DOE Office of Scientific and Technical Information (OSTI.GOV)
Reft, C; Lu, Z; Noonan, J
2015-06-15
Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beammore » shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.« less
Small field electron beam dosimetry using MOSFET detector.
Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K
2010-10-04
The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
Small field electron beam dosimetry using MOSFET detector
Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K.
2010-01-01
The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth‐dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high‐sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm× 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also performed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ±1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam. PACS number: 87.55.Qr
NASA Astrophysics Data System (ADS)
Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.
1996-11-01
Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.
SU-F-T-68: Characterizes of Microdetectors in Electron Beam Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Akino, Y
Purpose: Electron beam dosimetry requires high resolution data due to finite range that can be accomplished with small volume detectors. The small-field used in advance technologies in photon beam has created a market for microdetectors, however characteristics are significantly variable in photon beams and relatively unknown in electron beam that is investigated in this study. Methods: Among nearly 2 dozen microdetectors that have been investigated in small fields of photon beam, two popular detectors (microDiamond 60019 (PTW)) and W1 plastic scintillator detector (Standard Imaging)) that are tissue equivalent and have very small sensitive volume are selected. Electron beams from Varianmore » linear accelerators were used to investigate dose linearity dose rate dependence, energy dependence, depth dose and profiles in a reference condition in a water phantom. For W1 that has its own Supermax electrometer point by point measurements were performed. For microDiamond, a PTW-scanning tank was used for both scanning and point dose measurements. Results: W1 detector showed excellent dose linearity (r{sup 2} =1.0) from 5–500 MU either with variation of dose rate or beam energy. Similar findings were also observed for microdiamond with r{sup 2}=1.0. Percent variations in dose/MU for W1 and microDiamond were 0.2–1.1% and 0.4–1.2%, respectively among dose rate and beam energy. This variation was random for microDiamond, whereas it decreased with beam energy and dose rate for W1. The depth dose and profiles were within ±1 mm for both detectors. Both detectors did not show any energy dependence in electron beams. Conclusion: Both microDiamond and W1 detectors provided superior characteristics of beam parameters in electron beam including dose, dose rate linearity and energy independence. Both can be used in electron beam except W1 require point by point measurements and microdiamond requires 1500 MU for initial quenching.« less
Device and method for electron beam heating of a high density plasma
Thode, L.E.
A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
The radiated electromagnetic field from collimated gamma rays and electron beams in air
NASA Astrophysics Data System (ADS)
Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.
1980-12-01
Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.
NASA Technical Reports Server (NTRS)
Fragomeni, James M.
1998-01-01
As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a small amount of current. The rate at which the current charge leaks from the fabric controls how fast the fabric heats up. As the ceramic fabric is heated it begins to outgass primarily from contamination/impurities atoms or molecules on and below the fabric surface. The contaminant gases ionize to create extra charge carriers and multiply a current of electrons. The emitted gas which ionized in the electron leakage flow promotes further leakage. Thus, the small leakage of charge from the fabric surface is enhanced by outgassing. When the electron beam current makes up the lost current, the incoming electrons heat the fabric and further enhance the outgassing. The additional leakage promotes additional heating up of the ceramic fabric. The electrons bound to the ceramic fabric surface leak off more and more as the surface gets hotter promoting even greater leakage. The additional electrons that result also gain energy in the field and produce further electrons. Eventually the process becomes unstable and accelerates to the point where a hole is burned through the fabric.
Device and method for imploding a microsphere with a fast liner
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.
Shielding small-field high-energy electron beams in cancer treatment
NASA Astrophysics Data System (ADS)
Farahani, M.; Eichmiller, F. C.; McLaughlin, W. L.
1994-04-01
The purpose of this study was to find an effective material that can be prepared quickly and easily prior to small-field electron-beam treatments so that lesions of the head and neck can be treated with minimal irradiation of the surrounding healthy tissue. Conventional preparation of custom anatomical prosthetic radiation shields, which are usually metal alloy masks, has been time-consuming and uncomfortable for the patients. New materials, made from light-body Reprosil TM (L. L. Caulk) filled with fine metal powder consisting of 70% Ag-30% Cu alloy, can be made by blending 90% (w/w) metal powder with 10% polysiloxane base and adding the polymerization catalyst separately. These combinations were mixed to form comfortably fitted shielding composites of different thicknesses. The electron-beam attenuation properties of slabs of this material were studied by irradiating calibrated radiochromic film (GafChromic TM) dosimeters behind different thicknesses of composite samples with small-field 13-, 15- and 18-MeV electron beams from a therapeutic linear accelerator. The results showed that this material can suitably attenuate high-energy electron beams when used in reasonable thicknesses.
Inductive voltage adder (IVA) for submillimeter radius electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.
The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experimentsmore » are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.« less
Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.
Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI@elettra electron gun.
NASA Astrophysics Data System (ADS)
Khledi, Navid; Arbabi, Azim; Sardari, Dariush; Mohammadi, Mohammad; Ameri, Ahmad
2015-02-01
Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.
A comparison of TPS and different measurement techniques in small-field electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat
In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with datamore » that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.« less
Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy
USDA-ARS?s Scientific Manuscript database
The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...
Multi-stage depressed collector for small orbit gyrotrons
Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.
1998-01-01
A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.
Multi-stage depressed collector for small orbit gyrotrons
Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.
1998-07-14
A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.
Focused electron and ion beam systems
Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan
2004-07-27
An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.; Kol’tsov, A. V., E-mail: koltsov@x4u.lebedev.ru
2015-10-15
The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the planemore » of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.« less
Moberlychan, Warren J
2009-06-03
Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less
Electron Lenses for the Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Valishev, Alexander; Bruce, Roderik
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less
Small Aperture BPM to Quadrupole Assembly Tolerance Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, K. W.
2010-12-07
The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.
A comparison of TPS and different measurement techniques in small-field electron beams.
Donmez Kesen, Nazmiye; Cakir, Aydin; Okutan, Murat; Bilge, Hatice
2015-01-01
In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
SU-E-T-451: Accuracy and Application of the Standard Imaging W1 Scintillator Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, M; McEwen, M
2014-06-01
Purpose: To evaluate the Standard Imaging W1 scintillator dosimeter in a range of clinical radiation beams to determine its range of possible applications. Methods: The W1 scintillator is a small perturbation-free dosimeter which is of interest in absolute and relative clinical dosimetry due to its small size and water equivalence. A single version of this detector was evaluated in Co-60 and linac photon and electron beams to investigate the following: linearity, sensitivity, precision, and dependence on electrometer type. In addition, depth-dose and cross-plane profiles were obtained in both photon and electron beams and compared with data obtained with wellbehaved ionizationmore » chambers. Results: In linac beams the precision and linearity was very impressive, with typical values of 0.3% and 0.1% respectively. Performance in a Co-60 beam was much poorer (approximately three times worse) and it is not clear whether this is due to the lower signal current or the effect of the continuous beam (rather than pulsed beam of the linac measurements). There was no significant difference in the detector reading when using either the recommended SI Supermax electrometer or two independent high-quality electrometers, except for low signal levels, where the Supermax exhibited an apparent threshold effect, preventing the measurement of the bremsstrahlung background in electron depth-dose curves. Comparisons with ion chamber measurements in linac beams were somewhat variable: good agreement was seen for cross-profiles (photon and electron beams) and electron beam depth-dose curves, generally within the 0.3% precision of the scintillator but systematic differences were observed as a function of measurement depth in photon beam depth-dose curves. Conclusion: A first look would suggest that the W1 scintillator has applications beyond small field dosimetry but performance appears to be limited to higher doserate and/or pulsed radiation beams. Further work is required to resolve discrepancies compared to ion chambers.« less
Short pulse free electron laser amplifier
Schlitt, Leland G.; Szoke, Abraham
1985-01-01
Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.
Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.
Elleaume, P; Fortgang, C; Penel, C; Tarazona, E
1995-09-01
A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.
Electron beam induced light emission
NASA Astrophysics Data System (ADS)
Ulrich, A.; Heindl, T.; Krücken, R.; Morozov, A.; Skrobol, C.; Wieser, J.
2009-08-01
Electron beams with a particle energy of typically 12keV are used for collisional excitation of dense gases. The electrons are sent through ceramic membranes of only 300nm thickness into gas targets. Excimer light emission from the pure rare gases and from gas mixtures are studied for the development of brilliant VUV and UV light sources. The application of the technology for gas kinetic studies is described and its potential for building very small electron beam pumped lasers is discussed.
NASA Astrophysics Data System (ADS)
Danehkar, A.
2018-06-01
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.
NASA Astrophysics Data System (ADS)
Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang
2018-01-01
Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.
NASA Astrophysics Data System (ADS)
Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh
2017-02-01
The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.
Digital electron diffraction – seeing the whole picture
Beanland, Richard; Thomas, Paul J.; Woodward, David I.; Thomas, Pamela A.; Roemer, Rudolf A.
2013-01-01
The advantages of convergent-beam electron diffraction for symmetry determination at the scale of a few nm are well known. In practice, the approach is often limited due to the restriction on the angular range of the electron beam imposed by the small Bragg angle for high-energy electron diffraction, i.e. a large convergence angle of the incident beam results in overlapping information in the diffraction pattern. Techniques have been generally available since the 1980s which overcome this restriction for individual diffracted beams, by making a compromise between illuminated area and beam convergence. Here a simple technique is described which overcomes all of these problems using computer control, giving electron diffraction data over a large angular range for many diffracted beams from the volume given by a focused electron beam (typically a few nm or less). The increase in the amount of information significantly improves the ease of interpretation and widens the applicability of the technique, particularly for thin materials or those with larger lattice parameters. PMID:23778099
The evaluation of 6 and 18 MeV electron beams for small animal irradiation
NASA Astrophysics Data System (ADS)
Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.
2009-10-01
A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedurin, M.; Jing, Y.; Stratakis, D.
The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO 2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO 2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, willmore » be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MUROKH,A.; FRIGOLA,P.; ET AL
We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.
Pencil-like mm-size electron beams produced with linear inductive voltage adders
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.
1997-02-01
We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.
A new e-beam application in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Sadat, Theo; Malcolm, Fiona
2005-10-01
The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.
Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V
2012-08-01
This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.
Collimated electron beam accelerated at 12 kV from a Penning discharge.
Toader, D; Oane, M; Ticoş, C M
2015-01-01
A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.
McPherson, Armon; Mills, Dennis M.
2002-01-01
A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
Drees, H; Müller, E; Dries, M; Gerthsen, D
2018-02-01
Resolution in scanning transmission electron microscopy (STEM) is ultimately limited by the diameter of the electron beam. The electron beam diameter is not only determined by the properties of the condenser lens system but also by electron scattering in the specimen which leads to electron-beam broadening and degradation of the resolution with increasing specimen thickness. In this work we introduce a new method to measure electron-beam broadening which is based on STEM imaging with a multi-segmented STEM detector. We focus on STEM at low electron energies between 10 and 30 keV and use an amorphous carbon film with known thickness as test object. The experimental results are compared with calculated beam diameters using different analytical models and Monte-Carlo simulations. We find excellent agreement of the experimental data with the recently published model by Gauvin and Rudinsky [1] for small t/λ el (thickness to elastic mean free path) values which are considered in our study. Copyright © 2017 Elsevier B.V. All rights reserved.
Coulomb repulsion and the electron beam directed energy weapon
NASA Astrophysics Data System (ADS)
Retsky, Michael W.
2004-09-01
Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.
INTRA-UNDULATOR MEASUREMENTS AT VISA FEL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MUROKH,A.; FRIGOLA,P.; ET AL
2000-08-13
We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.
Intra-undulator measurements at VISA FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murokh, A; Frigola, P; Pellegrini, C
2000-08-10
We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.
Electron spectroscopy analysis
NASA Technical Reports Server (NTRS)
Gregory, John C.
1992-01-01
The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
Combination photo and electron beam lithography with polymethyl methacrylate (PMMA) resist.
Carbaugh, Daniel J; Pandya, Sneha G; Wright, Jason T; Kaya, Savas; Rahman, Faiz
2017-11-10
We describe techniques for performing photolithography and electron beam lithography in succession on the same resist-covered substrate. Larger openings are defined in the resist film through photolithography whereas smaller openings are defined through conventional electron beam lithography. The two processes are carried out one after the other and without an intermediate wet development step. At the conclusion of the two exposures, the resist film is developed once to reveal both large and small openings. Interestingly, these techniques are applicable to both positive and negative tone lithographies with both optical and electron beam exposure. Polymethyl methacrylate, by itself or mixed with a photocatalytic cross-linking agent, is used for this purpose. We demonstrate that such resists are sensitive to both ultraviolet and electron beam irradiation. All four possible combinations, consisting of optical and electron beam lithographies, carried out in positive and negative tone modes have been described. Demonstration grating structures have been shown and process conditions have been described for all four cases.
Integral Equation for the Equilibrium State of Colliding Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnock, Robert L.
2002-11-11
We study a nonlinear integral equation for the equilibrium phase distribution of stored colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. We prove existence of a unique solution, thus the existence of a unique equilibrium state, for sufficiently small current. This is done for the Chao-Ruth model of the beam-beam interaction in one degree of freedom. We expect no difficulty in generalizing the argument to more realistic models.
NASA Astrophysics Data System (ADS)
Christopher, Benedict; Rao, Ashok; Deka, Utpal; Prasad K, Shyam; Okram, G. S.; Sanjeev, Ganesh; Chandra Petwal, Vikash; Verma, Vijay Pal; Dwivedi, Jishnu
2018-07-01
The study of electronic and magnetic properties of electron beam (EB) irradiated PrCoO3 manganites is presented in this communication. The diffraction data confirms that pristine as well as electron beam irradiated samples are single phased and they crystalize at orthorhombic distorted structure with Pbnm space group. The electrical resistivity of all the samples reveals semiconducting behavior. Small polaron hopping model is appropriately employed to investigate the semiconducting nature of the pristine and EB irradiated samples. The Seebeck coefficient (S) data of the pristine sample exhibits colossally high positive value (about 300 mV/K) and substantial decrease in S value is noticed in the irradiated samples. The high temperature analysis of thermopower data validates the small polaron hopping model. The magnetic measurements display possible existence of super-paramagnetic characteristics in the samples.
Griessbach, Irmgard; Lapp, Markus; Bohsung, Jörg; Gademann, Günther; Harder, Dietrich
2005-12-01
Shielded p-silicon diodes, frequently applied in general photon-beam dosimetry, show certain imperfections when applied in the small photon fields occurring in stereotactic or intensity modulated radiotherapy (IMRT), in electron beams and in the buildup region of photon beam dose distributions. Using as a study object the shielded p-silicon diode PTW 60008, well known for its reliable performance in general photon dosimetry, we have identified these imperfections as effects of electron scattering at the metallic parts of the shielding. In order to overcome these difficulties a new, unshielded diode PTW 60012 has been designed and manufactured by PTW Freiburg. By comparison with reference detectors, such as thimble and plane-parallel ionization chambers and a diamond detector, we could show the absence of these imperfections. An excellent performance of the new unshielded diode for the special dosimetric tasks in small photon fields, electron beams and build-up regions of photon beams has been observed. The new diode also has an improved angular response. However, due to its over-response to low-energy scattered photons, its recommended range of use does not include output factor measurements in large photon fields, although this effect can be compensated by a thin auxiliary lead shield.
Can Coulomb repulsion for charged particle beams be overcome?
NASA Astrophysics Data System (ADS)
Retsky, Michael W.
2004-01-01
Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.
Influence of the electrode gap separation on the pseudospark-sourced electron beam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland
Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less
Inverse compton light source: a compact design proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deitrick, Kirsten Elizabeth
In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less
NASA Technical Reports Server (NTRS)
Heinemann, K.
1985-01-01
The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.
Pradhan, A S; Quast, U; Sharma, P K
1994-09-01
A simple and fast, but sensitive TLD method for the measurement of energy and homogeneity of therapeutically used electron beams has been developed and tested. This method is based on the fact that when small thicknesses of high-Z absorbers such as lead are interposed in the high-energy electron beams, the transmitted radiation increases with the energy of the electron beams. Consequently, the ratio of readouts of TLDS held on the two sides of a lead plate varied sharply (by factor of 70) with a change in energy of the electron beam from 5 MeV to 18 MeV, offering a very sensitive method for the measurement of the energy of electron beams. By using the ratio of TL readouts of two types of TLD ribbon with widely different sensitivities, LiF TLD-700 ribbons on the upstream side and highly sensitive CaF2:Dy TLD-200 ribbons on the downstream side, an electron energy discrimination of better than +/- 0.1 MeV could be achieved. The homogeneity of the electron beam energy and the absorbed dose was measured by using a jig in which the TLDS were held in the desired array on both sides of a 4 mm thick lead plate. The method takes minimal beam time and makes it possible to carry out measurements for the audit of the quality of electron beams as well as for intercomparison of beams by mail.
Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.
2011-05-01
Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.
Beam debunching due to ISR-induced energy diffusion
Yampolsky, Nikolai A.; Carlsten, Bruce E.
2017-06-20
One of the options for increasing longitudinal coherency of X-ray free electron lasers (XFELs) is seeding with a microbunched electron beam. Several schemes leading to significant amplitude of the beam bunching at X-ray wavelengths were recently proposed. All these schemes rely on beam optics having several magnetic dipoles. While the beam passes through a dipole, its energy spread increases due to quantum effects of synchrotron radiation. As a result, the bunching factor at small wavelengths reduces since electrons having different energies follow different trajectories in the bend. We rigorously calculate the reduction in the bunching factor due to incoherent synchrotronmore » the radiation while the beam travels in an arbitrary beamline. Lastly, we apply general results to estimate reduction of harmonic current in common schemes proposed for XFEL seeding.« less
NASA Astrophysics Data System (ADS)
Benedict, Christopher J.; Rao, Ashok; Sanjeev, Ganesh; Okram, G. S.; Babu, P. D.
2016-01-01
In this communication, the effect of electron beam irradiation on the structural, electrical, thermo-electric power and magnetic properties of LaCoO3 cobaltites have been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with rhombohedral structure. Increase in electrical resistivity data is observed with increase in dosage of electron beam irradiation. Analysis of the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature regime for all samples. The Seebeck coefficient (S) of the pristine and the irradiated samples exhibits a crossover from positive to negative values, and a colossal value of Seebeck coefficient (32.65 mV/K) is obtained for pristine sample, however, the value of S decreases with increase in dosage of irradiation. The analysis of Seebeck coefficient data confirms that the small polaron hopping model is operative in the high temperature region. The magnetization results give clear evidence of increase in effective magnetic moment due to increase in dosage of electron beam irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostyrya, I. D.; Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru
2015-03-15
Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (U{sub m} ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U{submore » m} behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.« less
Monte Carlo study of si diode response in electron beams.
Wang, Lilie L W; Rogers, David W O
2007-05-01
Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
An integrated wire harp and readout electronics inside vacuum.
Chatterjee, Mou; Nabhiraj, P Y
2015-03-01
A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10(-7) Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.
An integrated wire harp and readout electronics inside vacuum
NASA Astrophysics Data System (ADS)
Chatterjee, Mou; Nabhiraj, P. Y.
2015-03-01
A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10-7 Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.
Low emittance electron storage rings
NASA Astrophysics Data System (ADS)
Levichev, E. B.
2018-01-01
Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.
Flat-Lens Focusing of Electron Beams in Graphene
Tang, Yang; Cao, Xiyuan; Guo, Ran; Zhang, Yanyan; Che, Zhiyuan; Yannick, Fouodji T.; Zhang, Weiping; Du, Junjie
2016-01-01
Coupling electron beams carrying information into electronic units is fundamental in microelectronics. This requires precision manipulation of electron beams through a coupler with a good focusing ability. In graphene, the focusing of wide electron beams has been successfully demonstrated by a circular p-n junction. However, it is not favorable for information coupling since the focal length is so small that the focal spot locates inside the circular gated region, rather than in the background region. Here, we demonstrate that an array of gate-defined quantum dots, which has gradually changing lattice spacing in the direction transverse to propagation, can focus electrons outside itself, providing a possibility to make a coupler in graphene. The focusing effect can be understood as due to the gradient change of effective refractive indices, which are defined by the local energy band in a periodic potential. The strong focusing can be achieved by suitably choosing the lattice gradient and the layer number in the incident direction, offering an effective solution to precision manipulation of electron beams with wide electron energy range and high angular tolerance. PMID:27628099
NASA Astrophysics Data System (ADS)
Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik
2018-02-01
When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.
Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.
Chow, James C L; Leung, Michael K K
2008-06-01
The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger recombination in the SiO2 gate. It is concluded that the MOSFET dosimeter performed well for measuring the electron backscatter from lead using electron beams. The uncertainty of EBF determined by comparing the results of Monte Carlo simulations and measurements is well within the accuracy of the MOSFET dosimeter (< +/- 4.2%) provided by the manufacturer.
Electron effects in the Neutralized Transport Experiment (NTX)
NASA Astrophysics Data System (ADS)
Eylon, S.; Henestroza, E.; Roy, P. K.; Yu, S. S.
2005-05-01
The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.
SU-D-BRCD-06: Measurement of Elekta Electron Energy Spectra Using a Small Magnetic Spectrometer.
Hogstrom, K; McLaughlin, D; Gibbons, J; Shikhaliev, P; Clarke, T; Henderson, A; Taylor, D; Shagin, P; Liang, E
2012-06-01
To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (<1cGy) required special beam reduction techniques and bremsstrahlung shielding. Curves of CR intensity (corrected for non- linearity and background) versus position were transformed into energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film. © 2012 American Association of Physicists in Medicine.
An integrated wire harp and readout electronics inside vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Mou; Nabhiraj, P. Y.
A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10{sup −7} Torr) to make the system much simpler, easy to operate, and measure small beammore » current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.« less
Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Wakalopulos, G.
