical trial, for concordance analysis with MD (40 patients) and reproducibility analysis (10 patients). The majority of MRI scans (59 scans) were performed with a 1.5T GE Signa scanner using radial IDEAL-GRASE sequence, while the remaining (seven scans) were performed with a 3T Siemens Skyra using 3D Cartesian 6-echo GRE sequence with a similar fat-water separation technique. After automated breast segmentation, breast density was calculated using FraGW, a new measure developed to reliably reflect the amount of fibroglandular tissue and total water content in the entire breast. Based on its concordance with MD, FraGW was calibrated to MR-based breast density (MRD) to be comparable to MD. A previous breast density measurement, Fra80-the ratio of breast voxels with <80% fat fraction-was also calculated for comparison with FraGW. Pearson correlation was performed between MD (reference standard) and FraGW (and Fra80). Test-retest reproducibility of MRD was evaluated using the difference between test-retest measures (Δ 1-2 ) and intraclass correlation coefficient (ICC). Both FraGW and Fra80 were strongly correlated with MD (Pearson ρ: 0.96 vs. 0.90, both P < 0.0001). MRD converted from FraGW showed higher test-retest reproducibility (Δ 1-2 variation: 1.1% ± 1.2%; ICC: 0.99) compared to MD itself (literature intrareader ICC ≤0.96) and Fra80. The proposed MRD is directly comparable with MD and highly reproducible, which enables the early detection of small breast density changes and treatment response. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.
Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S
2018-02-26
In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose area with 4% and 0.3 mm criteria in dose and distance. Our new tissue segmentation method was developed for 40kVp CBCT images. Both density and elemental composition are assigned to each voxel by using a relationship between HU and the product ρZ eff . The method, validated by comparing measurements and calculations, enables more accurate small animal dose distribution calculated on low energy CBCT images.
The study on the effect of pattern density distribution on the STI CMP process
NASA Astrophysics Data System (ADS)
Sub, Yoon Myung; Hian, Bernard Yap Tzen; Fong, Lee It; Anak, Philip Menit; Minhar, Ariffin Bin; Wui, Tan Kim; Kim, Melvin Phua Twang; Jin, Looi Hui; Min, Foo Thai
2017-08-01
The effects of pattern density on CMP characteristics were investigated using specially designed wafer for the characterization of pattern-dependencies in STI CMP [1]. The purpose of this study is to investigate the planarization behavior based on a direct STI CMP used in cerium (CeO2) based slurry system in terms of pattern density variation. The minimal design rule (DR) of 180nm generation technology node was adopted for the mask layout. The mask was successfully applied for evaluation of a cerium (CeO2) abrasive based direct STI CMP process. In this study, we described a planarization behavior of the loading-effects of pattern density variation which were characterized with layout pattern density and pitch variations using masks mentioned above. Furthermore, the characterizing pattern dependent on the variations of the dimensions and spacing features, in thickness remaining after CMP, were analyzed and evaluated. The goal was to establish a concept of library method which will be used to generate design rules reducing the probability of CMP-related failures. Details of the characterization were measured in various layouts showing different pattern density ranges and the effects of pattern density on STI CMP has been discussed in this paper.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Farmer, Donald A.
1998-01-01
Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.
Density Anomalies in the Mantle and the Gravitational Core-Mantle Interaction
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Liu, Lanbo
2003-01-01
Seismic studies suggest that the bulk of the mantle is heterogeneous, with density variations in depth as well as in horizontal directions (latitude and longitude). This density variation produces a three- dimensional gravity field throughout the Earth. On the other hand, the core density also varies in both time and space, due to convective core flow. Consequently, the fluid outer core and the solid mantle interact gravitationally due to the mass anomalies in both regions. This gravitational core-mantle interaction could play a significant role in exchange of angular momentum between the core and the mantle, and thus the change in Earth's rotation on time scales of decades and longer. Aiming at estimating the significance of the gravitational core-mantle interaction on Earth's rotation variation, we introduce in our MoSST core dynamics model a heterogeneous mantle, with a density distribution derived from seismic results. In this model, the core convection is driven by the buoyancy forces. And the density variation is determined dynamically with the convection. Numerical simulation is carried out with different parameter values, intending to extrapolate numerical results for geophysical implications.
NASA Astrophysics Data System (ADS)
Su, X.; Shum, C. K.; Guo, J.; Howat, I.; Jezek, K. C.; Luo, Z.; Zhou, Z.
2017-12-01
Satellite altimetry has been used to monitor elevation and volume change of polar ice sheets since the 1990s. In order to derive mass change from the measured volume change, different density assumptions are commonly used in the research community, which may cause discrepancies on accurately estimating ice sheets mass balance. In this study, we investigate the inter-annual anomalies of mass change from GRACE gravimetry and elevation change from Envisat altimetry during years 2003-2009, with the objective of determining inter-annual variations of snow/firn density over the Greenland ice sheet (GrIS). High positive correlations (0.6 or higher) between these two inter-annual anomalies at are found over 93% of the GrIS, which suggests that both techniques detect the same geophysical process at the inter-annual timescale. Interpreting the two anomalies in terms of near surface density variations, over 80% of the GrIS, the inter-annual variation in average density is between the densities of snow and pure ice. In particular, at the Summit of Central Greenland, we validate the satellite data estimated density with the in situ data available from 75 snow pits and 9 ice cores. This study provides constraints on the currently applied density assumptions for the GrIS.
New support for an old hypothesis: density affects extra-pair paternity
Mayer, Christian; Pasinelli, Gilberto
2013-01-01
Density has been suggested to affect variation in extra-pair paternity (EPP) in avian mating systems, because increasing density promotes encounter rates and thus mating opportunities. However, the significance of density affecting EPP variation in intra- and interspecific comparisons has remained controversial, with more support from intraspecific comparisons. Neither experimental nor empirical studies have consistently provided support for the density hypothesis. Testing the density hypothesis is challenging because density measures may not necessarily reflect extra-pair mating opportunities, mate guarding efforts may covary with density, populations studied may differ in migratory behavior and/or climatic conditions, and variation in density may be insufficient. Accounting for these potentially confounding factors, we tested whether EPP rates within and among subpopulations of the reed bunting (Emberiza schoeniclus) were related to density. Our analyses were based on data from 13 subpopulations studied over 4 years. Overall, 56.4% of totally 181 broods contained at least one extra-pair young (EPY) and 37.1% of totally 669 young were of extra-pair origin. Roughly 90% of the extra-pair fathers were from the adjacent territory or from the territory after the next one. Within subpopulations, the proportion of EPY in broods was positively related to local breeding density. Similarly, among subpopulations, proportion of EPY was positively associated with population density. EPP was absent in subpopulations consisting of single breeding pairs, that is, without extra-pair mating opportunities. Our study confirms that density is an important biological factor, which significantly influences the amount of EPP within and among subpopulations, but also suggests that other mechanisms influence EPP beyond the variation explained by density. PMID:23533071
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
NASA Astrophysics Data System (ADS)
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Ground level measurements of air conductivities under Florida thunderstorms
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J.; Krider, E. P.
1992-01-01
Values of the positive and negative polar conductivities under summer thunderstorms in Florida are highly variable and exhibit a significant electrode effect, but the total conductivity usually remains close to values found in fair weather, 0.4 to 1.8 x 10 exp -14 S/m. With these values a method proposed by Krider and Musser (1982) for estimating the total conductivity from changes in the slope of the electric field recovery following a lightning discharge will be extremely sensitive to small time variations in the local Maxwell current density and must be modified to include these effects.
A 3D model of polarized dust emission in the Milky Way
NASA Astrophysics Data System (ADS)
Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques
2018-05-01
We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.
Estimation of density of mongooses with capture-recapture and distance sampling
Corn, J.L.; Conroy, M.J.
1998-01-01
We captured mongooses (Herpestes javanicus) in live traps arranged in trapping webs in Antigua, West Indies, and used capture-recapture and distance sampling to estimate density. Distance estimation and program DISTANCE were used to provide estimates of density from the trapping-web data. Mean density based on trapping webs was 9.5 mongooses/ha (range, 5.9-10.2/ha); estimates had coefficients of variation ranging from 29.82-31.58% (X?? = 30.46%). Mark-recapture models were used to estimate abundance, which was converted to density using estimates of effective trap area. Tests of model assumptions provided by CAPTURE indicated pronounced heterogeneity in capture probabilities and some indication of behavioral response and variation over time. Mean estimated density was 1.80 mongooses/ha (range, 1.37-2.15/ha) with estimated coefficients of variation of 4.68-11.92% (X?? = 7.46%). Estimates of density based on mark-recapture data depended heavily on assumptions about animal home ranges; variances of densities also may be underestimated, leading to unrealistically narrow confidence intervals. Estimates based on trap webs require fewer assumptions, and estimated variances may be a more realistic representation of sampling variation. Because trap webs are established easily and provide adequate data for estimation in a few sample occasions, the method should be efficient and reliable for estimating densities of mongooses.
NASA Astrophysics Data System (ADS)
Zwarts, Leo; Wanink, Jan H.
For several reasons, waders in the Wadden Sea face a large seasonal and annual variation in their food supply. Observations on a tidal flat in the Dutch Wadden Sea have shown that: - (1) The average energy density of ten invertebrate prey species varies between 21 and 23 kJ·g -1 AFDW. In Scrobicularia plana and Mya arenaria, but not in Macoma balthica, the energy density is 10% lower in winter than in summer. - (2) Depending on the species, body weights of prey of similar size are 30 to 60% lower in winter than in summer. - (3) The year-to-year fluctuation in standing-crop biomass is larger in some species than in others, the difference depending mainly on the frequency of successful recruitment. The overall biomass of the macrobenthos in winter is half of that in summer, but the timing of the peak biomass differs per species. - (4) The burying depth varies per species: Cerastoderma edule live just beneath the surface, while M. balthica, S. plana, M. arenaria, Arenicola marina and Nereis diversicolor bury more deeply and the majority of these prey live out of reach of the bird's bill. In all six species, burying depth increases with size. There is no seasonal variation in depth of C. edule and M. arenaria, but the four other species live at most shallow depth in early summer and most deeply in midwinter. Burying depths in winter vary from year to year, but are unrelated to temperature. Neither has temperature any effect on depth within months. For knot Calidris canutus feeding on M. balthica, the fluctuation in the accessible fraction was the main source of variation in the biomass of prey that is actually harvestable, i.e. the biomass of prey of suitable size that is accessible. Accordingly, the paper reviews the available data on the temporal variations in accessibility, detectability, ingestibility, digestibility and profitability of prey for waders. Only a small part of the prey is harvestable since many accessible prey are ignored because of their low profitability, while many profitable prey are inaccessible. The profitability of prey depends on their size and weight but also on their depth in the mud, since handling time increases with burying depth. A simple biomechanical rule explains why the handling time of small prey increases with bill length and why large, long-billed waders ignore a disproportionately larger part of the small prey. The fraction detectable for visually feeding waders is usually very low, especially when the temperature of the substrate is below 3-6°C. Waders vary their prey choice over the year in response to the changes in the availability and profitability of their different prey species. The food supply harvestable by waders is much lower in winter than in summer. For waders wintering in the Wadden Sea, the food supply may be characterized as unpredictable and usually meagre. Waders wintering in NW Europe are concentrated in coastal sites where the average surface temperature is above 3°C. This probably cannot be explained by a greater burying depth, and only partly by a lower body condition, of prey in colder areas. Yet the harvestable fraction is lower in colder sites, especially for sight-feeding waders, as invertebrates are less active at low temperatures. However, the lower energetic cost of living and reduced chances of the prey being covered by ice may also contribute to the waders' preference for warmer sites.
NASA Technical Reports Server (NTRS)
Seidman, Oscar; Neihouse, A I
1940-01-01
The reported tests are a continuation of an NACA investigation being made in the free-spinning wind tunnel to determine the effects of independent variations in load distribution, wing and tail arrangement, and control disposition on the spin characteristics of airplanes. The standard series of tests was repeated to determine the effect of airplane relative density. Tests were made at values of the relative-density parameter of 6.8, 8.4 (basic), and 12.0; and the results were analyzed. The tested variations in the relative-density parameter may be considered either as variations in the wing loading of an airplane spun at a given altitude, with the radii of gyration kept constant, or as a variation of the altitude at which the spin takes place for a given airplane. The lower values of the relative-density parameter correspond to the lower wing loadings or to the lower altitudes of the spin.
NASA Astrophysics Data System (ADS)
Gong, Zheng; Li, Haibing; Tang, Lijun; Lao, Changling; Zhang, Lei; Li, Li
2017-05-01
We investigated the real time drilling mud gas of the Wenchuan earthquake Fault Scientific Drilling Hole-1 and their responses to 3918 small-moderate aftershocks happened in the Longmenshan fault zone. Gas profiles for Ar, CH4, He, 222Rn, CO2, H2, N2, O2 are obtained. Seismic wave amplitude, energy density and static strain are calculated to evaluate their power of influence to the drilling site. Mud gases two hours before and after each earthquake are carefully analyzed. In total, 25 aftershocks have major mud gas response, the mud gas concentrations vary dramatically immediately or minutes after the earthquakes. Different gas species respond to earthquakes in different manners according to local lithology encountered during the drill. The gas variations are likely controlled by dynamic stress changes, rather than static stress changes. They have the seismic energy density between 10-5 and 1.0 J/m3 whereas the static strain are mostly less than 10-8. We suggest that the limitation of the gas sources and the high hydraulic diffusivity of the newly ruptured fault zone could have inhibited the drilling mud gas behaviors, they are only able to respond to a small portion of the aftershocks. This work is important for the understanding of earthquake related hydrological changes.
Direct probe of the variability of Coulomb correlation in iron pnictide superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilmercati, P.; Parks Cheney, C.; Bondino, F.
2012-01-01
We use core-valence-valence Auger spectra to probe the Coulomb repulsion between holes in the valence band of Fe pnictide superconductors. By comparing the two-hole final-state spectra to density functional theory calculations of the single-particle density of states, we extract a measure of the electron correlations that exist in these systems. Our results show that the Coulomb repulsion is highly screened and can definitively be considered as weak. We also find that there are differences between the 1111 and 122 families and even a small variation as a function of the doping x in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. We discussmore » how the values of the hole-hole Coulomb repulsion obtained from our study relate to the onsite Coulomb parameter U used in model and first-principles calculations based on dynamical mean field theory and establish an upper bound for its effective value. Our results impose stringent constraints on model-based phase diagrams that vary with the quantity U or U/W by restricting the latter to a rather small range of values.« less
Liquid Jet Cavitation via Molecular Dynamics
NASA Astrophysics Data System (ADS)
Ashurst, W. T.
1997-11-01
A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).
Reis, Claudia; De-Deus, Gustavo; Marins, Juliana; Fidel, Sandra; Fidel, Rivail; Paciornik, Sidnei
2012-08-01
To introduce a mapping method to characterize large dentin surfaces using digital microscopy and to discuss the advantages and possible applications of the method. Twenty unerupted third molars were sectioned transversally exposing coronal dentin surfaces. The microscopic mosaic method was used to generate a large field image with the resolution necessary to measure characteristics of dentin tubules. The AxioVision 4.7 software was used to control a motorized optical microscope and the process of acquiring approximately 400 small images to generate each dentin mosaic. An image analysis routine measured the number of tubules (NT) and the ratio between the total area of tubules and the area of the mosaic - the area fraction (AF) - of each mosaic. An automatic procedure transformed the mosaic image into a color map, providing a direct visual representation of tubule density through colors. The dentin maps were used for a comparative qualitative analysis of tubule density distribution of each sample. The results for NT (92450 to 196029 tubules/sample) and AF (4.12% to 11.10%) demonstrated a wide variation among dentin samples. The maps confirmed the microstructure variety, also revealing strong local variations in tubule density within each sample. The mapping method was able to perform dentin morphology characterization and is a valuable tool for producing a baseline for dentin adhesion studies. The method could be also useful in determining the real contribution of dentin structures to the final adhesion quality.
Biological responses to disturbance from simulated deep-sea polymetallic nodule mining.
Jones, Daniel O B; Kaiser, Stefanie; Sweetman, Andrew K; Smith, Craig R; Menot, Lenaick; Vink, Annemiek; Trueblood, Dwight; Greinert, Jens; Billett, David S M; Arbizu, Pedro Martinez; Radziejewska, Teresa; Singh, Ravail; Ingole, Baban; Stratmann, Tanja; Simon-Lledó, Erik; Durden, Jennifer M; Clark, Malcolm R
2017-01-01
Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.
Biological responses to disturbance from simulated deep-sea polymetallic nodule mining
Kaiser, Stefanie; Sweetman, Andrew K.; Smith, Craig R.; Menot, Lenaick; Vink, Annemiek; Trueblood, Dwight; Greinert, Jens; Billett, David S. M.; Arbizu, Pedro Martinez; Radziejewska, Teresa; Singh, Ravail; Ingole, Baban; Stratmann, Tanja; Simon-Lledó, Erik; Durden, Jennifer M.; Clark, Malcolm R.
2017-01-01
Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities. PMID:28178346
McCollough, Cynthia H; Ulzheimer, Stefan; Halliburton, Sandra S; Shanneik, Kaiss; White, Richard D; Kalender, Willi A
2007-05-01
To develop a consensus standard for quantification of coronary artery calcium (CAC). A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size-specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size-based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comparable noise values. Calculation of the calcium mass score was standardized, and the variance in Agatston, volume, and mass scores was compared among CT systems. Use of the recommended scanning parameters resulted in similar noise for small, medium-size, and large phantoms with all multi-detector row CT scanners. Volume scores had greater interscanner variance than did Agatston and calcium mass scores. Use of a fixed calcium hydroxyapatite density threshold (100 mg/cm(3)), as compared with use of a fixed CT number threshold (130 HU), reduced interscanner variability in Agatston and calcium mass scores. With use of a density segmentation threshold, the calcium mass score had the smallest variance as a function of patient size. Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.
Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A
2017-01-01
Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Yasmin; Thomas, C David L.; Clement, John G
2013-04-09
In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within themore » femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm 3 of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p < 0.05). The density of the combined anterior and posterior regions was also significantly lower (p = 0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p = 0.004) and flattened (p = 0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.« less
The behaviour of platelets in natural diamonds and the development of a new mantle thermometer
NASA Astrophysics Data System (ADS)
Speich, L.; Kohn, S. C.; Bulanova, G. P.; Smith, C. B.
2018-05-01
Platelets are one of the most common defects occurring in natural diamonds but their behaviour has not previously been well understood. Recent technical advances, and a much improved understanding of the correct interpretation of the main infrared (IR) feature associated with platelets (Speich et al. 2017), facilitated a systematic study of platelets in 40 natural diamonds. Three different types of platelet behaviour were identified here. Regular diamonds show linear correlations between both B-centre concentrations and platelet density and also between platelet size and platelet density. Irregular diamonds display reduced platelet density due to platelet breakdown, anomalously large or small platelets and a larger platelet size distribution. These features are indicative of high mantle storage temperatures. Finally, a previously unreported category of subregular diamonds is defined. These diamonds experienced low mantle residence temperatures and show smaller than expected platelets. Combining the systematic variation in platelet density with temperatures of mantle storage, determined by nitrogen aggregation, we can demonstrate that platelet degradation proceeds at a predictable rate. Thus, in platelet-bearing diamonds where N aggregation is complete, an estimate of annealing temperature can now be made for the first time.
NASA Astrophysics Data System (ADS)
Rezaei Kh., S.; Bailer-Jones, C. A. L.; Hanson, R. J.; Fouesneau, M.
2017-02-01
We present a non-parametric model for inferring the three-dimensional (3D) distribution of dust density in the Milky Way. Our approach uses the extinction measured towards stars at different locations in the Galaxy at approximately known distances. Each extinction measurement is proportional to the integrated dust density along its line of sight (LoS). Making simple assumptions about the spatial correlation of the dust density, we can infer the most probable 3D distribution of dust across the entire observed region, including along sight lines which were not observed. This is possible because our model employs a Gaussian process to connect all LoS. We demonstrate the capability of our model to capture detailed dust density variations using mock data and simulated data from the Gaia Universe Model Snapshot. We then apply our method to a sample of giant stars observed by APOGEE and Kepler to construct a 3D dust map over a small region of the Galaxy. Owing to our smoothness constraint and its isotropy, we provide one of the first maps which does not show the "fingers of God" effect.
CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex
NASA Astrophysics Data System (ADS)
Hayakawa, Takahiro; Cambrésy, Laurent; Onishi, Toshikazu; Mizuno, Akira; Fukui, Yasuo
2001-12-01
We carried out 13CO (J = 1 -- 0) and C18O (J = 1 -- 0) observations of the Chamaeleon II--III dark-cloud complex with the NANTEN radio telescope. The column densities of both molecular isotopes were derived assuming LTE. The AV values were obtained by scaling the AV values that were derived using an adaptive-grid star-count method applied to the DENIS J-band data. We established the AV--CO isotope column-density relations in Cha II and III, and compared them with those in Cha I. The slopes of the AV--13CO relations for Cha II and III are steeper than that for Cha I. Those of the AV -- C18O relations are similar among the three clouds. The total column density ratio, N(13O) / N(C18O, in Cha I tends to be small compared with those in Cha II or Cha III; the ratios range from ~ 5 to ~ 25 at low extinction in Cha II and III, but at most ~ 10 in Cha I. We suggest that the increase of N(13CO) due to the 13CO formation process causes cloud-to-cloud variations in the AV -- N(13CO) correlation.
Shot-to-shot reproducibility of a self-magnetically insulated ion diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.
In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300-500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250-300 kV). The ion current density was 10-70 A/cm{sup 2} depending on the diode geometry. The beam was composed from carbon ions (80%-85%) and protons. It was found that shot to shotmore » variation in the ion current density was about 35%-40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%-20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.« less
Pompa-García, Marín; Venegas-González, Alejandro
2016-01-01
Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries. PMID:27272519
Shot-to-shot reproducibility of a self-magnetically insulated ion diode.
Pushkarev, A I; Isakova, Yu I; Khailov, I P
2012-07-01
In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300-500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250-300 kV). The ion current density was 10-70 A/cm(2) depending on the diode geometry. The beam was composed from carbon ions (80%-85%) and protons. It was found that shot to shot variation in the ion current density was about 35%-40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%-20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.
Dunham, J.B.; Cade, B.S.; Terrell, J.W.
2002-01-01
We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.
Pompa-García, Marín; Venegas-González, Alejandro
2016-01-01
Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.
NASA Astrophysics Data System (ADS)
Parfenov, S. Yu.; Semenov, D. A.; Henning, Th.; Shapovalova, A. S.; Sobolev, A. M.; Teague, R.
2017-06-01
The recent detection of gas-phase methanol (CH3OH) lines in the disc of TW Hya by Walsh et al. provided the first observational constraints on the complex O-bearing organic content in protoplanetary discs. The emission has a ring-like morphology, with a peak at ˜30-50 au and an inferred column density of ˜3-6 × 1012 cm-2. A low CH3OH fractional abundance of ˜0.3-4 × 10-11 (with respect to H2) is derived, depending on the assumed vertical location of the CH3OH molecular layer. In this study, we use a thermochemical model of the TW Hya disc, coupled with the alchemic gas-grain chemical model, assuming laboratory-motivated, fast diffusivities of the surface molecules to interpret the CH3OH detection. Based on this disc model, we performed radiative transfer calculations with the lime code and simulations of the observations with the casa simulator. We found that our model allows us to reproduce the observations well. The CH3OH emission in our model appears as a ring with radius of ˜60 au. Synthetic and observed line flux densities are equal within the rms noise level of observations. The synthetic CH3OH spectra calculated assuming local thermodynamic equilibrium (LTE) can differ by up to a factor of 3.5 from the non-LTE spectra. For the strongest lines, the differences between LTE and non-LTE flux densities are very small and practically negligible. Variations in the diffusivity of the surface molecules can lead to variations of the CH3OH abundance and, therefore, line flux densities by an order of magnitude.
Saroka, Kevin S.; Vares, David E.; Persinger, Michael A.
2016-01-01
In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6–16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7–8 Hz), second (13–14 Hz) and third (19–20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the ‘best-of-fitness’ of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity. PMID:26785376
Saroka, Kevin S; Vares, David E; Persinger, Michael A
2016-01-01
In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.
NASA Astrophysics Data System (ADS)
Vanwalleghem, T.; Román, A.; Giraldez, J. V.
2016-12-01
There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Code of Federal Regulations, 2014 CFR
2014-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Code of Federal Regulations, 2012 CFR
2012-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Opposing effects of fire severity on climate feedbacks in Siberian larch forests
NASA Astrophysics Data System (ADS)
Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.
2017-12-01
Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that may lead to opposing climate feedbacks. At effectively large scales these changes constitute positive and negative climate feedbacks, respectively. Accurate predictive understanding of terrestrial Arctic climate feedbacks requires improved knowledge regarding the ecological consequences of changing fire regimes in Siberian boreal forests.
Vertical heterogeneity in predation pressure in a temperate forest canopy
Aikens, Kathleen R.; Buddle, Christopher M.
2013-01-01
The forest canopy offers a vertical gradient across which variation in predation pressure implies variation in refuge quality for arthropods. Direct and indirect experimental approaches were combined to assess whether canopy strata differ in ability to offer refuge to various arthropod groups. Vertical heterogeneity in impact of avian predators was quantified using exclosure cages in the understory, lower, mid, and upper canopy of a north-temperate deciduous forest near Montreal, Quebec. Bait trials were completed in the same strata to investigate the effects of invertebrate predators. Exclusion of birds yielded higher arthropod densities across all strata, although treatment effects were small for some taxa. Observed gradients in predation pressure were similar for both birds and invertebrate predators; the highest predation pressure was observed in the understory and decreased with height. Our findings support a view of the forest canopy that is heterogeneous with respect to arthropod refuge from natural enemies. PMID:24010017
Neutral winds and electric fields from model studies using reduced ionograms
NASA Technical Reports Server (NTRS)
Baran, D. E.
1974-01-01
A relationship between the vertical component of the ion velocity and electron density profiles derived from reduced ionograms is developed. Methods for determining the horizontal components of the neutral winds and electric fields by using this relationship and making use of the variations of the inclinations and declinations of the earth's magnetic field are presented. The effects that electric fields have on the neutral wind calculations are estimated to be small but not second order. Seasonal and latitudinal variations of the calculated neutral winds are presented. From the calculated neutral winds a new set of neutral pressure gradients is determined. The new pressure gradients are compared with those generated from several static neutral atmospheric models. Sensitivity factors relating the pressure gradients and neutral winds are calculated and these indicate that mode coupling and harmonic generation are important to studies which assume linearized theories.
On the nature of S II emission from Jupiter's hot plasma torus
NASA Technical Reports Server (NTRS)
Brown, R. A.; Shemansky, D. E.
1982-01-01
An effective electron temperature T(e) of 80,000 K is indicated by the Voyager 1 encounter Jupiter hot torus emission rates in the 6731, 1256, 911 and reclassified 765 A transitions of S II. A set of 53 measurements of the S II red line doublet obtained at 5.9 Jupiter radii shows strong, irregular fluctuations in intensity, but no variation in the line ratio. At this distance from Jupiter, the torus is found to be longitudinally uniform in density; this is consonant with Voyager UVS findings, but contrary to magnetic anomaly model predictions. It is suggested that presently unidentified ion-ion and/or iron-atom reactions are responsible for the S II component irregular variations, in view of the fact that electron properties are regular and variable only over a small range in the hot torus at 5.9 Jupiter radii.
Applications of thermal remote sensing to detailed ground water studies
NASA Technical Reports Server (NTRS)
Souto-Maior, J.
1973-01-01
Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.
The 11.2 μm emission of PAHs in astrophysical objects
NASA Astrophysics Data System (ADS)
Candian, A.; Sarre, P. J.
2015-04-01
The 11.2-μm emission band belongs to the family of the `unidentified' infrared emission bands seen in many astronomical environments. In this work, we present a theoretical interpretation of the band characteristics and profile variation for a number of astrophysical sources in which the carriers are subject to a range of physical conditions. The results of Density Functional Theory calculations for the solo out-of-plane vibrational bending modes of large polycyclic aromatic hydrocarbon (PAH) molecules are used as input for a detailed emission model which includes the temperature and mass dependence of PAH band wavelength, and a PAH mass distribution that varies with object. Comparison of the model with astronomical spectra indicates that the 11.2-μm band asymmetry and profile variation can be explained principally in terms of the mass distribution of neutral PAHs with a small contribution from anharmonic effects.
Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P
2017-03-01
Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.
Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M.; Rodezno, Dayana C.; Suarez, Carmen; Amores, Freddy; Feltus, Frank A.; Mockaitis, Keithanne; Cornejo, Omar E.; Motamayor, Juan C.
2017-01-01
Cacao (Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance. PMID:29259608
Optical and transport properties of dense liquid silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Tingting; Millot, Marius; Kraus, Richard G.
2015-06-15
Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less
Density, Velocity and Ionization Structure in Accretion-Disc Winds
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Long, Knox
2004-01-01
This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.
Near equilibrium dynamics of nonhomogeneous Kirchhoff filaments in viscous media
NASA Astrophysics Data System (ADS)
Fonseca, A. F.; de Aguiar, M. A.
2001-01-01
We study the near equilibrium dynamics of nonhomogeneous elastic filaments in viscous media using the Kirchhoff model of rods. Viscosity is incorporated in the model as an external force, which we approximate by the resistance felt by an infinite cylinder immersed in a slowly moving fluid. We use the recently developed method of Goriely and Tabor [Phys. Rev. Lett. 77, 3537 (1996); Physica D 105, 20 (1997); 105, 45 (1997)] to study the dynamics in the vicinity of the simplest equilibrium solution for a closed rod with nonhomogeneous distribution of mass, namely, the planar ring configuration. We show that small variations of the mass density along the rod are sufficient to couple the symmetric modes of the homogeneous rod problem, producing asymmetric deformations that modify substantially the dynamical coiling, even at quite low Reynolds number. The higher-density segments of the rod tend to become more rigid and less coiled. We comment on possible applications to DNA.
Near equilibrium dynamics of nonhomogeneous Kirchhoff filaments in viscous media.
Fonseca, A F; de Aguiar, M A
2001-01-01
We study the near equilibrium dynamics of nonhomogeneous elastic filaments in viscous media using the Kirchhoff model of rods. Viscosity is incorporated in the model as an external force, which we approximate by the resistance felt by an infinite cylinder immersed in a slowly moving fluid. We use the recently developed method of Goriely and Tabor [Phys. Rev. Lett. 77, 3537 (1996); Physica D 105, 20 (1997); 105, 45 (1997)] to study the dynamics in the vicinity of the simplest equilibrium solution for a closed rod with nonhomogeneous distribution of mass, namely, the planar ring configuration. We show that small variations of the mass density along the rod are sufficient to couple the symmetric modes of the homogeneous rod problem, producing asymmetric deformations that modify substantially the dynamical coiling, even at quite low Reynolds number. The higher-density segments of the rod tend to become more rigid and less coiled. We comment on possible applications to DNA.
Geographic distribution of physicians in Portugal.
Isabel, Correia; Paula, Veiga
2010-08-01
The main goals of this paper are to (1) analyse the inequality in geographic distribution of physicians and its evolution, (2) estimate the determinants of physician density, and (3) assess the importance of competitive and agglomerative forces in location decisions. The analysis of the geographic distribution of physicians is based on the ratio of general practitioners (GPs) and specialists to 1,000 inhabitants. The inequality is measured using Gini indices, coefficients of variation, and physician-to-population ratios. The econometric models were estimated by ordinary least squares. The data used refer to 1996 and 2007. The impact of the growing number of physicians, and therefore potential increased competition, on geographic distribution during the period studied was small. Nonetheless, there is evidence of competitive forces acting on the dynamics of doctor localisation. Geographic disparities in physician density are still high, and appear to be due mainly to geographic income inequality.
Observations of neutral circulation at mid-latitudes during the Equinox Transition Study
NASA Technical Reports Server (NTRS)
Buonsanto, M. J.; Salah, J. E.; Miller, K. L.; Oliver, W. L.; Burnside, R. G.; Richards, P. G.
1988-01-01
Measurements of ion drift velocity made by the Millstone Hill incoherent scatter radar have been used to calculate the meridional neutral wind velocity during the Sept. 17 to 24, 1984 period. Strong daytime southward neutral surges were observed during the magnetically disturbed days of September 19 and 23, in contrast to the small daytime winds obtained as expected during the magnetically quiet days. The surge on September 19 was also seen at Arecibo. In addition, two approaches have been used to calculate the meridional wind component from the radar-derived height of the F-layer electron density peak. Results confirm the wind surge, particularly when the strong electric fields measured during the disturbed days are included in the calculations. The two approaches for the F-layer peak wind calculations are applied to the radar-derived electron density peak height as a function of latitude to study the variation of the southward daytime surges with latitude.
Small scale H I structure and the soft X-ray background
NASA Technical Reports Server (NTRS)
Jahoda, K.; Mccammon, D.; Lockman, F. J.
1986-01-01
The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.
Three-dimensional compact explicit-finite difference time domain scheme with density variation
NASA Astrophysics Data System (ADS)
Tsuchiya, Takao; Maruta, Naoki
2018-07-01
In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.
Harold S.J. Zald; Thomas A. Spies; Rupert Seidl; Robert J. Pabst; Keith A. Olsen; Ashley Steel
2016-01-01
Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and...
Graphene addition to MgB{sub 2} superconductor obtained by ex-situ spark plasma sintering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldica, G.; Burdusel, M.; Popa, S.
