Sample records for small error bars

  1. Bandwagon effects and error bars in particle physics

    NASA Astrophysics Data System (ADS)

    Jeng, Monwhea

    2007-02-01

    We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit "bandwagon effects": reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations.

  2. The influence of graphic display format on the interpretations of quantitative risk information among adults with lower education and literacy: a randomized experimental study.

    PubMed

    McCaffery, Kirsten J; Dixon, Ann; Hayen, Andrew; Jansen, Jesse; Smith, Sian; Simpson, Judy M

    2012-01-01

    To test optimal graphic risk communication formats for presenting small probabilities using graphics with a denominator of 1000 to adults with lower education and literacy. A randomized experimental study, which took place in adult basic education classes in Sydney, Australia. The participants were 120 adults with lower education and literacy. An experimental computer-based manipulation compared 1) pictographs in 2 forms, shaded "blocks" and unshaded "dots"; and 2) bar charts across different orientations (horizontal/vertical) and numerator size (small <100, medium 100-499, large 500-999). Accuracy (size of error) and ease of processing (reaction time) were assessed on a gist task (estimating the larger chance of survival) and a verbatim task (estimating the size of difference). Preferences for different graph types were also assessed. Accuracy on the gist task was very high across all conditions (>95%) and not tested further. For the verbatim task, optimal graph type depended on the numerator size. For small numerators, pictographs resulted in fewer errors than bar charts (blocks: odds ratio [OR] = 0.047, 95% confidence interval [CI] = 0.023-0.098; dots: OR = 0.049, 95% CI = 0.024-0.099). For medium and large numerators, bar charts were more accurate (e.g., medium dots: OR = 4.29, 95% CI = 2.9-6.35). Pictographs were generally processed faster for small numerators (e.g., blocks: 14.9 seconds v. bars: 16.2 seconds) and bar charts for medium or large numerators (e.g., large blocks: 41.6 seconds v. 26.7 seconds). Vertical formats were processed slightly faster than horizontal graphs with no difference in accuracy. Most participants preferred bar charts (64%); however, there was no relationship with performance. For adults with low education and literacy, pictographs are likely to be the best format to use when displaying small numerators (<100/1000) and bar charts for larger numerators (>100/1000).

  3. Numerical modeling of the divided bar measurements

    NASA Astrophysics Data System (ADS)

    LEE, Y.; Keehm, Y.

    2011-12-01

    The divided-bar technique has been used to measure thermal conductivity of rocks and fragments in heat flow studies. Though widely used, divided-bar measurements can have errors, which are not systematically quantified yet. We used an FEM and performed a series of numerical studies to evaluate various errors in divided-bar measurements and to suggest more reliable measurement techniques. A divided-bar measurement should be corrected against lateral heat loss on the sides of rock samples, and the thermal resistance at the contacts between the rock sample and the bar. We first investigated how the amount of these corrections would change by the thickness and thermal conductivity of rock samples through numerical modeling. When we fixed the sample thickness as 10 mm and varied thermal conductivity, errors in the measured thermal conductivity ranges from 2.02% for 1.0 W/m/K to 7.95% for 4.0 W/m/K. While we fixed thermal conductivity as 1.38 W/m/K and varied the sample thickness, we found that the error ranges from 2.03% for the 30 mm-thick sample to 11.43% for the 5 mm-thick sample. After corrections, a variety of error analyses for divided-bar measurements were conducted numerically. Thermal conductivity of two thin standard disks (2 mm in thickness) located at the top and the bottom of the rock sample slightly affects the accuracy of thermal conductivity measurements. When the thermal conductivity of a sample is 3.0 W/m/K and that of two standard disks is 0.2 W/m/K, the relative error in measured thermal conductivity is very small (~0.01%). However, the relative error would reach up to -2.29% for the same sample when thermal conductivity of two disks is 0.5 W/m/K. The accuracy of thermal conductivity measurements strongly depends on thermal conductivity and the thickness of thermal compound that is applied to reduce thermal resistance at contacts between the rock sample and the bar. When the thickness of thermal compound (0.29 W/m/K) is 0.03 mm, we found that the relative error in measured thermal conductivity is 4.01%, while the relative error can be very significant (~12.2%) if the thickness increases to 0.1 mm. Then, we fixed the thickness (0.03 mm) and varied thermal conductivity of the thermal compound. We found that the relative error with an 1.0 W/m/K compound is 1.28%, and the relative error with a 0.29 W/m/K is 4.06%. When we repeated this test with a different thickness of the thermal compound (0.1 mm), the relative error with an 1.0 W/m/K compound is 3.93%, and that with a 0.29 W/m/K is 12.2%. In addition, the cell technique by Sass et al.(1971), which is widely used to measure thermal conductivity of rock fragments, was evaluated using the FEM modeling. A total of 483 isotropic and homogeneous spherical rock fragments in the sample holder were used to test numerically the accuracy of the cell technique. The result shows the relative error of -9.61% for rock fragments with the thermal conductivity of 2.5 W/m/K. In conclusion, we report quantified errors in the divided-bar and the cell technique for thermal conductivity measurements for rocks and fragments. We found that the FEM modeling can accurately mimic these measurement techniques and can help us to estimate measurement errors quantitatively.

  4. Effect of bar-code technology on the safety of medication administration.

    PubMed

    Poon, Eric G; Keohane, Carol A; Yoon, Catherine S; Ditmore, Matthew; Bane, Anne; Levtzion-Korach, Osnat; Moniz, Thomas; Rothschild, Jeffrey M; Kachalia, Allen B; Hayes, Judy; Churchill, William W; Lipsitz, Stuart; Whittemore, Anthony D; Bates, David W; Gandhi, Tejal K

    2010-05-06

    Serious medication errors are common in hospitals and often occur during order transcription or administration of medication. To help prevent such errors, technology has been developed to verify medications by incorporating bar-code verification technology within an electronic medication-administration system (bar-code eMAR). We conducted a before-and-after, quasi-experimental study in an academic medical center that was implementing the bar-code eMAR. We assessed rates of errors in order transcription and medication administration on units before and after implementation of the bar-code eMAR. Errors that involved early or late administration of medications were classified as timing errors and all others as nontiming errors. Two clinicians reviewed the errors to determine their potential to harm patients and classified those that could be harmful as potential adverse drug events. We observed 14,041 medication administrations and reviewed 3082 order transcriptions. Observers noted 776 nontiming errors in medication administration on units that did not use the bar-code eMAR (an 11.5% error rate) versus 495 such errors on units that did use it (a 6.8% error rate)--a 41.4% relative reduction in errors (P<0.001). The rate of potential adverse drug events (other than those associated with timing errors) fell from 3.1% without the use of the bar-code eMAR to 1.6% with its use, representing a 50.8% relative reduction (P<0.001). The rate of timing errors in medication administration fell by 27.3% (P<0.001), but the rate of potential adverse drug events associated with timing errors did not change significantly. Transcription errors occurred at a rate of 6.1% on units that did not use the bar-code eMAR but were completely eliminated on units that did use it. Use of the bar-code eMAR substantially reduced the rate of errors in order transcription and in medication administration as well as potential adverse drug events, although it did not eliminate such errors. Our data show that the bar-code eMAR is an important intervention to improve medication safety. (ClinicalTrials.gov number, NCT00243373.) 2010 Massachusetts Medical Society

  5. Time trend of injection drug errors before and after implementation of bar-code verification system.

    PubMed

    Sakushima, Ken; Umeki, Reona; Endoh, Akira; Ito, Yoichi M; Nasuhara, Yasuyuki

    2015-01-01

    Bar-code technology, used for verification of patients and their medication, could prevent medication errors in clinical practice. Retrospective analysis of electronically stored medical error reports was conducted in a university hospital. The number of reported medication errors of injected drugs, including wrong drug administration and administration to the wrong patient, was compared before and after implementation of the bar-code verification system for inpatient care. A total of 2867 error reports associated with injection drugs were extracted. Wrong patient errors decreased significantly after implementation of the bar-code verification system (17.4/year vs. 4.5/year, p< 0.05), although wrong drug errors did not decrease sufficiently (24.2/year vs. 20.3/year). The source of medication errors due to wrong drugs was drug preparation in hospital wards. Bar-code medication administration is effective for prevention of wrong patient errors. However, ordinary bar-code verification systems are limited in their ability to prevent incorrect drug preparation in hospital wards.

  6. A novel single-ended readout depth-of-interaction PET detector fabricated using sub-surface laser engraving.

    PubMed

    Uchida, H; Sakai, T; Yamauchi, H; Hakamata, K; Shimizu, K; Yamashita, T

    2016-09-21

    We propose a novel scintillation detector design for positron emission tomography (PET), which has depth of interaction (DOI) capability and uses a single-ended readout scheme. The DOI detector contains a pair of crystal bars segmented using sub-surface laser engraving (SSLE). The two crystal bars are optically coupled to each other at their top segments and are coupled to two photo-sensors at their bottom segments. Initially, we evaluated the performance of different designs of single crystal bars coupled to photomultiplier tubes at both ends. We found that segmentation by SSLE results in superior performance compared to the conventional method. As the next step, we constructed a crystal unit composed of a 3  ×  3  ×  20 mm 3 crystal bar pair, with each bar containing four layers segmented using the SSLE. We measured the DOI performance by changing the optical conditions for the crystal unit. Based on the experimental results, we then assessed the detector performance in terms of the DOI capability by evaluating the position error, energy resolution, and light collection efficiency for various crystal unit designs with different bar sizes and a different number of layers (four to seven layers). DOI encoding with small position error was achieved for crystal units composed of a 3  ×  3  ×  20 mm 3 LYSO bar pair having up to seven layers, and with those composed of a 2  ×  2  ×  20 mm 3 LYSO bar pair having up to six layers. The energy resolution of the segment in the seven-layer 3  ×  3  ×  20 mm 3 crystal bar pair was 9.3%-15.5% for 662 keV gamma-rays, where the segments closer to the photo-sensors provided better energy resolution. SSLE provides high geometrical accuracy at low production cost due to the simplicity of the crystal assembly. Therefore, the proposed DOI detector is expected to be an attractive choice for practical small-bore PET systems dedicated to imaging of the brain, breast, and small animals.

  7. The Effects of Bar-coding Technology on Medication Errors: A Systematic Literature Review.

    PubMed

    Hutton, Kevin; Ding, Qian; Wellman, Gregory

    2017-02-24

    The bar-coding technology adoptions have risen drastically in U.S. health systems in the past decade. However, few studies have addressed the impact of bar-coding technology with strong prospective methodologies and the research, which has been conducted from both in-pharmacy and bedside implementations. This systematic literature review is to examine the effectiveness of bar-coding technology on preventing medication errors and what types of medication errors may be prevented in the hospital setting. A systematic search of databases was performed from 1998 to December 2016. Studies measuring the effect of bar-coding technology on medication errors were included in a full-text review. Studies with the outcomes other than medication errors such as efficiency or workarounds were excluded. The outcomes were measured and findings were summarized for each retained study. A total of 2603 articles were initially identified and 10 studies, which used prospective before-and-after study design, were fully reviewed in this article. Of the 10 included studies, 9 took place in the United States, whereas the remaining was conducted in the United Kingdom. One research article focused on bar-coding implementation in a pharmacy setting, whereas the other 9 focused on bar coding within patient care areas. All 10 studies showed overall positive effects associated with bar-coding implementation. The results of this review show that bar-coding technology may reduce medication errors in hospital settings, particularly on preventing targeted wrong dose, wrong drug, wrong patient, unauthorized drug, and wrong route errors.

  8. Previous Estimates of Mitochondrial DNA Mutation Level Variance Did Not Account for Sampling Error: Comparing the mtDNA Genetic Bottleneck in Mice and Humans

    PubMed Central

    Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.

    2010-01-01

    In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273

  9. Quantitative NO-LIF imaging in high-pressure flames

    NASA Astrophysics Data System (ADS)

    Bessler, W. G.; Schulz, C.; Lee, T.; Shin, D.-I.; Hofmann, M.; Jeffries, J. B.; Wolfrum, J.; Hanson, R. K.

    2002-07-01

    Planar laser-induced fluorescence (PLIF) images of NO concentration are reported in premixed laminar flames from 1-60 bar exciting the A-X(0,0) band. The influence of O2 interference and gas composition, the variation with local temperature, and the effect of laser and signal attenuation by UV light absorption are investigated. Despite choosing a NO excitation and detection scheme with minimum O2-LIF contribution, this interference produces errors of up to 25% in a slightly lean 60 bar flame. The overall dependence of the inferred NO number density with temperature in the relevant (1200-2500 K) range is low (<±15%) because different effects cancel. The attenuation of laser and signal light by combustion products CO2 and H2O is frequently neglected, yet such absorption yields errors of up to 40% in our experiment despite the small scale (8 mm flame diameter). Understanding the dynamic range for each of these corrections provides guidance to minimize errors in single shot imaging experiments at high pressure.

  10. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE PAGES

    Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; ...

    2012-03-26

    We use distorted wave electron scattering calculations to extract the weak charge form factor F W(more » $$\\bar{q}$$), the weak charge radius R W, and the point neutron radius R n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $$\\bar{q}$$ = 0.475 fm -1. We find F W($$\\bar{q}$$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from F W($$\\bar{q}$$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R W from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R n = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from R W. Here there is only a very small error (strange) from possible strange quark contributions. We find R n to be slightly smaller than R W because of the nucleon's size. As a result, we find a neutron skin thickness of R n-R p = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where R p is the point proton radius.« less

  11. Output Error Analysis of Planar 2-DOF Five-bar Mechanism

    NASA Astrophysics Data System (ADS)

    Niu, Kejia; Wang, Jun; Ting, Kwun-Lon; Tao, Fen; Cheng, Qunchao; Wang, Quan; Zhang, Kaiyang

    2018-03-01

    Aiming at the mechanism error caused by clearance of planar 2-DOF Five-bar motion pair, the method of equivalent joint clearance of kinematic pair to virtual link is applied. The structural error model of revolute joint clearance is established based on the N-bar rotation laws and the concept of joint rotation space, The influence of the clearance of the moving pair is studied on the output error of the mechanis. and the calculation method and basis of the maximum error are given. The error rotation space of the mechanism under the influence of joint clearance is obtained. The results show that this method can accurately calculate the joint space error rotation space, which provides a new way to analyze the planar parallel mechanism error caused by joint space.

  12. Error analysis of mechanical system and wavelength calibration of monochromator

    NASA Astrophysics Data System (ADS)

    Zhang, Fudong; Chen, Chen; Liu, Jie; Wang, Zhihong

    2018-02-01

    This study focuses on improving the accuracy of a grating monochromator on the basis of the grating diffraction equation in combination with an analysis of the mechanical transmission relationship between the grating, the sine bar, and the screw of the scanning mechanism. First, the relationship between the mechanical error in the monochromator with the sine drive and the wavelength error is analyzed. Second, a mathematical model of the wavelength error and mechanical error is developed, and an accurate wavelength calibration method based on the sine bar's length adjustment and error compensation is proposed. Based on the mathematical model and calibration method, experiments using a standard light source with known spectral lines and a pre-adjusted sine bar length are conducted. The model parameter equations are solved, and subsequent parameter optimization simulations are performed to determine the optimal length ratio. Lastly, the length of the sine bar is adjusted. The experimental results indicate that the wavelength accuracy is ±0.3 nm, which is better than the original accuracy of ±2.6 nm. The results confirm the validity of the error analysis of the mechanical system of the monochromator as well as the validity of the calibration method.

  13. The Impact of Bar Code Medication Administration Technology on Reported Medication Errors

    ERIC Educational Resources Information Center

    Holecek, Andrea

    2011-01-01

    The use of bar-code medication administration technology is on the rise in acute care facilities in the United States. The technology is purported to decrease medication errors that occur at the point of administration. How significantly this technology affects actual rate and severity of error is unknown. This descriptive, longitudinal research…

  14. Influence of survey strategy and interpolation model on DEM quality

    NASA Astrophysics Data System (ADS)

    Heritage, George L.; Milan, David J.; Large, Andrew R. G.; Fuller, Ian C.

    2009-11-01

    Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at slope breaks such as bank edges. A series of curves are presented that demonstrate these relationships for each interpolation and survey strategy. The simulated aerial LiDAR data set displayed the lowest errors across the flatter surfaces; however, sharp slope breaks are better modelled by the morphologically based survey strategy. The curves presented have general application to spatially distributed data of river beds and may be applied to standard deviation grids to predict spatial error within a surface, depending upon sampling strategy and interpolation algorithm.

  15. Laser damage metrology in biaxial nonlinear crystals using different test beams

    NASA Astrophysics Data System (ADS)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  16. Machine learning models for lipophilicity and their domain of applicability.

    PubMed

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Laak, Antonius Ter; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-01-01

    Unfavorable lipophilicity and water solubility cause many drug failures; therefore these properties have to be taken into account early on in lead discovery. Commercial tools for predicting lipophilicity usually have been trained on small and neutral molecules, and are thus often unable to accurately predict in-house data. Using a modern Bayesian machine learning algorithm--a Gaussian process model--this study constructs a log D7 model based on 14,556 drug discovery compounds of Bayer Schering Pharma. Performance is compared with support vector machines, decision trees, ridge regression, and four commercial tools. In a blind test on 7013 new measurements from the last months (including compounds from new projects) 81% were predicted correctly within 1 log unit, compared to only 44% achieved by commercial software. Additional evaluations using public data are presented. We consider error bars for each method (model based error bars, ensemble based, and distance based approaches), and investigate how well they quantify the domain of applicability of each model.

  17. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions.

    PubMed

    Waspe, Adam C; McErlain, David D; Pitelka, Vasek; Holdsworth, David W; Lacefield, James C; Fenster, Aaron

    2010-04-01

    Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  18. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting amore » barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.« less

  19. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  20. Computer-assisted bar-coding system significantly reduces clinical laboratory specimen identification errors in a pediatric oncology hospital.

    PubMed

    Hayden, Randall T; Patterson, Donna J; Jay, Dennis W; Cross, Carl; Dotson, Pamela; Possel, Robert E; Srivastava, Deo Kumar; Mirro, Joseph; Shenep, Jerry L

    2008-02-01

    To assess the ability of a bar code-based electronic positive patient and specimen identification (EPPID) system to reduce identification errors in a pediatric hospital's clinical laboratory. An EPPID system was implemented at a pediatric oncology hospital to reduce errors in patient and laboratory specimen identification. The EPPID system included bar-code identifiers and handheld personal digital assistants supporting real-time order verification. System efficacy was measured in 3 consecutive 12-month time frames, corresponding to periods before, during, and immediately after full EPPID implementation. A significant reduction in the median percentage of mislabeled specimens was observed in the 3-year study period. A decline from 0.03% to 0.005% (P < .001) was observed in the 12 months after full system implementation. On the basis of the pre-intervention detected error rate, it was estimated that EPPID prevented at least 62 mislabeling events during its first year of operation. EPPID decreased the rate of misidentification of clinical laboratory samples. The diminution of errors observed in this study provides support for the development of national guidelines for the use of bar coding for laboratory specimens, paralleling recent recommendations for medication administration.

  1. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.; Montgomery, David R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress τ0* of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to τ0* with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root‐mean‐square error of 0.09). Variation in partial entrainment for a given τ0* demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < τ0*< 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  2. Analysis of the technology acceptance model in examining hospital nurses' behavioral intentions toward the use of bar code medication administration.

    PubMed

    Song, Lunar; Park, Byeonghwa; Oh, Kyeung Mi

    2015-04-01

    Serious medication errors continue to exist in hospitals, even though there is technology that could potentially eliminate them such as bar code medication administration. Little is known about the degree to which the culture of patient safety is associated with behavioral intention to use bar code medication administration. Based on the Technology Acceptance Model, this study evaluated the relationships among patient safety culture and perceived usefulness and perceived ease of use, and behavioral intention to use bar code medication administration technology among nurses in hospitals. Cross-sectional surveys with a convenience sample of 163 nurses using bar code medication administration were conducted. Feedback and communication about errors had a positive impact in predicting perceived usefulness (β=.26, P<.01) and perceived ease of use (β=.22, P<.05). In a multiple regression model predicting for behavioral intention, age had a negative impact (β=-.17, P<.05); however, teamwork within hospital units (β=.20, P<.05) and perceived usefulness (β=.35, P<.01) both had a positive impact on behavioral intention. The overall bar code medication administration behavioral intention model explained 24% (P<.001) of the variance. Identified factors influencing bar code medication administration behavioral intention can help inform hospitals to develop tailored interventions for RNs to reduce medication administration errors and increase patient safety by using this technology.

  3. Minimizing human error in radiopharmaceutical preparation and administration via a bar code-enhanced nuclear pharmacy management system.

    PubMed

    Hakala, John L; Hung, Joseph C; Mosman, Elton A

    2012-09-01

    The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.

  4. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.

    PubMed

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-12-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  5. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.

    PubMed

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  6. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-12-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  7. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  8. On the Bar Pattern Speed Determination of NGC 3367

    NASA Astrophysics Data System (ADS)

    Gabbasov, R. F.; Repetto, P.; Rosado, M.

    2009-09-01

    An important dynamic parameter of barred galaxies is the bar pattern speed, Ω P . Among several methods that are used for the determination of Ω P , the Tremaine-Weinberg method has the advantage of model independence and accuracy. In this work, we apply the method to a simulated bar including gas dynamics and study the effect of two-dimensional spectroscopy data quality on robustness of the method. We added white noise and a Gaussian random field to the data and measured the corresponding errors in Ω P . We found that a signal to noise ratio in surface density ~5 introduces errors of ~20% for the Gaussian noise, while for the white noise the corresponding errors reach ~50%. At the same time, the velocity field is less sensitive to contamination. On the basis of the performed study, we applied the method to the NGC 3367 spiral galaxy using Hα Fabry-Pérot interferometry data. We found Ω P = 43 ± 6 km s-1 kpc-1 for this galaxy.

  9. OR14-V-Uncertainty-PD2La Uncertainty Quantification for Nuclear Safeguards and Nondestructive Assay Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Andrew D.; Croft, Stephen; McElroy, Robert Dennis

    2017-08-01

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically provide error bars and also partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the total mass estimate in multiple items. Uncertainty Quantification (UQ) for NDA has always been important, but itmore » is recognized that greater rigor is needed and achievable using modern statistical methods.« less

  10. Critical error fields for locked mode instability in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Haye, R.J.; Fitzpatrick, R.; Hender, T.C.

    1992-07-01

    Otherwise stable discharges can become nonlinearly unstable to disruptive locked modes when subjected to a resonant {ital m}=2, {ital n}=1 error field from irregular poloidal field coils, as in DIII-D (Nucl. Fusion {bold 31}, 875 (1991)), or from resonant magnetic perturbation coils as in COMPASS-C ({ital Proceedings} {ital of} {ital the} 18{ital th} {ital European} {ital Conference} {ital on} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin (EPS, Petit-Lancy, Switzerland, 1991), Vol. 15C, Part II, p. 61). Experiments in Ohmically heated deuterium discharges with {ital q}{approx}3.5, {ital {bar n}} {approx} 2 {times} 10{sup 19} m{sup {minus}3} andmore » {ital B}{sub {ital T}} {approx} 1.2 T show that a much larger relative error field ({ital B}{sub {ital r}21}/{ital B}{sub {ital T}} {approx} 1 {times} 10{sup {minus}3}) is required to produce a locked mode in the small, rapidly rotating plasma of COMPASS-C ({ital R}{sub 0} = 0.56 m, {ital f}{approx}13 kHz) than in the medium-sized plasmas of DIII-D ({ital R}{sub 0} = 1.67 m, {ital f}{approx}1.6 kHz), where the critical relative error field is {ital B}{sub {ital r}21}/{ital B}{sub {ital T}} {approx} 2 {times} 10{sup {minus}4}. This dependence of the threshold for instability is explained by a nonlinear tearing theory of the interaction of resonant magnetic perturbations with rotating plasmas that predicts the critical error field scales as ({ital fR}{sub 0}/{ital B}{sub {ital T}}){sup 4/3}{ital {bar n}}{sup 2/3}. Extrapolating from existing devices, the predicted critical field for locked modes in Ohmic discharges on the International Thermonuclear Experimental Reactor (ITER) (Nucl. Fusion {bold 30}, 1183 (1990)) ({ital f}=0.17 kHz, {ital R}{sub 0} = 6.0 m, {ital B}{sub {ital T}} = 4.9 T, {ital {bar n}} = 2 {times} 10{sup 19} m{sup {minus}3}) is {ital B}{sub {ital r}21}/{ital B}{sub {ital T}} {approx} 2 {times} 10{sup {minus}5}.« less

  11. Modified sine bar device measures small angles with high accuracy

    NASA Technical Reports Server (NTRS)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  12. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom.

    PubMed

    Olsen, Aaron M; Camp, Ariel L; Brainerd, Elizabeth L

    2017-12-15

    The planar, one degree of freedom (1-DoF) four-bar linkage is an important model for understanding the function, performance and evolution of numerous biomechanical systems. One such system is the opercular mechanism in fishes, which is thought to function like a four-bar linkage to depress the lower jaw. While anatomical and behavioral observations suggest some form of mechanical coupling, previous attempts to model the opercular mechanism as a planar four-bar have consistently produced poor model fits relative to observed kinematics. Using newly developed, open source mechanism fitting software, we fitted multiple three-dimensional (3D) four-bar models with varying DoF to in vivo kinematics in largemouth bass to test whether the opercular mechanism functions instead as a 3D four-bar with one or more DoF. We examined link position error, link rotation error and the ratio of output to input link rotation to identify a best-fit model at two different levels of variation: for each feeding strike and across all strikes from the same individual. A 3D, 3-DoF four-bar linkage was the best-fit model for the opercular mechanism, achieving link rotational errors of less than 5%. We also found that the opercular mechanism moves with multiple degrees of freedom at the level of each strike and across multiple strikes. These results suggest that active motor control may be needed to direct the force input to the mechanism by the axial muscles and achieve a particular mouth-opening trajectory. Our results also expand the versatility of four-bar models in simulating biomechanical systems and extend their utility beyond planar or single-DoF systems. © 2017. Published by The Company of Biologists Ltd.

  13. Precision modelling of M dwarf stars: the magnetic components of CM Draconis

    NASA Astrophysics Data System (ADS)

    MacDonald, J.; Mullan, D. J.

    2012-04-01

    The eclipsing binary CM Draconis (CM Dra) contains two nearly identical red dwarfs of spectral class dM4.5. The masses and radii of the two components have been reported with unprecedentedly small statistical errors: for M, these errors are 1 part in 260, while for R, the errors reported by Morales et al. are 1 part in 130. When compared with standard stellar models with appropriate mass and age (≈4 Gyr), the empirical results indicate that both components are discrepant from the models in the following sense: the observed stars are larger in R ('bloated'), by several standard deviations, than the models predict. The observed luminosities are also lower than the models predict. Here, we attempt at first to model the two components of CM Dra in the context of standard (non-magnetic) stellar models using a systematic array of different assumptions about helium abundances (Y), heavy element abundances (Z), opacities and mixing length parameter (α). We find no 4-Gyr-old models with plausible values of these four parameters that fit the observed L and R within the reported statistical error bars. However, CM Dra is known to contain magnetic fields, as evidenced by the occurrence of star-spots and flares. Here we ask: can inclusion of magnetic effects into stellar evolution models lead to fits of L and R within the error bars? Morales et al. have reported that the presence of polar spots results in a systematic overestimate of R by a few per cent when eclipses are interpreted with a standard code. In a star where spots cover a fraction f of the surface area, we find that the revised R and L for CM Dra A can be fitted within the error bars by varying the parameter α. The latter is often assumed to be reduced by the presence of magnetic fields, although the reduction in α as a function of B is difficult to quantify. An alternative magnetic effect, namely inhibition of the onset of convection, can be readily quantified in terms of a magnetic parameter δ≈B2/4πγpgas (where B is the strength of the local vertical magnetic field). In the context of δ models in which B is not allowed to exceed a 'ceiling' of 106 G, we find that the revised R and L can also be fitted, within the error bars, in a finite region of the f-δ plane. The permitted values of δ near the surface leads us to estimate that the vertical field strength on the surface of CM Dra A is about 500 G, in good agreement with independent observational evidence for similar low-mass stars. Recent results for another binary with parameters close to those of CM Dra suggest that metallicity differences cannot be the dominant explanation for the bloating of the two components of CM Dra.

  14. Characteristic study of flat spray nozzle by using particle image velocimetry (PIV) and ANSYS simulation method

    NASA Astrophysics Data System (ADS)

    Pairan, M. Rasidi; Asmuin, Norzelawati; Isa, Nurasikin Mat; Sies, Farid

    2017-04-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. This project studies the water droplet velocity and penetration angle generated by new development mist spray with a flat spray pattern. This research conducted into two part which are experimental and simulation section. The experimental was conducted by using particle image velocimetry (PIV) method, ANSYS software was used as tools for simulation section meanwhile image J software was used to measure the penetration angle. Three different of combination pressure of air and water were tested which are 1 bar (case A), 2 bar (case B) and 3 bar (case C). The flat spray generated by the new development nozzle was examined at 9cm vertical line from 8cm of the nozzle orifice. The result provided in the detailed analysis shows that the trend of graph velocity versus distance gives the good agreement within simulation and experiment for all the pressure combination. As the water and air pressure increased from 1 bar to 2 bar, the velocity and angle penetration also increased, however for case 3 which run under 3 bar condition, the water droplet velocity generated increased but the angle penetration is decreased. All the data then validated by calculate the error between experiment and simulation. By comparing the simulation data to the experiment data for all the cases, the standard deviation for this case A, case B and case C relatively small which are 5.444, 0.8242 and 6.4023.

  15. A novel design of membrane mirror with small deformation and imaging performance analysis in infrared system

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqing; Wang, Yongquan; Zhi, Xiyang

    2017-05-01

    A method of diminishing the shape error of membrane mirror is proposed in this paper. The inner inflating pressure is considerably decreased by adopting the pre-shaped membrane. Small deformation of the membrane mirror with greatly reduced shape error is sequentially achieved. Primarily a finite element model of the above pre-shaped membrane is built on the basis of its mechanical properties. Then accurate shape data under different pressures can be acquired by iteratively calculating the node displacements of the model. Shape data are applicable to build up deformed reflecting surfaces for the simulative analysis in ZEMAX. Finally, ground-based imaging experiments of 4-bar targets and nature scene are conducted. Experiment results indicate that the MTF of the infrared system can reach to 0.3 at a high spatial resolution of 10l p/mm, and texture details of the nature scene are well-presented. The method can provide theoretical basis and technical support for the applications in lightweight optical components with ultra-large apertures.

  16. On the formulation of gravitational potential difference between the GRACE satellites based on energy integral in Earth fixed frame

    NASA Astrophysics Data System (ADS)

    Zeng, Y. Y.; Guo, J. Y.; Shang, K.; Shum, C. K.; Yu, J. H.

    2015-09-01

    Two methods for computing gravitational potential difference (GPD) between the GRACE satellites using orbit data have been formulated based on energy integral; one in geocentric inertial frame (GIF) and another in Earth fixed frame (EFF). Here we present a rigorous theoretical formulation in EFF with particular emphasis on necessary approximations, provide a computational approach to mitigate the approximations to negligible level, and verify our approach using simulations. We conclude that a term neglected or ignored in all former work without verification should be retained. In our simulations, 2 cycle per revolution (CPR) errors are present in the GPD computed using our formulation, and empirical removal of the 2 CPR and lower frequency errors can improve the precisions of Stokes coefficients (SCs) of degree 3 and above by 1-2 orders of magnitudes. This is despite of the fact that the result without removing these errors is already accurate enough. Furthermore, the relation between data errors and their influences on GPD is analysed, and a formal examination is made on the possible precision that real GRACE data may attain. The result of removing 2 CPR errors may imply that, if not taken care of properly, the values of SCs computed by means of the energy integral method using real GRACE data may be seriously corrupted by aliasing errors from possibly very large 2 CPR errors based on two facts: (1) errors of bar C_{2,0} manifest as 2 CPR errors in GPD and (2) errors of bar C_{2,0} in GRACE data-the differences between the CSR monthly values of bar C_{2,0} independently determined using GRACE and SLR are a reasonable measure of their magnitude-are very large. Our simulations show that, if 2 CPR errors in GPD vary from day to day as much as those corresponding to errors of bar C_{2,0} from month to month, the aliasing errors of degree 15 and above SCs computed using a month's GPD data may attain a level comparable to the magnitude of gravitational potential variation signal that GRACE was designed to recover. Consequently, we conclude that aliasing errors from 2 CPR errors in real GRACE data may be very large if not properly handled; and therefore, we propose an approach to reduce aliasing errors from 2 CPR and lower frequency errors for computing SCs above degree 2.

  17. Metacontrast masking and attention do not interact.

    PubMed

    Agaoglu, Sevda; Breitmeyer, Bruno; Ogmen, Haluk

    2016-07-01

    Visual masking and attention have been known to control the transfer of information from sensory memory to visual short-term memory. A natural question is whether these processes operate independently or interact. Recent evidence suggests that studies that reported interactions between masking and attention suffered from ceiling and/or floor effects. The objective of the present study was to investigate whether metacontrast masking and attention interact by using an experimental design in which saturation effects are avoided. We asked observers to report the orientation of a target bar randomly selected from a display containing either two or six bars. The mask was a ring that surrounded the target bar. Attentional load was controlled by set-size and masking strength by the stimulus onset asynchrony between the target bar and the mask ring. We investigated interactions between masking and attention by analyzing two different aspects of performance: (i) the mean absolute response errors and (ii) the distribution of signed response errors. Our results show that attention affects observers' performance without interacting with masking. Statistical modeling of response errors suggests that attention and metacontrast masking exert their effects by independently modulating the probability of "guessing" behavior. Implications of our findings for models of attention are discussed.

  18. Using a Divided Bar Apparatus to Measure Thermal Conductivity of Samples of Odd Sizes and Shapes

    NASA Astrophysics Data System (ADS)

    Crowell, J. "; Gosnold, W. D.

    2012-12-01

    Standard procedure for measuring thermal conductivity using a divided bar apparatus requires a sample that has the same surface dimensions as the heat sink/source surface in the divided bar. Heat flow is assumed to be constant throughout the column and thermal conductivity (K) is determined by measuring temperatures (T) across the sample and across standard layers and using the basic relationship Ksample=(Kstandard*(ΔT1+ΔT2)/2)/(ΔTsample). Sometimes samples are not large enough or of correct proportions to match the surface of the heat sink/source, however using the equations presented here the thermal conductivity of these samples can still be measured with a divided bar. Measurements were done on the UND Geothermal Laboratories stationary divided bar apparatus (SDB). This SDB has been designed to mimic many in-situ conditions, with a temperature range of -20C to 150C and a pressure range of 0 to 10,000 psi for samples with parallel surfaces and 0 to 3000 psi for samples with non-parallel surfaces. The heat sink/source surfaces are copper disks and have a surface area of 1,772 mm2 (2.74 in2). Layers of polycarbonate 6 mm thick with the same surface area as the copper disks are located in the heat sink and in the heat source as standards. For this study, all samples were prepared from a single piece of 4 inch limestone core. Thermal conductivities were measured for each sample as it was cut successively smaller. The above equation was adjusted to include the thicknesses (Th) of the samples and the standards and the surface areas (A) of the heat sink/source and of the sample Ksample=(Kstandard*Astandard*Thsample*(ΔT1+ΔT3))/(ΔTsample*Asample*2*Thstandard). Measuring the thermal conductivity of samples of multiple sizes, shapes, and thicknesses gave consistent values for samples with surfaces as small as 50% of the heat sink/source surface, regardless of the shape of the sample. Measuring samples with surfaces smaller than 50% of the heat sink/source surface resulted in thermal conductivity values which were too high. The cause of the error with the smaller samples is being examined as is the relationship between the amount of error in the thermal conductivity and the difference in surface areas. As more measurements are made an equation to mathematically correct for the error is being developed on in case a way to physically correct the problem cannot be determined.

  19. Quantifying the forcing effect of channel width variations on free bars: Morphodynamic modeling based on characteristic dissipative Galerkin scheme

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chun; Shao, Yun-Chuan; Chen, Yu-Chen

    2011-09-01

    The forcing effect of channel width variations on free bars is investigated in this study using a two-dimensional depth-averaged morphodynamic model. The novel feature of the model is the incorporation of a characteristic dissipative Galerkin (CDG) upwinding scheme in the bed evolution module. A correction for the secondary flows induced by streamline curvature is also included, allowing for simulations of bar growth and migration in channels with width variations beyond the small-amplitude regimes. The model is tested against a variety of experimental data ranging from purely forced and free bars to coexisting bed forms in the variable-width channel. The CDG scheme effectively dissipates local bed oscillations, thus sustains numerical stabilities. The results show that the global effect of width variations on bar height is invariably suppressive. Such effect increases with the dimensionless amplitude AC and wave number λC of width variations. For small AC, λC has little effects on bar height; for AC beyond small amplitudes, however, the suppressing effect depends on both AC and λC. The suppressing effect on bar length increases also with both AC and λC, but is much weaker than that on bar height. The global effect of width variations on bar celerity can be suppressive or enhancive, depending on the combination of AC and λC. For smaller λC, the effect on bar celerity is enhancive; for larger λC, bar celerity tends to increase at small AC but decreases for AC beyond small amplitudes. We present herein an unprecedented data set verifying the theoretical prediction on celerity enhancement. Full suppression of bar growth above the theoretically predicted threshold AC was not observed, regardless of the adopted amplitude of initial bed perturbation A. The global effects of width variations on free bars can be quantified using a forcing factor FC that integrates the effects of AC and λC. The suppressing effects on bar height and length are both proportional to FC2.16; the global effect on bar celerity is, however, a parabolic function of FC.

  20. Maximizing return on socioeconomic investment in phase II proof-of-concept trials.

    PubMed

    Chen, Cong; Beckman, Robert A

    2014-04-01

    Phase II proof-of-concept (POC) trials play a key role in oncology drug development, determining which therapeutic hypotheses will undergo definitive phase III testing according to predefined Go-No Go (GNG) criteria. The number of possible POC hypotheses likely far exceeds available public or private resources. We propose a design strategy for maximizing return on socioeconomic investment in phase II trials that obtains the greatest knowledge with the minimum patient exposure. We compare efficiency using the benefit-cost ratio, defined to be the risk-adjusted number of truly active drugs correctly identified for phase III development divided by the risk-adjusted total sample size in phase II and III development, for different POC trial sizes, powering schemes, and associated GNG criteria. It is most cost-effective to conduct small POC trials and set the corresponding GNG bars high, so that more POC trials can be conducted under socioeconomic constraints. If δ is the minimum treatment effect size of clinical interest in phase II, the study design with the highest benefit-cost ratio has approximately 5% type I error rate and approximately 20% type II error rate (80% power) for detecting an effect size of approximately 1.5δ. A Go decision to phase III is made when the observed effect size is close to δ. With the phenomenal expansion of our knowledge in molecular biology leading to an unprecedented number of new oncology drug targets, conducting more small POC trials and setting high GNG bars maximize the return on socioeconomic investment in phase II POC trials. ©2014 AACR.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Bergh, Sidney, E-mail: sidney.vandenbergh@nrc.gc.ca

    Lenticular galaxies with M{sub B} < -21.5 are almost exclusively unbarred, whereas both barred and unbarred objects occur at fainter luminosity levels. This effect is observed both for objects classified in blue light, and for those that were classified in the infrared. This result suggests that the most luminous (massive) S0 galaxies find it difficult to form bars. As a result, the mean luminosity of unbarred lenticular galaxies in both B and IR light is observed to be {approx}0.4 mag brighter than that of barred lenticulars. A small contribution to the observed luminosity difference that is found between SA0 andmore » SB0 galaxies may also be due to the fact that there is an asymmetry between the effects of small classification errors on SA0 and SB0 galaxies. An elliptical (E) galaxy might be misclassified as a lenticular (S0) or an S0 as an E. However, an E will never be misclassified as an SB0, nor will an SB0 ever be called an E. This asymmetry is important because E galaxies are typically twice as luminous as S0 galaxies. The present results suggest that the evolution of luminous lenticular galaxies may be closely linked to that of elliptical galaxies, whereas fainter lenticulars might be more closely associated with ram-pressure stripped spiral galaxies. Finally, it is pointed out that fine details of the galaxy formation process might account for some of the differences between the classifications of the same galaxy by individual competent morphologists.« less

  2. Reduction in specimen labeling errors after implementation of a positive patient identification system in phlebotomy.

    PubMed

    Morrison, Aileen P; Tanasijevic, Milenko J; Goonan, Ellen M; Lobo, Margaret M; Bates, Michael M; Lipsitz, Stuart R; Bates, David W; Melanson, Stacy E F

    2010-06-01

    Ensuring accurate patient identification is central to preventing medical errors, but it can be challenging. We implemented a bar code-based positive patient identification system for use in inpatient phlebotomy. A before-after design was used to evaluate the impact of the identification system on the frequency of mislabeled and unlabeled samples reported in our laboratory. Labeling errors fell from 5.45 in 10,000 before implementation to 3.2 in 10,000 afterward (P = .0013). An estimated 108 mislabeling events were prevented by the identification system in 1 year. Furthermore, a workflow step requiring manual preprinting of labels, which was accompanied by potential labeling errors in about one quarter of blood "draws," was removed as a result of the new system. After implementation, a higher percentage of patients reported having their wristband checked before phlebotomy. Bar code technology significantly reduced the rate of specimen identification errors.

  3. High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars

    NASA Astrophysics Data System (ADS)

    Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir

    2018-02-01

    High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.

  4. Modified SPC for short run test and measurement process in multi-stations

    NASA Astrophysics Data System (ADS)

    Koh, C. K.; Chin, J. F.; Kamaruddin, S.

    2018-03-01

    Due to short production runs and measurement error inherent in electronic test and measurement (T&M) processes, continuous quality monitoring through real-time statistical process control (SPC) is challenging. Industry practice allows the installation of guard band using measurement uncertainty to reduce the width of acceptance limit, as an indirect way to compensate the measurement errors. This paper presents a new SPC model combining modified guard band and control charts (\\bar{\\text{Z}} chart and W chart) for short runs in T&M process in multi-stations. The proposed model standardizes the observed value with measurement target (T) and rationed measurement uncertainty (U). S-factor (S f) is introduced to the control limits to improve the sensitivity in detecting small shifts. The model was embedded in automated quality control system and verified with a case study in real industry.

  5. Some conservative estimates in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2006-08-15

    Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q{sub c} {approx} 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation H(Q{sub c})=C-bar({rho})/2, where {rho} is the density matrix of the input ensemble, C-bar({rho}) is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q.

  6. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  7. Universal behavior of the γ⁎γ→(π0,η,η′) transition form factors

    PubMed Central

    Melikhov, Dmitri; Stech, Berthold

    2012-01-01

    The photon transition form factors of π, η and η′ are discussed in view of recent measurements. It is shown that the exact axial anomaly sum rule allows a precise comparison of all three form factors at high-Q2 independent of the different structures and distribution amplitudes of the participating pseudoscalar mesons. We conclude: (i) The πγ form factor reported by Belle is in excellent agreement with the nonstrange I=0 component of the η and η′ form factors obtained from the BaBar measurements. (ii) Within errors, the πγ form factor from Belle is compatible with the asymptotic pQCD behavior, similar to the η and η′ form factors from BaBar. Still, the best fits to the data sets of πγ, ηγ, and η′γ form factors favor a universal small logarithmic rise Q2FPγ(Q2)∼log(Q2). PMID:23226917

  8. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    DOEpatents

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  9. Use the Bar Code System to Improve Accuracy of the Patient and Sample Identification.

    PubMed

    Chuang, Shu-Hsia; Yeh, Huy-Pzu; Chi, Kun-Hung; Ku, Hsueh-Chen

    2018-01-01

    In time and correct sample collection were highly related to patient's safety. The sample error rate was 11.1%, because misbranded patient information and wrong sample containers during January to April, 2016. We developed a barcode system of "Specimens Identify System" through process of reengineering of TRM, used bar code scanners, add sample container instructions, and mobile APP. Conclusion, the bar code systems improved the patient safety and created green environment.

  10. Validation of instrumentation to monitor dynamic performance of olympic weightlifters.

    PubMed

    Bruenger, Adam J; Smith, Sarah L; Sands, William A; Leigh, Michael R

    2007-05-01

    The purpose of this study was to validate the accuracy and reliability of the Weightlifting Video Overlay System (WVOS) used by coaches and sport biomechanists at the United States Olympic Training Center. Static trials with the bar set at specific positions and dynamic trials of a power snatch were performed. Static and dynamic values obtained by the WVOS were compared with values obtained by tape measure and standard video kinematic analysis. Coordinate positions (horizontal [X] and vertical [Y]) were compared on both ends (left and right) of the bar. Absolute technical error of measurement between WVOS and kinematic values were calculated (0.97 cm [left X], 0.98 cm [right X], 0.88 cm [left Y], and 0.53 cm [right Y]) for the static data. Pearson correlations for all dynamic trials exceeded r = 0.88. The greatest discrepancies between the 2 measuring systems were found to occur when there was twisting of the bar during the performance. This error was probably due to the location on the bar where the coordinates were measured. The WVOS appears to provide accurate position information when compared with standard kinematics; however, care must be taken in evaluating position measurements if there is a significant amount of twisting in the movement. The WVOS appears to be reliable and valid within reasonable error limits for the determination of weightlifting movement technique.

  11. Predicting Error Bars for QSAR Models

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches.

  12. Three-dimensional accuracy of different correction methods for cast implant bars

    PubMed Central

    Kwon, Ji-Yung; Kim, Chang-Whe; Lim, Young-Jun; Kwon, Ho-Beom

    2014-01-01

    PURPOSE The aim of the present study was to evaluate the accuracy of three techniques for correction of cast implant bars. MATERIALS AND METHODS Thirty cast implant bars were fabricated on a metal master model. All cast implant bars were sectioned at 5 mm from the left gold cylinder using a disk of 0.3 mm thickness, and then each group of ten specimens was corrected by gas-air torch soldering, laser welding, and additional casting technique. Three dimensional evaluation including horizontal, vertical, and twisting measurements was based on measurement and comparison of (1) gap distances of the right abutment replica-gold cylinder interface at buccal, distal, lingual side, (2) changes of bar length, and (3) axis angle changes of the right gold cylinders at the step of the post-correction measurements on the three groups with a contact and non-contact coordinate measuring machine. One-way analysis of variance (ANOVA) and paired t-test were performed at the significance level of 5%. RESULTS Gap distances of the cast implant bars after correction procedure showed no statistically significant difference among groups. Changes in bar length between pre-casting and post-correction measurement were statistically significance among groups. Axis angle changes of the right gold cylinders were not statistically significance among groups. CONCLUSION There was no statistical significance among three techniques in horizontal, vertical and axial errors. But, gas-air torch soldering technique showed the most consistent and accurate trend in the correction of implant bar error. However, Laser welding technique, showed a large mean and standard deviation in vertical and twisting measurement and might be technique-sensitive method. PMID:24605205

  13. Error-Detecting Identification Codes for Algebra Students.

    ERIC Educational Resources Information Center

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  14. A Substantive Process Analysis of Responses to Items from the Multistate Bar Examination

    ERIC Educational Resources Information Center

    Bonner, Sarah M.; D'Agostino, Jerome V.

    2012-01-01

    We investigated examinees' cognitive processes while they solved selected items from the Multistate Bar Exam (MBE), a high-stakes professional certification examination. We focused on ascertaining those mental processes most frequently used by examinees, and the most common types of errors in their thinking. We compared the relationships between…

  15. Technology-related medication errors in a tertiary hospital: a 5-year analysis of reported medication incidents.

    PubMed

    Samaranayake, N R; Cheung, S T D; Chui, W C M; Cheung, B M Y

    2012-12-01

    Healthcare technology is meant to reduce medication errors. The objective of this study was to assess unintended errors related to technologies in the medication use process. Medication incidents reported from 2006 to 2010 in a main tertiary care hospital were analysed by a pharmacist and technology-related errors were identified. Technology-related errors were further classified as socio-technical errors and device errors. This analysis was conducted using data from medication incident reports which may represent only a small proportion of medication errors that actually takes place in a hospital. Hence, interpretation of results must be tentative. 1538 medication incidents were reported. 17.1% of all incidents were technology-related, of which only 1.9% were device errors, whereas most were socio-technical errors (98.1%). Of these, 61.2% were linked to computerised prescription order entry, 23.2% to bar-coded patient identification labels, 7.2% to infusion pumps, 6.8% to computer-aided dispensing label generation and 1.5% to other technologies. The immediate causes for technology-related errors included, poor interface between user and computer (68.1%), improper procedures or rule violations (22.1%), poor interface between user and infusion pump (4.9%), technical defects (1.9%) and others (3.0%). In 11.4% of the technology-related incidents, the error was detected after the drug had been administered. A considerable proportion of all incidents were technology-related. Most errors were due to socio-technical issues. Unintended and unanticipated errors may happen when using technologies. Therefore, when using technologies, system improvement, awareness, training and monitoring are needed to minimise medication errors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. ENDF/B-IV fission-product files: summary of major nuclide data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, T.R.; Schenter, R.E.