This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams.more » During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.« less
Beam test of a superconducting cavity for the Fermilab high-brightness electron photo-injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Hartung, J.P. Carneiro, M. Champion, H. Edwards, J. Fuest, K. Koepke and M. Kuchnir
1999-05-04
An electron photo-injector facility has been constructed at Fermilab for the purpose of providing a 14�18 MeV elec-tron beam with high charge per bunch (8 nC), short bunch length (1 mm RMS), and small transverse emittance [1]. The facility was used to commission a second-generation photo-cathode RF gun for the TeSLA Test Facility (TTF) Linac at DESY [2, 3]; in the future, the Fermilab electron beam will be used for R & D in bunch length compres-sion, beam diagnostics, and new acceleration techniques. Acceleration beyond 4 MeV is provided by a 9-cell super-conducting cavity (see Figure 1). The cavity alsomore » provides a longitudinal position-momentum correlation for subse-quent bunch length compression. We report on the RF tests and a first beam test of this cavity.« less
NASA Astrophysics Data System (ADS)
Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Jiang, Ping; Harder, Dietrich; Poppe, Björn
2018-01-01
The well-known field-size dependent overresponse in small-field photon-beam dosimetry of solid-state detectors equipped with very thin sensitive volumes, such as the PTW microDiamond, cannot be caused by the photon and electron interactions within these sensitive layers because they are only a few micrometers thick. The alternative explanation is that their overresponse is caused by the combination of two effects, the modification of the secondary electron fluence profile (i) by a field size too small to warrant lateral secondary electron equilibrium and (ii) by the density-dependent electron ranges in the structural detector materials placed in front of or backing the sensitive layer. The present study aims at the numerical demonstration and visualization of this combined mechanism. The lateral fluence profiles of the secondary electrons hitting a 1 µm thick scoring layer were Monte-Carlo simulated by modelling their generation and transport in the upstream or downstream adjacent layers of thickness 0.6 mm and densities from 0.0012 to 3 g cm-3, whose atomic composition was constantly kept water-like. The scoring layer/adjacent layer sandwich was placed in an infinite water phantom irradiated by circular 60Co, 6 MV and 15 MV photon beams with diameters from 3 to 40 mm. The interpretation starts from the ideal case of lateral secondary electron equilibrium, where the Fano theorem excludes any density effect. If the field size is then reduced, electron tracks potentially originating from source points outside the field border will then be numerically ‘cut away’. This geometrical effect reduces the secondary electron fluence at the field center, but the magnitude of this reduction also varies with the density-dependent electron ranges in the adjacent layers. This combined mechanism, which strongly depends on the photon spectrum, explains the field size and material density effect on the response of detectors with very thin sensitive layers used in small-field photon-beam dosimetry.
Electron Beams Escaping the Sun: Hard X-ray Diagnostics of Jet-related Electron Acceleration
NASA Astrophysics Data System (ADS)
Glesener, L.; Musset, S.; Saint-Hilaire, P.; Fleishman, G. D.; Krucker, S.; Christe, S.; Shih, A. Y.
2017-12-01
Coronal jets, which arise via an interaction between closed and open magnetic field, offer a convenient configuration for accelerated electrons to escape the low corona. Jets occur in all regions of the Sun, but those flare-related jets that occur in active regions are associated with bremsstrahlung hard X-rays (HXRs) from accelerated electrons. However, HXR measurement of the escaping beams themselves is elusive as it requires extremely high sensitivity. Jets are strongly correlated with Type III radio bursts in the corona and in interplanetary space. In this poster we present RHESSI observations of HXRs from flare-related jets, including multiwavelength analysis (with extreme ultraviolet and radio emission) and modeling of the emitting electron populations. We also present predicted observations of Type III-emitting electron beams by the FOXSI Small Explorer, which is currently undergoing a NASA Phase A concept study. FOXSI will measure HXRs from jets and flares in the low corona, providing quantitative diagnostics of accelerated electron beams at their origin. These same electron beams will be measured at higher altitudes by instruments aboard NASA's Parker Solar Probe and ESA's Solar Orbiter. With a planned launch in the rising phase of Solar Cycle 25, FOXSI will be ideally timed and optimized for collaborative study of electron beams escaping the Sun.
Collisionless effects on beam-return current systems in solar flares
NASA Technical Reports Server (NTRS)
Vlahos, L.; Rowland, H. L.
1985-01-01
A theoretical study of the beam-return current system (BRCS) in solar flares shows that the precipitating electrons modify the way in which the return current (RC) is carried by the background plasma. In particular it is found that the RC is not carried by the bulk of the electrons but by a small number of high-velocity electrons. For beam/plasma densities exceeding approximately 0.001, this can reduce the effects of collisions and heating by the RC. For higher-density beams, where the RC could be unstable to current-driven instabilities, the effects of strong turbulence anomalous resistivity prevent the appearance of such instabilities. The main conclusion is that the BRCS is interconnected, and that the beam-generated strong turbulence determines how the RC is carried.
A novel approach for preparation and in situ tensile testing of silica glass membranes in the TEM
NASA Astrophysics Data System (ADS)
Mačković, Mirza; Przybilla, Thomas; Dieker, Christel; Herre, Patrick; Romeis, Stefan; Stara, Hana; Schrenker, Nadine; Peukert, Wolfgang; Spiecker, Erdmann
2017-04-01
The mechanical behavior of glasses in the micro- and/or nanometer regime increasingly gains importance in nowadays modern technology. However, suitable small scale preparation and mechanical testing approaches for a reliable assessment of the mechanical properties of glasses still remain a big challenge. In the present work, a novel approach for site-specific preparation and quantitative in situ tensile testing of thin silica glass membranes in the transmission electron microscope is presented. Thereby, advanced focused ion beam techniques are used for the preparation of nanoscale dog bone shaped silica glass specimens suitable for in situ tensile testing. Small amounts of gallium are detected on the surface of the membranes resulting from redeposition effects during the focused ion beam preparation procedure. Possible structural changes of silica glass upon irradiation with electrons and gallium ions are investigated by controlled irradiation experiments, followed by a structural analysis using Raman spectroscopy. While moderate electron beam irradiation does not alter the structure of silica glass, ion beam irradiation results in minor densification of the silica glass membranes. In situ tensile testing of membranes under electron beam irradiation results in distinctive elongations without fracture confirming the phenomenon of superplasticity. In contrast, in situ tensile testing in the absence of the electron beam reveals an elastic/plastic deformation behavior, and finally leads to fracture of the membranes. The Young’s moduli of the glass membranes pulled at beam off conditions in the TEM are comparable with values known for bulk fused silica, while the tensile strength is in the range of values reported for silica glass fibers with comparable dimensions. The impact of electron beam irradiation on the mechanical properties of silica glass membranes is further discussed. The results of the present work open new avenues for dedicated preparation and nanomechanical characterization of silica glasses, and further contribute to a fundamental understanding of the mechanical behavior of such glasses when being scaled down to the nanometer regime.
Comparison of RF BPM Receivers for NSLS-II Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinayev,I.; Singh, O.
2009-05-04
The NSLS-II Light Source being built at Brookhaven National Laboratory requires submicron stability of the electron orbit in the storage ring in order to utilize fully very small emittances and electron beam sizes. This sets high stability requirements for beam position monitors and a program has been initiated for the purpose of characterizing RF beam position monitor (BPM) receivers in use at other light sources. Present state-of-the-art performance will be contrasted with more recently available technologies.
High current density sheet-like electron beam generator
NASA Astrophysics Data System (ADS)
Chow-Miller, Cora; Korevaar, Eric; Schuster, John
Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.
Beam distribution reconstruction simulation for electron beam probe
NASA Astrophysics Data System (ADS)
Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin
2017-07-01
An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.
Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F
2016-07-08
Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.
Electron beam detection of a Nanotube Scanning Force Microscope.
Siria, Alessandro; Niguès, Antoine
2017-09-14
Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.
Demonstration of lithography patterns using reflective e-beam direct write
NASA Astrophysics Data System (ADS)
Freed, Regina; Sun, Jeff; Brodie, Alan; Petric, Paul; McCord, Mark; Ronse, Kurt; Haspeslagh, Luc; Vereecke, Bart
2011-04-01
Traditionally, e-beam direct write lithography has been too slow for most lithography applications. E-beam direct write lithography has been used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the uncertainty with regards to the optical lithography roadmap beyond the 22 nm technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for high volume wafer processing. For this work, we report on the development and current status of a new maskless, direct write e-beam lithography tool which has the potential for high volume lithography at and below the 22 nm technology node. A Reflective Electron Beam Lithography (REBL) tool is being developed for high throughput electron beam direct write maskless lithography. The system is targeting critical patterning steps at the 22 nm node and beyond at a capital cost equivalent to conventional lithography. Reflective Electron Beam Lithography incorporates a number of novel technologies to generate and expose lithographic patterns with a throughput and footprint comparable to current 193 nm immersion lithography systems. A patented, reflective electron optic or Digital Pattern Generator (DPG) enables the unique approach. The Digital Pattern Generator is a CMOS ASIC chip with an array of small, independently controllable lens elements (lenslets), which act as an array of electron mirrors. In this way, the REBL system is capable of generating the pattern to be written using massively parallel exposure by ~1 million beams at extremely high data rates (~ 1Tbps). A rotary stage concept using a rotating platen carrying multiple wafers optimizes the writing strategy of the DPG to achieve the capability of high throughput for sparse pattern wafer levels. The lens elements on the DPG are fabricated at IMEC (Leuven, Belgium) under IMEC's CMORE program. The CMOS fabricated DPG contains ~ 1,000,000 lens elements, allowing for 1,000,000 individually controllable beamlets. A single lens element consists of 5 electrodes, each of which can be set at controlled voltage levels to either absorb or reflect the electron beam. A system using a linear movable stage and the DPG integrated into the electron optics module was used to expose patterns on device representative wafers. Results of these exposure tests are discussed.
Electron beam interaction with space plasmas.
NASA Astrophysics Data System (ADS)
Krafft, C.; Bolokitin, A. S.
1999-12-01
Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.
Millimeter-wave generation with spiraling electron beams
NASA Technical Reports Server (NTRS)
Kulke, B.
1971-01-01
The feasibility of using the interaction between a thin, solid, spiraling electron beam of 10 to 20 kV energy and a microwave cavity to generate watts of CW millimeter-wave power was investigated. Experimental results are given for several prototype devices operating at 9.4 GHz and at 94 GHz. Power outputs of 5 W, and electronic efficiencies near 3%, were obtained at X band, and moderate gain was obtained at 94 GHz. The small-signal theory gives a good fit to the X-band data, and the device behavior at 94 GHz is as expected from the given beam characteristics. The performance is limited chiefly by the velocity spread in the spiraling electron beam, and once this can be brought under control, high-power generation of millimeter waves appears quite feasible with this type of device.
Mapper: high throughput maskless lithography
NASA Astrophysics Data System (ADS)
Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.
2009-01-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.
Advanced X-Ray Sources Ensure Safe Environments
NASA Technical Reports Server (NTRS)
2008-01-01
Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.
Computationally efficient description of relativistic electron beam transport in dense plasma
NASA Astrophysics Data System (ADS)
Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady
2006-10-01
A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope
EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D
2015-01-01
Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873
Generation of subnanosecond electron beams in air at atmospheric pressure
NASA Astrophysics Data System (ADS)
Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.
2009-11-01
Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.
Fabrication of nanometer single crystal metallic CoSi2 structures on Si
NASA Technical Reports Server (NTRS)
Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)
1991-01-01
Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.
Electron Beam Transport in Advanced Plasma Wave Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L
2013-01-31
The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less
Björk, Peter; Knöös, Tommy; Nilsson, Per
2004-10-07
The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers its use. We therefore recommend that the readily available silicon diode detector should be used for output factor measurements in complex electron fields.
Return currents in solar flares - Collisionless effects
NASA Technical Reports Server (NTRS)
Rowland, H. L.; Vlahos, L.
1985-01-01
If the primary, precipitating electrons in a solar flare are unstable to beam plasma interactions, it is shown that strong Langmuir turbulence can seriously modify the way in which a return current is carried by the background plasma. In particular, the return (or reverse) current will not be carried by the bulk of the electrons, but by a small number of high velocity electrons. For beam/plasma densities greater than 0.01, this can reduce the effects of collisions on the return current. For higher density beams where the return current could be unstable to current driven instabilities, the effects of strong turbulence anomalous resistivity is shown to prevent the appearance of such instabilities. Again in this regime, how the return current is carried is determined by the beam generated strong turbulence.
A Linear Accelerator for TA-FD calibration
NASA Astrophysics Data System (ADS)
Shibata, T.; Ikeda, D.; Ikeda, M.; Enomoto, A.; Ohsawa, S.; Kakiha, K.; Kakihara, K.; Sagawa, H.; Satoh, M.; Shidara, T.; Sugimura, T.; Fukushima, M.; Fukuda, S.; Furukawa, K.; Yoshida, M.
The energy of the primary cosmic ray can be calculated from fluorescence photons detected by fluorescence telescope. However, since we can not know the true energy of primary cosmic ray, it is difficult to calibrate between number of photons and energy directly. In TA project, we will create pseudo- cosmic ray events by using accelerated electron beam which is injected in the air. The injected electron beam creates an air shower and fluorescence photons are emitted. We can calibate between electron beam energy which is known exactry and detected photons. We are developping a small linear accelerator (Linac) at High Energy Accelerator Research Organization (KEK) in Japan. The maximum energy is 40MeV, the typical current is 0.16nC, and the intensity per pulse is 6.4mJ. The accuracy of beam energy is less than 1%. The Linac consists of a -100kV pulse type electron gun, a 1.5m pre-buncher and buncher tube, a 2m S-band accelerator tube, a quadrupole magnet, a 90 degree bending magnet, and a S-Band(2856MHz) 50MW high power klystron as RF source. We chekced the performance of the electron beam, energy resolution, beam spread, beam current, and beam loss by PARMELA simulation, and checked the air shower by electron beam and number of the detected photons by detector simulation which are made by GEANT4. In this Spring, we will do the full beam test in KEK. The beam operation in Utah will be started from this Autumn. In this talk, we will report about the results of the beam test and calibration method by this Linac.
The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.
Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T
2015-02-01
Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.
New Insights into Shape Memory Alloy Bimorph Actuators Formed by Electron Beam Evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hao; Nykypanchuk, Dmytro
In order to create shape memory alloy (SMA) bimorph microactuators with high-precision features, a novel fabrication process combined with electron beam (E-beam) evaporation, lift-off resist and isotropic XeF2 dry etching method was developed. To examine the effect of E-beam deposition and annealing process on nitinol (NiTi) characteristics, the NiTi thin film samples with different deposition rate and overflow conditions during annealing process were investigated. With the characterizations using scanning electron microscope and x-ray diffraction, the results indicated that low E-beam deposition rate and argon employed annealing process could benefit the formation of NiTi crystalline structure. In addition, SMA bimorph microactuatorsmore » with high-precision features as small as 5 microns were successfully fabricated. Furthermore, the thermomechanical performance was experimentally verified and compared with finite element analysis simulation results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, David L.
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less
The Equilibrium State of Colliding Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnock, R
2003-12-12
We study a nonlinear integral equation that is a necessary condition on the equilibrium phase space distribution function of stored, colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in one degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, asmore » would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.« less
Evidence for the suppression of incident beam effects in Auger electron diffraction
NASA Astrophysics Data System (ADS)
Davoli, I.; Gunnella, R.; Bernardini, R.; De Crescenzi, M.
1998-01-01
Auger electron diffraction (AED) of the Cu(100) surface has been studied through the anisotropy of the elastic backdiffused beam electrons, the L 2,3M 4,5M 4,5 (LVV) and the M 2,3M 4,5M 4,5 (MVV) transitions in polar scan along the two main directions [001], [011] and in azimuth scan at normal emission. The intensity anisotropies of the low and high kinetic energy Auger lines are in antiphase to each other as in experiments in which these transitions are excited by X-ray photons. This behaviour has been exploited to single out the origin of the physical mechanisms accompanying the diffraction of the emitted electrons. Incident beam effects appear to be sizeable only when the collection of the AED spectra are made with an angle integrating electron analyser (cylindrical mirror analyser or low electron energy diffraction apparatus), but they appear negligible when electron collection is performed through a small solid-angle detector. The conclusions reached by our measurements are supported by good agreement with experimental and theoretical X-ray photoelectron diffraction data and demonstrate that, when the incident beam energy is sufficiently higher than the kinetic energy of the Auger electron detected, the influence of the incident beam on AED is negligible.
Magnetic effects in the paraxial regime of elastic electron scattering
NASA Astrophysics Data System (ADS)
Edström, Alexander; Lubk, Axel; Rusz, Ján
2016-11-01
Motivated by a recent claim [Phys. Rev. Lett. 116, 127203 (2016), 10.1103/PhysRevLett.116.127203] that electron vortex beams can be used to image magnetism at the nanoscale in elastic scattering experiments, using transmission electron microscopy, a comprehensive computational study is performed to study magnetic effects in the paraxial regime of elastic electron scattering in magnetic solids. Magnetic interactions from electron vortex beams, spin polarized electron beams, and beams with phase aberrations are considered, as they pass through ferromagnetic FePt or antiferromagnetic LaMnAsO. The magnetic signals are obtained by comparing the intensity over a disk in the diffraction plane for beams with opposite angular momentum or aberrations. The strongest magnetic signals are obtained from vortex beams with large orbital angular momentum, where relative magnetic signals above 10-3 are indicated for 10 ℏ orbital angular momentum, meaning that relative signals of one percent could be expected with the even larger orbital angular momenta, which have been produced in experimental setups. All results indicate that beams with low acceleration voltage and small convergence angles yield stronger magnetic signals, which is unfortunately problematic for the possibility of high spatial resolution imaging. Nevertheless, under atomic resolution conditions, relative magnetic signals in the order of 10-4 are demonstrated, corresponding to an increase with one order of magnitude compared to previous work.
NASA Astrophysics Data System (ADS)
Zirak, H.; Jafari, S.
2015-06-01
In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.
Disabling CNT Electronic Devices by Use of Electron Beams
NASA Technical Reports Server (NTRS)
Petkov, Mihail
2008-01-01
Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide) deposits a significant amount of energy in a small volume, the energy density may suffice to thermally induce structural and/or electronic changes that disable the CNT. Research may be warranted to investigate this effect in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbanalilu, M.; Physics Department, Azarbaijan Shahid Madani University, Tabriz; Sadegzadeh, S.
2014-05-15
The existence of Weibel instability for a streaming electron, counterstreaming electron-electron (e-e), and electron-positron (e-p) plasmas with intrinsic temperature anisotropy is investigated. The temperature anisotropy is included in the directions perpendicular and parallel to the streaming direction. It is shown that the beam mean speed changes the instability mode, for a streaming electron beam, from the classic Weibel to the Weibel-like mode. The analytical and numerical solutions approved that Weibel-like modes are excited for both counterstreaming e-e and e-p plasmas. The growth rates of the instabilities in e-e and e-p plasmas are compared. The growth rate is larger for e-pmore » plasmas if the thermal anisotropy is small and the opposite is true for large thermal anisotropies. The analytical and numerical solutions are in good agreement only in the small parallel temperature and wave number limits, when the instability growth rate increases linearly with normalized wave number kc∕ω{sub p}.« less
Brightness measurement of an electron impact gas ion source for proton beam writing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less
Brightness measurement of an electron impact gas ion source for proton beam writing applications.
Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A
2016-02-01
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.
Energy monitoring device for 1.5-2.4 MeV electron beams
NASA Astrophysics Data System (ADS)
Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.
2010-03-01
An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.
Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.
Schröter, M-A; Holschneider, M; Sturm, H
2012-11-02
The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W., E-mail: woochanglee@unist.ac.kr; Lee, D. J.; Park, H. K.
The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm{sup −1}.more » The upper limit corresponds to the normalized wavenumber k{sub θ}ρ{sub e} of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.« less
Krauss, A; Kapsch, R-P
2018-02-06
For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
NASA Astrophysics Data System (ADS)
Krauss, A.; Kapsch, R.-P.
2018-02-01
For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
2015-06-15
In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatiallymore » periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.« less
Waveguide-Mode Terahertz Free Electron Lasers Driven by Magnetron-Based Microtrons
NASA Astrophysics Data System (ADS)
Jeong, Young Uk; Miginsky, Sergey; Gudkov, Boris; Lee, Kitae; Mun, Jungho; Shim, Gyu Il; Bae, Sangyoon; Kim, Hyun Woo; Jang, Kyu-Ha; Park, Sunjeong; Park, Seong Hee; Vinokurov, Nikolay
2016-04-01
We have developed small-sized terahertz free-electron lasers by using low-cost and compact microtrons combining with magnetrons as high-power RF sources. We could stabilize the bunch repetition rate by optimizing a modulator for the magnetron and by coupling the magnetron with an accelerating cavity in the microtron. By developing high-performance undulators and low-loss waveguide-mode resonators having small cross-sectional areas, we could strengthen the interaction between the electron beam and the THz wave inside the FEL resonators to achieve lasing even with low-current electron beams from the microtron. We used a parallel-plate waveguide in a planar electromagnet undulator for our first THz FEL. We try to reduce the size of the FEL resonator by combining a dielectric-coated circular waveguide and a variable-period helical undulator to realize a table-top THz FEL for applying it to the security inspection on airports.
Marsolat, F; Tromson, D; Tranchant, N; Pomorski, M; Le Roy, M; Donois, M; Moignau, F; Ostrowsky, A; De Carlan, L; Bassinet, C; Huet, C; Derreumaux, S; Chea, M; Cristina, K; Boisserie, G; Bergonzo, P
2013-11-07
Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm(3)). Long term stability was studied by irradiating the SCDDo in a (60)Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm(2) beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min(-1)) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve measurements. For field sizes ranging from 0.6 × 0.6 to 10 × 10 cm(2), OFs obtained with the SCDDo are between the OFs measured with the PinPoint ionization chamber and the Sun Nuclear EDGE diode that are known to respectively underestimate and overestimate OF values in small beam, due to the large detection volume of the chamber and the non-water equivalence of both detectors.