Highlights: • Graphene-added dense MgB{sub 2} was prepared by ex-situ spark plasma sintering. • There is a limited interaction between graphene and MgB{sub 2}. • Addition of graphene (G) shows a small enhancement of J{sub c} and μ{sub 0}H{sub irr}. • G is one of the least effective C-containing additions. - Abstract: Graphene nanopowder (G) with average thickness particle size of about 6–8 nm was added to MgB{sub 2} commercial powder. Starting composition was (MgB{sub 2}){sub (1−x)}(G){sub x}, x = 0.0125, 0.025, 0.05. Processing was performed by Spark Plasma Sintering (SPS) technique. All added samples have high density (above 95%).more » The critical temperature (T{sub c}) and the lattice parameter a (c-axis lattice parameter is constant) show a small variation suggesting that carbon substitution for boron is low. TEM observations show the presence of un-reacted graphene plates supporting the T{sub c} and structural results. It also indicates that G-addition does not modify the MgB{sub 2} microstructure. Despite this, there is an optimum doped sample (MgB{sub 2}){sub 0.9875}(G){sub 0.0125} for which the critical current density at temperatures below 25 K is slightly higher at high magnetic fields than for the pristine sample. The addition of G is found as one of the least effective C-source additions enhancing J{sub c}. We discuss results as being strongly related to variation of the residual stress.« less
MO-FG-204-06: A New Algorithm for Gold Nano-Particle Concentration Identification in Dual Energy CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Shen, C; Ng, M
Purpose: Gold nano-particle (GNP) has recently attracted a lot of attentions due to its potential as an imaging contrast agent and radiotherapy sensitiser. Imaging the GNP at its low contraction is a challenging problem. We propose a new algorithm to improve the identification of GNP based on dual energy CT (DECT). Methods: We consider three base materials: water, bone, and gold. Determining three density images from two images in DECT is an under-determined problem. We propose to solve this problem by exploring image domain sparsity via an optimization approach. The objective function contains four terms. A data-fidelity term ensures themore » fidelity between the identified material densities and the DECT images, while the other three terms enforces the sparsity in the gradient domain of the three images corresponding to the density of the base materials by using total variation (TV) regularization. A primal-dual algorithm is applied to solve the proposed optimization problem. We have performed simulation studies to test this model. Results: Our digital phantom in the tests contains water, bone regions and gold inserts of different sizes and densities. The gold inserts contain mixed material consisting of water with 1g/cm3 and gold at a certain density. At a low gold density of 0.0008 g/cm3, the insert is hardly visible in DECT images, especially for those with small sizes. Our algorithm is able to decompose the DECT into three density images. Those gold inserts at a low density can be clearly visualized in the density image. Conclusion: We have developed a new algorithm to decompose DECT images into three different material density images, in particular, to retrieve density of gold. Numerical studies showed promising results.« less
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-01-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong. PMID:25077023
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-07-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.
Ion beam radiation effects on natural halite crystals
NASA Astrophysics Data System (ADS)
Arun, T.; Ram, S. S.; Karthikeyan, B.; Ranjith, P.; Ray, D. K.; Rout, B.; Krishna, J. B. M.; Sengupta, Pranesh; Parlapalli, Venkata Satyam
2017-10-01
Halites are one of the interesting material due to its color variations. Natural halites whose color ranges from transparent to dark blue were studied by UV-VIS and Raman spectroscopy. The halite crystals were irradiated with 3 MeV proton micro-beam (∼20 μm beam width with ∼80 PA beam current) for 10 and 90 min to study the radiation damage. After 10 mins of irradiation, small spot developed on the surface of transparent halite crystal whereas after 90 mins of irradiation the spot spread inside the bulk leading to a brown coloration (20 μm initial size to ∼2.0 mm final size). The irradiated portion and the un-irradiated portion of the halites was characterized by Raman spectroscopic technique. The variation in the population density was observed from the UV-Vis spectra. The change in the Raman band intensities was observed for transparent, blue colored and proton beam irradiation halites. Such variation of spectroscopic characteristics due to proton irradiation suggests that the halite can be used for the radiation monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, H. F.; MacGowan, B. J.; Landen, O. L.
Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shapemore » (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.« less
Martian planetwide crater distributions: Implications for geologic history and surface processes
Soderblom, L.A.; Condit, C.D.; West, R.A.; Herman, B.M.; Kreidler, T.J.
1974-01-01
Population-density maps of craters in three size ranges (0.6 to 1.2 km, 4 to 10 km, and >20 km in diameter) were compiled for most of Mars from Mariner 9 imagery. These data provide: historical records of the eolian processes (0.6 to 1.2 km craters); stratigraphic, relative, and absolute timescales (4 to 10 km craters); and a history of the early postaccretional evolution of the uplands (> 20 km craters). Based on the distribution of large craters (>20 km diameters), Mars is divisible into two general classes of terrain, densely cratered and very lightly cratered-a division remarkably like the uplands-maria dichotomy of the moon. It is probable that this bimodal character in the density distribution of large craters arose from an abrupt transition in the impact flux rate from an early intense period associated with the tailing off of accretion to an extended quiescent epoch, not from a void in geological activity during much of Mars' history. Radio-isotope studies of Apollo lunar samples show that this transition occurred on the moon in a short time. The intermediate-sized craters (4 to 10 km diameter) and the small-sized craters (0.6 to 1.2 km diameter) appear to be genetically related. The smaller ones are apparently secondary impact craters generated by the former. Most of the craters in the larger of these two size classes appear fresh and uneroded, although many are partly buried by dust mantles. Poleward of the 40?? parallels the small fresh craters are notably absent owing to these mantles. The density of small craters is highest in an irregular band centered at 20??S. This band coincides closely with (1) the zone of permanent low-albedo markings; (2) the "wind equator" (the latitude of zero net north or south transport at the surface); and (3) a band that includes a majority of the small dendritic channels. Situated in the southermost part of the equatorial unmantled terrain which extends from about 40??N to 40??S, this band is apparently devoid of even a thin mantle. Because this belt is also coincident with the latitutde of maximum solar insolation (periapsis occurs near summer solstice), we suggest that this band arises from the asymmetrical global wind patterns at the surface and that the band probably follows the latitude of maximum heating which migrates north and south from 25??N to 25??S within the unmantled terrain on a 50,000 year timescale. The population of intermediate-sized craters (4-10 km diameter) appears unaffected by the eolian mantles, at least within the ??45?? latitudes. Hence the local density of these craters is probably a valid indicator of the relative age of surfaces generated during the period since the uplands were intensely bombarded and eroded. It now appears that the impact fluxes at Mars and the moon have been roughly the same over the last 4 b.y. because the oldest postaccretional, mare-like surfaces on Mars and the moon display about the same crater density. If so, the nearness of Mars to the asteroid belt has not generated a flux 10 to 25 times greater than the lunar flux. Whereas the lunar maria show a variation of about a factor of three in crater density from the oldest to the youngest major units, analogous surfaces on Mars show a variation between 30 and 50. This implies that periods of active eolian erosion, tectonic evolution, volcanic eruption, and possibly fluvial modification have been scattered throughout Martian history since the formation and degradation of the martian uplands and not confined to small, ancient or recent, epochs. These processes are surely active on the planet today. ?? 1974.
Weiner, J; Kinsman, S; Williams, S
1998-11-01
We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Kevorkian, J.
1978-01-01
The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.
Hybrid fuel formulation and technology development
NASA Technical Reports Server (NTRS)
Dean, D. L.
1995-01-01
The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.
Alecu, I M; Zheng, Jingjing; Papajak, Ewa; Yu, Tao; Truhlar, Donald G
2012-12-20
Multistructural canonical variational transition-state theory with small-curvature multidimensional tunneling (MS-CVT/SCT) is employed to calculate thermal rate constants for hydrogen-atom abstraction from carbon-1 of n-butanol by the hydroperoxyl radical over the temperature range 250-2000 K. The M08-SO hybrid meta-GGA density functional was validated against CCSD(T)-F12a explicitly correlated wave function calculations with the jul-cc-pVTZ basis set. It was then used to compute the properties of all stationary points and the energies and Hessians of a few nonstationary points along the reaction path, which were then used to generate a potential energy surface by the multiconfiguration Shepard interpolation (MCSI) method. The internal rotations in the transition state for this reaction (like those in the reactant alcohol) are strongly coupled to each other and generate multiple stable conformations, which make important contributions to the partition functions. It is shown that neglecting to account for the multiple-structure effects and torsional potential anharmonicity effects that arise from the torsional modes would lead to order-of-magnitude errors in the calculated rate constants at temperatures of interest in combustion.
Zhang, C. J.; Hua, J. F.; Xu, X. L.; ...
2016-07-11
A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
Water quality of Lake Austin and Town Lake, Austin, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, F.L.; Wells, F.C.; Shelby, W.J.
1988-01-01
Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less
NASA Astrophysics Data System (ADS)
Tackie, Alan Derek Nii
Computer modeling of Oriented Strand Board (OSB) properties has gained widespread attention with numerous models created to better understand OBS behavior. Recent models allow researchers to observe multiple variables such as changes in moisture content, density and resin effects on panel performance. Thickness-swell variation influences panel durability and often has adverse effects on a structural panel's bending stiffness. The prediction of out-of-plane swell under changing moisture conditions was, therefore, the essence for developing a model in this research. The finite element model accounted for both vertical and horizontal density variations, the three-dimensional (3D) density variation of the board. The density variation, resulting from manufacturing processes, affects the uniformity of thickness-swell in OSB and is often exacerbated by continuous sorption of moisture that leads to potentially damaging internal stresses in the panel. The overall thickness-swell (the cumulative swell from non-uniform horizontal density profile, panel swell from free water, and spring-back from panel compression) was addressed through the finite element model in this research. The pursued goals in this study were, first and foremost, the development of a robust and comprehensive finite element model which integrated several component studies to investigate the effects of moisture variation on the out-of-plane thickness-swell of OSB panels, and second, the extension of the developed model to predict panel stiffness. It is hoped that this paper will encourage researchers to adopt the 3D density distribution approach as a viable approach to analyzing the physical and mechanical properties of OSB.
Gravity and the membrane-solution interface: theoretical investigations.
Schatz, A; Linke-Hommes, A
1989-01-01
The theory of concentration and potential variations at interfaces is applied to the membrane-solution interface to calculate density variations. The theory is modified to take care of the finite ion volumes in electrolytes. Our model is a phospholipid membrane with a surface charge density of -4.824*10(-6)(As/cm2) in contact with solutions of KCl, NaCl, CaCl2, and mixtures. Maximal density variations of about 4*10(-2)(G/cm3) were found in surface layers between the membrane and the solutions. The extension of the layers is in the range of 1 to 6 nm.
NASA Astrophysics Data System (ADS)
Pathak, Nidhi; Kaur, Sukhdeep; Singh, Sukhmander
2018-05-01
In this paper, self-focusing/defocusing effects have been studied by taking into account the combined effect of ponder-motive and relativistic non linearity during the laser plasma interaction with density variation. The formulation is based on the numerical analysis of second order nonlinear differential equation for appropriate set of laser and plasma parameters by employing moment theory approach. We found that self-focusing increases with increasing the laser intensity and density variation. The results obtained are valuable in high harmonic generation, inertial confinement fusion and charge particle acceleration.
Energy density of bloaters in the upper Great Lakes
Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.
2012-01-01
We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.
J.B. St. Clair
1994-01-01
Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found in size, biomass partitioning, and wood density, and genetic gains may be...
Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces
NASA Astrophysics Data System (ADS)
Togashi, H.; Nakazato, K.; Takehara, Y.; Yamamuro, S.; Suzuki, H.; Takano, M.
2017-05-01
A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas-Fermi calculation is performed to obtain the minimized free energy of a Wigner-Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas-Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid-gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.
CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene, E-mail: rdawson@psu.edu
The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surfacemore » density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.« less
Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gursharn; Chaturvedi, S.
2011-06-15
We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due tomore » the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of {approx}2 cm/{mu}s reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to {approx}40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.« less
Near-field control and imaging of free charge carrier variations in GaN nanowires
NASA Astrophysics Data System (ADS)
Berweger, Samuel; Blanchard, Paul T.; Brubaker, Matt D.; Coakley, Kevin J.; Sanford, Norman A.; Wallis, Thomas M.; Bertness, Kris A.; Kabos, Pavel
2016-02-01
Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here, we develop a hybrid scanning probe-based methodology to investigate local variations in electronic structure across individual n-doped GaN NWs integrated into a transistor device. We perform scanning microwave microscopy (SMM), which we combine with scanning gate microscopy to determine the free-carrier SMM signal contribution and image local charge carrier density variations. In particular, we find significant variations in free carriers across NWs, with a higher carrier density at the wire facets. By increasing the local carrier density through tip-gating, we find that the tip injects current into the NW with strongly localized current when positioned over the wire vertices. These results suggest that the strong variations in electronic properties observed within NWs have significant implications for device design and may lead to new paths to optimization.
Elastic least-squares reverse time migration with velocities and density perturbation
NASA Astrophysics Data System (ADS)
Qu, Yingming; Li, Jinli; Huang, Jianping; Li, Zhenchun
2018-02-01
Elastic least-squares reverse time migration (LSRTM) based on the non-density-perturbation assumption can generate false-migrated interfaces caused by density variations. We perform an elastic LSRTM scheme with density variations for multicomponent seismic data to produce high-quality images in Vp, Vs and ρ components. However, the migrated images may suffer from crosstalk artefacts caused by P- and S-waves coupling in elastic LSRTM no matter what model parametrizations used. We have proposed an elastic LSRTM with density variations method based on wave modes separation to reduce these crosstalk artefacts by using P- and S-wave decoupled elastic velocity-stress equations to derive demigration equations and gradient formulae with respect to Vp, Vs and ρ. Numerical experiments with synthetic data demonstrate the capability and superiority of the proposed method. The imaging results suggest that our method promises imaging results with higher quality and has a faster residual convergence rate. Sensitivity analysis of migration velocity, migration density and stochastic noise verifies the robustness of the proposed method for field data.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Gallagher, Molly; Usero, Antonio
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less
The influence of landscape features on road development in a loess region, China.
Bi, Xiaoli; Wang, Hui; Zhou, Rui
2011-10-01
Many ecologists focus on the effects of roads on landscapes, yet few consider how landscapes affect road systems. In this study, therefore, we quantitatively evaluated how land cover, topography, and building density affected the length density, node density, spatial pattern, and location of roads in Dongzhi Yuan, a typical loess region in China. Landscape factors and roads were mapped using images from SPOT satellite (Système Probatoire d'Observation de la Terre), initiated by the French space agency and a digital elevation model (DEM). Detrended canonical correspondence analysis (DCCA), a useful ordination technique to explain species-environment relations in community ecology, was applied to evaluate the ways in which landscapes may influence roads. The results showed that both farmland area and building density were positively correlated with road variables, whereas gully density and the coefficient of variation (CV of DEM) showed negative correlations. The CV of DEM, farmland area, grassland area, and building density explained variation in node density, length density, and the spatial pattern of roads, whereas gully density and building density explained variation in variables representing road location. In addition, node density, rather than length density, was the primary road variable affected by landscape variables. The results showed that the DCCA was effective in explaining road-landscape relations. Understanding these relations can provide information for landscape managers and transportation planners.
Computation of mass-density images from x-ray refraction-angle images.
Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong
2006-04-07
In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.
Elementary diagrams in nuclear and neutron matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiringa, R.B.
1995-08-01
Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developedmore » a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.« less
Detectability of landscape effects on recolonization increases with regional population density
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-01-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. PMID:26257881
Detectability of landscape effects on recolonization increases with regional population density.
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-07-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.
NASA Astrophysics Data System (ADS)
Castro, L. R.; Cáceres, M. A.; Silva, N.; Muñoz, M. I.; León, R.; Landaeta, M. F.; Soto-Mendoza, S.
2011-03-01
The relationships between the distribution of different zooplankton and ichthyoplankton stages and physical and chemical variables were studied using samples and data (CTD profiles, ADCP and current meter measurements, nutrients, mesozooplankton, ichthyoplankton) obtained from different strata during two 24-h cycles at two oceanographic stations in a Chilean Patagonian gulf during the CIMAR 10-Fiordos cruise (November, 2004). A station located at the Chacao Channel was dominated by tidal mixing and small increments in surface stratification during high tides, leading to decreased nutrient availability. This agreed with short periods of increased phytoplankton abundance during slack waters at the end of flood currents. Increases in larval density for all zooplankton and ichthyoplankton taxa corresponded to the flooding phases of the tidal cycle. When the larval density data were fit to a sinusoidal model, the regression coefficients were high, suggesting that tides are important features that modulate short-term variations in plankton abundance. All larvae did not vary synchronously with the tidal phase; rather, time lags were observed among species. The abundances of older individuals of the copepodite Rhincalanus nasutus and all zoea stages of the squat lobster Munida gregaria increased during night flood tides, whereas younger stages increased during daytime flood tides. At a station located at the Queullin Pass, which was dominated by vertical stratification patterns, the variations in peak larval density were better fitted to the semi-diurnal sea level fluctuations. Other evidence indicated internal tides below the pycnocline, which could promote larval transport in deeper layers. In the overall picture that emerges from this study, planktonic organisms from different habitats and phylogenetic origins seem to respond to the local tidal regimes. In some cases, this response might be beneficial, transporting these individuals inshore to areas that are rich in food during the peak biological production season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendel, Peter; Ganguly, Biswa N.; Bletzinger, Peter
Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 2{sup 1}S→11 {sup 1}P transition through collision induced fluorescence from 4{sup 3}D→2{sup 3}P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gasmore » density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ{sub 0}(r/r{sub 0}){sup 3}, where ρ(r) is the local space charge density, ρ{sub 0} = 6 × 10{sup −3} Coulomb/m{sup 3}, r is the local radial value, and r{sub 0} is the radius of the electrode.« less
Fowler-Finn, K D; Cruz, D C; Rodríguez, R L
2017-01-01
Many animals exhibit social plasticity - changes in phenotype or behaviour in response to experience with conspecifics that change how evolutionary processes like sexual selection play out. Here, we asked whether social plasticity arising from variation in local population density in male advertisement signals and female mate preferences influences the form of sexual selection. We manipulated local density and determined whether this changed how the distribution of male signals overlapped with female preferences - the signal preference relationship. We specifically look at the shape of female mate preference functions, which, when compared to signal distributions, provide hypotheses about the form of sexual selection. We used Enchenopa binotata treehoppers, a group of plant-feeding insects that exhibit natural variation in local densities across individual host plants, populations, species and years. We measured male signal frequency and female preference functions across the density treatments. We found that male signals varied across local social groups, but not according to local density. By contrast, female preferences varied with local density - favouring higher signal frequencies in denser environments. Thus, local density changes the signal-preference relationship and, consequently, the expected form of sexual selection. We found no influence of sex ratio on the signal-preference relationship. Our findings suggest that plasticity arising from variation in local group density and composition can alter the form of sexual selection with potentially important consequences both for the maintenance of variation and for speciation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Calabia, Andres; Jin, Shuanggen
2017-02-01
The thermospheric mass density variations and the thermosphere-ionosphere coupling during geomagnetic storms are not clear due to lack of observables and large uncertainty in the models. Although accelerometers on-board Low-Orbit-Earth (LEO) satellites can measure non-gravitational accelerations and derive thermospheric mass density variations with unprecedented details, their measurements are not always available (e.g., for the March 2013 geomagnetic storm). In order to cover accelerometer data gaps of Gravity Recovery and Climate Experiment (GRACE), we estimate thermospheric mass densities from numerical derivation of GRACE determined precise orbit ephemeris (POE) for the period 2011-2016. Our results show good correlation with accelerometer-based mass densities, and a better estimation than the NRLMSISE00 empirical model. Furthermore, we statistically analyze the differences to accelerometer-based densities, and study the March 2013 geomagnetic storm response. The thermospheric density enhancements at the polar regions on 17 March 2013 are clearly represented by POE-based measurements. Although our results show density variations better correlate with Dst and k-derived geomagnetic indices, the auroral electroject activity index AE as well as the merging electric field Em picture better agreement at high latitude for the March 2013 geomagnetic storm. On the other side, low-latitude variations are better represented with the Dst index. With the increasing resolution and accuracy of Precise Orbit Determination (POD) products and LEO satellites, the straightforward technique of determining non-gravitational accelerations and thermospheric mass densities through numerical differentiation of POE promises potentially good applications for the upper atmosphere research community.