    1975-09-01

    The major fission-product parameters [sigma/sub th/, RI, tau/sub 1/2/, E- bar/sub $beta$/, E-bar/sub $gamma$/, E-bar/sub $alpha$/, decay and (n,$gamma$) branching, Q, and AWR] abstracted from ENDF/B-IV files for 824 nuclides are summarized. These data are most often requested by users concerned with reactor design, reactor safety, dose, and other sundry studies. The few known file errors are corrected to date. Tabular data are listed by increasing mass number. (auth)

  17. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  18. Reading color barcodes using visual snakes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, Hanspeter

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less

  19. Patient safety with blood products administration using wireless and bar-code technology.

    PubMed

    Porcella, Aleta; Walker, Kristy

    2005-01-01

    Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a 'big bang,' hospital-wide implementation occurred on February 7, 2005. Preliminary results from pilot data indicate that the new barcode process captures errors 3 to 10 times better than the old manual process.

  20. Computerized bar code-based blood identification systems and near-miss transfusion episodes and transfusion errors.

    PubMed

    Nuttall, Gregory A; Abenstein, John P; Stubbs, James R; Santrach, Paula; Ereth, Mark H; Johnson, Pamela M; Douglas, Emily; Oliver, William C

    2013-04-01

    To determine whether the use of a computerized bar code-based blood identification system resulted in a reduction in transfusion errors or near-miss transfusion episodes. Our institution instituted a computerized bar code-based blood identification system in October 2006. After institutional review board approval, we performed a retrospective study of transfusion errors from January 1, 2002, through December 31, 2005, and from January 1, 2007, through December 31, 2010. A total of 388,837 U were transfused during the 2002-2005 period. There were 6 misidentification episodes of a blood product being transfused to the wrong patient during that period (incidence of 1 in 64,806 U or 1.5 per 100,000 transfusions; 95% CI, 0.6-3.3 per 100,000 transfusions). There was 1 reported near-miss transfusion episode (incidence of 0.3 per 100,000 transfusions; 95% CI, <0.1-1.4 per 100,000 transfusions). A total of 304,136 U were transfused during the 2007-2010 period. There was 1 misidentification episode of a blood product transfused to the wrong patient during that period when the blood bag and patient's armband were scanned after starting to transfuse the unit (incidence of 1 in 304,136 U or 0.3 per 100,000 transfusions; 95% CI, <0.1-1.8 per 100,000 transfusions; P=.14). There were 34 reported near-miss transfusion errors (incidence of 11.2 per 100,000 transfusions; 95% CI, 7.7-15.6 per 100,000 transfusions; P<.001). Institution of a computerized bar code-based blood identification system was associated with a large increase in discovered near-miss events. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  1. Sediment Transport Variability in Global Rivers: Implications for the Interpretation of Paleoclimate Signals

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Hutton, E. W.

    2001-12-01

    A new numerical approach (HydroTrend, v.2) allows the daily flux of sediment to be estimated for any river, whether gauged or not. The model can be driven by actual climate measurements (precipitation, temperature) or with statistical estimates of climate (modeled climate, remotely-sensed climate). In both cases, the character (e.g. soil depth, relief, vegetation index) of the drainage terrain is needed to complete the model domain. The HydroTrend approach allows us to examine the effects of climate on the supply of sediment to continental margins, and the nature of supply variability. A new relationship is defined as: $Qs = f (Psi) Qs-bar (Q/Q-bar)c+-σ where Qs-bar is the long-term sediment load, Q-bar is the long-term discharge, c and sigma are mean and standard deviation of the inter-annual variability of the rating coefficient, and Psi captures the measurement errors associated with Q and Qs, and the annual transients, affecting the supply of sediment including sediment and water source, and river (flood wave) dynamics. F = F(Psi, s). Smaller-discharge rivers have larger values of s, and s asymptotes to a small but consistent value for larger-discharge rivers. The coefficient c is directly proportional to the long-term suspended load (Qs-bar) and basin relief (R), and inversely proportional to mean annual temperature (T). sigma is directly proportional to the mean annual discharge. The long-term sediment load is given by: Qs-bar = a R1.5 A0.5 TT $ where a is a global constant, A is basin area; and TT is a function of mean annual temperature. This new approach provides estimates of sediment flux at the dynamic (daily) level and provides us a means to experiment on the sensitivity of marine sedimentary deposits in recording a paleoclimate signal. In addition the method provides us with spatial estimates for the flux of sediment to the coastal zone at the global scale.

  2. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    PubMed

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  3. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering.

    PubMed

    Karlsen, Morten L; Thorsen, Thor S; Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L

    2015-07-07

    PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

    NASA Astrophysics Data System (ADS)

    Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti

    2018-03-01

    We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.

  5. Predicting Error Bars for QSAR Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeter, Timon; Technische Universitaet Berlin, Department of Computer Science, Franklinstrasse 28/29, 10587 Berlin; Schwaighofer, Anton

    2007-09-18

    Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D{sub 7} models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniquesmore » for the other modelling approaches.« less

  6. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  7. A large-scale test of free-energy simulation estimates of protein-ligand binding affinities.

    PubMed

    Mikulskis, Paulius; Genheden, Samuel; Ryde, Ulf

    2014-10-27

    We have performed a large-scale test of alchemical perturbation calculations with the Bennett acceptance-ratio (BAR) approach to estimate relative affinities for the binding of 107 ligands to 10 different proteins. Employing 20-Å truncated spherical systems and only one intermediate state in the perturbations, we obtain an error of less than 4 kJ/mol for 54% of the studied relative affinities and a precision of 0.5 kJ/mol on average. However, only four of the proteins gave acceptable errors, correlations, and rankings. The results could be improved by using nine intermediate states in the simulations or including the entire protein in the simulations using periodic boundary conditions. However, 27 of the calculated affinities still gave errors of more than 4 kJ/mol, and for three of the proteins the results were not satisfactory. This shows that the performance of BAR calculations depends on the target protein and that several transformations gave poor results owing to limitations in the molecular-mechanics force field or the restricted sampling possible within a reasonable simulation time. Still, the BAR results are better than docking calculations for most of the proteins.

  8. Fabricating CAD/CAM Implant-Retained Mandibular Bar Overdentures: A Clinical and Technical Overview.

    PubMed

    Goo, Chui Ling; Tan, Keson Beng Choon

    2017-01-01

    This report describes the clinical and technical aspects in the oral rehabilitation of an edentulous patient with knife-edge ridge at the mandibular anterior edentulous region, using implant-retained overdentures. The application of computer-aided design and computer-aided manufacturing (CAD/CAM) in the fabrication of the overdenture framework simplifies the laboratory process of the implant prostheses. The Nobel Procera CAD/CAM System was utilised to produce a lightweight titanium overdenture bar with locator attachments. It is proposed that the digital workflow of CAD/CAM milled implant overdenture bar allows us to avoid numerous technical steps and possibility of casting errors involved in the conventional casting of such bars.

  9. Publisher Correction: Role of outer surface probes for regulating ion gating of nanochannels.

    PubMed

    Li, Xinchun; Zhai, Tianyou; Gao, Pengcheng; Cheng, Hongli; Hou, Ruizuo; Lou, Xiaoding; Xia, Fan

    2018-02-08

    The original version of this Article contained an error in Fig. 3. The scale bars in Figs 3c and 3d were incorrectly labelled as 50 μA. In the correct version, the scale bars are labelled as 0.5 μA. This has now been corrected in both the PDF and HTML versions of the Article.

  10. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  11. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.

    PubMed

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-08-31

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.

  12. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments

    PubMed Central

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-01-01

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279

  13. Continuing Studies of Planetary Atmospheres Associated with Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.

  14. Continuing Studies of Planetary Atmospheres Associated With Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Goodman,Jindra; Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.

  15. Using Modified-ISS Model to Evaluate Medication Administration Safety During Bar Code Medication Administration Implementation in Taiwan Regional Teaching Hospital.

    PubMed

    Ma, Pei-Luen; Jheng, Yan-Wun; Jheng, Bi-Wei; Hou, I-Ching

    2017-01-01

    Bar code medication administration (BCMA) could reduce medical errors and promote patient safety. This research uses modified information systems success model (M-ISS model) to evaluate nurses' acceptance to BCMA. The result showed moderate correlation between medication administration safety (MAS) to system quality, information quality, service quality, user satisfaction, and limited satisfaction.

  16. Haptic spatial matching in near peripersonal space.

    PubMed

    Kaas, Amanda L; Mier, Hanneke I van

    2006-04-01

    Research has shown that haptic spatial matching at intermanual distances over 60 cm is prone to large systematic errors. The error pattern has been explained by the use of reference frames intermediate between egocentric and allocentric coding. This study investigated haptic performance in near peripersonal space, i.e. at intermanual distances of 60 cm and less. Twelve blindfolded participants (six males and six females) were presented with two turn bars at equal distances from the midsagittal plane, 30 or 60 cm apart. Different orientations (vertical/horizontal or oblique) of the left bar had to be matched by adjusting the right bar to either a mirror symmetric (/ \\) or parallel (/ /) position. The mirror symmetry task can in principle be performed accurately in both an egocentric and an allocentric reference frame, whereas the parallel task requires an allocentric representation. Results showed that parallel matching induced large systematic errors which increased with distance. Overall error was significantly smaller in the mirror task. The task difference also held for the vertical orientation at 60 cm distance, even though this orientation required the same response in both tasks, showing a marked effect of task instruction. In addition, men outperformed women on the parallel task. Finally, contrary to our expectations, systematic errors were found in the mirror task, predominantly at 30 cm distance. Based on these findings, we suggest that haptic performance in near peripersonal space might be dominated by different mechanisms than those which come into play at distances over 60 cm. Moreover, our results indicate that both inter-individual differences and task demands affect task performance in haptic spatial matching. Therefore, we conclude that the study of haptic spatial matching in near peripersonal space might reveal important additional constraints for the specification of adequate models of haptic spatial performance.

  17. Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design.

    PubMed

    Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J

    2012-10-01

    The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.

  18. Measurement of the τ Michel parameters \\bar{η} and ξκ in the radiative leptonic decay τ^- \\rArr ℓ^- ν_{τ} \\bar{ν}_{ℓ}γ

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Aihara, H.; Epifanov, D.; Adachi, I.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chang, M.-C.; Chang, P.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, S.-K.; Choi, Y.; Cinabro, D.; Czank, T.; Dash, N.; Di Carlo, S.; Doležal, Z.; Dutta, D.; Eidelman, S.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Garg, R.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gelb, M.; Goldenzweig, P.; Greenwald, D.; Guido, E.; Haba, J.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hirose, S.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, M.; Jaegle, I.; Jeon, H. B.; Jia, S.; Jin, Y.; Joo, K. K.; Julius, T.; Kang, K. H.; Karyan, G.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, J. B.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyž, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Kroeger, R.; Krokovny, P.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, L. K.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Masuda, M.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mohanty, G. B.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Paul, S.; Pedlar, T. K.; Pestotnik, R.; Piilonen, L. E.; Popov, V.; Ritter, M.; Rostomyan, A.; Sakai, Y.; Salehi, M.; Sandilya, S.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Sumisawa, K.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tenchini, F.; Trabelsi, K.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Usov, Y.; Van Hulse, C.; Varner, G.; Vorobyev, V.; Vossen, A.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, M.; Widmann, E.; Won, E.; Yamashita, Y.; Ye, H.; Yuan, C. Z.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.

    2018-02-01

    We present a measurement of the Michel parameters of the τ lepton, \\bar{η} and ξκ, in the radiative leptonic decay τ^- \\rArr ℓ^- ν_{τ} \\bar{ν}_{ℓ} γ using 711 fb^{-1} of collision data collected with the Belle detector at the KEKB e^+e^- collider. The Michel parameters are measured in an unbinned maximum likelihood fit to the kinematic distribution of e^+e^-\\rArrτ^+τ^-\\rArr (π^+π^0 \\bar{ν}_τ)(ℓ^-ν_{τ}\\bar{ν}_{ℓ}γ)(ℓ=e or μ). The measured values of the Michel parameters are \\bar{η} = -1.3 ± 1.5 ± 0.8 and ξκ = 0.5 ± 0.4 ± 0.2, where the first error is statistical and the second is systematic. This is the first measurement of these parameters. These results are consistent with the Standard Model predictions within their uncertainties, and constrain the coupling constants of the generalized weak interaction.

  19. Implant-supported overdenture with prefabricated bar attachment system in mandibular edentulous patient

    PubMed Central

    Ha, Seung-Ryong; Song, Seung-Il; Hong, Seong-Tae; Kim, Gy-Young

    2012-01-01

    Implant-supported overdenture is a reliable treatment option for the patients with edentulous mandible when they have difficulty in using complete dentures. Several options have been used for implant-supported overdenture attachments. Among these, bar attachment system has greater retention and better maintainability than others. SFI-Bar® is prefabricated and can be adjustable at chairside. Therefore, laboratory procedures such as soldering and welding are unnecessary, which leads to fewer errors and lower costs. A 67-year-old female patient presented, complaining of mobility of lower anterior teeth with old denture. She had been wearing complete denture in the maxilla and removable partial denture in the mandible with severe bone loss. After extracting the teeth, two implants were placed in front of mental foramen, and SFI-Bar® was connected. A tube bar was seated to two adapters through large ball joints and fixation screws, connecting each implant. The length of the tube bar was adjusted according to inter-implant distance. Then, a female part was attached to the bar beneath the new denture. This clinical report describes two-implant-supported overdenture using the SFI-Bar® system in a mandibular edentulous patient. PMID:23236580

  20. Measurement of $$B\\bar{B}$$ Angular Correlations based on Secondary Vertex Reconstruction at $$\\sqrt{s}=7$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizablemore » fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.« less

  1. Studying W‧ boson contributions in \\bar{B} \\rightarrow {D}^{(* )}{{\\ell }}^{-}{\\bar{\

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Long; Wei, Bin; Sheng, Jin-Huan; Wang, Ru-Min; Yang, Ya-Dong

    2018-05-01

    Recently, the Belle collaboration reported the first measurement of the τ lepton polarization P τ (D*) in \\bar{B}\\to {D}* {τ }-{\\bar{ν }}τ decay and a new measurement of the rate of the branching ratios R(D*), which are consistent with the Standard Model (SM) predictions. These could be used to constrain the New Physics (NP) beyond the SM. In this paper, we probe \\bar{B}\\to {D}(* ){{\\ell }}-{\\bar{ν }}{\\ell } (ℓ = e, μ, τ) decays in the model-independent way and in the specific G(221) models with lepton flavour universality. Considering the theoretical uncertainties and the experimental errors at the 95% C.L., we obtain the quite strong bounds on the model-independent parameters {C}{{LL}}{\\prime },{C}{{LR}}{\\prime },{C}{{RR}}{\\prime },{C}{{RL}}{\\prime },{g}V,{g}A,{g}V{\\prime },{g}A{\\prime } and the specific G(221) model parameter rates. We find that the constrained NP couplings have no obvious effects on all (differential) branching ratios and their rates, nevertheless, many NP couplings have very large effects on the lepton spin asymmetries of \\bar{B}\\to {D}(* ){{\\ell }}-{\\bar{ν }}{\\ell } decays and the forward–backward asymmetries of \\bar{B}\\to {D}* {{\\ell }}-{\\bar{ν }}{\\ell }. So we expect precision measurements of these observables would be researched by LHCb and Belle-II.

  2. Image decomposition of barred galaxies and AGN hosts

    NASA Astrophysics Data System (ADS)

    Gadotti, Dimitri Alexei

    2008-02-01

    I present the results of multicomponent decomposition of V and R broad-band images of a sample of 17 nearby galaxies, most of them hosting bars and active galactic nuclei (AGN). I use BUDDA v2.1 to produce the fits, allowing the inclusion of bars and AGN in the models. A comparison with previous results from the literature shows a fairly good agreement. It is found that the axial ratio of bars, as measured from ellipse fits, can be severely underestimated if the galaxy axisymmetric component is relatively luminous. Thus, reliable bar axial ratios can only be determined by taking into account the contributions of bulge and disc to the light distribution in the galaxy image. Through a number of tests, I show that neglecting bars when modelling barred galaxies can result in an overestimation of the bulge-to-total luminosity ratio of a factor of 2. Similar effects result when bright, type 1 AGN are not considered in the models. By artificially redshifting the images, I show that the structural parameters of more distant galaxies can in general be reliably retrieved through image fitting, at least up to the point where the physical spatial resolution is ~1.5kpc. This corresponds, for instance, to images of galaxies at z = 0.05 with a seeing full width at half-maximum (FWHM) of 1.5arcsec, typical of the Sloan Digital Sky Survey (SDSS). In addition, such a resolution is also similar to what can be achieved with the Hubble Space Telescope (HST), and ground-based telescopes with adaptive optics, at z ~ 1-2. Thus, these results also concern deeper studies such as COSMOS and SINS. This exercise shows that disc parameters are particularly robust, but bulge parameters are prone to errors if its effective radius is small compared to the seeing radius, and might suffer from systematic effects. For instance, the bulge-to-total luminosity ratio is systematically overestimated, on average, by 0.05 (i.e. 5 per cent of the galaxy total luminosity). In this low-resolution regime, the effects of ignoring bars are still present, but AGN light is smeared out. I briefly discuss the consequences of these results to studies of the structural properties of galaxies, in particular on the stellar mass budget in the local Universe. With reasonable assumptions, it is possible to show that the stellar content in bars can be similar to that in classical bulges and elliptical galaxies. Finally, I revisit the cases of NGC4608 and 5701 and show that the lack of stars in the disc region inside the bar radius is significant. Accordingly, the best-fitting model for the former uses a Freeman type II disc.

  3. Sine-Bar Attachment For Machine Tools

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  4. Effects of a direct refill program for automated dispensing cabinets on medication-refill errors.

    PubMed

    Helmons, Pieter J; Dalton, Ashley J; Daniels, Charles E

    2012-10-01

    The effects of a direct refill program for automated dispensing cabinets (ADCs) on medication-refill errors were studied. This study was conducted in designated acute care areas of a 386-bed academic medical center. A wholesaler-to-ADC direct refill program, consisting of prepackaged delivery of medications and bar-code-assisted ADC refilling, was implemented in the inpatient pharmacy of the medical center in September 2009. Medication-refill errors in 26 ADCs from the general medicine units, the infant special care unit, the surgical and burn intensive care units, and intermediate units were assessed before and after the implementation of this program. Medication-refill errors were defined as an ADC pocket containing the wrong drug, wrong strength, or wrong dosage form. ADC refill errors decreased by 77%, from 62 errors per 6829 refilled pockets (0.91%) to 8 errors per 3855 refilled pockets (0.21%) (p < 0.0001). The predominant error type detected before the intervention was the incorrect medication (wrong drug, wrong strength, or wrong dosage form) in the ADC pocket. Of the 54 incorrect medications found before the intervention, 38 (70%) were loaded in a multiple-drug drawer. After the implementation of the new refill process, 3 of the 5 incorrect medications were loaded in a multiple-drug drawer. There were 3 instances of expired medications before and only 1 expired medication after implementation of the program. A redesign of the ADC refill process using a wholesaler-to-ADC direct refill program that included delivery of prepackaged medication and bar-code-assisted refill significantly decreased the occurrence of ADC refill errors.

  5. Heavy flavor decay of Zγ at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy M. Harrington-Taber

    2013-01-01

    Diboson production is an important and frequently measured parameter of the Standard Model. This analysis considers the previously neglected pmore » $$\\bar{p}$$ →Z γ→ b$$\\bar{b}$$ channel, as measured at the Collider Detector at Fermilab. Using the entire Tevatron Run II dataset, the measured result is consistent with Standard Model predictions, but the statistical error associated with this method of measurement limits the strength of this correlation.« less

  6. Impact of the Irish smoking ban on sales in bars using a large business-level data set from 1999 to 2007.

    PubMed

    Cornelsen, Laura; Normand, Charles

    2014-09-01

    Ireland introduced comprehensive smoke-free workplace legislation in 2004. This study evaluates the economic impact of the workplace smoking ban on the value of sales in bars. Data on the value of bar sales were derived from a large, nationally representative, annual business-level survey from 1999 to 2007. The economic impact of the smoking ban was evaluated according to geographical region and bar size. Analysis was based on an econometric model which controlled for background changes in population income and wealth and for investments made by the bars during this period. The overall impact of the Irish smoking ban on bar sales appears to be very small. The ban was associated with an increase in sales among medium to large bars in the Border-Midland-West (more rural) region of Ireland, and a small reduction in sales among large bars in the more urban, South-East region. We failed to find any evidence of a change in bar sales in the remaining categories studied. The results indicate that although some bars saw positive effects and some negative, the overall impact of the smoking ban on the value of sales in bars was negligible. These findings provide further supporting evidence that comprehensive smoke-free workplace legislation does not harm hospitality businesses while having positive health effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.

    1982-01-01

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  8. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  9. The cost of implementing inpatient bar code medication administration.

    PubMed

    Sakowski, Julie Ann; Ketchel, Alan

    2013-02-01

    To calculate the costs associated with implementing and operating an inpatient bar-code medication administration (BCMA) system in the community hospital setting and to estimate the cost per harmful error prevented. This is a retrospective, observational study. Costs were calculated from the hospital perspective and a cost-consequence analysis was performed to estimate the cost per preventable adverse drug event averted. Costs were collected from financial records and key informant interviews at 4 not-for profit community hospitals. Costs included direct expenditures on capital, infrastructure, additional personnel, and the opportunity costs of time for existing personnel working on the project. The number of adverse drug events prevented using BCMA was estimated by multiplying the number of doses administered using BCMA by the rate of harmful errors prevented by interventions in response to system warnings. Our previous work found that BCMA identified and intercepted medication errors in 1.1% of doses administered, 9% of which potentially could have resulted in lasting harm. The cost of implementing and operating BCMA including electronic pharmacy management and drug repackaging over 5 years is $40,000 (range: $35,600 to $54,600) per BCMA-enabled bed and $2000 (range: $1800 to $2600) per harmful error prevented. BCMA can be an effective and potentially cost-saving tool for preventing the harm and costs associated with medication errors.

  10. 78 FR 40963 - Regulated Navigation Areas; Bars Along the Coasts of Oregon and Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ..., uninspected passenger vessels, small passenger vessels, and commercial fishing vessels when operating within... The bars along the coasts of Oregon and Washington are a maritime operating environment unique to the... safety of persons and vessels operating on or in the vicinity of the bars. The Coast Guard subsequently...

  11. Star formation suppression and bar ages in nearby barred galaxies

    NASA Astrophysics Data System (ADS)

    James, P. A.; Percival, S. M.

    2018-03-01

    We present new spectroscopic data for 21 barred spiral galaxies, which we use to explore the effect of bars on disc star formation, and to place constraints on the characteristic lifetimes of bar episodes. The analysis centres on regions of heavily suppressed star formation activity, which we term `star formation deserts'. Long-slit optical spectroscopy is used to determine H β absorption strengths in these desert regions, and comparisons with theoretical stellar population models are used to determine the time since the last significant star formation activity, and hence the ages of the bars. We find typical ages of ˜1 Gyr, but with a broad range, much larger than would be expected from measurement errors alone, extending from ˜0.25 to >4 Gyr. Low-level residual star formation, or mixing of stars from outside the `desert' regions, could result in a doubling of these age estimates. The relatively young ages of the underlying populations coupled with the strong limits on the current star formation rule out a gradual exponential decline in activity, and hence support our assumption of an abrupt truncation event.

  12. Enhancing the sensitivity to new physics in the tt¯ invariant mass distribution

    NASA Astrophysics Data System (ADS)

    Álvarez, Ezequiel

    2012-08-01

    We propose selection cuts on the LHC tt¯ production sample which should enhance the sensitivity to new physics signals in the study of the tt¯ invariant mass distribution. We show that selecting events in which the tt¯ object has little transverse and large longitudinal momentum enlarges the quark-fusion fraction of the sample and therefore increases its sensitivity to new physics which couples to quarks and not to gluons. We find that systematic error bars play a fundamental role and assume a simple model for them. We check how a non-visible new particle would become visible after the selection cuts enhance its resonance bump. A final realistic analysis should be done by the experimental groups with a correct evaluation of the systematic error bars.

  13. Automatic Identification Technology (AIT): The Development of Functional Capability and Card Application Matrices

    DTIC Science & Technology

    1994-09-01

    650 B.C. in Asia Minor, coins were developed and used in acquiring goods and services. In France, during the eighteenth century, paper money made its... counterfeited . [INFO94, p. 23] Other weaknesses of bar code technology include limited data storage capability based on the bar code symbology used when...extremely accurate, with calculated error rates as low as 1 in 100 trillion, and are difficult to counterfeit . Strong magnetic fields cannot erase RF

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miftakov, V

    The BABAR experiment at SLAC provides an opportunity for measurement of the Standard Model parameters describing CP violation. A method of measuring the CKM matrix element |V{sub cb}| using Inclusive Semileptonic B decays in events tagged by a fully reconstructed decay of one of the B mesons is presented here. This mode is considered to be one of the most powerful approaches due to its large branching fraction, simplicity of the theoretical description and very clean experimental signatures. Using fully reconstructed B mesons to flag B{bar B} event we were able to produce the spectrum and branching fraction for electronmore » momenta P{sub C.M.S.} > 0.5 GeV/c. Extrapolation to the lower momenta has been carried out with Heavy Quark Effective Theory. The branching fractions are measured separately for charged and neutral B mesons. For 82 fb{sup -1} of data collected at BABAR we obtain: BR(B{sup {+-}} {yields} X e{bar {nu}}) = 10.63 {+-} 0.24 {+-} 0.29%, BR(B{sup 0} {yields} X e{bar {nu}}) = 10.68 {+-} 0.34 {+-} 0.31%, averaged BR(B {yields} X e{bar {nu}}) = 10.65 {+-} 0.19 {+-} 0.27%, ratio of Branching fractions BR(B{sup {+-}})/BR(B{sup 0}) = 0.996 {+-} 0.039 {+-} 0.015 (errors are statistical and systematic, respectively). They also obtain V{sub cb} = 0.0409 {+-} 0.00074 {+-} 0.0010 {+-} 0.000858 (errors are: statistical, systematic and theoretical).« less

  15. Errors of Measurement, Theory, and Public Policy. William H. Angoff Memorial Lecture Series

    ERIC Educational Resources Information Center

    Kane, Michael

    2010-01-01

    The 12th annual William H. Angoff Memorial Lecture was presented by Dr. Michael T. Kane, ETS's (Educational Testing Service) Samuel J. Messick Chair in Test Validity and the former Director of Research at the National Conference of Bar Examiners. Dr. Kane argues that it is important for policymakers to recognize the impact of errors of measurement…

  16. Pioneer-Venus radio occultation (ORO) data reduction: Profiles of 13 cm absorptivity

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1990-01-01

    In order to characterize possible variations in the abundance and distribution of subcloud sulfuric acid vapor, 13 cm radio occultation signals from 23 orbits that occurred in late 1986 and 1987 (Season 10) and 7 orbits that occurred in 1979 (Season 1) were processed. The data were inverted via inverse Abel transform to produce 13 cm absorptivity profiles. Pressure and temperature profiles obtained with the Pioneer-Venus night probe and the northern probe were used along with the absorptivity profiles to infer upper limits for vertical profiles of the abundance of gaseous H2SO4. In addition to inverting the data, error bars were placed on the absorptivity profiles and H2SO4 abundance profiles using the standard propagation of errors. These error bars were developed by considering the effects of statistical errors only. The profiles show a distinct pattern with regard to latitude which is consistent with latitude variations observed in data obtained during the occultation seasons nos. 1 and 2. However, when compared with the earlier data, the recent occultation studies suggest that the amount of sulfuric acid vapor occurring at and below the main cloud layer may have decreased between early 1979 and late 1986.

  17. Non-minimal derivative coupling gravity in cosmology

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin; Rangdee, Phongsaphat

    2015-11-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.

  18. Bar Code Medication Administration Technology: Characterization of High-Alert Medication Triggers and Clinician Workarounds.

    PubMed

    Miller, Daniel F; Fortier, Christopher R; Garrison, Kelli L

    2011-02-01

    Bar code medication administration (BCMA) technology is gaining acceptance for its ability to prevent medication administration errors. However, studies suggest that improper use of BCMA technology can yield unsatisfactory error prevention and introduction of new potential medication errors. To evaluate the incidence of high-alert medication BCMA triggers and alert types and discuss the type of nursing and pharmacy workarounds occurring with the use of BCMA technology and the electronic medication administration record (eMAR). Medication scanning and override reports from January 1, 2008, through November 30, 2008, for all adult medical/surgical units were retrospectively evaluated for high-alert medication system triggers, alert types, and override reason documentation. An observational study of nursing workarounds on an adult medicine step-down unit was performed and an analysis of potential pharmacy workarounds affecting BCMA and the eMAR was also conducted. Seventeen percent of scanned medications triggered an error alert of which 55% were for high-alert medications. Insulin aspart, NPH insulin, hydromorphone, potassium chloride, and morphine were the top 5 high-alert medications that generated alert messages. Clinician override reasons for alerts were documented in only 23% of administrations. Observational studies assessing for nursing workarounds revealed a median of 3 clinician workarounds per administration. Specific nursing workarounds included a failure to scan medications/patient armband and scanning the bar code once the dosage has been removed from the unit-dose packaging. Analysis of pharmacy order entry process workarounds revealed the potential for missed doses, duplicate doses, and doses being scheduled at the wrong time. BCMA has the potential to prevent high-alert medication errors by alerting clinicians through alert messages. Nursing and pharmacy workarounds can limit the recognition of optimal safety outcomes and therefore workflow processes must be continually analyzed and restructured to yield the intended full benefits of BCMA technology. © 2011 SAGE Publications.

  19. Measurement of the spatial distribution of atmospheric turbulence with SCINDAR on a mosaic of urban surfaces

    NASA Astrophysics Data System (ADS)

    Nguyen, K.-L.; Robert, C.; Conan, J.-M.; Mugnier, L. M.; Cohard, J.-M.; Irvine, M.; Lagouarde, J.-P.

    2017-09-01

    Two experiments of urban scintillometry were performed recently. Their objective was to study the SCINDAR Cn² profiler performance on a composite urbanforest ground. The SCINDAR provides horizontal Cn² profiles with a few hundred meter profile resolution. Several improvements in data processing are reported: the choice of the spatial resolution of the profile and the hyper-parameters adjustment for Cn² regularization. The distributed Cn² values along the optical path are estimated every minute with small error bars. Their non-uniformity is shown to be consistent with the differences of the line of sight to ground and the coverage of the terrain. The SCINDAR data are also in the same order of magnitude with the three scintillometer data that were simultaneously recorded.

  20. Radial basis function network learns ceramic processing and predicts related strength and density

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y.; Vary, Alex; Tjia, Robert E.

    1993-01-01

    Radial basis function (RBF) neural networks were trained using the data from 273 Si3N4 modulus of rupture (MOR) bars which were tested at room temperature and 135 MOR bars which were tested at 1370 C. Milling time, sintering time, and sintering gas pressure were the processing parameters used as the input features. Flexural strength and density were the outputs by which the RBF networks were assessed. The 'nodes-at-data-points' method was used to set the hidden layer centers and output layer training used the gradient descent method. The RBF network predicted strength with an average error of less than 12 percent and density with an average error of less than 2 percent. Further, the RBF network demonstrated a potential for optimizing and accelerating the development and processing of ceramic materials.

  1. Evaluation of Key Factors Impacting Feeding Safety in the Neonatal Intensive Care Unit: A Systematic Review.

    PubMed

    Matus, Bethany A; Bridges, Kayla M; Logomarsino, John V

    2018-06-21

    Individualized feeding care plans and safe handling of milk (human or formula) are critical in promoting growth, immune function, and neurodevelopment in the preterm infant. Feeding errors and disruptions or limitations to feeding processes in the neonatal intensive care unit (NICU) are associated with negative safety events. Feeding errors include contamination of milk and delivery of incorrect or expired milk and may result in adverse gastrointestinal illnesses. The purpose of this review was to evaluate the effect(s) of centralized milk preparation, use of trained technicians, use of bar code-scanning software, and collaboration between registered dietitians and registered nurses on feeding safety in the NICU. A systematic review of the literature was completed, and 12 articles were selected as relevant to search criteria. Study quality was evaluated using the Downs and Black scoring tool. An evaluation of human studies indicated that the use of centralized milk preparation, trained technicians, bar code-scanning software, and possible registered dietitian involvement decreased feeding-associated error in the NICU. A state-of-the-art NICU includes a centralized milk preparation area staffed by trained technicians, care supported by bar code-scanning software, and utilization of a registered dietitian to improve patient safety. These resources will provide nurses more time to focus on nursing-specific neonatal care. Further research is needed to evaluate the impact of factors related to feeding safety in the NICU as well as potential financial benefits of these quality improvement opportunities.

  2. Development of self-sensing BFRP bars with distributed optic fiber sensors

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  3. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valluri, Monica; Abbott, Caleb; Shen, Juntai

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotatingmore » triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.« less

  4. Multi-wavelength observations of barred, flocculent galaxies

    NASA Astrophysics Data System (ADS)

    Ratay, Douglas Lee

    Although it is generally accepted that large galaxies form through the assemblage of smaller objects, an explanation for the morphology of galaxies is not available. Any complete theory of galaxy morphology must include production and dissolution mechanisms for galactic bars, rings, nuclear bars, spiral arms, and companions. This theory does not exist because of the lack of detailed data from many types of galaxies in different environments. We have defined a new sample of galaxies which are simultaneously flocculent, barred, and isolated. We have performed optical, near-infrared, and radio (HI) observations of the galaxies in this sample. We measured properties of our galaxies including bar length, bar axis ratio, HI diameter, HI mass, and dynamical mass. We found that our sample group is heterogeneous, and compares well to a standard samples of galaxies. We found two of our galaxies to possess companions, and two others to show evidence of current interactions. This is consistent with other observations indicating that local isolated galaxies do not possess a large number of small companions. We cannot rule out the possibility of very small companions. We find that as a group our sample is slightly less luminous than normal galaxies and may be more likely to be involved in interactions. We conclude that the bar and spiral arm features in our sample are due to processes internal to the galaxies, likely involving the interaction between the galactic disk and halo. We defined a control sample of barred, grand design galaxies to further determine the acceptability of barred, flocculent galaxies as a physically meaningful subset of galaxies.

  5. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (13Ccarb) biochemostratigraphy across the Llandovery–Wenlock (Silurian) boundary: Is a unified Phanerozoic time scale achievable?

    USGS Publications Warehouse

    Cramer, Bradley D.; Loydell, David K.; Samtleben, Christian; Munnecke, Axel; Kaljo, Dimitri; Mannik, Peep; Martma, Tonu; Jeppsson, Lennart; Kleffner, Mark A.; Barrick, James E.; Johnson, Craig A.; Emsbo, Poul; Joachimski, Michael M.; Bickert, Torsten; Saltzman, Matthew R.

    2010-01-01

    The resolution and fidelity of global chronostratigraphic correlation are direct functions of the time period under consideration. By virtue of deep-ocean cores and astrochronology, the Cenozoic and Mesozoic time scales carry error bars of a few thousand years (k.y.) to a few hundred k.y. In contrast, most of the Paleozoic time scale carries error bars of plus or minus a few million years (m.y.), and chronostratigraphic control better than ??1 m.y. is considered "high resolution." The general lack of Paleozoic abyssal sediments and paucity of orbitally tuned Paleozoic data series combined with the relative incompleteness of the Paleozoic stratigraphic record have proven historically to be such an obstacle to intercontinental chronostratigraphic correlation that resolving the Paleozoic time scale to the level achieved during the Mesozoic and Cenozoic was viewed as impractical, impossible, or both. Here, we utilize integrated graptolite, conodont, and carbonate carbon isotope (??13Ccarb) data from three paleocontinents (Baltica, Avalonia, and Laurentia) to demonstrate chronostratigraphic control for upper Llando very through middle Wenlock (Telychian-Sheinwoodian, ~436-426 Ma) strata with a resolution of a few hundred k.y. The interval surrounding the base of the Wenlock Series can now be correlated globally with precision approaching 100 k.y., but some intervals (e.g., uppermost Telychian and upper Shein-woodian) are either yet to be studied in sufficient detail or do not show sufficient biologic speciation and/or extinction or carbon isotopic features to delineate such small time slices. Although producing such resolution during the Paleozoic presents an array of challenges unique to the era, we have begun to demonstrate that erecting a Paleozoic time scale comparable to that of younger eras is achievable. ?? 2010 Geological Society of America.

  6. Revision of laser-induced damage threshold evaluation from damage probability data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataviciute, Gintare; Grigas, Povilas; Smalakys, Linas

    2013-04-15

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametricmore » regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).« less

  7. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  8. cBathy: A robust algorithm for estimating nearshore bathymetry

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holman, Rob; Holland, K. Todd

    2013-01-01

    A three-part algorithm is described and tested to provide robust bathymetry maps based solely on long time series observations of surface wave motions. The first phase consists of frequency-dependent characterization of the wave field in which dominant frequencies are estimated by Fourier transform while corresponding wave numbers are derived from spatial gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial resolution. Coherent spatial structures at each frequency are extracted by frequency-dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new estimates of variable quality with prior estimates. Objective confidence intervals are returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline where analysis tiles mix information from waves, swash and static dry sand. Performance was excellent for small waves but degraded somewhat with increasing wave height. Sand bars and their small-scale alongshore variability were well resolved. A single ground truth survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over a region that extended several kilometers from the camera and reached depths of 14 m. Vector wave number estimates can also be incorporated into data assimilation models of nearshore dynamics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  10. Interpolating Spherical Harmonics for Computing Antenna Patterns

    DTIC Science & Technology

    2011-07-01

    4∞. If gNF denotes the spline computed from the uniform partition of NF + 1 frequency points, the splines converge as O[N−4F ]: ‖gN − g‖∞ ≤ C0‖g(4...splines. There is the possibility of estimating the error ‖g− gNF ‖∞ even though the function g is unknown. Table 1 compares these unknown errors ‖g − gNF ...to the computable estimates ‖ gNF − g2NF ‖∞. The latter is a strong predictor of the unknown error. The triple bar is the sup-norm error over all the

  11. Strong, Ductile Rotor For Cryogenic Flowmeters

    NASA Technical Reports Server (NTRS)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  12. Parallel coding of conjunctions in visual search.

    PubMed

    Found, A

    1998-10-01

    Two experiments investigated whether the conjunctive nature of nontarget items influenced search for a conjunction target. Each experiment consisted of two conditions. In both conditions, the target item was a red bar tilted to the right, among white tilted bars and vertical red bars. As well as color and orientation, display items also differed in terms of size. Size was irrelevant to search in that the size of the target varied randomly from trial to trial. In one condition, the size of items correlated with the other attributes of display items (e.g., all red items were big and all white items were small). In the other condition, the size of items varied randomly (i.e., some red items were small and some were big, and some white items were big and some were small). Search was more efficient in the size-correlated condition, consistent with the parallel coding of conjunctions in visual search.

  13. Publisher Correction: Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity.

    PubMed

    Stone, Will J R; Campo, Joseph J; Ouédraogo, André Lin; Meerstein-Kessel, Lisette; Morlais, Isabelle; Da, Dari; Cohuet, Anna; Nsango, Sandrine; Sutherland, Colin J; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; van Gemert, Geert-Jan; Graumans, Wouter; Lanke, Kjerstin; Shandling, Adam D; Pablo, Jozelyn V; Teng, Andy A; Jones, Sophie; de Jong, Roos M; Fabra-García, Amanda; Bradley, John; Roeffen, Will; Lasonder, Edwin; Gremo, Giuliana; Schwarzer, Evelin; Janse, Chris J; Singh, Susheel K; Theisen, Michael; Felgner, Phil; Marti, Matthias; Drakeley, Chris; Sauerwein, Robert; Bousema, Teun; Jore, Matthijs M

    2018-04-11

    The original version of this Article contained errors in Fig. 3. In panel a, bars from a chart depicting the percentage of antibody-positive individuals in non-infectious and infectious groups were inadvertently included in place of bars depicting the percentage of infectious individuals, as described in the Article and figure legend. However, the p values reported in the Figure and the resulting conclusions were based on the correct dataset. The corrected Fig. 3a now shows the percentage of infectious individuals in antibody-negative and -positive groups, in both the PDF and HTML versions of the Article. The incorrect and correct versions of Figure 3a are also presented for comparison in the accompanying Publisher Correction as Figure 1.The HTML version of the Article also omitted a link to Supplementary Data 6. The error has now been fixed and Supplementary Data 6 is available to download.

  14. A PRELIMINARY JUPITER MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, W. B.; Militzer, B.

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second-more » and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.« less

  15. Contribution to the theory of propeller vibrations

    NASA Technical Reports Server (NTRS)

    Liebers, F

    1930-01-01

    This report presents a calculation of the torsional frequencies of revolving bars with allowance for the air forces. Calculation of the flexural or bonding frequencies of revolving straight or tapered bars in terms of the angular velocity of revolution. Calculation on the basis of Rayleigh's principle of variation. There is also a discussion of error estimation and the accuracy of results. The author then provides an application of the theory to screw propellers for airplanes and the discusses the liability of propellers to damage through vibrations due to lack of uniform loading.

  16. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    NASA Astrophysics Data System (ADS)

    McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.

    2015-04-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.

  17. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Technical Reports Server (NTRS)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  18. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Yee, J. C.; Carey, S.; Poleski, R.; Skowron, J.; Kozłowski, S.; Mróz, P.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration; Albrow, M.; Beaulieu, J. P.; Caldwell, J. A. R.; Cassan, A.; Coutures, C.; Danielski, C.; Dominis Prester, D.; Donatowicz, J.; Lončarić, K.; McDougall, A.; Morales, J. C.; Ranc, C.; Zhu, W.; PLANET Collaboration; Abe, F.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Fukunaga, D.; Inayama, K.; Koshimoto, N.; Namba, S.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.; MOA Collaboration; Maoz, D.; Kaspi, S.; Friedmann, M.; Wise Group; Bachelet, E.; Figuera Jaimes, R.; Bramich, D. M.; Tsapras, Y.; Horne, K.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Kains, N.; RoboNet Collaboration; Bozza, V.; Dominik, M.; Jørgensen, U. G.; Alsubai, K. A.; Ciceri, S.; D'Ago, G.; Haugbølle, T.; Hessman, F. V.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Skottfelt, J.; Southworth, J.; Starkey, D.; Surdej, J.; Wertz, O.; Zarucki, M.; MiNDSTEp Consortium; Gaudi, B. S.; Pogge, R. W.; DePoy, D. L.; μFUN Collaboration

    2015-05-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ˜1 AU west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun’s galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  19. Bond Strength of Composite CFRP Reinforcing Bars in Timber

    PubMed Central

    Corradi, Marco; Righetti, Luca; Borri, Antonio

    2015-01-01

    The use of near-surface mounted (NSM) fibre-reinforced polymer (FRP) bars is an interesting method for increasing the shear and flexural strength of existing timber members. This article examines the behaviour of carbon FRP (CFRP) bars in timber under direct pull-out conditions. The objective of this experimental program is to investigate the bond strength between composite bars and timber: bars were epoxied into small notches made into chestnut and fir wood members using a commercially-available epoxy system. Bonded lengths varied from 150 to 300 mm. Failure modes, stress and strain distributions and the bond strength of CFRP bars have been evaluated and discussed. The pull-out capacity in NSM CFRP bars at the onset of debonding increased with bonded length up to a length of 250 mm. While CFRP bar’s pull-out was achieved only for specimens with bonded lengths of 150 and 200 mm, bar tensile failure was mainly recorded for bonded lengths of 250 and 300 mm. PMID:28793423

  20. Success and High Predictability of Intraorally Welded Titanium Bar in the Immediate Loading Implants

    PubMed Central

    Fogli, Vaniel; Camerini, Michele; Carinci, Francesco

    2014-01-01

    The implants failure may be caused by micromotion and stress exerted on implants during the phase of bone healing. This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery. This goal may be achieved thanks to the technique of welding titanium bars on implant abutments. In fact, the procedure can be performed directly in the mouth eliminating possibility of errors or distortions due to impression. This paper describes a case report and the most recent data about long-term success and high predictability of intraorally welded titanium bar in immediate loading implants. PMID:24963419

  1. Quark fragmentation into spin-triplet S -wave quarkonium

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; ...

    2015-04-08

    We compute fragmentation functions for a quark to fragment to a quarkonium through an S-wave spin-triplet heavy quark-antiquark pair. We consider both color-singlet and color-octet heavy quark-antiquark (Q (Q) over bar) pairs. We give results for the case in which the fragmenting quark and the quark that is a constituent of the quarkonium have different flavors and for the case in which these quarks have the same flavors. Our results for the sum over all spin polarizations of the Q (Q) over bar pairs confirm previous results. Our results for longitudinally polarized Q (Q) over bar pairs agree with previousmore » calculations for the same flavor cases and correct an error in a previous calculation for the different-flavor case.« less

  2. A Dwarf Galaxy Star Bar and Dusty Wing

    NASA Image and Video Library

    2012-01-10

    In combined data from ESA Herschel and NASA Spitzer telescopes, irregular distribution of dust in the Small Magellanic Cloud becomes clear. A stream of dust extends to left, known as the galaxy wing, and a bar of star formation appears to right.

  3. A model for flexi-bar to evaluate intervertebral disc and muscle forces in exercises.

    PubMed

    Abdollahi, Masoud; Nikkhoo, Mohammad; Ashouri, Sajad; Asghari, Mohsen; Parnianpour, Mohamad; Khalaf, Kinda

    2016-10-01

    This study developed and validated a lumped parameter model for the FLEXI-BAR, a popular training instrument that provides vibration stimulation. The model which can be used in conjunction with musculoskeletal-modeling software for quantitative biomechanical analyses, consists of 3 rigid segments, 2 torsional springs, and 2 torsional dashpots. Two different sets of experiments were conducted to determine the model's key parameters including the stiffness of the springs and the damping ratio of the dashpots. In the first set of experiments, the free vibration of the FLEXI-BAR with an initial displacement at its end was considered, while in the second set, forced oscillations of the bar were studied. The properties of the mechanical elements in the lumped parameter model were derived utilizing a non-linear optimization algorithm which minimized the difference between the model's prediction and the experimental data. The results showed that the model is valid (8% error) and can be used for simulating exercises with the FLEXI-BAR for excitations in the range of the natural frequency. The model was then validated in combination with AnyBody musculoskeletal modeling software, where various lumbar disc, spinal muscles and hand muscles forces were determined during different FLEXI-BAR exercise simulations. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Morphological Differences Between Seyfert Hosts and Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Shlosman, Isaac

    Using new sub-arcsecond resolution imaging we compare large-scale stellar bar fraction in CfA sample of Seyferts and a closely matched control sample of normal galaxies. We find a difference between the samples on the 2.5σ level. We further compare the axial ratios of bars in all available samples quoted in the literature and find a deficiency of small axial ratio bars in Seyferts compared to normal galaxies.

  5. Delamination stresses in semicircular laminated composite bars

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1988-01-01

    Using anisotropic elasticity theory, delamination stresses in a semicircular laminated composite curved bar subjected to end forces and end moments were calculated, and their radial locations determined. A family of design curves was presented, showing variation of the intensity of delamination stresses and their radial locations with different geometry and different degrees of anisotropy of the curved bar. The effect of anisotropy on the location of peak delamination stress was found to be small.

  6. Path synthesis of four-bar mechanisms using synergy of polynomial neural network and Stackelberg game theory

    NASA Astrophysics Data System (ADS)

    Ahmadi, Bahman; Nariman-zadeh, Nader; Jamali, Ali

    2017-06-01

    In this article, a novel approach based on game theory is presented for multi-objective optimal synthesis of four-bar mechanisms. The multi-objective optimization problem is modelled as a Stackelberg game. The more important objective function, tracking error, is considered as the leader, and the other objective function, deviation of the transmission angle from 90° (TA), is considered as the follower. In a new approach, a group method of data handling (GMDH)-type neural network is also utilized to construct an approximate model for the rational reaction set (RRS) of the follower. Using the proposed game-theoretic approach, the multi-objective optimal synthesis of a four-bar mechanism is then cast into a single-objective optimal synthesis using the leader variables and the obtained RRS of the follower. The superiority of using the synergy game-theoretic method of Stackelberg with a GMDH-type neural network is demonstrated for two case studies on the synthesis of four-bar mechanisms.

  7. The intrinsic three-dimensional shape of galactic bars

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; Costantin, L.; Aguerri, J. A. L.; de Lorenzo-Cáceres, A.; Corsini, E. M.

    2018-06-01

    We present the first statistical study on the intrinsic three-dimensional (3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We use the galaXYZ code to derive the bar intrinsic shape with a statistical approach. The method uses only the geometric information (ellipticities and position angles) of bars and discs obtained from a multi-component photometric decomposition of the galaxy surface-brightness distributions. We find that bars are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A semiaxis ratio) of the bars in our sample is 0.34, which matches well the typical intrinsic flattening of stellar discs at these galaxy masses. We demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies are thicker and more circular than those in less massive spirals). The bar intrinsic shape correlates with bulge, disc, and bar parameters. In particular with the bulge-to-total (B/T) luminosity ratio, disc g - r color, and central surface brightness of the bar, confirming the tight link between bars and their host galaxies. Combining the probability distributions of the intrinsic shape of bulges and bars in our sample we show that 52% (16%) of bulges are thicker (flatter) than the surrounding bar at 1σ level. We suggest that these percentages might be representative of the fraction of classical and disc-like bulges in our sample, respectively.

  8. Bars in Field and Cluster Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Ediscs Collaboration

    2009-12-01

    We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.