NASA Technical Reports Server (NTRS)
2001-01-01
A new curing method using automated tape placement (ATP) with electron beam (EB), or e-beam, produces a combination known as in situ e-beam curing. Through a Small Business Innovation Research (SBIR) contract from NASA's Marshall Space Flight Center, Science Research Laboratory, Inc., created the in situ e-beam curing technique, which uses a low-energy electron beam gun to cure various composite materials. One important benefit is the technique's utilization of room temperature curing, which lessens the chance of mismatching the thermal expansion coefficients of different materials. For instance, metals and composites will expand at different rates when heated, but the low-energy e-beam gun reduces the expansion differential. Using a low-energy gun also results in less x-ray shielding, significantly reduced capital costs, reduced facility space, and increased processing capabilities for larger parts. However, using a low-energy gun also means that each tape layer is treated individually because the gun can penetrate only one layer at a time. The e-beam gun emits lower energy x-rays, which are more easily shielded than those emitted by previous guns. The low-energy system is relatively portable due to its light weight and small size. The gun weighs about 70 pounds and can be easily mounted on a robotic arm or an ATP head.
Dissociative Excitation of Thymine by Electron Impact
NASA Astrophysics Data System (ADS)
McConkey, William; Tiessen, Collin; Hein, Jeffrey; Trocchi, Joshuah; Kedzierski, Wladek
2014-05-01
A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of thymine (C5H6N2O2) into excited atomic fragments in the electron-impact energy range from threshold to 375 eV. A special stainless steel oven is used to vaporize the thymine and form it into a beam where it is intersected by a magnetically collimated electron beam, typical current 50 μA. The main features in the spectrum are the H Lyman series lines. The probability of extracting excited C or N atoms from the ring is shown to be very small. In addition to spectral data, excitation probability curves as a function of electron energy will be presented for the main emission features. Possible dissociation channels and excitation mechanisms in the parent molecule will be discussed. The authors thank NSERC (Canada) for financial support.
Superoscillating electron wave functions with subdiffraction spots
NASA Astrophysics Data System (ADS)
Remez, Roei; Tsur, Yuval; Lu, Peng-Han; Tavabi, Amir H.; Dunin-Borkowski, Rafal E.; Arie, Ady
2017-03-01
Almost one and a half centuries ago, Abbe [Arch. Mikrosk. Anat. 9, 413 (1873), 10.1007/BF02956173] and shortly after Lord Rayleigh [Philos. Mag. Ser. 5 8, 261 (1879), 10.1080/14786447908639684] showed that, when an optical lens is illuminated by a plane wave, a diffraction-limited spot with radius 0.61 λ /sinα is obtained, where λ is the wavelength and α is the semiangle of the beam's convergence cone. However, spots with much smaller features can be obtained at the focal plane when the lens is illuminated by an appropriately structured beam. Whereas this concept is known for light beams, here, we show how to realize it for a massive-particle wave function, namely, a free electron. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. In addition, we demonstrate that this central spot can be structured by adding orbital angular momentum to it. The resulting superoscillating vortex beam has a smaller dark core with respect to a regular vortex beam. This family of electron beams having hot spots with arbitrarily small features and tailored structures could be useful for studying electron-matter interactions with subatomic resolution.
Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.
Zou, G Q; Lei, G J; Cao, J Y; Duan, X R
2012-07-01
The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.
2013-01-01
Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.
A diamond detector in the dosimetry of high-energy electron and photon beams.
Laub, W U; Kaulich, T W; Nüsslin, F
1999-09-01
A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.
Intense beams at the micron level for the Next Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1991-08-01
High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.
Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas
NASA Technical Reports Server (NTRS)
Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.
2012-01-01
Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.
Demonstration of charge breeding in a compact room temperature electron beam ion trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobjev, G.; Sokolov, A.; Herfurth, F.
2012-05-15
For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} havemore » been measured.« less
NASA Astrophysics Data System (ADS)
Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.
2016-07-01
We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
Trajectories of high energy electrons in a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.
Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet
NASA Astrophysics Data System (ADS)
Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.
2017-12-01
Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.
SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grams, M; Wilson, Z; Sio, T
Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons frommore » a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.« less
Design and construction of a Faraday cup for measurement of small electronic currents
NASA Technical Reports Server (NTRS)
Veyssiere, A.
1985-01-01
The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.
The Qweak experimental apparatus
NASA Astrophysics Data System (ADS)
Allison, T.; Anderson, M.; Androić, D.; Armstrong, D. S.; Asaturyan, A.; Averett, T.; Averill, R.; Balewski, J.; Beaufait, J.; Beminiwattha, R. S.; Benesch, J.; Benmokhtar, F.; Bessuille, J.; Birchall, J.; Bonnell, E.; Bowman, J. D.; Brindza, P.; Brown, D. B.; Carlini, R. D.; Cates, G. D.; Cavness, B.; Clark, G.; Cornejo, J. C.; Dusa, S. Covrig; Dalton, M. M.; Davis, C. A.; Dean, D. C.; Deconinck, W.; Diefenbach, J.; Dow, K.; Dowd, J. F.; Dunne, J. A.; Dutta, D.; Duvall, W. S.; Echols, J. R.; Elaasar, M.; Falk, W. R.; Finelli, K. D.; Finn, J. M.; Gaskell, D.; Gericke, M. T. W.; Grames, J.; Gray, V. M.; Grimm, K.; Guo, F.; Hansknecht, J.; Harrison, D. J.; Henderson, E.; Hoskins, J. R.; Ihloff, E.; Johnston, K.; Jones, D.; Jones, M.; Jones, R.; Kargiantoulakis, M.; Kelsey, J.; Khan, N.; King, P. M.; Korkmaz, E.; Kowalski, S.; Kubera, A.; Leacock, J.; Leckey, J. P.; Lee, A. R.; Lee, J. H.; Lee, L.; Liang, Y.; MacEwan, S.; Mack, D.; Magee, J. A.; Mahurin, R.; Mammei, J.; Martin, J. W.; McCreary, A.; McDonald, M. H.; McHugh, M. J.; Medeiros, P.; Meekins, D.; Mei, J.; Michaels, R.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Morgan, N.; Musson, J.; Mesick, K. E.; Narayan, A.; Ndukum, L. Z.; Nelyubin, V.; Nuruzzaman; van Oers, W. T. H.; Opper, A. K.; Page, S. A.; Pan, J.; Paschke, K. D.; Phillips, S. K.; Pitt, M. L.; Poelker, M.; Rajotte, J. F.; Ramsay, W. D.; Roberts, W. R.; Roche, J.; Rose, P. W.; Sawatzky, B.; Seva, T.; Shabestari, M. H.; Silwal, R.; Simicevic, N.; Smith, G. R.; Sobczynski, S.; Solvignon, P.; Spayde, D. T.; Stokes, B.; Storey, D. W.; Subedi, A.; Subedi, R.; Suleiman, R.; Tadevosyan, V.; Tobias, W. A.; Tvaskis, V.; Urban, E.; Waidyawansa, B.; Wang, P.; Wells, S. P.; Wood, S. A.; Yang, S.; Zhamkochyan, S.; Zielinski, R. B.
2015-05-01
The Jefferson Lab Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise e → p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 μA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Møller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8° and 11.6° were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cherenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q2=0.025 GeV2 was determined using dedicated low-current (~ 100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet.
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L.
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlateva, Y; Seuntjens, J; El Naqa, I
Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equalmore » to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.« less
A Thick Target for Synchrotrons and Betatrons
DOE R&D Accomplishments Database
McMillan, E. M.
1950-09-19
If a wide x-ray beam from an electron synchrotron or betatron is desired, in radiographic work with large objects for example, the usually very thin target may be replaced by a thick one, provided the resulting distortion of the x-ray spectrum due to multiple radiative processes is permissible. It is difficult to make the circulating electron beam traverse a thick target directly because of the small spacing between successive turns. Mounting a very thin beryllium, or other low-z material, fin on the edge of the thick target so that the fin projects into the beam will cause the beam to lose sufficient energy, and therefore radium, to strike the thick target the next time around. Sample design calculations are given.
Polarized positrons in Jefferson lab electron ion collider (JLEIC)
NASA Astrophysics Data System (ADS)
Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong
2018-05-01
The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.
NASA Astrophysics Data System (ADS)
Salvato, M.; Baghdadi, R.; Cirillo, C.; Prischepa, S. L.; Dolgiy, A. L.; Bondarenko, V. P.; Lombardi, F.; Attanasio, C.
2017-11-01
Superconducting NbN nanonetworks with a very small number of interconnected nanowires, with diameter of the order of 4 nm, are fabricated combining a bottom-up (use of porous silicon nanotemplates) with a top-down technique (high-resolution electron beam lithography). The method is easy to control and allows the fabrication of devices, on a robust support, with electrical properties close to a one-dimensional superconductor that can be used fruitfully for novel applications.
Undersea Laser Communications Field Test at the Naval Undersea Warfare Center (NUWC)
2016-08-30
and blue wavelength scenario suggests links in excess of 400 meters are achievable with small, low-power, narrow-beam lasercom terminals. The field...of 7.6 meters , which corresponded to between 8–12 beam extinction lengths. The PMT demonstration included real-time electronics to perform...communications link was demonstrated over 4.8 meters (5 beam extinction lengths) with an APD receiver. Communications and characterization data were
Focussed Ion Beam Milling and Scanning Electron Microscopy of Brain Tissue
Knott, Graham; Rosset, Stéphanie; Cantoni, Marco
2011-01-01
This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made. The block is then placed inside the FIB/SEM, and the ion beam used to roughly mill a vertical face along one side of the block, close to this region. Using backscattered electrons to image the underlying structures, a smaller face is then milled with a finer ion beam and the surface scrutinised more closely to determine the exact area of the face to be imaged and milled. The parameters of the microscope are then set so that the face is repeatedly milled and imaged so that serial images are collected through a volume of the block. The image stack will typically contain isotropic voxels with dimenions as small a 4 nm in each direction. This image quality in any imaging plane enables the user to analyse cell ultrastructure at any viewing angle within the image stack. PMID:21775953
Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines
NASA Astrophysics Data System (ADS)
Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.
2017-03-01
The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.
NASA Astrophysics Data System (ADS)
Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2014-05-01
The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14, respectively.
NASA Astrophysics Data System (ADS)
Lim, Jae-Ku
In the span of a 100 year since the discovery of first x-rays by Roentgen that won him the first Nobel prize in physics, several types of radiation sources have been developed. Currently, radiations at extremely short wavelengths have only been accessed at synchrotron radiation sources. However, the current 3rd generation synchrotron sources can only produce x-rays of energy up to 60 keV and pulse lengths of several picoseconds long. But needs for shorter wavelength and shorter pulse duration radiations demanded by scientists to understand the nature of matter at atomic/molecular scale initiated the new scientific research for the production of sub-picosecond, hard x-rays. At the Lawrence Livermore National Laboratory, a Thomson x-ray source in the backscattering mode---a head-on collision between a high intensity Ti:Sapphire Chirped Pulse Amplification laser and a relativistic electron beam---called the PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) laboratory has been developed. Early works demonstrated the production of quasi-monochromatic, femto-second long, hard x-rays. Initially reported x-ray flux was in the low range of 105--10 6 photons per shot. During the early stage of PLEIADES experiments, 15 T/m electromagnet final focusing quadrupoles (in a triplet lattice configuration) were employed to focus the beam to a 40-50 mum spot-size. A larger focal spot-size beam has a low-density of electron particles available at the interaction with incident photons, which leads to a low scattering probability. The current dissertation shows that by employing a 560 T/m PMQ (Permanent-Magnet Quadrupole) final focus system, an electron beam as small as 10-20 mum can be achieved. The implementation of this final focus system demonstrated the improvement of the total x-ray flux by two orders of magnitude. The PMQ final focus system also produced small electron beams consistently over 30-100 MeV electron beam energy, which enabled the production of x-ray energy over 40-140 keV. In this dissertation, the PLEIADES Thomson x-ray facility will be described in detail includes the 100 MeV linac and the FALCON laser system. Later, we will discuss the design, construction and implementation of the PMQ final focus system in the beamline. The measurement of electron beam parameters before and after the final focus system will be presented. The beam measurements at the interaction region were accomplished with the use of both OTR (Optical Transition Radiation) imaged by a CCD camera and the fast streak camera for respective spatial and temporal alignments. The theoretical analysis in "real beam" effects and spacetime beam jitter effects will be given to help understand the observations. A 3D simulation tool developed for x-ray data analysis was used to provide direct comparisons with the x-ray flux, spectrum distribution and transverse x-ray profile.
Research and development of an electron beam focusing system for a high-brightness X-ray generator.
Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; Ikeda, Mitsuo
2011-01-01
A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.
Movement of basal plane dislocations in GaN during electron beam irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakimov, E. B.; National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049; Vergeles, P. S.
The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can bemore » moved by irradiation and only until they meet the latter pinning sites.« less
An investigation of nonuniform dose deposition from an electron beam
NASA Astrophysics Data System (ADS)
Lilley, William; Luu, Kieu X.
1994-08-01
In a search for an explanation of nonuniform electron-beam dose deposition, the integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes was used to calculate energy deposition in the package materials of an application-specific integrated circuit (ASIC) while the thicknesses of some of the materials were varied. The thicknesses of three materials that were in the path of an electron-beam pulse were varied independently so that analysis could determine how the radiation dose measurements using thermoluminescent dosimeters (TLD's) would be affected. The three materials were chosen because they could vary during insertion of the die into the package or during the process of taking dose measurements. The materials were aluminum, HIPEC (a plastic), and silver epoxy. The calculations showed that with very small variations in thickness, the silver epoxy had a large effect on the dose uniformity over the area of the die.
Demonstration of Cascaded Modulator-Chicane Microbunching of a Relativistic Electron Beam
Sudar, N.; Musumeci, P.; Gadjev, I.; ...
2018-03-15
Here, we present results of an experiment showing the first successful demonstration of a cascaded microbunching scheme. Two modulator-chicane prebunchers arranged in series and a high power mid-IR laser seed are used to modulate a 52 MeV electron beam into a train of sharp microbunches phase locked to the external drive laser. This configuration is shown to greatly improve matching of the beam into the small longitudinal phase space acceptance of short-wavelength accelerators. We demonstrate trapping of nearly all (96%) of the electrons in a strongly tapered inverse free-electron laser accelerator, with an order-of-magnitude reduction in injection losses compared tomore » the classical single-buncher scheme. These results represent a critical advance in laser-based longitudinal phase space manipulations and find application in high gradient advanced acceleration as well as in high peak and average power coherent radiation sources.« less
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance
Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.
Liuzzi, Raffaele; Savino, Federica; D'Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, James; Seuntjens, Jan; Sarfehnia, Arman
Purpose: To evaluate the intrinsic and absorbed-dose energy dependence of a small-scale graphite calorimeter probe (GPC) developed for use as a routine clinical dosimeter. The influence of charge deposition on the response of the GPC was also assessed by performing absolute dosimetry in clinical linac-based electron beams. Methods: Intrinsic energy dependence was determined by performing constant-temperature calorimetry dose measurements in a water-equivalent solid phantom, under otherwise reference conditions, in five high-energy photon (63.5 < %dd(10){sub X} < 76.3), and five electron (2.3 cm < R{sub 50} < 8.3 cm) beams. Reference dosimetry was performed for all beams in question usingmore » an Exradin A19 ion chamber with a calibration traceable to national standards. The absorbed-dose component of the overall energy dependence was calculated using the EGSnrc egs-chamber user code. Results: A total of 72 measurements were performed with the GPC, resulting in a standard error on the mean absorbed dose of better than 0.3 % for all ten beams. For both the photon and electron beams, no statistically-significant energy dependence was observed experimentally. Peak-to-peak, variations in the relative response of the GPC across all beam qualities of a given radiation type were on the order of 1 %. No effects, either transient or permanent, were attributable to the charge deposited by the electron beams. Conclusions: The GPC’s apparent energy-independence, combined with its well-established linearity and dose rate independence, make it a potentially useful dosimetry system capable measuring photon and electron doses in absolute terms at the clinical level.« less
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi
2010-03-22
Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in themore » electron energy distribution.« less
Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K
2016-07-08
We present the results of an experiment where a short focal length (∼1.3 cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Rhee, K. W.; Teufel, J.; Schoelkopf, R. J.
2002-01-01
This paper will describe the fabrication of small aluminum tunnel junctions for applications in astronomy. Antenna-coupled superconducting tunnel junctions with integrated single-electron transistor readout have the potential for photon-counting sensitivity at sub-millimeter wavelengths. The junctions for the detector and single-electron transistor can be made with electron-beam lithography and a standard self-aligned double-angle deposition process. However, high yield and uniformity of the junctions is required for large-format detector arrays. This paper will describe how measurement and modification of the sensitivity ratio in the resist bilayer was used to greatly improve the reliability of forming devices with uniform, sub-micron size, low-leakage junctions.
Ionospheric modification using relativistic electron beams
NASA Technical Reports Server (NTRS)
Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.
1990-01-01
The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.
Linear inductive voltage adders (IVA) for advanced hydrodynamic radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Boyes, J.D.; Johnson, D.L.
The electron beam which drifts through the multiple cavities of conventional induction linacs (LIA) is replaced in an IVA by a cylindrical metal conductor which extends along the entire length of the device and effectuates the addition of the accelerator cavity voltages. In the approach to radiography, the linear inductive voltage adder drives a magnetically immersed electron diode with a millimeter diameter cathode electrode and a planar anode/bremsstrahlung converter. Both anode and cathode electrodes are immersed in a strong (15--50 T) solenoidal magnetic field. The electron beam cross section is approximately of the same size as the cathode needle andmore » generates a similar size, very intense x-ray beam when it strikes the anode converter. An IVA driven diode can produce electron beams of equal size and energy as a LIA but with much higher currents (40--50 kA versus 4--5 kA), simpler hardware and thus lower cost. The authors present here first experimental validations of the technology utilizing HERMES 3 and SABRE IVA accelerators. The electron beam voltage and current were respectively of the order of 10 MV and 40 kA. X-ray doses of up to 1 kR {at} 1 m and spot sizes as small as 1.7 mm (at 200 R doses) were measured.« less
Unraveling the excitation mechanisms of highly oblique lower-band chorus waves
Li, Wen; Mourenas, D.; Artemyev, A. V.; ...
2016-08-17
Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution.more » The second mechanism corresponds to Landau resonance with a 100–500 eV beam. In both cases, a small low-energy beam-like component is necessary for suppressing an otherwise dominating Landau damping. In conclusion, our new findings suggest that small variations in the electron distribution could have important impacts on energetic electron dynamics.« less
Electron-cyclotron wave scattering by edge density fluctuations in ITER
NASA Astrophysics Data System (ADS)
Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas
2009-11-01
The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.
Tests of a low-pressure switch protected by a saturating inductor
NASA Astrophysics Data System (ADS)
Lauer, E. J.; Birx, D. L.
Low pressure switches and magnetic switches were tested as possible replacements for the high pressure switches currently used on Experimental Test Accelerator and Advanced Test Accelerator. When the low pressure switch is used with a low impedance transmission line, runaway electrons form a pinched electron beam which damages the anode. The use of the low pressure switch as the first switch in the pulsed power chain was tested; i.e., the switch would be used to connect a charged capacitor across the primary winding of a step up transformer. An inductor with a saturating core is connected in series so that, initially, there is a large inductive voltage drop. As a result, there is small voltage across the switch. By the time the inductor core saturates, the switch has developed sufficient ionization so that the switch voltage remains small, even with peak current, and an electron beam is not produced.
Zhang, Zhen; Bane, Karl; Ding, Yuantao; ...
2015-01-30
In this study, electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (~100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugationmore » size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a field matching program to obtain the wakes. Based on the numerical calculations, we fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less
Suppressing Ghost Diffraction in E-Beam-Written Gratings
NASA Technical Reports Server (NTRS)
Wilson, Daniel; Backlund, Johan
2009-01-01
A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.
Practical use of a plastic scintillator for quality assurance of electron beam therapy.
Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige
2017-06-07
Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).
High-throughput NGL electron-beam direct-write lithography system
NASA Astrophysics Data System (ADS)
Parker, N. William; Brodie, Alan D.; McCoy, John H.
2000-07-01
Electron beam lithography systems have historically had low throughput. The only practical solution to this limitation is an approach using many beams writing simultaneously. For single-column multi-beam systems, including projection optics (SCALPELR and PREVAIL) and blanked aperture arrays, throughput and resolution are limited by space-charge effects. Multibeam micro-column (one beam per column) systems are limited by the need for low voltage operation, electrical connection density and fabrication complexities. In this paper, we discuss a new multi-beam concept employing multiple columns each with multiple beams to generate a very large total number of parallel writing beams. This overcomes the limitations of space-charge interactions and low voltage operation. We also discuss a rationale leading to the optimum number of columns and beams per column. Using this approach we show how production throughputs >= 60 wafers per hour can be achieved at CDs
Ion beams provided by small accelerators for material synthesis and characterization
NASA Astrophysics Data System (ADS)
Mackova, Anna; Havranek, Vladimir
2017-06-01
The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Modeling of a Compact Terahertz Source based on the Two-Stream Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svimonishvili, Tengiz
2016-05-17
THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less
Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solar, B.; Graafsma, H.; Potdevin, G.
2010-06-23
Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (
Source brightness and useful beam current of carbon nanotubes and other very small emitters
NASA Astrophysics Data System (ADS)
Kruit, P.; Bezuijen, M.; Barth, J. E.
2006-01-01
The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.