Hard sphere perturbation theory for thermodynamics of soft-sphere model liquid
NASA Astrophysics Data System (ADS)
Mon, K. K.
2001-09-01
It is a long-standing consensus in the literature that hard sphere perturbation theory (HSPT) is not accurate for dense soft sphere model liquids, interacting with repulsive r-n pair potentials for small n. In this paper, we show that if the intrinsic error of HSPT for soft sphere model liquids is accounted for, then this is not completely true. We present results for n=4, 6, 9, 12 which indicate that, even first order variational HSPT can provide free energy upper bounds to within a few percent at densities near freezing when corrected for the intrinsic error of the HSPT.
Stepwise and Pulse Transient Methods of Thermophysical Parameters Measurement
NASA Astrophysics Data System (ADS)
Malinarič, Svetozár; Dieška, Peter
2016-12-01
Stepwise transient and pulse transient methods are experimental techniques for measuring the thermal diffusivity and conductivity of solid materials. Theoretical models and experimental apparatus are presented, and the influence of the heat source capacity and the heat transfer coefficient is investigated using the experiment simulation. The specimens from low-density polyethylene (LDPE) and polymethylmethacrylate (PMMA) were measured by both methods. Coefficients of variation were better than 0.9 % for LDPE and 2.8 % for PMMA measurements. The time dependence of the temperature response to the input heat flux showed a small drop, which was caused by thermoelastic wave generated by thermal expansions of the heat source.
A Very Large Array Survey of Polar BAL Quasar Candidates
NASA Astrophysics Data System (ADS)
Olson, Kianna Alexandra; Brotherton, Michael S.; DiPompeo, Michael; Maithil, Jaya
2018-06-01
Polar broad absorption line quasars posses flat radio spectra and jets seen at small angles to the line of sight. Using the VLA we observed twelve polar broad absorption line quasar candidates at L (1.5GHz), C (4.5-5.5GHz), and X (8.5-9.5GHz) bands, and found that their cores display flat spectra. Compared to previous observations in the NVSS and First surveys, the peak flux densities all show significant variation σvar > 3, and brightness temperatures TB ≥ 1012K. Based on these findings, our quasars have the properties expected for objects that posses jets seen nearly pole on.
Variational and robust density fitting of four-center two-electron integrals in local metrics
NASA Astrophysics Data System (ADS)
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł
2008-09-01
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Variational and robust density fitting of four-center two-electron integrals in local metrics.
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjaergaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Host, Stinne; Salek, Paweł
2008-09-14
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Scale-up of ecological experiments: Density variation in the mobile bivalve Macomona liliana
Schneider, Davod C.; Walters, R.; Thrush, S.; Dayton, P.
1997-01-01
At present the problem of scaling up from controlled experiments (necessarily at a small spatial scale) to questions of regional or global importance is perhaps the most pressing issue in ecology. Most of the proposed techniques recommend iterative cycling between theory and experiment. We present a graphical technique that facilitates this cycling by allowing the scope of experiments, surveys, and natural history observations to be compared to the scope of models and theory. We apply the scope analysis to the problem of understanding the population dynamics of a bivalve exposed to environmental stress at the scale of a harbour. Previous lab and field experiments were found not to be 1:1 scale models of harbour-wide processes. Scope analysis allowed small scale experiments to be linked to larger scale surveys and to a spatially explicit model of population dynamics.
Gyrokinetic simulations of turbulent transport in a ring dipole plasma.
Kobayashi, Sumire; Rogers, Barrett N; Dorland, William
2009-07-31
Gyrokinetic flux-tube simulations of turbulent transport due to small-scale entropy modes are presented in a ring-dipole magnetic geometry relevant to the Columbia-MIT levitated dipole experiment (LDX) [J. Kesner, Plasma Phys. J. 23, 742 (1997)]. Far from the current ring, the dipolar magnetic field leads to strong parallel variations, while close to the ring the system becomes nearly uniform along circular magnetic field lines. The transport in these two limits are found to be quantitatively similar given an appropriate normalization based on the local out-board parameters. The transport increases strongly with the density gradient, and for small eta=L(n)/L(T)<1, T(i) approximately T(e), and typical LDX parameters, can reach large levels. Consistent with linear theory, temperature gradients are stabilizing, and for T(i) approximately T(e) can completely cut off the transport when eta greater or similar to 0.6.
Crustal evolution inferred from Apollo magnetic measurements
NASA Technical Reports Server (NTRS)
Dyal, P.; Daily, W. D.; Vanyan, L. L.
1978-01-01
Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments.
Variation in capture efficiency of a beach seine for small fishes
Parsley, M.J.; Palmer, D.E.; Burkhardt, R.W.
1989-01-01
We determined the capture efficiency of a beach seine as a means of improving abundance estimates of small fishes in littoral areas. Capture efficiency for 14 taxa (individual species or species groups) was determined by seining within an enclosure at night over fine and coarse substrates in the John Day Reservoir, Oregon–Washington. Mean efficiency ranged from 12% for prickly sculpin Cottus asper captured over coarse substrates to 96% for peamouth Mylocheilus caurinus captured over fine substrates. Mean capture efficiency for a taxon (genus or species) was generally higher over fine substrates than over coarse substrates, although mean capture efficiencies over fine substrates were significantly greater for only 3 of 10 taxa. Capture efficiency generally was not influenced by fish density or by water temperature (range, 8–26°C). Conclusions about the relative abundance of taxa captured by seining can change substantially after capture efficiencies are taken into account.
Mean Field Variational Bayesian Data Assimilation
NASA Astrophysics Data System (ADS)
Vrettas, M.; Cornford, D.; Opper, M.
2012-04-01
Current data assimilation schemes propose a range of approximate solutions to the classical data assimilation problem, particularly state estimation. Broadly there are three main active research areas: ensemble Kalman filter methods which rely on statistical linearization of the model evolution equations, particle filters which provide a discrete point representation of the posterior filtering or smoothing distribution and 4DVAR methods which seek the most likely posterior smoothing solution. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the most probably posterior distribution over the states, within the family of non-stationary Gaussian processes. Our original work on variational Bayesian approaches to data assimilation sought the best approximating time varying Gaussian process to the posterior smoothing distribution for stochastic dynamical systems. This approach was based on minimising the Kullback-Leibler divergence between the true posterior over paths, and our Gaussian process approximation. So long as the observation density was sufficiently high to bring the posterior smoothing density close to Gaussian the algorithm proved very effective, on lower dimensional systems. However for higher dimensional systems, the algorithm was computationally very demanding. We have been developing a mean field version of the algorithm which treats the state variables at a given time as being independent in the posterior approximation, but still accounts for their relationships between each other in the mean solution arising from the original dynamical system. In this work we present the new mean field variational Bayesian approach, illustrating its performance on a range of classical data assimilation problems. We discuss the potential and limitations of the new approach. We emphasise that the variational Bayesian approach we adopt, in contrast to other variational approaches, provides a bound on the marginal likelihood of the observations given parameters in the model which also allows inference of parameters such as observation errors, and parameters in the model and model error representation, particularly if this is written as a deterministic form with small additive noise. We stress that our approach can address very long time window and weak constraint settings. However like traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem. We finish with a sketch of the future directions for our approach.
Decomposing functional trait associations in a Chinese subtropical forest
Pei, Kequan; Kéry, Marc; Niklaus, Pascal A.; Schmid, Bernhard
2017-01-01
Functional traits, properties of organisms correlated with ecological performance, play a central role in plant community assembly and functioning. To some extents, functional traits vary in concert, reflecting fundamental ecological strategies. While “trait syndromes” characteristic of e.g. fast-growing, early-successional vs. competitive, late-successional species are recognized in principle, less is known about the environmental and genetic factors at the source of trait variation and covariation within plant communities. We studied the three leaf traits leaf half-life (LHL), leaf mass per area (LMA) and nitrogen concentration in green leaves (Ngreen) and the wood trait wood density (WD) in 294 individuals belonging to 45 tree or shrub species in a Chinese subtropical forest from September 2006 to January 2009. Using multilevel ANOVA and decomposition of sums of products, we estimated the amount of trait variation and covariation among species (mainly genetic causes), i.e. plant functional type (deciduous vs. evergreen species), growth form (tree vs. shrub species), family/genus/species differences, and within species (mainly environmental causes), i.e. individual and season. For single traits, the variation between functional types and among species within functional types was large, but only LMA and Ngreen varied significantly among families and thus showed phylogenetic signal. Trait variation among individuals within species was small, but large temporal variation due to seasonal effects was found within individuals. We did not find any trait variation related to soil conditions underneath the measured individuals. For pairs of traits, variation between functional types and among species within functional types was large, reflecting a strong evolutionary coordination of the traits, with LMA, LHL and WD being positively correlated among each other and negatively with Ngreen. This integration of traits was consistent with a putative stem-leaf economics spectrum ranging from deciduous species with thin, high-nitrogen leaves and low-density wood to evergreen species with thick, low-nitrogen leaves and dense wood and was not influenced by phylogenetic history. Trait coordination within species was weak, allowing individual trees to deviate from the interspecific trait coordination and thus respond flexibly to environmental heterogeneity. Our findings suggest that within a single woody plant community variation and covariation in functional traits allows a large number of species to co-exist and cover a broad spectrum of multivariate niche space, which in turn may increase total resource extraction by the community and community functioning. PMID:28419169
Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.
Morris, Jonathan R.; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems. PMID:26562676
Abbott, Ronald E; Doak, Daniel F; Peterson, Megan L
2017-04-01
The mechanisms that stabilize small populations in the face of environmental variation are crucial to their long-term persistence. Building from diversity-stability concepts in community ecology, within-population diversity is gaining attention as an important component of population stability. Genetic and microhabitat variation within populations can generate diverse responses to common environmental fluctuations, dampening temporal variability across the population as a whole through portfolio effects. Yet, the potential for portfolio effects to operate at small scales within populations or to change with systematic environmental shifts, such as climate change, remain largely unexplored. We tracked the abundance of a rare alpine perennial plant, Saussurea weberi, in 49 1-m 2 plots within a single population over 20 yr. We estimated among-plot correlations in log annual growth rate to test for population-level synchrony and quantify portfolio effects across the 20-yr study period and also in 5-yr subsets based on June temperature quartiles. Asynchrony among plots, due to different plot-level responses to June temperature, reduced overall fluctuations in abundance and the probability of decline in population models, even when accounting for the effects of density dependence on dynamics. However, plots became more synchronous and portfolio effects decreased during the warmest years of the study, suggesting that future climate warming may erode stabilizing mechanisms in populations of this rare plant. © 2017 by the Ecological Society of America.
Structural model of the 50S subunit of E.Coli ribosomes from solution scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svergun, D.I.; Koch, M.H.J.; Pedersen, J.S.
1994-12-31
The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from themore » protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA.« less
Global Distribution of Density Irregularities in the Equatorial Ionosphere
NASA Technical Reports Server (NTRS)
Kil, Hyosub; Heelis, R. A.
1998-01-01
We analyzed measurements of ion number density made by the retarding potential analyzer aboard the Atmosphere Explorer-E (AE-E) satellite, which was in an approximately circular orbit at an altitude near 300 km in 1977 and later at an altitude near 400 km. Large-scale (greater than 60 km) density measurements in the high-altitude regions show large depletions of bubble-like structures which are confined to narrow local time longitude, and magnetic latitude ranges, while those in the low-altitude regions show relatively small depletions which are broadly distributed,in space. For this reason we considered the altitude regions below 300 km and above 350 km and investigated the global distribution of irregularities using the rms deviation delta N/N over a path length of 18 km as an indicator of overall irregularity intensity. Seasonal variations of irregularity occurrence probability are significant in the Pacific regions, while the occurrence probability is always high in die Atlantic-African regions and is always low in die Indian regions. We find that the high occurrence probability in the Pacific regions is associated with isolated bubble structures, while that near 0 deg longitude is produced by large depictions with bubble structures which are superimposed on a large-scale wave-like background. Considerations of longitude variations due to seeding mechanisms and due to F region winds and drifts are necessary to adequately explain the observations at low and high altitudes. Seeding effects are most obvious near 0 deg longitude, while the most easily observed effect of the F region is the suppression of irregularity growth by interhemispheric neutral winds.
Charlton-Menys, Valentine; Chobotova, Jelena; Durrington, Paul N
2008-01-01
Isolation of different density lipoproteins by ultracentrifugation can require lengthy centrifugation times and freeze/thawing of plasma may influence recovery. We isolated a range of lipoproteins using a preparative ultracentrifuge and the TLX micro-ultracentrifuge and determined the effect of freeze/thawing of plasma beforehand. In fresh plasma, there was no significant difference in results for small-dense low-density lipoprotein apolipoprotein B (LDL apoB) (density >1.044 g/mL) or cholesterol at density >1.006 g/mL. Freeze/thawing had no effect on closely correlated results for small-dense LDL apoB (r=0.85; p<0.0001) or high-density lipoprotein (r=0.93; p<0.0001). The TLX micro-ultracentrifuge is a reliable alternative to the preparative ultracentrifuge and freeze/thawing has only a small effect on small-dense LDL apoB or high-density lipoprotein cholesterol.
A simple genetic architecture underlies morphological variation in dogs.
Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A
2010-08-10
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.
A Simple Genetic Architecture Underlies Morphological Variation in Dogs
Schoenebeck, Jeffrey J.; Degenhardt, Jeremiah D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G.; vonHoldt, Bridgett M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Adam; Wayne, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A.
2010-01-01
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species. PMID:20711490
Merschel, Andrew G; Spies, Thomas A; Heyerdahl, Emily K
Twentieth-century land management has altered the structure and composition of mixed-conifer forests and decreased their resilience to fire, drought, and insects in many parts of the Interior West. These forests occur across a wide range of environmental settings and historical disturbance regimes, so their response to land management is likely to vary across landscapes and among ecoregions. However, this variation has not been well characterized and hampers the development of appropriate management and restoration plans. We identified mixed-conifer types in central Oregon based on historical structure and composition, and successional trajectories following recent changes in land use, and evaluated how these types were distributed across environmental gradients. We used field data from 171 sites sampled across a range of environmental settings in two subregions: the eastern Cascades and the Ochoco Mountains. We identified four forest types in the eastern Cascades and four analogous types with lower densities in the Ochoco Mountains. All types historically contained ponderosa pine, but differed in the historical and modern proportions of shade-tolerant vs. shade-intolerant tree species. The Persistent Ponderosa Pine and Recent Douglas-fir types occupied relatively hot–dry environments compared to Recent Grand Fir and Persistent Shade Tolerant sites, which occupied warm–moist and cold–wet environments, respectively. Twentieth-century selective harvesting halved the density of large trees, with some variation among forest types. In contrast, the density of small trees doubled or tripled early in the 20th century, probably due to land-use change and a relatively cool, wet climate. Contrary to the common perception that dry ponderosa pine forests are the most highly departed from historical conditions, we found a greater departure in the modern composition of small trees in warm–moist environments than in either hot–dry or cold–wet environments. Furthermore, shade-tolerant trees began infilling earlier in cold–wet than in hot–dry environments and also in topographically shaded sites in the Ochoco Mountains. Our new classification could be used to prioritize management that seeks to restore structure and composition or create resilience in mixed-conifer forests of the region.
High energy density propulsion systems and small engine dynamometer
NASA Astrophysics Data System (ADS)
Hays, Thomas
2009-07-01
Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.
Regulation of an unexploited brown trout population in Spruce Creek, Pennsylvania
Carline, R.F.