  9. Human Factors Guidelines for Command and Control Systems: Battlefield and Decision Graphics Guidelines

    DTIC Science & Technology

    1989-03-01

    detail in a small area, use achromatic colors ( black , white, and grey) and use chromatic colors for larger panels or for attracting attention. b. Blues...purposes (e.g., to draw the users attention to a total, a broken bar or other important data element). b. Black and white should be used with caution. They...enough to set the bars or columns off from the background and define figure and ground relationships. (2) Use black in small areas and for certain

  10. Bar dimensions and bar shapes in estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  11. Beyond H {sub 0} and q {sub 0}: Cosmology is no longer just two numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neben, Abraham R.; Turner, Michael S., E-mail: abrahamn@mit.edu

    2013-06-01

    For decades, H {sub 0} and q {sub 0} were the quest of cosmology, as they promised to characterize our 'world model' without reference to a specific cosmological framework. Using Monte Carlo simulations, we show that q {sub 0} cannot be directly measured using distance indicators with both accuracy (without offset away from its true value) and precision (small error bar). While H {sub 0} can be measured with accuracy and precision, to avoid a small bias in its direct measurement (of order 5%) we demonstrate that the pair H {sub 0} and Ω {sub M} (assuming flatness and wmore » = –1) is a better choice of two parameters, even if our world model is not precisely ΛCDM. We illustrate this with analysis of the Constitution set of supernovae and indirectly infer q {sub 0} = –0.57 ± –0.04. Finally, we show that it may be possible to directly determine q {sub 0} with both accuracy and precision using the time dependence of redshifts ('redshift drift').« less

  12. Monitoring Changes of Tropical Extreme Rainfall Events Using Differential Absorption Barometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, R. Wes; Hu, Yongxiang; Min, Qilong

    2015-01-01

    This work studies the potential of monitoring changes in tropical extreme rainfall events such as tropical storms from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 gigahertz O2 absorption band to remotely measure sea surface air pressure. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 5 millibars (approximately 1 millibar) under all weather conditions. With these sea level pressure measurements, the forecasts, analyses and understanding of these extreme events in both short and long time scales can be improved. Severe weathers, especially hurricanes, are listed as one of core areas that need improved observations and predictions in WCRP (World Climate Research Program) and NASA Decadal Survey (DS) and have major impacts on public safety and national security through disaster mitigation. Since the development of the DiBAR concept about a decade ago, our team has made substantial progress in advancing the concept. Our feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. We have developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with our instrumentation goals. Observational system simulation experiments for space DiBAR performance show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on tropical extreme rainfall weather and climate conditions.

  13. Effects of stinger axial dynamics and mass compensation methods on experimental modal analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ximing

    1992-06-01

    A longitudinal bar model that includes both stinger elastic and inertia properties is used to analyze the stinger's axial dynamics as well as the mass compensation that is required to obtain accurate input forces when a stinger is installed between the excitation source, force transducer, and the structure under test. Stinger motion transmissibility and force transmissibility, axial resonance and excitation energy transfer problems are discussed in detail. Stinger mass compensation problems occur when the force transducer is mounted on the exciter end of the stinger. These problems are studied theoretically, numerically, and experimentally. It is found that the measured Frequency Response Function (FRF) can be underestimated if mass compensation is based on the stinger exciter-end acceleration and can be overestimated if the mass compensation is based on the structure-end acceleration due to the stinger's compliance. A new mass compensation method that is based on two accelerations is introduced and is seen to improve the accuracy considerably. The effects of the force transducer's compliance on the mass compensation are also discussed. A theoretical model is developed that describes the measurement system's FRD around a test structure's resonance. The model shows that very large measurement errors occur when there is a small relative phase shift between the force and acceleration measurements. These errors can be in hundreds of percent corresponding to a phase error on the order of one or two degrees. The physical reasons for this unexpected error pattern are explained. This error is currently unknown to the experimental modal analysis community. Two sample structures consisting of a rigid mass and a double cantilever beam are used in the numerical calculations and experiments.

  14. The p-Value You Can't Buy.

    PubMed

    Demidenko, Eugene

    2016-01-02

    There is growing frustration with the concept of the p -value. Besides having an ambiguous interpretation, the p- value can be made as small as desired by increasing the sample size, n . The p -value is outdated and does not make sense with big data: Everything becomes statistically significant. The root of the problem with the p- value is in the mean comparison. We argue that statistical uncertainty should be measured on the individual, not the group, level. Consequently, standard deviation (SD), not standard error (SE), error bars should be used to graphically present the data on two groups. We introduce a new measure based on the discrimination of individuals/objects from two groups, and call it the D -value. The D -value can be viewed as the n -of-1 p -value because it is computed in the same way as p while letting n equal 1. We show how the D -value is related to discrimination probability and the area above the receiver operating characteristic (ROC) curve. The D -value has a clear interpretation as the proportion of patients who get worse after the treatment, and as such facilitates to weigh up the likelihood of events under different scenarios. [Received January 2015. Revised June 2015.].

  15. Hubble Space Telescope secondary mirror vertex radius/conic constant test

    NASA Technical Reports Server (NTRS)

    Parks, Robert

    1991-01-01

    The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.

  16. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE PAGES

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  17. Predicting vertical jump height from bar velocity.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  18. Predicting Vertical Jump Height from Bar Velocity

    PubMed Central

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-01-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572

  19. Guts don't fly: Small digestive organs in obese Bar-tailed Godwits

    USGS Publications Warehouse

    Piersma, Theunis; Gill, Robert E.

    1998-01-01

    We documented fat loads and abdominal organ sizes of Bar-tailed Godwits (Limosa lapponica baueri) that died after colliding against a radar dome on the Alaska Peninsula, most likely just after takeoff on a trans-Pacific flight of 11,000 km, and of birds of the same subspecies just before northward departure from New Zealand. We compared these data with data on body composition of godwits of the smaller lapponica subspecies obtained during a northward stopover in The Netherlands. As a consequence of high amounts of subcutaneous and intraperitoneal fat, and very small fat-free mass, Bar-tailed Godwits from Alaska had relative fat loads that are among the highest ever recorded in birds (ca. 55% of fresh body mass). Compared with northbound godwits from New Zealand, the Alaskan birds had very small gizzards, livers, kidneys, and guts. This suggests that upon departure, long-distance migrants dispense with parts of their "metabolic machinery" that are not directly necessary during flight, and rebuild these organs upon arrival at the migratory destination.

  20. Six1-Eya-Dach Network in Breast Cancer

    DTIC Science & Technology

    2009-05-01

    Ctrl scramble controls. Responsiveness was tested using luciferase activity of the 3TP reporter construct and normalized to renilla luciferase...construct and normalized to renilla luciferase activity. Data points show the mean of two individual clones from two experiments and error bars represent

  1. Effect of Bar-code Technology on the Incidence of Medication Dispensing Errors and Potential Adverse Drug Events in a Hospital Pharmacy

    PubMed Central

    Poon, Eric G; Cina, Jennifer L; Churchill, William W; Mitton, Patricia; McCrea, Michelle L; Featherstone, Erica; Keohane, Carol A; Rothschild, Jeffrey M; Bates, David W; Gandhi, Tejal K

    2005-01-01

    We performed a direct observation pre-post study to evaluate the impact of barcode technology on medication dispensing errors and potential adverse drug events in the pharmacy of a tertiary-academic medical center. We found that barcode technology significantly reduced the rate of target dispensing errors leaving the pharmacy by 85%, from 0.37% to 0.06%. The rate of potential adverse drug events (ADEs) due to dispensing errors was also significantly reduced by 63%, from 0.19% to 0.069%. In a 735-bed hospital where 6 million doses of medications are dispensed per year, this technology is expected to prevent about 13,000 dispensing errors and 6,000 potential ADEs per year. PMID:16779372

  2. Frequency and properties of bars in cluster and field galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Desai, V.; Jogee, S.; Aragón-Salamanca, A.; De Lucia, G.; Saglia, R. P.; Halliday, C.; Poggianti, B. M.; Dalcanton, J. J.; Rudnick, G.; Milvang-Jensen, B.; Noll, S.; Simard, L.; Clowe, D. I.; Pelló, R.; White, S. D. M.; Zaritsky, D.

    2009-04-01

    We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The properties of bars and disks are determined by ellipse fits to the surface brightness distribution of the galaxies using HST/ACS images in the F814W filter. The bar identification is based on quantitative criteria after highly inclined (> 60°) systems have been excluded. The total optical bar fraction in the redshift range z = 0.4-0.8 (median z = 0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (~45%) than bulge-dominated galaxies (~15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. The question whether internal or external factors are more important for bar formation and evolution cannot be answered definitely. On the one hand, the bar fraction and properties of cluster and field samples of disk galaxies are quite similar, indicating that internal processes are crucial for bar formation. On the other hand, we find evidence that cluster centers are favorable locations for bars, which suggests that the internal processes responsible for bar growth are supported by the typical interactions taking place in such environments. Based on observations collected at the European Southern Observatory, Chile, as part of large programme 166.A-0162 (the ESO Distant Cluster Survey). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 9476. Support for this porposal was provided by NASA through a grant from Space Telescope Science Institute.

  3. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    PubMed

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  4. Predictions for the top-quark forward-backward asymmetry at high invariant pair mass using the principle of maximum conformality

    DOE PAGES

    Wang, Sheng -Quan; Wu, Xing -Gang; Si, Zong -Guo; ...

    2016-01-07

    In this study, the D0 collaboration at FermiLab has recently measured the top-quark pair forward-backward asymmetry inmore » $$\\bar{p}p$$ → $$t\\bar{t}$$X reactions as a function of the $$t\\bar{t}$$ invariant mass M $$t\\bar{t}$$. The D0 result for A FB(M $$t\\bar{t}$$ > 650 GeV) is smaller than A FB(M $$t\\bar{t}$$) obtained for small values of M $$t\\bar{t}$$, which may indicate an “increasing-decreasing” behavior for A FB(M $$t\\bar{t}$$ > M cut). This behavior is not explained using conventional renormalization scale setting, or even by a next-to-next-to-leading order (N 2LO) QCD calculation—one predicts a monotonically increasing behavior. In the conventional scale-setting method, one simply guesses a single renormalization scale μr for the argument of the QCD running coupling and then varies it over an arbitrary range. However, the conventional method has inherent difficulties.« less

  5. Formation of Gaps at the Specimen-Bar Interfaces in Numerical Simulations of Compression Hopkinson Bar Tests on Soft, Nearly Incompressible Materials

    DTIC Science & Technology

    2010-09-01

    history of the axial stress at the S-TB interface is qualitatively and quantitatively similar, with the times delayed by about 1 s (see figure 12). In...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...the specimen and sufficiently short rise times to the final strain rate, small gaps formed at both the specimen-incident bar and the specimen

  6. Electrofriction method of manufacturing squirrel cage rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, John S.

    2005-04-12

    A method of making a squirrel cage rotor of copper material for use in AC or DC motors, includes forming a core with longitudinal slots, inserting bars of conductive material in the slots, with ends extending out of opposite ends of the core, and joining the end rings to the bars, wherein the conductive material of either the end rings or the bars is copper. Various methods of joining the end rings to the bars are disclosed including electrofriction welding, current pulse welding and brazing, transient liquid phase joining and casting. Pressure is also applied to the end rings tomore » improve contact and reduce areas of small or uneven contact between the bar ends and the end rings. Rotors made with such methods are also disclosed.« less

  7. A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Si, Jianguo

    2012-02-01

    In this paper, a quasi-periodically forced nonlinear beam equation {u_{tt}+u_{xxxx}+μ u+\\varepsilonφ(t)h(u)=0} with hinged boundary conditions is considered, where μ > 0, {\\varepsilon} is a small positive parameter, {φ} is a real analytic quasi-periodic function in t with a frequency vector ω = ( ω 1, ω 2 . . . , ω m ), and the nonlinearity h is a real analytic odd function of the form {h(u)=η_1u+η_{2bar{r}+1}u^{2bar{r}+1}+sum_{k≥ bar{r}+1}η_{2k+1}u^{2k+1},η_1,η_{2bar{r}+1} neq0, bar{r} in {mathbb {N}}.} The above equation admits a quasi-periodic solution.

  8. Visual short-term memory deficits associated with GBA mutation and Parkinson's disease.

    PubMed

    Zokaei, Nahid; McNeill, Alisdair; Proukakis, Christos; Beavan, Michelle; Jarman, Paul; Korlipara, Prasad; Hughes, Derralynn; Mehta, Atul; Hu, Michele T M; Schapira, Anthony H V; Husain, Masud

    2014-08-01

    Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short-term memory associated with GBA mutation and with Parkinson's disease. Identification of the specific pattern of cognitive impairment in GBA mutation versus Parkinson's disease is potentially important as it might help to identify individuals at risk of developing Parkinson's disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. Measurement of sigma(Lambda(b)0) / sigma(anti-B 0) x B(Lambda0(b) ---> Lambda+(c) pi-) / B(anti-B0 ---> D+ pi-) in p anti-p collisions at S**(1/2) = 1.96-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.

    2006-01-01

    The authors present the first observation of the baryon decay {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +} {pi}{sup -} followed by {Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +} in 106 pb{sup -1} p{bar p} collisions at {radical}s = 1.96 TeV in the CDF experiment. IN order to reduce systematic error, the measured rate for {Lambda}{sub b}{sup 0} decay is normalized to the kinematically similar meson decay {bar B}{sup 0} {yields} D{sup +}{pi}{sup -} followed by D{sup +} {yields} {pi}{sup +}K{sup -}{pi}{sup +}. They report the ratio of production cross sections ({sigma}) times the ratio of branching fractions ({Beta}) formore » the momentum region integrated above p{sub T} > 6 GeV/c and pseudorapidity range |{eta}| < 1.3: {sigma}(p{bar p} {yields} {Lambda}{sub b}{sup 0}X)/{sigma}(p{bar p} {yields} {bar B}{sup 0} X) x {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -})/{Beta}({bar B}{sup 0} {yields} D{sup +}{pi}{sup -}) = 0.82 {+-} 0.08(stat) {+-} 0.11(syst) {+-} 0.22 ({Beta}({Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +})).« less

  10. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-06-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  11. Driving out errors through tight integration between software and automation.

    PubMed

    Reifsteck, Mark; Swanson, Thomas; Dallas, Mary

    2006-01-01

    A clear case has been made for using clinical IT to improve medication safety, particularly bar-code point-of-care medication administration and computerized practitioner order entry (CPOE) with clinical decision support. The equally important role of automation has been overlooked. When the two are tightly integrated, with pharmacy information serving as a hub, the distinctions between software and automation become blurred. A true end-to-end medication management system drives out errors from the dockside to the bedside. Presbyterian Healthcare Services in Albuquerque has been building such a system since 1999, beginning by automating pharmacy operations to support bar-coded medication administration. Encouraged by those results, it then began layering on software to further support clinician workflow and improve communication, culminating with the deployment of CPOE and clinical decision support. This combination, plus a hard-wired culture of safety, has resulted in a dramatically lower mortality and harm rate that could not have been achieved with a partial solution.

  12. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    NASA Astrophysics Data System (ADS)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  13. Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa

    USGS Publications Warehouse

    Marion, G.M.; Kargel, J.S.; Catling, D.C.; Jakubowski, S.D.

    2005-01-01

    Pressure plays a critical role in controlling aqueous geochemical processes in deep oceans and deep ice. The putative ocean of Europa could have pressures of 1200 bars or higher on the seafloor, a pressure not dissimilar to the deepest ocean basin on Earth (the Mariana Trench at 1100 bars of pressure). At such high pressures, chemical thermodynamic relations need to explicitly consider pressure. A number of papers have addressed the role of pressure on equilibrium constants, activity coefficients, and the activity of water. None of these models deal, however, with processes at subzero temperatures, which may be important in cold environments on Earth and other planetary bodies. The objectives of this work were to (1) incorporate a pressure dependence into an existing geochemical model parameterized for subzero temperatures (FREZCHEM), (2) validate the model, and (3) simulate pressure-dependent processes on Europa. As part of objective 1, we examined two models for quantifying the volumetric properties of liquid water at subzero temperatures: one model is based on the measured properties of supercooled water, and the other model is based on the properties of liquid water in equilibrium with ice. The relative effect of pressure on solution properties falls in the order: equilibrium constants(K) > activity coefficients (??) > activity of water (aw). The errors (%) in our model associated with these properties, however, fall in the order: ?? > K > aw. The transposition between K and ?? is due to a more accurate model for estimating K than for estimating ??. Only activity coefficients are likely to be significantly in error. However, even in this case, the errors are likely to be only in the range of 2 to 5% up to 1000 bars of pressure. Evidence based on the pressure/temperature melting of ice and salt solution densities argue in favor of the equilibrium water model, which depends on extrapolations, for characterizing the properties of liquid water in electrolyte solutions at subzero temperatures, rather than the supercooled water model. Model-derived estimates of mixed salt solution densities and chemical equilibria as a function of pressure are in reasonably good agreement with experimental measurements. To demonstrate the usefulness of this low-temperature, high-pressure model, we examined two hypothetical cases for Europa. Case 1 dealt with the ice cover of Europa, where we asked the question: How far above the putative ocean in the ice layer could we expect to find thermodynamically stable brine pockets that could serve as habitats for life? For a hypothetical nonconvecting 20 km icy shell, this potential life zone only extends 2.8 km into the icy shell before the eutectic is reached. For the case of a nonconvecting icy shell, the cold surface of Europa precludes stable aqueous phases (habitats for life) anywhere near the surface. Case 2 compared chemical equilibria at 1 bar (based on previous work) with a more realistic 1460 bars of pressure at the base of a 100 km Europan ocean. A pressure of 1460 bars, compared to 1 bar, caused a 12 K decrease in the temperature at which ice first formed and a 11 K increase in the temperature at which MgSO4. 12H2O first formed. Remarkably, there was only a 1.2 K decrease in the eutectic temperatures between 1 and 1460 bars of pressure. Chemical systems and their response to pressure depend, ultimately, on the volumetric properties of individual constituents, which makes every system response highly individualistic. Copyright ?? 2005 Elsevier Ltd.

  14. Small islands adrift

    NASA Astrophysics Data System (ADS)

    Petherick, Anna

    2015-07-01

    With the charismatic former president of the Maldives, Mohamed Nasheed, behind bars on a widely derided terrorism charge, Anna Petherick asks whether small island states can really make themselves heard in Paris.

  15. The economic impact of a smoke-free bylaw on restaurant and bar sales in Ottawa, Canada.

    PubMed

    Luk, Rita; Ferrence, Roberta; Gmel, Gerhard

    2006-05-01

    On 1 August 2001, the City of Ottawa (Canada's Capital) implemented a smoke-free bylaw that completely prohibited smoking in work-places and public places, including restaurants and bars, with no exemption for separately ventilated smoking rooms. This paper evaluates the effects of this bylaw on restaurant and bar sales. DATA AND MEASURES: We used retail sales tax data from March 1998 to June 2002 to construct two outcome measures: the ratio of licensed restaurant and bar sales to total retail sales and the ratio of unlicensed restaurant sales to total retail sales. Restaurant and bar sales were subtracted from total retail sales in the denominator of these measures. We employed an interrupted time-series design. Autoregressive integrated moving average (ARIMA) intervention analysis was used to test for three possible impacts that the bylaw might have on the sales of restaurants and bars. We repeated the analysis using regression with autoregressive moving average (ARMA) errors method to triangulate our results. Outcome measures showed declining trends at baseline before the bylaw went into effect. Results from ARIMA intervention and regression analyses did not support the hypotheses that the smoke-free bylaw had an impact that resulted in (1) abrupt permanent, (2) gradual permanent or (3) abrupt temporary changes in restaurant and bar sales. While a large body of research has found no significant adverse impact of smoke-free legislation on restaurant and bar sales in the United States, Australia and elsewhere, our study confirms these results in a northern region with a bilingual population, which has important implications for impending policy in Europe and other areas.

  16. Nurses' attitudes toward the use of the bar-coding medication administration system.

    PubMed

    Marini, Sana Daya; Hasman, Arie; Huijer, Huda Abu-Saad; Dimassi, Hani

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the attitudinal basis for system adoption and use decisions in terms of subjective satisfaction. Only 67 nurses in the United States had the chance to respond to the e-questionnaire posted on the CARING list server for the months of June and July 2007. Participants rated their satisfaction with bar-coding medication administration system use based on system functionality, usability, and its positive/negative impact on the nursing practice. Results showed, to some extent, positive attitude, but the image profile draws attention to nurses' concerns for improving certain system characteristics. The high bar-coding medication administration system skills revealed a more negative perception of the system by the nursing staff. The reasons underlying dissatisfaction with bar-coding medication administration use by skillful users are an important source of knowledge that can be helpful for system development as well as system deployment. As a result, strengthening bar-coding medication administration system usability by magnifying its ability to eliminate medication errors and the contributing factors, maximizing system functionality by ascertaining its power as an extra eye in the medication administration process, and impacting the clinical nursing practice positively by being helpful to nurses, speeding up the medication administration process, and being user-friendly can offer a congenial settings for establishing positive attitude toward system use, which in turn leads to successful bar-coding medication administration system use.

  17. EIT Imaging of admittivities with a D-bar method and spatial prior: experimental results for absolute and difference imaging.

    PubMed

    Hamilton, S J

    2017-05-22

    Electrical impedance tomography (EIT) is an emerging imaging modality that uses harmless electrical measurements taken on electrodes at a body's surface to recover information about the internal electrical conductivity and or permittivity. The image reconstruction task of EIT is a highly nonlinear inverse problem that is sensitive to noise and modeling errors making the image reconstruction task challenging. D-bar methods solve the nonlinear problem directly, bypassing the need for detailed and time-intensive forward models, to provide absolute (static) as well as time-difference EIT images. Coupling the D-bar methodology with the inclusion of high confidence a priori data results in a noise-robust regularized image reconstruction method. In this work, the a priori D-bar method for complex admittivities is demonstrated effective on experimental tank data for absolute imaging for the first time. Additionally, the method is adjusted for, and tested on, time-difference imaging scenarios. The ability of the method to be used for conductivity, permittivity, absolute as well as time-difference imaging provides the user with great flexibility without a high computational cost.

  18. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    NASA Astrophysics Data System (ADS)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2018-01-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  19. Bar workers' exposure to second-hand smoke: the effect of Scottish smoke-free legislation on occupational exposure.

    PubMed

    Semple, Sean; Maccalman, Laura; Naji, Audrey Atherton; Dempsey, Scott; Hilton, Shona; Miller, Brian G; Ayres, Jon G

    2007-10-01

    To examine changes in bar workers' exposure to second-hand smoke (SHS) over a 12-month period before and after the introduction of Scottish smoke-free legislation on the 26 March 2006. A total of 371 bar workers were recruited from 72 bars in three cities: Aberdeen, Glasgow, Edinburgh and small towns in two rural regions (Borders and Aberdeenshire). Prior to the introduction of the smoke-free legislation, we visited all participants in their place of work and collected saliva samples, for the measurement of cotinine, together with details on work patterns, self-reported exposure to SHS at work and non-work settings and smoking history. This was repeated 2 months post-legislation and again in the spring of 2007. In addition, we gathered full-shift personal exposure data from a small number of Aberdeen bar workers using a personal aerosol monitor for fine particulate matter (PM(2.5)) at the baseline and 2 months post-legislation visits. Data were available for 371 participants at baseline, 266 (72%) at 2 months post-legislation and 191 (51%) at the 1-year follow-up. The salivary cotinine level recorded in non-smokers fell from a geometric mean of 2.94 ng ml(-1) prior to introduction of the legislation to 0.41 ng ml(-1) at 1-year follow-up. Paired data showed a reduction in non-smokers' cotinine levels of 89% [95% confidence interval (CI) 85-92%]. For the whole cohort, the duration of workplace exposure to SHS within the last 7 days fell from 28.5 to 0.83 h, though some bar workers continued to report substantial SHS exposures at work despite the legislation. Smokers also demonstrated reductions in their salivary cotinine levels of 12% (95% CI 3-20%). This may reflect both the reduction in SHS exposure at work and falls in active cigarette smoking in this group. In a small sub-sample of bar workers, full-shift personal exposure to PM(2.5), a marker of SHS concentrations, showed average reductions of 86% between baseline and 2 months after implementation of the legislation. Most bar workers have experienced very large reductions in their workplace exposure to SHS as a result of smoke-free legislation in Scotland. These reductions have been sustained over a period of 1 year.

  20. Experimental study of the seismic performance of L-shaped columns with 500 MPa steel bars.

    PubMed

    Wang, Tiecheng; Liu, Xiao; Zhao, Hailong

    2014-01-01

    Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars.

  1. Synthesis and optimization of four bar mechanism with six design parameters

    NASA Astrophysics Data System (ADS)

    Jaiswal, Ankur; Jawale, H. P.

    2018-04-01

    Function generation is synthesis of mechanism for specific task, involves complexity for specially synthesis above five precision of coupler points. Thus pertains to large structural error. The methodology for arriving to better precision solution is to use the optimization technique. Work presented herein considers methods of optimization of structural error in closed kinematic chain with single degree of freedom, for generating functions like log(x), ex, tan(x), sin(x) with five precision points. The equation in Freudenstein-Chebyshev method is used to develop five point synthesis of mechanism. The extended formulation is proposed and results are obtained to verify existing results in literature. Optimization of structural error is carried out using least square approach. Comparative structural error analysis is presented on optimized error through least square method and extended Freudenstein-Chebyshev method.

  2. Nitrosative stress uncovers potent β2-adrenergic receptor-linked vasodilation further enhanced by blockade of clathrin endosome formation.

    PubMed

    Frame, Mary D; Dewar, Anthony M; Calizo, Rhodora C; Qifti, Androniqi; Scarlata, Suzanne F

    2018-06-01

    This study investigated the effect of sodium nitroprusside (SNP) preexposure on vasodilation via the β-adrenergic receptor (BAR) system. SNP was used as a nitrosative/oxidative proinflammatory insult. Small arterioles were visualized by intravital microscopy in the hamster cheek pouch tissue (isoflurane, n = 45). Control dilation to isoproterenol (EC 50 : 10 -7 mol/l) became biphasic as a function of concentration after 2 min of exposure to SNP (10 -4 M), with increased potency at picomolar dilation uncovered and decreased efficacy at the micromolar dilation. Control dilation to curcumin was likewise altered after SNP, but only the increased potency at a low dose was uncovered, whereas micromolar dilation was eliminated. The picomolar dilations were blocked by the potent BAR-2 inverse agonist carazolol (10 -9 mol/l). Dynamin inhibition with dynasore mimicked this effect, suggesting that SNP preexposure prevented BAR agonist internalization. Using HeLa cells transfected with BAR-2 tagged with monomeric red fluorescent protein, exposure to 10 -8 -10 -6 mol/l curcumin resulted in internalization and colocalization of BAR-2 and curcumin (FRET) that was prevented by oxidative stress (10 -3 mol/l CoCl 2 ), supporting that stress prevented internalization of the BAR agonist with the micromolar agonist. This study presents novel data supporting that distinct pools of BARs are differentially available after inflammatory insult. NEW & NOTEWORTHY Preexposure to an oxidative/nitrosative proinflammatory insult provides a "protective preconditioning" against future oxidative damage. We examined immediate vasoactive and molecular consequences of a brief preexposure via β-adrenergic receptor signaling in small arterioles. Blocked receptor internalization with elevated reactive oxygen levels coincides with a significant and unexpected vasodilation to β-adrenergic agonists at picomolar doses.

  3. Stress tracking in thin bars by eigenstrain actuation

    NASA Astrophysics Data System (ADS)

    Schoeftner, J.; Irschik, H.

    2016-11-01

    This contribution focuses on stress tracking in slender structures. The axial stress distribution of a linear elastic bar is investigated, in particular, we seek for an answer to the following question: in which manner do we have to distribute eigenstrains, such that the axial stress in a bar is equal to a certain desired stress distribution, despite external forces or support excitations are present? In order to track a certain time- and space-dependent stress function, smart actuators, such as piezoelectric actuators, are needed to realize eigenstrains. Based on the equation of motion and the constitutive relation, which relate stress, strain, displacement and eigenstrains, an analytical solution for the stress tracking problem is derived. The starting point for the derivation of a solution for the stress tracking problem is a semi-positive definite integral depending on the error stress which is the difference between the actual stress and the desired stress. Our derived stress tracking theory is verified by two examples: first, a clamped-free bar which is harmonically excited is investigated. It is shown under which circumstances the axial stress vanishes at every location and at every time instant. The second example is a support-excited bar with end mass, where a desired stress profile is prescribed.

  4. Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks

    PubMed Central

    Abello, Manuel Blanco

    2014-01-01

    In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature. PMID:24883398

  5. Analysis of the charmed semileptonic decay D +→ ρ 0 μ + v

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luiggi, Eduardo E.

    2008-12-01

    The search for the fundamental constituents of matter has been pursued and studied since the dawn of civilization. As early as the fourth century BCE, Democritus, expanding the teachings of Leucippus, proposed small, indivisible entities called atoms, interacting with each other to form the Universe. Democritus was convinced of this by observing the environment around him. He observed, for example, how a collection of tiny grains of sand can make out smooth beaches. Today, following the lead set by Democritus more than 2500 years ago, at the heart of particle physics is the hypothesis that everything we can observe in the Universe is made of a small number of fundamental particles interacting with each other. In contrast to Democritus, for the last hundred years we have been able to perform experiments that probe deeper and deeper into matter in the search for the fundamental particles of nature. Today's knowledge is encapsulated in the Standard Model of particle physics, a model describing the fundamental particles and their interactions. It is within this model that the work in this thesis is presented. This work attempts to add to the understanding of the Standard Model by measuring the relative branching fraction of the charmed semileptonic decay D + → ρ 0μ +v with respect to D + →more » $$\\bar{K}$$* 0μ +v. Many theoretical models that describe hadronic interactions predict the value of this relative branching fraction, but only a handful of experiments have been able to measure it with any precision. By making a precise measurement of this relative branching fraction theorists can distinguish between viable models as well as refine existing ones. In this thesis we presented the measurement of the branching fraction ratio of the Cabibbo suppressed semileptonic decay mode D + → ρ 0μ +v with respect to the Cabibbo favored mode D + → $$\\bar{K}$$* 0 μ +v using data collected by the FOCUS collaboration. We used a binned maximum log-likelihood fit that included all known semileptonic backgrounds as well as combinatorial and muonmisidentification backgrounds to extract the yields for both the signal and normalization modes. We reconstructed 320 ± 44 D + → ρ 0μ +v events and 11372 ± 161 D + → K -π +μ +v events. Taking into account the non-resonant contribution to the D + → K -π +μ +v yield due to a s-wave interference first measured by FOCUS the branching fraction ratio is: Γ(D + → ρ 0μ +v) = 0.0412 ± 0.0057 ± 0.0040 (VII.1) where the first error is statistical and the second error is the systematic uncertainty. This represents a substantial improvement over the previous world average. More importantly, the new world average for Γ(D +→ 0μ +v)/Γ(D +→$$\\bar{K}$$* 0μ +v) along with the improved measurements in the electronic mode can be used to discriminate among different theoretical approaches that aim to understand the hadronic current involved in the charm to light quark decay process. The average of the electronic and muonic modes indicate that predictions for the partial decay width Γ(D + → ρ 0ℓ +v) and the ratio Γ(D +→ρ 0ℓ +v)/Γ(D +→$$\\bar{K}$$* 0ℓ +v) based on Sum Rules are too low. Using the same data used to extract Γ(D +→ρ 0μ +v)/Γ(D +→$$\\bar{K}$$* 0μ +v) we studied the feasibility of measuring the form factors for the D + → ρ 0μ +v decay. We found that the need to further reduce the combinatorial and muon misidentification backgrounds left us with a much smaller sample of 52 ± 12 D + → ρ 0μ +μ events; not enough to make a statistically significant measurement of the form factors.« less

  6. Effect of marital status on death rates. Part 1: High accuracy exploration of the Farr-Bertillon effect

    NASA Astrophysics Data System (ADS)

    Richmond, Peter; Roehner, Bertrand M.

    2016-05-01

    The Farr-Bertillon law says that for all age-groups the death rate of married people is lower than the death rate of people who are not married (i.e. single, widowed or divorced). Although this law has been known for over 150 years, it has never been established with well-controlled accuracy (e.g. error bars). This even let some authors argue that it was a statistical artifact. It is true that the data must be selected with great care, especially for age groups of small size (e.g. widowers under 25). The observations reported in this paper were selected in the way experiments are designed in physics, that is to say with the objective of minimizing error bars. Data appropriate for mid-age groups may be unsuitable for young age groups and vice versa. The investigation led to the following results. (1) The FB effect is very similar for men and women, except that (at least in western countries) its amplitude is 20% higher for men. (2) There is a marked difference between single/divorced persons on the one hand, for whom the effect is largest around the age of 40, and widowed persons on the other hand, for whom the effect is largest around the age of 25. (3) When different causes of death are distinguished, the effect is largest for suicide and smallest for cancer. For heart disease and cerebrovascular accidents, the fact of being married divides the death rate by 2.2 compared to non-married persons. (4) For young widowers the death rates are up to 10 times higher than for married persons of same age. This extreme form of the FB effect will be referred to as the ;young widower effect;. Chinese data are used to explore this effect more closely. A possible connection between the FB effect and Martin Raff's ;Stay alive; effect for the cells in an organism is discussed in the last section.

  7. Approximate analytic solutions to coupled nonlinear Dirac equations

    DOE PAGES

    Khare, Avinash; Cooper, Fred; Saxena, Avadh

    2017-01-30

    Here, we consider the coupled nonlinear Dirac equations (NLDEs) in 1+11+1 dimensions with scalar–scalar self-interactions g 1 2/2(more » $$\\bar{ψ}$$ψ) 2 + g 2 2/2($$\\bar{Φ}$$Φ) 2 + g 2 3($$\\bar{ψ}$$ψ)($$\\bar{Φ}$$Φ) as well as vector–vector interactions g 1 2/2($$\\bar{ψ}$$γμψ)($$\\bar{ψ}$$γμψ) + g 2 2/2($$\\bar{Φ}$$γμΦ)($$\\bar{Φ}$$γμΦ) + g 2 3($$\\bar{ψ}$$γμψ)($$\\bar{Φ}$$γμΦ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ=e –iω1tR 1cosθ,R 1sinθΦ=e –iω2tR 2cosη,R 2sinη, and assuming that θ(x),η(x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri(x) which are valid for small values of g 3 2/g 2 2 and g 3 2/g 1 2. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ±∞.« less

  8. Approximate analytic solutions to coupled nonlinear Dirac equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Avinash; Cooper, Fred; Saxena, Avadh

    Here, we consider the coupled nonlinear Dirac equations (NLDEs) in 1+11+1 dimensions with scalar–scalar self-interactions g 1 2/2(more » $$\\bar{ψ}$$ψ) 2 + g 2 2/2($$\\bar{Φ}$$Φ) 2 + g 2 3($$\\bar{ψ}$$ψ)($$\\bar{Φ}$$Φ) as well as vector–vector interactions g 1 2/2($$\\bar{ψ}$$γμψ)($$\\bar{ψ}$$γμψ) + g 2 2/2($$\\bar{Φ}$$γμΦ)($$\\bar{Φ}$$γμΦ) + g 2 3($$\\bar{ψ}$$γμψ)($$\\bar{Φ}$$γμΦ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ=e –iω1tR 1cosθ,R 1sinθΦ=e –iω2tR 2cosη,R 2sinη, and assuming that θ(x),η(x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri(x) which are valid for small values of g 3 2/g 2 2 and g 3 2/g 1 2. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ±∞.« less

  9. Technology and medication errors: impact in nursing homes.

    PubMed

    Baril, Chantal; Gascon, Viviane; St-Pierre, Liette; Lagacé, Denis

    2014-01-01

    The purpose of this paper is to study a medication distribution technology's (MDT) impact on medication errors reported in public nursing homes in Québec Province. The work was carried out in six nursing homes (800 patients). Medication error data were collected from nursing staff through a voluntary reporting process before and after MDT was implemented. The errors were analysed using: totals errors; medication error type; severity and patient consequences. A statistical analysis verified whether there was a significant difference between the variables before and after introducing MDT. The results show that the MDT detected medication errors. The authors' analysis also indicates that errors are detected more rapidly resulting in less severe consequences for patients. MDT is a step towards safer and more efficient medication processes. Our findings should convince healthcare administrators to implement technology such as electronic prescriber or bar code medication administration systems to improve medication processes and to provide better healthcare to patients. Few studies have been carried out in long-term healthcare facilities such as nursing homes. The authors' study extends what is known about MDT's impact on medication errors in nursing homes.

  10. Recent Measurement of Flavor Asymmetry of Antiquarks in the Proton by Drell–Yan Experiment SeaQuest at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, Kei

    A measurement of the flavor asymmetry of the antiquarks (more » $$\\bar{d}$$ and $$\\bar{u}$$) in the proton is described in this thesis. The proton consists of three valence quarks, sea quarks, and gluons. Antiquarks in the proton are sea quarks. They are generated from the gluon splitting: g → q + $$\\bar{q}$$. According to QCD (Quantum Chromodynamics), the gluon splitting is independent of quark flavor. It suggests that the amounts of $$\\bar{d}$$ and $$\\bar{u}$$ should be the same in the proton. However, the NMC experiment at CERN found that the amount of $$\\bar{d}$$ is larger than that of $$\\bar{u}$$ in the proton using the deep inelastic scattering in 1991. This result is obtained for $$\\bar{d}$$ and $$\\bar{u}$$ integrated over Bjorken x. Bjorken x is the fraction of the momentum of the parton to that of the proton. The NA51 experiment (x ~ 0.2) at CERN and E866/NuSea experiment (0.015 < x < 0.35) at Fermilab measured the flavor asymmetry of the antiquarks ($$\\bar{d}$$/$$\\bar{u}$$) in the proton as a function of x using Drell–Yan process. The experiments reported that the flavor symmetry is broken over all measured x values. Understanding the flavor asymmetry of the antiquarks in the proton is a challenge of the QCD. The theo- retical investigation from the first principle of QCD such as lattice QCD calculation is important. In addition, the QCD effective models and hadron models such as the meson cloud model can also be tested with the flavor asymmetry of antiquarks. From the experimental side, it is important to measure with higher accuracy and in a wider x range. The SeaQuest (E906) experiment measures $$\\bar{d}$$/$$\\bar{u}$$ at large x (0.15 < x < 0.45) accurately to understand its behavior. The SeaQuest experiment is a Drell–Yan experiment at Fermi National Accelerator Laboratory (Fermilab). In the Drell–Yan process of proton-proton reaction, an antiquark in a proton and a quark in another proton annihilate and create a virtual photon, which then decays into a muon pair (q$$\\bar{q}$$ → γ* → µ +µ -). The SeaQuest experiment uses a 120 GeV proton beam extracted from Fermilab’s Main Injector. The proton beam interacts with hydrogen and deuterium targets. The SeaQuest spectrometer detects the muon pairs from the Drell–Yan process. The $$\\bar{d}$$/$$\\bar{u}$$ ratio at 0.1 < x < 0.58 is extracted from the number of detected Drell–Yan muon pairs. After the detector construction, commissioning run and detector upgrade, the SeaQuest experiment started the physics data acquisition from 2013. We finished so far three periods of physics data acquisition. The fourth period is in progress. The detector construction, detector performance evaluation, data taking and data analysis for the flavor asymmetry of the antiquarks $$\\bar{d}$$/$$\\bar{u}$$ in the proton are my contribution to SeaQuest. The cross section ratio of Drell–Yan process in p- p and p-d reactions is obtained from dimuon yields. In the experiment with high beam intensity, it is important to control the tracking efficiency of charged particles through the magnetic spectrometer. The tracking efficiency depends on the chamber occupancy, and the appropriate method for the correction is important. The chamber occupancy is the number of hits in drift chambers. A new method of the correction for the tracking efficiency is developed based on the occupancy, and applied to the data. This method reflects the real response of the drift chambers. Therefore, the systematic error is well controlled by this method. The flavor asymmetry of antiquarks is obtained at 0.1 < x < 0.58. At 0.1 < x < 0.45, the result is $$\\bar{d}$$/$$\\bar{u}$$ > 1. The result at 0.1 < x < 0.24 agrees with the E866 result. The result at x > 0.24, however, disagrees with the E866 result. The result at 0.45 < x < 0 the statistical errors. u¯ results extracted from experiments are used to investigate the validity of the theoretical models. The present experimental result provides the data points in wide x region. It is useful for understanding the proton structure in the light of QCD and effective hadron models. The present result has a practical application as well. Antiquark distributions are important as inputs to simulations of hadron reactions such as W± production in various experiments. The new knowledge on antiquark distributions helps to improve the precision of the simulations.« less

  11. Sediment Dynamics Over a Stable Point bar of the San Pedro River, Southeastern Arizona

    NASA Astrophysics Data System (ADS)

    Hamblen, J. M.; Conklin, M. H.

    2002-12-01

    Streams of the Southwest receive enormous inputs of sediment during storm events in the monsoon season due to the high intensity rainfall and large percentages of exposed soil in the semi-arid landscape. In the Upper San Pedro River, with a watershed area of approximately 3600 square kilometers, particle size ranges from clays to boulders with large fractions of sand and gravel. This study focuses on the mechanics of scour and fill on a stable point bar. An innovative technique using seven co-located scour chains and liquid-filled, load-cell scour sensors characterized sediment dynamics over the point bar during the monsoon season of July to September 2002. The sensors were set in two transects to document sediment dynamics near the head and toe of the bar. Scour sensors record area-averaged sediment depths while scour chains measure scour and fill at a point. The average area covered by each scour sensor is 11.1 square meters. Because scour sensors have never been used in a system similar to the San Pedro, one goal of the study was to test their ability to detect changes in sediment load with time in order to determine the extent of scour and fill during monsoonal storms. Because of the predominantly unconsolidated nature of the substrate it was hypothesized that dune bedforms would develop in events less than the 1-year flood. The weak 2002 monsoon season produced only two storms that completely inundated the point bar, both less than the 1-year flood event. The first event, 34 cms, produced net deposition in areas where Johnson grass had been present and was now buried. The scour sensor at the lowest elevation, in a depression which serves as a secondary channel during storm events, recorded scour during the rising limb of the hydrograph followed by pulses we interpret to be the passage of dunes. The second event, although smaller at 28 cms, resulted from rain more than 50 km upstream and had a much longer peak and a slowly declining falling limb. During the second flood, several areas with buried vegetation were scoured back to their original bed elevations. Pulses of sediment passed over the sensor in the secondary channel and the sensor in the vegetated zone. Scour sensor measurements agree with data from scour chains (error +/- 3 cm) and surveys (error +/- 0.6 cm) performed before and after the two storm events, within the range of error of each method. All load sensor data were recorded at five minute intervals. Use of a smaller interval could give more details about the shapes of sediment waves and aid in bedform determination. Results suggest that dune migration is the dominant mechanism for scour and backfill in the point bar setting. Scour sensors, when coupled with surveying and/or scour chains, are a tremendous addition to the geomorphologist's toolbox, allowing unattended real-time measurements of sediment depth with time.

  12. Crystallographic relationship of YTaO4 particles with matrix in Ta-containing 12Cr ODS steel

    NASA Astrophysics Data System (ADS)

    Mao, Xiaodong; Kim, Tae Kyu; Kim, Sung Soo; Han, Young Soo; Oh, Kyu Hwan; Jang, Jinsung

    2015-06-01

    The crystallography of monoclinic YTaO4 particles and the atomic structure at the particle/ferrite matrix interface in Ta-containing 12Cr ODS steel have been examined by means of SAD and HRTEM. Three different peaks in size distribution of oxide particles were detected by SANS, with the peak positions at 1.5 nm, 9 nm, and 100 nm in size. The results show that many YTaO4 particles are semi-coherent with the matrix, and the habit plane determined in most cases is { 0 5 1 } O / /{ 0 1 1 } M . Orientation relationships of (0 5 1) O / /(1 bar 1 bar 0) M , [ 7 1 5 bar ] O / /[ 1 bar 1 1 ] M ; (1 2 1) O / /(1 1 0) M , [ 2 bar 1 0 ] O / /[ 0 0 1 ] M ; (0 5 1) O / /(0 1 1) M , [ 7 1 5 bar ] O / /[ 0 1 bar 1 ] M and (0 5 bar 1) O / /(1 bar 1 bar 0) M , [ 3 bar 1 5 ] O / /[ 1 bar 1 3 ] M were found. These orientation relationships provide a very small misorientation between the specific planes of YTaO4 particles and {1 1 0} close packed planes of ferrite. Fine particles of around 4 nm in size exhibited incoherent relationship with the misfit angle of around 10° with the matrix. Observation on particles ranging from 7 to 50 nm in size revealed that the crystallographic relationship is semi-coherent between oxide particles and the matrix.

  13. Turbulence- and particle-resolved modeling of self-formed channels

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2016-12-01

    A numerical model is presented that combines a large eddy simulation (LES) of turbulent water motion and a discrete element method (DEM) simulation of all sediment particles forming a small alluvial river. All simulations are begun with a relatively narrow and deep channel and a constant body force is applied to the fluid. At very small applied force at the critical shear stress for sediment motion the channel becomes wider and shallower. Transport on the banks becomes very small with larger transport at the center of the channel. However, even the very small bank transport resulted in continued net downslope motion and channel widening; bedload diffusion from higher transport areas of the channel is not sufficient to counteract downslope transport. This simulation will be extended over much longer times to determine whether an equilibrium straight channel with transport is possible without varying the water discharge. Simulations at slightly higher fluid forcing results in the development of alternate bars. Particle size segregation occurs in all simulations at multiple scales. At the smallest scale, turbulent structures induce small scale depressions; larger particles preferentially move to lower elevations of the depressions. Sloping beds at banks and bars also increase size segregation. However, bar translation mixes segregated sediments. Granular modeling of river channels appears to be a fruitful method for testing and developing continuum ideas of channel pattern formation and size segregation.

  14. Turbulence-and particle-resolved modeling of self-formed channels

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2017-12-01

    A numerical model is presented that combines a large eddy simulation (LES) of turbulent water motion and a discrete element method (DEM) simulation of all sediment particles forming a small alluvial river. All simulations are begun with a relatively narrow and deep channel and a constant body force is applied to the fluid. At very small applied force at the critical shear stress for sediment motion the channel becomes wider and shallower. Transport on the banks becomes very small with larger transport at the center of the channel. However, even the very small bank transport resulted in continued net downslope motion and channel widening; bedload diffusion from higher transport areas of the channel is not sufficient to counteract downslope transport. This simulation will be extended over much longer times to determine whether an equilibrium straight channel with transport is possible without varying the water discharge. Simulations at slightly higher fluid forcing results in the development of alternate bars. Particle size segregation occurs in all simulations at multiple scales. At the smallest scale, turbulent structures induce small scale depressions; larger particles preferentially move to lower elevations of the depressions. Sloping beds at banks and bars also increase size segregation. However, bar translation mixes segregated sediments. Granular modeling of river channels appears to be a fruitful method for testing and developing continuum ideas of channel pattern formation and size segregation.

  15. Radial Microchannel Reactor (RMR) used in Steam Reforming CH4

    DTIC Science & Technology

    2013-05-13

    process on land and at sea will reduce CO2 emission and enable cost reductions in the generation of energy in many small market economies. Peter R...size of GTL process on land and at sea will reduce CO2 emission and enable cost reductions in the generation of energy in many small market ...distribution of a 3.3:1 steam-methane mixture at 750 °C and 11 bar is: H2 45.8%, H2O 36.99%, CO 6.365%, CO2 6.681% and CH4 4.14% Barring any coking , this

  16. Experimental Study of the Seismic Performance of L-Shaped Columns with 500 MPa Steel Bars

    PubMed Central

    Wang, Tiecheng; Liu, Xiao; Zhao, Hailong

    2014-01-01

    Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars. PMID:24967420

  17. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  18. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  19. Impact buckling of thin bars in the elastic range for any end condition

    NASA Technical Reports Server (NTRS)

    Taub, Josef

    1934-01-01

    Following a qualitative discussion of the complicated process involved in a short-period, longitudinal force applied to an originally not quite straight bar, the actual process is substituted by an idealized process for the purpose of analytical treatment. The simplifications are: the assumption of an infinitely high rate of propagation of the elastic longitudinal waves in the bar, limitation to slender bars, disregard of material damping and of rotatory inertia, the assumption of consistently small elastic deformations, the assumption of cross-sectional dimensions constant along the bar axis, the assumption of a shock-load constant in time, and the assumption of eccentricities on one plane. Then follow the mathematical principles for resolving the differential equation of the simplified problem, particularly the developability of arbitrary functions with steady first and second and intermittently steady third and fourth derivatives into one convergent series, according to the natural functions of the homogeneous differential equation.

  20. Information technology and medication safety: what is the benefit?

    PubMed Central

    Kaushal, R; Bates, D

    2002-01-01

    

 Medication errors occur frequently and have significant clinical and financial consequences. Several types of information technologies can be used to decrease rates of medication errors. Computerized physician order entry with decision support significantly reduces serious inpatient medication error rates in adults. Other available information technologies that may prove effective for inpatients include computerized medication administration records, robots, automated pharmacy systems, bar coding, "smart" intravenous devices, and computerized discharge prescriptions and instructions. In outpatients, computerization of prescribing and patient oriented approaches such as personalized web pages and delivery of web based information may be important. Public and private mandates for information technology interventions are growing, but further development, application, evaluation, and dissemination are required. PMID:12486992

  1. Testing physical models for dipolar asymmetry with CMB polarization

    NASA Astrophysics Data System (ADS)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  2. Why Are Some Galaxies Not Barred?