Negative ion-driven associated particle neutron generator
Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...
2015-10-09
We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less
Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting
NASA Astrophysics Data System (ADS)
Ali, Muddassir; Henda, Redhouane
2017-12-01
Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.
Profiling with the electron microscope.
NASA Technical Reports Server (NTRS)
Vedder, J. F.; Lem, H. Y.
1972-01-01
Discussion of a profiling technique using a scanning electron microscope for obtaining depth information on a single micrograph of a small specimen. A stationary electron beam is used to form a series of contamination spots in a line across the specimen. Micrographs obtained by this technique are useful as a means of projection and display where stereo viewers are not practical.
MAPPER: high-throughput maskless lithography
NASA Astrophysics Data System (ADS)
Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.; Kampherbeek, B. J.
2009-03-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. The objective of building these tools is to involve semiconductor companies to be able to verify tool performance in their own environment. To enable this, the tools will have a 300 mm wafer stage in addition to a 110-beam optics column. First exposures at 45 nm half pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on analysis of 11 beams the CD for the different patterns is within 2.2 nm from target and the CD uniformity for the different patterns is better than 2.8 nm.
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris-Mog, Trevor John; Moir, David C.
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
Burris-Mog, Trevor John; Moir, David C.
2018-03-14
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
Characterization of the phantom material virtual water in high-energy photon and electron beams.
McEwen, M R; Niven, D
2006-04-01
The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (<0.2%) between water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.
Dosimetry for Small and Nonstandard Fields
NASA Astrophysics Data System (ADS)
Junell, Stephanie L.
The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.
The effect of beam-driven return current instability on solar hard X-ray bursts
NASA Technical Reports Server (NTRS)
Cromwell, D.; Mcquillan, P.; Brown, J. C.
1986-01-01
The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.
Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder
NASA Technical Reports Server (NTRS)
Baer, James
2012-01-01
A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.
Final muon cooling for a muon collider
NASA Astrophysics Data System (ADS)
Acosta Castillo, John Gabriel
To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta Castillo, John Gabriel
To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2more » $$\\mathrm{\\mu s}$$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $$\\beta^{\\star} $$ region to cool the beam to the required limit with available low Z absorbers.« less
NASA Astrophysics Data System (ADS)
Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Manuilov, V. N.
2017-08-01
The formation and utilization of a helical electron beam are studied theoretically for a gyrotron with a very low operating voltage in a range 1.5-1.8 kV. Such a gyrotron ("gyrotrino") was earlier proposed for operation inside a magnetic system of an NMR spectrometer with a dynamic nuclear polarization upgrade. Despite the very low voltage, the optimization of the electrode shape can provide velocity and positional electron spreads not exceeding these values for conventional high-voltage gyrotrons. A very small cathode-anode separation makes the gyrotrino very sensitive to thermal expansion of the gun elements that should be compensated by movement of the cathode. Estimations for long-pulse and CW regimes of the gyrotrino operation show that the ion background significantly decreases the reduction of the beam potential and leads to an acceptable drift of the electron cyclotron frequency at the voltage front. A satisfactory thermal load on the waste-beam collector located in a strong uniform magnetic field can be achieved due to the omnidirectional heat flow regime occurring in the case of thin beam footprint.
Decomposition of PCBs in transformer oil using an electron beam accelerator
NASA Astrophysics Data System (ADS)
Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung
2012-07-01
Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.
Imaging spectroscopy of type U and J solar radio bursts with LOFAR
NASA Astrophysics Data System (ADS)
Reid, Hamish A. S.; Kontar, Eduard P.
2017-10-01
Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III bursts to be more frequently observed. The large instability distances required before Langmuir waves are produced by some electron beams, and the small magnitude of the background density gradients makes closed loops less facilitative for radio emission than loops that extend into interplanetary space.
Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble
Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie
2014-01-01
Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405
Benmakhlouf, Hamza; Andreo, Pedro
2017-02-01
Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by photoabsorption in the high-Z shielding material. For the ionization chambers and the diamond detector, the electron fluence spectra were found to be similar to that in water, for both field sizes. In contrast, electron spectra in the silicon diodes were much higher than that in water for both field sizes. The estimated perturbations of the fluence spectra for the silicon diodes were 11-21% for the large fields and 14-27% for the small fields. These perturbations are related to the atomic number, density and mean excitation energy (I-value) of silicon, as well as to the influence of the "extracameral"' components surrounding the detector sensitive volume. For most detectors the fluence perturbation was also found to increase when the field size was decreased, in consistency with the increased small-field effects observed for the smallest field sizes. The present work improves the understanding of small-field effects by relating output correction factors to spectral fluence perturbations in small field detectors. It is shown that the main reasons for the well-known small-field effects in silicon diodes are the high-Z and density of the "extracameral" detector components and the high I-value of silicon relative to that of water and diamond. Compared to these parameters, the density and atomic number of the radiation sensitive volume material play a less significant role. © 2016 American Association of Physicists in Medicine.
Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields
NASA Astrophysics Data System (ADS)
McNiven, Andrea L.
The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.
Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I
2012-06-01
The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin
2012-04-01
To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.
Timur Shaftan
2017-12-09
The NSLS-II project will establish a third-generation light source at Brookhaven Lab, increasing beam-line brightness by 10,000. Achieving and maintaining this will involve tightly focusing the electron beam, providing the most efficient insertion devices, and achieving and maintaining a high electron current. In this talk, the various sub-systems of NSLS-II will be reviewed, and the requirements and key elements of their design will be discussed. In addition, the a small prototype of a light source of a different kind that was developed by the NSLS will also be discussed.
Nanopore fabrication and characterization by helium ion microscopy
NASA Astrophysics Data System (ADS)
Emmrich, D.; Beyer, A.; Nadzeyka, A.; Bauerdick, S.; Meyer, J. C.; Kotakoski, J.; Gölzhäuser, A.
2016-04-01
The Helium Ion Microscope (HIM) has the capability to image small features with a resolution down to 0.35 nm due to its highly focused gas field ionization source and its small beam-sample interaction volume. In this work, the focused helium ion beam of a HIM is utilized to create nanopores with diameters down to 1.3 nm. It will be demonstrated that nanopores can be milled into silicon nitride, carbon nanomembranes, and graphene with well-defined aspect ratio. To image and characterize the produced nanopores, helium ion microscopy and high resolution scanning transmission electron microscopy were used. The analysis of the nanopores' growth behavior allows inferring on the profile of the helium ion beam.
Weppelman, I G C; Moerland, R J; Hoogenboom, J P; Kruit, P
2018-01-01
We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
An electron fixed target experiment to search for a new vector boson A' decaying to e +e -
Rouven Essig; Schuster, Philip; Toro, Natalia; ...
2011-02-02
We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10 –8 α to electrons (α' = e 2/4π) in the mass range 65 MeV < m A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiationmore » off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e +e - spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to α'/α one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.« less
Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front
NASA Astrophysics Data System (ADS)
Yu, Changhai; Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Qin, Zhiyong; Liu, Jiaqi; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Xu, Yi; Leng, Yuxin; Xia, Changquan; Li, Ruxin; Xu, Zhizhan
2018-03-01
We have experimentally realized a scheme to enhance betatron radiation by manipulating transverse oscillation of electrons in a laser-driven plasma wakefield with a tilted shock front (TSF). Very brilliant betatron x-rays have been produced with significant enhancement both in photon yield and peak energy but almost maintain the e-beam energy spread and charge. Particle-in-cell simulations indicate that the accelerated electron beam (e beam) can acquire a very large transverse oscillation amplitude with an increase in more than 10-fold, after being steered into the deflected wakefield due to the refraction of the driving laser at the TSF. Spectral broadening of betatron radiation can be suppressed owing to the small variation in the peak energy of the low-energy-spread e beam in a plasma wiggler regime. It is demonstrated that the e-beam generation, refracting, and wiggling can act as a whole to realize the concurrence of monoenergetic e beams and bright x-rays in a compact laser-wakefield accelerator.
Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H
2010-01-01
Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.
NASA Astrophysics Data System (ADS)
Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.
2014-10-01
A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.
Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA
2012-07-10
A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.
Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sramek, C
2003-11-20
At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effectsmore » as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.« less
Effects of Laser Frequency and Multiple Beams on Hot Electron Generation in Fast Ignition
NASA Astrophysics Data System (ADS)
Royle, Ryan B.
Inertial confinement fusion (ICF) is one approach to harnessing fusion power for the purpose of energy production in which a small deuterium-tritium capsule is imploded to about a thousand times solid density with ultra-intense lasers. In the fast ignition (FI) scheme, a picosecond petawatt laser pulse is used to deposit ˜10 kJ of energy in ˜10 ps into a small hot-spot at the periphery of the compressed core, igniting a fusion burn wave. FI promises a much higher energy gain over the conventional central hot-spot ignition scheme in which ignition is achieved through compression alone. Sufficient energy coupling between ignition laser and implosion core is critical for the feasibility of the FI scheme. Laser-core energy coupling is mediated by hot electrons which absorb laser energy near the critical density and propagate to the dense core, depositing their energy primarily through collisions. The hot electron energy distribution plays a large role in achieving efficient energy coupling since electrons with energy much greater than a few MeV will only deposit a small fraction of their energy into the hot-spot region due to reduced collisional cross section. It is understood that it may be necessary to use the second or third harmonic of the 1.05 mum Nd glass laser to reduce the average hot electron energy closer to the few-MeV range. Also, it is likely that multiple ignition beams will be used to achieve the required intensities. In this study, 2D particle-in-cell simulations are used to examine the effects of frequency doubling and tripling of a 1 mum laser as well as effects of using various dual-beam configurations. While the hot-electron energy spectrum is indeed shifted closer to the few-MeV range for higher frequency beams, the overall energy absorption is reduced, canceling the gain from higher efficiency. For a fixed total laser input energy, we find that the amount of hot electron energy able to be deposited into the core hot-spot is fairly insensitive to the laser configuration used. Our results hint that the more important issue at hand may be divergence and transport of the hot electrons, which tend to spray into 2pi radians due to instabilities and current filamentation present in the laser-plasma interaction region.
Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters
NASA Astrophysics Data System (ADS)
Ehret, G.; Laubach, S.; Schulz, M.
2017-06-01
The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.
NASA Astrophysics Data System (ADS)
Willard, J.; Johnson, J.; Sanchez, E. R.; Kaganovich, I.; Greklek-McKeon, M.; Powis, T.
2017-12-01
New accelerator technologies have made it possible to install a lightweight electron beam accelerator onto small to medium satellites. Electron beams fired along the geomagnetic field would be able to carry energy flux into the ionosphere if they were fired into the loss cone, making these particles observable from the ground. Such an experiment would provide a way to accurately map field lines. One of the important challenges to utilizing this concept is understanding accessibility of these electrons to the ionosphere. While relativistic electron beams are generally more stable than lower energy beams, they are more sensitive to the effects of field-line curvature, which can significantly modify the loss cone [Porazik et al., 2014] making accessibility to the ionosphere sensitive to the launch angle with respect to the magnetic field. We examine the loss cone for 1 MeV electrons in a realistic magnetospheric geometry considering, in particular, the role of field-line stretching. To map the loss cone, we consider conservation of the first adiabatic invariant to second order in ρ/L using the asymptotic series derived by Gardner [Phys Fluids, 1966], which is valid on the midnight meridian. We investigate the loss cones for different magnetic field models controlled by a stretching parameter over the entire midnight meridian. We found that, because tail stretching increases field line curvature near the midplane but decreases curvature elsewhere, accessibility to the ionosphere is increased by tail stretching in regions above and below the midplane, although accessibility of particles passing through the midplane is reduced. This result implies that satellites armed with electron beam accelerators may be able to visibly affect the atmosphere from distances greater than previously anticipated.
Diffractive optics fabricated by direct write methods with an electron beam
NASA Technical Reports Server (NTRS)
Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.
1993-01-01
State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S
2015-06-15
Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less
The VEPP-2000 electron-positron collider: First experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.
2011-08-15
In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less
Laser beam-profile impression and target thickness impact on laser-accelerated protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schollmeier, M.; Harres, K.; Nuernberg, F.
Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained duringmore » the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.« less
Polarization observables using positron beams
NASA Astrophysics Data System (ADS)
Schmidt, Axel
2018-05-01
The discrepancy between polarized and unpolarized measurements of the proton's electromagnetic form factors is striking, and suggests that two-photon exchange (TPE) may be playing a larger role in elastic electron-proton scattering than is estimated in standard radiative corrections formulae. While TPE is difficult to calculate in a model-independent way, it can be determined experimentally from asymmetries between electron-proton and positron-proton scattering. The possibility of a polarized positron beam at Jefferson Lab would open the door to measurements of TPE using polarization observables. In these proceedings, I examine the feasibility of measuring three such observables with positron scattering. Polarization-transfer, specifically the ɛ-dependence for fixed Q2, is an excellent test of TPE, and the ability to compare electrons and positrons would lead to a drastic reduction of systematics. However, such a measurement would be severely statistically limited. Normal single-spin asymmetries (SSAs) probe the imaginary part of the TPE amplitude and can be improved by simultaneous measurements with electron and positron beams. Beam-normal SSAs are too small to be measured with the proposed polarized positron beam, but target-normal SSAs could be feasibly measured with unpolarized positrons in the spectrometer halls. This technique should be included in the physics case for developing a positron source for Jefferson Lab.
Effects of Light and Electron Beam Irradiation on Halide Perovskites and Their Solar Cells.
Klein-Kedem, Nir; Cahen, David; Hodes, Gary
2016-02-16
Hybrid alkylammonium lead halide perovskite solar cells have, in a very few years of research, exceeded a light-to-electricity conversion efficiency of 20%, not far behind crystalline silicon cells. These perovskites do not contain any rare element, the amount of toxic lead used is very small, and the cells can be made with a low energy input. They therefore already conform to two of the three requirements for viable, commercial solar cells-efficient and cheap. The potential deal-breaker is their long-term stability. While reasonable short-term (hours) and even medium term (months) stability has been demonstrated, there is concern whether they will be stable for the two decades or more expected from commercial cells in view of the intrinsically unstable nature of these materials. In particular, they have a tendency to be sensitive to various types of irradiation, including sunlight, under certain conditions. This Account focuses on the effect of irradiation on the hybrid (and to a small degree, all-inorganic) lead halide perovskites and their solar cells. It is split up into two main sections. First, we look at the effect of electron beams on the materials. This is important, since such beams are used for characterization of both the perovskites themselves and cells made from them (electron microscopy for morphological and compositional characterization; electron beam-induced current to study cell operation mechanism; cathodoluminescence for charge carrier recombination studies). Since the perovskites are sensitive to electron beam irradiation, it is important to minimize beam damage to draw valid conclusions from such measurements. The second section treats the effect of visible and solar UV irradiation on the perovskites and their cells. As we show, there are many such effects. However, those affecting the perovskite directly need not necessarily always be detrimental to the cells, while those affecting the solar cells, which are composed of several other phases as well as the perovskite light absorber, are not always due to the perovskite itself. While we cannot yet say whether perovskite solar cells will or will not be stable over the long-term, the information in this Account should be a useful source to help achieve this goal.
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne
2016-01-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
NASA Astrophysics Data System (ADS)
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne
2016-12-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.
Introduction: a Brief History of Positron Beams
NASA Astrophysics Data System (ADS)
Coleman, P. G.
The forty-year history of low-energy positron beams is a model example of how an experimental technique can grow and flourish through persistence, ingenuity, and a small measure of good fortune. From modest beginnings the field has witnessed orders of magnitude increase in beam intensities, the development of positron beams which rival or even exceed the specifications of their state-of-the-art electron equivalents, and a burgeoning of applications in almost every field of scientific endeavour. This chapter is a short personal account of some of the milestones in positron beam research since a Princeton graduate student's thesis set the ball rolling - albeit slowly - in 1958.
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
Slow positron beam production by a 14 MeV C.W. electron accelerator
NASA Astrophysics Data System (ADS)
Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.
1982-10-01
A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.
In-Process Thermal Imaging of the Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.
2016-01-01
Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.
Studies of electron cooling at DESY
NASA Astrophysics Data System (ADS)
Balewski, K.; Brinkmann, R.; Derbenev, Y.; Floettmann, K.; Wesolowski, P.; Gentner, M.; Husmann, D.; Steier, C.
2000-02-01
A possibility to improve the luminosity in hadron colliders is to apply electron cooling. For the e-p and possibly in the future for e-ion a cooling scheme is proposed for the HERA collider which improves the brightness of the hadron beam in two steps. In a first step the hadron beam is cooled at an energy of 15-20 GeV in the pre-accelerator PETRA. In a second step the hadrons are cooled at top energy in HERA, mainly to maintain the beam quality. The first part of the cooler in PETRA consists of a thermionic gun which delivers electron bunches of 120 keV. These bunches are then compressed so that they fit into a 208 MHz travelling wave linac where they are accelerated to an energy of 10 MeV. Gun, compressor, and linac are surrounded by a solenoid so that emittance growth is avoided especially at the low energy end. In order to reduce the energy spread of the electron beam and to lengthen it, the electrons run through a decompressor before they are brought together with the hadron beam in a 40 m long cooling section which is again surrounded by a solenoid. In this paper a schematic layout of the system will be presented and simulation results of the first part of the cooler will be shown. The cooler in HERA consists of a small electron storage ring with two long straight sections. It is shown that all requirements of such a ring running at an energy between 180 and 450 MeV can be met to fight emittance growth in case of light hadron beams (protons) and to cool heavy ions sufficiently fast.
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
Performance of a reentrant cavity beam position monitor
NASA Astrophysics Data System (ADS)
Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk
2008-08-01
The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
., Nuruzzaman
2014-12-01
The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppbmore » correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has also proven valuable for tracking changes in the beamline optics, such as dispersion at the target.« less
The Deformation Mechanism of Fatigue Behaviour in a N36 Zirconium Alloy
NASA Astrophysics Data System (ADS)
Wang, Yingzhu
2018-05-01
Zirconium alloys are widely used as claddings in nuclear reactor. A N36 zirconium alloy has been deformed into a sheet with highly texture according to the result of electron back scatter diffraction test. Then this N36 zirconium alloy sheet has been cut into small beam samples with 12 x 3 x 3 mm3 in size. In this experiment, a three-point bending test was carried out to investigate the fatigue behaviour of N36 zirconium alloy. Cyclic loadings were applied on the top middle of the beam samples. The region of interest (ROI) is located at the middle bottom of the front face of the beam sample where slip band was observed in deformed beam sample due to strain concentration by using scanning electron microscopy. Twinning also plays an important role to accommodate the plastic deformation of N36 zirconium alloy in fatigue, which displays competition with slip.
An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.
Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia
2014-02-01
A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.
Cathode-less gridded ion thrusters for small satellites
NASA Astrophysics Data System (ADS)
Aanesland, Ane
2016-10-01
Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm diameter unit well adapted for a CubeSat or SmallSat mission. This work was supported by Agence Nationale de la Recherche under contract ANR-11-IDEX-0004-02 (Plas@Par) and by SATT Paris-Saclay.
Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude
2018-02-01
The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring system was able to measure in a reproducible way the total charge of electrons that exit the machine, as long as the electron pulse amplitude remains above a given threshold. Furthermore, we were able to relate the charge measured with the monitoring system to the absorbed dose in a solid water phantom. The Oriatron eRT6 was successfully commissioned for preclinical use and is currently in full operation, with studies being performed on the radiobiological effects of high dose-per-pulse irradiation. © 2017 American Association of Physicists in Medicine.
Currents between tethered electrodes in a magnetized laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Urrutia, J. M.
1989-01-01
Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.
Higher energy: is it necessary, is it worth the cost for radiation oncology?
Das, I J; Kase, K R
1992-01-01
The physical characteristics of the interactions of megavoltage photons and electrons with matter provide distinct advantages, relative to low-energy (orthovoltage) x rays, that lead to better radiation dose distributions in patients. Use of these high-energy radiations has resulted in better patient care, which has been reflected in improved radiation treatment outcome in recent years. But, as the desire for higher energy radiation beams increases, it becomes important to determine whether the physical characteristics that make megavoltage beams beneficial continue to provide a net advantage. It is demonstrated that, in fact, there is an energy range from 4 to 15 MV for photons and 4 to 20 MeV for electrons that is optimally suited for the treatment of cancer in humans. Radiation beams that exceed these maximum energies were found to add no advantage. This is because the costs (price of unit, installation, maintenance, shielding for neutron and photons) are not justified by either improved physical characteristics of the radiation (penetration, skin sparing, dose distribution) or treatment outcome. In fact, for photon beams some physical characteristics result in less desirable dose distributions, less accurate dosimetry, and increased safety problems as the energy increases for example, increasingly diffuse beam edges, loss of electron equilibrium, uncertainty in dose perturbations at interfaces, increased neutron contamination, and potential for higher personnel dose. The special features that make electron beams useful at lower energies, for example, skin sparing and small penetration, are lost at high energies. These physical factors are analyzed together with the economic factors related to radiation therapy patient care using megavoltage beams.
1981-05-01
production 01 these gamma-rays and an experimental verification of their magnitude essential: 11) Tha transient radiation on electronics (TREE) work...Figure 2.6. It con- sisted of a scintillator, light pipe, photo sensitive device, and auxiliary electronic assembly. Arrangement of these elements in...types of mechanically interchangeable packages, consisting of a photosensitive device and auxiliary electronics , were available for each detector. (M
Neural network approach to proximity effect corrections in electron-beam lithography
NASA Astrophysics Data System (ADS)
Frye, Robert C.; Cummings, Kevin D.; Rietman, Edward A.