2006-01-01
The purpose of this paper is to describe the annual variations in the density of an unexploited population of lotic brown trout Salmo trutta that has been censused annually for 19 years and to explore the importance of density-independent and density-dependent processes in regulating population size. Brown trout density and indices of stream discharge and water temperature were related to annual variations in natural mortality, recruitment, and growth. Annual mortality of age-1 and older (age-1+) brown trout ranged from 0.30 to 0.75 and was best explained by discharge during spring and by brown trout density. Recruitment to age 1 varied fivefold. Density of age-1 brown trout was inversely related to spawner density and positively related to discharge during the fall spawning period. The median length of age-1 brown trout was positively related to discharge during summer and fall. Relative weight was inversely related to the density of age-2+ brown trout. The interactive effects of discharge and brown trout density accounted for most of the annual variation in mortality, recruitment, and growth during the first year of life. Annual trends in the abundance of age-1+ brown trout were largely dictated by natural mortality. ?? Copyright by the American Fisheries Society 2006.
Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John
2013-07-21
Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.
3-D numerical evaluation of density effects on tracer tests.
Beinhorn, M; Dietrich, P; Kolditz, O
2005-12-01
In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow.
Geduhn, Anke; Jacob, Jens; Schenke, Detlef; Keller, Barbara; Kleinschmidt, Sven; Esther, Alexandra
2015-01-01
Anticoagulant rodenticides (ARs) are commonly used to control rodent infestations for biocidal and plant protection purposes. This can lead to AR exposure of non-target small mammals and their predators, which is known from several regions of the world. However, drivers of exposure variation are usually not known. To identify environmental drivers of AR exposure in non-targets we analyzed 331 liver samples of red foxes (Vulpes vulpes) for residues of eight ARs and used local parameters (percentage of urban area and livestock density) to test for associations to residue occurrence. 59.8% of samples collected across Germany contained at least one rodenticide, in 20.2% of cases at levels at which biological effects are suspected. Second generation anticoagulants (mainly brodifacoum and bromadiolone) occurred more often than first generation anticoagulants. Local livestock density and the percentage of urban area were good indicators for AR residue occurrence. There was a positive association between pooled ARs and brodifacoum occurrence with livestock density as well as of pooled ARs, brodifacoum and difenacoum occurrence with the percentage of urban area on administrative district level. Pig holding drove associations of livestock density to AR residue occurrence in foxes. Therefore, risk mitigation strategies should focus on areas of high pig density and on highly urbanized areas to minimize non-target risk. PMID:26418154
Sutherland, Andrew M; Parrella, Michael P
2011-08-01
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.
Variations in thermospheric composition: A model based on mass-spectrometer and satellite-drag data
NASA Technical Reports Server (NTRS)
Jacchia, L. G.
1973-01-01
The seasonal-latitudinal and the diurnal variations of composition observed by mass spectrometers on the OGO 6 satellite are represented by two simple empirical formulae, each of which uses only one numerical parameter. The formulae are of a very general nature and predict the behavior of these variations at all heights and for all levels of solar activity; they yield a satisfactory representation of the corresponding variations in total density as derived from satellite drag. It is suggested that a seasonal variation of hydrogen might explain the abnormally low hydrogen densities at high northern latitudes in July 1964.
Meeting critical gate linewidth control needs at the 65 nm node
NASA Astrophysics Data System (ADS)
Mahorowala, Arpan; Halle, Scott; Gabor, Allen; Chu, William; Barberet, Alexandra; Samuels, Donald; Abdo, Amr; Tsou, Len; Yan, Wendy; Iseda, Seiji; Patel, Kaushal; Dirahoui, Bachir; Nomura, Asuka; Ahsan, Ishtiaq; Azam, Faisal; Berg, Gary; Brendler, Andrew; Zimmerman, Jeffrey; Faure, Tom
2006-03-01
With the nominal gate length at the 65 nm node being only 35 nm, controlling the critical dimension (CD) in polysilicon to within a few nanometers is essential to achieve a competitive power-to-performance ratio. Gate linewidths must be controlled, not only at the chip level so that the chip performs as the circuit designers and device engineers had intended, but also at the wafer level so that more chips with the optimum power-to-performance ratio are manufactured. Achieving tight across-chip linewidth variation (ACLV) and chip mean variation (CMV) is possible only if the mask-making, lithography, and etching processes are all controlled to very tight specifications. This paper identifies the various ACLV and CMV components, describes their root causes, and discusses a methodology to quantify them. For example, the site-to-site ACLV component is divided into systematic and random sub-components. The systematic component of the variation is attributed in part to pattern density variation across the field, and variation in exposure dose across the slit. The paper demonstrates our team's success in achieving the tight gate CD tolerances required for 65 nm technology. Certain key challenges faced, and methods employed to overcome them are described. For instance, the use of dose-compensation strategies to correct the small but systematic CD variations measured across the wafer, is described. Finally, the impact of immersion lithography on both ACLV and CMV is briefly discussed.
Di Tullio, Juliana Couto; Gandra, Tiago B. R.; Zerbini, Alexandre N.; Secchi, Eduardo R.
2016-01-01
Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic. PMID:27243455
Di Tullio, Juliana Couto; Gandra, Tiago B R; Zerbini, Alexandre N; Secchi, Eduardo R
2016-01-01
Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic.
Impact of the material composition on proton range variation - A Monte Carlo study
NASA Astrophysics Data System (ADS)
Wu, S. W.; Tung, C. J.; Lee, C. C.; Fan, K. H.; Huang, H. C.; Chao, T. C.
2015-11-01
In this study, we used the Geant4 toolkit to demonstrate the impacts of the material composition of tissues on proton range variation. Bragg curves of different materials subjected to a 250 MeV mono-energy proton beam were simulated and compared. These simulated materials included adipose, heart, brain, cartilage, cortical bone and water. The results showed that there was significant proton range deviation between Bragg curves, especially for cortical bone. The R50 values for a 250 MeV proton beam were approximately 39.55 cm, 35.52 cm, 37.00 cm, 36.51 cm, 36.72 cm, 22.53 cm, and 38.52 cm in the phantoms that were composed completely of adipose, cartilage, tissue, heart, brain, cortical bone, and water, respectively. Mass density and electron density were used to scale the proton range for each material; electron density provided better range scaling. In addition, a similar comparison was performed by artificially setting all material density to 1.0 g/cm3 to evaluate the range deviation due to chemical components alone. Tissue heterogeneity effects due to density variation were more significant, and less significant for chemical composition variation unless the Z/A was very different.
Intraspecific variation and species coexistence.
Lichstein, Jeremy W; Dushoff, Jonathan; Levin, Simon A; Pacala, Stephen W
2007-12-01
We use a two-species model of plant competition to explore the effect of intraspecific variation on community dynamics. The competitive ability ("performance") of each individual is assigned by an independent random draw from a species-specific probability distribution. If the density of individuals competing for open space is high (e.g., because fecundity is high), species with high maximum (or large variance in) performance are favored, while if density is low, species with high typical (e.g., mean) performance are favored. If there is an interspecific mean-variance performance trade-off, stable coexistence can occur across a limited range of intermediate densities, but the stabilizing effect of this trade-off appears to be weak. In the absence of this trade-off, one species is superior. In this case, intraspecific variation can blur interspecific differences (i.e., shift the dynamics toward what would be expected in the neutral case), but the strength of this effect diminishes as competitor density increases. If density is sufficiently high, the inferior species is driven to extinction just as rapidly as in the case where there is no overlap in performance between species. Intraspecific variation can facilitate coexistence, but this may be relatively unimportant in maintaining diversity in most real communities.
Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter
2004-05-11
We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.
Anand, S; Kudallur, V; Pitman, E B; Diamond, S L
1997-01-01
A transport-reaction model describing penetration of plasmin by diffusion and permeation into a dissolving fibrin gel was solved numerically to explore mechanisms that lead to the formation and growth of dissolution fingers through blood clots during thrombolytic therapy. Under conditions of fluid permeation driven by arterial pressures, small random spatial variations in the initial fibrin density within clots (+/-4 to 25% peak variations) were predicted by the simulation to result in dramatic dissolution fingers that grew in time. With in vitro experiments, video microscopy revealed that the shape of the proximal face of a fibrin gel, when deformed by pressure-driven permeation, led to lytic breakthrough in the center of the clot, consistent with model predictions of increased velocities in this region leading to cannulation. Computer simulation of lysis of fibrin retracted by platelets (where more permeable regions are expected in the middle of the clot due to retraction) predicted cannulation of the clot during thrombolysis. This residual, annular thrombus was predicted to lyse more slowly, because radial pressure gradients to drive inner clot permeation were quite small. In conjunction with kinetic models of systemic pharmacodynamics and plasminogen activation biochemistry, a two-dimensional transport-reaction model can facilitate the prediction of the time and causes of clot cannulation, poor reperfusion, and embolism during thrombolysis.
NASA Astrophysics Data System (ADS)
Iyemori, T.; Aoyama, T.; Nakanishi, K.; Odagi, Y.; Sanoo, Y.; Yokoyama, Y.; Yamada, A.
2017-12-01
The `magnetic ripples' are small scale magnetic fluctuations observed in upper ionosphere by low altitude satellites such as CHAMP or Swarm, and they are spatial structure of field-aligned currents along satellite orbit. They are observed almost always in mid- and low-latitudes. From their geographical and seasonal characteristics, they are supposed to be caused by the atmospheric waves which propagates from lower atmosphere to the ionosphere. Although the global distribution and its local time or seasonal variation of the amplitude of magnetic ripples, or the correlation with meteorological phenomena such as typhoons strongly suggest the cumulus convection as the main origin, we need to clarify which mode of atmospheric waves, i.e., acoustic wave or internal gravity wave, mainly contributes to the magnetic ripples and what meteorological condition correspond them. For those purposes, we analyze ground based magnetic and micro-barometric variations. We try to make quantitative estimation of the contribution from both acoustic and internal mode of gravity waves, acoustic resonance, etc. by calculating PSD (power spectral density) of pressure and ground magnetic variations. In this paper, we present their basic characteristics and discuss the relation with magnetic ripples. [Acknowledgments]: The ground observations have been supported by many people including students at our graduate school and by the collaboration with other institutions.
Properties of seismic absorption induced reflections
NASA Astrophysics Data System (ADS)
Zhao, Haixia; Gao, Jinghuai; Peng, Jigen
2018-05-01
Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.
Thomas-Fermi model electron density with correct boundary conditions: Application to atoms and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.H.
1999-01-01
The author proposes an electron density in atoms and ions, which has the Thomas-Fermi-Dirac form in the intermediate region of r, satisfies the Kato condition for small r, and has the correct asymptotic behavior at large values of r, where r is the distance from the nucleus. He also analyzes the perturbation in the density produced by multipolar fields. He uses these densities in the Poisson equation to deduce average values of r{sup m}, multipolar polarizabilities, and dispersion coefficients of atoms and ions. The predictions are in good agreement with experimental and other theoretical values, generally within about 20%. Hemore » tabulates here the coefficient A in the asymptotic density; radial expectation values (r{sup m}) for m = 2, 4, 6; multipolar polarizabilities {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}; expectation values {l_angle}r{sup 0}{r_angle} and {l_angle}r{sup 2}{r_angle} of the asymptotic electron density; and the van der Waals coefficient C{sub 6} for atoms and ions with 2 {le} Z {le} 92. Many of the results, particularly the multipolar polarizabilities and the higher order dispersion coefficients, are the only ones available in the literature. The variation of these properties also provides interesting insight into the shell structure of atoms and ions. Overall, the Thomas-Fermi-Dirac model with the correct boundary conditions provides a good global description of atoms and ions.« less
A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges
DOE R&D Accomplishments Database
Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.
1987-02-01
Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.P.
1975-07-01
Small mammals were live-trapped for 2 years at four elevations in shrub-steppe vegetation of S-central Washington to determine seasonal and altitudinal changes in populations. Species trapped included: Perognathus parvus, Peromyscus maniculatus, Onychromys leucogaster, Lagurus curtatus, Spermophilus townsendii; Neotoma cinerea and Mustela frenata. Perognathus parvus was the most numerous, and widespread species, reaching peak densities in the Artemisia/Poa association at 500-ft elevation. Its density declined with increasing elevation. Perognathus was most numerous on a site with a high frequency of seed-producing annuals, and less numerous in perennial grasslands or where soil temperatures below 40 F were prolonged in the spring. Peromyscusmore » maniculatus were most numerous in the Artemisia/Agropyron association above 2000 ft. Peromyscus appeared to be limited by lack of succulent vegetation or free water at lower, more arid sites. Perognathus was most active and breeding between spring and autumn. Peromyscus favored the period between autumn and late spring. Interspecific competition was not apparent. Perognathus employed periods of torpor during the winter, and some evidence indicated that Peromyscus may have used hypothermia during the driest part of summer and midwinter. Average weights of male Perognathus increased with increasing altitude. The weight increase was not apparent in Peromyscus. (auth)« less
Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.
2007-07-01
This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.
Extra-metabolic energy use and the rise in human hyper-density
NASA Astrophysics Data System (ADS)
Burger, Joseph R.; Weinberger, Vanessa P.; Marquet, Pablo A.
2017-03-01
Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.
Reach-scale effects of riparian forest cover on urban stream ecosystems
Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.
2005-01-01
We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10?20 km2) in suburban catchments (9%?49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.
Extra-metabolic energy use and the rise in human hyper-density.
Burger, Joseph R; Weinberger, Vanessa P; Marquet, Pablo A
2017-03-02
Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth's 'energetic equivalence rule' supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.
Small-angle x-ray scattering in amorphous silicon: A computational study
NASA Astrophysics Data System (ADS)
Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim
2018-05-01
We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.
Ensminger, Amanda L; Fernández-Juricic, Esteban
2014-01-01
Between-individual variation has been documented in a wide variety of taxa, especially for behavioral characteristics; however, intra-population variation in sensory systems has not received similar attention in wild animals. We measured a key trait of the visual system, the density of retinal cone photoreceptors, in a wild population of house sparrows (Passer domesticus). We tested whether individuals differed from each other in cone densities given within-individual variation across the retina and across eyes. We further tested whether the existing variation could lead to individual differences in two aspects of perception: visual resolution and chromatic contrast. We found consistent between-individual variation in the densities of all five types of avian cones, involved in chromatic and achromatic vision. Using perceptual modeling, we found that this degree of variation translated into significant between-individual differences in visual resolution and the chromatic contrast of a plumage signal that has been associated with mate choice and agonistic interactions. However, there was no evidence for a relationship between individual visual resolution and chromatic contrast. The implication is that some birds may have the sensory potential to perform "better" in certain visual tasks, but not necessarily in both resolution and contrast simultaneously. Overall, our findings (a) highlight the need to consider multiple individuals when characterizing sensory traits of a species, and (b) provide some mechanistic basis for between-individual variation in different behaviors (i.e., animal personalities) and for testing the predictions of several widely accepted hypotheses (e.g., honest signaling).
Ensminger, Amanda L.; Fernández-Juricic, Esteban
2014-01-01
Between-individual variation has been documented in a wide variety of taxa, especially for behavioral characteristics; however, intra-population variation in sensory systems has not received similar attention in wild animals. We measured a key trait of the visual system, the density of retinal cone photoreceptors, in a wild population of house sparrows (Passer domesticus). We tested whether individuals differed from each other in cone densities given within-individual variation across the retina and across eyes. We further tested whether the existing variation could lead to individual differences in two aspects of perception: visual resolution and chromatic contrast. We found consistent between-individual variation in the densities of all five types of avian cones, involved in chromatic and achromatic vision. Using perceptual modeling, we found that this degree of variation translated into significant between-individual differences in visual resolution and the chromatic contrast of a plumage signal that has been associated with mate choice and agonistic interactions. However, there was no evidence for a relationship between individual visual resolution and chromatic contrast. The implication is that some birds may have the sensory potential to perform “better” in certain visual tasks, but not necessarily in both resolution and contrast simultaneously. Overall, our findings (a) highlight the need to consider multiple individuals when characterizing sensory traits of a species, and (b) provide some mechanistic basis for between-individual variation in different behaviors (i.e., animal personalities) and for testing the predictions of several widely accepted hypotheses (e.g., honest signaling). PMID:25372039
Variation in Chemotherapy Utilization in Ovarian Cancer: The Relative Contribution of Geography
Polsky, Daniel; Armstrong, Katrina A; Randall, Thomas C; Ross, Richard N; Even-Shoshan, Orit; Rosenbaum, Paul R; Silber, Jeffrey H
2006-01-01
Objective This study investigates geographic variation in chemotherapy utilization for ovarian cancer in both absolute and relative terms and examines area characteristics associated with this variation. Data Sources Surveillance, Epidemiology, and End Results (SEER) Medicare data from 1990 to 2001 for Medicare patients over 65 with a diagnosis of ovarian cancer between 1990 and 1999. Chemotherapy within a year of diagnosis was identified by Medicare billing codes. The hospital referral region (HRR) represents the geographic unit of analysis. Study Design A logit model predicting the probability of receiving chemotherapy by each of the 39 HRRs. Control variables included medical characteristics (patient age, stage, year of diagnosis, and comorbidities) and socioeconomic characteristics (race, income, and education). The variation among HRRs was tested by the χ2 statistic, and the relative contribution was measured by the ω statistic. HHR market characteristic are then used to explain HRR-level variation. Principal Findings The average chemotherapy rate was 56.6 percent, with a range by HRR from 33 percent to 67 percent. There were large and significant differences in chemotherapy use between HRRs, reflected by a χ2 for HRR of 146 (df=38, p<.001). HRR-level variation in chemotherapy use can be partially explained by higher chemotherapy rates in HRRs with a higher percentage of hospitals with oncology services. However, an ω analysis indicates that, by about 15 to one, the variation between patients in use of chemotherapy reflects variations in patient characteristics rather than unexplained variation among HRRs. Conclusions While absolute levels of chemotherapy variation between geographic areas are large and statistically significant, this analysis suggests that the role of geography in determining who gets chemotherapy is small relative to individual medical characteristics. Nevertheless, while variation by medical characteristics can be medically justified, the same cannot be said for geographic variation. Our finding that density of oncology hospitals predicts chemotherapy use suggests that provider supply is positively correlated with geographic variation. PMID:17116116
The au-scale structure in diffuse molecular gas towards ζ Persei
NASA Astrophysics Data System (ADS)
Boissé, P.; Federman, S. R.; Pineau des Forêts, G.; Ritchey, A. M.