    NASA Astrophysics Data System (ADS)

    Saha, Kanak; Elmegreen, Bruce

    2018-05-01

    Although more than two-thirds of star-forming disk galaxies in the local universe are barred, some galaxies remain unbarred, occupying the upper half of the Hubble tuning fork diagram. Numerical simulations almost always produce bars spontaneously, so it remains a challenge to understand how galaxies sometimes prevent bars from forming. Using a set of collisionless simulations, we first reproduce the common result that cold stellar disks surrounding a classical bulge become strongly unstable to non-axisymmetric perturbations, leading to the rapid formation of spiral structure and bars. However, our analyses show that galaxy models with compact classical bulges (whose average density is greater than or comparable to the disk density calculated within bulge half-mass radii) are able to prevent bar formation for at least 4 Gyr even when the stellar disk is maximal and having low Toomre Q. Such bar prevention is the result of several factors such as (a) a small inner Lindblad resonance with a high angular rate, which contaminates an incipient bar with x 2 orbits, and (b) rapid loss of angular momentum accompanied by a rapid heating in the center from initially strong bar and spiral instabilities in a low-Q disk; in other words, a rapid initial rise to a value larger than ∼5 of the ratio of the random energy to the rotational energy in the central region of the galaxy.

  3. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    NASA Astrophysics Data System (ADS)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  4. Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2007-02-01

    There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.

  5. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1).

    PubMed

    Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano

    2014-09-25

    Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.

  6. Author Correction: Nanoscale control of competing interactions and geometrical frustration in a dipolar trident lattice.

    PubMed

    Farhan, Alan; Petersen, Charlotte F; Dhuey, Scott; Anghinolfi, Luca; Qin, Qi Hang; Saccone, Michael; Velten, Sven; Wuth, Clemens; Gliga, Sebastian; Mellado, Paula; Alava, Mikko J; Scholl, Andreas; van Dijken, Sebastiaan

    2017-12-12

    The original version of this article contained an error in the legend to Figure 4. The yellow scale bar should have been defined as '~600 nm', not '~600 µm'. This has now been corrected in both the PDF and HTML versions of the article.

  7. The Importance of Statistical Modeling in Data Analysis and Inference

    ERIC Educational Resources Information Center

    Rollins, Derrick, Sr.

    2017-01-01

    Statistical inference simply means to draw a conclusion based on information that comes from data. Error bars are the most commonly used tool for data analysis and inference in chemical engineering data studies. This work demonstrates, using common types of data collection studies, the importance of specifying the statistical model for sound…

  8. LOCATING NEARBY SOURCES OF AIR POLLUTION BY NONPARAMETRIC REGRESSION OF ATMOSPHERIC CONCENTRATIONS ON WIND DIRECTION. (R826238)

    EPA Science Inventory

    The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...

  9. Measurement of the double differential diject mass cross section in p$$\\bar{p}$$ collisions at √(s) = 1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rominsky, Mandy Kathleen

    2009-01-01

    This thesis presents the analysis of the double differential dijet mass cross section, measured at the D0 detector in Batavia, IL, using pmore » $$\\bar{p}$$ collisions at a center of mass energy of √s = 1.96 TeV. The dijet mass was calculated using the two highest p T jets in the event, with approximately 0.7 fb -1 of data collected between 2004 and 2005. The analysis was presented in bins of dijet mass (M JJ) and rapidity (y), and extends the measurement farther in M JJ and y than any previous measurement. Corrections due to detector effects were calculated using a Monte Carlo simulation and applied to data. The errors on the measurement consist of statistical and systematic errors, of which the Jet Energy Scale was the largest. The final result was compared to next-to-leading order theory and good agreement was found. These results may be used in the determination of the proton parton distribution functions and to set limits on new physics.« less

  10. Improved experimental and diagnostic techniques for dynamic tensile stress–strain measurement with a Kolsky tension bar

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Loeffler, Colin M.; Nie, Xu; Song, Bo

    2018-07-01

    Kolsky tension bar experiments were improved for dynamic tensile stress–strain measurements with higher fidelity and minimal uncertainties. The difficulties associated with specimen gripping, relatively short gage section, and geometric discontinuity at the bar ends all compromise the accuracy of the traditional strain measurement method in a Kolsky tension bar experiment. In this study, an improved three-channel splitting-beam laser extensometer technique was developed to directly and independently track the displacement of the incident and transmission bar interfaces. By adopting a dual-channel configuration on the incident bar side, the resolution and measurement range of this laser extensometer were coordinated between the two channels to provide highly precise measurement at both small and large strains under high strain-rate loading condition. On the transmission bar side an amplified channel, similar to that used on the incident bar side, was adopted to measure the transmission bar displacement with high resolution. With this novel design, a maximum resolution of approximately 500 nm can be obtained for the bar displacement measurement, which corresponds to a strain of 0.0079% for a specimen with 6.35 mm gage length. To further improve the accuracy, a pair of lock nuts were used to tighten the tensile specimen to the bars in an effort not only to prevent the specimen from potential pre-torsional deformation and damage during installation, but also to provide better thread engagement between the specimen and the bar ends. As a demonstration of this technique, dynamic tensile stress–strain response of a 304L stainless steel was characterized with high resolution in both elastic and plastic deformations.

  11. Color Histogram Diffusion for Image Enhancement

    NASA Technical Reports Server (NTRS)

    Kim, Taemin

    2011-01-01

    Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.

  12. Evaluating diffraction based overlay metrology for double patterning technologies

    NASA Astrophysics Data System (ADS)

    Saravanan, Chandra Saru; Liu, Yongdong; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Acheta, Alden; La Fontaine, Bruno

    2008-03-01

    Demanding sub-45 nm node lithographic methodologies such as double patterning (DPT) pose significant challenges for overlay metrology. In this paper, we investigate scatterometry methods as an alternative approach to meet these stringent new metrology requirements. We used a spectroscopic diffraction-based overlay (DBO) measurement technique in which registration errors are extracted from specially designed diffraction targets for double patterning. The results of overlay measurements are compared to traditional bar-in-bar targets. A comparison between DBO measurements and CD-SEM measurements is done to show the correlation between the two approaches. We discuss the total measurement uncertainty (TMU) requirements for sub-45 nm nodes and compare TMU from the different overlay approaches.

  13. Effects of the Global Regulator CsrA on the BarA/UvrY Two-Component Signaling System

    PubMed Central

    Camacho, Martha I.; Alvarez, Adrian F.; Gonzalez Chavez, Ricardo; Romeo, Tony; Merino, Enrique

    2014-01-01

    The hybrid sensor kinase BarA and its cognate response regulator UvrY, members of the two-component signal transduction family, activate transcription of CsrB and CsrC noncoding RNAs. These two small RNAs act by sequestering the RNA binding protein CsrA, which posttranscriptionally regulates translation and/or stability of its target mRNAs. Here, we provide evidence that CsrA positively affects, although indirectly, uvrY expression, at both the transcriptional and translational levels. We also demonstrate that CsrA is required for properly switching BarA from its phosphatase to its kinase activity. Thus, the existence of a feedback loop mechanism that involves the Csr and BarA/UvrY global regulatory systems is exposed. PMID:25535275

  14. The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Özdem, U.

    2018-05-01

    The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.

  15. Nepheline and sodalite in a barred olivine chondrule from the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1980-01-01

    The discovery of nepheline and sodalite in association with glass in a barred olivine chondrule from the Allende C3V meteorite is reported, and the possible origin of the minerals is discussed. Scanning electron microscope/energy dispersive analysis indicates that the major minerals of the chondrule are olivine, bronzite and chromite, with olivine bars separated by glass of nearly pure plagioclase composition. The olivine is observed to have a composition richer in Fe than that predicted from olivine-liquid equilibria, indicating, along with the presence of plagioclase glass and small amounts of subcalcic diopside, the nonequilibrium crystallization of the barred olivine chondrule. The textural features of the chondrule are consistent with a liquid origin for nepheline and sodalite from the chondrule-forming liquid under nonequilibrium conditions.

  16. Constraints on the s - s bar asymmetry of the proton in chiral effective theory

    NASA Astrophysics Data System (ADS)

    Wang, X. G.; Ji, Chueng-Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.

    2016-11-01

    We compute the s - s bar asymmetry in the proton in chiral effective theory, using phenomenological constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms and contact interactions, which impact the shape of the s - s bar difference. We identify a valence-like component of s (x) which is balanced by a δ-function contribution to s bar (x) at x = 0, so that the integrals of s and s bar over the experimentally accessible region x > 0 are not equal. Using a regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the second moment of the asymmetry to the range - 0.07 ×10-3 ≤ < x (s - s bar) > ≤ 1.12 ×10-3 at a scale of Q2 = 1 GeV2. This is too small to account for the NuTeV anomaly and of the wrong sign to enhance it.

  17. Magnetometry of micro-magnets with electrostatically defined Hall bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent

    2015-11-30

    Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large currentmore » density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.« less

  18. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.

    PubMed

    Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E

    2012-09-01

    The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.

  19. Testing CPT Symmetry with Current and Future CMB Measurements

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Xia, Jun-Qing; Li, Mingzhe; Li, Hong; Zhang, Xinmin

    2015-02-01

    In this paper, we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector {L}_cs˜ p_μ A_ν \\tilde{F}μ ν , which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the 9 yr WMAP, BOOMERanG 2003, and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle \\bar{α } = -2.12 +/- 1.14 (1σ), indicating that the significance of the CPT violation is about 2σ. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [Δ {α }({\\hat{n}})] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data cannot constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle C α(0) < 0.035 from all of the CMB data sets. More interestingly, including the anisotropies of rotation angle could lower the best-fit value of r and relax the tension on the constraints of r between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on \\bar{α } and Δ {α }({\\hat{n}}). Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

  20. The Red Edge Problem in asteroid band parameter analysis

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Dunn, Tasha L.; Emery, Joshua P.; Bowles, Neil E.

    2016-04-01

    Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.

  1. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples.

    PubMed

    Nakagawa, Seiji

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver-the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 [ordinal indicator, masculine]C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample. © 2011 American Institute of Physics

  2. A Competition Model of Exogenous Orienting in 3.5-Month-Old Infants.

    ERIC Educational Resources Information Center

    Dannemiller, James L.

    1998-01-01

    Four experiments examined exogenous orienting in 3.5-month-olds. Found that sensitivity to a small moving bar was lower when most of the red bars were in the visual field contra-lateral to this probe. The distribution of color within the visual field biased attention, making it either more or less likely that the infant detected a moving stimulus.…

  3. Feeding ecology of sharp-shinned hawks in deciduous and coniferous forests in Colorado

    Treesearch

    Suzanne M. Joy; Richard T. Reynolds; Richard L. Knight; Richard W. Hoffman

    1994-01-01

    Feeding ecology of 11 Sharp-skinned Hawk (Accipiter striates) pairs nesting in aspen (Populus tremuloides), conifer (Abies, Picea spp.), and mixed aspen-conifer habitats in southwest Colorado was investigated during 1988-1989. Small birds (x-bar = 20.9 g, SE = 0.8 g) and mammals (x-bar = 41.1 g, SE = 3.3 g) comprised 91 and 9% of...

  4. Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field.

    PubMed

    Spörri, Jörg; Schiefermüller, Christian; Müller, Erich

    2016-01-01

    In the laboratory, optoelectronic stereophotogrammetry is one of the most commonly used motion capture systems; particularly, when position- or orientation-related analyses of human movements are intended. However, for many applied research questions, field experiments are indispensable, and it is not a priori clear whether optoelectronic stereophotogrammetric systems can be expected to perform similarly to in-lab experiments. This study aimed to assess the instrumental errors of kinematic data collected on a ski track using optoelectronic stereophotogrammetry, and to investigate the magnitudes of additional skiing-specific errors and soft tissue/suit artifacts. During a field experiment, the kinematic data of different static and dynamic tasks were captured by the use of 24 infrared-cameras. The distances between three passive markers attached to a rigid bar were stereophotogrammetrically reconstructed and, subsequently, were compared to the manufacturer-specified exact values. While at rest or skiing at low speed, the optoelectronic stereophotogrammetric system's accuracy and precision for determining inter-marker distances were found to be comparable to those known for in-lab experiments (< 1 mm). However, when measuring a skier's kinematics under "typical" skiing conditions (i.e., high speeds, inclined/angulated postures and moderate snow spraying), additional errors were found to occur for distances between equipment-fixed markers (total measurement errors: 2.3 ± 2.2 mm). Moreover, for distances between skin-fixed markers, such as the anterior hip markers, additional artifacts were observed (total measurement errors: 8.3 ± 7.1 mm). In summary, these values can be considered sufficient for the detection of meaningful position- or orientation-related differences in alpine skiing. However, it must be emphasized that the use of optoelectronic stereophotogrammetry on a ski track is seriously constrained by limited practical usability, small-sized capture volumes and the occurrence of extensive snow spraying (which results in marker obscuration). The latter limitation possibly might be overcome by the use of more sophisticated cluster-based marker sets.

  5. Neural network uncertainty assessment using Bayesian statistics: a remote sensing application

    NASA Technical Reports Server (NTRS)

    Aires, F.; Prigent, C.; Rossow, W. B.

    2004-01-01

    Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component analysis is proposed to suppress the multicollinearities in order to make these Jacobians robust and physically meaningful.

  6. Health and efficiency in trimix versus air breathing in compressed air workers.

    PubMed

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  7. Three methods of presenting flight vector information in a head-up display during simulated STOL approaches

    NASA Technical Reports Server (NTRS)

    Dwyer, J. H., III; Palmer, E. A., III

    1975-01-01

    A simulator study was conducted to determine the usefulness of adding flight path vector symbology to a head-up display designed to improve glide-slope tracking performance during steep 7.5 deg visual approaches in STOL aircraft. All displays included a fixed attitude symbol, a pitch- and roll-stabilized horizon bar, and a glide-slope reference bar parallel to and 7.5 deg below the horizon bar. The displays differed with respect to the flight-path marker (FPM) symbol: display 1 had no FPM symbol; display 2 had an air-referenced FPM, and display 3 had a ground-referenced FPM. No differences between displays 1 and 2 were found on any of the performance measures. Display 3 was found to decrease height error in the early part of the approach and to reduce descent rate variation over the entire approach. Two measures of workload did not indicate any differences between the displays.

  8. Turbulent heat flux measurements in a transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Sohn, K. H.; Zaman, K. B. M. Q.; Reshotko, E.

    1992-01-01

    During an experimental investigation of the transitional boundary layer over a heated flat plate, an unexpected result was encountered for the turbulent heat flux (bar-v't'). This quantity, representing the correlation between the fluctuating normal velocity and the temperature, was measured to be negative near the wall under certain conditions. The result was unexpected as it implied a counter-gradient heat transfer by the turbulent fluctuations. Possible reasons for this anomalous result were further investigated. The possible causes considered for this negative bar-v't' were: (1) plausible measurement error and peculiarity of the flow facility, (2) large probe size effect, (3) 'streaky structure' in the near wall boundary layer, and (4) contributions from other terms usually assumed negligible in the energy equation including the Reynolds heat flux in the streamwise direction (bar-u't'). Even though the energy balance has remained inconclusive, none of the items (1) to (3) appear to be contributing directly to the anomaly.

  9. Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits

    PubMed Central

    Xu, Yidong; Qian, Chunxiang

    2013-01-01

    Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

  10. Patient Safety: Moving the Bar in Prison Health Care Standards

    PubMed Central

    Greifinger, Robert B.; Mellow, Jeff

    2010-01-01

    Improvements in community health care quality through error reduction have been slow to transfer to correctional settings. We convened a panel of correctional experts, which recommended 60 patient safety standards focusing on such issues as creating safety cultures at organizational, supervisory, and staff levels through changes to policy and training and by ensuring staff competency, reducing medication errors, encouraging the seamless transfer of information between and within practice settings, and developing mechanisms to detect errors or near misses and to shift the emphasis from blaming staff to fixing systems. To our knowledge, this is the first published set of standards focusing on patient safety in prisons, adapted from the emerging literature on quality improvement in the community. PMID:20864714

  11. Type of Primary Nb₅Si₃ and Precipitation of Nbss in αNb₅Si₃ in a Nb-8.3Ti-21.1Si-5.4Mo-4W-0.7Hf (at.%) Near Eutectic Nb-Silicide-Based Alloy.

    PubMed

    McCaughey, Conor; Tsakiropoulos, Panos

    2018-06-07

    The Nb-silicide-based alloy of near eutectic composition (at.%) Nb-21.1Si-8.3Ti-5.4Mo-4W-0.7Hf (alloy CM1) was studied in the cast and heat-treated (1500 °C/100 h) conditions. The alloy was produced in the form of buttons and bars using three different methods, namely arc-melting, arc-melting and suction casting, and optical floating zone (OFZ) melting. In the former two cases the alloy solidified in water-cooled copper crucibles. Buttons and suction-cast bars of different size, respectively of 10 g and 600 g weight and 6 mm and 8 mm diameter, were produced. The OFZ bars were grown at three different growth rates of 12, 60 and 150 mm/h. It was confirmed that the type of Nb₅Si₃ formed in the cast microstructures depended on the solidification conditions. The primary phase in the alloy CM1 was the βNb₅Si₃. The transformation of βNb₅Si₃ to αNb₅Si₃ had occurred in the as cast large size button and the OFZ bars grown at the three different growth rates, and after the heat treatment of the small size button and the suction-cast bars of the alloy. This transformation was accompanied by subgrain formation in Nb₅Si₃ and the precipitation of Nb ss in the large size as cast button and only by the precipitation of Nb ss in the cast OFZ bars. Subgrains and precipitation of Nb ss in αNb₅Si₃ was observed in the small size button and suction-cast bars after the heat treatment. Subgrains formed in αNb₅Si₃ after the heat treatment of the OFZ bars. The partitioning of solutes and in particular of Mo and Ti was key to this phase transformation. Subgrain formation was not necessary for precipitation of Nb ss in αNb₅Si₃, but the partitioning of solutes was essential for this precipitation.

  12. Nuclear Spiral Shocks and Induced Gas Inflows in Weak Oval Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woong-Tae; Elmegreen, Bruce G., E-mail: wkim@astro.snu.ac.kr, E-mail: bge@us.ibm.com

    Nuclear spirals are ubiquitous in galaxy centers. They exist not only in strong barred galaxies but also in galaxies without noticeable bars. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like and oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in largemore » mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies as well as to drive supersonic turbulence at small radii.« less

  13. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  14. Context matters: the educational potential of gay bars revisited.

    PubMed

    Warwick, Ian; Douglas, Nicola; Aggleton, Peter; Boyce, Paul

    2003-08-01

    Gay bars have been frequently identified as suitable environments in which to conduct HIV prevention activities among homosexually active men. In theory, they provide easy access to a relatively diverse group of men. However, gay bars are environments in which the primary purpose is a social one. Gay men use them to take time out, to socialize, and, on occasions, to find new sexual partners. They are also settings in which social reputations often have to be managed. This study examined the HIV/AIDS educational potential of four gay bars in London, Britain. Semistructured observations and interviews took place in four contrasting bars with a focus on men's perceptions of HIV/AIDS-related health promotion activities including condom promotion, the use of posters and small media, and understandings of safer sex. Respondents were ambivalent about AIDS-related health education activities being undertaken. The implications of such responses for the development of HIV primary prevention activities in such settings are discussed.

  15. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, T; Kim, H; Ning, XH

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75more » V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.« less

  16. Evaluation of a nontoxic rigid polymer as connecting bar in external skeletal fixators.

    PubMed

    Störk, Christoph K; Canivet, Philippe; Baidak, Alexandre A; Balligand, Marc H

    2003-01-01

    To investigate the mechanical characteristics of a nontoxic, low-cost, rigid polymer (RP) and to compare the structural and mechanical properties of a full-frame external skeletal fixator (ESF) with either RP connecting bars, polymethylmethacrylate (PMMA) connecting bars, or stainless-steel (SS) clamps and connecting bars. In vitro mechanical evaluation. Mechanical properties were assessed using an in vitro bone fracture model with a bilateral uniplanar ESF (type II). Identical ESF were built with connecting bars using RP (n = 8), PMMA (n = 8), and SS connecting bars and clamps (System Meynard; n = 3). Nondestructive mechanical tests were performed in uniaxial compression (AC) and craniocaudal (CC) 4-point bending, as well as fatigue AC. Composite stiffness for each specimen and for each loading mode was calculated from 6 replicate measures using the slope of the load displacement curve at small displacements. RP, PMMA, and SS ESF constructs yielded mean +/- SD composite stiffness values of 227 +/- 15, 381 +/- 30, and 394 +/- 9 N/mm in AC and of 35 +/- 2, 24 +/- 2, and 15 +/- 0 N/mm in CC, respectively. Structural and mechanical properties of RP are satisfactorily rigid and fatigue resistant for its use as a connecting bar in ESF. RP connecting bars in an ESF are a reliable, versatile, nontoxic and inexpensive option for the veterinary surgeon. Copyright 2003 by The American College of Veterinary Surgeons

  17. Erratum: Measurement of the electron charge asymmetry in $$\\boldsymbol{p\\bar{p}\\rightarrow W+X \\rightarrow e\

    DOE PAGES

    Abazov, Victor Mukhamedovich

    2015-04-30

    The recent paper on the charge asymmetry for electrons from W boson decay has an error in the Tables VII to XI that show the correlation coefficients of systematic uncertainties. Furthermore, the correlation matrix elements shown in the original publication were the square roots of the calculated values.

  18. Author Correction: Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

    NASA Astrophysics Data System (ADS)

    Vadawale, S. V.; Chattopadhyay, T.; Mithun, N. P. S.; Rao, A. R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V. B.; Dewangan, G. C.; Misra, R.; Paul, B.; Basu, A.; Joshi, B. C.; Sreekumar, S.; Samuel, E.; Priya, P.; Vinod, P.; Seetha, S.

    2018-05-01

    In the Supplementary Information file originally published for this Letter, in Supplementary Fig. 7 the error bars for the polarization fraction were provided as confidence intervals but instead should have been Bayesian credibility intervals. This has been corrected and does not alter the conclusions of the Letter in any way.

  19. National Centers for Environmental Prediction

    Science.gov Websites

    : Influence of convective parameterization on the systematic errors of Climate Forecast System (CFS) model ; Climate Dynamics, 41, 45-61, 2013. Saha, S., S. Pokhrel and H. S. Chaudhari : Influence of Eurasian snow Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather

  20. Author Correction: Circuit dissection of the role of somatostatin in itch and pain.

    PubMed

    Huang, Jing; Polgár, Erika; Solinski, Hans Jürgen; Mishra, Santosh K; Tseng, Pang-Yen; Iwagaki, Noboru; Boyle, Kieran A; Dickie, Allen C; Kriegbaum, Mette C; Wildner, Hendrik; Zeilhofer, Hanns Ulrich; Watanabe, Masahiko; Riddell, John S; Todd, Andrew J; Hoon, Mark A

    2018-06-01

    In the version of this article initially published online, the labels were switched for the right-hand pair of bars in Fig. 4e. The left one of the two should be Chloroquine + veh, the right one Chloroquine + CNO. The error has been corrected in the print, HTML and PDF versions of the article.

  1. Optical Estimation of Depth and Current in a Ebb Tidal Delta Environment

    NASA Astrophysics Data System (ADS)

    Holman, R. A.; Stanley, J.

    2012-12-01

    A key limitation to our ability to make nearshore environmental predictions is the difficulty of obtaining up-to-date bathymetry measurements at a reasonable cost and frequency. Due to the high cost and complex logistics of in-situ methods, research into remote sensing approaches has been steady and has finally yielded fairly robust methods like the cBathy algorithm for optical Argus data that show good performance on simple barred beach profiles and near immunity to noise and signal problems. In May, 2012, data were collected in a more complex ebb tidal delta environment during the RIVET field experiment at New River Inlet, NC. The presence of strong reversing tidal currents led to significant errors in cBathy depths that were phase-locked to the tide. In this paper we will test methods for the robust estimation of both depths and vector currents in a tidal delta domain. In contrast to previous Fourier methods, wavenumber estimation in cBathy can be done on small enough scales to resolve interesting nearshore features.

  2. The application research of microwave nondestructive testing and imaging based on ω-k algorithm

    NASA Astrophysics Data System (ADS)

    Qi, Shengxiang; Ren, Jian; Gu, Lihua; Xu, Hui; Wang, Yuanbo

    2017-07-01

    The Bridges had collapsed accidents in recent years due to bridges quality problems. Therefore, concretes nondestructive testing are particularly important. At present, most applications are Ground Penetrating Radar (GPR) technology in the detection of reinforced concretes structure. GPR are used the pulse method which alongside with definitive advantages, but the testing of the internal structure of the small thickness concretes has very low resolution by this method. In this paper, it's the first time to use the ultra-wideband (UWB) stepped frequency conversion radar above problems. We use vector network analyzer and double ridged horn antenna microwave imaging system to test the reinforced concretes block. The internal structure of the concretes is reconstructed with a method of synthetic aperture of ω-k algorithm. By this method, the depth of the steel bar with the diameter of 1cm is shown exactly in the depth of 450mm×400mm×500mm and the depth error do not exceed 1cm.

  3. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions.

    PubMed

    Yan, Yangqian; Blume, D

    2016-06-10

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  4. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buras, Andrzej J.; /Munich, Tech. U.; Gorbahn, Martin

    The authors calculate the complete next-to-next-to-leading order QCD corrections to the charm contribution of the rare decay K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}. They encounter several new features, which were absent in lower orders. They discuss them in detail and present the results for the two-loop matching conditions of the Wilson coefficients, the three-loop anomalous dimensions, and the two-loop matrix elements of the relevant operators that enter the next-to-next-to-leading order renormalization group analysis of the Z-penguin and the electroweak box contribution. The inclusion of the next-to-next-to-leading order QCD corrections leads to a significant reduction of the theoretical uncertainty from {+-}more » 9.8% down to {+-} 2.4% in the relevant parameter P{sub c}(X), implying the leftover scale uncertainties in {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) and in the determination of |V{sub td}|, sin 2{beta}, and {gamma} from the K {yields} {pi}{nu}{bar {nu}} system to be {+-} 1.3%, {+-} 1.0%, {+-} 0.006, and {+-} 1.2{sup o}, respectively. For the charm quark {ovr MS} mass m{sub c}(m{sub c}) = (1.30 {+-} 0.05) GeV and |V{sub us}| = 0.2248 the next-to-leading order value P{sub c}(X) = 0.37 {+-} 0.06 is modified to P{sub c}(X) = 0.38 {+-} 0.04 at the next-to-next-to-leading order level with the latter error fully dominated by the uncertainty in m{sub c}(m{sub c}). They present tables for P{sub c}(X) as a function of m{sub c}(m{sub c}) and {alpha}{sub s}(M{sub z}) and a very accurate analytic formula that summarizes these two dependences as well as the dominant theoretical uncertainties. Adding the recently calculated long-distance contributions they find {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) = (8.0 {+-} 1.1) x 10{sup -11} with the present uncertainties in m{sub c}(m{sub c}) and the Cabibbo-Kobayashi-Maskawa elements being the dominant individual sources in the quoted error. They also emphasize that improved calculations of the long-distance contributions to K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}} and of the isospin breaking corrections in the evaluation of the weak current matrix elements from K{sup +} {yields} {pi}{sup 0}e{sup +}{nu} would be valuable in order to increase the potential of the two golden K {yields} {pi}{nu}{bar {nu}} decays in the search for new physics.« less

  6. Study on Rainfall Forecasting by Using Weather Satellite Imagery in a Small Watershed Located at Mountainous Area of Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, C.; Cheng, K. S.

    Using meteorological radar and satellite imagery had become an efficient tool for rainfall forecasting However few studies were aimed to predict quantitative rainfall in small watersheds for flood forecasting by using remote sensing data Due to the terrain shelter and ground clutter effect of Central Mountain Ridges the application of meteorological radar data was limited in mountainous areas of central Taiwan This study devises a new scheme to predict rainfall of a small upstream watershed by combing GOES-9 geostationary weather satellite imagery and ground rainfall records which can be applied for local quantitative rainfall forecasting during periods of typhoon and heavy rainfall Imagery of two typhoon events in 2004 and five correspondent ground raingauges records of Chitou Forest Recreational Area which is located in upstream region of Bei-Shi river were analyzed in this study The watershed accounts for 12 7 square kilometers and altitudes ranging from 1000 m to 1800 m Basin-wide Average Rainfall BAR in study area were estimated by block kriging Cloud Top Temperature CTT from satellite imagery and ground hourly rainfall records were medium correlated The regression coefficient ranges from 0 5 to 0 7 and the value decreases as the altitude of the gauge site increases The regression coefficient of CCT and next 2 to 6 hour accumulated BAR decrease as the time scale increases The rainfall forecasting for BAR were analyzed by Kalman Filtering Technique The correlation coefficient and average hourly deviates between estimated and observed value of BAR for

  7. Multiple-Transportable Carbohydrate Effect on Long-Distance Triathlon Performance.

    PubMed

    Rowlands, David S; Houltham, Stuart D

    2017-08-01

    The ingestion of multiple (2:1 glucose-fructose) transportable carbohydrate in beverages at high rates (>78 g·h) during endurance exercise enhances exogenous carbohydrate oxidation, fluid absorption, gut comfort, and performance relative to glucose alone. However, during long-distance endurance competition, athletes prefer a solid-gel-drink format, and the effect size of multiple-transportable carbohydrate is unknown. This study aimed to determine the effect of multiple-transportable carbohydrate on triathlon competition performance when ingested within bars, gels, and drinks. A double-blind randomized controlled trial was conducted within two national-body sanctioned half-ironman triathlon races held 3 wk apart in 74 well-trained male triathletes (18-60 yr; >2 yr competition experience). Carbohydrate comprising glucose/maltodextrin-fructose (2:1 ratio) or standard isocaloric carbohydrate (glucose/maltodextrin only) was ingested before (94 g) and during the cycle (2.5 g·km) and run (7.8 g·km) sections, averaging 78.6 ± 6.6 g·h, partitioned to bars (25%), gels (35%), and drink (40%). Postrace, 0- to 10-unit Likert-type scales were completed to assess gut comfort and energy. The trial returned low dropout rate (9%), high compliance, and sensitivity (typical error 2.2%). The effect of multiple-transportable carbohydrate on performance time was -0.53% (95% confidence interval = -1.30% to 0.24%; small benefit threshold = -0.54%), with likelihood-based risk analysis supporting adoption (benefit-harm ratio = 48.9%:0.3%; odds ratio = 285:1). Covariate adjustments for preexercise body weight and heat stress had negligible impact performance. Multiple-transportable carbohydrate possibly lowered nausea during the swim and bike; otherwise, effects on gut comfort and perceived energy were negligible. Multiple-transportable (2:1 maltodextrin/glucose-fructose) compared with single-transportable carbohydrate ingested in differing format provided a small benefit to long-distance triathlon performance, inferred as adoption worthy. Large sample in-competition randomized trials offer ecological validity, high participant throughput, compliance, and sensitivity for evaluation of health and performance interventions in athletes.

  8. Verification of image orthorectification techniques for low-cost geometric inspection of masonry arch bridges

    NASA Astrophysics Data System (ADS)

    González-Jorge, Higinio; Riveiro, Belén; Varela, María; Arias, Pedro

    2012-07-01

    A low-cost image orthorectification tool based on the utilization of compact cameras and scale bars is developed to obtain the main geometric parameters of masonry bridges for inventory and routine inspection purposes. The technique is validated in three different bridges by comparison with laser scanning data. The surveying process is very delicate and must make a balance between working distance and angle. Three different cameras are used in the study to establish the relationship between the error and the camera model. Results depict nondependence in error between the length of the bridge element, the type of bridge, and the type of element. Error values for all the cameras are below 4 percent (95 percent of the data). A compact Canon camera, the model with the best technical specifications, shows an error level ranging from 0.5 to 1.5 percent.

  9. Reanalyzing the visible colors of Centaurs and KBOs: what is there and what we might be missing

    NASA Astrophysics Data System (ADS)

    Peixinho, Nuno; Delsanti, Audrey; Doressoundiram, Alain

    2015-05-01

    Since the discovery of the Kuiper belt, broadband surface colors were thoroughly studied as a first approximation to the object reflectivity spectra. Visible colors (BVRI) have proven to be a reasonable proxy for real spectra, which are rather linear in this range. In contrast, near-IR colors (JHK bands) could be misleading when absorption features of ices are present in the spectra. Although the physical and chemical information provided by colors are rather limited, broadband photometry remains the best tool for establishing the bulk surface properties of Kuiper belt objects (KBOs) and Centaurs. In this work, we explore for the first time general, recurrent effects in the study of visible colors that could affect the interpretation of the scientific results: i) how a correlation could be missed or weakened as a result of the data error bars; ii) the "risk" of missing an existing trend because of low sampling, and the possibility of making quantified predictions on the sample size needed to detect a trend at a given significance level - assuming the sample is unbiased; iii) the use of partial correlations to distinguish the mutual effect of two or more (physical) parameters; and iv) the sensitivity of the "reddening line" tool to the central wavelength of the filters used. To illustrate and apply these new tools, we have compiled the visible colors and orbital parameters of about 370 objects available in the literature - assumed, by default, as unbiased samples - and carried out a traditional analysis per dynamical family. Our results show in particular how a) data error bars impose a limit on the detectable correlations regardless of sample size and that therefore, once that limit is achieved, it is important to diminish the error bars, but it is pointless to enlarge the sampling with the same or larger errors; b) almost all dynamical families still require larger samplings to ensure the detection of correlations stronger than ±0.5, that is, correlations that may explain ~25% or more of the color variability; c) the correlation strength between (V - R) vs. (R - I) is systematically lower than the one between (B - V) vs. (V - R) and is not related with error-bar differences between these colors; d) it is statistically equivalent to use any of the different flavors of orbital excitation or collisional velocity parameters regarding the famous color-inclination correlation among classical KBOs - which no longer appears to be a strong correlation - whereas the inclination and Tisserand parameter relative to Neptune cannot be separated from one another; and e) classical KBOs are the only dynamical family that shows neither (B - V) vs. (V - R) nor (V - R) vs. (R - I) correlations. It therefore is the family with the most unpredictable visible surface reflectivities. Tables 4 and 5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A35

  10. Chemical Evolution and History of Star Formation in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gustafsson, Bengt

    1995-07-01

    Large scale processes controlling star formation and nucleosynthesis are fundamental but poorly understood. This is especially true for external galaxies. A detailed study of individual main sequence stars in the LMC Bar is proposed. The LMC is close enough to allow this, has considerable spread in stellar ages and a structure permitting identification of stellar populations and their structural features. The Bar presumably plays a dominant role in the chemical and dynamical evolution of the galaxy. Our knowledge is, at best, based on educated guesses. Still, the major population of the Bar is quite old, and many member stars are relatively evolved. The Bar seems to contain stars similar to those of Intermediate to Extreme Pop II in the Galaxy. We want to study the history of star formation, chemical evolution and initial mass function of the population dominating the Bar. We will use field stars close to the turn off point in the HR diagram. From earlier studies, we know that 250-500 such stars are available for uvby photometry in the PC field. We aim at an accuracy of 0.1 -0.2 dex in Me/H and 25% or better in relative ages. This requires an accuracy of about 0.02 mag in the uvby indices, which can be reached, taking into account errors in calibration, flat fielding, guiding and problems due to crowding. For a study of the luminosity function fainter stars will be included as well. Calibration fields are available in Omega Cen and M 67.

  11. The protoplanetary system HD 100546 in Hα polarized light from SPHERE/ZIMPOL. A bar-like structure across the disk gap?

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Garufi, A.; Lumsden, S. L.; Huélamo, N.; Cheetham, A.; de Wit, W. J.; Norris, B.; Olguin, F. A.; Tuthill, P.

    2017-12-01

    Context. HD 100546 is one of the few known pre-main-sequence stars that may host a planetary system in its disk. Aims: This work aims to contribute to our understanding of HD 100546 by analyzing new polarimetric images with high spatial resolution. Methods: Using VLT/SPHERE/ZIMPOL with two filters in Hα and the adjacent continuum, we have probed the disk gap and the surface layers of the outer disk, covering a region <500 mas (<55 au at 109 pc) from the central star, at an angular resolution of 20 mas. Results: Our data show an asymmetry: the SE and NW regions of the outer disk are more polarized than the SW and NE regions. This asymmetry can be explained from a preferential scattering angle close to 90° and is consistent with previous polarization images. The outer disk in our observations extends from 13 ± 2 to 45 ± 9 au, with a position angle and inclination of 137 ± 5° and 44 ± 8°, respectively. The comparison with previous estimates suggests that the disk inclination could increase with the stellocentric distance, although the different measurements are still consistent within the error bars. In addition, no direct signature of the innermost candidate companion is detected from the polarimetric data, confirming recent results that were based on intensity imagery. We set an upper limit to its mass accretion rate <10-8 M⊙ yr-1 for a substellar mass of 15 MJup. Finally, we report the first detection (>3σ) of a 20 au bar-like structure that crosses the gap through the central region of HD 100546. Conclusions: In the absence of additional data, it is tentatively suggested that the bar could be dust dragged by infalling gas that radially flows from the outer disk to the inner region. This could represent an exceptional case in which a small-scale radial inflow is observed in a single system. If this scenario is confirmed, it could explain the presence of atomic gas in the inner disk that would otherwise accrete on to the central star on a timescale of a few months/years, as previously indicated from spectro-interferometric data, and could be related with additional (undetected) planets.

  12. Value-cell bar charts for visualizing large transaction data sets.

    PubMed

    Keim, Daniel A; Hao, Ming C; Dayal, Umeshwar; Lyons, Martha

    2007-01-01

    One of the common problems businesses need to solve is how to use large volumes of sales histories, Web transactions, and other data to understand the behavior of their customers and increase their revenues. Bar charts are widely used for daily analysis, but only show highly aggregated data. Users often need to visualize detailed multidimensional information reflecting the health of their businesses. In this paper, we propose an innovative visualization solution based on the use of value cells within bar charts to represent business metrics. The value of a transaction can be discretized into one or multiple cells: high-value transactions are mapped to multiple value cells, whereas many small-value transactions are combined into one cell. With value-cell bar charts, users can 1) visualize transaction value distributions and correlations, 2) identify high-value transactions and outliers at a glance, and 3) instantly display values at the transaction record level. Value-Cell Bar Charts have been applied with success to different sales and IT service usage applications, demonstrating the benefits of the technique over traditional charting techniques. A comparison with two variants of the well-known Treemap technique and our earlier work on Pixel Bar Charts is also included.

  13. Deriving the pattern speed using dynamical modelling of gas flows in barred galaxies .

    NASA Astrophysics Data System (ADS)

    Pérez, I.; Freeman, K. C.; Fux, R.; Zurita, A.

    In this paper we analyse the methodology to derive the bar pattern speed from dynamical simulations. The results are robust to the changes in the vertical-scale height and in the mass-to-light (M/L) ratios. There is a small range of parameters for which the kinematics can be fitted. We have also taken into account the use of different type of dynamical modelling and the effect of using 2-D vs 1-D models in deriving the pattern speeds. We conclude that the derivation of the bar streaming motions and strength and position of shocks is not greatly affected by the fluid dynamical model used. We show new results on the derivation of the pattern speed for NGC 1530. The best fit pattern speed is around 10 km s-1 kpc-1 , which corresponds to a R_cor/R_bar = 1.4, implying a slower bar than previously derived from more indirect assumptions. With this pattern speed, the global and most local kinematic features are beautifully reproduced. However, the simulations fail to reproduce the velocity gradients close to some bright HII regions in the bar. We have shown from the study of the H{alpha } equivalent widths that the HII regions that are located further away from the bar dust-lane in its leading side, downstream from the main bar dust-lane, are older than the rest by 1.5-2.5 Myr. In addition, a clear spatial correlation was found between the location of HII regions, dust spurs on the trailing side of the bar dust-lane, and the loci of maximum velocity gradients parallel to the bar major axis.

  14. Thin family: a new barcode concept

    NASA Astrophysics Data System (ADS)

    Allais, David C.

    1991-02-01

    This paper describes a new space-efficient family of thin bar code symbologies which are appropriate for representing small amounts of information. The proposed structure is 30 to 50 percent more compact than the narrowest existing bar code when 12 or fewer bits of information are to be encoded in each symbol. Potential applications for these symbologies include menus catalogs automated test and survey scoring and biological research such as the tracking of honey bees.

  15. Evoked Potentials to Evaluate Mechanisms of Peripheral Nerve Repair.

    DTIC Science & Technology

    1980-02-01

    brass bar. The tibial pin was clamped to vertical bars which in turn were adjustable and could be fixed to longitudinal runners. Muscle contraction was...each muscle contraction recording. After establishing stimulus threshold, supramaximal stimuli were spaced from 1.5 to 2.0 per second. A series of single...hour to 52 weeks after injury. Limbs with mobilized non- injured nerves sustained small but definite decreases in muscle contraction str:?ngth

  16. Confidence, Concentration, and Competitive Performance of Elite Athletes: A Natural Experiment in Olympic Gymnastics.

    ERIC Educational Resources Information Center

    Grandjean, Burke D.; Taylor, Patricia A.; Weiner, Jay

    2002-01-01

    During the women's all-around gymnastics final at the 2000 Olympics, the vault was inadvertently set 5 cm too low for a random half of the gymnasts. The error was widely viewed as undermining their confidence and subsequent performance. However, data from pretest and posttest scores on the vault, bars, beam, and floor indicated that the vault…

  17. Implementing Material Surfaces with an Adhesive Switch

    DTIC Science & Technology

    2014-02-28

    squares), M15 (solid triangles), M13 (open circles), M11 (solid circles), or NC14 (open triangles) DNA primary targets. Error bars indicating...5’–ATCAGGCGCAA–3’ M13 = 5’–ATCAGCGGCAATC–3’ M15 = 5’–ATCAGCCCCAATCCA–3’ L3M9 = 5’–ATLCACLCCGLC–3’ L3M11 = 5

  18. Kinematic parameter estimation using close range photogrammetry for sport applications

    NASA Astrophysics Data System (ADS)

    Magre Colorado, Luz Alejandra; Martínez Santos, Juan Carlos

    2015-12-01

    In this article, we show the development of a low-cost hardware/software system based on close range photogrammetry to track the movement of a person performing weightlifting. The goal is to reduce the costs to the trainers and athletes dedicated to this sport when it comes to analyze the performance of the sportsman and avoid injuries or accidents. We used a web-cam as the data acquisition hardware and develop the software stack in Processing using the OpenCV library. Our algorithm extracts size, position, velocity, and acceleration measurements of the bar along the course of the exercise. We present detailed characteristics of the system with their results in a controlled setting. The current work improves the detection and tracking capabilities from a previous version of this system by using HSV color model instead of RGB. Preliminary results show that the system is able to profile the movement of the bar as well as determine the size, position, velocity, and acceleration values of a marker/target in scene. The average error finding the size of object at four meters of distance is less than 4%, and the error of the acceleration value is 1.01% in average.

  19. Analysis of D0 -> K anti-K X Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-06-06

    Using data taken with the CLEO II detector, they have studied the decays of the D{sup 0} to K{sup +}K{sup -}, K{sup 0}{bar K}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup 0}, K{sup +}K{sup -}{pi}{sup 0}. The authors present significantly improved results for B(D{sup 0} {yields} K{sup +}K{sup -}) = (0.454 {+-} 0.028 {+-} 0.035)%, B(D{sup 0} {yields} K{sup 0}{bar K}{sup 0}) = (0.054 {+-} 0.012 {+-} 0.010)% and B(D{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (0.074 {+-} 0.010 {+-} 0.015)% where the first errors are statistical and the second errors aremore » the estimate of their systematic uncertainty. They also present a new upper limit B(D{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup 0}) < 0.059% at the 90% confidence level and the first measurement of B(D{sup 0} {yields} K{sup +}K{sup -}{pi}{sup 0}) = (0.14 {+-} 0.04)%.« less

  20. Bars and spirals in tidal interactions with an ensemble of galaxy mass models

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Wadsley, J. W.

    2018-03-01

    We present simulations of the gaseous and stellar material in several different galaxy mass models under the influence of different tidal fly-bys to assess the changes in their bar and spiral morphology. Five different mass models are chosen to represent the variety of rotation curves seen in nature. We find a multitude of different spiral and bar structures can be created, with their properties dependent on the strength of the interaction. We calculate pattern speeds, spiral wind-up rates, bar lengths, and angular momentum exchange to quantify the changes in disc morphology in each scenario. The wind-up rates of the tidal spirals follow the 2:1 resonance very closely for the flat and dark matter-dominated rotation curves, whereas the more baryon-dominated curves tend to wind-up faster, influenced by their inner bars. Clear spurs are seen in most of the tidal spirals, most noticeable in the flat rotation curve models. Bars formed both in isolation and interactions agree well with those seen in real galaxies, with a mixture of `fast' and `slow' rotators. We find no strong correlation between bar length or pattern speed and the interaction strength. Bar formation is, however, accelerated/induced in four out of five of our models. We close by briefly comparing the morphology of our models to real galaxies, easily finding analogues for nearly all simulations presenter here, showing passages of small companions can easily reproduce an ensemble of observed morphologies.

  1. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E [Livermore, CA; Groves, Scott E [Brentwood, CA; Larsen, Greg J [Brentwood, CA; Sanchez, Roberto J [Pleasanton, CA

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  2. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, Dylan; Seth, Anil C.; Williams, Benjamin F.

    We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and ismore » quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.« less

  3. Bribes or Rewards.

    ERIC Educational Resources Information Center

    Megyeri, Kathy A.

    Small tangible rewards for student progress, such as candy bars, pens, or ribbons, add potency to the verbal and written praise offered by the teacher, thus increasing student motivation. Giving students small prizes enhances the cooperative atmosphere of learning, especially for those who do not normally do well. Research indicates that low…

  4. A 5-year experience with a minimally invasive technique for pectus carinatum repair.

    PubMed

    Abramson, Horacio; D'Agostino, José; Wuscovi, Sebastián

    2009-01-01

    This report describes a 5-year experience with a novel, minimally invasive surgical technique for treatment of pectus carinatum. From June 2002 to August 2007, 40 patients underwent operation to correct pectus carinatum by pressure applied through a curved steel bar that was placed subcutaneously anterior to the sternum, via lateral thoracic incisions. The bar is inserted through a polyvinyl chloride tube with the convexity facing posteriorly. The polyvinyl chloride tube is positioned presternally by trocar. Subperiosteal wires attach small fixation plates to the ribs laterally, and the convex bar is secured to the small fixation plates with screws applying manual pressure to the anterior chest wall until the desired configuration is achieved. The compressive elongated bar is attached to the fixation plate with screws. The average age was 14.3 years (range, 10-21 years), and 90% were male. Both symmetric and asymmetric protrusions were treated. Patients whose chest was not malleable, and whose sternum could not be brought to a desirable position with pressure from the operator's hand, were treated by the open or "Ravitch" technique. After 2 or more years, the bar, wires stitches, screws, and fixation plates were removed. Of 40 patients treated with this procedure, 20 have undergone bar removal with the following results: 10 excellent, 4 good, 4 fair, and 2 poor. Average blood loss was 15 mL. Average length of hospital stay was as follows: implant, 3.8 days; removal, 1.4 days. Patients returned to routine activity 14 days after repair. Average follow-up since primary repair is 2.49 years. In those who have had bar removal, it is 1.53 years. Complications were pneumothorax in 1 patient, treated with chest tub e suction; skin adherence in 8 cases; seroma in 6; wire breakage in 3; persistence of pain in 1; and infection in 1. Technical modifications (selecting younger patients, excluding patients with a stiff thoracic wall, submuscular insertion of the bar, stronger pericostal wire) have been associated with no complications in the last 16 cases. This experience with a new, minimally invasive technique for the treatment of pectus carinatum shows it to be safe and effective. The correction obtained was highly satisfactory with minimal complications. It should be considered in appropriate cases as an alternative to more invasive techniques.

  5. Shape, zonal winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model

    NASA Astrophysics Data System (ADS)

    Schubert, Gerald; Kong, Dali; Zhang, Keke

    2016-10-01

    We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the zonal winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the zonal gravitational coefficients expected from the Juno mission are discussed.

  6. Modelling Bathymetric Control of Near Coastal Wave Climate: Report 3

    DTIC Science & Technology

    1992-02-01

    complexity would occur if we were to make the full set of restrictions appropriate to the parabolic approximation of the KP equation ( Kadomtsev ... Kadomtsev , B.B. and Petviashvili , V.I., 1970, "On the stability of solitary waves in weakly dispersing media", Soy. Phys. Dokl., 15, 539-541. 24 Kirby...bar theory. Theory for Small Amplitude Bars The theory which provides the framework for analysis here is given by an extended mild-slope equation

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Adam Paul

    The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb -1 dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order tmore » $$\\bar{t}$$ and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb -1 dataset they extract a top quark mass of 172.0 ± 2.6(stat) ± 3.3(syst) GeV/c 2 from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c 2 for m $$\\bar{t}$$ = 178 GTeV/c 2 and 3.1 GeV/c 2 for m $$\\bar{t}$$ = 172.5 GeV/c 2. The systematic error is dominated by the uncertainty of the jet energy scale.« less

  8. A novel automated rat catalepsy bar test system based on a RISC microcontroller.

    PubMed

    Alvarez-Cervera, Fernando J; Villanueva-Toledo, Jairo; Moo-Puc, Rosa E; Heredia-López, Francisco J; Alvarez-Cervera, Margarita; Pineda, Juan C; Góngora-Alfaro, José L

    2005-07-15

    Catalepsy tests performed in rodents treated with drugs that interfere with dopaminergic transmission have been widely used for the screening of drugs with therapeutic potential in the treatment of Parkinson's disease. The basic method for measuring catalepsy intensity is the "standard" bar test. We present here an easy to use microcontroller-based automatic system for recording bar test experiments. The design is simple, compact, and has a low cost. Recording intervals and total experimental time can be programmed within a wide range of values. The resulting catalepsy times are stored, and up to five simultaneous experiments can be recorded. A standard personal computer interface is included. The automated system also permits the elimination of human error associated with factors such as fatigue, distraction, and data transcription, occurring during manual recording. Furthermore, a uniform criterion for timing the cataleptic condition can be achieved. Correlation values between the results obtained with the automated system and those reported by two independent observers ranged between 0.88 and 0.99 (P<0.0001; three treatments, nine animals, 144 catalepsy time measurements).