1990-05-01
The proximity effect, caused by electron beam backscattering during resist exposure, is an important concern in writing submicron features. It can be compensated by appropriate local changes in the incident beam dose, but computation of the optimal correction usually requires a prohibitively long time. We present an example of such a computation on a small test pattern, which we performed by an iterative method. We then used this solution as a training set for an adaptive neural network. After training, the network computed the same correction as the iterative method, but in a much shorter time. Correcting the image with a software based neural network resulted in a decrease in the computation time by a factor of 30, and a hardware based network enhanced the computation speed by more than a factor of 1000. Both methods had an acceptably small error of 0.5% compared to the results of the iterative computation. Additionally, we verified that the neural network correctly generalized the solution of the problem to include patterns not contained in its training set.
Temperature measurements during high flux ion beam irradiations
Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; ...
2016-02-16
A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au 3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10 12 cm –2 s –1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparisonmore » with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less
Crystallography of decahedral and icosahedral particles. II - High symmetry orientations
NASA Technical Reports Server (NTRS)
Yang, C. Y.; Yacaman, M. J.; Heinemann, K.
1979-01-01
Based on the exact crystal structure of decahedral and icosahedral particles, high energy electron diffraction patterns and image profiles have been derived for various high symmetry orientations of the particles with respect to the incident beam. These results form a basis for the identification of small metal particle structures with advanced methods of transmission electron microscopy.
Enhanced Compton Backscattering in a Periodic Mirror System for Polarized Positron Beam Generation
NASA Astrophysics Data System (ADS)
Miyahara, Yoshikazu
2002-05-01
By colliding a circularly polarized high power laser beam with a high-energy electron beam, intense circularly polarized γ-rays can be generated, which in turn can be used to produce a longitudinally polarized positron beam for a linear collider. In the present paper, an optical mirror system with periodic focal points is considered to generate intense polarized γ-rays. A CO2 laser beam propagates back and forth in a series of holed mirrors in a straight line. The diffraction loss through the holes is negligibly small, so that the laser beam can be used repeatedly for the collision. The beam size is reduced to 22 μm at a minimum and kept the same in 20 unit cells, ten of which are combined in series. A 5.8 GeV electron beam is focused to 30 μm at a minimum in a series of triplets of permanent quadrupole magnets to generate γ-rays of 60 MeV at a maximum. A γ-ray yield required for a positron beam in a linear collider can be obtained by 10 laser sources with a power of 3.1 kW each, which is considerably lower than the total power assumed in a previous proposal.
Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.
Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H
2008-02-01
We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.
NASA Astrophysics Data System (ADS)
Best, James P.; Zechner, Johannes; Wheeler, Jeffrey M.; Schoeppner, Rachel; Morstein, Marcus; Michler, Johann
2016-12-01
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Radiation sensitivity of foodborne pathogens in meat byproducts with different packaging
NASA Astrophysics Data System (ADS)
Yong, Hae In; Kim, Hyun-Joo; Nam, Ki Chang; Kwon, Joong Ho; Jo, Cheorun
2015-10-01
The aim of this study was to determine radiation sensitivity of Escherichia coli O157:H7 and Listeria monocytogenes in edible meat byproducts. Seven beef byproducts (heart, liver, lung, lumen, omasum, large intestine, and small intestine) and four pork byproducts (heart, large intestine, liver, and small intestine) were used. Electron beam irradiation significantly reduced the numbers of pathogenic microorganisms in meat byproducts and no viable cells were detected in both aerobically- and vacuum-packaged samples irradiated at 4 kGy. Meat byproducts packed under vacuum had higher D10 value than the ones packed aerobically. No significant difference was observed between the D10 values of E. coli O157:H7 and L. monocytogenes inoculated in either aerobically or vacuum packaged samples. These results suggest that low-dose electron beam irradiation can significantly decrease microbial numbers and reduce the risk of meat byproduct contamination by the foodborne pathogens.
NASA Technical Reports Server (NTRS)
Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.;
2016-01-01
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y
2016-05-28
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
1997-11-01
Many industrial and scientific processes like electron beam melting and welding, material modification by ion implantation, dry etching, and micro-fabrication, as well as generation of synchrotron radiation are performed almost exclusively in vacuum nowadays, since the electron and ion guns and their extractors must be kept at a reasonably high vacuum. Consequently, there are numerous drawbacks, among which are low production rates due to required pumping time, limits the vacuum volume sets on the size of target objects. In a small number of applications like non-vacuum electron beam welding, and various processes involving UV and x-ray radiation, thin vacuum walls or long stages of differential pumping are used. But, the resultant degradations of particle and radiation beams severely limit those applications. A novel apparatus, which utilized a short plasma arc, was successfully used to maintain a pressure of 7.6 x exp(-6) Torr in a vacuum chamber with a 2.36mm aperture to atmosphere, i.e., a plasma was successfully used to "plug" a hole to atmosphere while maintaining a reasonably high vacuum in the chamber. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. More details can be found in A. Hershcovitch, J. Appl. Physics 78, p. 5283 (1995). In addition to sustaining a vacuum atmosphere interface, the plasma has very strong lensing effect on charged particles. The plasma current generates an azimuthal magnetic field which exerts a radial Lorentz on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus in beams to a very small spot size, and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Relatively hot plasma at the atmosphere boundary rarefies the atmospheric gases to further enhance particle beam propagation to the materials to target. Recent experimental results, with a plasma window coupled to a venturi, show a factor of three further enhancement in vacuum-atmosphere separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, A.; Basti, A.; Bedeschi, F.
We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be providedmore » by the laser and the stability of the calibration system components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahul, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Vishwakarma, S. R., E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Verma, Aneet Kumar, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com
2011-10-20
Indium Antimonide (InSb) is a promising materials for mid and long wavelength infrared and high speed devices applications because of its small band gap. The Indium Antimonide (InSb) thin films have been deposited onto well cleaned glass substrate at different substrate temperatures (300 K, 323 K, 373 K) by electron beam evaporation technique in the high vacuum chamber at vacuum pressure ∼10{sup −5} torr using prepared non‐stoichiometric InSb powder using formula In{sub 1−x}Sb{sub x}(0.2
Standard-M mobile satellite terminal employing electronic beam squint tracking
NASA Technical Reports Server (NTRS)
Hawkins, G. J.; Beach, M. A.; Hilton, G. S.
1990-01-01
In recent years, extensive experience has been built up at the University of Bristol in the use of the Electronic Beam Squint (EBS) tracking technique, applied to large earth station facilities. The current interest in land mobile satellite terminals, using small tracking antennas, has prompted the investigation of the applicability of the EBS technique to this environment. The development of an L-band mechanically steered vehicle antenna is presented. A description of the antenna is followed by a detailed investigation of the tracking environment and its implications on the error detection capability of the system. Finally, the overall hardware configuration is described along with plans for future work.
Development program on a cold cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.; Holland, C. E.
1985-01-01
During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.
Electron Beam Welder Used to Braze Sapphire to Platinum
NASA Technical Reports Server (NTRS)
Forsgren, Roger C.; Vannuyen, Thomas
1998-01-01
A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.
NASA Astrophysics Data System (ADS)
Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.
2003-08-01
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J
2003-08-07
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
Two-color ionization injection using a plasma beatwave accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, C. B.; Benedetti, C.; Esarey, E.
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Two-color ionization injection using a plasma beatwave accelerator
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2018-01-10
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony
2016-03-08
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.
Characterisation and novel applications of glass beads as dosimeters in radiotherapy
NASA Astrophysics Data System (ADS)
Jafari, Shakardokht
The intent of external beam radiotherapy is to deliver as high a radiation dose as possible to tumour volume whilst minimizing the dose to surrounding normal tissues. Recent development of techniques such as intensity modulated radiation therapy (IMRT) and stereotactic ablative body radiotherapy (SABR) aim to extend this capability. The main feature of these techniques is to use beams which often contain small fields and very steep dose gradients. These present several dosimetric challenges including loss of charge particle equilibrium (CPE), partial occlusion of the direct-beam source and steep fall-off in dose in the penumbra. Dosimeters which are small in size relative to the radiation field dimensions are recommended for such conditions. The particular glass beads studied herein have several potentially favourable physical characteristics; they are small in size (1 to 3 mm diameter), chemically inert, inexpensive, readily available and reusable. The dosimetric characterisation of glass beads has been obtained by irradiating them in various radiotherapy beams of kilo-voltage and mega-voltage photons, megavoltage electrons, protons and carbon ions. They exhibit minimal fading compared with commercial LiF thermo-luminescent (TL) dosimeters, have high TL light transparency, high sensitivity and a large dynamic dose range that remains linear from 1 cGy to 100 Gy They have also been shown to be independent of dose rate and beam incidence angle, as well as having a low variation in response with energy over a range of megavoltage photon and electron beams. The latter characteristic is of importance, where spectral changes may occur as a function of field size and off axis location and for the use of dosimeters in postal audit situations where each institution may have slightly different quality index (QI) for their respective photon energies thus ensuring that the calibration is still valid. These properties suggest their practical use as TL dosimeters for radiotherapy dosimetry. Investigations have been performed to evaluate the feasibility of using glass beads in treatment plan verification, small field radiation dosimetry and postal dosimetry audit.
Evaluation of the Gafchromic{sup Registered-Sign} EBT2 film for the dosimetry of radiosurgical beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, Jose M.; Garcia-Hernandez, Diana; Garcia-Garduno, Olivia A.
2012-10-15
Purpose: Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic{supmore » Registered-Sign} EBT2 and compare its results with a stereotactic diode. Methods: Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). Results: The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. Conclusions: This work found that the Gafchromic{sup Registered-Sign} EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the film's energy dependence. The measurement differences may be attributable to the film's active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.« less
Extraction and Propagation of an Intense Rotating Electron Beam,
1982-10-01
radiochromic foils positioned at z = 25 cm. The equal transmission density contours are ranked in linear order of increasing exposure (increasing current...flux encircled by the cathode e = %rc2Bc. Linearizing the equation of motion around the equilibrium, we can find the wavelength of small radial...the beam rotation. The mask which precedes the scint- illator is a linear array of dots while the projection is made up of two disjoint linear arrays
Compact Electron Gun Based on Secondary Emission Through Ionic Bombardment
Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal
2011-01-01
We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory. PMID:22163896
Precision determination of electron scattering angle by differential nuclear recoil energy method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, N.; Saenboonruang, K.
2015-12-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, Nilanga; Saenboonruang, Kiadtisak
2015-09-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Adriana; et al.
Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interactionmore » regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.« less
An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting
2014-02-15
A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gasmore » was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, C.L.; Hanson, D.L.; Poukey, J.W.
Space charge neutralization for intense beams for inertial confinement fusion is usually assumed to be perfect. However, small charge clumps in the beam will not be totally charge neutralized, and the residual net minimum potential set by electron trapping (e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}, where m{sub e} is the electron mass and v{sub i} is the ion velocity) may lead to a substantial microdivergence. Experiments on the SABRE accelerator and simulations with the IPROP computer code are being performed to assess this mechanism. The authors have successfully created a 5 mrad beam on the SABRE accelerator, by expanding themore » beam (a process consistent with Liouville`s theorem) and, by passing the beam through a plate with pinholes, they have created low divergence beamlets to study this mechanism. Results clearly show: (1) at low pressures, trapping does neutralize the beamlets, but only down to e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}; and (2) at higher pressures ({approx} 0.1-1 Torr), plasma shielding does remove the effect.« less
Insight in the 3D morphology of silica-based nanotubes using electron microscopy.
Dennenwaldt, Teresa; Wisnet, Andreas; Sedlmaier, Stefan J; Döblinger, Markus; Schnick, Wolfgang; Scheu, Christina
2016-11-01
Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH 2 ) 3 , thiophosphoryl triamide, SP(NH 2 ) 3 , and silicon tetrachloride, SiCl 4 , at different temperatures and with varying amount of the starting material SiCl 4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the electron vortex beam wavefunction within a crystal.
Mendis, B G
2015-10-01
Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. Copyright © 2015 Elsevier B.V. All rights reserved.
SU-F-T-66: Characteristics of Electron Beams From Varian Trubeam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimofte, A; Kennedy, C; Zhu, T
2016-06-15
Purpose: The purpose of this study was to compare the electron beam data between Truebeam and 2300ix Varian accelerators for percent depth dose for broad beam and small circular cutouts, cone factors, head scatter factor as a function of cone size and SSD, phantom scatter factor, blocking factor, distance factor and virtual source position. Methods: Measurements were performed for Truebeam and 2300ix Varian accelerators. The main energies used were: 6, 9, 12, 16 and 20 MeV. PDD was measured at SSD = 100 cm for open beam and small circular cutouts (r = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 andmore » 6.6cm) for different energies. Measurements to determine the head scatter factor (H) were done as a function of radius for six representative energies and five cone sizes (6, 10, 15, 20 and 25cm2). The phantom scatter factor (PSF) is defined as the ratio of blocking factor in water at reference depth and head scatter factor in air. PSF was measured as a function of radius and electron energy. Distance factor was measured for all energies and cones for three SSD’s (100, 110 and 120cm). Results: The percent depth dose (PDD) was measured for small cutouts of radius r = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0 and 5.6cm. Blocking factor (BF) was measured for Truebeam and 2300ix accelerators, for different circular cutouts and energies for a 10×10 cone. Cone factors were compared between the two accelerators for different energies and applicator sizes. Conclusion: Cone factors measured for the two accelerator types differ by up to 5% for the largest applicator size. Blocking factors differs by up to 3%, with the largest variation for the smallest field size (0.5cm). Distance factor for different SSD’s differ by up to 4.5%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics
A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less
NASA Astrophysics Data System (ADS)
Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo
2017-03-01
Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.
Electron beam charging of insulators: A self-consistent flight-drift model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.
2006-06-01
Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges {rho}(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate {sigma}(t) and the surfacemore » potential V{sub 0}(t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and {sigma}=1. Especially for low electron beam energies E{sub 0}<4 keV the incorporation of mainly positive charges can be controlled by the potential V{sub G} of a vacuum grid in front of the target surface. For high beam energies E{sub 0}=10, 20, and 30 keV high negative surface potentials V{sub 0}=-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected.« less
Diagnostics development for E-beam excited air channels
NASA Astrophysics Data System (ADS)
Eckstrom, D. J.; Dickenson, J. S.
1982-02-01
As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.
NASA Astrophysics Data System (ADS)
Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Poukey, J. W.; Turman, B. N.
Self Magnetically Insulated Transmission Lines (MITL) adders were used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r(sub rho) less than 2 cm), 11 - 15 MeV, 50 - 100-kA beams with a small transverse velocity v(perpendicular)/c = beta(perpendicular) less than or equal to 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30 - 50 ns FWHM output pulse.
A dual-wavelength light-emitting diode based detector for flow-injection analysis process analysers.
Huang, J; Liu, H; Tan, A; Xu, J; Zhao, X
1992-06-01
In this paper, a small dual-wavelength light-emitting diode (LED) based detector for FIA process analysers is designed. The detector's optical parts include a flow cell, a dual-wavelength LED and a photodiode. Neither mirrors nor lenses are used. The optical paths for the different light beams are almost the same, distinguishing it from previously reported LED based detectors. The detector's electronic components, including a signal amplifier, an A/D and D/A converter, and an Intel 8031 single-chip microcomputer, are integrated on one small board. In order to obtain response signals of approximate intensity for the two colours, the D/A converter and a multiplexer are used to adjust the emission intensity of the two colours respectively. Under microcomputer control, light beams are rapidly electronically modulated. Therefore, dark current and intensity of the light beams are measured almost simultaneously; as a result, the effect of drift is negligible. While a solution of absorbance 0.875 was measured repeatedly, an RSD (relative standard deviation) of 0.24% could be reached. Furthermore, such a detector with a red/yellow LED has been coupled with the FIA technique for the determination of 10(-6)M levels of cobalt.
Generation of magneto-immersed electron beams
NASA Astrophysics Data System (ADS)
Pikin, A.; Raparia, D.
2018-05-01
There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.
Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Mahmood, R.; Johnson, D. L.
1979-01-01
A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.
Charged-particle stereotactic radiosurgery
NASA Astrophysics Data System (ADS)
Lyman, John T.; Fabrikant, Jacob I.; Frankel, Kenneth A.
1985-05-01
Charged-particle stereotactic radiosurgery is the technique of using accelerated atomic nuclei for the irradiation of a small volume target to a high dose in a short time interval. This is contrasted with conventional radiotherapy where large volumes are treated with many small fractions of photon or electron radiation over a multi-week period. The helium-ion beam used for charged-particle stereotactic radiosurgery at the Lawrence Berkeley Laboratory 184-inch Synchrocyclotron is described. This beam is being used for the treatment of inoperable, deep, intracranial arteriovenous malformations (AVMs). Intracranial AVMs are collections of abnormal blood vessels in the brain that may represent a failure of vessels to mature properly and after a long period of slow growth they may produce clinically recognizable neurological symptoms. Based on our experience using narrow beams of helium ions for stereotactic radiosurgical treatment of AVM patients, the characteristics of the treatments are described. Improvements to the technique which are possible by the use of other charged particle beams are discussed.
Characteristics of solitary waves in a relativistic degenerate ion beam driven magneto plasma
NASA Astrophysics Data System (ADS)
Deka, Manoj Kr.; Dev, Apul N.; Misra, Amar P.; Adhikary, Nirab C.
2018-01-01
The nonlinear propagation of a small amplitude ion acoustic solitary wave in a relativistic degenerate magneto plasma in the presence of an ion beam is investigated in detail. The nonlinear equations describing the evolution of a solitary wave in the presence of relativistic non-degenerate magnetized positive ions and ion beams including magnetized degenerate relativistic electrons are derived in terms of Zakharov-Kuznetsov (Z-K) equation for such plasma systems. The ion beams which are a ubiquitous ingredient in such plasma systems are found to have a decisive role in the propagation of a solitary wave in such a highly dense plasma system. The conditions of a wave, propagating with typical solitonic characteristics, are examined and discussed in detail under suitable conditions of different physical parameters. Both a subsonic and supersonic wave can propagate in such plasmas bearing different characteristics under different physical situations. A detailed analysis of waves propagating in subsonic and/or supersonic regime is carried out. The ion beam concentrations, magnetic field, as well as ion beam streaming velocity are found to play a momentous role on the control of the amplitude and width of small amplitude perturbation in both weakly (or non-relativistic) and relativistic plasmas.
NASA Astrophysics Data System (ADS)
Prilepskiy, Yuriy
2007-03-01
This paper presents continuation data of the series of experiments with the electron gun of the CEBAF machine at Jefferson Lab (Newport News, VA), which is capable of delivering electrons with energies up to 200 keV. This 1.5 GHz beam permits to generate cellular damage within minutes. We have performed irradiation of cancer and normal cells with different electron energies and currents to investigate cell biological responses. The biological response is measured through proteomics analysis before and after irradiation. The living cells are encased in special air containers allowing proper positioning in vacuum where the electrons are present. The containers receive the irradiation from the mono energetic electrons with energy up to 120 keV, resulting in an irradiation from both electrons and a small number of photons from the original beam passing through the thin container window. This window allows approximately half of the beam to come through. The study will permit to address the physical processes involved in the RBE and LET at a level that supersedes current data listed in the literature. We will discuss the experimental setup and the second stage of data collected with the new more developed system. This research is part of a global program to provide detailed information for the understanding of radiation based cancer treatments.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1986-01-01
Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.
Self-seeded injection-locked FEL amplifer
Sheffield, Richard L.
1999-01-01
A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.
Control of Laser Plasma Based Accelerators up to 1 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Kei
2007-12-01
This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screenmore » (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 μm diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10 18 W/cm 2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 10 18/cm 3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 μm diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10 18W/cm 2) were guided over 3.3 centimeters of low density (≃ 3.5 x 10 18/cm 3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t dsc, and input energy E in, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.« less
Binukumar, John Pichy; Amri, Iqbal Al; Davis, Cheriyathmanjiyil Antony
2016-01-01
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da PMID:27074452
NASA Technical Reports Server (NTRS)
Von Roos, O.; Luke, K. L.
1984-01-01
The short circuit current generated by the electron beam of a scanning electron microscope in p-n junctions is reduced by enhanced recombination at grain boundaries in polycrystalline material. Frequently, grain boundaries separate the semiconductor into regions possessing different minority carrier life times. This markedly affects the short circuit current I(sc) as a function of scanning distance from the grain boundary. It will be shown theoretically that (1) the minimum of the I(sc) in crossing the grain boundary with the scanning electron beam is shifted away from the grain boundary toward the region with smaller life time (shorter diffusion length), (2) the magnitude of the minimum differs markedly from those calculated under the assumption of equal diffusion lengths on either side of the grain boundary, and (3) the minimum disappears altogether for small surface recombination velocities (s less than 10,000 cm/s). These effects become negligible, however, for large recombination velocities s at grain boundaries. For p-type silicon this happens for s not less than 100,000 cm/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi
2016-02-15
An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes
NASA Technical Reports Server (NTRS)
Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.
2000-01-01
We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.
Focused helium-ion-beam-induced deposition
NASA Astrophysics Data System (ADS)
Alkemade, P. F. A.; Miro, H.
2014-12-01
The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He+ ions in the tens of keV energy range with materials—i.e., minimal deflection and mainly energy loss via electronic excitations—renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm3/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal.
Energy response of glass bead TLDs irradiated with radiation therapy beams
NASA Astrophysics Data System (ADS)
Jafari, S. M.; Jordan, T. J.; Hussein, M.; Bradley, D. A.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.