2013-11-01
Context. Spatial structure in molecular material has a strong impact on its physical and chemical evolution and is still poorly known, especially on very small scales. Aims: To better characterize the small-scale structure in diffuse molecular gas and in particular to investigate the CH+ production mechanism, we study the spatial distribution of CH+, CH, and CN towards the bright star ζ Per on scales in the range 1-20 AU. Methods: We use ζ Per's proper motion and the implied drift of the line of sight through the foreground gas at a rate of about 2 AU yr-1 to probe absorption line variations between adjacent lines of sight. The good S/N, high or intermediate resolution spectra of ζ Per, obtained in the interval 2003-2011, allow us to search for low column-density and line width variations for CH+, CH, and CN. Results: CH and CN lines appear remarkably stable in time, implying an upper limit δN/N ≤ 6% for CH and CN (3σ limit). The weak CH+λ4232 line shows a possible increase of 11% during the interval 2004-2007, which appears to be correlated with a comparable increase in the CH+ velocity dispersion over the same period. Conclusions: The excellent stability of CH and CN lines implies that these species are distributed uniformly to good accuracy within the cloud. The small size implied for the regions associated with the CH+ excess is consistent with scenarios in which this species is produced in very small (a few AU) localized active regions, possibly weakly magnetized shocks or turbulent vortices. Based on observations made at McDonald Observatory (USA) and Observatoire de Haute-Provence (France).
The influence of surface roughness on volatile transport on the Moon
NASA Astrophysics Data System (ADS)
Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.
2018-01-01
The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.
A microwave interferometer for small and tenuous plasma density measurements.
Tudisco, O; Lucca Fabris, A; Falcetta, C; Accatino, L; De Angelis, R; Manente, M; Ferri, F; Florean, M; Neri, C; Mazzotta, C; Pavarin, D; Pollastrone, F; Rocchi, G; Selmo, A; Tasinato, L; Trezzolani, F; Tuccillo, A A
2013-03-01
The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10(16) m(-3) and 10(19) m(-3)) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ = 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10(16) m(-3).
Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu
2016-09-01
Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia
2016-11-01
In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference Earth Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the earth's surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free earth rotation may provide useful constraints to construct the Reference Earth Model (REM), which is the next major objective in global geophysics research beyond PREM.
Correlated vortex pinning in Si-nanoparticle doped MgB 2
NASA Astrophysics Data System (ADS)
Kušević, I.; Babić, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2004-12-01
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB 2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr( T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr( T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field Bϕ) and is very different from a smooth Birr( T) variation in undoped MgB 2 samples. The microstructure studies of nanoparticle doped MgB 2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
Bian, Liming; Hou, Chieh; Tous, Elena; Rai, Reena; Mauck, Robert L; Burdick, Jason A
2013-01-01
Hyaluronic acid (HA) hydrogels formed via photocrosslinking provide stable 3D hydrogel environments that support the chondrogenesis of mesenchymal stem cells (MSCs). Crosslinking density has a significant impact on the physical properties of hydrogels, including their mechanical stiffness and macromolecular diffusivity. Variations in the HA hydrogel crosslinking density can be obtained by either changes in the HA macromer concentration (1, 3, or 5% w/v at 15 min exposure) or the extent of reaction through light exposure time (5% w/v at 5, 10, or 15 min). In this work, increased crosslinking by either method resulted in an overall decrease in cartilage matrix content and more restricted matrix distribution. Increased crosslinking also promoted hypertrophic differentiation of the chondrogenically induced MSCs, resulting in more matrix calcification in vitro. For example, type X collagen expression in the high crosslinking density 5% 15 min group was ~156 and 285% higher when compared to the low crosslinking density 1% 15 min and 5% 5 min groups on day 42, respectively. Supplementation with inhibitors of the small GTPase pathway involved in cytoskeletal tension or myosin II had no effect on hypertrophic differentiation and matrix calcification, indicating that the differential response is unlikely to be related to force-sensing mechanotransduction mechanisms. When implanted subcutaneously in nude mice, higher crosslinking density again resulted in reduced cartilage matrix content, restricted matrix distribution, and increased matrix calcification. This study demonstrates that hydrogel properties mediated through alterations in crosslinking density must be considered in the context of the hypertrophic differentiation of chondrogenically induced MSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain H.; Kouzes, Richard T.
Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since themore » velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.« less
Accuracy of the adiabatic-impulse approximation for closed and open quantum systems
NASA Astrophysics Data System (ADS)
Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.
Low-temperature transport in out-of-equilibrium XXZ chains
NASA Astrophysics Data System (ADS)
Bertini, Bruno; Piroli, Lorenzo
2018-03-01
We study the low-temperature transport properties of out-of-equilibrium XXZ spin-1/2 chains. We consider the protocol where two semi-infinite chains are prepared in two thermal states at small but different temperatures and suddenly joined together. We focus on the qualitative and quantitative features of the profiles of local observables, which at large times t and distances x from the junction become functions of the ratio \\zeta=x/t . By means of the generalized hydrodynamic equations, we analyse the rich phenomenology arising by considering different regimes of the phase diagram. In the gapped phases, variations of the profiles are found to be exponentially small in the temperatures, but described by non-trivial functions of ζ. We provide analytical formulae for the latter, which give accurate results also for small but finite temperatures. In the gapless regime, we show how the three-step conformal predictions for the profiles of energy density and energy current are naturally recovered from the hydrodynamic equations. Moreover, we also recover the recent non-linear Luttinger liquid predictions for low-temperature transport: universal peaks of width \
Observations of the diurnal dependence of the high-latitude F region ion density by DMSP satellites
NASA Technical Reports Server (NTRS)
Sojka, J. J.; Raitt, W. J.; Schunk, R. W.; Rich, F. J.; Sagalyn, R. C.
1982-01-01
Data from the DMSP F2 and F4 satellites for the period December 5-10, 1979, have been used to study the diurnal dependence of the high-latitude ion density at 800-km altitude. A 24-hour periodicity in the minimum orbital density (MOD) during a crossing of the high-latitude region is observed in both the winter and summer hemispheres. The phase of the variation in MOD is such that it has a minimum during the 24-hour period between 0700 and 0900 UT. Both the long-term variation of the high-latitude ion density on a time scale of days, and the orbit-by-orbit variations at the same geomagnetic location in the northern (winter) hemisphere for the magnetically quiet time period chosen, show good qualitative agreement with the diurnal dependence predicted by a theoretical model of the ionospheric density at high latitudes under conditions of low convection speeds (Sojka et al., 1981).
On the semiannual change in exospheric temperature.
NASA Technical Reports Server (NTRS)
Titheridge, J. E.
1972-01-01
Discussion of some uncertainties about the semiannual density variations of the neutral atmosphere at heights above 100 km ascribed by Jacchia (1965), on the basis of long observations of the decay of satellite orbits, to changes in exosphere temperature, but later, because of some difficulties, attributed by Jacchia (1971) to semiannual density variations that may not be produced primarily by changes in temperature. Temperature values derived from ionosphere electron content data recorded since 1965 at several sites in New Zealand using the Faraday rotation of geostationary satellite signals and from their comparison with ionosonde measurements are shown to suggest that the semiannual variations represent primarily changes in temperature and only secondarily in density.
Fine Structure of a Laser-Plasma Filament in Air
NASA Astrophysics Data System (ADS)
Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie
2007-04-01
The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2015-01-01
During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation speeds/directions.
Seagrass Herbivory Levels Sustain Site-Fidelity in a Remnant Dugong Population.
D'Souza, Elrika; Patankar, Vardhan; Arthur, Rohan; Marbà, Núria; Alcoverro, Teresa
2015-01-01
Herds of dugong, a largely tropical marine megaherbivore, are known to undertake long-distance movements, sequentially overgrazing seagrass meadows in their path. Given their drastic declines in many regions, it is unclear whether at lower densities, their grazing is less intense, reducing their need to travel between meadows. We studied the effect of the feeding behaviour of a small dugong population in the Andaman and Nicobar archipelago, India to understand how small isolated populations graze seagrasses. In the seven years of our observation, all recorded dugongs travelled either solitarily or in pairs, and their use of seagrasses was limited to 8 meadows, some of which were persistently grazed. These meadows were relatively large, contiguous and dominated by short-lived seagrasses species. Dugongs consumed approximately 15% of meadow primary production, but there was a large variation (3-40% of total meadow production) in consumption patterns between meadows. The impact of herbivory was relatively high, with shoot densities c. 50% higher inside herbivore exclosures than in areas exposed to repeated grazing. Our results indicate that dugongs in the study area repeatedly graze the same meadows probably because the proportion of primary production consumed reduces shoot density to levels that are still above values that can trigger meadow abandonment. This ability of seagrasses to cope perhaps explains the long-term site fidelity shown by individual dugongs in these meadows. The fact that seagrass meadows in the archipelago are able to support dugong foraging requirements allows us to clearly identify locations where this remnant population persists, and where urgent management efforts can be directed.
Simulation of a shock tube with a small exit nozzle
NASA Astrophysics Data System (ADS)
Luan, Yigang; Olzmann, Matthias; Magagnato, Franco
2018-02-01
Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube with a small nozzle in the end plate has been investigated to support the analysis of reacting chemical mixtures with an attached mass spectrometer and to clarify whether the usual assumptions for the flow field and the related thermodynamics are fulfilled. In the present work, the details of the flow physics inside the tube and the flow out of the nozzle in the end plate have been investigated. Due to the large differences in the typical length scales and the large pressure ratios of this special device, a very strong numerical stiffness prevails during the simulation process. Second-order ROE numerical schemes have been employed to simulate the flow field inside the shock tube. The simulations were performed with the commercial code ANSYS Fluent [2]. Axial-symmetric boundary conditions are employed to reduce the consumption of CPU time. A density-based transient scheme has been used and validated in terms of accuracy and efficiency. The simulation results for pressure and density are compared with analytical solutions. Numerical results show that a density-based numerical scheme performs better when dealing with shock-tube problems [5]. The flow field near the nozzle is studied in detail, and the effects of the nozzle to pressure and temperature variations inside the tube are investigated. The results show that this special shock-tube setup can be used to study high-temperature gas-phase chemical reactions with reasonable accuracy.
Seagrass Herbivory Levels Sustain Site-Fidelity in a Remnant Dugong Population
Patankar, Vardhan; Marbà, Núria
2015-01-01
Herds of dugong, a largely tropical marine megaherbivore, are known to undertake long-distance movements, sequentially overgrazing seagrass meadows in their path. Given their drastic declines in many regions, it is unclear whether at lower densities, their grazing is less intense, reducing their need to travel between meadows. We studied the effect of the feeding behaviour of a small dugong population in the Andaman and Nicobar archipelago, India to understand how small isolated populations graze seagrasses. In the seven years of our observation, all recorded dugongs travelled either solitarily or in pairs, and their use of seagrasses was limited to 8 meadows, some of which were persistently grazed. These meadows were relatively large, contiguous and dominated by short-lived seagrasses species. Dugongs consumed approximately 15% of meadow primary production, but there was a large variation (3–40% of total meadow production) in consumption patterns between meadows. The impact of herbivory was relatively high, with shoot densities c. 50% higher inside herbivore exclosures than in areas exposed to repeated grazing. Our results indicate that dugongs in the study area repeatedly graze the same meadows probably because the proportion of primary production consumed reduces shoot density to levels that are still above values that can trigger meadow abandonment. This ability of seagrasses to cope perhaps explains the long-term site fidelity shown by individual dugongs in these meadows. The fact that seagrass meadows in the archipelago are able to support dugong foraging requirements allows us to clearly identify locations where this remnant population persists, and where urgent management efforts can be directed. PMID:26492558
Dean, Thomas A.; Bodkin, James L.; Jewett, Stephen C.; Monson, Daniel H.; Jung, D.
2000-01-01
Interactions between sea otters Enhydra lutris, sea urchins Strongylocentrotus droebachiensis, and kelp were investigated following the reduction in sea otter density in Prince William Sound, Alaska, after the Exxon Valdez oil spill in 1989. At northern Knight Island, a heavily oiled portion of the sound, sea otter abundance was reduced by a minimum of 50% by the oil spill, and from 1995 through 1998 remained at an estimated 66% lower than in 1973. Where sea otter densities were reduced, there were proportionally more large sea urchins. However, except in some widely scattered aggregations, both density and biomass of sea urchins were similar in an area of reduced sea otter density compared with an area where sea otters remained about 10 times more abundant. Furthermore, there was no change in kelp abundance in the area of reduced sea otter density. This is in contrast to greatly increased biomass of sea urchins and greatly reduced kelp density observed following an approximate 90% decline in sea otter abundance in the western Aleutian Islands. The variation in community response to a reduction in sea otters may be related to the magnitude of the reduction and the non-linear response by sea urchins to changes in predator abundance. The number of surviving sea otters may have been high enough to suppress sea urchin populations in Prince William Sound, but not in the Aleutians. Alternatively, differences in response may have been due to differences in the frequency or magnitude of sea urchin recruitment. Densities of small sea urchins were much higher in the Aleutian system even prior to the reduction in sea otters, suggesting a higher rate of recruitment.
NASA Astrophysics Data System (ADS)
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
Optimization schemes for the inversion of Bouguer gravity anomalies
NASA Astrophysics Data System (ADS)
Zamora, Azucena
Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the inversion parameters. Finally, in order to achieve higher resolution, Chapter 5 introduces a 3-D theoretical framework for the joint inversion of Bouguer gravity anomalies and surface wave dispersion using interior-point methods. Through this work, we expect to contribute to the creation of additional tools for the development of 2- and 3-D models depicting the Earth's geological processes and to the widespread use of constrained optimization techniques for the inversion of geophysical data sets.
Distribution, density, and biomass of introduced small mammals in the southern mariana islands
Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.
2009-01-01
Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely facilitate and support a high-density Brown Tree Snake population, even as native species are reduced or extirpated. ?? 2009 by University of Hawai'i Press All rights reserved.
Analysis of ecological quality of the environment and influencing factors in China during 2005-2010.
Wang, Shi-Xin; Yao, Yao; Zhou, Yi
2014-01-30
Since the twentieth century, China has been facing various kinds of environmental problems. It is necessary to evaluate and analyze the ecological status of the environment over China, which is of great importance for environmental protection measures. In this article, an Eco-environmental Quality Index (EQI) model is established using national remote sensing land-use data, NDVI data from MODIS and other statistical data. The model is used to evaluate the ecological status over China during 2005, 2008 and 2010, and spatial and temporal variations in EQI are analyzed during the period 2005-2010. We also discuss important factors affecting ecological quality, with special emphasis on meteorological conditions (including rainfall and sunshine duration) and anthropogenic factors (including normalized population and gross domestic product densities). The results show that, EQIs in northwestern China are generally lower than those in the southeast of the country, presenting a ladder-like distribution. There is significant correlation between EQI, rainfall and sunshine duration. Population density and GDP also have some relation to EQI. On the whole, the environmental quality results showed little variation during 2005-2010, with national average EQIs of 54.86, 55.07 and 54.43 in 2005, 2008 and 2010, respectively. During 2005-2010, differences in EQI were observed at the local level, but those at the provincial level were small.
FDTD simulation of amorphous silicon waveguides for microphotonics applications
NASA Astrophysics Data System (ADS)
Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,
2017-05-01
In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.
Moeller, David A; Geber, Monica A
2005-04-01
The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability directly influenced variation in the strength of selection on herkogamy among populations. The striking parallels between our experimental results and patterns of variation in ecological factors across the geographic range of outcrossing and selfing populations suggest that reproductive assurance may play a central role in directing mating system evolution in C. xantiana.
Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.; ...
2016-08-15
Here, an accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T ion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T ion are observed and the difference is seen to increase with increasing apparent DT T ion. The line-of-sight rms variations of both DD and DT T ion are small,more » ~150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T ion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD T ion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.
Here, an accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T ion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T ion are observed and the difference is seen to increase with increasing apparent DT T ion. The line-of-sight rms variations of both DD and DT T ion are small,more » ~150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T ion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD T ion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.« less
Radiation induced precursor flow field ahead of a Jovian entry body
NASA Technical Reports Server (NTRS)
Tiwari, S.; Szema, K. Y.
1977-01-01
The change in flow properties ahead of the bow shock of a Jovian entry body, resulting from absorption of radiation from the shock layer, is investigated. Ultraviolet radiation is absorbed by the free stream gases, causing dissociation, ionization, and an increase in enthalpy of flow ahead of the shock wave. As a result of increased fluid enthalpy, the entire flow field in the precursor region is perturbed. The variation in flow properties is determined by employing the small perturbation technique of classical aerodynamics as well as the thin layer approximation for the preheating zone. By employing physically realistic models of radiative transfer, solutions are obtained for velocity, pressure, density, temperature, and enthalpy variations. The results indicate that the precursor flow effects, in general, are greater at higher altitudes. Just ahead of the shock, however, the effects are larger at lower altitudes. Pre-heating of the gas significantly increases the static pressure and temperature ahead of the shock for velocities exceeding 36 km/sec.