  9. Three Axis Control of the Hubble Space Telescope Using Two Reaction Wheels and Magnetic Torquer Bars for Science Observations

    NASA Technical Reports Server (NTRS)

    Hur-Diaz, Sun; Wirzburger, John; Smith, Dan

    2008-01-01

    The Hubble Space Telescope (HST) is renowned for its superb pointing accuracy of less than 10 milli-arcseconds absolute pointing error. To accomplish this, the HST relies on its complement of four reaction wheel assemblies (RWAs) for attitude control and four magnetic torquer bars (MTBs) for momentum management. As with most satellites with reaction wheel control, the fourth RWA provides for fault tolerance to maintain three-axis pointing capability should a failure occur and a wheel is lost from operations. If an additional failure is encountered, the ability to maintain three-axis pointing is jeopardized. In order to prepare for this potential situation, HST Pointing Control Subsystem (PCS) Team developed a Two Reaction Wheel Science (TRS) control mode. This mode utilizes two RWAs and four magnetic torquer bars to achieve three-axis stabilization and pointing accuracy necessary for a continued science observing program. This paper presents the design of the TRS mode and operational considerations necessary to protect the spacecraft while allowing for a substantial science program.

  10. FastSim: A Fast Simulation for the SuperB Detector

    NASA Astrophysics Data System (ADS)

    Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.

    2011-12-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  11. The economic impact of smoke-free laws on restaurants and bars in 9 States.

    PubMed

    Loomis, Brett R; Shafer, Paul R; van Hasselt, Martijn

    2013-08-01

    Smoke-free air laws in restaurants and bars protect patrons and workers from involuntary exposure to secondhand smoke, but owners often express concern that such laws will harm their businesses. The primary objective of this study was to estimate the association between local smoke-free air laws and economic outcomes in restaurants and bars in 8 states without statewide smoke-free air laws: Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, Texas, and West Virginia. A secondary objective was to examine the economic impact of a 2010 statewide smoke-free restaurant and bar law in North Carolina. Using quarterly data from 2000 through 2010, we estimated dynamic panel data models for employment and sales in restaurants and bars. The models controlled for smoke-free laws, general economic activity, cigarette sales, and seasonality. We included data from 216 smoke-free cities and counties in the analysis. During the study period, only North Carolina had a statewide law banning smoking in restaurants or bars. Separate models were estimated for each state. In West Virginia, smoke-free laws were associated with a significant increase of approximately 1% in restaurant employment. In the remaining 8 states, we found no significant association between smoke-free laws and employment or sales in restaurants and bars. Results suggest that smoke-free laws did not have an adverse economic impact on restaurants or bars in any of the states studied; they provided a small economic benefit in 1 state. On the basis of these findings, we would not expect a statewide smoke-free law in Alabama, Indiana, Kentucky, Missouri, Mississippi, South Carolina, Texas, or West Virginia to have an adverse economic impact on restaurants or bars in those states.

  12. The Economic Impact of Smoke-Free Laws on Restaurants and Bars in 9 States

    PubMed Central

    Shafer, Paul R.; van Hasselt, Martijn

    2013-01-01

    Introduction Smoke-free air laws in restaurants and bars protect patrons and workers from involuntary exposure to secondhand smoke, but owners often express concern that such laws will harm their businesses. The primary objective of this study was to estimate the association between local smoke-free air laws and economic outcomes in restaurants and bars in 8 states without statewide smoke-free air laws: Alabama, Indiana, Kentucky, Mississippi, Missouri, South Carolina, Texas, and West Virginia. A secondary objective was to examine the economic impact of a 2010 statewide smoke-free restaurant and bar law in North Carolina. Methods Using quarterly data from 2000 through 2010, we estimated dynamic panel data models for employment and sales in restaurants and bars. The models controlled for smoke-free laws, general economic activity, cigarette sales, and seasonality. We included data from 216 smoke-free cities and counties in the analysis. During the study period, only North Carolina had a statewide law banning smoking in restaurants or bars. Separate models were estimated for each state. Results In West Virginia, smoke-free laws were associated with a significant increase of approximately 1% in restaurant employment. In the remaining 8 states, we found no significant association between smoke-free laws and employment or sales in restaurants and bars. Conclusion Results suggest that smoke-free laws did not have an adverse economic impact on restaurants or bars in any of the states studied; they provided a small economic benefit in 1 state. On the basis of these findings, we would not expect a statewide smoke-free law in Alabama, Indiana, Kentucky, Missouri, Mississippi, South Carolina, Texas, or West Virginia to have an adverse economic impact on restaurants or bars in those states. PMID:23906328

  13. Reservoir characterization of Mesaverde (Campanian) bedload fluvial meanderbelt sandstones, northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.R. Jr.

    1984-04-01

    Reservoir characterization of Mesaverde meanderbelt sandstones is used to determined directional continuity of permeable zones. A 500-m (1600 ft) wide fluvial meanderbelt in the Mesaverde Group is exposed as laterally continuous 3-10-m (10-33-ft) high sandstone cliffs north of Rangely, Colorado. Forty-eight detailed measured sections through 3 point bar complexes oriented at right angles to the long axis of deposition and 1 complex oriented parallel to deposition were prepared. Sections were tied together by detailed sketches delineating and tracing major bounding surfaces such as scours and clay drapes. These complexes contain 3 to 8 multilateral sandstone packages separated by 5-20 cmmore » (2-8 in.) interbedded siltstone and shale beds. Component facies are point bars, crevasse splays, chute bars, and floodplain/overbank deposits. Two types of lateral accretion surfaces are recognized in the point bar facies. Gently dipping lateral accretions containing fining-upward sandstone packages. Large scale trough cross-bedding at the base grades upward into ripples and plane beds. Steeply dipping lateral accretion surfaces enclose beds characterized by climbing ripple cross laminations. Bounding surfaces draped by shale lags can seal vertically stacked point bars from reservoir communication. Scoured boundaries allow communication in some stacked point bars. Crevasse splays showing climbing ripples form tongues of very fine-grained sandstone which flank point bars. Chute channels commonly cut upper point bar surfaces at their downstream end. Chute facies are upward-fining with small scale troughs and common dewatering structures. Siltstones and shales underlie the point bar complexes and completely encase the meanderbelt system. Bounding surfaces at the base of the complexes are erosional and contain large shale rip-up clasts.« less

  14. Science 101: When Drawing Graphs from Collected Data, Why Don't You Just "Connect the Dots?"

    ERIC Educational Resources Information Center

    Robertson, William C.

    2007-01-01

    Using "error bars" on graphs is a good way to help students see that, within the inherent uncertainty of the measurements due to the instruments used for measurement, the data points do, in fact, lie along the line that represents the linear relationship. In this article, the author explains why connecting the dots on graphs of collected data is…

  15. Ionospheric Modeling: Development, Verification and Validation

    DTIC Science & Technology

    2007-08-15

    The University of Massachusetts (UMass), Lowell, has introduced a new version of their ionogram autoscaling program ARTIST , Version 5. A very...Investigation of the Reliability of the ESIR Ionogram Autoscaling Method (Expert System for Ionogram Reduction) ESIR.book.pdf Dec 06 Quality...Figures and Error Bars for Autoscaled Vertical Incidence Ionograms. Background and User Documentation for QualScan V2007.2 AFRL_QualScan.book.pdf Feb

  16. DataPlus™ - a revolutionary applications generator for DOS hand-held computers

    Treesearch

    David Dean; Linda Dean

    2000-01-01

    DataPlus allows the user to easily design data collection templates for DOS-based hand-held computers that mimic clipboard data sheets. The user designs and tests the application on the desktop PC and then transfers it to a DOS field computer. Other features include: error checking, missing data checks, and sensor input from RS-232 devices such as bar code wands,...

  17. Improving radiopharmaceutical supply chain safety by implementing bar code technology.

    PubMed

    Matanza, David; Hallouard, François; Rioufol, Catherine; Fessi, Hatem; Fraysse, Marc

    2014-11-01

    The aim of this study was to describe and evaluate an approach for improving radiopharmaceutical supply chain safety by implementing bar code technology. We first evaluated the current situation of our radiopharmaceutical supply chain and, by means of the ALARM protocol, analysed two dispensing errors that occurred in our department. Thereafter, we implemented a bar code system to secure selected key stages of the radiopharmaceutical supply chain. Finally, we evaluated the cost of this implementation, from overtime, to overheads, to additional radiation exposure to workers. An analysis of the events that occurred revealed a lack of identification of prepared or dispensed drugs. Moreover, the evaluation of the current radiopharmaceutical supply chain showed that the dispensation and injection steps needed to be further secured. The bar code system was used to reinforce product identification at three selected key stages: at usable stock entry; at preparation-dispensation; and during administration, allowing to check conformity between the labelling of the delivered product (identity and activity) and the prescription. The extra time needed for all these steps had no impact on the number and successful conduct of examinations. The investment cost was reduced (2600 euros for new material and 30 euros a year for additional supplies) because of pre-existing computing equipment. With regard to the radiation exposure to workers there was an insignificant overexposure for hands with this new organization because of the labelling and scanning processes of radiolabelled preparation vials. Implementation of bar code technology is now an essential part of a global securing approach towards optimum patient management.

  18. Dalitz plot analysis of the decay B 0 ( B ¯ 0 ) → K ± π ∓ π 0

    DOE PAGES

    Aubert, B.; Bona, M.; Karyotakis, Y.; ...

    2008-09-12

    Here, we report a Dalitz-plot analysis of the charmless hadronic decays of neutral B mesons to K ± π ∓ π 0 . With a sample of ( 231.8 ± 2.6 ) × 10 6 Υ ( 4 S ) → Bmore » $$\\bar{B}$$ decays collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, we measure the magnitudes and phases of the intermediate resonant and nonresonant amplitudes for B 0 and $$\\bar{B}$$ 0 decays and determine the corresponding C P -averaged branching fractions and charge asymmetries. Furthermore, we measure the inclusive branching fraction and C P -violating charge asymmetry and found it to be B ( B 0 → K + π - π 0 ) = ( 35.7$$+2.6\\atop{-1.5}$$ + 2.6 - 1.5 ± 2.2 ) × 10 - 6 and A C P = - 0.030 $$+ 0.045\\atop{- 0.051}$$ ± 0.055 where the first errors are statistical and the second systematic. We observe the decay B 0 → K * 0 ( 892 ) π 0 with the branching fraction B ( B 0 → K * 0 ( 892 ) π 0 ) = ( 3.6 $$+ 0.7\\atop- {0.8}$$ ± 0.4 ) × 10 - 6 . This measurement differs from zero by 5.6 standard deviations (including the systematic uncertainties). The selected sample also contains B 0 → $$\\bar{D}$$ 0 π 0 decays where $$\\bar{D}$$ 0 → K + π - , and we measure B ( B 0 → $$\\bar{D}$$ 0π 0 ) = ( 2.93 ± 0.17 ± 0.18 ) × 10 - 4 .« less

  19. LEARNING STRATEGY REFINEMENT REVERSES EARLY SENSORY CORTICAL MAP EXPANSION BUT NOT BEHAVIOR: SUPPORT FOR A THEORY OF DIRECTED CORTICAL SUBSTRATES OF LEARNING AND MEMORY

    PubMed Central

    Elias, Gabriel A.; Bieszczad, Kasia M.; Weinberger, Norman M.

    2015-01-01

    Primary sensory cortical fields develop highly specific associative representational plasticity, notably enlarged area of representation of reinforced signal stimuli within their topographic maps. However, overtraining subjects after they have solved an instrumental task can reduce or eliminate the expansion while the successful behavior remains. As the development of this plasticity depends on the learning strategy used to solve a task, we asked whether the loss of expansion is due to the strategy used during overtraining. Adult male rats were trained in a three-tone auditory discrimination task to bar-press to the CS+ for water reward and refrain from doing so during the CS− tones and silent intertrial intervals; errors were punished by a flashing light and time-out penalty. Groups acquired this task to a criterion within seven training sessions by relying on a strategy that was “bar-press from tone-onset-to-error signal” (“TOTE”). Three groups then received different levels of overtraining: Group ST, none; Group RT, one week; Group OT, three weeks. Post-training mapping of their primary auditory fields (A1) showed that Groups ST and RT had developed significantly expanded representational areas, specifically restricted to the frequency band of the CS+ tone. In contrast, the A1 of Group OT was no different from naïve controls. Analysis of learning strategy revealed this group had shifted strategy to a refinement of TOTE in which they self-terminated bar-presses before making an error (“iTOTE”). Across all animals, the greater the use of iTOTE, the smaller was the representation of the CS+ in A1. Thus, the loss of cortical expansion is attributable to a shift or refinement in strategy. This reversal of expansion was considered in light of a novel theoretical framework (CONCERTO) highlighting four basic principles of brain function that resolve anomalous findings and explaining why even a minor change in strategy would involve concomitant shifts of involved brain sites, including reversal of cortical expansion. PMID:26596700

  20. A Comparison of Full and Empirical Bayes Techniques for Inferring Sea Level Changes from Tide Gauge Records

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Huybers, P. J.; Tingley, M.

    2016-12-01

    Sea level observations from coastal tide gauges are some of the longest instrumental records of the ocean. However, these data can be noisy, biased, and gappy, featuring missing values, and reflecting land motion and local effects. Coping with these issues in a formal manner is a challenging task. Some studies use Bayesian approaches to estimate sea level from tide gauge records, making inference probabilistically. Such methods are typically empirically Bayesian in nature: model parameters are treated as known and assigned point values. But, in reality, parameters are not perfectly known. Empirical Bayes methods thus neglect a potentially important source of uncertainty, and so may overestimate the precision (i.e., underestimate the uncertainty) of sea level estimates. We consider whether empirical Bayes methods underestimate uncertainty in sea level from tide gauge data, comparing to a full Bayes method that treats parameters as unknowns to be solved for along with the sea level field. We develop a hierarchical algorithm that we apply to tide gauge data on the North American northeast coast over 1893-2015. The algorithm is run in full Bayes mode, solving for the sea level process and parameters, and in empirical mode, solving only for the process using fixed parameter values. Error bars on sea level from the empirical method are smaller than from the full Bayes method, and the relative discrepancies increase with time; the 95% credible interval on sea level values from the empirical Bayes method in 1910 and 2010 is 23% and 56% narrower, respectively, than from the full Bayes approach. To evaluate the representativeness of the credible intervals, empirical Bayes and full Bayes methods are applied to corrupted data of a known surrogate field. Using rank histograms to evaluate the solutions, we find that the full Bayes method produces generally reliable error bars, whereas the empirical Bayes method gives too-narrow error bars, such that the 90% credible interval only encompasses 70% of true process values. Results demonstrate that parameter uncertainty is an important source of process uncertainty, and advocate for the fully Bayesian treatment of tide gauge records in ocean circulation and climate studies.

  1. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory.

    PubMed

    Elias, Gabriel A; Bieszczad, Kasia M; Weinberger, Norman M

    2015-12-01

    Primary sensory cortical fields develop highly specific associative representational plasticity, notably enlarged area of representation of reinforced signal stimuli within their topographic maps. However, overtraining subjects after they have solved an instrumental task can reduce or eliminate the expansion while the successful behavior remains. As the development of this plasticity depends on the learning strategy used to solve a task, we asked whether the loss of expansion is due to the strategy used during overtraining. Adult male rats were trained in a three-tone auditory discrimination task to bar-press to the CS+ for water reward and refrain from doing so during the CS- tones and silent intertrial intervals; errors were punished by a flashing light and time-out penalty. Groups acquired this task to a criterion within seven training sessions by relying on a strategy that was "bar-press from tone-onset-to-error signal" ("TOTE"). Three groups then received different levels of overtraining: Group ST, none; Group RT, one week; Group OT, three weeks. Post-training mapping of their primary auditory fields (A1) showed that Groups ST and RT had developed significantly expanded representational areas, specifically restricted to the frequency band of the CS+ tone. In contrast, the A1 of Group OT was no different from naïve controls. Analysis of learning strategy revealed this group had shifted strategy to a refinement of TOTE in which they self-terminated bar-presses before making an error ("iTOTE"). Across all animals, the greater the use of iTOTE, the smaller was the representation of the CS+ in A1. Thus, the loss of cortical expansion is attributable to a shift or refinement in strategy. This reversal of expansion was considered in light of a novel theoretical framework (CONCERTO) highlighting four basic principles of brain function that resolve anomalous findings and explaining why even a minor change in strategy would involve concomitant shifts of involved brain sites, including reversal of cortical expansion. Published by Elsevier Inc.

  2. The influence of newspaper coverage and a media campaign on smokers’ support for smoke-free bars and restaurants and on second-hand smoke harm awareness. Findings from the International Tobacco Control (ITC) Netherlands Survey

    PubMed Central

    Nagelhout, Gera E.; van den Putte, Bas; de Vries, Hein; Crone, Matty; Fong, Geoffrey T.; Willemsen, Marc C.

    2015-01-01

    Objective To assess the influence of newspaper coverage and a media campaign about Dutch smoke-free legislation on smokers’ support for smoke-free bars and restaurants and on second-hand smoke (SHS) harm awareness. Design and main outcome measures A content analysis was conducted of 1,041 newspaper articles on the smoke-free legislation published in six Dutch newspapers from March 2008 until April 2009. Smokers who were regular readers of at least one of these newspapers (n = 677) were selected from the pre- and post-ban waves of the International Tobacco Control (ITC) Netherlands Survey. Exposure to newspaper coverage and to the implementation campaign were correlated with changes in smokers’ support for smoke-free bars and restaurants and SHS harm awareness. Results Most newspaper coverage was found to be negative towards the smoking ban (57%) and focused on economic aspects (59%) rather than health aspects (22%). Exposure to this coverage had a small but significantly negative effect on support for smoke-free bars and restaurants (Beta = −0.09, p = 0.013). Among higher educated smokers, exposure to positive newspaper coverage had a more positive effect on support for smoke-free bars and restaurants. In addition, exposure to the implementation campaign had a small but significantly positive effect on SHS harm awareness (Beta = 0.11, p = 0.001). Conclusions Media attention about smoke-free legislation can influence smokers’ support for the legislation and SHS harm awareness. Tobacco control advocates should aim to establish positive media attention that puts forward the health arguments for the legislation. PMID:21586760

  3. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  4. THE HST/ACS COMA CLUSTER SURVEY. VIII. BARRED DISK GALAXIES IN THE CORE OF THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinova, Irina; Jogee, Shardha; Weinzirl, Tim

    2012-02-20

    We use high-resolution ({approx}0.''1) F814W Advanced Camera for Surveys (ACS) images from the Hubble Space Telescope ACS Treasury survey of the Coma cluster at z {approx} 0.02 to study bars in massive disk galaxies (S0s), as well as low-mass dwarf galaxies in the core of the Coma cluster, the densest environment in the nearby universe. Our study helps to constrain the evolution of bars and disks in dense environments and provides a comparison point for studies in lower density environments and at higher redshifts. Our results are: (1) we characterize the fraction and properties of bars in a sample ofmore » 32 bright (M{sub V} {approx}< -18, M{sub *} > 10{sup 9.5} M{sub Sun }) S0 galaxies, which dominate the population of massive disk galaxies in the Coma core. We find that the measurement of a bar fraction among S0 galaxies must be handled with special care due to the difficulty in separating unbarred S0s from ellipticals, and the potential dilution of the bar signature by light from a relatively large, bright bulge. The results depend sensitively on the method used: the bar fraction for bright S0s in the Coma core is 50% {+-} 11%, 65% {+-} 11%, and 60% {+-} 11% based on three methods of bar detection, namely, strict ellipse fit criteria, relaxed ellipse fit criteria, and visual classification. (2) We compare the S0 bar fraction across different environments (the Coma core, A901/902, and Virgo) adopting the critical step of using matched samples and matched methods in order to ensure robust comparisons. We find that the bar fraction among bright S0 galaxies does not show a statistically significant variation (within the error bars of {+-}11%) across environments which span two orders of magnitude in galaxy number density (n {approx} 300-10,000 galaxies Mpc{sup -3}) and include rich and poor clusters, such as the core of Coma, the A901/902 cluster, and Virgo. We speculate that the bar fraction among S0s is not significantly enhanced in rich clusters compared to low-density environments for two reasons. First, S0s in rich clusters are less prone to bar instabilities as they are dynamically heated by harassment and are gas poor as a result of ram pressure stripping and accelerated star formation. Second, high-speed encounters in rich clusters may be less effective than slow, strong encounters in inducing bars. (3) We also take advantage of the high resolution of the ACS ({approx}50 pc) to analyze a sample of 333 faint (M{sub V} > -18) dwarf galaxies in the Coma core. Using visual inspection of unsharp-masked images, we find only 13 galaxies with bar and/or spiral structure. An additional eight galaxies show evidence for an inclined disk. The paucity of disk structures in Coma dwarfs suggests that either disks are not common in these galaxies or that any disks present are too hot to develop instabilities.« less

  5. Software to compute elastostatic Green's functions for sources in 3D homogeneous elastic layers above a (visco)elastic halfspace

    NASA Astrophysics Data System (ADS)

    Bradley, A. M.; Segall, P.

    2012-12-01

    We describe software, in development, to calculate elastostatic displacement Green's functions and their derivatives for point and polygonal dislocations in three-dimensional homogeneous elastic layers above an elastic or a viscoelastic halfspace. The steps to calculate a Green's function for a point source at depth zs are as follows. 1. A grid in wavenumber space is chosen. 2. A six-element complex rotated stress-displacement vector x is obtained at each grid point by solving a two-point boundary value problem (2P-BVP). If the halfspace is viscoelastic, the solution is inverse Laplace transformed. 3. For each receiver, x is propagated to the receiver depth zr (often zr = 0) and then, 4, inverse Fourier transformed, with the Fourier component corresponding to the receiver's horizontal position. 5. The six elements are linearly combined into displacements and their derivatives. The dominant work is in step 2. The grid is chosen to represent the wavenumber-space solution with as few points as possible. First, the wavenumber space is transformed to increase sampling density near 0 wavenumber. Second, a tensor-product grid of Chebyshev points of the first kind is constructed in each quadrant of the transformed wavenumber space. Moment-tensor-dependent symmetries further reduce work. The numerical solution of the 2P-BVP problem in step 2 involves solving a linear equation A x = b. Half of the elements of x are of geophysical interest; the subset depends on whether zr ≤ zs. Denote these \\hat x. As wavenumber k increases, \\hat x can become inaccurate in finite precision arithmetic for two reasons: 1. The condition number of A becomes too large. 2. The norm-wise relative error (NWRE) in \\hat x is large even though it is small in x. To address this problem, a number of researchers have used determinants to obtain x. This may be the best approach for 6-dimensional or smaller 2P-BVP, where the combinatorial increase in work is still moderate. But there is an alternative. Let \\bar A be the matrix after scaling its columns to unit infinity norm and \\bar x the scaled x. If \\bar A is well conditioned, as it often is in (visco)elastostatic problems, then using determinants is unnecessary. Multiply each side of A x = b by a propagator matrix to the computation depth zcd prior to storing the matrix in finite precision. zcd is determined by the rule that zr and zcd must be on opposite sides of zs. Let the resulting matrix be A(zcd). Three facts imply that this rule controls the NWRE in \\hat x: 1. Diagonally scaling a matrix changes the accuracy of an element of the solution by about one ULP (unit in the last place). 2. If the NWRE of \\bar x is small, then the largest elements are accurate. 3. zcd controls the magnitude of elements in \\bar x. In step 4, to avoid numerically Fourier transforming the (nearly) non-square-integrable functions that arise when the receiver and source depths are (nearly) the same, a function is divided into an analytical part and a numerical part that goes quickly to 0 as k -> ∞ . Our poster will describe these calculations, present a preliminary interface to a C-language package in development, and show some physical results.

  6. Redshift distortions of galaxy correlation functions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-01-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities, and locations between samples.

  7. Analysis of the mechanical stresses on a squirrel cage induction motor by the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, C.H.; Nicolas, A.

    1999-05-01

    The mechanical deformations and stresses have been analyzed by the Finite Element Method (FEM) in 3 dimensions on the rotor bars of a small squirrel cage induction motor. The authors considered the magnetic forces and the centrifugal forces as sources which provoked the deformations and stresses on the rotor bars. The mechanical calculations have been performed after doing the electromagnetic Finite Element modeling on the motor in steady states with various slip conditions.

  8. The European Office of Aerospace Research and Development’s Small Satellite Propulsion System Research Program

    DTIC Science & Technology

    2000-04-12

    Investigation S..showed that the pressure reading saturated at 13 bar (maximum limit) compared to 10 bar which the pressure switch should have...controlled to. It was concluded that the commercial grade pressure switch had failed and that the pressure Figure 5: Nitrous Oxide feed system control valve...firing on 11 th April 2000. The performance using a pressure switch to control a solenoid results of this firing are shown in Figure 7. valve giving

  9. Chemoprevention Trial of Selenium and Prostate Cancer

    DTIC Science & Technology

    1999-10-01

    use in slowing the growth of prostate cancer. This study will not use selenium as a treatment option for the possible cure of prostate cancer...slice or 1 piece o Q rj Chocolate candy and candy bars o o o o o Q o o c 1 small bar or 1 ounce ._> . ■Q Hard candy, jam, jelly, honey , or...your stream? Have you noticed any stress incontinence? (leakage of urine when sneezing, coughing or laughing) _1 -NOT AT ALL _ 2-LESS THAN 1 IN 5

  10. Incorporating a Spatial Prior into Nonlinear D-Bar EIT Imaging for Complex Admittivities.

    PubMed

    Hamilton, Sarah J; Mueller, J L; Alsaker, M

    2017-02-01

    Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is a severely ill-posed nonlinear inverse problem that is highly sensitive to measurement noise and modeling errors. Regularized D-bar methods have shown great promise in producing noise-robust algorithms by employing a low-pass filtering of nonlinear (nonphysical) Fourier transform data specific to the EIT problem. Including prior data with the approximate locations of major organ boundaries in the scattering transform provides a means of extending the radius of the low-pass filter to include higher frequency components in the reconstruction, in particular, features that are known with high confidence. This information is additionally included in the system of D-bar equations with an independent regularization parameter from that of the extended scattering transform. In this paper, this approach is used in the 2-D D-bar method for admittivity (conductivity as well as permittivity) EIT imaging. Noise-robust reconstructions are presented for simulated EIT data on chest-shaped phantoms with a simulated pneumothorax and pleural effusion. No assumption of the pathology is used in the construction of the prior, yet the method still produces significant enhancements of the underlying pathology (pneumothorax or pleural effusion) even in the presence of strong noise.

  11. Uncertainty analysis technique for OMEGA Dante measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M. J.; Widmann, K.; Sorce, C.

    2010-10-15

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less

  12. Uncertainty Analysis Technique for OMEGA Dante Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M J; Widmann, K; Sorce, C

    2010-05-07

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less

  13. Measurement of the inclusive forward-backward t$$\\bar{t}$$ production asymmetry and its rapidity dependence dA fb/d(Δy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strycker, Glenn Loyd

    2010-01-01

    Early measurements of a large forward-background asymmetry at the CDF and D0 experiments at Fermilab have generated much recent interest, but were hampered by large uncertainties. We present here a new measurement of the parton level forward-backward asymmetry of pair-produced top quarks, using a high-statistics sample with much improved precision. We study the rapidity, y top, of the top quark production angle with respect to the incoming parton momentum in both the lab and tmore » $$\\bar{t}$$ rest frames. We find the parton-level forward-backward asymmetries to be A fb p$$\\bar{t}$$ = 0.150 ± 0.050 stat ± 0.024 syst A fb t$$\\bar{t}$$ = 0.158 ± 0.072{sup stat} ± 0.024 syst. These results should be compared with the small p$$\\bar{p}$$ frame charge asymmetry expected in QCD at NLO, A fb = 0.050 ± 0.015. Additionally, we introduce a measurement of the A fb rapidity dependence dA fb/d(Δy). We find this to be A fb p$$\\bar{t}$$(|Δy| < 1.0) = 0.026 ± 0.104 stat ± 0.012 syst A fb p$$\\bar{t}$$(|Δy| > 1.0) = 0.611 ± 0.210 stat ± 0.246 syst which we compare with model predictions 0.039 ± 0.006 and 0.123 ± 0.018 for the inner and outer rapidities, respectively.« less

  14. Varying impacts of alcohol outlet densities on violent assaults: explaining differences across neighborhoods.

    PubMed

    Mair, Christina; Gruenewald, Paul J; Ponicki, William R; Remer, Lillian

    2013-01-01

    Groups of potentially violent drinkers may frequent areas of communities with large numbers of alcohol outlets, especially bars, leading to greater rates of alcohol-related assaults. This study assessed direct and moderating effects of bar densities on assaults across neighborhoods. We analyzed longitudinal population data relating alcohol outlet densities (total outlet density, proportion bars/pubs, proportion off-premise outlets) to hospitalizations for assault injuries in California across residential ZIP code areas from 1995 through 2008 (23,213 space-time units). Because few ZIP codes were consistently defined over 14 years and these units are not independent, corrections for unit misalignment and spatial autocorrelation were implemented using Bayesian space-time conditional autoregressive models. Assaults were related to outlet densities in local and surrounding areas, the mix of outlet types, and neighborhood characteristics. The addition of one outlet per square mile was related to a small 0.23% increase in assaults. A 10% greater proportion of bars in a ZIP code was related to 7.5% greater assaults, whereas a 10% greater proportion of bars in surrounding areas was related to 6.2% greater assaults. The impacts of bars were much greater in areas with low incomes and dense populations. The effect of bar density on assault injuries was well supported and positive, and the magnitude of the effect varied by neighborhood characteristics. Posterior distributions from these models enabled the identification of locations most vulnerable to problems related to alcohol outlets.

  15. Second-hand smoke levels in UK pubs and bars: do the English Public Health White Paper proposals go far enough?

    PubMed

    Gee, I L; Watson, A F R; Carrington, J; Edwards, P R; van Tongeren, M; McElduff, P; Edwards, R E

    2006-03-01

    The English Public Health White Paper proposes introducing smoke-free workplaces except in pubs and bars that do not prepare and serve food. The bar area will be non-smoking in exempted pubs. To explore the likely impact of these proposals in UK pubs and bars. A total of 59 pubs and bars within Greater Manchester in 2001 were chosen. Thirteen were mechanically ventilated, 12 were naturally ventilated and 34 had extractor fans; 23 provided non-smoking areas. We measured time-weighted average concentrations of respirable suspended particles (RSP), solanesol tobacco-specific particles and vapour-phase nicotine (VPN) over a 4-h sampling period on a Tuesday or Saturday night. Second-hand smoke (SHS) levels in smoking areas were high (mean RSP 114.5 microg/m3, VPN 88.2 microg/m3, solanesol 101.7 microg/m3). There were only small (5-13 per cent) reductions in bar areas. Mean levels were lower in non-smoking areas: by 33 per cent for RSPs, 52 per cent for solanesol particles and 69 per cent for VPN. Compared with other settings (homes and other workplaces) with unrestricted smoking, mean SHS levels were high throughout all areas of the pubs regardless of ventilation strategy. Partial measures, like those in the English Public Health White Paper, will leave bar staff in exempted pubs unprotected from the occupational hazard of SHS.

  16. Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field

    PubMed Central

    Müller, Erich

    2016-01-01

    In the laboratory, optoelectronic stereophotogrammetry is one of the most commonly used motion capture systems; particularly, when position- or orientation-related analyses of human movements are intended. However, for many applied research questions, field experiments are indispensable, and it is not a priori clear whether optoelectronic stereophotogrammetric systems can be expected to perform similarly to in-lab experiments. This study aimed to assess the instrumental errors of kinematic data collected on a ski track using optoelectronic stereophotogrammetry, and to investigate the magnitudes of additional skiing-specific errors and soft tissue/suit artifacts. During a field experiment, the kinematic data of different static and dynamic tasks were captured by the use of 24 infrared-cameras. The distances between three passive markers attached to a rigid bar were stereophotogrammetrically reconstructed and, subsequently, were compared to the manufacturer-specified exact values. While at rest or skiing at low speed, the optoelectronic stereophotogrammetric system’s accuracy and precision for determining inter-marker distances were found to be comparable to those known for in-lab experiments (< 1 mm). However, when measuring a skier’s kinematics under “typical” skiing conditions (i.e., high speeds, inclined/angulated postures and moderate snow spraying), additional errors were found to occur for distances between equipment-fixed markers (total measurement errors: 2.3 ± 2.2 mm). Moreover, for distances between skin-fixed markers, such as the anterior hip markers, additional artifacts were observed (total measurement errors: 8.3 ± 7.1 mm). In summary, these values can be considered sufficient for the detection of meaningful position- or orientation-related differences in alpine skiing. However, it must be emphasized that the use of optoelectronic stereophotogrammetry on a ski track is seriously constrained by limited practical usability, small-sized capture volumes and the occurrence of extensive snow spraying (which results in marker obscuration). The latter limitation possibly might be overcome by the use of more sophisticated cluster-based marker sets. PMID:27560498

  17. Large Pt processes in ppbar collisions at 2 TeV: measurement of ttbar production cross section in ppbar collisions at s**(1/2) = 1.96 TeV in the dielectron final states at the D0 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ashish; /Delhi U.

    2005-10-01

    The measurement of the top-antitop pair production cross section in p{bar p} collisions at {radical}s = 1.96 TeV in the dielectron decay channel using 384 pb{sup -1} of D0 data yields a t{bar t} production cross-section of {sigma}{sub t{bar t}} = 7.9{sub -3.8}{sup +5.2}(stat){sub -1.0}{sup +1.3}(syst) {+-} 0.5 (lumi) pb. This measurement [98] is based on 5 observed events with a prediction of 1.04 background events. The cross-section corresponds to the top mass of 175 GeV, and is in good agreement with the Standard Model expectation of 6.77 {+-} 0.42 pb based on next-to-next-leading-order (NNLO) perturbative QCD calculations [78]. Thismore » analysis shows significant improvement from our previous cross-section measurement in this channel [93] with 230 pb{sup -1} dataset in terms of significantly better signal to background ratio and uncertainties on the measured cross-section. Combination of all the dilepton final states [98] yields a yields a t{bar t} cross-section of {sigma}{sub t{bar t}} = 8.6{sub -2.0}{sup +2.3}(stat){sub -1.0}{sup +1.2}(syst) {+-} 0.6(lumi) pb, which again is in good agreement with theoretical predictions and with measurements in other final states. Hence, these results show no discernible deviation from the Standard Model. Fig. 6.1 shows the summary of cross-section measurements in different final states by the D0 in Run II. This measurement of cross-section in the dilepton channels is the best dilepton result from D0 till date. Previous D0 result based on analysis of 230 pb{sup -1} of data (currently under publication in Physics Letters B) is {sigma}{sub t{bar t}} = 8.6{sub -2.7}{sup +3.2}(stat){sub -1.1}{sup +1.1}(syst) {+-} 0.6(lumi) pb. It can be seen that the present cross-section suffers from less statistical uncertainty. This result is also quite consistent with CDF collaboration's result of {sigma}{sub t{bar t}} = 8.6{sub -2.4}{sup +2.5}(stat){sub -1.1}{sup +1.1}(syst) pb. These results have been presented as D0's preliminary results in the high energy physics conferences in the Summer of 2005 (Hadron Collider Physics Symposium, European Physical Society Conference, etc.). The uncertainty on the cross-section is still dominated by statistics due to the small number of observed events. It can be seen that we are at a level where statistical uncertainties are becoming closer to the systematic ones. Future measurements of the cross section will benefit from considerably more integrated luminosity, leading to a smaller statistical error. Thus the next generation of measurements will be limited by systematic uncertainties. Monte Carlo samples with higher statistics are also being generated in order to decrease the uncertainty on the background estimation. In addition, as the jet energy scale, the electron energy scale, the detector resolutions, and the luminosity measurement are fine-tuned, the systematic uncertainties will continue to decrease.« less

  18. Effect of casting geometry on mechanical properties of two nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Johnston, J. R.; Dreshfield, R. L.; Collins, H. E.

    1976-01-01

    An investigation was performed to determine mechanical properties of two rhenium-free modifications of alloy TRW, and to evaluate the suitability of the alloy for use in a small integrally cast turbine rotor. The two alloys were initially developed using stress rupture properties of specimens machined from solid gas turbine blades. Properties in this investigation were determined from cast to size bars and bars cut from 3.8 by 7.6 by 17.8 cm blocks. Specimens machined from blocks had inferior tensile strength and always had markedly poorer rupture lives than cast to size bars. At 1,000 C the cast to size bars had shorter rupture lives than those machined from blades. Alloy R generally had better properties than alloy S in the conditions evaluated. The results show the importance of casting geometry on mechanical properties of nickel base superalloys and suggest that the geometry of a component can be simulated when developing alloys for that component.

  19. Size matters: Perceived depth magnitude varies with stimulus height.

    PubMed

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2016-06-01

    Both the upper and lower disparity limits for stereopsis vary with the size of the targets. Recently, Tsirlin, Wilcox, and Allison (2012) suggested that perceived depth magnitude from stereopsis might also depend on the vertical extent of a stimulus. To test this hypothesis we compared apparent depth in small discs to depth in long bars with equivalent width and disparity. We used three estimation techniques: a virtual ruler, a touch-sensor (for haptic estimates) and a disparity probe. We found that depth estimates were significantly larger for the bar stimuli than for the disc stimuli for all methods of estimation and different configurations. In a second experiment, we measured perceived depth as a function of the height of the bar and the radius of the disc. Perceived depth increased with increasing bar height and disc radius suggesting that disparity is integrated along the vertical edges. We discuss size-disparity correlation and inter-neural excitatory connections as potential mechanisms that could account for these results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Environmental dependence of star formation induced by cloud collisions in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yusuke; Tasker, Elizabeth J.; Habe, Asao

    2014-11-01

    Cloud collision has been proposed as a way to link the small-scale star formation process with the observed global relation between the surface star formation rate and gas surface density. We suggest that this model can be improved further by allowing the productivity of such collisions to depend on the relative velocity of the two clouds. Our adjustment implements a simple step function that results in the most successful collisions being at the observed velocities for triggered star formation. By applying this to a high-resolution simulation of a barred galaxy, we successfully reproduce the observational result that the star formation efficiency (SFE) in the bar is lower than that in the spiral arms. This is not possible when we use an efficiency dependent on the internal turbulence properties of the clouds. Our results suggest that high-velocity collisions driven by the gravitational pull of the clouds are responsible for the low bar SFE.

  1. Why hard-nosed executives should care about management theory.

    PubMed

    Christensen, Clayton M; Raynor, Michael E

    2003-09-01

    Theory often gets a bum rap among managers because it's associated with the word "theoretical," which connotes "impractical." But it shouldn't. Because experience is solely about the past, solid theories are the only way managers can plan future actions with any degree of confidence. The key word here is "solid." Gravity is a solid theory. As such, it lets us predict that if we step off a cliff we will fall, without actually having to do so. But business literature is replete with theories that don't seem to work in practice or actually contradict each other. How can a manager tell a good business theory from a bad one? The first step is understanding how good theories are built. They develop in three stages: gathering data, organizing it into categories highlighting significant differences, then making generalizations explaining what causes what, under which circumstances. For instance, professor Ananth Raman and his colleagues collected data showing that bar code-scanning systems generated notoriously inaccurate inventory records. These observations led them to classify the types of errors the scanning systems produced and the types of shops in which those errors most often occurred. Recently, some of Raman's doctoral students have worked as clerks to see exactly what kinds of behavior cause the errors. From this foundation, a solid theory predicting under which circumstances bar code systems work, and don't work, is beginning to emerge. Once we forgo one-size-fits-all explanations and insist that a theory describes the circumstances under which it does and doesn't work, we can bring predictable success to the world of management.

  2. The e[sup [minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holroyd, R.A.; Schwarz, H.A.; Stradowska, E.

    The rate constants for attachment of excess electrons to 1,3-butadiene (k[sub a]) and detachment from the butadiene anion (k[sub d]) in n-hexane are reported. The equilibrium constant, K[sub eq] = k[sub a]/k[sub d], increases rapidly with pressure and decreases as the temperature increases. At -7[degree]C attachment is observed at 1 bar. At high pressures the attachment rate is diffusion controlled. The activation energy for detachment is about 21 kcal/mol; detachment is facilitated by the large entropy of activation. The reaction volumes for attachment range from -181 cm[sup 3]/mol at 400 bar to-122 cm[sup 3]/mol at 1500 bar and are largelymore » attributed to the electrostriction volume of the butadiene anion ([Delta][bar V][sub el]). Values of [Delta][bar V][sub el] calculated by a model, which includes a glassy shell of solvent molecules around the ion, are in agreement with experimental reaction volumes. The analysis indicates the partial molar volume of the electron in hexane is small and probably negative. It is shown that the entropies of reaction are closely related to the partial molar volumes of reaction. 22 refs., 5 figs., 5 tabs.« less

  3. ERROR REDUCTION IN DUCT LEAKAGE TESTING THROUGH DATA CROSS-CHECKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDREWS, J.W.

    1998-12-31

    One way to reduce uncertainty in scientific measurement is to devise a protocol in which more quantities are measured than are absolutely required, so that the result is over constrained. This report develops a method for so combining data from two different tests for air leakage in residential duct systems. An algorithm, which depends on the uncertainty estimates for the measured quantities, optimizes the use of the excess data. In many cases it can significantly reduce the error bar on at least one of the two measured duct leakage rates (supply or return), and it provides a rational method ofmore » reconciling any conflicting results from the two leakage tests.« less

  4. A Comparison of Sleep and Performance of Sailors on an Operationally Deployed U.S. Navy Warship

    DTIC Science & Technology

    2013-09-01

    The crew’s mission on a deployed warship is inherently dangerous. The nature of the job means navigating restricted waters, conducting underway...The nature of the job means navigating restricted waters, conducting underway replenishments with less than 200 feet of lateral separation from... concentration equivalent. Error bars ± s.e. (From Dawson & Reid, 1997). .............................9 Figure 4. Mean psychomotor vigilance task speed (and

  5. Metal Ion Sensor with Catalytic DNA in a Nanofluidic Intelligent Processor

    DTIC Science & Technology

    2011-12-01

    attributed to decreased diffusion and less active DNAzyme complex because of pore constraints. Uncleavable Alexa546 intensity is shown in gray ...is shown in gray , cleavable fluorescein in green, and the ratio of Fl/Alexa in red. Error bars represent one standard deviation of four independent...higher concentrations inhibiting cleaved fragment release. Uncleavable Alexa 546 intensity is shown in gray , cleavable fluorescein in green, and the

  6. The Sizing and Optimization Language (SOL): A computer language to improve the user/optimizer interface

    NASA Technical Reports Server (NTRS)

    Lucas, S. H.; Scotti, S. J.

    1989-01-01

    The nonlinear mathematical programming method (formal optimization) has had many applications in engineering design. A figure illustrates the use of optimization techniques in the design process. The design process begins with the design problem, such as the classic example of the two-bar truss designed for minimum weight as seen in the leftmost part of the figure. If formal optimization is to be applied, the design problem must be recast in the form of an optimization problem consisting of an objective function, design variables, and constraint function relations. The middle part of the figure shows the two-bar truss design posed as an optimization problem. The total truss weight is the objective function, the tube diameter and truss height are design variables, with stress and Euler buckling considered as constraint function relations. Lastly, the designer develops or obtains analysis software containing a mathematical model of the object being optimized, and then interfaces the analysis routine with existing optimization software such as CONMIN, ADS, or NPSOL. This final state of software development can be both tedious and error-prone. The Sizing and Optimization Language (SOL), a special-purpose computer language whose goal is to make the software implementation phase of optimum design easier and less error-prone, is presented.

  7. Pseudolinear gradient ultrahigh-pressure liquid chromatography using an injection valve assembly.

    PubMed

    Xiang, Yanqiao; Liu, Yansheng; Stearns, Stanley D; Plistil, Alex; Brisbin, Martin P; Lee, Milton L

    2006-02-01

    The use of ultrahigh pressures in liquid chromatography (UHPLC) imposes stringent requirements on hardware such as pumps, valves, injectors, connecting tubing, and columns. One of the most difficult components of the UHPLC system to develop has been the sample injector. Static-split injection, which can be performed at pressures up to 6900 bar (100,000 psi), consumes a large sample volume and is very irreproducible. A pressure-balanced injection valve provided better reproducibility, shorter injection time, reduced sample consumption, and greater ease of use; however, it could only withstand pressures up to approximately 1000 bar (15,000 psi). In this study, a new injection valve assembly that can operate at pressures as high as 2070 bar (30,000 psi) was evaluated for UHPLC. This assembly contains six miniature electronically controlled needle valves to provide accurate and precise volumes for introduction into the capillary LC column. It was found that sample volumes as small as several tenths of a nanoliter can be injected, which are comparable to the results obtained from the static-split injector. The reproducibilities of retention time, efficiency, and peak area were investigated, and the results showed that the relative standard deviations of these parameters were small enough for quantitative analyses. Separation experiments using the UHPLC system with this new injection valve assembly showed that this new injector is suitable for both isocratic and gradient operation modes. A newly designed capillary connector was used at a pressure as high as 2070 bar (30,000 psi).

  8. Fine structure of the pecten oculi of the barred owl (Strix varia).

    PubMed

    Smith, B J; Smith, S A; Braekevelt, C R

    1996-01-01

    The pecten oculi of the barred owl (Strix varia) has been examined by light and transmission electron microscopy. The pecten in this species is of the pleated type and is small in comparison to the size of the ocular globe. The pecten consists of 8-10 accordion-like folds that are linked apically by a pigmented tissue bridge. Each fold contains numerous capillaries, larger supply and drainage vessels, and abundant pleomorphic melanocytes. Most of these capillaries are extremely specialized vessels that possess plentiful microfolds on both the luminal and abluminal surfaces. Some capillaries however display only a few microfolds. The endothelial cell bodies are extremely attenuated, with most organelles located near the nucleus. All capillaries are surrounded by a very thick fibrillar basal lamina, which is thought to provide structural support to these small vessels. Pericytes are commonly found within these thickened basal laminae. Numerous melanocytes are also present, with processes that form an incomplete sheath around the capillaries. These processes are also presumed to provide structural support for the capillaries. As in other avian species, the morphology of the barred owl pecten is indicative of extensive involvement in substance transport. When compared to the pecten of more visually-oriented species, this pecten is smaller, has fewer folds, and displays a reduced number of microfolds within the capillaries. In these and other features, the barred owl pecten is similar to the pecten of the great horned owl (Bubo virginianus).

  9. Multiparameter linear least-squares fitting to Poisson data one count at a time

    NASA Technical Reports Server (NTRS)

    Wheaton, Wm. A.; Dunklee, Alfred L.; Jacobsen, Allan S.; Ling, James C.; Mahoney, William A.; Radocinski, Robert G.

    1995-01-01

    A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multicomponent linear model, with underlying physical count rates or fluxes which are to be estimated from the data. Despite its conceptual simplicity, the linear least-squares (LLSQ) method for solving this problem has generally been limited to situations in which the number n(sub i) of counts in each bin i is not too small, conventionally more than 5-30. It seems to be widely believed that the failure of the LLSQ method for small counts is due to the failure of the Poisson distribution to be even approximately normal for small numbers. The cause is more accurately the strong anticorrelation between the data and the wieghts w(sub i) in the weighted LLSQ method when square root of n(sub i) instead of square root of bar-n(sub i) is used to approximate the uncertainties, sigma(sub i), in the data, where bar-n(sub i) = E(n(sub i)), the expected value of N(sub i). We show in an appendix that, avoiding this approximation, the correct equations for the Poisson LLSQ (PLLSQ) problems are actually identical to those for the maximum likelihood estimate using the exact Poisson distribution. We apply the method to solve a problem in high-resolution gamma-ray spectroscopy for the JPL High-Resolution Gamma-Ray Spectrometer flown on HEAO 3. Systematic error in subtracting the strong, highly variable background encountered in the low-energy gamma-ray region can be significantly reduced by closely pairing source and background data in short segments. Significant results can be built up by weighted averaging of the net fluxes obtained from the subtraction of many individual source/background pairs. Extension of the approach to complex situations, with multiple cosmic sources and realistic background parameterizations, requires a means of efficiently fitting to data from single scans in the narrow (approximately = 1.2 keV, HEAO 3) energy channels of a Ge spectrometer, where the expected number of counts obtained per scan may be very low. Such an analysis system is discussed and compared to the method previously used.

  10. Effects of salt secretion on psychrometric determinations of water potential of cotton leaves.

    PubMed

    Klepper, B; Barrs, H D

    1968-07-01

    Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about -10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about -10 bars.

  11. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  12. The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China.