2014-11-01
Glass beads are a novel TL dosimeter in radiotherapy. An important characteristic of TL dosimeters is their energy response, especially when intended for use in radiotherapy applications over a wide range of energies (typically from X-rays generated at 80 kVp up to 25 MV photon and MeV electron beams). In this paper, the energy response of glass beads (Mill Hill, Japan) is investigated for their TL response to kV X-rays from an orthovoltage radiotherapy unit and also for MV photon and MeV electron beams from a medical linear accelerator. The experimental findings show that for photon and electron beams, the TL response of this particular glass bead, normalised to unity for 6 MV X-rays (TPR20/10=0.670), decreases to 0.96±0.02 for 15 MV X-rays (TPR20/10=0.761) and to 0.95±0.01 for 20 MeV electron beams (R50,D=8.35 cm). This compares favourably with other TLD materials such as LiF and also alanine dosimeters that are readout with an EPR system. For kV X-rays, the response increases to 4.52±0.05 for 80 kV X-rays (HVL=2.4 mm Al) which approaches 3 times that of LiF TLDs and 5 times that of alanine. In conclusion, the particular glass beads, when used as a dosimeter material, show a relatively small energy dependence over the megavoltage range of clinically relevant radiation qualities, being clearly advantageous for accurate dosimetry. Conversely, the energy response is significant for photon beam energies covering the kV range. In both circumstances, in dosimetric evaluations the energy response needs to be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen; He, Qian; Lupini, Andrew R.
2015-10-19
We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria
2015-09-01
In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.
Capture, acceleration and bunching rf systems for the MEIC booster and storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei
2015-09-01
The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less
Kaganovich, I. D.; Sydorenko, D.
2016-11-18
Our paper presents a study of the two-stream instability of an electron beam propagating in a finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary conditions. Even if the width of the plasma matches the resonance condition for a standing wave, a spatially growing wave is excited instead with the growth rate small compared to that of the standing wave in a periodic system. Furthermore, the approximate expression for this growth rate is γ≈(1/13)ω pe(nmore » b/n p)(Lω pe/v b)ln(Lω pe/v b)[1-0.18 cos (Lω pe/v b+π/2)], where ωpe is the electron plasma frequency, n b and n p are the beam and the plasma densities, respectively, v b is the beam velocity, and L is the plasma width. The frequency, wave number, and the spatial and temporal growth rates, as functions of the plasma size, exhibit band structure. Finally, the amplitude of saturation of the instability depends on the system length, not on the beam current. For short systems, the amplitude may exceed values predicted for infinite plasmas by more than an order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, P. H., E-mail: p.charles@qut.edu.au; Crowe, S. B.; Langton, C. M.
Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated intomore » additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ≤15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤12 mm. Source occlusion also caused a large change in OPF for field sizes ≤8 mm. Based on the results of this study, field sizes ≤12 mm were considered to be theoretically very small for 6 MV beams. Conclusions: Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ≤12 mm and more conservatively≤15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.« less
Charles, P H; Cranmer-Sargison, G; Thwaites, D I; Crowe, S B; Kairn, T; Knight, R T; Kenny, J; Langton, C M; Trapp, J V
2014-04-01
This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. According to the practical definition established in this project, field sizes ≤ 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤ 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤ 12 mm. Source occlusion also caused a large change in OPF for field sizes ≤ 8 mm. Based on the results of this study, field sizes ≤ 12 mm were considered to be theoretically very small for 6 MV beams. Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ≤ 12 mm and more conservatively ≤ 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection. © 2014 American Association of Physicists in Medicine.
One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, George M., E-mail: george.petrov@nrl.navy.mil; Boris, David R.; Petrova, Tzvetelina B.
2016-03-15
A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positivemore » ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.« less
Beam conditioner for free electron lasers and synchrotrons
Liu, H.; Neil, G.R.
1998-09-08
A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
Beam conditioner for free electron lasers and synchrotrons
Liu, Hongxiu; Neil, George R.
1998-01-01
A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
NASA Astrophysics Data System (ADS)
Sykes, Alan
1997-05-01
The world's first high-power auxiliary heating experiments in a tight aspect ratio (or spherical) tokamak have been performed on the Small Tight Aspect Ratio Tokomak (START) device [Sykes et al., Nucl. Fusion 32, 694 (1992)] at Culham Laboratory, using the 40 keV, 0.5 MW Neutral Beam Injector loaned by the Oak Ridge National Laboratory. Injection has been mainly of hydrogen into hydrogen or deuterium target plasmas, with a one-day campaign to explore D→D operation. In each case injection provides a combination of higher density operation and effective heating of both ions and electrons. The highest β values achieved to date in START are volume average βT˜11.5% and central beta βO˜50%. Already high, these values are expected to increase further with the use of higher beam power.
Transverse profile of the electron beam for the RHIC electron lenses
NASA Astrophysics Data System (ADS)
Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.
2015-10-01
The transverse profile of the electron beam plays a very important role in assuring the success of the electron lens beam-beam compensation, as well as its application in space charge compensation. To compensate for the beam-beam effect in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, we recently installed and commissioned two electron lenses. In this paper, we describe, via theory and simulations using the code Parmela, the evolution of the density of the electron beam with space charge within an electron lens from the gun to the main solenoid. Our theoretical analysis shows that the change in the beam transverse density is dominated by the effects of the space charge induced longitudinal velocity reduction, not by those of transverse Coulomb collisions. We detail the transverse profile of RHIC electron-lens beam, measured via the YAG screen and pinhole detector, and also describe its profile that we assessed from the signal of the electron-backscatter detector (eBSD) via scanning the electron beam with respect to the RHIC beam. We verified, in simulations and experiments, that the distribution of the transverse electron beam is Gaussian throughout its propagation in the RHIC electron lens.
MBE growth of GaAs and InAs nanowires using colloidal Ag nanoparticles
NASA Astrophysics Data System (ADS)
Ilkiv, I. V.; Reznik, R. R.; Kotlyar, K. P.; Bouravleuv, A. D.; Cirlin, G. E.
2017-11-01
Ag colloidal nanoparticles were used as a catalyst for molecular beam epitaxy of GaAs and InAs nanowires on the Si(111) substrates. The scanning electron microscopy measurements revealed that nanowires obtained are uniform and have small size distribution.
Assessing Visual Delays using Pupil Oscillations
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2012-01-01
Stark (1962) demonstrated vigorous pupil oscillations by illuminating the retina with a beam of light focussed to a small spot near the edge of the pupil. Small constrictions of the pupil then are sufficient to completely block the beam, amplifying the normal relationship between pupil area and retinal illuminance. In addition to this simple and elegant method, Stark also investigated more complex feedback systems using an electronic "clamping box" which provided arbitrary gain and phase delay between a measurement of pupil area and an electronically controlled light source. We have replicated Stark's results using a video-based pupillometer to control the luminance of a display monitor. Pupil oscillations were induced by imposing a linear relationship between pupil area and display luminance, with a variable delay. Slopes of the period-vs-delay function for 3 subjects are close to the predicted value of 2 (1.96-2.39), and the implied delays range from 254 to 376 508 to 652 milliseconds. Our setup allows us to extend Stark's work by investigating a broader class of stimuli.
A Laser Stabilization System for Rydberg Atom Physics
2015-09-06
offset locking method which we did. For each system, a small amount of light from a 852 nm (780 nm) diode laser is picked off from the output beam ...this way, tunable sidebands, from 1-10 GHz, that are themselves modulated at .05-5 MHz, can be generated on the input laser beam . The light from the...phase modulation signal. This signal is fed back into the fast (10 MHz bandwidth) locking electronics of the diode laser system to lock the laser to
Advanced techniques for characterization of ion beam modified materials
Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; ...
2014-10-30
Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less
Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams.
Saminathan, S; Beijers, J P M; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S
2012-07-01
A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.
Electron lenses for head-on beam-beam compensation in RHIC
Gu, X.; Fischer, W.; Altinbas, Z.; ...
2017-02-17
Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less
Electron lenses for head-on beam-beam compensation in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, X.; Fischer, W.; Altinbas, Z.
Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less
Simulation of radial expansion of an electron beam injected into a background plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1989-01-01
A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA
2011-03-08
A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.
Mankos, Marian; Shadman, Khashayar; N'diaye, Alpha T; Schmid, Andreas K; Persson, Henrik H J; Davis, Ronald W
2012-11-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron-optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron-optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1-10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach promises to significantly improve the performance of a LEEM for a wide range of applications in the biosciences, material sciences, and nanotechnology where nanometer scale resolution and analytical capabilities are required. In particular, the microscope has the potential of delivering images of unlabeled DNA strands with nucleotide-specific contrast. This simplifies specimen preparation and significantly eases the computational complexity needed to assemble the DNA sequence from individual reads.
Rapid temporal evolution of radiation from non-thermal electrons in solar flares
NASA Technical Reports Server (NTRS)
Lu, Edward T.; Petrosian, Vahe
1987-01-01
Solutions of the time dependent Fokker-Planck equation was found for accelerated electrons undergoing Coulomb collisions in a magnetized, fully ionized plasma. An exact solution was found for arbitrary pitch angle and energy distribution in a uniform background plasma. Then, for an inhomogeneous plasma, a solution was found for particles with small pitch angles. These solutions were used to calculate the temporal evolution of bremsstrahlung x-rays from short bursts of nonthermal electron beams, and these spectra were compared with observed high time resolution spectra of short timescale solar hard x-ray bursts. It is shown that the observed softening in time of the spectra rules out a homogeneous background and therefore the possibility of electrons being confined to the corona either because of converging magnetic field or high densities. The inhomogeneous solution was also applied to a model with constant coronal density and exponentially rising chromospheric density. The spectra are shown to be consistent with that produced by a collimated beam of electrons accelerated in the corona with certain given conditions. These conditions could be violated if large pitch angle electrons are present.
Preliminary Study of Electron Emission for Use in the PIC Portion of MAFIA
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2001-01-01
This memorandum summarizes a study undertaken to apply the program MAFIA to the modeling of an electron gun in a traveling wave tube (TWT). The basic problem is to emit particles from the cathode in the proper manner. The electrons are emitted with the classical Maxwell-Boltzmann (M-B) energy distribution; and for a small patch of emitting surface; the distribution with angle obeys Lambert's law. This states that the current density drops off as the cosine of the angle from the normal. The motivation for the work is to extend the analysis beyond that which has been done using older codes. Some existing programs use the Child-Langmuir, or 3/2 power law, for the description of the gun. This means the current varies as the 3/2 power of the anode voltage. The proportionality constant is termed the perveance of the gun. This is limited, however, since the 3/2 variation is only an approximation. Also, if the cathode is near saturation, the 3/2 law definitely will not hold. In most of the older codes, the electron beam is decomposed into current tubes, which imply laminar flow in the beam; even though experiments show the flow to be turbulent. Also, the proper inclusion of noise in the beam is not possible. These older methods of calculation do, however, give reasonable values for parameters of the electron beam and the overall gun, and these values will be used as the starting point for a more precise particle-in-cell (PIC) calculation. To minimize the time needed for a given computer run, all beams will use the same number of particles in a simulation. This is accomplished by varying the mass and charge of the emitted particles (macroparticles) in a certain manner, to be consistent with the desired beam current.
Stable operating regime for traveling wave devices
Carlsten, Bruce E.
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
A novel transparent charged particle detector for the CPET upgrade at TITAN
NASA Astrophysics Data System (ADS)
Lascar, D.; Kootte, B.; Barquest, B. R.; Chowdhury, U.; Gallant, A. T.; Good, M.; Klawitter, R.; Leistenschneider, E.; Andreoiu, C.; Dilling, J.; Even, J.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.
2017-10-01
The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid's entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the "mesh detector." The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user's discretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C.; Hirshfield, J.L.; Ganguly, K.
1995-04-01
For high frequency gyrotrons or high gyroharmonic conversion, an axis encircling beam of high voltage is required to allow coupling to whispering gallery fields near the walls. Lower voltage is required for an annular beam of similar velocity ratio {alpha}. Here the authors present simulation results using a modified CARA for preparation of a 320 kV, 20 A, {alpha} = 1.5 annular beam driven at 11.424 GHz with an rf power of 5 MW and an injection voltage of 75 kV. It is shown that the beam quality can be considerably improved by so-called {open_quotes}detuning{close_quotes}, where the tapered axial magneticmore » field profiles in the CARA are caused to deviate a small amount from exact resonance. Under typical operating conditions, beams with axial velocity spreads of the order of 1% are predicted. This approach could be used to provide a high quality annular gyrating beam for multi-megawatt millimeter wave sources in the 100-200 GHz range.« less
Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning
NASA Astrophysics Data System (ADS)
Boyd, Robert Arthur
2001-08-01
The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use.
Free electron laser with masked chicane
Nguyen, Dinh C.; Carlsten, Bruce E.
1999-01-01
A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.
Exotic X-ray Sources from Intermediate Energy Electron Beams
NASA Astrophysics Data System (ADS)
Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.
2003-08-01
High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).
Use of beam deflection to control an electron beam wire deposition process
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.
Kinetic energy offsets for multicharged ions from an electron beam ion source.
Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P
2017-08-01
Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.
Electromagnetic radiation from beam-plasma instabilities
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Dawson, J. M.
1983-01-01
A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.
Dynamics of modulated beams in spectral domain
Yampolsky, Nikolai A.
2017-07-16
General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less
NASA Astrophysics Data System (ADS)
Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.
2007-11-01
Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.
Electron microscopic observations of hydrogen implantation in ilmenites
NASA Technical Reports Server (NTRS)
Blanford, G. E.
1983-01-01
Hydrogen ion beams were found to form submicrometer, bumpy textures on the surface of ilmenite grains. From this effect, it is believed that similar bumpy textures seen on lunar ilmenite, pyroxene, and olivine grains are likely to be caused by solar wind irradiation. As a consequence, the concentration of bumpy textured grains may be a useful index of surface maturity for lunar soils. An attempt was made to search for grains with these bumpy textures in interplanetary dust and lunar and meteoritic regolith breccias in order to obtain information about the duration of their exposure to the solar wind. Solar wind irradiation was simulated on natural, terrestrial ilmenite. Hydrogen ion beams were directed at small grains and polished sections which were then examined by electron microscopy.
Design and experimental research on a self-magnetic pinch diode under MV
NASA Astrophysics Data System (ADS)
Pengfei, ZHANG; Yang, HU; Jiang, SUN; Yan, SONG; Jianfeng, SUN; Zhiming, YAO; Peitian, CONG; Mengtong, QIU; Aici, QIU
2018-01-01
A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ∼MV, with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the focal spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.
A simulation study of radial expansion of an electron beam injected into an ionospheric plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1994-01-01
Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.
Development of an EBIS charge breeder for the Rare Isotope Science Project
NASA Astrophysics Data System (ADS)
Son, Hyock-Jun; Park, Young-Ho; Kondrashev, Sergey; Kim, Jongwon; Lee, Bong Ju; Chung, Moses
2017-10-01
In Korea, a heavy ion accelerator facility called RAON is being designed to produce various rare isotopes for the Rare Isotope Science Project (RISP) (Jeong, 2016) [1], (Moon, 2014) [2]. This facility is designed to use both In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) techniques in order to produce a wide variety of RI beams for nuclear physics experiments. An Electron Beam Ion Source (EBIS) will be used for charge breeding of Rare Isotope (RI) beams in the ISOL system. The charge-to-mass ratio (q/A) of the RI beams after charge breeding is ≥1/4. The highly charged RI beams will be accelerated by a linac post-accelerator and delivered to a low energy (∼18 MeV/u) experimental hall or the IF system. The RAON EBIS will use a 3 A electron gun and a 6 T superconducting solenoid for high capacity, high efficiency, and short breeding time. In front of the charge breeder, an RFQ cooler-buncher will be used to deliver a bunched beam with small emittance to the EBIS charge breeder. The main design of the RAON EBIS has been carried out on the basis of several beam analyses and technical reviews. In this paper, current progress of the development of the RAON EBIS charge breeder will be presented.
High-Power Pinched-Beam Diode Development for Radiographic Applications
2007-06-01
reentrant rods. II. X-RAY DIAGNOSTICS The x-ray dose is measured using CaF2 thermoluminescent dosimeters ( TLDs ) enclosed in 1-cm- diam...1.5-mm spot size. This paper reports on studies of the rod-pinch (RP) diode [3], comprising a small anode rod and an annular cathode. Electrons ...because the electrons impact the rod primarily in the backwards direction. As the voltage increases, the x- radiation becomes more forward-peaked
Reflection Matrix for Optical Resonators in FEL (Free Electron Lasers) Oscillators
1988-09-22
is the dominant factor determining the reflction coefficient. The effects of deflecting tho’ light beam enter as small corrections, of first order in...RESONATORS IN FEL OSCILLATORS I. INTRODUCTION 1-7 Free Electron Lasers (FEL) operating as oscillators require the 8-10 trapping of light pulses between...The simplest oscillator configuration is that of an open resonator with two opposed identical mirrors. The radiation vector potential for this
In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces
NASA Technical Reports Server (NTRS)
Metois, J. J.; Heinemann, K.; Poppa, H.
1976-01-01
The mobility of small clusters of gold (about 10 A in diameter) on electron-beam-cleaved MgO surfaces was studied by in situ transmission electron microscopy under controlled vacuum and temperature conditions. During the first 10 min following a deposition at room temperature, over 10 per cent of the crystallites moved over short distances (about 20 A) discontinuously, with a velocity greater than 150 A/sec. Eighty per cent of the mobility events were characterized by the avoidance of proximity of other crystallites, and this was tentatively explained as the result of repulsive elastic forces between the interacting crystallites.
Transverse profile of the electron beam for the RHIC electron lenses
Gu, X.; Altinbas, Z.; Costanzo, M.; ...
2015-07-10
To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less
Jesse, Stephen; He, Qian; Lupini, Andrew R; Leonard, Donovan N; Oxley, Mark P; Ovchinnikov, Oleg; Unocic, Raymond R; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y
2015-11-25
The atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous films in a scanning transmission electron microscope (STEM) is demonstrated. Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. The fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam is further demonstrated. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stopping power of an electron gas with anisotropic temperature
NASA Astrophysics Data System (ADS)
Khelemelia, O. V.; Kholodov, R. I.
2016-04-01
A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.
Compact two-beam push-pull free electron laser
Hutton, Andrew [Yorktown, VA
2009-03-03
An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.
Full Geant4 and FLUKA simulations of an e-LINAC for its use in particle detectors performance tests
NASA Astrophysics Data System (ADS)
Alpat, B.; Pilicer, E.; Servoli, L.; Menichelli, M.; Tucceri, P.; Italiani, M.; Buono, E.; Di Capua, F.
2012-03-01
In this work we present the results of full Geant4 and FLUKA simulations and comparison with dosimetry data of an electron LINAC of St. Maria Hospital located in Terni, Italy. The facility is being used primarily for radiotherapy and the goal of the present study is the detailed investigation of electron beam parameters to evaluate the possibility to use the e-LINAC (during time slots when it is not used for radiotherapy) to test the performance of detector systems, in particular those designed to operate in space. The critical beam parameters are electron energy, profile and flux available at the surface of device to be tested. The present work aims to extract these parameters from dosimetry calibration data available at the e-LINAC. The electron energy ranges from 4 MeV to 20 MeV. The dose measurements have been performed by using an Advanced Markus Chamber which has a small sensitive volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; De Monte, V.; Di Lieto, A.
In the LEReC Cooling Section (CS) the RHIC ions are traveling together with and getting cooled by the LEReC electrons. The required cooling rate sets the limit of 150 urad on tolerable angles of the electrons in the CS. One of the components of overall electron angle is the angle of the e-beam trajectory with respect to the ion beam trajectory. We set the limit for electron trajectory angle to 100 urad. It is critical for preserving small trajectory angle to keep the transverse magnetic field inside the CS drifts within +/- 2.3 mG. The drifts in the CS mustmore » be shielded from the ambient magnetic fields of the RHIC tunnel, which can be as high as 0.5 G, to minimize the transverse field inside the CS vacuum chamber. In this paper we present the final design of the magnetic shielding of the LEReC CS and discuss the results of tests dedicated to studies of the shielding effectiveness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barish, R.J.; Barish, S.V.
1988-06-01
For many years, the irradiation of small volumes of tissue in the brain to necrotizing doses has been investigated as a non-invasive alternative to neurosurgery. We propose a new system in which a precisely machined helmet serves as a multi-port focussed X-ray collimator when it is itself irradiated by a conventional medical linear accelerator run in the electron mode. When the collimator is attached to a stereotactic frame, the geometric accuracy of delivering small radiation fields to the brain is limited primarily by the accuracy of the stereotactic localization, and is relatively independent of the positional stability of the accelerator.more » Field sizes as small as two millimeters are readily achievable. The problem of low dose rate associated with these small fields is overcome by the use of high electron beam currents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisham, L. R.; Kwan, J. W.
2008-08-01
Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, andmore » with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.« less
FIB-SEM tomography in biology.
Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M
2014-01-01
Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oborn, B; Ge, Y; Hardcastle, N
Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: 9 clinical lung plans were recalculated using Monte Carlo methods and external inline (parallel to the beam direction) magnetic fields of 0.5 T, 1.0 T and 3 T were included. Three plans were 6MV 3D-CRT and six were 6MV IMRT. The GTV’s ranged from 0.8 cc to 73 cc, while the PTV ranged from 1 cc to 180 cc. Results: The inline magnetic field has a moderatemore » impact in lung dose distributions by reducing the lateral scatter of secondary electrons and causing a small local dose increase. Superposition of multiple small beams acts to superimpose the small dose increases and can lead to significant dose enhancements, especially when the GTV is low density. Two plans with very small, low mean density GTV’s (<1 cc, ρ(mean)<0.35g/cc) showed uniform increases of 16% and 23% at 1 T throughout the PTV. Three plans with moderate mean density PTV’s (3–13 cc, ρ(mean)=0.58–0.67 g/cc) showed 6% mean dose enhancement at 1 T in the PTV, however not uniform throughout the GTV/PTV. Replanning would benefit these cases. The remaining 5 plans had large dense GTV’s (∼ 1 g/cc) and so only a minimal (<2%) enhancement was seen. In general the mean dose enhancement at 0.5 T was 60% less than 1 T, while 5–50% higher at 3 T. Conclusions: A paradigm shift in the efficacy of small lung tumor radiotherapy is predicted with future inline MRI-linac systems. This will be achieved by carefully taking advantage of the reduction of lateral electronic disequilibrium withing lung tissue that is induced naturally inside strong inline magnetic fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.