The plasma environment, charge state, and currents of Saturn's C and D rings
NASA Technical Reports Server (NTRS)
Wilson, G. R.
1991-01-01
The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
2015-01-15
The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less
Equilibrium models of coronal loops that involve curvature and buoyancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to amore » detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.« less
Evaluating the Role of Small Impoundments in Legacy Sediment Storage
NASA Astrophysics Data System (ADS)
Bain, D. J.; Salant, N.; Green, M. B.; Wreschnig, A. J.; Urbanova, T.
2009-12-01
Recent research highlighting the prevalence of dams built for water power in the mid-1800s has led to suggestions that strategies for managing legacy sediment in the Eastern United States should be re-evaluated. However, the link between reach-scale observations of historic dam sites to processes at the catchment scale have not been examined, nor have the role of other, similar historic changes been evaluated. This presentation will compare dam dynamics, including mill density data and synthetic estimates of beaver populations with sedimentation rates recorded in sediment cores. If low-head dams were a dominant mechanism in sediment storage, we expect to see changes in sedimentation rates with the expatriation of the beaver and the rise and decline of water power. Further, we expect to see spatial variation in these changes as beaver and mill densities and potential sediment yield are spatially heterogeneous. Ultimately, dramatic changes in sediment yield due to land use and hydrological alterations likely drove sedimentation rates; the mechanistic importance of storage likely depends on temporal coincidence.
Environmental responsiveness of polygalacturonic acid-based multilayers to variation of pH.
Westwood, Marta; Noel, Timothy R; Parker, Roger
2011-02-14
The effect of pH on the stability of layer-by-layer deposited polygalacturonic acid (PGalA)-based multilayer films prepared with the polycations poly-L-lysine, chitosan, and lysozyme is studied. The response was characterized using a quartz crystal microbalance, dual polarization interferometry, and Fourier transform infrared spectroscopy which probe multilayer thickness, density, polymer mass (composition and speciation), and hydration. All multilayers showed irreversible changes in response to pH change becoming thinner due to the partial disassembly. Preferential loss of the polycation (50-80% w/w) and relative small losses of PGaLA (10-35% w/w) occurred. The charge density on the polycation has a strong influence on the response to the acid cycle. Most of the disassembly takes place at the pH lower that pK(a) of PGaLA, indicating that this factor was crucial in determining the stability of the films. The pH challenge also revealed a polycation-dependent shift to acid pH in the PGaLA pK(a).
NonBoussinesq effects on vorticity and kinetic energy production
NASA Astrophysics Data System (ADS)
Ravichandran, S.; Dixit, Harish; Govindarajan, Rama
2015-11-01
The Boussinesq approximation, commonly employed in weakly compressible or incompressible flows, neglects changes in inertia due to changes in the density. However, the nonBoussinesq terms can lead to a kind of centrifugal instability for small but sharp density variations, and therefore cannot be neglected under such circumstances (see, e.g.,
Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.
Derricotte, Wallace D; Evangelista, Francesco A
2015-06-14
Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.
NASA Astrophysics Data System (ADS)
Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Ré, Pedro; Pardal, Miguel A.
2012-07-01
Vertical distribution and migration pattern of ichthyoplankton assemblage in the Mondego estuary were investigated in relation to diel and tidal cycle. Summer and winter communities were sampled, at surface and bottom, over a diel cycle during spring and neap tides at a fixed station at the mouth of the estuary. Summer presented higher larvae density mainly of Pomatoschistus spp., Gobius niger and Parablennius pilicornis. Main species in winter assemblages were Pomatoschistus spp. and Sardina pilchardus. There were no differences between depth stratums across diel or tide cycle. Nevertheless, main species larval densities showed significant periodic variation associated with tide (M2) and diel (K1) cycles presenting generally, higher density at night and around low tide. Conversely, vertical patterns observed could not be related with diel or tidal cycle. Tough, main species presented some extent of vertical migration. Vertical patterns observed appear to be related to seasonal stratification and river flow, increasing amplitude during periods of less stratification and lower water currents. Present study provides a better understanding of ichthyoplankton vertical movement patterns and of small scale dynamics at the interface of two coastal European systems.
NASA Astrophysics Data System (ADS)
Cohen, R. E.; Driver, K.; Wu, Z.; Militzer, B.; Rios, P. L.; Towler, M.; Needs, R.
2009-03-01
We have used diffusion quantum Monte Carlo (DMC) with the CASINO code with thermal free energies from phonons computed using density functional perturbation theory (DFPT) with the ABINIT code to obtain phase transition curves and thermal equations of state of silica phases under pressure. We obtain excellent agreement with experiments for the metastable phase transition from quartz to stishovite. The local density approximation (LDA) incorrectly gives stishovite as the ground state. The generalized gradient approximation (GGA) correctly gives quartz as the ground state, but does worse than LDA for the equations of state. DMC, variational quantum Monte Carlo (VMC), and DFT all give good results for the ferroelastic transition of stishovite to the CaCl2 structure, and LDA or the WC exchange correlation potentials give good results within a given silica phase. The δV and δH from the CaCl2 structure to α-PbO2 is small, giving uncertainly in the theoretical transition pressure. It is interesting that DFT has trouble with silica transitions, although the electronic structures of silica are insulating, simple closed-shell with ionic/covalent bonding. It seems like the errors in DFT are from not precisely giving the ion sizes.
Oscillating scalar fields in extended quintessence
NASA Astrophysics Data System (ADS)
Li, Dan; Pi, Shi; Scherrer, Robert J.
2018-01-01
We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n <0.71 (which includes the case where the oscillating scalar field could serve as dark energy), while it can be either positive or negative for intermediate values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.
NASA Technical Reports Server (NTRS)
Franklin, Janet; Simonett, David
1988-01-01
The Li-Strahler reflectance model, driven by LANDSAT Thematic Mapper (TM) data, provided regional estimates of tree size and density within 20 percent of sampled values in two bioclimatic zones in West Africa. This model exploits tree geometry in an inversion technique to predict average tree size and density from reflectance data using a few simple parameters measured in the field (spatial pattern, shape, and size distribution of trees) and in the imagery (spectral signatures of scene components). Trees are treated as simply shaped objects, and multispectral reflectance of a pixel is assumed to be related only to the proportions of tree crown, shadow, and understory in the pixel. These, in turn, are a direct function of the number and size of trees, the solar illumination angle, and the spectral signatures of crown, shadow and understory. Given the variance in reflectance from pixel to pixel within a homogeneous area of woodland, caused by the variation in the number and size of trees, the model can be inverted to give estimates of average tree size and density. Because the inversion is sensitive to correct determination of component signatures, predictions are not accurate for small areas.
Tunstall, H; Mitchell, R; Gibbs, J; Platt, S; Dorling, D
2012-06-01
There is considerable unexplained variation in death rates between deprived areas of Britain. This analysis assesses the degree of variation in socio-demographic factors among deprivation deciles and how variables associated with deaths differ among the most deprived areas. Death rates 1996-2001, Carstairs' 2001 deprivation score and indicators, population density, black and minority ethnic group (BME) and population change 1971-2001 were calculated for 641 parliamentary constituencies in Britain. Constituencies were grouped into Carstairs' deciles. We assessed standard errors of all variables by decile and the relationship between death rates and socio-demographic variables with Pearson's correlations and linear regression by decile and for all constituencies combined. Standard errors in death rates and most socio-demographic variables were greatest for the most deprived decile. Death rates among all constituencies were positively correlated with Carstairs' score and indicators, density and BME, but for the most deprived decile, there was no association with Carstairs and a negative correlation with overcrowding, density and BME. For the most deprived decile multivariate models containing population density, BME and change had substantially higher R(2). Understanding variations in death rates between deprived areas requires greater consideration of their socio-demographic diversity including their population density, ethnicity and migration.
Patterns of shading tolerance determined from experimental ...
An extensive review of the experimental literature on seagrass shading evaluated the relationship between experimental light reductions, duration of experiment and seagrass response metrics to determine whether there were consistent statistical patterns. There were highly significant linear relationships of both percent biomass and percent shoot density reduction versus percent light reduction (versus controls), although unexplained variation in the data were high. Duration of exposure affected extent of response for both metrics, but was more clearly a factor in biomass response. Both biomass and shoot density showed linear responses to duration of light reduction for treatments 60%. Unexplained variation was again high, and greater for shoot density than biomass. With few exceptions, regressions of both biomass and shoot density on light reduction for individual species and for genera were statistically significant, but also tended to show high degrees of variability in data. Multivariate regressions that included both percent light reduction and duration of reduction as dependent variables increased the percentage of variation explained in almost every case. Analysis of response data by seagrass life history category (Colonizing, Opportunistic, Persistent) did not yield clearly separate response relationships in most cases. Biomass tended to show somewhat less variation in response to light reduction than shoot density, and of the two, may be the prefe
NASA Technical Reports Server (NTRS)
Zhang, Shuxia; Yuen, David A.
1994-01-01
We have investigated the influences of lateral variations of viscosity on the moment of inertia tensor from viscous flows due to the density anomalies in the mantle inferred from seismic tomographic models. The scaling relations between the density and the seismic anomalies is taken as either a constant or a function increasing with depth in accord with the recent high-pressure experimental studies. The viscosity is taken as an exponential function of the 3D density anomaly. In models with an isoviscous background, the effects on the perturbed moment of inertia tensor from the lateral viscosity variations are smaller than those due to variations in the radial viscosity profiles. In mantle models with a background viscosity increasing with depth, the influences of the lateral viscosity variations are significant. The most striking feature in the latter case is that the two off-diagonal elements delta I(sub xz) and delta I(sub yz) in the inertia tensor exhibit greatest sensitivity to lateral variations of the viscosity. While the other elements of the inertia change by only about a few tens of percent in the range of lateral viscosity contrast considered (less than 300), delta I(sub xz) and delta I(sub yz) can vary up to 40 times even with a change in sign, depending on the radial viscosity stratification and the location of the strongest lateral variations. The increase in the velocity-density scaling relation with depth can reduce the influences of the lateral viscosity variations, but it does not change the overall sensitive nature of delta I(sub xz) and delta I(sub yz). This study demonstrates clearly that the lateral viscosity variations, especially in the upper mantle, must be considered in the determination of long-term polar wander, since the variations in the delta I(sub xz) and delta I(sub yz) terms are directly responsible for exciting rotational movements.
Importance of Local and Regional Scales in Shaping Mycobacterial Abundance in Freshwater Lakes.
Roguet, Adélaïde; Therial, Claire; Catherine, Arnaud; Bressy, Adèle; Varrault, Gilles; Bouhdamane, Lila; Tran, Viet; Lemaire, Bruno J; Vincon-Leite, Brigitte; Saad, Mohamed; Moulin, Laurent; Lucas, Françoise S
2018-05-01
Biogeographical studies considering the entire bacterial community may underestimate mechanisms of bacterial assemblages at lower taxonomic levels. In this context, the study aimed to identify factors affecting the spatial and temporal dynamic of the Mycobacterium, a genus widespread in aquatic ecosystems. Nontuberculous mycobacteria (NTM) density variations were quantified in the water column of freshwater lakes at the regional scale (annual monitoring of 49 lakes in the Paris area) and at the local scale (2-year monthly monitoring in Créteil Lake) by real-time quantitative PCR targeting the atpE gene. At the regional scale, mycobacteria densities in water samples ranged from 6.7 × 10 3 to 1.9 × 10 8 genome units per liter. Density variations were primarily explained by water pH, labile iron, and dispersal processes through the connection of the lakes to a river. In Créteil Lake, no spatial variation of mycobacterial densities was noticed over the 2-year monthly survey, except after large rainfall events. Indeed, storm sewer effluents locally and temporarily increased NTM densities in the water column. The temporal dynamic of the NTM densities in Créteil Lake was associated with suspended solid concentrations. No clear seasonal variation was noticed despite a shift in NTM densities observed over the 2012-2013 winter. Temporal NTM densities fluctuations were well predicted by the neutral community model, suggesting a random balance between loss and gain of mycobacterial taxa within Créteil Lake. This study highlights the importance of considering multiple spatial scales for understanding the spatio-temporal dynamic of bacterial populations in natural environments.
Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa
2015-03-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Qian; Xiao, Yong-fu; Vuitton, Dominique A; Schantz, Peter M; Raoul, Francis; Budke, Christine; Campos-Ponce, Maiza; Craig, Philip S; Giraudoux, Patrick
2007-02-05
Overgrazing was assumed to increase the population density of small mammals that are the intermediate hosts of Echinococcus multilocularis, the pathogen of alveolar echinococcosis in the Qinghai Tibet Plateau. This research tested the hypothesis that overgrazing might promote Echinococcus multilocularis transmission through increasing populations of small mammal, intermediate hosts in Tibetan pastoral communities. Grazing practices, small mammal indices and dog Echinococcus multilocularis infection data were collected to analyze the relation between overgrazing and Echinococcus multilocularis transmission using nonparametric tests and multiple stepwise logistic regression. In the investigated area, raising livestock was a key industry. The communal pastures existed and the available forage was deficient for grazing. Open (common) pastures were overgrazed and had higher burrow density of small mammals compared with neighboring fenced (private) pastures; this high overgrazing pressure on the open pastures measured by neighboring fenced area led to higher burrow density of small mammals in open pastures. The median burrow density of small mammals in open pastures was independently associated with nearby canine Echinococcus multilocularis infection (P = 0.003, OR = 1.048). Overgrazing may promote the transmission of Echinococcus multilocularis through increasing the population density of small mammals.
Predator-induced synchrony in population oscillations of coexisting small mammal species.
Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero
2005-01-22
Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.
Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects.
Riginos, Corinna; Grace, James B
2008-08-01
Herbivores choose their habitats both to maximize forage intake and to minimize their risk of predation. For African savanna herbivores, the available habitats range in woody cover from open areas with few trees to dense, almost-closed woodlands. This variation in woody cover or density can have a number of consequences for herbaceous species composition, cover, and productivity, as well as for ease of predator detection and avoidance. Here, we consider two alternative possibilities: first, that tree density affects the herbaceous vegetation, with concomitant "bottom-up" effects on herbivore habitat preferences; or, second, that tree density affects predator visibility, mediating "top-down" effects of predators on herbivore habitat preferences. We sampled sites spanning a 10-fold range of tree densities in an Acacia drepanolobium-dominated savanna in Laikipia, Kenya, for variation in (1) herbaceous cover, composition, and species richness; (2) wild and domestic herbivore use; and (3) degree of visibility obstruction by the tree layer. We then used structural equation modeling to consider the potential influences that tree density may have on herbivores and herbaceous community properties. Tree density was associated with substantial variation in herbaceous species composition and richness. Cattle exhibited a fairly uniform use of the landscape, whereas wild herbivores, with the exception of elephants, exhibited a strong preference for areas of low tree density. Model results suggest that this was not a response to variation in herbaceous-community characteristics, but rather a response to the greater visibility associated with more open places. Elephants, in contrast, preferred areas with higher densities of trees, apparently because of greater forage availability. These results suggest that, for all but the largest species, top-down behavioral effects of predator avoidance on herbivores are mediated by tree density. This, in turn, appears to have cascading effects on the herbaceous vegetation. These results shed light on one of the major features of the "landscape of fear" in which African savanna herbivores exist.
Grace, J.B.; Guntenspergen, G.R.
1999-01-01
Here we propose that an important cause of variation in species density may be prior environmental conditions that continue to influence current patterns. In this paper we investigated the degree to which species density varies with location within the landscape, independent of contemporaneous environmental conditions. The area studied was a coastal marsh landscape subject to periodic storm events. To evaluate the impact of historical effects, it was assumed that the landscape position of a plot relative to the river's mouth ('distance from sea') and to the edge of a stream channel ('distance from shore') would correlate with the impact of prior storm events, an assumption supported by previous studies. To evaluate the importance of spatial location on species density, data were collected from five sites located at increasing distances from the river's mouth along the Middle Pearl River in Louisiana. At each site, plots were established systematically along transects perpendicular to the shoreline. For each of the 175 Plots, we measured elevation, soil salinity, percent of plot recently disturbed, percent of sunlight captured by the plant canopy (as a measure of plant abundance), and plant species density. Structural equation analysis ascertained the degree to which landscape position variables explained variation in species density that could not be explained by current environmental indicators. Without considering landscape variables, 54% of the variation in species density could be explained by the effects of salinity, flooding, and plant abundance. When landscape variables were included, distance from shore was unimportant but distance from sea explained an additional 12% of the variance in species density (R2 of final model = 66%). Based on these results it appears that at least some of the otherwise unexplained variation in species density can be attributed to landscape position, and presumably previous storm events. We suggest that future studies may gain additional insight into the factors controlling current patterns of species density by examining the effects of position within the landscape.
Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential
NASA Technical Reports Server (NTRS)
Musen, P.
1974-01-01
The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.
1985-05-01
Source level in decibels SBL Sub-bottom loss TL Transmission loss of signal going through the water/sediment interface -- 4 - • .’ I.. zL...explained in the legend to figure 3-1. ’-4 RLb - S-BL-2Oog2D-2aD (3.1) RL8b S- TLb- SBL -TLW-2az-2Olog(D+z)-2aD (3.2) jZ h -57- OCEAN SURFACE...RLb -RLab= SBL + [TL,+TL,-BL-201og2D" + 2az + 20log(D+z). (3.3) Assuming that the term within the bracket remains constant for the entire wedge, we
New results on thermalization of electrons in GaAs
NASA Astrophysics Data System (ADS)
Hannak, Reinhard M.; Ruehle, Wolfgang W.