    PubMed

    Lin, Qigen; Wang, Ying; Liu, Tianxue; Zhu, Yingqi; Sui, Qi

    2017-02-21

    The lack of a detailed landslide inventory makes research on the vulnerability of people to landslides highly limited. In this paper, the authors collect information on the landslides that have caused casualties in China, and established the Landslides Casualties Inventory of China . 100 landslide cases from 2003 to 2012 were utilized to develop an empirical relationship between the volume of a landslide event and the casualties caused by the occurrence of the event. The error bars were used to describe the uncertainty of casualties resulting from landslides and to establish a threshold curve of casualties caused by landslides in China. The threshold curve was then applied to the landslide cases occurred in 2013 and 2014. The validation results show that the estimated casualties of the threshold curve were in good agreement with the real casualties with a small deviation. Therefore, the threshold curve can be used for estimating potential casualties and landslide vulnerability, which is meaningful for emergency rescue operations after landslides occurred and for risk assessment research.

  13. The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China

    PubMed Central

    Lin, Qigen; Wang, Ying; Liu, Tianxue; Zhu, Yingqi; Sui, Qi

    2017-01-01

    The lack of a detailed landslide inventory makes research on the vulnerability of people to landslides highly limited. In this paper, the authors collect information on the landslides that have caused casualties in China, and established the Landslides Casualties Inventory of China. 100 landslide cases from 2003 to 2012 were utilized to develop an empirical relationship between the volume of a landslide event and the casualties caused by the occurrence of the event. The error bars were used to describe the uncertainty of casualties resulting from landslides and to establish a threshold curve of casualties caused by landslides in China. The threshold curve was then applied to the landslide cases occurred in 2013 and 2014. The validation results show that the estimated casualties of the threshold curve were in good agreement with the real casualties with a small deviation. Therefore, the threshold curve can be used for estimating potential casualties and landslide vulnerability, which is meaningful for emergency rescue operations after landslides occurred and for risk assessment research. PMID:28230810

  14. Density of transneptunian object 229762 2007 UK126

    NASA Astrophysics Data System (ADS)

    Grundy, Will

    2017-08-01

    Densities provide unique information about bulk composition and interior structure and are key to going beyond the skin-deep view offered by remote-sensing techniques based on photometry, spectroscopy, and polarimetry. They are known for a handful of the relict planetesimals that populate our Solar System's Kuiper belt, revealing intriguing differences between small and large bodies. More and better quality data are needed to address fundamental questions about how planetesimals form from nebular solids, and how distinct materials are distributed through the nebula. Masses from binary orbits are generally quite precise, but a problem afflicting many of the known densities is that they depend on size estimates from thermal emission observations, with large model-dependent uncertainties that dominate the error bars on density estimates. Stellar occultations can provide much more accurate sizes and thus densities, but they depend on fortuitous geometry and thus can only be done for a few particularly valuable binaries. We propose observations of a system where an accurate density can be determined: 229762 2007 UK126. An accurate size is already available from multiple stellar occultation chords. This proposal will determine the mass, and thus the density.

  15. Abundance Ratios in a Large Sample of Emps with VLT+UVES

    NASA Astrophysics Data System (ADS)

    Hill, Vanessa; Cayrel, Roger; Spite, Monique; Bonifacio, Piercarlo; Eric, Depagne; Patrick, François; Timothy, Beers C.; Johannes, Andersen; Beatriz, Barbuy; Birgitta, Nordström

    Constraints on Early Galactic Enrichement from a large sample of Extremely Metal Poor Stars I will present the overall results from an large effort conducted at ESO-VLT+UVES to measure abundances in a sample of extremely metal-poor stars (EMPS) from high-resolution and high signal to noise spectra. More than 70 EMPS with [Fe/H]<-2.7 were observed equally distributed between turnoff and giants stars and very precise abundance ratios could be derived thanks to the high quality of the data. Among the results those of specific interest are lithium measurements in unevolved EMPS the much debated abundance of oxygen in the early galaxy (we present [OI] line measurements down to [O/Fe]=-3.5) and the trends of alpha elements iron group elements and Zinc. The scatter around these trends will also be discussed taking advantage of the small observationnal error-bars of this dataset. The implications on the early Galactic enrichement will be rewiewed while more specific topics covered by this large effort (and large team) will be adressed in devoted posters.

  16. Fatigue of reinforcing bars during hydro-demolition

    NASA Astrophysics Data System (ADS)

    Hyland, C. W. K.; Ouwejan, A.

    2017-05-01

    Reinforcing steel fractured during hydro-demolition of a reinforced concrete pier head due to low cycle flexural fatigue from vibration caused by impact of the high pressure water jet on the exposed length of the bars. Research into the fatigue performance of steel reinforcing steel tends to focus on the high cycle axial performance in reinforced concrete members and re-bending behaviour. However with the increasing use of hydro-demolition of concrete structures as part of remediation works care is required to ensure the steel reinforcement exposed to the high pressure jet of water is not going to suffer relatively low cycle flexural damage that may compromise the designed performance of the completed reinforced concrete structure. This paper describes the failure assessment, fatigue analysis, and metallographic examination that was undertaken. It was found that the rib to flank transition radius on the reinforcement steel was small enough to cause a significant stress concentration effect and was the location of fatigue crack growth. A relatively simple analysis using the maximum unrestrained cantilevered bar length and force exerted by the water jet was used to calculate the maximum expected bending moment. This was compared to the bending capacity at initiation of yielding at the rib flank transition accounting for stress concentration effects. This showed that the observed cyclic reversing ductile crack growth and fracture of the H25 bars was consistent with the loading applied. A method is proposed based on these observations to assess suitable limits for unrestrained bar lengths or maximum working offset of the water jet from the point of bar restraint when undertaking hydro-demolition work. The fatigue critical performance requirements of AS/NZS4671 500E bars are also therefore compared with those of BS4449:2005 and PN EN/ISO 15630-1:2011 for comparable 500C bars

  17. Motor Decisions Are Not Black and White: Selecting Actions in the “Gray Zone”

    PubMed Central

    Comalli, D. M.; Persand, D.; Adolph, K. E.

    2017-01-01

    In many situations, multiple actions are possible to achieve a goal. How do people select a particular action among equally possible alternatives? In six experiments, we determined whether action selection is consistent and biased toward one decision by observing participants’ decisions to go over or under a horizontal bar set at varying heights. We assessed the height at which participants transitioned from going over to under the bar within a “gray zone”—the range of bar heights at which going over and under were both possible. In Experiment 1, participants’ transition points were consistently located near the upper boundary of the gray zone, indicating a bias to go over rather than under the bar. Moreover, transitional behaviors were clustered tightly into a small region, indicating that decisions were highly consistent. Subsequent experiments examined potential influences on action selection. In Experiment 2, participants wore ankle weights to increase the cost of going over the bar. In Experiment 3, they were tested on a padded surface that made crawling under the bar more comfortable. In Experiment 4, we introduced a secondary task that required participants to crawl immediately after navigating the bar. None of these manipulations altered participants’ decisions relative to Experiment 1. In Experiment 5, participants started in a crawling position, which led to significantly lower transition points. In Experiment 6, we tested 5- to 6-year-old children as in Experiment 1 to determine the effects of social pressure on action selection. Children displayed lower transition points, larger transition regions, and reduced ability to go over the bar compared to adults. Across experiments, results indicate that adults have a strong and robust bias for upright locomotion. PMID:28293691

  18. Geomorphic field experiment to quantify grain size and biotic influence on riverbed sedimentation dynamics in a dry-season reservoir, Russian River, CA

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Ulrich, C.; Hubbard, S. S.; Borglin, S. E.; Rosenberry, D. O.

    2013-12-01

    An important problem in geomorphology is to differentiate between abiotic and biotic fine sediment deposition on coarse gravel river beds because of the potential for fine sediment to infiltrate and clog the pore space between gravel clasts. Infiltration of fines into gravel substrate is significant because it may reduce permeability; therefore, differentiation of abiotic vs. biotic sediment helps in understanding the causes of such changes. We conducted a geomorphic field experiment during May to November 2012 in the Russian River near Wohler, CA, to quantify biotic influence on riverbed sedimentation in a small temporary reservoir. The reservoir is formed upstream of a small dam inflated during the dry season to enhance water supply pumping from the aquifer below the channel; however, some flow is maintained in the reservoir to facilitate fish outmigration. In the Russian River field area, sediment transport dynamics during storm flows prior to dam inflation created an alternate bar-riffle complex with a coarser gravel surface layer over the relatively finer gravel subsurface. The objective of our work was to link grain size distribution and topographic variation to biotic and abiotic sediment deposition dynamics in this field setting where the summertime dam annually increases flow depth and inundates the bar surfaces. The field experiment investigated fine sediment deposition over the coarser surface sediment on two impounded bars upstream of the reservoir during an approximately five month period when the temporary dam was inflated. The approach included high resolution field surveys of topography, grain size sampling and sediment traps on channel bars, and laboratory analyses of grain size distributions and loss on ignition (LOI) to determine biotic content. Sediment traps were installed at six sites on bars to measure sediment deposited during the period of impoundment. Preliminary results show that fine sediment deposition occurred at all of the sample sites, and is spatially variable--likely influenced by topographic differences that moderate flow over the bars. Traps initially filled with coarse gravel from the bar's surface trapped more fine sediment than traps initially filled with material from the bar's subsurface sediment, suggesting that a gravel bar's armor layer may enhance the source of material available to infiltrate into the channel substrate. LOI analysis indicates that both surface and subsurface samples have organic content ranging between 2 and 4%, following winter storm flows prior to impoundment. In contrast, samples collected after the 5-month impoundment have higher organic content ranging between 5 and 11%. This work aids in differentiating between abiotic and biotic fine sediment deposition in order to understand their relative potential for clogging gravel substrate.

  19. A new photometric model of the Galactic bar using red clump giants

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Mao, Shude; Nataf, David; Rattenbury, Nicholas J.; Gould, Andrew

    2013-09-01

    We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants from the Optical Gravitational Lensing Experiment (OGLE) III survey. The data were recently published by Nataf et al. for 9019 fields towards the bulge and have 2.94 × 106 RC stars over a viewing area of 90.25 deg^2. The data include the number counts, mean distance modulus (μ), dispersion in μ and full error matrix, from which we fit the data with several triaxial parametric models. We use the Markov Chain Monte Carlo method to explore the parameter space and find that the best-fitting model is the E3 model, with the distance to the GC 8.13 kpc, the ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane x0, y0 and vertical bar scalelength z0 x0: y0: z0 ≈ 1.00: 0.43: 0.40 (close to being prolate). The scalelength of the stellar density profile along the bar's major axis is ˜0.67 kpc and has an angle of 29.4°, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78 × 106, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic Centre, the excess to the estimated mass content is ˜5.8 per cent. We estimate that the total mass of the bar is ˜1.8 × 1010 M⊙. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.

  20. The role of chest radiography following pectus bar removal.

    PubMed

    Farach, Sandra M; Danielson, Paul D; Chandler, Nicole M

    2016-07-01

    Surgical correction of pectus excavatum (PE) via a minimally invasive approach involves placement of a steel bar, which is subsequently removed. The purpose of our study was to evaluate the incidence of pneumothorax and the role for chest radiography (CXR) in patients undergoing pectus bar removal. A retrospective review of 84 patients who underwent pectus bar removal from 2006 to 2014 was performed. Results of postoperative CXR, repeat imaging, need for chest thoracostomy tube placement, and complications were analyzed. Mean Haller index prior to correction was 4.3 ± 0.9. The mean time between PE repair and bar removal was 2.3 ± 0.6 years. Sixty-one patients (72.6 %) had a postoperative CXR. Thirty-one (50.8 %) had no acute findings, 20 (32.8 %) had findings of atelectasis or subcutaneous emphysema, and 10 (16.4 %) had a pneumothorax. One patient (1.6 %) had a second postoperative CXR for a small pneumothorax and rib fractures. There were two complications (2.4 %). No chest tubes were placed for pneumothorax, and 95 % of patients were discharged the day of surgery. Postoperative CXR following pectus bar removal is unnecessary given the low incidence of postoperative pneumothorax requiring intervention. Patients can be safely discharged the day of surgery without the need for routine postoperative chest imaging.

  1. Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2005-01-01

    To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  2. The State and Trends of Barcode, RFID, Biometric and Pharmacy Automation Technologies in US Hospitals.

    PubMed

    Uy, Raymonde Charles Y; Kury, Fabricio P; Fontelo, Paul A

    2015-01-01

    The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions.

  3. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 gm, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.

  4. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 microns, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.

  5. User-centered design of quality of life reports for clinical care of patients with prostate cancer

    PubMed Central

    Izard, Jason; Hartzler, Andrea; Avery, Daniel I.; Shih, Cheryl; Dalkin, Bruce L.; Gore, John L.

    2014-01-01

    Background Primary treatment of localized prostate cancer can result in bothersome urinary, sexual, and bowel symptoms. Yet clinical application of health-related quality-of-life (HRQOL) questionnaires is rare. We employed user-centered design to develop graphic dashboards of questionnaire responses from patients with prostate cancer to facilitate clinical integration of HRQOL measurement. Methods We interviewed 50 prostate cancer patients and 50 providers, assessed literacy with validated instruments (Rapid Estimate of Adult Literacy in Medicine short form, Subjective Numeracy Scale, Graphical Literacy Scale), and presented participants with prototype dashboards that display prostate cancer-specific HRQOL with graphic elements derived from patient focus groups. We assessed dashboard comprehension and preferences in table, bar, line, and pictograph formats with patient scores contextualized with HRQOL scores of similar patients serving as a comparison group. Results Health literacy (mean score, 6.8/7) and numeracy (mean score, 4.5/6) of patient participants was high. Patients favored the bar chart (mean rank, 1.8 [P = .12] vs line graph [P <.01] vs table and pictograph); providers demonstrated similar preference for table, bar, and line formats (ranked first by 30%, 34%, and 34% of providers, respectively). Providers expressed unsolicited concerns over presentation of comparison group scores (n = 19; 38%) and impact on clinic efficiency (n = 16; 32%). Conclusion Based on preferences of prostate cancer patients and providers, we developed the design concept of a dynamic HRQOL dashboard that permits a base patient-centered report in bar chart format that can be toggled to other formats and include error bars that frame comparison group scores. Inclusion of lower literacy patients may yield different preferences. PMID:24787105

  6. User-centered design of quality of life reports for clinical care of patients with prostate cancer.

    PubMed

    Izard, Jason; Hartzler, Andrea; Avery, Daniel I; Shih, Cheryl; Dalkin, Bruce L; Gore, John L

    2014-05-01

    Primary treatment of localized prostate cancer can result in bothersome urinary, sexual, and bowel symptoms. Yet clinical application of health-related quality-of-life (HRQOL) questionnaires is rare. We employed user-centered design to develop graphic dashboards of questionnaire responses from patients with prostate cancer to facilitate clinical integration of HRQOL measurement. We interviewed 50 prostate cancer patients and 50 providers, assessed literacy with validated instruments (Rapid Estimate of Adult Literacy in Medicine short form, Subjective Numeracy Scale, Graphical Literacy Scale), and presented participants with prototype dashboards that display prostate cancer-specific HRQOL with graphic elements derived from patient focus groups. We assessed dashboard comprehension and preferences in table, bar, line, and pictograph formats with patient scores contextualized with HRQOL scores of similar patients serving as a comparison group. Health literacy (mean score, 6.8/7) and numeracy (mean score, 4.5/6) of patient participants was high. Patients favored the bar chart (mean rank, 1.8 [P = .12] vs line graph [P < .01] vs table and pictograph); providers demonstrated similar preference for table, bar, and line formats (ranked first by 30%, 34%, and 34% of providers, respectively). Providers expressed unsolicited concerns over presentation of comparison group scores (n = 19; 38%) and impact on clinic efficiency (n = 16; 32%). Based on preferences of prostate cancer patients and providers, we developed the design concept of a dynamic HRQOL dashboard that permits a base patient-centered report in bar chart format that can be toggled to other formats and include error bars that frame comparison group scores. Inclusion of lower literacy patients may yield different preferences. Copyright © 2014 Mosby, Inc. All rights reserved.

  7. Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns

    PubMed Central

    Severns, Paul M.

    2015-01-01

    Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches. PMID:26312190

  8. Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns.

    PubMed

    Breed, Greg A; Severns, Paul M

    2015-01-01

    Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches.

  9. Association between workarounds and medication administration errors in bar-code-assisted medication administration in hospitals.

    PubMed

    van der Veen, Willem; van den Bemt, Patricia M L A; Wouters, Hans; Bates, David W; Twisk, Jos W R; de Gier, Johan J; Taxis, Katja; Duyvendak, Michiel; Luttikhuis, Karen Oude; Ros, Johannes J W; Vasbinder, Erwin C; Atrafi, Maryam; Brasse, Bjorn; Mangelaars, Iris

    2018-04-01

    To study the association of workarounds with medication administration errors using barcode-assisted medication administration (BCMA), and to determine the frequency and types of workarounds and medication administration errors. A prospective observational study in Dutch hospitals using BCMA to administer medication. Direct observation was used to collect data. Primary outcome measure was the proportion of medication administrations with one or more medication administration errors. Secondary outcome was the frequency and types of workarounds and medication administration errors. Univariate and multivariate multilevel logistic regression analysis were used to assess the association between workarounds and medication administration errors. Descriptive statistics were used for the secondary outcomes. We included 5793 medication administrations for 1230 inpatients. Workarounds were associated with medication administration errors (adjusted odds ratio 3.06 [95% CI: 2.49-3.78]). Most commonly, procedural workarounds were observed, such as not scanning at all (36%), not scanning patients because they did not wear a wristband (28%), incorrect medication scanning, multiple medication scanning, and ignoring alert signals (11%). Common types of medication administration errors were omissions (78%), administration of non-ordered drugs (8.0%), and wrong doses given (6.0%). Workarounds are associated with medication administration errors in hospitals using BCMA. These data suggest that BCMA needs more post-implementation evaluation if it is to achieve the intended benefits for medication safety. In hospitals using barcode-assisted medication administration, workarounds occurred in 66% of medication administrations and were associated with large numbers of medication administration errors.

  10. A method for velocity signal reconstruction of AFDISAR/PDV based on crazy-climber algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Ying-cheng; Guo, Xian; Xing, Yuan-ding; Chen, Rong; Li, Yan-jie; Bai, Ting

    2017-10-01

    The resolution of Continuous wavelet transformation (CWT) is different when the frequency is different. For this property, the time-frequency signal of coherent signal obtained by All Fiber Displacement Interferometer System for Any Reflector (AFDISAR) is extracted. Crazy-climber Algorithm is adopted to extract wavelet ridge while Velocity history curve of the measuring object is obtained. Numerical simulation is carried out. The reconstruction signal is completely consistent with the original signal, which verifies the accuracy of the algorithm. Vibration of loudspeaker and free end of Hopkinson incident bar under impact loading are measured by AFDISAR, and the measured coherent signals are processed. Velocity signals of loudspeaker and free end of Hopkinson incident bar are reconstructed respectively. Comparing with the theoretical calculation, the particle vibration arrival time difference error of the free end of Hopkinson incident bar is 2μs. It is indicated from the results that the algorithm is of high accuracy, and is of high adaptability to signals of different time-frequency feature. The algorithm overcomes the limitation of modulating the time window artificially according to the signal variation when adopting STFT, and is suitable for extracting signal measured by AFDISAR.

  11. Shadowing of Virtual Photons in Nuclei at Small xBj in the QCD Dipole Picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    1998-03-01

    Compact and well defined formulae for the shadow of the virtual photon interacting with a large nucleus at small xBj are given in the QCD dipole picture. Two classes of contributions are considered: (a) quasi-elastic interaction of the q bar q dipole and (b) multi-pomeron coupling.

  12. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions.

    PubMed

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.

  13. Search for Higgs boson pair production in the bb¯bb¯ final state from pp collision at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-09-09

    A search for Higgs boson pair production \\(pp \\rightarrow hh\\) is performed with 19.5 fb\\(^{-1}\\) of proton–proton collision data at \\(\\sqrt{s}=8\\) TeV, which were recorded by the ATLAS detector at the Large Hadron Collider in 2012. The decay products of each Higgs boson are reconstructed as a high-momentum \\(b\\bar{b}\\) system with either a pair of small-radius jets or a single large-radius jet, the latter exploiting jet substructure techniques and associated b-tagged track-jets. No evidence for resonant or non-resonant Higgs boson pair production is observed. The data are interpreted in the context of the Randall–Sundrum model with a warped extra dimensionmore » as well as the two-Higgs-doublet model. An upper limit on the cross-section for \\(pp\\rightarrow G^{*}_{\\mathrm {KK}} \\rightarrow hh \\rightarrow b\\bar{b}b\\bar{b} \\) of 3.2 (2.3) fb is set for a Kaluza–Klein graviton \\(G^{*}_{\\mathrm {KK}}\\) mass of 1.0 (1.5) TeV, at the 95 % confidence level. Thus, the search for non-resonant Standard Model hh production sets an observed 95 % confidence level upper limit on the production cross-section \\(\\sigma (pp \\rightarrow hh \\rightarrow b\\bar{b}b\\bar{b})\\) of 202 fb, compared to a Standard Model prediction of \\(\\sigma (pp \\rightarrow hh \\rightarrow b\\bar{b}b\\bar{b}) = 3.6 \\pm 0.5\\) fb.« less

  14. Search for Higgs Boson Pair Production in the γγbb¯ final state using pp collision data at √s = 8 TeV from the ATLAS Detector

    DOE PAGES

    Aad, G.

    2015-02-26

    A search for Higgs boson pair production \\(pp \\rightarrow hh\\) is performed with 19.5 fb\\(^{-1}\\) of proton–proton collision data at \\(\\sqrt{s}=8\\) TeV, which were recorded by the ATLAS detector at the Large Hadron Collider in 2012. The decay products of each Higgs boson are reconstructed as a high-momentum \\(b\\bar{b}\\) system with either a pair of small-radius jets or a single large-radius jet, the latter exploiting jet substructure techniques and associated b-tagged track-jets. No evidence for resonant or non-resonant Higgs boson pair production is observed. The data are interpreted in the context of the Randall–Sundrum model with a warped extra dimensionmore » as well as the two-Higgs-doublet model. An upper limit on the cross-section for \\(pp\\rightarrow G^{*}_{\\mathrm {KK}} \\rightarrow hh \\rightarrow b\\bar{b}b\\bar{b} \\) of 3.2 (2.3) fb is set for a Kaluza–Klein graviton \\(G^{*}_{\\mathrm {KK}}\\) mass of 1.0 (1.5) TeV, at the 95 % confidence level. The search for non-resonant Standard Model hh production sets an observed 95 % confidence level upper limit on the production cross-section \\(\\sigma (pp \\rightarrow hh \\rightarrow b\\bar{b}b\\bar{b})\\) of 202 fb, compared to a Standard Model prediction of \\(\\sigma (pp \\rightarrow hh \\rightarrow b\\bar{b}b\\bar{b}) = 3.6 \\pm 0.5\\) fb.« less

  15. T(sub lambda) Depression by a Heat Current Along the lambda-Line

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Larson, Melora; Iraelsson, Ulf E.

    1999-01-01

    We report measurements of the depression of the superfluid transition temperature by a heat current (1 less than or = Q less than or = 100 microW/sq cm) along the lambda-line (SVP less than or = P less than or = 21.6 bar). At P = 21.6 bar, measurements were also performed in a reduced gravity (0.2g). Experimental results show that the pressure dependence of the depression and the gravity effect on the measurements are small, in qualitative agreement with theoretical predictions. Keywords: superfluid helium; Lambda transition; heat current

  16. Plant moisture stress: a portable freezing-point meter compared with the psychrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, J.W.; Fisher, H.D.

    A small portable instrument for measuring the freezing-point depression of plant tissue has been developed for field use. The instrument is easy to operate and can be constructed from materials costing less than $100. Moisture stress measurements made with the freezing-point meter on a variety of plants were compared with vapor pressure psychrometer measurements. Variation between duplicates in the freezing point averaged 1.2 bars, but differences between stress measurements made with the psychrometer and freezing-point instrument averaged 2.6 bars. 11 references, 5 figures, 2 tables.

  17. Stampless fabrication of sheet bars using disposable templates

    NASA Astrophysics Data System (ADS)

    Smolentsev, V. P.; Safonov, S. V.; Smolentsev, E. V.; Fedonin, O. N.

    2016-04-01

    The article is devoted to the new method of small-scale fabrication of sheet bars. The procedure is performed by using disposable overlay templates, or those associated with a sheet, which parameters are obtained directly from the drawing. The proposed method used as a substitution of die cutting enables to intensify the preparatory technological process, which is particularly effective when launching the market-oriented items into production. It significantly increases the competitiveness of mechanical engineering and creates the conditions for technical support of present-day flexible production systems.

  18. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    PubMed

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  19. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  20. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Y. J.; Zheng, H. Y.; Kim, Y. J.

    2014-07-28

    Using a planar and flexible metamaterial (MM), we obtained the low-frequency perfect absorption even with very small unit-cell size in snake-shape structure. These shrunken, deep-sub-wavelength and thin MM absorbers were numerically and experimentally investigated by increasing the inductance. The periodicity/thickness (the figure of merit for perfect absorption) is achieved to be 10 and 2 for single-snake-bar and 5-snake-bar structures, respectively. The ratio between periodicity and resonance wavelength (in mm) is close to 1/12 and 1/30 at 2 GHz and 400 MHz, respectively. The absorbers are specially designed for absorption peaks around 2 GHz and 400 MHz, which can be used for depressing the electromagneticmore » noise from everyday electronic devices and mobile phones.« less

  1. Determination of Gastrointestinal Transit Times in Barred Owls ( Strix varia ) by Contrast Fluoroscopy.

    PubMed

    Doss, Grayson A; Williams, Jackie M; Mans, Christoph

    2017-06-01

    Contrast imaging studies are routinely performed in avian patients when an underlying abnormality of the gastrointestinal (GI) tract is suspected. Fluoroscopy offers several advantages over traditional radiography and can be performed in conscious animals with minimal stress and restraint. Although birds of prey are commonly encountered as patients, little is known about GI transit times and contrast imaging studies in these species, especially owls. Owls are commonly encountered in zoological, educational, and wildlife settings. In this study, 12 adult barred owls ( Strix varia ) were gavage fed a 30% weight-by-volume barium suspension (25 mL/kg body weight). Fluoroscopic exposures were recorded at 5, 15, 30, 60, 120, 180, 240, and 300 minutes after administration. Overall GI transit time and transit times of various GI organs were recorded. Median (interquartile range [IQR]) overall GI transit time was 60 minutes (IQR: 19-60 minutes) and ranged from 5-120 minutes. Ventricular and small intestinal contrast filling was rapid. Ventricular emptying was complete by a median of 60 minutes (IQR: 30-120 minutes; range: 30-240 minutes), whereas small intestinal emptying was not complete in 9/12 birds by 300 minutes. Median small intestinal contraction rate was 15 per minute (IQR: 13-16 minutes; range: 10-19 minutes). Median overall GI transit time in barred owls is more rapid than mean transit times reported for psittacine birds and red-tailed hawks ( Buteo jamaicensis ). Fluoroscopy is a safe, suitable method for investigating GI motility and transit in this species.

  2. High-Throughput Platform for Patient-Derived, Small Cell Number, Three-Dimensional Ovarian Cancer Spheroids

    DTIC Science & Technology

    2014-09-01

    these small cell number spheroids show 3-D morphology (Figure 3). We also observed differences in the expression of mesenchymal markers when...Scale bar =100 µm. Figure 3: Small cell number spheroids demonstrate 3-D morphology . 3-D reconstructions of confocal z-stacks are shown for...formation was observed with the addition of MSCs, and subsequent co-culture in hanging drop plates preserved spheroid morphology indicated in the phase

  3. Energy compensation in the real world: good compensation for small portions of chocolate and biscuits over short time periods in complicit consumers using commercially available foods.

    PubMed

    Appleton, Katherine M; McKeown, Pascal P; Woodside, Jayne V

    2015-02-01

    While investigations using covert food manipulations tend to suggest that individuals are poor at adjusting for previous energy intake, in the real world adults rarely consume foods of which they are ill-informed. This study investigated the impact in fully complicit consumers of consuming commercially available dark chocolate, milk chocolate, sweet biscuits and fruit bars on subsequent appetite. Using a repeated measures design, participants received four small portions (4 × 10-11 g) of either dark chocolate, milk chocolate, sweet biscuits, fruit bars or no food throughout five separate study days (counterbalanced in order), and test meal intake, hunger, liking and acceptability were measured. Participants consumed significantly less at lunch following dark chocolate, milk chocolate and sweet biscuits compared to no food (smallest t(19) = 2.47, p = 0.02), demonstrating very good energy compensation (269-334%). No effects were found for fruit bars (t(19) = 1.76, p = 0.09), in evening meal intakes (F(4,72) = 0.62, p = 0.65) or in total intake (lunch + evening meal + food portions) (F(4,72) = 0.40, p = 0.69). No differences between conditions were found in measures of hunger (largest F(4,76) = 1.26, p = 0.29), but fruit bars were significantly less familiar than all other foods (smallest t(19) = 3.14, p = 0.01). These findings demonstrate good compensation over the short term for small portions of familiar foods in complicit consumers. Findings are most plausibly explained as a result of participant awareness and cognitions, although the nature of these cognitions cannot be discerned from this study. These findings however, also suggest that covert manipulations may have limited transfer to real world scenarios. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bioavailability and Methylation Potential of Mercury Sulfides in Sediments

    DTIC Science & Technology

    2014-08-01

    such as size separation (i.e. filtration with a particular pore size or molecular weight cutoff) or metal-ligand complexation from experimentally ...and 6 nM HgS microparticles. The error bars represent ±1 s.d. for duplicate samples. Results of Hg fractionation by filtration and (ultra... results from filtration (Figures S2). These differences in the data indicated that the nHgS dissolution rate could be overestimated by the filtration data

  5. CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD

    DOE PAGES

    Lü, Gang; Lu, Ye; Li, Sheng-Tao; ...

    2017-08-04

    In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less

  6. CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Gang; Lu, Ye; Li, Sheng-Tao

    In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less

  7. Effects of Salt Secretion on Psychrometric Determinations of Water Potential of Cotton Leaves

    PubMed Central

    Klepper, Betty; Barrs, H. D.

    1968-01-01

    Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about −10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about −10 bars. PMID:16656895

  8. Relationship between visual binding, reentry and awareness.

    PubMed

    Koivisto, Mika; Silvanto, Juha

    2011-12-01

    Visual feature binding has been suggested to depend on reentrant processing. We addressed the relationship between binding, reentry, and visual awareness by asking the participants to discriminate the color and orientation of a colored bar (presented either alone or simultaneously with a white distractor bar) and to report their phenomenal awareness of the target features. The success of reentry was manipulated with object substitution masking and backward masking. The results showed that late reentrant processes are necessary for successful binding but not for phenomenal awareness of the bound features. Binding errors were accompanied by phenomenal awareness of the misbound feature conjunctions, demonstrating that they were experienced as real properties of the stimuli (i.e., illusory conjunctions). Our results suggest that early preattentive binding and local recurrent processing enable features to reach phenomenal awareness, while later attention-related reentrant iterations modulate the way in which the features are bound and experienced in awareness. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition

    NASA Astrophysics Data System (ADS)

    Hakim, Layal; Lacaze, Guilhem; Khalil, Mohammad; Sargsyan, Khachik; Najm, Habib; Oefelein, Joseph

    2018-05-01

    This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities.

  10. Scale dependence of open c{\\bar{c}} and b{\\bar{b}} production in the low x region

    NASA Astrophysics Data System (ADS)

    Oliveira, E. G. de; Martin, A. D.; Ryskin, M. G.

    2017-03-01

    The `optimal' factorization scale μ _0 is calculated for open heavy quark production. We find that the optimal value is μ _F=μ _0˜eq 0.85√{p^2_T+m_Q^2} ; a choice which allows us to resum the double-logarithmic, (α _s ln μ ^2_F ln (1/x))^n corrections (enhanced at LHC energies by large values of ln (1/x)) and to move them into the incoming parton distributions, PDF(x,μ _0^2). Besides this result for the single inclusive cross section (corresponding to an observed heavy quark of transverse momentum p_T), we also determined the scale for processes where the acoplanarity can be measured; that is, events where the azimuthal angle between the quark and the antiquark may be determined experimentally. Moreover, we discuss the important role played by the 2→ 2 subprocesses, gg→ Q\\bar{Q} at NLO and higher orders. In summary, we achieve a better stability of the QCD calculations, so that the data on c{\\bar{c}} and b{\\bar{b}} production can be used to further constrain the gluons in the small x, relatively low scale, domain, where the uncertainties of the global analyses are large at present.

  11. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    NASA Astrophysics Data System (ADS)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  12. Adaptive form-finding method for form-fixed spatial network structures

    NASA Astrophysics Data System (ADS)

    Lan, Cheng; Tu, Xi; Xue, Junqing; Briseghella, Bruno; Zordan, Tobia

    2018-02-01

    An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive form-finding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.

  13. A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.

    PubMed

    Tan, Qiulin; Kang, Hao; Xiong, Jijun; Qin, Li; Zhang, Wendong; Li, Chen; Ding, Liqiong; Zhang, Xiansheng; Yang, Mingliang

    2013-08-02

    A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low.

  14. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute movement. This wake behind the moving solute is more pronounced in case of mobile H2 and in solvents with weaker internal interactions. However, deviations from a spherical solvent cage shape do not influence solute-solvent radial distribution functions after averaging over all solvent cage orientations and hence do not change bar V_i. Overall, the applied methodology reproduces bar V_i and its variations reliably and the used bar V_i decompositions identify the underlying reasons behind observed bar V_i variations.

  15. A non-perturbative exploration of the high energy regime in Nf=3 QCD. ALPHA Collaboration

    NASA Astrophysics Data System (ADS)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2018-05-01

    Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schrödinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale 1/L_0≈ 4 GeV through \\bar{g}^2(L_0) =2.012, we quote L_0 Λ ^{N_f=3}_{{\\overline{MS}}} =0.0791(21). This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales 2^n/L_0 for n=0,1,\\ldots ,5. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests of perturbation theory some of which have been published in a letter (ALPHA collaboration, M. Dalla Brida et al. in Phys Rev Lett 117(18):182001, 2016). The results indicate that for our target precision of 3 per cent in L_0 Λ ^{N_f=3}_{{\\overline{MS}}}, a reliable estimate of the truncation error requires non-perturbative data for a sufficiently large range of values of α _s=\\bar{g}^2/(4π ). In the present work we reach this precision by studying scales that vary by a factor 2^5= 32, reaching down to α _s≈ 0.1. We here provide the details of our analysis and an extended discussion.

  16. Transverse speed bars for rural traffic calming.

    DOT National Transportation Integrated Search

    2013-10-01

    Small rural communities often lack the expertise and resources necessary to address speeding and the persistent challenge of slowing high-speed through traffic. The entrances to communities are especially problematic given that drivers must transitio...

  17. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE PAGES

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin; ...

    2015-08-07

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  18. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  19. Quantizing the Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddharthan, R.; Shastry, B.S.

    In this work we study the quantum Toda lattice, developing the asymptotic Bethe ansatz method first used by Sutherland. Despite its known limitations we find, on comparing with Gutzwiller{close_quote}s exact method, that it works well in this particular problem and in fact becomes exact as {h_bar} grows large. We calculate ground state and excitation energies for finite-sized lattices, identify excitations as phonons and solitons on the basis of their quantum numbers, and find their dispersions. These are similar to the classical dispersions for small {h_bar}, and remain similar all the way up to {h_bar}=1, but then deviate substantially as wemore » go farther into the quantum regime. On comparing the sound velocities for various {h_bar} obtained thus with that predicted by conformal theory we conclude that the Bethe ansatz gives the energies per particle accurate to O(1/N{sup 2}). On that assumption we can find correlation functions. Thus the Bethe ansatz method can be used to yield much more than the thermodynamic properties which previous authors have calculated. {copyright} {ital 1997} {ital The American Physical Society}« less

  20. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading

    NASA Astrophysics Data System (ADS)

    Hamid, Nubailah Abd; Ibrahim, Azmi; Adnan, Azlan; Ismail, Muhammad Hussain

    2018-05-01

    This paper discusses the superelastic behavior of shape memory alloy, NiTi when used as reinforcement in concrete beams. The ability of NiTi to recover and reduce permanent deformations of concrete beams was investigated. Small-scale concrete beams, with NiTi reinforcement were experimentally investigated under monotonic loads. The behaviour of simply supported reinforced concrete (RC) beams hybrid with NiTi rebars and the control beam subject to monotonic loads were experimentally investigated. This paper is to highlight the ability of the SMA bars to recover and reduce permanent deformations of concrete flexural members. The size of the control beam is 125 mm × 270 mm × 1000 mm with 3 numbers of 12 mm diameter bars as main reinforcement for compression and 3 numbers of 12 mm bars as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars for control beam respectively. While, the minimal provision of 200mm using the 12.7mm of superelastic Shape Memory Alloys were employed to replace the steel rebar at the critical region of the beam. In conclusion, the contribution of the SMA bar in combination with high-strength steel to the conventional reinforcement showed that the SMA beam has exhibited an improve performance in term of better crack recovery and deformation. Therefore the usage of hybrid NiTi with the steel can substantially diminish the risk of the earthquake and also can reduce the associated cost aftermath.

  1. Processing Research on Chemically Vapor Deposited Silicon Nitride

    DTIC Science & Technology

    1981-12-01

    forming silicon carbide to reduce free silicon content. (b) Boron and aluminum were selected as two single-valence elements with small atomic radii which...obtained in cold wall (CW-3) runs were sliced into small flexure bars (19.1x3.2xt(mm) where t = thickness) if they appeared to be of suitable quality...discussed later. Addition of borcn trichloride in small amounts (Run 8) caused Formation of a light blue translucent deposit which contained at least one

  2. Etched poly(ether ether ketone) jacket stir bar with detachable dumbbell-shaped structure for stir bar sorptive extraction.

    PubMed

    Zhou, Wei; Wang, Chenlu; Wang, Xuemei; Chen, Zilin

    2018-06-08

    Development of stir bar sorptive extraction (SBSE) device with high stability and extraction efficiency is critical and challenging by date. In this work, etched poly(ether ether ketone) (PEEK) tube with high mechanical strength and large specific surface area was used as jacket for SBSE device. By etching with concentrated sulfuric acid, the smooth outer surface of PEEK become porous with plenty of micro holes, which was beneficial for coating of sorbents and significantly improved the extraction performance. After functionalized by bio-polydopamine method, strong hydrophobic p-naphtholbenzein molecular was immobilized onto the chemical resistant PEEK surface (PNB@E-PEEK) as stationary phase. We also firstly developed a simple detachable dumbbell-shaped structure for improving the workability of PEEK jacket stir bar. The dumbbell-shaped construction can eliminate the friction between stir bar and container, and the design of detachable structure make elution can be accomplished easier with small amount of organic solvent. It was interesting that the developed detachable dumbbell-shaped PNB@E-PEEK stir bar showed exceptional stability and extraction efficiency for SBSE enrichment of multiple analytes including several Sudan dyes, triazines, polycyclic aromatic hydrocarbons (PAHs), alkaloids and flavonoid. By coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV), PNB@E-PEEK stir bar based SBSE-HPLC-UV method was applied for the analysis of common Sudan dye pollutants. The method showed low limits of detection (0.02-0.03 ng/mL), good linearity (R 2  ≥ 0.9979) and good reproducibility (relative standard deviation ≤ 7.96%). It has been successfully applied to determine three dye pollutants in tap and lake water. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Molecular Analysis of Motility in Metastatic Mammary Adenocarcinoma Cells

    DTIC Science & Technology

    1996-09-01

    elements of epidermoid carcinoma (A43 1) cells. J. Cell. Biol. 103: 87-94 Winkler, M. (1988). Translational regulation in sea urchin eggs: a complex...and Methods. Error bars show SEM . Figure 2. Rhodamine-actin polymerizes preferentially at the tips of lamellipods in EGF- stimulated cells. MTLn3...lamellipods. B) rhodamine-actin intensity at the cell center. Data for each time point is the average and SEM of 15 different cells. Images A and B

  4. The Effect of Information Level on Human-Agent Interaction for Route Planning

    DTIC Science & Technology

    2015-12-01

    13 Fig. 4 Experiment 1 shows regression results for time spent at DP predicting posttest trust group membership for the high LOI...decision time by pretest trust group membership. Bars denote standard error (SE). DT at DP was evaluated to see if it predicted posttest trust... group . Linear regression indicated that DT at DP was not a significant predictor of posttest trust for the Low or the Medium LOI conditions; however, it

  5. Thermal Conductivities of Some Polymers and Composites

    DTIC Science & Technology

    2018-02-01

    volume fraction of glass and fabric style. The experimental results are compared to modeled results for Kt in composites. 15. SUBJECT TERMS...entities in a polymer above TG increases, so Cp will increase at TG. For Kt to remain constant, there would have to be a comparable decrease in α due to...scanning calorimetry (DSC) method, and have error bars as large as the claimed effect. Their Kt values for their carbon fiber samples are comparable to

  6. New Methods for the Computational Fabrication of Appearance

    DTIC Science & Technology

    2015-06-01

    disadvantage is that it does not model phenomena such as retro-reflection and grazing-angle e↵ects. We find that previously proposed BRDF metrics performed well...Figure 3.15-right shows the mean BRDF in blue and the corresponding error bars. In order to interpret our data, we fit a parametric model to slices of the...and Wojciech Matusik. Image-driven navigation of analytical brdf models . In Eurographics Symposium on Rendering, 2006. 107 [40] F. E. Nicodemus, J. C

  7. On-line vs off-line electrical conductivity characterization. Polycarbonate composites developed with multiwalled carbon nanotubes by compounding technology

    NASA Astrophysics Data System (ADS)

    Llorens-Chiralt, R.; Weiss, P.; Mikonsaari, I.

    2014-05-01

    Material characterization is one of the key steps when conductive polymers are developed. The dispersion of carbon nanotubes (CNTs) in a polymeric matrix using melt mixing influence final composite properties. The compounding becomes trial and error using a huge amount of materials, spending time and money to obtain competitive composites. Traditional methods to carry out electrical conductivity characterization include compression and injection molding. Both methods need extra equipments and moulds to obtain standard bars. This study aims to investigate the accuracy of the data obtained from absolute resistance recorded during the melt compounding, using an on-line setup developed by our group, and to correlate these values with off-line characterization and processing parameters (screw/barrel configuration, throughput, screw speed, temperature profile and CNTs percentage). Compounds developed with different percentages of multi walled carbon nanotubes (MWCNTs) and polycarbonate has been characterized during and after extrusion. Measurements, on-line resistance and off-line resistivity, showed parallel response and reproducibility, confirming method validity. The significance of the results obtained stems from the fact that we are able to measure on-line resistance and to change compounding parameters during production to achieve reference values reducing production/testing cost and ensuring material quality. Also, this method removes errors which can be found in test bars development, showing better correlation with compounding parameters.

  8. [Constructing a database that can input record of use and product-specific information].

    PubMed

    Kawai, Satoru; Satoh, Kenichi; Yamamoto, Hideo

    2012-01-01

    In Japan, patients were infected by viral hepatitis C generally by administering a specific fibrinogen injection. However, it has been difficult to identify patients who were infected as result of the injections due to the lack of medical records. It is still not a common practice by a number of medical facilities to maintain detailed information because manual record keeping is extremely time consuming and subject to human error. Due to these reasons, the regulator required Medical device manufacturers and pharmaceutical companies to attach a bar code called "GS1-128" effective March 28, 2008. Based on this new process, we have come up with the idea of constructing a new database whose records can be entered by bar code scanning to ensure data integrity. Upon examining the efficacy of this new data collection process from the perspective of time efficiency and of course data accuracy, "GS1-128" proved that it significantly reduces time and record keeping mistakes. Patients not only became easily identifiable by a lot number and a serial number when immediate care was required, but "GS1-128" enhanced the ability to pinpoint manufacturing errors in the event any trouble or side effects are reported. This data can be shared with and utilized by the entire medical industry and will help perfect the products and enhance record keeping. I believe this new process is extremely important.

  9. VizieR Online Data Catalog: R absolute magnitudes of Kuiper Belt objects (Peixinho+, 2012)

    NASA Astrophysics Data System (ADS)

    Peixinho, N.; Delsanti, A.; Guilbert-Lepoutre, A.; Gafeira, R.; Lacerda, P.

    2012-06-01

    Compilation of absolute magnitude HRα, B-R color spectral features used in this work. For each object, we computed the average color index from the different papers presenting data obtained simultaneously in B and R bands (e.g. contiguous observations within a same night). When individual R apparent magnitude and date were available, we computed the HRα=R-5log(r Delta), where R is the R-band magnitude, r and Delta are the helio- and geocentric distances at the time of observation in AU, respectively. When V and V-R colors were available, we derived an R and then HRα value. We did not correct for the phase-angle α effect. This table includes also spectral information on the presence of water ice, methanol, methane, or confirmed featureless spectra, as available in the literature. We highlight only the cases with clear bands in the spectrum, which were reported/confirmed by some other work. The 1st column indicates the object identification number and name or provisional designation; the 2nd column indicates the dynamical class; the 3rd column indicates the average HRα value and 1-σ error bars; the 4th column indicates the average $B-R$ color and 1-σ error bars; the 5th column indicates the most important spectral features detected; and the 6th column points to the bibliographic references used for each object. (3 data files).

  10. The use of information technology to enhance patient safety and nursing efficiency.

    PubMed

    Lee, Tso-Ying; Sun, Gi-Tseng; Kou, Li-Tseng; Yeh, Mei-Ling

    2017-10-23

    Issues in patient safety and nursing efficiency have long been of concern. Advancing the role of nursing informatics is seen as the best way to address this. The aim of this study was to determine if the use, outcomes and satisfaction with a nursing information system (NIS) improved patient safety and the quality of nursing care in a hospital in Taiwan. This study adopts a quasi-experimental design. Nurses and patients were surveyed by questionnaire and data retrieval before and after the implementation of NIS in terms of blood drawing, nursing process, drug administration, bar code scanning, shift handover, and information and communication integration. Physiologic values were easier to read and interpret; it took less time to complete electronic records (3.7 vs. 9.1 min); the number of errors in drug administration was reduced (0.08% vs. 0.39%); bar codes reduced the number of errors in blood drawing (0 vs. 10) and transportation of specimens (0 vs. 0.42%); satisfaction with electronic shift handover increased significantly; there was a reduction in nursing turnover (14.9% vs. 16%); patient satisfaction increased significantly (3.46 vs. 3.34). Introduction of NIS improved patient safety and nursing efficiency and increased nurse and patient satisfaction. Medical organizations must continually improve the nursing information system if they are to provide patients with high quality service in a competitive environment.

  11. Scaling and memory in volatility return intervals in financial markets

    PubMed Central

    Yamasaki, Kazuko; Muchnik, Lev; Havlin, Shlomo; Bunde, Armin; Stanley, H. Eugene

    2005-01-01

    For both stock and currency markets, we study the return intervals τ between the daily volatilities of the price changes that are above a certain threshold q. We find that the distribution function Pq(τ) scales with the mean return interval \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\tau}}}\\end{equation*}\\end{document} as \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}P_{q}({\\tau})={\\bar {{\\tau}}}^{-1}f({\\tau}/{\\bar {{\\tau}}})\\end{equation*}\\end{document}. The scaling function f(x) is similar in form for all seven stocks and for all seven currency databases analyzed, and f(x) is consistent with a power-law form, f(x) ∼ x-γ with γ ≈ 2. We also quantify how the conditional distribution Pq(τ|τ0) depends on the previous return interval τ0 and find that small (or large) return intervals are more likely to be followed by small (or large) return intervals. This “clustering” of the volatility return intervals is a previously unrecognized phenomenon that we relate to the long-term correlations known to be present in the volatility. PMID:15980152

  12. Lesion correlates of impairments in actual tool use following unilateral brain damage.

    PubMed

    Salazar-López, E; Schwaiger, B J; Hermsdörfer, J

    2016-04-01

    To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The bar-halo interaction - I. From fundamental dynamics to revised N-body requirements

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.; Katz, Neal

    2007-02-01

    A galaxy remains near equilibrium for most of its history. Only through resonances can non-axisymmetric features, such as spiral arms and bars, exert torques over large scales and change the overall structure of the galaxy. In this paper, we describe the resonant interaction mechanism in detail, derive explicit criteria for the particle number required to simulate these dynamical processes accurately using N-body simulations, and illustrate them with numerical experiments. To do this, we perform a direct numerical solution of perturbation theory, in short, by solving for each orbit in an ensemble and make detailed comparisons with N-body simulations. The criteria include: sufficient particle coverage in phase space near the resonance and enough particles to minimize gravitational potential fluctuations that will change the dynamics of the resonant encounter. These criteria are general in concept and can be applied to any dynamical interaction. We use the bar-halo interaction as our primary example owing to its technical simplicity and astronomical ubiquity. Some of our more surprising findings are as follows. First, the inner Lindblad like resonance, responsible for coupling the bar to the central halo cusp, requires more than equal-mass particles within the virial radius or inside the bar radius for a Milky Way like bar in a Navarro, Frenk & White profile. Secondly, orbits that linger near the resonance receive more angular momentum than orbits that move through the resonance quickly. Small-scale fluctuations present in state-of-the-art particle-particle simulations can knock orbits out of resonance, preventing them from lingering and, thereby, decrease the torque per orbit. This can be offset by the larger number of orbits affected by the resonance due to the diffusion. However, noise from orbiting substructure remains at least an order of magnitude too small to be of consequence. Applied to N-body simulations, the required particle numbers are sufficiently high for scenarios of interest that apparent convergence in particle number is misleading: the convergence with N may still be in the noise-dominated regime. State-of-the-art simulations are not adequate to follow all aspects of secular evolution driven by the bar-halo interaction. It is not possible to derive particle number requirements that apply to all situations, for example, more subtle interactions may be even more difficult to simulate. Therefore, we present a procedure to test the requirements for individual N-body codes to the actual problem of interest.