1997-09-01
The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.
Chaotic Electron Motion Caused by Sidebands in Free Electron Lasers
1988-10-27
sideband. The total vector potential is then, A (z,t) = (1) •w (e~ )ri(krZ-Wr t) l(ksZ-Wst)] -c’-[(ex-iey)AweZ% _+V-(ex+iey)Are ikrzwr _) (ex+iey)Ase... light c, ignoring the small correction of order w 2/W 2 from the dielectric contribution of the beam. Electrostatic contributions to the fields are...mass to me and the vector potentials according to ai=IeIAi/mec2 the dimensionless Hamiltonian describing the electron motion in the fields of Eq. (1
NASA Astrophysics Data System (ADS)
Feng, Bing
Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac (ERL) due to extremely small emittance and high peak currents anticipated in the machine. A tune shift is discovered from the simulation; however, emittance growth of the electron beam in electron cloud is not observed for ERL parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net; University of Chinese Academy of Sciences, Beijing 100190
2015-11-15
A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beammore » tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.« less
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.
2015-11-01
Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less
Mankos, Marian; Shadman, Khashayar; N'Diaye, Alpha T.; Schmid, Andreas K.; Persson, Henrik H. J.; Davis, Ronald W.
2012-01-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron–optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron–optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1–10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach promises to significantly improve the performance of a LEEM for a wide range of applications in the biosciences, material sciences, and nanotechnology where nanometer scale resolution and analytical capabilities are required. In particular, the microscope has the potential of delivering images of unlabeled DNA strands with nucleotide-specific contrast. This simplifies specimen preparation and significantly eases the computational complexity needed to assemble the DNA sequence from individual reads. PMID:23847748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klash, S; Steinman, J; Stanley, T
2015-06-15
Purpose: Diodes are utilized by radiotherapy departments to help verify that treatment fields are being delivered correctly to the patient. Some treatment fields utilize electron beams along with a cerrobend cutout to shape the beam to the area to be treated. Cerrobend cutouts can sometimes be very small < 2×2-cm2. Some published work has addressed diode perturbation for cutout sizes down to 1.5-cm, this work addresses the diode perturbation of the Sun Nuclear QEDTM diode for cutouts as small as 0.5-cm in diameter. Methods: Measurements were taken with an A16 Exradin micro-chamber in Solid Water to 100-cm SSD. Dmax wasmore » determined for each cutout using various amounts of Solid Water in 1–2 mm increments to account for the dmax shifting in small fields. The diode was placed on top of the solid water to 100-cm SSD in the center of the cutout. Measurements were taken with no diode for comparison. The cutouts ranged in diameter from 0.5-cm to 5.0-cm and included the open 6×6 insert. Measurements were made for energies 6, 9, 12, 15,&18 MeV. Results: For 6 MeV, the percent dose reduction from the diode in the cutout field compared to the field without the diode ranged from 35% to 25% as a function of cutout size. For higher energies, this percentage decreased and generally was 25% to 15%. It was observed that dmax shifts significantly upstream for very small cutouts (<2-cm diameter) to less than 1 cm for all energies. Conclusion: The presence of diodes in small electron fields is enough to cause significant dose perturbation to the target volume. It is recommended that diodes for very small electron fields be used sparingly or possibly with a dose correction per treatment fraction(s), if the total projected delivered dose is going to be significantly different from that prescribed by the physician.« less
NASA Astrophysics Data System (ADS)
Dzifčáková, E.; Dudík, J.; Mackovjak, Š.
2016-05-01
Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org
Femtosecond gas phase electron diffraction with MeV electrons.
Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin
2016-12-16
We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.
McIntyre, P.M.
1993-07-13
An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.
McIntyre, Peter M.
1993-01-01
An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.
Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Moens, Vince; Redaelli, Stefano
2014-07-01
Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The designmore » of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.« less
Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
ATLAS Collaboration; Ahmad, A.; Andreazza, A.
2008-06-02
A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained inmore » the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.« less
Enhancing RHIC luminosity capabilities with in-situ beam piple coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.
Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel.more » The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).« less
Charge neutralization apparatus for ion implantation system
Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.
1992-01-01
Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.
Back-streaming ion emission and beam focusing on high power linear induction accelerator
NASA Astrophysics Data System (ADS)
Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui
2011-08-01
Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.
SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Coutinho, L
2015-06-15
Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less
Current-limited electron beam injection
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1977-01-01
The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.
Adapting High Brightness Relativistic Electron Beams for Ultrafast Science
NASA Astrophysics Data System (ADS)
Scoby, Cheyne Matthew
This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the “blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan; Han, Chang Wan; Venkatakrishnan, Singanallur V.; Bouman, Charles A.; Ortalan, Volkan
2017-04-01
Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials, the results obtained in our experiments demonstrate the sparse acquisition STEM imaging is potentially capable of reducing the electron dose by at least 20 times expanding the frontiers of our characterization capabilities for investigation of biological/organic molecules, polymers, soft materials and nanostructures in general.
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
Vibrational Analysis of a Shipboard Free Electron Laser Beam Path
2011-12-01
2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical
Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.
1982-07-01
of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates
Electron beam magnetic switch for a plurality of free electron lasers
Schlitt, Leland G.
1984-01-01
Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.
Definition of Beam Diameter for Electron Beam Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John
It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machinemore » (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.« less
Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies
NASA Astrophysics Data System (ADS)
Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration
2016-05-01
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies
Abbott, D.; Adderley, P.; Adeyemi, A.; ...
2016-05-27
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring
NASA Astrophysics Data System (ADS)
Gendler, Naomi; Billing, Mike; Shanks, Jim
The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less
Mutual synchronization of weakly coupled gyrotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.
2015-09-15
The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.
1980-12-31
boundary is given by the thermionic emission current, kT 1 /2 qVB qVa Jth = qn (m) exp (- [exp (Kn)- 1 ] ( 1 ) where Va is the applied voltage, q is the...small applied voltage, qVa << kT, Eq. ( 1 ) reduces to Jth = LVa (2) where = q n exp - -T- q.na (3) which gives the effective grain boundary resistance...POLYSILICON AS A DEVICE-WORTHY MATERIAL BY STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 FOR THE PERIOD JANUARY 1 , 1978 THROUGH DECEMBER 31, 1980 Dr
2011-12-01
grown on GaAs by molecular beam epitaxy and the defect-free active device layers. Fig. 1(c) shows the quantitative mobility spec- trum analysis (QMSA...dielectric deposition. A Pd/Au gate metal was defined using e- beam lithography and 0741-3106/$26.00 © 2011 IEEE Report Documentation Page Form...2010, pp. 6.3.1–6.3.4. [2] N. Kharche, G. Klimeck, D. Kim, J. A. del Alamo, and M. Luisier, “Performance analysis of ultra-scaled InAs HEMTs ,” in IEDM
Detectors for low energy electron cooling in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlier, F. S.
Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions betweenmore » the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.« less
Materials modification using ions with energies below 1 MeV/u
NASA Astrophysics Data System (ADS)
Karlušić, M.; Jakšić, M.; Buljan, M.; Sancho-Parramon, J.; Bogdanović-Radović, I.; Radić, N.; Bernstorff, S.
2013-12-01
Materials modifications using swift heavy ion beams provided by large scale accelerators have been used for many years in a wide variety of ways, e.g. to produce ion tracks or to modify the shape of nanoparticles. In all those applications the most relevant parameter for the materials modification is the electronic stopping power and not the ion kinetic energy. For many materials, ions with energies below 1 MeV/u delivered from medium and small size accelerators have already sufficiently high electronic stopping power to modify materials in different ways. Also, in this energy range the nuclear stopping power can be large enough to provide additional opportunities for materials modifications. In the present paper, we review recent experimental activities of the Zagreb group where ion beams with energies below 1 MeV/u, obtained from a 6 MV EN Tandem Van de Graaff accelerator have been used. Additionally, we present several novel examples of materials modifications and their analysis with such ion beams.
Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar; Izewska, Joanna; Hopfgartner, Johannes; Lechner, Wolfgang; Andersen, Claus E; Beierholm, Anders R; Helt-Hansen, Jakob; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Meghzifene, Ahmed; Palmans, Hugo
2014-07-01
The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.
Srinivasan-Rao, Triveni
2002-01-01
A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.
Use of electronic portal imaging devices for electron treatment verification.
Kairn, T; Aland, T; Crowe, S B; Trapp, J V
2016-03-01
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Kron, T; McNiven, A; Witruk, B; Kenny, M; Battista, J
2006-12-01
Plane parallel ionization chambers are an important tool for dosimetry and absolute calibration of electron beams used for radiotherapy. Most dosimetric protocols require corrections for recombination and polarity effects, which are to be determined experimentally as they depend on chamber design and radiation quality. Both effects were investigated in electron beams from a linear accelerator (Varian 21CD) for a set of four tissue equivalent plane parallel ionization chambers customized for the present research by Standard Imaging (Madison WI). All four chambers share the same design and air cavity dimensions, differing only in the diameter of their collecting electrode and the corresponding width of the guard ring. The diameters of the collecting electrodes were 2 mm, 4 mm, 10 mm and 20 mm. Measurements were taken using electron beams of nominal energy 6 to 20 MeV in a 10 cm x 10 cm field size with a SSD of 100 cm at various depths in a Solid Water slab phantom. No significant variation of recombination effect was found with radiation quality, depth of measurement or chamber design. However, the polarity effect exceeded 5% for the chambers with small collecting electrode for an effective electron energy below 4 MeV at the point of measurement. The magnitude of the effect increased with decreasing electron energy in the phantom. The polarity correction factor calculated following AAPM protocol TG51 ranged from approximately 1.00 for the 20.0 mm chamber to less than 0.95 for the 2 mm chamber at 4.1 cm depth in a electron beam of nominally 12 MeV. By inverting the chamber it could be shown that the polarity effect did not depend on the polarity of the electrode first traversed by the electron beam. Similarly, the introduction of an air gap between the overlying phantom layer and the chambers demonstrated that the angular distribution of the electrons at the point of measurement had a lesser effect on the polarity correction than the electron energy itself. The magnitude of the absolute difference between charge collected at positive and negative polarity was found to correlate with the area of the collecting electrode which is consistent with the explanation that differences in thickness of the collecting electrodes and the number of electrons stopped in them contribute significantly to the polarity effect. Overall, the polarity effects found in the present study would have a negligible effect on electron beam calibration at a measurement depth recommended by most calibration protocols. However, the present work tested the corrections under extreme conditions thereby aiming at greater understanding of the mechanism underlying the correction factors for these chambers. This may lead to better chamber design for absolute dosimetry and electron beam characterization with less reliance on empirical corrections.
Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.
1984-01-01
A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.
Dose computation for therapeutic electron beams
NASA Astrophysics Data System (ADS)
Glegg, Martin Mackenzie
The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).
Electron beam simulation from gun to collector: Towards a complete solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.
An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less
SEPAC data analysis in support of the environmental interaction program
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1990-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Frictional Heating of Ions In The F2-region of The Ionosphere
NASA Astrophysics Data System (ADS)
Zhizhko, G. O.; Vlasov, V. G.
Auroral electron beams unstable on the Cherenkov resonance are stabilized by large- scale inhomogeneity of the plasma density during all their way from the acceleration region to the E-region of the ionosphere. The generation of plasma waves by beam is possible only in the region of small plasma density gradients, that always is the area of the F2-region maximum. Thus, collective dissipation of the electron beam energy occurs in the local region with the length about several tens of kilometers. This leads to the intensive heating of the electrons(up to temperatures about 10000 K) and will give origin to the ion upflows with velocity about 1 km/s and density about 109 cm-2 s-1. These flows can result in the ion frictional heating. At the same time ion temperatures reach the values about 5000 K. A numerical simulation of the ion frictional heating in the presence of collective elec- tron heating in the high-latitude F2-region of the ionosphere was performed. The sim- ulation has shown that the most critical parameter for the occurence of the ion fric- tional heating was the the steepness of the plasma density profile above the F2-region maximum.
NASA Astrophysics Data System (ADS)
Nikrah, M.; Jafari, S.
2016-06-01
We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.
Some computer graphical user interfaces in radiation therapy.
Chow, James C L
2016-03-28
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.
Electron-Beam-Induced Current | Materials Science | NREL
Electron-Beam-Induced Current Electron-Beam-Induced Current Photo of a GaAsP-on-Si solar cell. EBIC measure electron-beam-induced current (EBIC). In presence of an electrostatic field (p-n junction
Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-01-01
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276
Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-12-14
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
Conceptual designs of E × B multistage depressed collectors for gyrotrons
NASA Astrophysics Data System (ADS)
Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John
2017-04-01
Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.
Pulsed Power Design for a Small Repetitively Pulsed Electron Beam Pumped KrF Laser
2003-06-01
fusion energy (IFE) requirements for rep-rate, efficiency, durability and cost. We have designed a pulsed power system for the pre-amplifier in the Electra...new advanced pulsed power topology that can meet the fusion energy requirements for durability, repetition rate, and cost. The pulsed power will first
NASA Astrophysics Data System (ADS)
Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo
2009-03-01
We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.
Beam characterisation of the KIRAMS electron microbeam system.
Sun, G M; Kim, E H; Song, K B; Jang, M
2006-01-01
An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.
A tiny event producing an interplanetary type III burst
NASA Astrophysics Data System (ADS)
Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.
2015-10-01
Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org
SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadhan; Way, S; Arentsen, L
2016-06-15
Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distancemore » and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.« less
Prototype electron lens set-up for the Tevatron beam-beam compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Saewert, G.; Santucci, J.
1999-05-17
A prototype "electron lens" for the Tevatron beam-beam compensation project is commissioned at Fermilab. We de-scribe the set-up, report results of the first tests of the elec-tron beam, and discuss future plans.
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin
2014-01-01
One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.
Multisource inverse-geometry CT. Part II. X-ray source design and prototype
Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian
2016-01-01
Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations. PMID:27487878
Multisource inverse-geometry CT. Part II. X-ray source design and prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caia
2016-08-15
Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode blockmore » per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations.« less
An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF
NASA Astrophysics Data System (ADS)
Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.
2018-05-01
Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
NASA Astrophysics Data System (ADS)
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
2018-01-01
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.
Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.
2000-03-01
The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.
Light modulated electron beam driven radiofrequency emitter
Wilson, M.T.; Tallerico, P.J.
1979-10-10
The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.
Björk, P; Knöös, T; Nilsson, P
2000-11-01
The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.
Beam transport and monitoring for laser plasma accelerators
NASA Astrophysics Data System (ADS)
Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.
2012-12-01
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.
Some effects of electron channeling on electron energy loss spectroscopy.
Kirkland, Earl J
2005-02-01
As an electron beam (of order 100 keV) travels through a crystalline solid it can be channeled down a zone axis of the crystal to form a channeling peak centered on the atomic columns. The channeling peak can be similar in size to the outer atomic orbitals. Electron energy loss spectroscopy (EELS) measures the losses that the electron experiences as it passes through the solid yielding information about the unoccupied density of states in the solid. The interaction matrix element for this process typically produces dipole selection rules for small angle scattering. In this paper, a theoretical calculation of the EELS cross section in the presence of strong channeling is performed for the silicon L23 edge. The presence of channeling is found to alter both the intensity and selection rules for this EELS signal as a function of depth in the solid. At some depths in the specimen small but significant non-dipole transition components can be produced, which may influence measurements of the density of states in solids.
Reflective small angle electron scattering to characterize nanostructures on opaque substrates
NASA Astrophysics Data System (ADS)
Friedman, Lawrence H.; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan
2017-09-01
Feature sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering, and of course the electron and scanning probe microscopy techniques. Each of these techniques has their advantages and limitations. Here, the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1 ° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.
Reflective Small Angle Electron Scattering to Characterize Nanostructures on Opaque Substrates.
Friedman, Lawrence H; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan
2017-09-01
Features sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering and of course the electron and scanning probe microscopy techniques. Each of these techniques have their advantages and limitations. Here the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.
NASA Astrophysics Data System (ADS)
Symon, Keith R.
2005-04-01
In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.
Guidelines for internal optics optimization of the ITER EC H and CD upper launcher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moro, A.; Bruschi, A.; Figini, L.
2014-02-12
The importance of localized injection of Electron Cyclotron waves to control Magneto-HydroDynamic instability is well assessed in tokamak physics and the set of four Electron Cyclotron (EC) Upper Launchers (UL) in ITER is mainly designed for this purpose. Each of the 4 ULs uses quasi-optical mirrors (shaping and planes, fixed and steerable) to redirect and focus 8 beams (in two rows, with power close to 1 MW per beam coming from the EC transmission lines) in the plasma region where the instability appears. Small beam dimensions and maximum beam superposition guarantee the necessary localization of the driven current. To achievemore » the goal of MHD stabilization with minimum EC power to preserve the energy confinement in the outer half of the plasma cross section, optimization of the quasi-optical design is required and a guideline of a strategy is presented. As a result of this process and following the guidelines indicated, modifications of the design (new mirrors positions, rotation axes and/or focal properties) will be proposed for the next step of an iterative process, including the mandatory compatibility check with the mechanical constraints.« less
Beckner, E.H.; Clauser, M.J.
1975-08-12
This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)
Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J
2011-07-01
Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.
Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.
2011-01-01
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019
Storage-ring Electron Cooler for Relativistic Ion Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, George R.
1996-01-01
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, G.R.
1996-07-30
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
Barnes, M P; Ebert, M A
2008-03-01
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less
Low-energy plasma focus device as an electron beam source.
Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow
2014-01-01
A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.
NASA Astrophysics Data System (ADS)
Sasaki, Yuki; Kitaura, Ryo; Yuk, Jong Min; Zettl, Alex; Shinohara, Hisanori
2016-04-01
By utilizing graphene-sandwiched structures recently developed in this laboratory, we are able to visualize small droplets of liquids in nanometer scale. We have found that small water droplets as small as several tens of nanometers sandwiched by two single-layer graphene are frequently observed by TEM. Due to the electron beam irradiation during the TEM observation, these sandwiched droplets are frequently moving from one place to another and are subjected to create small bubbles inside. The synthesis of a large area single-domain graphene of high-quality is essential to prepare the graphene sandwiched cell which safely encapsulates the droplets in nanometer size.
Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram
2016-03-01
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.
NASA Astrophysics Data System (ADS)
Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan
2017-05-01
One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of 3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).
Beam transport and monitoring for laser plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Sokollik, T.; Tilborg, J. van
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less
Generation of low-emittance electron beams in electrostatic accelerators for FEL applications
NASA Astrophysics Data System (ADS)
Chen, Teng; Elias, Luis R.
1995-02-01
This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.
Laser wakefield accelerated electron beam monitoring and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koga, J. K.; Mori, M.; Kotaki, H.
2016-03-25
We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10 m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.
Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun
NASA Astrophysics Data System (ADS)
Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.
2012-11-01
Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.
Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitterer, M.; Stancari, G.; Valishev, A.
2017-06-13
Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.
Long pulse operation of the Kamaboko negative ion source on the MANTIS test bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tramham, R.; Jacquot, C.; Riz, D.
1998-08-20
Advanced Tokamak concepts and steady state plasma scenarios require external plasma heating and current drive for extended time periods. This poses several problems for the neutral beam injection systems that are currently in use. The power loading of the ion source and accelerator are especially problematic. The Kamaboko negative ion source, a small scale model of the ITER arc source, is being prepared for extended operation of deuterium beams for up to 1000 seconds. The operating conditions of the plasma grid prove to be important for reducing electron power loading of the accelerator. Operation of deuterium beams for extended periodsmore » also poses radiation safety risks which must be addressed.« less
Steady-state turbulence with a narrow inertial range
NASA Technical Reports Server (NTRS)
Weatherall, J. C.; Nicholson, D. R.; Goldman, M. V.
1983-01-01
Coupled two-dimensional wave equations are solved on a computer to model Langmuir wave turbulence excited by a weak electron beam. The model includes wave growth due to beam-plasma interaction, and dissipation by Landau damping. The inertial range is limited to a relatively small number of modes such as could occur when the ratio of masses between the negative and positive ions is larger than in a hydrogen plasma, or when there is damping in long wavelength Langmuir waves. A steady state is found consisting of quasistable, collapsed wave packets. The effects of different beam parameters and the assumed narrow inertial range are considered. The results may be relevant to plasma turbulence observed in connection with type III solar bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The ATLAS collaboration at LHC has chosen the Micromegas (Micro Mesh Gaseous Structure) technology along with the small-strip Thin Gap Chambers (sTGC) for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW). It employs eight layers of Micromegas detectors and eight layers of sTGC. The NSW project requires fully efficient Micromegas chambers with spatial resolution down to 100 μm in the precision coordinate for momentum reconstruction, and at mm level in the azimuthal (second) coordinate, over a total active area of 1200 m{sup 2}, with a rate capability upmore » to about 15 kHz/cm{sup 2} and operation in a moderate magnetic field up to B = 0.4 T. The required tracking capability is provided by the intrinsic space resolution combined with a mechanical precision at the level of 30 μm along the precision coordinate. Together with the precise tracking capability the Micromegas chambers should provide a trigger signal. Several tests have been performed on small (10x10 cm{sup 2}) and large (1 x 1 m{sup 2}) size single gap chambers prototypes using high energy hadron beams at CERN, low and intermediate energy (0.5-5 GeV) electron beams at Frascati and DESY, neutron beams at Demokritos (Athens) and Garching (Munich) and cosmic rays. More recently two quadruplets with dimensions 1.2 x 0.5 m{sup 2} and the same configuration and structure foreseen for the NSW upgrade have been built at CERN and tested with high energy pions/muons beam. Results obtained in the most recent tests, in different configurations and operating conditions, in dependence with the magnetic field, will be presented, along with a comparison between different read-out electronics, either based on the APV25 chips, or based on a new digital front-end ASIC developed in its second version (VMM2) as a new prototype of the final chip that will be employed in the NSW upgrade. (authors)« less
On the Possibility of Creating a Point-Like Neutron Source
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Razin, S. V.; Shaposhnikov, R. A.; Lapin, R. L.; Bokhanov, A. F.; Kazakov, M. Yu.