1994-05-01
The transition from a nonthermal into a thermal distribution of electrons at low densities (< 1014 cm-3) is traced on a picosecond time-scale by the time evolution of a band-to-acceptor transition in GaAs:Be. Two narrow, nonthermal electron distributions are detected during the first picoseconds originating from the heavy- and light-hole valence band, respectively. Measurements with circular polarization of excitation and luminescence confirm this assignment. The variation of their energetic peak-positions with excitation energy allows the experimental determination of the valence band dispersions for very small wave vectors near k equals 0, where only parabolic energy terms contribute to the dispersions. The results are consistent with the commonly used effective hole masses.
Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots.
Huang, Yaxin; Cheng, Huhu; Shi, Gaoquan; Qu, Liangti
2017-11-08
A high-performance moisture triggered nanogenerator is fabricated by using graphene quantum dots (GQDs) as the active material. GQDs are prepared by direct oxidation and etching of natural graphite powder, which have small sizes of 2-5 nm and abundant oxygen-containing functional groups. After the treatment by electrochemical polarization, the GQDs-based moisture triggered nanogenerator can deliver a high voltage up to 0.27 V under 70% relative humidity variation, and a power density of 1.86 mW cm -2 with an optimized load resistor. The latter value is much higher than the moisture-electric power generators reported previously. The GQD moisture triggered nanogenerator is promising for self-power electronics and miniature sensors.
NASA Technical Reports Server (NTRS)
Maekawa, S.; Lin, Y. K.
1977-01-01
The interaction between a turbulent flow and certain types of structures which respond to its excitation is investigated. One-dimensional models were used to develop the basic ideas applied to a second model resembling the fuselage construction of an aircraft. In the two-dimensional case a simple membrane, with a small random variation in the membrane tension, was used. A decaying turbulence was constructed by superposing infinitely many components, each of which is convected as a frozen pattern at a different velocity. Structure-turbulence interaction results are presented in terms of the spectral densities of the structural response and the perturbation Reynolds stress in the fluid at the vicinity of the interface.
The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Pappano, Peter J
2010-10-01
Here we report the physical properties of a series specimens machined from pilot scale (~ 152 mm diameter x ~305 mm length) grade PCEA recycle billets manufactured by GrafTech. The pilot scale billets were processed with increasing amounts of (unirradiated) graphite (from 20% to 100%) introduced to the formulation with the goal of determining if large fractions of recycle graphite have a deleterious effect on properties. The properties determined include Bulk Density, Electrical Resistivity, Elastic (Young s) Modulus, and Coefficient of Thermal Expansion. Although property variations were observed to be correlated with the recycle fraction, the magnitude of the variationsmore » was noted to be small.« less
Shibata, Setsuko; Kawano, Eiko; Nakabayashi, Takeshige
2005-08-01
(14)C in rice grains is a useful tracer of atmospheric (14)C(CO(2)). (14)C measurement in rice grains for 17 years during 1982--1999 reveals the following. There is negative correlation between Delta(14)C and the population densities of localities in Japan. Under-populated areas in the northern area of Japan and Okinawa remained clean in the 1990s. The (14)C(CO(2)) decline rates at those areas are near to that of Shauinsland. A latitudinal effect due to Chinese nuclear tests is observed in 1982. Small Seuss effects is observed at the middle latitudes in East Asia after 1995.
The aerodynamic characteristics of seven frequently used wing sections at full Reynolds number
NASA Technical Reports Server (NTRS)
Munk, Max M; Miller, Elton W
1927-01-01
This report contains the aerodynamic properties of the wing sections U.S.A. 5, U.S.A. 27, U.S.A. 35 A, U.S.A. 35 B, Clark Y, R.A.F. 15, and Gottingen 387, as determined at various Reynolds numbers up to an approximately full scale value in the variable density wind tunnel of the National Advisory Committee for Aeronautics. It is shown that the characteristics of the wings investigated are affected greatly and in a somewhat erratic manner by variation of the Reynolds number. In general there is a small increase in maximum lift and an appreciable decrease in drag at all lifts.
NASA Astrophysics Data System (ADS)
Lechtenberg, Travis; McLaughlin, Craig A.; Locke, Travis; Krishna, Dhaval Mysore
2013-01-01
paper examines atmospheric density estimated using precision orbit ephemerides (POE) from the CHAMP and GRACE satellites during short periods of greater atmospheric density variability. The results of the calibration of CHAMP densities derived using POEs with those derived using accelerometers are examined for three different types of density perturbations, [traveling atmospheric disturbances (TADs), geomagnetic cusp phenomena, and midnight density maxima] in order to determine the temporal resolution of POE solutions. In addition, the densities are compared to High-Accuracy Satellite Drag Model (HASDM) densities to compare temporal resolution for both types of corrections. The resolution for these models of thermospheric density was found to be inadequate to sufficiently characterize the short-term density variations examined here. Also examined in this paper is the effect of differing density estimation schemes by propagating an initial orbit state forward in time and examining induced errors. The propagated POE-derived densities incurred errors of a smaller magnitude than the empirical models and errors on the same scale or better than those incurred using the HASDM model.
Maradzike, Elvis; Gidofalvi, Gergely; Turney, Justin M; Schaefer, Henry F; DePrince, A Eugene
2017-09-12
Analytic energy gradients are presented for a variational two-electron reduced-density-matrix (2-RDM)-driven complete active space self-consistent field (CASSCF) method. The active-space 2-RDM is determined using a semidefinite programing (SDP) algorithm built upon an augmented Lagrangian formalism. Expressions for analytic gradients are simplified by the fact that the Lagrangian is stationary with respect to variations in both the primal and the dual solutions to the SDP problem. Orbital response contributions to the gradient are identical to those that arise in conventional CASSCF methods in which the electronic structure of the active space is described by a full configuration interaction (CI) wave function. We explore the relative performance of variational 2-RDM (v2RDM)- and CI-driven CASSCF for the equilibrium geometries of 20 small molecules. When enforcing two-particle N-representability conditions, full-valence v2RDM-CASSCF-optimized bond lengths display a mean unsigned error of 0.0060 Å and a maximum unsigned error of 0.0265 Å, relative to those obtained from full-valence CI-CASSCF. When enforcing partial three-particle N-representability conditions, the mean and maximum unsigned errors are reduced to only 0.0006 and 0.0054 Å, respectively. For these same molecules, full-valence v2RDM-CASSCF bond lengths computed in the cc-pVQZ basis set deviate from experimentally determined ones on average by 0.017 and 0.011 Å when enforcing two- and three-particle conditions, respectively, whereas CI-CASSCF displays an average deviation of 0.010 Å. The v2RDM-CASSCF approach with two-particle conditions is also applied to the equilibrium geometry of pentacene; optimized bond lengths deviate from those derived from experiment, on average, by 0.015 Å when using a cc-pVDZ basis set and a (22e,22o) active space.
NASA Astrophysics Data System (ADS)
Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.
2017-12-01
There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.
NASA Astrophysics Data System (ADS)
Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel H.; Esler, Daniel; Dean, Thomas A.
2018-01-01
Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006-2015), Kenai Fjords National Park (Kenai Fjords) (2008-2015) and western Prince William Sound (WPWS) (2007-2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.
Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel; Esler, Daniel N.; Dean, Thomas A.
2017-01-01
Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006–2015), Kenai Fjords National Park (Kenai Fjords) (2008–2015) and western Prince William Sound (WPWS) (2007–2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.
The effect of small variations in profile of airfoils
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1931-01-01
This report deals with the effect of small variations in ordinates specified by different laboratories for the airfoil section. This study was made in connection with a more general investigation of the effect of small irregularities of the airfoil surface on the aerodynamic characteristics of an airfoil. These tests show that small changes in airfoil contours, resulting from variations in the specified ordinates, have a sufficiently large effect upon the airfoil characteristics to justify the taking of great care in the specification of ordinates for the construction of models.
Kim, Minkyoung; Choi, Seung-Hoon; Kim, Junhyoung; Choi, Kihang; Shin, Jae-Min; Kang, Sang-Kee; Choi, Yun-Jaie; Jung, Dong Hyun
2009-11-01
This study describes the application of a density-based algorithm to clustering small peptide conformations after a molecular dynamics simulation. We propose a clustering method for small peptide conformations that enables adjacent clusters to be separated more clearly on the basis of neighbor density. Neighbor density means the number of neighboring conformations, so if a conformation has too few neighboring conformations, then it is considered as noise or an outlier and is excluded from the list of cluster members. With this approach, we can easily identify clusters in which the members are densely crowded in the conformational space, and we can safely avoid misclustering individual clusters linked by noise or outliers. Consideration of neighbor density significantly improves the efficiency of clustering of small peptide conformations sampled from molecular dynamics simulations and can be used for predicting peptide structures.
The influence of genetic variation on late toxicities in childhood cancer survivors: A review.
Clemens, E; van der Kooi, A L F; Broer, L; van Dulmen-den Broeder, E; Visscher, H; Kremer, L; Tissing, W; Loonen, J; Ronckers, C M; Pluijm, S M F; Neggers, S J C M M; Zolk, O; Langer, T; Zehnhoff-Dinnesen, A Am; Wilson, C L; Hudson, M M; Carleton, B; Laven, J S E; Uitterlinden, A G; van den Heuvel-Eibrink, M M
2018-06-01
The variability in late toxicities among childhood cancer survivors (CCS) is only partially explained by treatment and baseline patient characteristics. Inter-individual variability in the association between treatment exposure and risk of late toxicity suggests that genetic variation possibly modifies this association. We reviewed the available literature on genetic susceptibility of late toxicity after childhood cancer treatment related to components of metabolic syndrome, bone mineral density, gonadal impairment and hearing impairment. A systematic literature search was performed, using Embase, Cochrane Library, Google Scholar, MEDLINE, and Web of Science databases. Eligible publications included all English language reports of candidate gene studies and genome wide association studies (GWAS) that aimed to identify genetic risk factors associated with the four late toxicities, defined as toxicity present after end of treatment. Twenty-seven articles were identified, including 26 candidate gene studies: metabolic syndrome (n = 6); BMD (n = 6); gonadal impairment (n = 2); hearing impairment (n = 12) and one GWAS (metabolic syndrome). Eighty percent of the genetic studies on late toxicity after childhood cancer had relatively small sample sizes (n < 200), leading to insufficient power, and lacked adjustment for multiple comparisons. Only four (4/26 = 15%) candidate gene studies had their findings validated in independent replication cohorts as part of their own report. Genetic susceptibility associations are not consistent or not replicated and therefore, currently no evidence-based recommendations can be made for hearing impairment, gonadal impairment, bone mineral density impairment and metabolic syndrome in CCS. To advance knowledge related to genetic variation influencing late toxicities among CCS, future studies need adequate power, independent cohorts for replication, harmonization of disease outcomes and sample collections, and (international) collaboration. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Esqueda, Vincent; Montoya, Julian A.
2005-08-01
As semiconductor devices shrink in size to accommodate faster processing speeds, the need for higher resolution beam-based metrology equipment and beam-based writing equipment will increase. The electron and ion beams used within these types of equipment are sensitive to very small variations in magnetic force applied to the beam. This phenomenon results from changes in Alternating Current (AC) and Direct Current (DC) magnetic flux density at the beam column which causes deflections of the beam that can impact equipment performance. Currently the most sensitive beam-based microscope manufacturers require an ambient magnetic field environment that does not have variations that exceed 0.2 milli-Gauss (mG). Studies have shown that such low levels of magnetic flux density can be extremely difficult to achieve. As examples, scissor lifts, vehicles, metal chairs, and doors moving in time and space under typical use conditions can create distortions in the Earth's magnetic field that can exceed 0.2 mG at the beam column. In addition it is known that changes in the Earth's magnetic field caused by solar flares, earthquakes, and variations in the Earth's core itself all cause changes in the magnetic field that can exceed 0.2 mG. This paper will provide the reader with the basic understanding of the emerging problem, will discuss the environmental and facility level challenges associated in meeting such stringent magnetic field environments, will discuss some of the mitigation techniques used to address the problem, and will close by discussing needs for further research in this area to assure semiconductor and nanotechnology industries are pre-positioned for even more stringent magnetic field environmental requirements.
2012-01-01
Background F1 hybrid clones of Eucalyptus grandis and E. urophylla are widely grown for pulp and paper production in tropical and subtropical regions. Volume growth and wood quality are priority objectives in Eucalyptus tree improvement. The molecular basis of quantitative variation and trait expression in eucalypt hybrids, however, remains largely unknown. The recent availability of a draft genome sequence (http://www.phytozome.net) and genome-wide genotyping platforms, combined with high levels of genetic variation and high linkage disequilibrium in hybrid crosses, greatly facilitate the detection of quantitative trait loci (QTLs) as well as underlying candidate genes for growth and wood property traits. In this study, we used Diversity Arrays Technology markers to assess the genetic architecture of volume growth (diameter at breast height, DBH) and wood basic density in four-year-old progeny of an interspecific backcross pedigree of E. grandis and E. urophylla. In addition, we used Illumina RNA-Seq expression profiling in the E. urophylla backcross family to identify cis- and trans-acting polymorphisms (eQTLs) affecting transcript abundance of genes underlying QTLs for wood basic density. Results A total of five QTLs for DBH and 12 for wood basic density were identified in the two backcross families. Individual QTLs for DBH and wood basic density explained 3.1 to 12.2% of phenotypic variation. Candidate genes underlying QTLs for wood basic density on linkage groups 8 and 9 were found to share trans-acting eQTLs located on linkage groups 4 and 10, which in turn coincided with QTLs for wood basic density suggesting that these QTLs represent segregating components of an underlying transcriptional network. Conclusion This is the first demonstration of the use of next-generation expression profiling to quantify transcript abundance in a segregating tree population and identify candidate genes potentially affecting wood property variation. The QTLs identified in this study provide a resource for identifying candidate genes and developing molecular markers for marker-assisted breeding of volume growth and wood basic density. Our results suggest that integrated analysis of transcript and trait variation in eucalypt hybrids can be used to dissect the molecular basis of quantitative variation in wood property traits. PMID:22817272
Cultural Orientation in Asian American Adolescents: Variation by Age and Ethnic Density
ERIC Educational Resources Information Center
Ying, Yu-Wen; Han, Meekyung; Wong, Sandra L.
2008-01-01
The study assessed variation in cultural orientation among Asian American adolescents by age and ethnic density in the community. A total of 128 students at a public high school in Oakland, California, participated in the study. Of these early and middle adolescents, 86 were Chinese American and 42 were Southeast Asian American. They completed the…
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are the most abundant DNA sequence variation in the genomes which can be used to associate genotypic variation to the phenotype. Therefore, availability of a high-density SNP array with uniform genome coverage can advance genetic studies and breeding applicatio...
Group size and visitor numbers predict faecal glucocorticoid concentrations in zoo meerkats
Scott, Katy; Heistermann, Michael
2017-01-01
Measures of physiological stress in zoo animals can give important insights into how they are affected by aspects of their captive environment. We analysed the factors influencing variation in glucocorticoid metabolites in faeces (fGCs) from zoo meerkats as a proxy for blood cortisol concentration, high levels of which are associated with a stress response. Levels of fGCs in captive meerkats declined with increasing group size. In the wild, very small groups of meerkats are at a higher risk of predation, while in larger groups, there is increased competition for resources. Indeed, group sizes in captivity resemble those seen in unstable coalitions in the wild, which may represent a stressful condition and predispose meerkats to chronic stress, even in the absence of natural predators. Individuals in large enclosures showed lower levels of stress, but meerkat density had no effect on the stress measures. In contrast with data from wild meerkats, neither sex, age nor dominance status predicted stress levels, which may reflect less food stress owing to more equal access to resources in captivity versus wild. The median number of visitors at the enclosure was positively correlated with fGC concentrations on the following day, with variation in the visitor numbers having the opposite effect. Our results are consistent with the hypothesis that there is an optimum group size which minimizes physiological stress in meerkats, and that zoo meerkats at most risk of physiological stress are those kept in small groups and small enclosures and are exposed to consistently high numbers of visitors. PMID:28484620
Group size and visitor numbers predict faecal glucocorticoid concentrations in zoo meerkats.
Scott, Katy; Heistermann, Michael; Cant, Michael A; Vitikainen, Emma I K
2017-04-01
Measures of physiological stress in zoo animals can give important insights into how they are affected by aspects of their captive environment. We analysed the factors influencing variation in glucocorticoid metabolites in faeces (fGCs) from zoo meerkats as a proxy for blood cortisol concentration, high levels of which are associated with a stress response. Levels of fGCs in captive meerkats declined with increasing group size. In the wild, very small groups of meerkats are at a higher risk of predation, while in larger groups, there is increased competition for resources. Indeed, group sizes in captivity resemble those seen in unstable coalitions in the wild, which may represent a stressful condition and predispose meerkats to chronic stress, even in the absence of natural predators. Individuals in large enclosures showed lower levels of stress, but meerkat density had no effect on the stress measures. In contrast with data from wild meerkats, neither sex, age nor dominance status predicted stress levels, which may reflect less food stress owing to more equal access to resources in captivity versus wild. The median number of visitors at the enclosure was positively correlated with fGC concentrations on the following day, with variation in the visitor numbers having the opposite effect. Our results are consistent with the hypothesis that there is an optimum group size which minimizes physiological stress in meerkats, and that zoo meerkats at most risk of physiological stress are those kept in small groups and small enclosures and are exposed to consistently high numbers of visitors.