  14. A quality assessment of 3D video analysis for full scale rockfall experiments

    NASA Astrophysics Data System (ADS)

    Volkwein, A.; Glover, J.; Bourrier, F.; Gerber, W.

    2012-04-01

    Main goal of full scale rockfall experiments is to retrieve a 3D trajectory of a boulder along the slope. Such trajectories then can be used to calibrate rockfall simulation models. This contribution presents the application of video analysis techniques capturing rock fall velocity of some free fall full scale rockfall experiments along a rock face with an inclination of about 50 degrees. Different scaling methodologies have been evaluated. They mainly differ in the way the scaling factors between the movie frames and the reality and are determined. For this purpose some scale bars and targets with known dimensions have been distributed in advance along the slope. The single scaling approaches are briefly described as follows: (i) Image raster is scaled to the distant fixed scale bar then recalibrated to the plane of the passing rock boulder by taking the measured position of the nearest impact as the distance to the camera. The distance between the camera, scale bar, and passing boulder are surveyed. (ii) The image raster was scaled using the four nearest targets (identified using frontal video) from the trajectory to be analyzed. The average of the scaling factors was finally taken as scaling factor. (iii) The image raster was scaled using the four nearest targets from the trajectory to be analyzed. The scaling factor for one trajectory was calculated by balancing the mean scaling factors associated with the two nearest and the two farthest targets in relation to their mean distance to the analyzed trajectory. (iv) Same as previous method but with varying scaling factors during along the trajectory. It has shown that a direct measure of the scaling target and nearest impact zone is the most accurate. If constant plane is assumed it doesn't account for the lateral deviations of the rock boulder from the fall line consequently adding error into the analysis. Thus a combination of scaling methods (i) and (iv) are considered to give the best results. For best results regarding the lateral rough positioning along the slope, the frontal video must also be scaled. The error in scaling the video images can be evaluated by comparing the data by additional combination of the vertical trajectory component over time with the theoretical polynomial trend according to gravity. The different tracking techniques used to plot the position of the boulder's center of gravity all generated positional data with minimal error acceptable for trajectory analysis. However, when calculating instantaneous velocities an amplification of this error becomes un acceptable. A regression analysis of the data is helpful to optimize trajectory and velocity, respectively.

  15. Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software

    NASA Astrophysics Data System (ADS)

    Hellekson, Ron; Campbell, Scott

    1988-06-01

    Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.

  16. Constraints on the s – s ¯ asymmetry of the proton in chiral effective theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. G.; Ji, Chueng -Ryong; Melnitchouk, W.

    2016-09-14

    Here, we compute themore » $$s-\\bar s$$ asymmetry in the proton in chiral effective theory, using available phenomenological constraints from existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states, our formalism includes off-shell and contact interactions, which impact the shape of the $$s-\\bar s$$ difference. Using a finite-range regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the first moment of the asymmetry to the range $$-0.07 \\times 10^{-3} \\leq \\langle x(s-\\bar s) \\rangle \\leq 1.12 \\times 10^{-3}$$ at a scale of $Q^2=1$~GeV$^2$. In contrast to some suggestions in the literature, the magnitude of this correction is too small to account for the NuTeV anomaly.« less

  17. New minimally invasive technique for correction of pectus carinatum.

    PubMed

    Pérez, David; Cano, Jose Ramón; Quevedo, Santiago; López, Luis

    2011-02-01

    We describe a new video-assisted operative technique for correction of pectus carinatum (PC) using a modified Nuss procedure. A new design of the steel bar was developed, so that it could be introduced and placed in a suitable position through very small skin incisions. Substantial modifications were introduced in the bar length and shape aimed at facilitating insertion and subsequent removal when required. All the surgical manoeuvres took place under direct vision using a 30° thoracoscope. Single unilateral fixation of the bar in a subpectoral pocket provided satisfactory stabilisation without the need for lateral stabilisers. Adequate correction of the deformity was achieved with minor postoperative scars. Our results support the view that minimally invasive surgical repair should be preferred over open surgery for correction of pectus carinatum in young adults and children. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  18. Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1990-01-01

    The biophysical basis for the changes in cell elongation rate during gravitropism was examined in aetiolated cucumber (Cucumis sativus L.) hypocotyls. Bulk osmotic pressures on the two sides of the stem and in the epidermal cells were not altered during the early time course of gravitropism. By the pressure-probe technique, a small increase in turgor (0.3 bar, 30 kPa) was detected on the upper (inhibited) side, whereas there was a negligible decrease in turgor on the lower (stimulated) side. These small changes in turgor and water potential appeared to be indirect, passive consequences of the altered growth and the small resistance for water movement from the xylem, and indicated that the change in growth was principally due to changes in wall properties. The results indicate that the hydraulic conductance of the water-transport pathway was large (.25 h-1 bar-1) and the water potential difference supporting cell expansion was no greater than 0.3 bar (30 kPa). From pressure-block experiments, it appeared that upon gravitropic stimulation (1) the yield threshold of the lower half of the stem did not decrease and (2) the wall on the upper side of the stem was not made more rigid by a cross-linking process. Mechanical measurements of the stress/strain properties of the walls showed that the initial development of gravitropism did not involve an alteration of the mechanical behaviour of the isolated walls. Thus, gravitropism in cucumber hypocotyls occurs principally by an alteration of the wall relaxation process, without a necessary change in wall mechanical properties.

  19. A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars.

    PubMed

    Török, T J; Tauxe, R V; Wise, R P; Livengood, J R; Sokolow, R; Mauvais, S; Birkness, K A; Skeels, M R; Horan, J M; Foster, L R

    1997-08-06

    This large outbreak of foodborne disease highlights the challenge of investigating outbreaks caused by intentional contamination and demonstrates the vulnerability of self-service foods to intentional contamination. To investigate a large community outbreak of Salmonella Typhimurium infections. Epidemiologic investigation of patients with Salmonella gastroenteritis and possible exposures in The Dalles, Oregon. Cohort and case-control investigations were conducted among groups of restaurant patrons and employees to identify exposures associated with illness. A community in Oregon. Outbreak period was September and October 1984. A total of 751 persons with Salmonella gastroenteritis associated with eating or working at area restaurants. Most patients were identified through passive surveillance; active surveillance was conducted for selected groups. A case was defined either by clinical criteria or by a stool culture yielding S Typhimurium. The outbreak occurred in 2 waves, September 9 through 18 and September 19 through October 10. Most cases were associated with 10 restaurants, and epidemiologic studies of customers at 4 restaurants and of employees at all 10 restaurants implicated eating from salad bars as the major risk factor for infection. Eight (80%) of 10 affected restaurants compared with only 3 (11%) of the 28 other restaurants in The Dalles operated salad bars (relative risk, 7.5; 95% confidence interval, 2.4-22.7; P<.001). The implicated food items on the salad bars differed from one restaurant to another. The investigation did not identify any water supply, food item, supplier, or distributor common to all affected restaurants, nor were employees exposed to any single common source. In some instances, infected employees may have contributed to the spread of illness by inadvertently contaminating foods. However, no evidence was found linking ill employees to initiation of the outbreak. Errors in food rotation and inadequate refrigeration on ice-chilled salad bars may have facilitated growth of the S Typhimurium but could not have caused the outbreak. A subsequent criminal investigation revealed that members of a religious commune had deliberately contaminated the salad bars. An S Typhimurium strain found in a laboratory at the commune was indistinguishable from the outbreak strain. This outbreak of salmonellosis was caused by intentional contamination of restaurant salad bars by members of a religious commune.

  20. Action planning and position sense in children with Developmental Coordination Disorder.

    PubMed

    Adams, Imke L J; Ferguson, Gillian D; Lust, Jessica M; Steenbergen, Bert; Smits-Engelsman, Bouwien C M

    2016-04-01

    The present study examined action planning and position sense in children with Developmental Coordination Disorder (DCD). Participants performed two action planning tasks, the sword task and the bar grasping task, and an active elbow matching task to examine position sense. Thirty children were included in the DCD group (aged 6-10years) and age-matched to 90 controls. The DCD group had a MABC-2 total score ⩽5th percentile, the control group a total score ⩾25th percentile. Results from the sword-task showed that children with DCD planned less for end-state comfort. On the bar grasping task no significant differences in planning for end-state comfort between the DCD and control group were found. There was also no significant difference in the position sense error between the groups. The present study shows that children with DCD plan less for end-state comfort, but that this result is task-dependent and becomes apparent when more precision is needed at the end of the task. In that respect, the sword-task appeared to be a more sensitive task to assess action planning abilities, than the bar grasping task. The action planning deficit in children with DCD cannot be explained by an impaired position sense during active movements. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The State and Trends of Barcode, RFID, Biometric and Pharmacy Automation Technologies in US Hospitals

    PubMed Central

    Uy, Raymonde Charles Y.; Kury, Fabricio P.; Fontelo, Paul A.

    2015-01-01

    The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions. PMID:26958264

  2. Creating a Satellite-Based Record of Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Oetjen, Hilke; Payne, Vivienne H.; Kulawik, Susan S.; Eldering, Annmarie; Worden, John; Edwards, David P.; Francis, Gene L.; Worden, Helen M.

    2013-01-01

    The TES retrieval algorithm has been applied to IASI radiances. We compare the retrieved ozone profiles with ozone sonde profiles for mid-latitudes for the year 2008. We find a positive bias in the IASI ozone profiles in the UTLS region of up to 22 %. The spatial coverage of the IASI instrument allows sampling of effectively the same air mass with several IASI scenes simultaneously. Comparisons of the root-mean-square of an ensemble of IASI profiles to theoretical errors indicate that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. The total degrees of freedom for signal of the retrieval for ozone are 3.1 +/- 0.2 and the tropospheric degrees of freedom are 1.0 +/- 0.2 for the described cases. IASI ozone profiles agree within the error bars with coincident ozone profiles derived from a TES stare sequence for the ozone sonde station at Bratt's Lake (50.2 deg N, 104.7 deg W).

  3. Comparison of demographic and behavioral characteristics of men who have sex with men by enrollment venue type in the National HIV Behavioral Surveillance System.

    PubMed

    Voetsch, Andrew C; Lansky, Amy; Drake, Amy J; MacKellar, Duncan; Bingham, Trista A; Oster, Alexandra M; Sullivan, Patrick S

    2012-03-01

    During 2003-2005, the National HIV Behavioral Surveillance System (NHBS) enrolled men who have sex with men (MSM) from 12 different venue types in 15 metropolitan areas in the United States. Our goal was to examine whether limiting NHBS enrollment venues to gay bars and dance clubs could increase efficiency without changing the overall results and conclusions. We used logistic regression analysis to compare the demographic characteristics and reported HIV risk behaviors among MSM enrolled in gay bars and dance clubs with those enrolled in sex venues and those enrolled in other venues. Of the 11,471 eligible men included in the analysis, 6419 (56%) were enrolled at bars and clubs, 481 (4%) at sex venues, and 4571 (40%) at other venues. Compared with men enrolled at bars and clubs, men enrolled at sex venues were more likely to be older, of nonwhite race/ethnicity, bisexual, infrequent gay venue attendees, and to have 10 or more male sex partners in the past 12 months. Men enrolled at other venues were more likely to be older and less likely to use noninjecting drugs in the past 12 months. The absolute differences in these characteristics between men enrolled in bars and clubs and those enrolled in comparison venue categories were small in most instances. Although the differences in characteristics by venue category were not large in magnitude, there was evidence that restricting NHBS enrollment to bars and clubs would affect national estimates of behavioral risk factors among MSM.

  4. Initial results with minimally invasive repair of pectus carinatum.

    PubMed

    Kálmán, Attila

    2009-08-01

    Pectus carinatum is traditionally repaired by using some modification of the open Ravitch procedure, with its possible long-term sequelae, such as poor postoperative compliance of the chest. In this study we assessed our results with a new minimally invasive repair of pectus carinatum that requires neither cartilage incision nor sternotomy. From June 2005, we have corrected pectus carinatum using a method analogous to the Nuss procedure for pectus excavatum repair. Thus far, we performed this intervention on 14 patients (mean age, 15 +/- 1.5 years). A steel bar has been inserted at the level of the maximum point of the sternal protrusion through small lateral incisions. The sternum is pushed back without osteotomy or chondrotomy. The bar is removed after 2 years. Patients' characteristics, operation time, hospital stay, and complications have been recorded. In 1 patient with asymmetric deformity, 2 bars were placed. Operative time was 42 +/- 20 minutes (mean +/- standard deviation), and hospital stay was 3 days (median quartiles, 3-4 days) postoperatively. We experienced lateral shift of the bar in 1 patient, which was treated with remodeling and repositioning of the bar. No other complication occurred during the 18-month follow-up period (mean range, 2-38 months). Thirteen of the 14 patients reported excellent or very good results. Patients returned to full activity within 2 months. Five bars have been removed. Minimally invasive repair of pectus carinatum leaves the integrity of the chest wall untouched. It is safe with a short operative time and hospital stay and provides good results, even in asymmetric cases.

  5. Stress relaxation of grouted entirely large diameter B-GFRP soil nail

    NASA Astrophysics Data System (ADS)

    Li, Guo-wei; Ni, Chun; Pei, Hua-fu; Ge, Wan-ming; Ng, Charles Wang Wai

    2013-08-01

    One of the potential solutions to steel-corrosion-related problems is the usage of fiber reinforced polymer (FRP) as a replacement of steel bars. In the past few decades, researchers have conducted a large number of experimental and theoretical studies on the behavior of small size glass fiber reinforce polymer (GFRP) bars (diameter smaller than 20 mm). However, the behavior of large size GFRP bar is still not well understood. Particularly, few studies were conducted on the stress relaxation of grouted entirely large diameter GFRP soil nail. This paper investigates the effect of stress levels on the relaxation behavior of GFRP soil nail under sustained deformation ranging from 30% to 60% of its ultimate strain. In order to study the behavior of stress relaxation, two B-GFRP soil nail element specimens were developed and instrumented with fiber Bragg grating (FBG) strain sensors which were used to measure strains along the B-GFRP bars. The test results reveal that the behavior of stress relaxation of B-GFRP soil nail element subjected to pre-stress is significantly related to the elapsed time and the initial stress of relaxation procedure. The newly proposed model for evaluating stress relaxation ratio can substantially reflect the influences of the nature of B-GFRP bar and the property of grip body. The strain on the nail body can be redistributed automatically. Modulus reduction is not the single reason for the stress degradation.

  6. A field study of bar-sponsored drink specials and their associations with patron intoxication.

    PubMed

    Thombs, Dennis L; O'Mara, Ryan; Dodd, Virginia J; Hou, Wei; Merves, Michele L; Weiler, Robert M; Pokorny, Steven B; Goldberger, Bruce A; Reingle, Jennifer; Werch, Chudley Chad E

    2009-03-01

    The study examined associations between bar-sponsored drink specials and alcohol intoxication at the patron level. Data were collected in a college bar district located in a large campus community in the southeastern United States. Random and self-selected samples of patrons were interviewed after exiting college bars at night on four different nights (N=383). Anonymous interview and questionnaire data were collected as well as breath alcohol concentration (BrAC) readings. Significant gender differences existed in patron drinking practices. Women were more likely to take advantage of drink specials, whereas men reported greater alcohol expenditures, consumed more drinks, and drank for longer periods of time. Gender differences in BrAC were very small and not meaningful. Patrons who did not take advantage of drink specials reported consuming more drinks before bar entry than patrons who did participate in these promotions. Participation in "all-you-can-drink" promotions was significantly associated with higher BrAC readings after adjusting for covariates and random effects attributable to drinking establishment. Other drink specials did not have significant associations with alcohol intoxication. The all-you-can-drink special may be the specific discounting practice with the greatest potential for boosting patron intoxication and thus may need to be a stronger focus of alcohol-control policies aimed at improving the beverage service of drinking establishments.

  7. Minimal invasive extrathoracic presternal compression using a metal bar for correction of pectus carinatum.

    PubMed

    Lee, Seock Yeol; Song, In Hag; Lee, Seung Jin

    2014-01-01

    This report presents early results of surgical experience of minimal invasive extrathoracic presternal compression using a metal bar for correction of the pectus carinatum. From February 2008 to February 2012, 15 patients with combined pectus carinatum and pectus excavatum underwent minimal invasive extrathoracic presternal compression using a metal bar for correction of pectus carinatum and Nuss operation for pectus excavatum. After 2 years, bar removal was done in all patients. In this paper, we focused on pectus carinatum repair. The effects and complications of the minimally invasive extrathoracic presternal compression using a metal bar for correction of pectus carinatum were reviewed. The median age was 15.7 years. The mean operation time for pectus carinatum with pectus excavatum was 122 min. The median length of hospitalization was 6 days. The Haller pectus index of pectus carinatum was 2.93 ± 0.36 pre-operatively and this was increased to 3.33 ± 0.61 post-operatively. There were no special complications. The degree of satisfaction of pectus carinatum correction was 3.75 ± 0.46 (range 1-4). Our results were favorable in spite of the small number of cases and short follow-up, and our modified technique of pectus carinatum was easy and simple. However, long-term follow-up is needed to accurately evaluate the effects of this surgery in many cases.

  8. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    NASA Technical Reports Server (NTRS)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such a link. Other types of optical systems, such as a semiconductor laser systems, are impractical in the presence of large rms pointing errors because of the high power requirements of the 100-Mbps Mars link, even when optimal-size telescopes are used.

  9. Effects of Visual Communication Tool and Separable Status Display on Team Performance and Subjective Workload in Air Battle Management

    DTIC Science & Technology

    2008-06-01

    NASAS TLX (Hart & Staveland, 1987) was used to evaluate perceived task demands. In the modified version, participants were asked to estimate the...subjective workload (i.e., NASA - TLX ) was assessed for each trial. Unweighted NASA - TLX ratings were submitted to a 5 (Subscale) × 2 (Communication...Communication Condition M ea n TL X R at in g Figure 3. Mean unweighted NASA - TLX ratings as a function of communication modality. Error bars represent one

  10. The Effect of Information Level on Human-Agent Interaction for Route Planning

    DTIC Science & Technology

    2015-12-01

    χ2 (4, 60) = 11.41, p = 0.022, and Cramer’s V = 0.308, indicating there was no effect of experiment on posttest trust. Pretest trust was not a...decision time by pretest trust group membership. Bars denote standard error (SE). DT at DP was evaluated to see if it predicted posttest trust...0.007, Cramer’s V = 0.344, indicating there was no effect of experiment on posttest trust. Pretest trust was not a significant prediction of total DT

  11. Elimination of Sensor Artifacts from Infrared Data.

    DTIC Science & Technology

    1984-12-11

    channel to compensate detector responsivity nonuniformity . Before inspecting the bar target measurements, it was expected that the preceding sequence of...sample errors and by applyieg separate pain and offset costants to each canel for nonuniformity compensation. 12(t) 𔃻 -7. Y2 lar I ,ar hr’ In apern...W5 RICHARD STEIDRO E 1 -- t4 ii x3 .13 275 325 3i5 425 SAMPLE NUMBER FI. 4 - Postamplfler output waveform for LWIR channel 3, for data frame shown in

  12. Correction of Thermal Gradient Errors in Stem Thermocouple Hygrometers

    PubMed Central

    Michel, Burlyn E.

    1979-01-01

    Stem thermocouple hygrometers were subjected to transient and stable thermal gradients while in contact with reference solutions of NaCl. Both dew point and psychrometric voltages were directly related to zero offset voltages, the latter reflecting the size of the thermal gradient. Although slopes were affected by absolute temperature, they were not affected by water potential. One hygrometer required a correction of 1.75 bars water potential per microvolt of zero offset, a value that was constant from 20 to 30 C. PMID:16660685

  13. Implementation of a pharmacy automation system (robotics) to ensure medication safety at Norwalk hospital.

    PubMed

    Bepko, Robert J; Moore, John R; Coleman, John R

    2009-01-01

    This article reports an intervention to improve the quality and safety of hospital patient care by introducing the use of pharmacy robotics into the medication distribution process. Medication safety is vitally important. The integration of pharmacy robotics with computerized practitioner order entry and bedside medication bar coding produces a significant reduction in medication errors. The creation of a safe medication-from initial ordering to bedside administration-provides enormous benefits to patients, to health care providers, and to the organization as well.

  14. Watts Bar Nuclear Plant Title V Applicability

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  15. Volume Phase Masks in Photo-Thermo-Refractive Glass

    DTIC Science & Technology

    2014-10-06

    development when forming the nanocrystals. Fig. 1.1 shows the refractive index change curves for some common glass melts when exposed to a beam at 325 nm...integral curve to the curve for the ideal phase mask. If there is a deviation in the experimental curve from the ideal curve , whether the overlap...redevelopments of the sample. Note that the third point on the spherical curve and the third and fourth points on the coma y curve have larger error bars than

  16. Coupling constant for N*(1535)N{rho}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Graduate University of Chinese Academy of Sciences, Beijing 100049; Wilkin, Colin

    2008-05-15

    The value of the N*(1535)N{rho} coupling constant g{sub N*N{rho}} derived from the N*(1535){yields}N{rho}{yields}N{pi}{pi} decay is compared with that deduced from the radiative decay N*(1535){yields}N{gamma} using the vector-meson-dominance model. On the basis of an effective Lagrangian approach, we show that the values of g{sub N*N{rho}} extracted from the available experimental data on the two decays are consistent, though the error bars are rather large.

  17. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  18. Confirming and improving post-Newtonian and effective-one-body results from self-force computations along eccentric orbits around a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Damour, Thibault; Geralico, Andrea

    2016-03-01

    We analytically compute, through the six-and-a-half post-Newtonian order, the second-order-in-eccentricity piece of the Detweiler-Barack-Sago gauge-invariant redshift function for a small mass in eccentric orbit around a Schwarzschild black hole. Using the first law of mechanics for eccentric orbits [A. Le Tiec, First law of mechanics for compact binaries on eccentric orbits, Phys. Rev. D 92, 084021 (2015).] we transcribe our result into a correspondingly accurate knowledge of the second radial potential of the effective-one-body formalism [A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59, 084006 (1999).]. We compare our newly acquired analytical information to several different numerical self-force data and find good agreement, within estimated error bars. We also obtain, for the first time, independent analytical checks of the recently derived, comparable-mass fourth-post-Newtonian order dynamics [T. Damour, P. Jaranowski, and G. Schaefer, Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D 89, 064058 (2014).].

  19. Calculating Potential Energy Curves with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2014-06-01

    Quantum Monte Carlo (QMC) is a computational technique that can be applied to the electronic Schrödinger equation for molecules. QMC methods such as Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) have demonstrated the capability of capturing large fractions of the correlation energy, thus suggesting their possible use for high-accuracy quantum chemistry calculations. QMC methods scale particularly well with respect to parallelization making them an attractive consideration in anticipation of next-generation computing architectures which will involve massive parallelization with millions of cores. Due to the statistical nature of the approach, in contrast to standard quantum chemistry methods, uncertainties (error-bars) are associated with each calculated energy. This study focuses on the cost, feasibility and practical application of calculating potential energy curves for small molecules with QMC methods. Trial wave functions were constructed with the multi-configurational self-consistent field (MCSCF) method from GAMESS-US.[1] The CASINO Monte Carlo quantum chemistry package [2] was used for all of the DMC calculations. An overview of our progress in this direction will be given. References: M. W. Schmidt et al. J. Comput. Chem. 14, 1347 (1993). R. J. Needs et al. J. Phys.: Condensed Matter 22, 023201 (2010).

  20. Technology utilization to prevent medication errors.

    PubMed

    Forni, Allison; Chu, Hanh T; Fanikos, John

    2010-01-01

    Medication errors have been increasingly recognized as a major cause of iatrogenic illness and system-wide improvements have been the focus of prevention efforts. Critically ill patients are particularly vulnerable to injury resulting from medication errors because of the severity of illness, need for high risk medications with a narrow therapeutic index and frequent use of intravenous infusions. Health information technology has been identified as method to reduce medication errors as well as improve the efficiency and quality of care; however, few studies regarding the impact of health information technology have focused on patients in the intensive care unit. Computerized physician order entry and clinical decision support systems can play a crucial role in decreasing errors in the ordering stage of the medication use process through improving the completeness and legibility of orders, alerting physicians to medication allergies and drug interactions and providing a means for standardization of practice. Electronic surveillance, reminders and alerts identify patients susceptible to an adverse event, communicate critical changes in a patient's condition, and facilitate timely and appropriate treatment. Bar code technology, intravenous infusion safety systems, and electronic medication administration records can target prevention of errors in medication dispensing and administration where other technologies would not be able to intercept a preventable adverse event. Systems integration and compliance are vital components in the implementation of health information technology and achievement of a safe medication use process.

  1. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Woo-Young; Kim, Woong-Tae, E-mail: seowy@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factormore » of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.« less

  2. Mechanical Behavior of a Low-Cost Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Casem, D. T.; Weerasooriya, T.; Walter, T. R.

    2018-01-01

    Mechanical compression tests were performed on an economical Ti-6Al-4V alloy over a range of strain-rates and temperatures. Low rate experiments (0.001-0.1/s) were performed with a servo-hydraulic load frame and high rate experiments (1000-80,000/s) were performed with the Kolsky bar (Split Hopkinson pressure bar). Emphasis is placed on the large strain, high-rate, and high temperature behavior of the material in an effort to develop a predictive capability for adiabatic shear bands. Quasi-isothermal experiments were performed with the Kolsky bar to determine the large strain response at elevated rates, and bars with small diameters (1.59 mm and 794 µm, instrumented optically) were used to study the response at the higher strain-rates. Experiments were also conducted at temperatures ranging from 81 to 673 K. Two constitutive models are used to represent the data. The first is the Zerilli-Armstrong recovery strain model and the second is a modified Johnson-Cook model which uses the recovery strain term from the Zerilli-Armstrong model. In both cases, the recovery strain feature is critical for capturing the instability that precedes localization.

  3. A model-based approach for the scattering-bar printing avoidance

    NASA Astrophysics Data System (ADS)

    Du, Yaojun; Li, Liang; Zhang, Jingjing; Shao, Feng; Zuniga, Christian; Deng, Yunfei

    2018-03-01

    As the technology node for the semiconductor manufacturing approaches advanced nodes, the scattering-bars (SBs) are more crucial than ever to ensure a good on-wafer printability of the line space pattern and hole pattern. The main pattern with small pitches requires a very narrow PV (process variation) band. A delicate SB addition scheme is thus needed to maintain a sufficient PW (process window) for the semi-iso- and iso-patterns. In general, the wider, longer, and closer to main feature SBs will be more effective in enhancing the printability; on the other hand, they are also more likely to be printed on the wafer; resulting in undesired defects transferable to subsequent processes. In this work, we have developed a model based approach for the scattering-bar printing avoidance (SPA). A specially designed optical model was tuned based on a broad range of test patterns which contain a variation of CDs and SB placements showing printing and non-printing scattering bars. A printing threshold is then obtained to check the extra-printings of SBs. The accuracy of this threshold is verified by pre-designed test patterns. The printing threshold associated with our novel SPA model allows us to set up a proper SB rule.

  4. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  5. First observation of the Cabibbo suppressed decay B meson going to D meson kaon

    NASA Astrophysics Data System (ADS)

    Soffer, Abner

    1998-10-01

    Within the standard model of particles and interactions, CP-violation is due to a single imaginary parameter in the Cabibbo-Kobayashi-Maskawa matrix. Decays of the type B/to DK provide a way to measure the phase γ associated with this parameter, under conditions in which contributions from non-standard model physics are very small. Comparing these measurements with ones which are possibly sensitive to new physics may thus point the way to physics beyond the standard model. We demonstrate that measuring CP-conserving phases in D decays may help enhance the sensitivity of the γ measurement in B/to DK, pending an assumption which we show how to test. Using 3.3×106/ B/bar B pairs collected with the CLEO II detector at the Cornell Electron Storage Ring, we make the first observation of the Cabibbo suppressed decay B+/to /bar D0K+ and find the ratio of branching fractions [/cal B](B+/to /bar D0K+)/[/cal B](B+/to /bar D0π+)=0.055/pm0.014/pm0.005. We also present a review of the cosmological motivation and particle physics aspects of CP-violation measurements, intended for the non-physicist.

  6. Development of a dual-ended readout detector with segmented crystal bars made using a subsurface laser engraving technique

    NASA Astrophysics Data System (ADS)

    Mohammadi, Akram; Yoshida, Eiji; Nishikido, Fumihiko; Nitta, Munetaka; Shimizu, Keiji; Sakai, Toshiaki; Yamaya, Taiga

    2018-01-01

    Depth of interaction (DOI) information is indispensable to improving the sensitivity and spatial resolution of positron emission tomography (PET) systems, especially for small field-of-view PET such as small animal PET and human brain PET. We have already developed a series of X’tal cube detectors for isotropic spatial resolution and we obtained the best isotropic resolution of 0.77 mm for detectors with six-sided readout. However, it is still challenging to apply the detector for PET systems due to the high cost of six-sided readout electronics and carrying out segmentation of a monolithic cubic scintillator in three dimensions using the subsurface laser engraving (SSLE) technique. In this work, we propose a more practical X’tal cube with a two-sided readout detector, which is made of crystal bars segmented in the height direction only by using the SSLE technique. We developed two types of prototype detectors with a 3 mm cubic segment and a 1.5 mm cubic segment by using 3  ×  3  ×  20 mm3 and 1.5  ×  1.5  ×  20 mm3 crystal bars segmented into 7 and 13 DOI segments, respectively, using the SSLE technique. First, the performance of the detector, composed of one crystal bar with different DOI segments and two thorough silicon via (TSV) multi-pixel photon counters (MPPCs) as readout at both ends of the crystal bar, were evaluated in order to demonstrate the capability of the segmented crystal bars as a DOI detector. Then, performance evaluation was carried out for a 4  ×  4 crystal array of 3  ×  3  ×  20 mm3 with 7 DOI segments and an 8  ×  8 crystal array of 1.5  ×  1.5  ×  20 mm3 with 13 DOI segments. Each readout included a 4  ×  4 channel of the 3  ×  3 mm2 active area of the TSV MPPCs. The three-dimensional position maps of the detectors were obtained by the Anger-type calculation. All the segments in the 4  ×  4 array were identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8  ×  8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8  ×  8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4  ×  4 array with air between the crystal bars and for the 8  ×  8 array with partial reflectors between the crystal bars were 10.1%  ±  0.3% and 10.8%  ±  0.8%, respectively. Timing resolutions of 783  ±  36 ps and 1.14  ±  0.22 ns were obtained for the detectors composed of the 4  ×  4 array and the 8  ×  8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X’tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.

  7. Development of a dual-ended readout detector with segmented crystal bars made using a subsurface laser engraving technique.

    PubMed

    Mohammadi, Akram; Yoshida, Eiji; Nishikido, Fumihiko; Nitta, Munetaka; Shimizu, Keiji; Sakai, Toshiaki; Yamaya, Taiga

    2018-01-11

    Depth of interaction (DOI) information is indispensable to improving the sensitivity and spatial resolution of positron emission tomography (PET) systems, especially for small field-of-view PET such as small animal PET and human brain PET. We have already developed a series of X'tal cube detectors for isotropic spatial resolution and we obtained the best isotropic resolution of 0.77 mm for detectors with six-sided readout. However, it is still challenging to apply the detector for PET systems due to the high cost of six-sided readout electronics and carrying out segmentation of a monolithic cubic scintillator in three dimensions using the subsurface laser engraving (SSLE) technique. In this work, we propose a more practical X'tal cube with a two-sided readout detector, which is made of crystal bars segmented in the height direction only by using the SSLE technique. We developed two types of prototype detectors with a 3 mm cubic segment and a 1.5 mm cubic segment by using 3  ×  3  ×  20 mm 3 and 1.5  ×  1.5  ×  20 mm 3 crystal bars segmented into 7 and 13 DOI segments, respectively, using the SSLE technique. First, the performance of the detector, composed of one crystal bar with different DOI segments and two thorough silicon via (TSV) multi-pixel photon counters (MPPCs) as readout at both ends of the crystal bar, were evaluated in order to demonstrate the capability of the segmented crystal bars as a DOI detector. Then, performance evaluation was carried out for a 4  ×  4 crystal array of 3  ×  3  ×  20 mm 3 with 7 DOI segments and an 8  ×  8 crystal array of 1.5  ×  1.5  ×  20 mm 3 with 13 DOI segments. Each readout included a 4  ×  4 channel of the 3  ×  3 mm 2 active area of the TSV MPPCs. The three-dimensional position maps of the detectors were obtained by the Anger-type calculation. All the segments in the 4  ×  4 array were identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8  ×  8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8  ×  8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4  ×  4 array with air between the crystal bars and for the 8  ×  8 array with partial reflectors between the crystal bars were 10.1%  ±  0.3% and 10.8%  ±  0.8%, respectively. Timing resolutions of 783  ±  36 ps and 1.14  ±  0.22 ns were obtained for the detectors composed of the 4  ×  4 array and the 8  ×  8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X'tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.

  8. Semiclassical Dynamicswith Exponentially Small Error Estimates

    NASA Astrophysics Data System (ADS)

    Hagedorn, George A.; Joye, Alain

    We construct approximate solutions to the time-dependent Schrödingerequation for small values of ħ. If V satisfies appropriate analyticity and growth hypotheses and , these solutions agree with exact solutions up to errors whose norms are bounded by for some C and γ>0. Under more restrictive hypotheses, we prove that for sufficiently small T', implies the norms of the errors are bounded by for some C', γ'>0, and σ > 0.

  9. Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent-divergent nozzle flow

    NASA Astrophysics Data System (ADS)

    Richter, J.; Mayer, J.; Weigand, B.

    2018-02-01

    Non-resonant laser-induced thermal acoustics (LITA) was applied to measure Mach number, temperature and turbulence level along the centerline of a transonic nozzle flow. The accuracy of the measurement results was systematically studied regarding misalignment of the interrogation beam and frequency analysis of the LITA signals. 2D steady-state Reynolds-averaged Navier-Stokes (RANS) simulations were performed for reference. The simulations were conducted using ANSYS CFX 18 employing the shear-stress transport turbulence model. Post-processing of the LITA signals is performed by applying a discrete Fourier transformation (DFT) to determine the beat frequencies. It is shown that the systematical error of the DFT, which depends on the number of oscillations, signal chirp, and damping rate, is less than 1.5% for our experiments resulting in an average error of 1.9% for Mach number. Further, the maximum calibration error is investigated for a worst-case scenario involving maximum in situ readjustment of the interrogation beam within the limits of constructive interference. It is shown that the signal intensity becomes zero if the interrogation angle is altered by 2%. This, together with the accuracy of frequency analysis, results in an error of about 5.4% for temperature throughout the nozzle. Comparison with numerical results shows good agreement within the error bars.

  10. Improved simulation of aerosol, cloud, and density measurements by shuttle lidar

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.

    1981-01-01

    Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.

  11. Looking for trouble? Diagnostics expanding disease and producing patients.

    PubMed

    Hofmann, Bjørn

    2018-05-23

    Novel tests give great opportunities for earlier and more precise diagnostics. At the same time, new tests expand disease, produce patients, and cause unnecessary harm in overdiagnosis and overtreatment. How can we evaluate diagnostics to obtain the benefits and avoid harm? One way is to pay close attention to the diagnostic process and its core concepts. Doing so reveals 3 errors that expand disease and increase overdiagnosis. The first error is to decouple diagnostics from harm, eg, by diagnosing insignificant conditions. The second error is to bypass proper validation of the relationship between test indicator and disease, eg, by introducing biomarkers for Alzheimer's disease before the tests are properly validated. The third error is to couple the name of disease to insignificant or indecisive indicators, eg, by lending the cancer name to preconditions, such as ductal carcinoma in situ. We need to avoid these errors to promote beneficial testing, bar harmful diagnostics, and evade unwarranted expansion of disease. Accordingly, we must stop identifying and testing for conditions that are only remotely associated with harm. We need more stringent verification of tests, and we must avoid naming indicators and indicative conditions after diseases. If not, we will end like ancient tragic heroes, succumbing because of our very best abilities. © 2018 John Wiley & Sons, Ltd.

  12. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  13. Evaluation of a responsible beverage service and enforcement program: Effects on bar patron intoxication and potential impaired driving by young adults.

    PubMed

    Fell, James C; Fisher, Deborah A; Yao, Jie; McKnight, A Scott

    2017-08-18

    Studies of alcohol-related harm (violence, injury, illness) suggest that the most significant risk factors are the amount of alcohol consumed and whether obviously intoxicated patrons continue to be served. This study's objective was to investigate the effects of a responsible beverage service (RBS)/enhanced alcohol enforcement intervention on bars, bar patrons, and impaired driving. Two communities-Monroe County, New York, and Cleveland, Ohio-participated in a demonstration program and evaluation. The intervention applied RBS training, targeted enforcement, and corrective actions by law enforcement to a random sample of 10 identified problem bars in each community compared to 10 matched nonintervention problem bars. Data were collected over 3 waves on bar serving practices, bar patron intoxication, drinking and driving, and other alcohol-related harm from intervention and control bars and treatment and comparison communities. In Monroe County, New York, of the 14 outcome measures analyzed, 7 measures showed statistically significant differences from pre- to postintervention. Six of those measures indicated changes in the desired or positive direction and 2 measures were in the undesired or negative direction. Of note in the positive direction, the percentage of intervention bar patrons who were intoxicated decreased from 44 to 27% and the average blood alcohol concentration of patrons decreased from 0.097 to 0.059 g/dL pre- to postintervention. In Cleveland, Ohio, 6 of the 14 measures showed statistically significant changes pre- to postintervention with 6 in the positive direction and 4 in the negative direction. Of note, the percentage of pseudo-intoxicated patrons denied service in intervention bars increased from 6 to 29%. Of the 14 outcome measures that were analyzed in each community, most indicated positive changes associated with the intervention, but others showed negative associations. About half of the measures showed no significance, the sample sizes were too small, or the data were unavailable. Therefore, at best, the results of these demonstration programs were mixed. There were, however, some positive indications from the intervention. It appears that when bar managers and owners are aware of the program and its enforcement and when servers are properly trained in RBS, fewer patrons may become intoxicated and greater efforts may be made to deny service to obviously intoxicated patrons. Given that about half of arrested impaired drivers had their last drink at a licensed establishment, widespread implementation of this strategy has the potential to help reduce impaired driving.

  14. Microturbulence in HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Yu, Changxuan; Cao, Jinxiang; Zhu, Guoliang; Zhang, Daqing; Li, Youyi

    1993-08-01

    The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a range of bar neqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time τE decreases with the fluctuation level increasing in the region where τE linearly increases with bar neqa and statisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.

  15. Evaluation of the NASA GISS AR5 SCM/GCM at the ARM SGP Site using Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Kennedy, A. D.; Dong, X.; Xi, B.; Del Genio, A. D.; Wolf, A.

    2011-12-01

    Understanding and improving clouds in climate models requires moving beyond comparing annual and seasonal means. Errors can offset resulting in models getting the right long-term solution for the wrong reasons. For example, cloud parameterization errors may be balanced by the model incorrectly simulating the frequency distribution of atmospheric states. To faithfully evaluate climate models it is necessary to partition results into specific regimes. This has been completed in the past by evaluating models by their ability to produce cloud regimes as determined by observational products from satellites. An alternative approach is to first classify meteorological regimes (i.e., synoptic pattern and forcing) and then determine what types of clouds occur for each class. In this study, a competitive neural network known as the Self Organizing Map (SOM) is first used to classify synoptic patterns from a reanalysis over the Southern Great Plains (SGP) region during the period 1999-2008. These results are then used to evaluate simulated clouds from the AR5 version of the NASA GISS Model E Single Column Model (SCM). Unlike past studies that narrowed classes into several categories, this study assumes that the atmosphere is capable of producing an infinite amount of states. As a result, SOMs were generated with a large number of classes for specific months when model errors were found. With nearly ten years of forcing data, an adequate number of samples have been used to determine how cloud fraction varies across the SOM and to distinguish cloud errors. Barring major forcing errors, SCM studies can be thought of as what the GCM would simulate if the dynamics were perfect. As a result, simulated and observed CFs frequently occur for the same atmospheric states. For example, physically deep clouds during the winter months occur for a small number of classes in the SOM. Although the model produces clouds during the correct states, CFs are consistently too low. Instead, the model has a positive bias of thinner clouds during these classes that were associated with low-pressure systems and fronts. To determine if this and other SCM errors are present in the GCM, the Atmospheric Model Intercomparison Project (AMIP) run for the NASA GISS GCM will also be investigated. The SOM will be used to classify atmospheric states within the GCM to determine how well the GCM captures the PDF of observed atmospheric states. Together, these comparisons will allow for a thorough evaluation of the model at the ARM SGP site.

  16. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  17. Failure of policy regarding smoke-free bars in the Netherlands.

    PubMed

    Gonzalez, Mariaelena; Glantz, Stanton A

    2013-02-01

    Tobacco companies consistently work to prevent and undermine smoke-free laws. The tobacco industry and its allies have funded hospitality associations and other third parties to oppose smoke-free laws, argue that smoke-free laws will economically damage hospitality venues, promote ventilation and voluntary smoker 'accommodation' as an alternative to smoke-free laws, and to challenge smoke-free laws in court. In 2008, the Netherlands extended its smoke-free law to hospitality venues. We triangulated news articles, government documents, scientific papers, statistical reports and interviews to construct this case study. Despite widespread public support for smoke-free hospitality venues, opponents successfully represented these laws as unpopular and damaging to small bars. These challenges and related smokers' rights activities resulted in non-compliance among all bars and reinstating an exemption for small, owner-run venues. This policy reversal was the result of a weak implementing media campaign (which failed to present the law as protecting nonsmokers), smoking room exemptions and reactive (vs. proactive) measures by the Ministry of Health and civil society. The policy failure in the Netherlands is the result of poor implementation efforts and the failure to anticipate and deal with opposition to the law. When implementing smoke-free laws it is important to anticipate opposition, used the media to target non-smokers to reinforce public support, and actively enforce the law.

  18. Ab initio simulation of structure and surface energy of low-index surfaces of stoichiometric α-Fe2O3

    NASA Astrophysics Data System (ADS)

    Stirner, Thomas; Scholz, David; Sun, Jizhong

    2018-05-01

    The structure and surface energy of a series of low-index surfaces of stoichiometric α-Fe2O3 (hematite) are investigated using the periodic Hartree-Fock approach with an a posteriori correction of the correlation energy. The simulations show that, amongst the modeled facets, (01 1 bar2) and (0001) are the most stable surfaces of hematite, which is consistent with the fact that the latter are the dominant growth faces exposed on natural α-Fe2O3. The Fe-terminated (0001) surface is shown to exhibit a large relaxation of the surface atoms. It is argued that this arises mainly due to the fact that the surface cations are located opposite empty cation sites in the filled-filled-unfilled cation sequence along the c-axis. In contrast, the (01 1 bar2) plane cuts the crystal through a plane of empty cation sites, thus giving rise to relatively small relaxations and surface energies. The small relaxations and concomitant exposure of five-coordinate cation sites may be important for the catalytic activity of hematite. The simulations also show that the relative stability of the investigated surfaces changes after a full lattice relaxation with the (0001) and (11 2 bar6) facets relaxing disproportionately large. Wherever possible, the simulations are compared with previous simulation data and experimental results. A Wulff-Gibbs construction is also presented.

  19. Failure of policy regarding smoke-free bars in the Netherlands*

    PubMed Central

    Gonzalez, Mariaelena

    2013-01-01

    Background: Tobacco companies consistently work to prevent and undermine smoke-free laws. The tobacco industry and its allies have funded hospitality associations and other third parties to oppose smoke-free laws, argue that smoke-free laws will economically damage hospitality venues, promote ventilation and voluntary smoker ‘accommodation’ as an alternative to smoke-free laws, and to challenge smoke-free laws in court. In 2008, the Netherlands extended its smoke-free law to hospitality venues. Methods: We triangulated news articles, government documents, scientific papers, statistical reports and interviews to construct this case study. Results: Despite widespread public support for smoke-free hospitality venues, opponents successfully represented these laws as unpopular and damaging to small bars. These challenges and related smokers’ rights activities resulted in non-compliance among all bars and reinstating an exemption for small, owner-run venues. This policy reversal was the result of a weak implementing media campaign (which failed to present the law as protecting nonsmokers), smoking room exemptions and reactive (vs. proactive) measures by the Ministry of Health and civil society. Conclusion: The policy failure in the Netherlands is the result of poor implementation efforts and the failure to anticipate and deal with opposition to the law. When implementing smoke-free laws it is important to anticipate opposition, used the media to target non-smokers to reinforce public support, and actively enforce the law. PMID:22143826

  20. A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou

    2013-10-01

    A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.

  1. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    NASA Astrophysics Data System (ADS)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  2. Dispersion effects in the miscible displacement of two fluids in a duct of large aspect ratio

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Frigaard, I. A.

    We study miscible displacements in long ducts in the dispersive limit of small \\varepsilon Pe, where \\varepsilon ≪ 1 is the inverse aspect ratio and Pe the Péclet number. We consider the class of generalized Newtonian fluids, with specified closure laws for the fluid properties of the concentration-dependent mixture. Regardless of viscosity ratio and the constitutive laws of the pure fluids, for sufficiently small \\varepsilon Pe these displacements are characterized by rapid cross-stream diffusion and slow streamwise dispersion, i.e. the concentration appears to be near-uniform across the duct and spreads slowly as it translates. Using the multiple-scales method we derive the leading-order asymptotic approximation to the average fluid concentration bar{c}_0. We show that bar{c}_0 evolves on the slow timescale t ˜ (\\varepsilon Pe)^{-1}, and satisfies a nonlinear diffusion equation in a frame of reference moving with the mean speed of the flow. In the case that the two fluids have identical rheologies and the concentration represents a passive tracer, the diffusion equation is linear. For Newtonian fluids we recover the classical results of Taylor (l953), Aris (1956), and for power-law fluids those of Vartuli et al. (1995). In the case that the fluids differ and/or that mixing is non-passive, bar{c}_0 satisfies a nonlinear diffusion equation in the moving frame of reference. Given a specific mixing/closure law for the rheological properties, we are able to compute the dispersive diffusivity D_T(bar{c}_0) and predict spreading along the channel. We show that D_T(bar{c}_0) can vary significantly with choice of mixing law and discuss why. This also opens the door to possibilities of controlling streamwise spreading by the rheological design of reactive mixtures, i.e. including chemical additives such that the rheology of the mixture behaves very differently to the rheology of either pure fluid. Computed examples illustrate the potential effects that might be achieved.

  3. Experiences from the testing of a theory for modelling groundwater flow in heterogeneous media

    USGS Publications Warehouse

    Christensen, S.; Cooley, R.L.

    2002-01-01

    Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.

  4. Experience gained in testing a theory for modelling groundwater flow in heterogeneous media

    USGS Publications Warehouse

    Christensen, S.; Cooley, R.L.

    2002-01-01

    Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift, and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.

  5. Simulation of an automatically-controlled STOL aircraft in a microwave landing system multipath environment

    NASA Technical Reports Server (NTRS)

    Toda, M.; Brown, S. C.; Burrous, C. N.

    1976-01-01

    The simulated response is described of a STOL aircraft to Microwave Landing System (MLS) multipath errors during final approach and touchdown. The MLS azimuth, elevation, and DME multipath errors were computed for a relatively severe multipath environment at Crissy Field California, utilizing an MLS multipath simulation at MIT Lincoln Laboratory. A NASA/Ames six-degree-of-freedom simulation of an automatically-controlled deHavilland C-8A STOL aircraft was used to determine the response to these errors. The results show that the aircraft response to all of the Crissy Field MLS multipath errors was small. The small MLS azimuth and elevation multipath errors did not result in any discernible aircraft motion, and the aircraft response to the relatively large (200-ft (61-m) peak) DME multipath was noticeable but small.

  6. Automatic Ammunition Identification Technology Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, B.

    1993-01-01

    The Automatic Ammunition Identification Technology (AAIT) Project is an activity of the Robotics Process Systems Division at the Oak Ridge National Laboratory (ORNL) for the US Army's Project Manager-Ammunition Logistics (PM-AMMOLOG) at the Picatinny Arsenal in Picatinny, New Jersey. The project objective is to evaluate new two-dimensional bar code symbologies for potential use in ammunition logistics systems and automated reloading equipment. These new symbologies are a significant improvement over typical linear bar codes since machine-readable alphanumeric messages up to 2000 characters long are achievable. These compressed data symbologies are expected to significantly improve logistics and inventory management tasks and permitmore » automated feeding and handling of ammunition to weapon systems. The results will be increased throughout capability, better inventory control, reduction of human error, lower operation and support costs, and a more timely re-supply of various weapon systems. This paper will describe the capabilities of existing compressed data symbologies and the symbol testing activities being conducted at ORNL for the AAIT Project.« less

  7. Automatic Ammunition Identification Technology Project. Ammunition Logistics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, B.