2018-03-01
We consider the possibility of creating a compact high-power neutron generator with a small emitting area (of the order of 100 μm) and a neutron yield of 1010s-1 on the basis of a deuterium-deuterium fusion reaction (or 1012 s-1 on the basis of a deuterium-tritium fusion reaction). The fusion takes place under bombardment of a deuterium- (or tritium-) saturated target by a high-current (about 100 mA) focused deuterium ion beam with an energy of 100 keV. The ion beam with total current at a level of hundreds of milliamperes and small emittance (less than 0.1 π·mm·mrad), which is crucial for sharp focusing, can be generated by a quasi-gas-dynamic ion source of a new generation created on the basis of a discharge in an open magnetic trap sustained by high-power electromagnetic radiation of the millimeter wavelength range under electron cyclotron resonance conditions. Simulations of the focusing system for the experimentally obtained ion beam show the possibility to create a deuterium ion beam with a transverse size of 200 μm on the neutron-forming target. Prospects for using such a neutron source for neutron tomography are discussed.
Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation
NASA Astrophysics Data System (ADS)
Booske, John
2007-11-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).
Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation
NASA Astrophysics Data System (ADS)
Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.
2016-04-01
A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.
Electron-beam-inactivated vaccine against Salmonella enteritidis colonization in molting hens
USDA-ARS?s Scientific Manuscript database
Electron Beam (eBeam) ionization technology has a variety of applications in modern society. The underlying hypothesis was that electron beam (eBeam) inactivated Salmonella enterica serovar Enteritidis (SE) cells can serve as a vaccine to control Salmonella colonization and Salmonella shedding in c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji
A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extractedmore » ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.« less
Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode
NASA Astrophysics Data System (ADS)
Abdullin, É. N.; Basov, G. F.; Shershnev, S.
2017-12-01
A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.
Design for an aberration corrected scanning electron microscope using miniature electron mirrors.
Dohi, Hideto; Kruit, Pieter
2018-06-01
Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed corrector system will be a promising candidate for simple and low-cost aberration correction in low-voltage SEMs. Copyright © 2018 Elsevier B.V. All rights reserved.
Fast electron microscopy via compressive sensing
Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W
2014-12-09
Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.
de Jonge, Niels [Oak Ridge, TN
2010-08-17
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
2018-01-01
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less
Electron beam controlled covalent attachment of small organic molecules to graphene
NASA Astrophysics Data System (ADS)
Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N.; Kaiser, Ute; Besley, Elena
2016-01-01
The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography. Electronic supplementary information (ESI) available: A table showing the calculated binding energies and magnetic moments for all studied molecular radicals; details of samples preparation and characterization; time series of TEM images showing transformations of a C24Cl12 molecule on graphene under electron irradiation. See DOI: 10.1039/c5nr07539d
Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Kevorkian, J.
1978-01-01
The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.
Update on developments at SNIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacks, J., E-mail: jamie.zacks@ccfe.ac.uk; Turner, I.; Day, I.
The Small Negative Ion Facility (SNIF) at CCFE has been undergoing continuous development and enhancement to both improve operational reliability and increase diagnostic capability. SNIF uses a CW 13.56MHz, 5kW RF driven volume source with a 30kV triode accelerator. Improvement and characterisation work includes: Installation of a new “L” type RF matching unit, used to calculate the load on the RF generator. Use of the electron suppressing biased insert as a Langmuir probe under different beam extraction conditions. Measurement of the hydrogen Fulcher molecular spectrum, used to calculate gas temperature in the source. Beam optimisation through parameter scans, using coppermore » target plate and visible cameras, with results compared with AXCEL-INP to provide beam current estimate. Modelling of the beam power density profile on the target plate using ANSYS to estimate beam power and provide another estimate of beam current. This work is described, and has allowed an estimation of the extracted beam current of approximately 6mA (4mA/cm2) at 3.5kW RF power and a source pressure of 0.6Pa.« less
NASA Astrophysics Data System (ADS)
Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.
2017-04-01
It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2- μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.
Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1992-01-01
This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.
An Investigation of Nonuniform Dose Deposition From an Electron Beam
1994-08-01
to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR
Beam-beam interaction study of medium energy eRHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.
Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beammore » loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.« less
Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption
Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel
2017-01-01
Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu2+ and Cr6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%. PMID:28772904
Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption.
Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel
2017-05-18
Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu 2+ and Cr 6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%.
The Mu2e undoped CsI crystal calorimeter
NASA Astrophysics Data System (ADS)
Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.
2018-02-01
The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.
Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K
2008-07-01
To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.
Low-Energy Plasma Focus Device as an Electron Beam Source
Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong
2014-01-01
A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952
SU-E-T-98: An Analysis of TG-51 Electron Beam Calibration Correction Factor Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P; Alvarez, P; Taylor, P
Purpose: To analyze the uncertainty of the TG-51 electron beam calibration correction factors for farmer type ion chambers currently used by institutions visited by IROC Houston. Methods: TG-51 calibration data were collected from 181 institutions visited by IROC Houston physicists for 1174 and 197 distinct electron beams from modern Varian and Elekta accelerators, respectively. Data collected and analyzed included ion chamber make and model, nominal energy, N{sub D,w}, I{sub 50}, R{sub 50}, k’R{sub 50}, d{sub ref}, P{sub gr} and pdd(d{sub ref}). k’R{sub 50} data for parallel plate chambers were excluded from the analysis. Results: Unlike photon beams, electron nominal energymore » is a poor indicator of the actual energy as evidenced by the range of R{sub 50} values for each electron beam energy (6–22MeV). The large range in R{sub 50} values resulted k’R{sub 50} values with a small standard deviation but large range between maximum value used and minimum value (0.001–0.029) used for a specific Varian nominal energy. Varian data showed more variability in k’R{sub 50} values than the Elekta data (0.001–0.014). Using the observed range of R{sub 50} values, the maximum spread in k’R{sub 50} values was determined by IROC Houston and compared to the spread of k’R{sub 50} values used in the community. For Elekta linacs the spreads were equivalent, but for Varian energies of 6 to 16MeV, the community spread was 2 to 6 times larger. Community P{sub gr} values had a much larger range of values for 6 and 9 MeV values than predicted. The range in Varian pdd(d{sub ref} ) used by the community for low energies was large, (1.4–4.9 percent), when it should have been very close to unity. Exradin, PTW Roos and PTW farmer chambers N{sub D,w} values showed the largest spread, ≥11 percent. Conclusion: While the vast majority of electron beam calibration correction factors used are accurate, there is a surprising spread in some of the values used.« less
Vehicle Charging And Potential (VCAP)
NASA Astrophysics Data System (ADS)
Roberts, B.
1986-01-01
The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.
Vehicle Charging And Potential (VCAP)
NASA Astrophysics Data System (ADS)
Roberts, W. T.
The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.
NASA Astrophysics Data System (ADS)
van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.
2015-02-01
We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.
Stable generation of GeV-class electron beams from self-guided laser-plasma channels
NASA Astrophysics Data System (ADS)
Hafz, Nasr A. M.; Jeong, Tae Moon; Choi, Il Woo; Lee, Seong Ku; Pae, Ki Hong; Kulagin, Victor V.; Sung, Jae Hee; Yu, Tae Jun; Hong, Kyung-Han; Hosokai, Tomonao; Cary, John R.; Ko, Do-Kyeong; Lee, Jongmin
2008-09-01
Table-top laser-driven plasma accelerators are gaining attention for their potential use in miniaturizing future high-energy accelerators. By irradiating gas jet targets with ultrashort intense laser pulses, the generation of quasimonoenergetic electron beams was recently observed. Currently, the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration. Here, we demonstrate the first generation of stable GeV-class electron beams from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. As primary evidence of the laser wakefield acceleration in a bubble regime, we observed a boost of both the electron beam energy and quality by reducing the plasma density and increasing the plasma length in a 1-cm-long gas jet. Subsequent three-dimensional simulations show the possibility of achieving even higher electron beam energies by minimizing plasma bubble elongation, and we anticipate dramatic increases in beam energy and quality in the near future. This will pave the way towards ultracompact, all-optical electron beam accelerators and their applications in science, technology and medicine.
Beam-induced electron modulations observed during TSS 1R
NASA Astrophysics Data System (ADS)
Rubin, A. G.; Burke, W. J.; Gough, M. P.; Machuzak, J. S.; Gentile, L. C.; Huang, C. Y.; Hardy, D. A.; Thompson, D. C.; Raitt, W. J.
1999-08-01
We report on modulations of electron fluxes at megahertz frequencies measured by the Shuttle Potential and Return Electron Experiment (SPREE) during fast pulsed electron gun (FPEG) beam experiments conducted after the tether break event of the Tethered Satellite System Reflight. Six intervals of sustained modulations were identified while FPEG emitted a 100 mA beam of 1 kev electrons. During five events the beam pitch angle αB was near 90° and the modulations were near even or odd half harmonics of the electron gyrofrequency fce. In the sixth event with 60°>=αB>=45°, electron modulations were near estimated values of the electron plasma frequency fpe and 2fpe. Whenever SPREE detected beam electrons modulated at a given frequency, secondary electrons were also modulated at the same frequency over a broad range of energies. Occasionally, some secondary electrons were modulated simultaneously at a second frequency. Multiple frequencies were related as ratios of low integers. In one case the beam electrons were simultaneously modulated at 0.8 MHz and 1.25 kHz. SPREE measurements suggest that the beam electrons propagate in cylindrical shells whose inner edge is marked by steep spatial gradients in fluxes at 1 keV [Hardy et al., 1995]. Inside the shell, electron distribution functions have positive slopes ∂f/∂v⊥>0 at velocities near that of the beam. Velocity space gradients act as free-energy sources to drive cavity modes that alter the instantaneous guiding centers of electrons causing SPREE to sample alternating parts of the beam cylinder's inner edge. Associated time-varying electric fields also modulated the fluxes of secondary electrons reaching SPREE. Other cavity modes may be excited through nonlinear processes [Calvert, 1982]. With αB far from 90°, electrons in the beam cylinder evolved toward bump-on-tail distributions to excite large-amplitude Langmuir modulations at fpe and its harmonics [Klimas, 1983]. Low-frequency modulations are attributed to electron interactions with ion acoustic-like waves generated as the beam moved across magnetic field lines in the ionosphere at supersonic speeds.
Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A
2014-02-01
The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.
The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less
Compact electron beam focusing column
NASA Astrophysics Data System (ADS)
Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani
2001-12-01
A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.
Fast and precise processing of material by means of an intensive electron beam
NASA Astrophysics Data System (ADS)
Beisswenger, S.
1984-07-01
For engraving a picture carrying screen of cells into the copper-surface of gravure cylinders, an electron beam system was developed. Numerical computations of the power density in the image planes of the electron beam determined the design of the electron optical assembly. A highly stable electron beam of high power density is generated by a ribbon-like cathode. A system of magnetic lenses is used for fast control of the engraving processes and for dynamic changing of the electron optical demagnification. The electron beam engraving system is capable of engraving up to 150,000 gravure cells per sec.
Metal Photocathodes for Free Electron Laser Applications
NASA Astrophysics Data System (ADS)
Greaves, Corin Michael Ricardo
Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high quantum efficiency (QE), small emittance, fast temporal response, long lifetime, and minimal complexity. High QE of cathodes require less power for driving laser and also reduce the risk of damaging the cathode materials. Small emittance reduce the scale of the accelerator, therefore, the cost. Metal photocathodes such as copper exhibit long lifetime and fast response, but have quite low quantum efficiency ( < 10-4). The aim in this work was to understand the quantum yield of the metal, and the transverse momentum spectrum, as the product of the latter and the cathode beam spot size gives the transverse emittance. Initial x-ray diffraction work provided evidence that the LCLS photocathode consisted of large low index single crystal grains, and so work focused on the study of single crystals that could be produced with atomically ordered surfaces, rather than a polycrystalline material. Present theories of quantum yield and transverse emittance assume the basic premise that the metal is entirely disordered, and work here shows that this is fundamentally incorrect, and that the order of the surface plays a critical role in determining the characteristics of emission. In order to investigate these surfaces, I constructed a laser-based ultra-low energy angle resolved photoemission system, capable of measuring the momentum spectrum of the emission and wavelength and angle dependent electron yield. This system has been commissioned, and data taken on low index surfaces of copper. Results from this work on single crystal copper demonstrates that emitted electrons from the band structure of a material can exhibit small emittance and high quantum efficiency. We show that the emission from the Cu(111) surface state is highly correlated between angle of incidence and excitation energy. This manifests itself in the form of a truncated emission cone, rather than the isotropic emission predicted from the normal model. This clearly then reduces the emittance from the normal values. It also results in extremely strong polarization dependence, with p-s asymmetry of up to 16 at low photon energy. It also directly suggests ways through changing materials, or by material design to significantly reduce emittance, at the same time increasing electron yield. These results show the benefits that could be gained from electronic engineering of cathodes and should have direct impact in the design of future FEL photoinjectors. (Abstract shortened by UMI.)
A dominant electron trap in molecular beam epitaxial InAlN lattice-matched to GaN
NASA Astrophysics Data System (ADS)
Pandey, Ayush; Bhattacharya, Aniruddha; Cheng, Shaobo; Botton, Gianluigi A.; Mi, Zetian; Bhattacharya, Pallab
2018-04-01
Deep levels in lattice-matched undoped and Si-doped InAlN/GaN grown by plasma-assisted molecular beam epitaxy have been identified and characterized by capacitance and photocapacitance measurements. From x-ray diffraction, reflectance measurements, electron energy loss spectroscopy and high-resolution transmission electron microscopy it is evident that the material has two distinct phases with different compositions. These correspond to In compositions of 18.1% and 25.8%, with corresponding bandgaps of 4.6 eV and 4.1 eV, respectively. The lower bandgap material is present as columnar microstructures in the form of quantum wires. A dominant electron trap with an activation energy of 0.293 ± 0.01 eV, a small capture cross-section of (1.54 ± 0.25) × 10-18 cm2, and density increasing linearly with Si doping density is identified in all the samples. The characteristics of the electron trap and variation of diode capacitance are discussed in the context of carrier dynamics involving the dominant trap level and the quantum wires.
Low-energy transmission electron diffraction and imaging of large-area graphene
Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili
2017-01-01
Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials. PMID:28879233
Low-energy transmission electron diffraction and imaging of large-area graphene.
Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili
2017-09-01
Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.
Free electron laser using Rf coupled accelerating and decelerating structures
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1984-01-01
A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.
Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns
NASA Astrophysics Data System (ADS)
Ozur, G. E.; Proskurovsky, D. I.
2018-01-01
This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.
Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography
NASA Astrophysics Data System (ADS)
Yoshizawa, Masaki; Moriya, Shigeru
2000-07-01
At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
Electron Beam-Cure Polymer Matrix Composites: Processing and Properties
NASA Technical Reports Server (NTRS)
Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.
2001-01-01
Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.
Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V
2012-06-01
To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.
Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
NASA Astrophysics Data System (ADS)
Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less
ELECTRON BEAM SHAPING AND ITS APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, Aliaksei
Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less
Some computer graphical user interfaces in radiation therapy
Chow, James C L
2016-01-01
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations. PMID:27027225
Effect of electron beam on the properties of electron-acoustic rogue waves
NASA Astrophysics Data System (ADS)
El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.
2015-04-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.
Charge transportation and permittivity in electron beam irradiated polymethyl methacrylate
NASA Astrophysics Data System (ADS)
Zheng, Feihu; Zhang, Yewen; Xia, Junfeng; Xiao, Chun; An, Zhenlian
2009-09-01
The charging phenomenon in the insulating dielectrics often occurs in the radiative environments such as in the outer space and in the nuclear reactor. Both surface charging and bulk charging have various influences on the dielectric properties. Understanding electrical properties of e-beam irradiated dielectrics is of great significance in order to maintain the stability and reliability of the related operating system. In this work, the effect of electron beam irradiation on the permittivity of polymethyl methacrylate (PMMA) samples was investigated. It was found that the variance of permittivity in e-beam irradiated PMMA is mainly determined by two factors. One is the porosity of the material. The irradiating process could increase the porosity of PMMA due to the escape of the small molecule (e.g., CO, CO2, and CH4) produced during material degradation caused by e-beam irradiation. The enhanced higher porosity corresponds to lower permittivity. The distribution of the implanted charge is the other factor that influences the permittivity. When the distribution of electric field generated by the accumulating charge is asymmetric for the middle thickness of the sample, the PMMA sample with polar groups would be subjected to extra polarization by the field, which could lead to the increase in permittivity. Combining with the model of Wakino et al. [J. Am. Ceram. Soc. 76, 2588 (1993)] on permittivity of mixture materials, the Clausius-Mosotti equation was utilized to analyze the variation in permittivity in the e-beam irradiated PMMA samples.
Feasibility study for mega-electron-volt electron beam tomography.
Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R
2012-09-01
Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.
Method of automatic measurement and focus of an electron beam and apparatus therefore
Giedt, W.H.; Campiotti, R.
1996-01-09
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.
Method of automatic measurement and focus of an electron beam and apparatus therefor
Giedt, Warren H.; Campiotti, Richard
1996-01-01
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.
Filamentation instability of a fast electron beam in a dielectric target.
Debayle, A; Tikhonchuk, V T
2008-12-01
High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.
Keinigs, Rhonald K.
1992-01-01
Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.
Calculation of the transverse kicks generated by the bends of a hollow electron lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
2014-03-25
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Testmore » Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.« less
Beam-plasma instabilities and the beam-plasma discharge
NASA Technical Reports Server (NTRS)
Kellogg, P. J.; Boswell, R. W.
1986-01-01
Using a new waves on magnetized beams and turbulence (WOMBAT) 0-450 eV electron gun, measurements bearing on the generation of beam-plasma discharge (BPD) are made. The new gun has a narrower divergence angle than the old, and the BPD ignition current is found to be proportional to the cross-sectional area of the plasma. The high-frequency instabilities are identified with the two Trivelpiece-Gould modes, (1959). The upper frequency is identified as a Cerenkov resonance with the upper Trivelpiece-Gould mode, and the lower frequency with a cyclotron resonance with the lower mode, in agreement with theoretical expectations. Convective growth rates are found to be small. A mechanism involving the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves, is suggested for the low-frequency wave control of the onset of the high frequency precursors to the BPD.
Grazing incidence beam expander
NASA Astrophysics Data System (ADS)
Akkapeddi, P. R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V. K.
1985-01-01
A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.
Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation
NASA Technical Reports Server (NTRS)
Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.
2012-01-01
Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.
Grazing incidence beam expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.
1985-01-01
A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, wouldmore » allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohsen, O.; Gonin, I.; Kephart, R.
High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less
Electron beam accelerator with magnetic pulse compression and accelerator switching
Birx, Daniel L.; Reginato, Louis L.
1988-01-01
An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.
Electron beam accelerator with magnetic pulse compression and accelerator switching
Birx, Daniel L.; Reginato, Louis L.
1987-01-01
An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.
Electron beam accelerator with magnetic pulse compression and accelerator switching
Birx, D.L.; Reginato, L.L.
1984-03-22
An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.
Modern developments in electron-beam fluorescence
NASA Technical Reports Server (NTRS)
Cattolica, Robert J.
1991-01-01
Recent developments in the area of electron-beam fluorescence are discussed with special attention given to the experience in the use of the electron-beam fluorescence in flight research. A new measurement approach, called electron-photon fluorescence (EPF), is described, and it is shown that EPF offers the potential of overcoming some of the disadvantages of electron-beam fluorescence in high-density flows. Examples of using the EPF technique are presented.
Experimental Analysis of Pseudospark Sourced Electron Beam
NASA Astrophysics Data System (ADS)
Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.
2011-12-01
The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.
Propagation of electron beams in space
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Okuda, H.
1988-01-01
Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.
NASA Technical Reports Server (NTRS)
Katz, I.; Jongeward, G. A.; Parks, D. E.; Reasoner, D. L.; Purvis, C. K.
1986-01-01
During electron beam accelerator operation on Spacelab I, substantial fluxes of electrons were observed with energies greater than the initial beam energy. Numerical calculations are performed for the emission of an unneutralized, one-dimensional electron beam. These calculations show clearly that space charge oscillations, which are associated with the charge buildup on the emitter, strongly modify the beam and cause the returning beam particles to have a distribution of kinetic energies ranging from half to over twice the initial energy.
Klystron having electrostatic quadrupole focusing arrangement
Maschke, Alfred W.
1983-08-30
A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.
Klystron having electrostatic quadrupole focusing arrangement
Maschke, A.W.
1983-08-30
A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.
Value of the use of a combination of photons and electrons in radiotherapy (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharbi, H.E.A.; Rietsch, J.
1973-01-01
The modification of the distribution of the dose delivered in an electron beam by its addition to a photon beam is studied for three cases: electron beams of 10 to 30 MeV, x-ray beams produced by the same accelerator with gamma beams from /sup 60/Co, and thicknesses of 10 to 20 cm. The results showed that the dose distributions obtained in the combination of the two beams varies according to the energy (particularly the electron energy) and according to the contribution of the different beams and the geometric comparison of the irradiated region. The graphs presented show the relative contributionmore » or each beam. (JSR)« less
Electron microscopy of electromagnetic waveforms.
Ryabov, A; Baum, P
2016-07-22
Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.
2012-03-01
This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.