    1993-03-01

    The Automatic Ammunition Identification Technology (AAIT) Project is an activity of the Robotics & Process Systems Division at the Oak Ridge National Laboratory (ORNL) for the US Army`s Project Manager-Ammunition Logistics (PM-AMMOLOG) at the Picatinny Arsenal in Picatinny, New Jersey. The project objective is to evaluate new two-dimensional bar code symbologies for potential use in ammunition logistics systems and automated reloading equipment. These new symbologies are a significant improvement over typical linear bar codes since machine-readable alphanumeric messages up to 2000 characters long are achievable. These compressed data symbologies are expected to significantly improve logistics and inventory management tasks andmore » permit automated feeding and handling of ammunition to weapon systems. The results will be increased throughout capability, better inventory control, reduction of human error, lower operation and support costs, and a more timely re-supply of various weapon systems. This paper will describe the capabilities of existing compressed data symbologies and the symbol testing activities being conducted at ORNL for the AAIT Project.« less

  8. Interpretation of fast-ion signals during beam modulation experiments

    DOE PAGES

    Heidbrink, W. W.; Collins, C. S.; Stagner, L.; ...

    2016-07-22

    Fast-ion signals produced by a modulated neutral beam are used to infer fast-ion transport. The measured quantity is the divergence of perturbed fast-ion flux from the phase-space volume measured by the diagnostic, ∇•more » $$\\bar{Γ}$$. Since velocity-space transport often contributes to this divergence, the phase-space sensitivity of the diagnostic (or “weight function”) plays a crucial role in the interpretation of the signal. The source and sink make major contributions to the signal but their effects are accurately modeled by calculations that employ an exponential decay term for the sink. Recommendations for optimal design of a fast-ion transport experiment are given, illustrated by results from DIII-D measurements of fast-ion transport by Alfv´en eigenmodes. Finally, the signal-to-noise ratio of the diagnostic, systematic uncertainties in the modeling of the source and sink, and the non-linearity of the perturbation all contribute to the error in ∇•$$\\bar{Γ}$$.« less

  9. New estimates of the CMB angular power spectra from the WMAP 5 year low-resolution data

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; de Rosa, A.; Cabella, P.; Paci, F.; Finelli, F.; Natoli, P.; de Gasperis, G.; Mandolesi, N.

    2009-11-01

    A quadratic maximum likelihood (QML) estimator is applied to the Wilkinson Microwave Anisotropy Probe (WMAP) 5 year low-resolution maps to compute the cosmic microwave background angular power spectra (APS) at large scales for both temperature and polarization. Estimates and error bars for the six APS are provided up to l = 32 and compared, when possible, to those obtained by the WMAP team, without finding any inconsistency. The conditional likelihood slices are also computed for the Cl of all the six power spectra from l = 2 to 10 through a pixel-based likelihood code. Both the codes treat the covariance for (T, Q, U) in a single matrix without employing any approximation. The inputs of both the codes (foreground-reduced maps, related covariances and masks) are provided by the WMAP team. The peaks of the likelihood slices are always consistent with the QML estimates within the error bars; however, an excellent agreement occurs when the QML estimates are used as a fiducial power spectrum instead of the best-fitting theoretical power spectrum. By the full computation of the conditional likelihood on the estimated spectra, the value of the temperature quadrupole CTTl=2 is found to be less than 2σ away from the WMAP 5 year Λ cold dark matter best-fitting value. The BB spectrum is found to be well consistent with zero, and upper limits on the B modes are provided. The parity odd signals TB and EB are found to be consistent with zero.

  10. Reconstruction of primordial tensor power spectra from B -mode polarization of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Komatsu, Eiichiro; Hazumi, Masashi; Sasaki, Misao

    2018-06-01

    Given observations of the B -mode polarization power spectrum of the cosmic microwave background (CMB), we can reconstruct power spectra of primordial tensor modes from the early Universe without assuming their functional form such as a power-law spectrum. The shape of the reconstructed spectra can then be used to probe the origin of tensor modes in a model-independent manner. We use the Fisher matrix to calculate the covariance matrix of tensor power spectra reconstructed in bins. We find that the power spectra are best reconstructed at wave numbers in the vicinity of k ≈6 ×10-4 and 5 ×10-3 Mpc-1 , which correspond to the "reionization bump" at ℓ≲6 and "recombination bump" at ℓ≈80 of the CMB B -mode power spectrum, respectively. The error bar between these two wave numbers is larger because of the lack of the signal between the reionization and recombination bumps. The error bars increase sharply toward smaller (larger) wave numbers because of the cosmic variance (CMB lensing and instrumental noise). To demonstrate the utility of the reconstructed power spectra, we investigate whether we can distinguish between various sources of tensor modes including those from the vacuum metric fluctuation and SU(2) gauge fields during single-field slow-roll inflation, open inflation, and massive gravity inflation. The results depend on the model parameters, but we find that future CMB experiments are sensitive to differences in these models. We make our calculation tool available online.

  11. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs

    PubMed Central

    Huh, Yeamin; Smith, David E.; Feng, Meihau Rose

    2014-01-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879

  12. A Flavorful Factoring of the Strong CP Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Howe, Kiel

    Motivated by the intimate connection between the strong CP problem and the flavor structure of the Standard Model, we present a flavor model that revives and extends the classicmore » $${m_u=0}$$ solution to the strong CP problem. QCD is embedded into a $$SU(3)_1\\times SU(3)_2 \\times SU(3)_3$$ gauge group, with each generation of quarks charged under the respective $SU(3)$. The non-zero value of the up-quark Yukawa coupling (along with the strange quark and bottom-quark Yukawas) is generated by contributions from small instantons at a new scale $$M \\gg \\Lambda_{QCD}$$. The Higgsing of $$SU(3)^3\\to SU(3)_c$$ allows dimension-5 operators that generate the Standard Model flavor structure and can be completed in a simple renormalizable theory. The smallness of the third generation mixing angles can naturally emerge in this picture, and is connected to the smallness of threshold corrections to $$\\bar\\theta$$. Remarkably, $$\\bar\\theta$$ is essentially fixed by the measured quark masses and mixings, and is estimated to be close to the current experimental bound and well within reach of the next generation of neutron and proton EDM experiments.« less

  13. Impact of spot charge inaccuracies in IMPT treatments.

    PubMed

    Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2017-08-01

    Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.

  14. The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-10-01

    Bekenstein and Mukhanov (BM) have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating) Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch ≡ δω / Δω ≪ 1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ (a bar) ≡ δω / Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a bar ≡ J /M2 is the dimensionless angular momentum of the black hole). It is shown that ζ (a bar) is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a bar ≳ 0.9 are characterized by the dimensionless ratio ζ (a bar) ≳ 1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy) spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle) is expected to smear the black-hole radiation spectrum into a continuum.

  15. Anatomy of a lower Mississippian oil reservoir, West Virginia, United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.; Hohn, M.E.; McDowell, R.

    1993-09-01

    Several lines of evidence indicate that the oil reservoir in Granny Creek field is compartmentalized due to internal heterogeneities: an analysis of initial open flows vs. year completed and well location; mapping of initial open flows and cumulative production; and the nonuniform behavior of injection pressures and rates in waterflood patterns. The Big Injun sandstones includes an upper, coarse-grained, fluvial channel facies, and a lower, fine-grained, distributary mouthbar facies. The bar facies is the main reservoir, and can be subdivided into crest, distal, and proximal subfacies. Low original porosity and permeability in the poorly sorted channel facies was reduced furthermore » by quartz cementation. In contrast, chlorite coatings restricted quartz cementation and preserved porosity and permeability in the proximal bar subfacies. Small, low-amplitude folds plunge northeastward on the flank of the main syncline in which the fields is located. These minor structural highs seem to match areas of high initial open flows and cumulative production. High production also occurs where the distal and marine-influenced, proximal mouth-bar subfacies pinch out against at least a few feet of the relatively impremeable channel facies. Lower production is associated with (1) thin areas of proximal mouth-bar subfacies; (2) a change from marine to fluvial dominance of the bar facies, which is accompanied by a reduction in porosity and permeability; and (3) loss of the less permeable channel facies above the porous reservoir sandstone, due to downcutting by regional erosion that produced a post-Big Injun unconformity.« less

  16. Telepharmacy and bar-code technology in an i.v. chemotherapy admixture area.

    PubMed

    O'Neal, Brian C; Worden, John C; Couldry, Rick J

    2009-07-01

    A program using telepharmacy and bar-code technology to increase the presence of the pharmacist at a critical risk point during chemotherapy preparation is described. Telepharmacy hardware and software were acquired, and an inspection camera was placed in a biological safety cabinet to allow the pharmacy technician to take digital photographs at various stages of the chemotherapy preparation process. Once the pharmacist checks the medication vials' agreement with the work label, the technician takes the product into the biological safety cabinet, where the appropriate patient is selected from the pending work list, a queue of patient orders sent from the pharmacy information system. The technician then scans the bar code on the vial. Assuming the bar code matches, the technician photographs the work label, vials, diluents and fluids to be used, and the syringe (before injecting the contents into the bag) along with the vial. The pharmacist views all images as a part of the final product-checking process. This process allows the pharmacist to verify that the correct quantity of medication was transferred from the primary source to a secondary container without being physically present at the time of transfer. Telepharmacy and bar coding provide a means to improve the accuracy of chemotherapy preparation by decreasing the likelihood of using the incorrect product or quantity of drug. The system facilitates the reading of small product labels and removes the need for a pharmacist to handle contaminated syringes and vials when checking the final product.

  17. Clinal variation in the juvenal plumage of American kestrels

    USGS Publications Warehouse

    Smallwood, J.A.; Natale, C.; Steenhof, K.; Meetz, M.; Marti, C.D.; Melvin, R.J.; Bortolotti, G.R.; Robertson, R.; Robertson, S.; Shuford, W.R.; Lindemann, S.A.; Tornwall, B.

    1999-01-01

    The American Kestrel(Falco sparverius) is a sexually dichromatic falcon that exhibits considerable individual plumage variability. For example, the anterior extent of the black dorsal barring in juvenile males has been used throughout North America as one of several aging criteria, but recent data demonstrate that the variability among individual Southeastern American Kestrels(E S. paulus)exceeds that accounted for by age. The objective of this study was to search for geographic patterns in the variability of juvenal plumage, particularly those characteristics considered indicative of age. Nestling kestrels (n = 610) were examined prior to fledging during the 1997 breeding season at nest box programs across a large portion of the North American breeding range. From south to north (1) the crown patches of both males and females become more completely rufous, and (2) shaft streaks on forehead and crown feathers become more pronounced, especially in males. Male Southeastern American Kestrels differed from other males (E s. sparverius) in that the anterior extent of dorsal barring averaged less but was more variable. The variability observed in North America appears to be part of a cline extending across the species range in the Western Hemisphere, where tropical subspecies are small and have reduced dorsal barring. Both body size and, especially in males, dorsal barring increases with increasing north and south latitude. We suggest that this geographic pattern is adaptive in terms of thermoregulation, and that differences in the sex roles may explain why males become less barred with maturity while females do not.

  18. State estimation for autopilot control of small unmanned aerial vehicles in windy conditions

    NASA Astrophysics Data System (ADS)

    Poorman, David Paul

    The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.

  19. Two new freshwater eutardigrade species from Sicily.

    PubMed

    Pilato, Giovanni; Sabella, Giorgio; Lisi, Oscar

    2015-02-11

    Two new species of freshwater Eutardigrada are described from Sicily: Isohypsibius rusticus sp. nov. and Isohypsibius zappalai sp. nov. The former species has eye spots, ornamented body surface with many, variously sized tubercles; bucco-pharyngeal apparatus of the Isohypsibius type; pharyngeal bulb with apophyses and two rod-shaped macroplacoids; microplacoid absent; claws, of the Isohypsibius type, well developed, with long and thin common basal portion; main branches of all claws without free accessory points; very thin lunules present; cuticular bars on the legs absent. Isohypsibius zappalai sp. nov. has eye spots; entire body surface with small tubercles rounded in shape, fairly uniformly sized and tending to form transverse lines; bucco-pharyngeal apparatus of the Isohypsibius type, pharyngeal bulb with apophyses and two macroplacoids; microplacoid absent; claws of the Isohypsibius type, well developed, with long common basal portion and both main and secondary branches with a wide proximal portion. Main branches of all claws with accessory points; small, flexible lunules present; cuticular bars on the legs absent.

  20. Performance of Metal and Polymeric O-Ring Seals during Beyond-Design-Basis Thermal Conditions.

    PubMed

    Yang, Jiann C; Hnetkovsky, Edward; Rinehart, Doris; Fernandez, Marco; Gonzalez, Felix; Borowsky, Joseph

    2017-04-01

    This paper summarizes the small scale thermal exposure test results of the performance of metallic and polymeric O-ring seals typically used in radioactive material transportation packages. Five different O-ring materials were evaluated: Inconel/silver, ethylene-propylene diene monomer (EPDM), polytetrafluoroethylene (PTFE), silicone, butyl, and Viton. The overall objective of this study is to provide test data and insights to the performance of these Oring seals when exposed to beyond-design-basis temperature conditions due to a severe fire. Tests were conducted using a small-scale stainless steel pressure vessel pressurized with helium to 2 bar or 5 bar at room temperature. The vessel was then heated in an electric furnace to temperatures up to 900 °C for a pre-determined period (typically 8 h to 9 h). The pressure drop technique was used to determine if leakage occurred during thermal exposure. Out of a total of 46 tests performed, leakage (loss of vessel pressure) was detected in 13 tests.

  1. Performance of Metal and Polymeric O-Ring Seals during Beyond-Design-Basis Thermal Conditions*

    PubMed Central

    Yang, Jiann C.; Hnetkovsky, Edward; Rinehart, Doris; Fernandez, Marco; Gonzalez, Felix; Borowsky, Joseph

    2017-01-01

    This paper summarizes the small scale thermal exposure test results of the performance of metallic and polymeric O-ring seals typically used in radioactive material transportation packages. Five different O-ring materials were evaluated: Inconel/silver, ethylene-propylene diene monomer (EPDM), polytetrafluoroethylene (PTFE), silicone, butyl, and Viton. The overall objective of this study is to provide test data and insights to the performance of these Oring seals when exposed to beyond-design-basis temperature conditions due to a severe fire. Tests were conducted using a small-scale stainless steel pressure vessel pressurized with helium to 2 bar or 5 bar at room temperature. The vessel was then heated in an electric furnace to temperatures up to 900 °C for a pre-determined period (typically 8 h to 9 h). The pressure drop technique was used to determine if leakage occurred during thermal exposure. Out of a total of 46 tests performed, leakage (loss of vessel pressure) was detected in 13 tests. PMID:28503009

  2. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    USGS Publications Warehouse

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  3. An accurate ab initio quartic force field for ammonia

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.; Taylor, Peter R.

    1992-01-01

    The quartic force field of ammonia is computed using basis sets of spdf/spd and spdfg/spdf quality and an augmented coupled cluster method. After correcting for Fermi resonance, the computed fundamentals and nu 4 overtones agree on average to better than 3/cm with the experimental ones except for nu 2. The discrepancy for nu 2 is principally due to higher-order anharmonicity effects. The computed omega 1, omega 3, and omega 4 confirm the recent experimental determination by Lehmann and Coy (1988) but are associated with smaller error bars. The discrepancy between the computed and experimental omega 2 is far outside the expected error range, which is also attributed to higher-order anharmonicity effects not accounted for in the experimental determination. Spectroscopic constants are predicted for a number of symmetric and asymmetric top isotopomers of NH3.

  4. Estimates of fetch-induced errors in Bowen-ratio energy-budget measurements of evapotranspiration from a prairie wetland, Cottonwood Lake Area, North Dakota, USA

    USGS Publications Warehouse

    Stannard, David L.; Rosenberry, Donald O.; Winter, Thomas C.; Parkhurst, Renee S.

    2004-01-01

    Micrometeorological measurements of evapotranspiration (ET) often are affected to some degree by errors arising from limited fetch. A recently developed model was used to estimate fetch-induced errors in Bowen-ratio energy-budget measurements of ET made at a small wetland with fetch-to-height ratios ranging from 34 to 49. Estimated errors were small, averaging −1.90%±0.59%. The small errors are attributed primarily to the near-zero lower sensor height, and the negative bias reflects the greater Bowen ratios of the drier surrounding upland. Some of the variables and parameters affecting the error were not measured, but instead are estimated. A sensitivity analysis indicates that the uncertainty arising from these estimates is small. In general, fetch-induced error in measured wetland ET increases with decreasing fetch-to-height ratio, with increasing aridity and with increasing atmospheric stability over the wetland. Occurrence of standing water at a site is likely to increase the appropriate time step of data integration, for a given level of accuracy. Occurrence of extensive open water can increase accuracy or decrease the required fetch by allowing the lower sensor to be placed at the water surface. If fetch is highly variable and fetch-induced errors are significant, the variables affecting fetch (e.g., wind direction, water level) need to be measured. Fetch-induced error during the non-growing season may be greater or smaller than during the growing season, depending on how seasonal changes affect both the wetland and upland at a site.

  5. Absolute binding free energy calculations of CBClip host–guest systems in the SAMPL5 blind challenge

    PubMed Central

    Tofoleanu, Florentina; Pickard, Frank C.; König, Gerhard; Huang, Jing; Damjanović, Ana; Baek, Minkyung; Seok, Chaok; Brooks, Bernard R.

    2016-01-01

    Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett’s acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments. PMID:27677749

  6. Evaluation of force-torque displays for use with space station telerobotic activities

    NASA Technical Reports Server (NTRS)

    Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay

    1992-01-01

    Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.

  7. Measurement of elliptic flow of light nuclei at s N N = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    Here we present measurements of second-order azimuthal anisotropy ( v 2 ) at midrapidity ( |y| < 1.0 ) for light nuclei d , t , 3He (formore » $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei$$\\bar{d}$$ ( $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, and 19.6 GeV) and 3 ¯¯¯¯¯ He ( $$\\sqrt{s}$$$_{NN}$$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v 2 for these light nuclei produced in heavy-ion collisions is compared with those for p and $$\\bar{p}$$. We observe mass ordering in nuclei v 2 ( p T) at low transverse momenta ( p T < 2.0 GeV/c). We also find a centrality dependence of v 2 for d and $$\\bar{d}$$ . The magnitude of v 2 for t and 3He agree within statistical errors. Light-nuclei v 2 are compared with predictions from a blast-wave model. Atomic mass number ( A ) scaling of light-nuclei v 2 (p T) seems to hold for p T / A < 1.5 GeV/c . Results on light-nuclei v 2 from a transport-plus-coalescence model are consistent with the experimental measurements.« less

  8. Measurement of elliptic flow of light nuclei at s N N = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-09-23

    Here we present measurements of second-order azimuthal anisotropy ( v 2 ) at midrapidity ( |y| < 1.0 ) for light nuclei d , t , 3He (formore » $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei$$\\bar{d}$$ ( $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, and 19.6 GeV) and 3 ¯¯¯¯¯ He ( $$\\sqrt{s}$$$_{NN}$$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v 2 for these light nuclei produced in heavy-ion collisions is compared with those for p and $$\\bar{p}$$. We observe mass ordering in nuclei v 2 ( p T) at low transverse momenta ( p T < 2.0 GeV/c). We also find a centrality dependence of v 2 for d and $$\\bar{d}$$ . The magnitude of v 2 for t and 3He agree within statistical errors. Light-nuclei v 2 are compared with predictions from a blast-wave model. Atomic mass number ( A ) scaling of light-nuclei v 2 (p T) seems to hold for p T / A < 1.5 GeV/c . Results on light-nuclei v 2 from a transport-plus-coalescence model are consistent with the experimental measurements.« less

  9. Ghost-Free APT Analysis of Perturbative QCD Observables

    NASA Astrophysics Data System (ADS)

    Shirkov, Dmitry V.

    The review of the essence and of application of recently devised ghost-free Analytic Perturbation Theory (APT) is presented. First, we discuss the main intrinsic problem of perturbative QCD - ghost singularities and with the resume of its resolving within the APT. By examples for diverse energy and momentum transfer values we show the property of better convergence for the APT modified QCD expansion. It is shown that in the APT analysis the three-loop contribution (sim alpha_s^3) is numerically inessential. This gives raise a hope for practical solution of the well-known problem of non-satisfactory convergence of QFT perturbation series due to its asymptotic nature. Our next result is that a usual perturbative analysis of time-like events is not adequate at sleq 2 GeV2. In particular, this relates to tau decay. Then, for the "high" (f=5) region it is shown that the common NLO, NLLA perturbation approximation widely used there (at 10 GeV lesssimsqrt{s}lesssim 170 GeV) yields a systematic theoretic negative error of a couple per cent level for the bar {alpha}_s^2 values. This results in a conclusion that the bar α_s(M^2_Z) value averaged over the f=5 data appreciably differs < bar {alpha}_s(M^2_Z)rangle_{f=5} simeq 0.124 from the currently popular "world average" (=0.118 ).

  10. Apparatus for Measuring Total Emissivity of Small, Low-Emissivity Samples

    NASA Technical Reports Server (NTRS)

    Tuttle, James; DiPirro, Michael J.

    2011-01-01

    An apparatus was developed for measuring total emissivity of small, lightweight, low-emissivity samples at low temperatures. The entire apparatus fits inside a small laboratory cryostat. Sample installation and removal are relatively quick, allowing for faster testing. The small chamber surrounding the sample is lined with black-painted aluminum honeycomb, which simplifies data analysis. This results in the sample viewing a very high-emissivity surface on all sides, an effect which would normally require a much larger chamber volume. The sample and chamber temperatures are individually controlled using off-the-shelf PID (proportional integral derivative) controllers, allowing flexibility in the test conditions. The chamber can be controlled at a higher temperature than the sample, allowing a direct absorptivity measurement. The lightweight sample is suspended by its heater and thermometer leads from an isothermal bar external to the chamber. The wires run out of the chamber through small holes in its corners, and the wires do not contact the chamber itself. During a steady-state measurement, the thermometer and bar are individually controlled at the same temperature, so there is zero heat flow through the wires. Thus, all of sample-temperature-control heater power is radiated to the chamber. Double-aluminized Kapton (DAK) emissivity was studied down to 10 K, which was about 25 K colder than any previously reported measurements. This verified a minimum in the emissivity at about 35 K and a rise as the temperature dropped to lower values.

  11. An anthropomorphic phantom for quantitative evaluation of breast MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Loud, Jennifer T; El Khouli, Riham H; Myers, Kyle J; Greene, Mark H; Duyn, Jeff H; Badano, Aldo

    2011-02-01

    In this study, the authors aim to develop a physical, tissue-mimicking phantom for quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the need for improved standardization in breast MRI and provide a platform for evaluating the influence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons between patient and phantom image properties are presented. The phantom is constructed using a mixture of lard and egg whites, resulting in a random structure with separate adipose- and glandular-mimicking components. T1 and T2 relaxation times of the lard and egg components of the phantom were estimated at 1.5 T from inversion recovery and spin-echo scans, respectively, using maximum-likelihood methods. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of phantom and patient images. A static, enhancing lesion was introduced by creating a hollow mold with stereolithography and filling it with a gadolinium-doped water solution. Measured phantom relaxation values fall within 2 standard errors of human values from the literature and are reasonably stable over 9 months of testing. Comparison of the covariance matrices of phantom and patient data demonstrates that the phantom and patient data have similar image structure. Their covariance matrices are the same to within error bars in the anterior-posterior direction and to within about two error bars in the right-left direction. The signal from the phantom's adipose-mimicking material can be suppressed using active fat-suppression protocols. A static, enhancing lesion can also be included with the ability to change morphology and contrast agent concentration. The authors have constructed a phantom and demonstrated its ability to mimic human breast images in terms of key physical properties that are relevant to breast MRI. This phantom provides a platform for the optimization and standardization of breast MRI imaging protocols for lesion detection and characterization.

  12. Integrating technology to improve medication administration.

    PubMed

    Prusch, Amanda E; Suess, Tina M; Paoletti, Richard D; Olin, Stephen T; Watts, Starann D

    2011-05-01

    The development, implementation, and evaluation of an i.v. interoperability program to advance medication safety at the bedside are described. I.V. interoperability integrates intelligent infusion devices (IIDs), the bar-code-assisted medication administration system, and the electronic medication administration record system into a bar-code-driven workflow that populates provider-ordered, pharmacist-validated infusion parameters on IIDs. The purpose of this project was to improve medication safety through the integration of these technologies and decrease the potential for error during i.v. medication administration. Four key phases were essential to developing and implementing i.v. interoperability: (a) preparation, (b) i.v. interoperability pilot, (c) preliminary validation, and (d) expansion. The establishment of pharmacy involvement in i.v. interoperability resulted in two additional safety checks: pharmacist infusion rate oversight and nurse independent validation of the autoprogrammed rate. After instituting i.v. interoperability, monthly compliance to the telemetry drug library increased to a mean ± S.D. of 72.1% ± 2.1% from 56.5% ± 1.5%, and the medical-surgical nursing unit's drug library monthly compliance rate increased to 58.6% ± 2.9% from 34.1% ± 2.6% (p < 0.001 for both comparisons). The number of manual pump edits decreased with both telemetry and medical-surgical drug libraries, demonstrating a reduction from 56.9 ± 12.8 to 14.2 ± 3.9 and from 61.2 ± 15.4 to 14.7 ± 3.8, respectively (p < 0.001 for both comparisons). Through the integration and incorporation of pharmacist oversight for rate changes, the telemetry and medical-surgical patient care areas demonstrated a 32% reduction in reported monthly errors involving i.v. administration of heparin. By integrating two stand-alone technologies, i.v. interoperability was implemented to improve medication administration. Medication errors were reduced, nursing workflow was simplified, and pharmacists became involved in checking infusion rates of i.v. medications.

  13. Does the Newtonian Gravity "Constant" G Vary?

    NASA Astrophysics Data System (ADS)

    Noerdlinger, Peter D.

    2015-08-01

    A series of measurements of Newton's gravity constant, G, dating back as far as 1893, yielded widely varying values, the variation greatly exceeding the stated error estimates (Gillies, 1997; Quinn, 2000, Mohr et al 2008). The value of G is usually said to be unrelated to other physics, but we point out that the 8B Solar Neutrino Rate ought to be very sensitive. Improved pulsar timing could also help settle the issue as to whether G really varies. We claim that the variation in measured values over time (1893-2014 C.E.) is a more serious problem than the failure of the error bars to overlap; it appears that challenging or adjusting the error bars hardly masks the underlying disagreement in central values. We have assessed whether variations in the gravitational potential due to (for example) local dark matter (DM) could explain the variations. We find that the required potential fluctuations could transiently accelerate the Solar System and nearby stars to speeds in excess of the Galactic escape speed. Previous theories for the variation in G generally deal with supposed secular variation on a cosmological timescale, or very rapid oscillations whose envelope changes on that scale (Steinhardt and Will 1995). Therefore, these analyses fail to support variations on the timescale of years or spatial scales of order parsecs, which would be required by the data for G. We note that true variations in G would be associated with variations in clock rates (Derevianko and Pospelov 2014; Loeb and Maoz 2015), which could mask changes in orbital dynamics. Geringer-Sameth et al (2014) studied γ-ray emission from the nearby Reticulum dwarf galaxy, which is expected to be free of "ordinary" (stellar, black hole) γ-ray sources and found evidence for DM decay. Bernabei et al (2003) also found evidence for DM penetrating deep underground at Gran Sasso. If, indeed, variations in G can be tied to variations in gravitational potential, we have a new tool to assess the DM density.

  14. Galaxy bias from the Dark Energy Survey Science Verification data: Combining galaxy density maps and weak lensing maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.; Pujol, A.; Gaztañaga, E.

    We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a ~116 deg 2 area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later re-examined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1σ error bars inmore » four photometric redshift bins to be 1.12 ± 0.19 (z = 0.2–0.4), 0.97 ± 0.15 (z = 0.4–0.6), 1.38 ± 0.39 (z = 0.6–0.8), and 1.45 ± 0.56 (z = 0.8–1.0). These measurements are consistent at the 2σ level with measurements on the same data set using galaxy clustering and cross-correlation of galaxies with cosmic microwave background lensing, with most of the redshift bins consistent within the 1σ error bars. In addition, our method provides the only σ8 independent constraint among the three. We forward model the main observational effects using mock galaxy catalogues by including shape noise, photo-z errors, and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Moreover, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.« less

  15. Galaxy bias from the Dark Energy Survey Science Verification data: Combining galaxy density maps and weak lensing maps

    DOE PAGES

    Chang, C.; Pujol, A.; Gaztañaga, E.; ...

    2016-04-15

    We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a ~116 deg 2 area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later re-examined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1σ error bars inmore » four photometric redshift bins to be 1.12 ± 0.19 (z = 0.2–0.4), 0.97 ± 0.15 (z = 0.4–0.6), 1.38 ± 0.39 (z = 0.6–0.8), and 1.45 ± 0.56 (z = 0.8–1.0). These measurements are consistent at the 2σ level with measurements on the same data set using galaxy clustering and cross-correlation of galaxies with cosmic microwave background lensing, with most of the redshift bins consistent within the 1σ error bars. In addition, our method provides the only σ8 independent constraint among the three. We forward model the main observational effects using mock galaxy catalogues by including shape noise, photo-z errors, and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Moreover, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.« less

  16. Ferry Terminals and Small Craft Berthing Facilities. Design Manual 25.5.

    DTIC Science & Technology

    1981-07-01

    become water-logged and sink in a few years. Use is generally not recommended. (2) Extruded polystyrene (Styrofoam). Available in several sizes of precast...Supplemental facilities, such as boardroom, coffee- break room or snack bar, engineering room, and storage room, fol large installations. b

  17. The Mechanism of Action of Unique Small Molecules that Inhibit the Pim Protein Kinase Blocking Prostate Cancer Cell Growth

    DTIC Science & Technology

    2010-05-01

    shown. (E) Cap-dependent ( gray bars) and IRES-dependent (black bars) translation in MEFs as measured by Renilla and Firefly luciferase activities...AGC ATC AAC C; EPHA2-R, GTG ACC TCG TAC TTC CAC ACT C. HER3-F, CGA TGC TGA GAA CCA ATA CCA G; HER3-R, ATA GCC TGT CAC TTC TCG AAT C. INSR-F, GGA AGT...TAC GTC TGA TTC GAG G; INSR-R, TGA GTG ATG GTG AGG TTG TG. IGF1R-F, CCT GCA CAA CTC CAT CTT CGT G; IGF1R-R, CGG TGA TGT TGT AGG TGT CTG C. EGFR-F

  18. Study on the near-field non-linearity (SMILE) of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyou; Jia, Yangtao; Li, Changxuan; Zah, Chung-en; Liu, Xingsheng

    2018-02-01

    High power laser diodes have been found a wide range of industrial, space, medical applications, characterized by high conversion efficiency, small size, light weight and a long lifetime. However, due to thermal induced stress, each emitter in a semiconductor laser bar or array is displaced along p-n junction, resulting of each emitter is not in a line, called Near-field Non-linearity. Near-field Non-linearity along laser bar (also known as "SMILE") determines the outcome of optical coupling and beam shaping [1]. The SMILE of a laser array is the main obstacle to obtain good optical coupling efficiency and beam shaping from a laser array. Larger SMILE value causes a larger divergence angle and a wider line after collimation and focusing, respectively. In this letter, we simulate two different package structures based on MCC (Micro Channel Cooler) with Indium and AuSn solders, including the distribution of normal stress and the SMILE value. According to the theoretical results, we found the distribution of normal stress on laser bar shows the largest in the middle and drops rapidly near both ends. At last, we did another experiment to prove that the SMILE value of a laser bar was mainly affected by the die bonding process, rather than the operating condition.

  19. Data visualization, bar naked: A free tool for creating interactive graphics.

    PubMed

    Weissgerber, Tracey L; Savic, Marko; Winham, Stacey J; Stanisavljevic, Dejana; Garovic, Vesna D; Milic, Natasa M

    2017-12-15

    Although bar graphs are designed for categorical data, they are routinely used to present continuous data in studies that have small sample sizes. This presentation is problematic, as many data distributions can lead to the same bar graph, and the actual data may suggest different conclusions from the summary statistics. To address this problem, many journals have implemented new policies that require authors to show the data distribution. This paper introduces a free, web-based tool for creating an interactive alternative to the bar graph (http://statistika.mfub.bg.ac.rs/interactive-dotplot/). This tool allows authors with no programming expertise to create customized interactive graphics, including univariate scatterplots, box plots, and violin plots, for comparing values of a continuous variable across different study groups. Individual data points may be overlaid on the graphs. Additional features facilitate visualization of subgroups or clusters of non-independent data. A second tool enables authors to create interactive graphics from data obtained with repeated independent experiments (http://statistika.mfub.bg.ac.rs/interactive-repeated-experiments-dotplot/). These tools are designed to encourage exploration and critical evaluation of the data behind the summary statistics and may be valuable for promoting transparency, reproducibility, and open science in basic biomedical research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Spatial relationships between alcohol-related road crashes and retail alcohol availability.

    PubMed

    Morrison, Christopher; Ponicki, William R; Gruenewald, Paul J; Wiebe, Douglas J; Smith, Karen

    2016-05-01

    This study examines spatial relationships between alcohol outlet density and the incidence of alcohol-related crashes. The few prior studies conducted in this area used relatively large spatial units; here we use highly resolved units from Melbourne, Australia (Statistical Area level 1 [SA1] units: mean land area=0.5 km(2); SD=2.2 km(2)), in order to assess different micro-scale spatial relationships for on- and off-premise outlets. Bayesian conditional autoregressive Poisson models were used to assess cross-sectional relationships of three-year counts of alcohol-related crashes (2010-2012) attended by Ambulance Victoria paramedics to densities of bars, restaurants, and off-premise outlets controlling for other land use, demographic and roadway characteristics. Alcohol-related crashes were not related to bar density within local SA1 units, but were positively related to bar density in adjacent SA1 units. Alcohol-related crashes were negatively related to off-premise outlet density in local SA1 units. Examined in one metropolitan area using small spatial units, bar density is related to greater crash risk in surrounding areas. Observed negative relationships for off-premise outlets may be because the origins and destinations of alcohol-affected journeys are in distal locations relative to outlets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Higher order moments of the matter distribution in scale-free cosmological simulations with large dynamic range

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1994-01-01

    We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.

  2. Variable Thermal-Force Bending of a Three-Layer Bar with a Compressible Filler

    NASA Astrophysics Data System (ADS)

    Starovoitov, E. I.; Leonenko, D. V.

    2017-11-01

    Deformation of a three-layer elastoplastic bar with a compressible filler in a temperature field is considered. To describe the kinematics of a pack asymmetric across its thickness, the hypothesis of broken line is accepted, according to which the Bernoulli hypothesis is true in thin bearing layers, and the Timoshenko hypothesis is valid for a filler compressible across the its thickness, with a linear approximation of displacements across the layer thickness. The work of filler in the tangential direction is taken into account. The physical stress-strain relations correspond to the theory of small elastoplastic deformations. Temperature variations are calculated from a formula obtained by averaging the thermophysical properties of layer materials across the bar thickness. Using the variational method, a system of differential equilibrium equations is derived. On the boundary, the kinematic conditions of simply supported ends of the bar are assumed. The solution of the boundary problem is reduced to the search for four functions, namely, deflections and longitudinal displacements of median surfaces of the bearing layers. An analytical solution is derived by the method of elastic solutions with the use of the Moskvitin theorem on variable loadings. Its numerical analysis is performed for the cases of continuous and local loads.

  3. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    NASA Astrophysics Data System (ADS)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  4. Regulation of the Two Delta Crystallin Genes during Lens Development in the Chicken Embryo

    DTIC Science & Technology

    1991-08-22

    Stabilization of tubulin mRNA by inhibition of protein synthesis sea 148 urchin embryos. Mol. Cell. Biol. 8, 3518-3525. Goto, K., Okada, T.S...counts from twenty lens epithelia. Error bars are ± SEM . Symbols: control lens tissue, (square), 0.5 ng/ml actinomycin D, (inverted triangle), 30 ng...Ŝ]-methionine for 5 hr in the absence or presence of actinomycin D (0.5 or 30 M-g/̂ iD • Values are the means ± SEM for ten groups of three lens

  5. A Search for Periodicity in the X-Ray Spectrum of Black Hole Candidate A0620-00

    DTIC Science & Technology

    1991-06-01

    They are observed as radio pulsars and as the X-ray emitting components of binary X-ray sources. The limits of stability of neutron stars are not...4 Lo ). The three candidates are CYG X-1, LMC X-3, and A0620. In this section all data such as mass functions, luminosities, distances, periods, etc...1.4. Finally, we discard data for which a/ lo > 1. Such a point is of little statistical significance since its error bars are so large. Figure 2.2d

  6. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  7. Watts Bar Nuclear Plant Title V Applicability

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  8. The relationship between mean anomaly block sizes and spherical harmonic representations. [of earth gravity

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1977-01-01

    The frequently used rule specifying the relationship between a mean gravity anomaly in a block whose side length is theta degrees and a spherical harmonic representation of these data to degree l-bar is examined in light of the smoothing parameter used by Pellinen (1966). It is found that if the smoothing parameter is not considered, mean anomalies computed from potential coefficients can be in error by about 30% of the rms anomaly value. It is suggested that the above mentioned rule should be considered only a crude approximation.

  9. Data free inference with processed data products

    DOE PAGES

    Chowdhary, K.; Najm, H. N.

    2014-07-12

    Here, we consider the context of probabilistic inference of model parameters given error bars or confidence intervals on model output values, when the data is unavailable. We introduce a class of algorithms in a Bayesian framework, relying on maximum entropy arguments and approximate Bayesian computation methods, to generate consistent data with the given summary statistics. Once we obtain consistent data sets, we pool the respective posteriors, to arrive at a single, averaged density on the parameters. This approach allows us to perform accurate forward uncertainty propagation consistent with the reported statistics.

  10. Aquarius Radiometer Performance: Early On-Orbit Calibration and Results

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; LeVine, David M.; Yueh, Simon H.; Wentz, Frank; Ruf, Christopher

    2012-01-01

    The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument was commissioned two months after launch and began operating in mission mode August 25. The Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within expected error bars, and continues to operate well. A review of the instrument design, discussion of early on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are summarized in this abstract.

  11. Micro Computer Feedback Report for the Strategic Leader Development Inventory; Source Code

    DTIC Science & Technology

    1994-03-01

    SEL5 ;exit if error CALL SELZCT SCRZEN ;display select screen JC SEL4 ;no files in directory .------- display the files NOV BX, [BarPos] ;starting...SEL2 ;if not goto next test imp SEL4 ; Ecit SEL2: CUP AL,ODh ;in it a pick ? 3Z SEL3 ;if YES exit loop ------- see if an active control key was...file CALL READCOMFIG eread file into memory JC SEL5 ;exit to main menu CALL OPEN DATA FILE ;is data arailable? SEL4 : CALL RELEASE_ _MDR ;release mom

  12. A Reassessment of the Precision of Carbonate Clumped Isotope Measurements: Implications for Calibrations and Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Fernandez, Alvaro; Müller, Inigo A.; Rodríguez-Sanz, Laura; van Dijk, Joep; Looser, Nathan; Bernasconi, Stefano M.

    2017-12-01

    Carbonate clumped isotopes offer a potentially transformational tool to interpret Earth's history, but the proxy is still limited by poor interlaboratory reproducibility. Here, we focus on the uncertainties that result from the analysis of only a few replicate measurements to understand the extent to which unconstrained errors affect calibration relationships and paleoclimate reconstructions. We find that highly precise data can be routinely obtained with multiple replicate analyses, but this is not always done in many laboratories. For instance, using published estimates of external reproducibilities we find that typical clumped isotope measurements (three replicate analyses) have margins of error at the 95% confidence level (CL) that are too large for many applications. These errors, however, can be systematically reduced with more replicate measurements. Second, using a Monte Carlo-type simulation we demonstrate that the degree of disagreement on published calibration slopes is about what we should expect considering the precision of Δ47 data, the number of samples and replicate analyses, and the temperature range covered in published calibrations. Finally, we show that the way errors are typically reported in clumped isotope data can be problematic and lead to the impression that data are more precise than warranted. We recommend that uncertainties in Δ47 data should no longer be reported as the standard error of a few replicate measurements. Instead, uncertainties should be reported as margins of error at a specified confidence level (e.g., 68% or 95% CL). These error bars are a more realistic indication of the reliability of a measurement.

  13. Analyzing hidden populations online: topic, emotion, and social network of HIV-related users in the largest Chinese online community.

    PubMed

    Liu, Chuchu; Lu, Xin

    2018-01-05

    Traditional survey methods are limited in the study of hidden populations due to the hard to access properties, including lack of a sampling frame, sensitivity issue, reporting error, small sample size, etc. The rapid increase of online communities, of which members interact with others via the Internet, have generated large amounts of data, offering new opportunities for understanding hidden populations with unprecedented sample sizes and richness of information. In this study, we try to understand the multidimensional characteristics of a hidden population by analyzing the massive data generated in the online community. By elaborately designing crawlers, we retrieved a complete dataset from the "HIV bar," the largest bar related to HIV on the Baidu Tieba platform, for all records from January 2005 to August 2016. Through natural language processing and social network analysis, we explored the psychology, behavior and demand of online HIV population and examined the network community structure. In HIV communities, the average topic similarity among members is positively correlated to network efficiency (r = 0.70, p < 0.001), indicating that the closer the social distance between members of the community, the more similar their topics. The proportion of negative users in each community is around 60%, weakly correlated with community size (r = 0.25, p = 0.002). It is found that users suspecting initial HIV infection or first in contact with high-risk behaviors tend to seek help and advice on the social networking platform, rather than immediately going to a hospital for blood tests. Online communities have generated copious amounts of data offering new opportunities for understanding hidden populations with unprecedented sample sizes and richness of information. It is recommended that support through online services for HIV/AIDS consultation and diagnosis be improved to avoid privacy concerns and social discrimination in China.

  14. Journal of Rehabilitation Research and Development, Spring 1991. Volume 28, Number 2

    DTIC Science & Technology

    1991-01-01

    diameter extruded bars of nylon 6/6. Total requested to be returned to the ankle following the test manufacturing cost has been reduced drastically and part...Open bottle cap Spoon-feed meals Close bottle cap Feed snack Place drinking straw Remove drinking straw Open small refrigerator door Close small...Observed in this Study as Being Performed by a Monkey Helper Feeding Manipulating Objects Spoon-feed meals Feed snacks Wipe table top Hold sandwich

  15. Impact of Frequent Interruption on Nurses' Patient-Controlled Analgesia Programming Performance.

    PubMed

    Campoe, Kristi R; Giuliano, Karen K

    2017-12-01

    The purpose was to add to the body of knowledge regarding the impact of interruption on acute care nurses' cognitive workload, total task completion times, nurse frustration, and medication administration error while programming a patient-controlled analgesia (PCA) pump. Data support that the severity of medication administration error increases with the number of interruptions, which is especially critical during the administration of high-risk medications. Bar code technology, interruption-free zones, and medication safety vests have been shown to decrease administration-related errors. However, there are few published data regarding the impact of number of interruptions on nurses' clinical performance during PCA programming. Nine acute care nurses completed three PCA pump programming tasks in a simulation laboratory. Programming tasks were completed under three conditions where the number of interruptions varied between two, four, and six. Outcome measures included cognitive workload (six NASA Task Load Index [NASA-TLX] subscales), total task completion time (seconds), nurse frustration (NASA-TLX Subscale 6), and PCA medication administration error (incorrect final programming). Increases in the number of interruptions were associated with significant increases in total task completion time ( p = .003). We also found increases in nurses' cognitive workload, nurse frustration, and PCA pump programming errors, but these increases were not statistically significant. Complex technology use permeates the acute care nursing practice environment. These results add new knowledge on nurses' clinical performance during PCA pump programming and high-risk medication administration.

  16. [Measures to prevent patient identification errors in blood collection/physiological function testing utilizing a laboratory information system].

    PubMed

    Shimazu, Chisato; Hoshino, Satoshi; Furukawa, Taiji

    2013-08-01

    We constructed an integrated personal identification workflow chart using both bar code reading and an all in-one laboratory information system. The information system not only handles test data but also the information needed for patient guidance in the laboratory department. The reception terminals at the entrance, displays for patient guidance and patient identification tools at blood-sampling booths are all controlled by the information system. The number of patient identification errors was greatly reduced by the system. However, identification errors have not been abolished in the ultrasound department. After re-evaluation of the patient identification process in this department, we recognized that the major reason for the errors came from excessive identification workflow. Ordinarily, an ultrasound test requires patient identification 3 times, because 3 different systems are required during the entire test process, i.e. ultrasound modality system, laboratory information system and a system for producing reports. We are trying to connect the 3 different systems to develop a one-time identification workflow, but it is not a simple task and has not been completed yet. Utilization of the laboratory information system is effective, but is not yet perfect for patient identification. The most fundamental procedure for patient identification is to ask a person's name even today. Everyday checks in the ordinary workflow and everyone's participation in safety-management activity are important for the prevention of patient identification errors.

  17. Effects of line fiducial parameters and beamforming on ultrasound calibration

    PubMed Central

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Peters, Terry M.; Chen, Elvis C. S.

    2017-01-01

    Abstract. Ultrasound (US)-guided interventions are often enhanced via integration with an augmented reality environment, a necessary component of which is US calibration. Calibration requires the segmentation of fiducials, i.e., a phantom, in US images. Fiducial localization error (FLE) can decrease US calibration accuracy, which fundamentally affects the total accuracy of the interventional guidance system. Here, we investigate the effects of US image reconstruction techniques as well as phantom material and geometry on US calibration. It was shown that the FLE was reduced by 29% with synthetic transmit aperture imaging compared with conventional B-mode imaging in a Z-bar calibration, resulting in a 10% reduction of calibration error. In addition, an evaluation of a variety of calibration phantoms with different geometrical and material properties was performed. The phantoms included braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. It was shown that these properties have a significant effect on calibration error, which is a variable based on US beamforming techniques. These results would have important implications for calibration procedures and their feasibility in the context of image-guided procedures. PMID:28331886

  18. Effects of line fiducial parameters and beamforming on ultrasound calibration.

    PubMed

    Ameri, Golafsoun; Baxter, John S H; McLeod, A Jonathan; Peters, Terry M; Chen, Elvis C S

    2017-01-01

    Ultrasound (US)-guided interventions are often enhanced via integration with an augmented reality environment, a necessary component of which is US calibration. Calibration requires the segmentation of fiducials, i.e., a phantom, in US images. Fiducial localization error (FLE) can decrease US calibration accuracy, which fundamentally affects the total accuracy of the interventional guidance system. Here, we investigate the effects of US image reconstruction techniques as well as phantom material and geometry on US calibration. It was shown that the FLE was reduced by 29% with synthetic transmit aperture imaging compared with conventional B-mode imaging in a Z-bar calibration, resulting in a 10% reduction of calibration error. In addition, an evaluation of a variety of calibration phantoms with different geometrical and material properties was performed. The phantoms included braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. It was shown that these properties have a significant effect on calibration error, which is a variable based on US beamforming techniques. These results would have important implications for calibration procedures and their feasibility in the context of image-guided procedures.

  19. Geometric errors in 3D optical metrology systems

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Nafis, Chris

    2008-08-01

    The field of 3D optical metrology has seen significant growth in the commercial market in recent years. The methods of using structured light to obtain 3D range data is well documented in the literature, and continues to be an area of development in universities. However, the step between getting 3D data, and getting geometrically correct 3D data that can be used for metrology is not nearly as well developed. Mechanical metrology systems such as CMMs have long established standard means of verifying the geometric accuracies of their systems. Both local and volumentric measurments are characterized on such system using tooling balls, grid plates, and ball bars. This paper will explore the tools needed to characterize and calibrate an optical metrology system, and discuss the nature of the geometric errors often found in such systems, and suggest what may be a viable standard method of doing characterization of 3D optical systems. Finally, we will present a tradeoff analysis of ways to correct geometric errors in an optical systems considering what can be gained by hardware methods versus software corrections.

  20. Optics measurement algorithms and error analysis for the proton energy frontier

    NASA Astrophysics Data System (ADS)

    Langner, A.; Tomás, R.

    2015-03-01

    Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) β -functions (β*). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased the average error bars by a factor of three to four. This allowed the calculation of β* values and demonstrated to be fundamental in the understanding of emittance evolution during the energy ramp.

  1. Medication Errors in Pediatric Anesthesia: A Report From the Wake Up Safe Quality Improvement Initiative.

    PubMed

    Lobaugh, Lauren M Y; Martin, Lizabeth D; Schleelein, Laura E; Tyler, Donald C; Litman, Ronald S

    2017-09-01

    Wake Up Safe is a quality improvement initiative of the Society for Pediatric Anesthesia that contains a deidentified registry of serious adverse events occurring in pediatric anesthesia. The aim of this study was to describe and characterize reported medication errors to find common patterns amenable to preventative strategies. In September 2016, we analyzed approximately 6 years' worth of medication error events reported to Wake Up Safe. Medication errors were classified by: (1) medication category; (2) error type by phase of administration: prescribing, preparation, or administration; (3) bolus or infusion error; (4) provider type and level of training; (5) harm as defined by the National Coordinating Council for Medication Error Reporting and Prevention; and (6) perceived preventability. From 2010 to the time of our data analysis in September 2016, 32 institutions had joined and submitted data on 2087 adverse events during 2,316,635 anesthetics. These reports contained details of 276 medication errors, which comprised the third highest category of events behind cardiac and respiratory related events. Medication errors most commonly involved opioids and sedative/hypnotics. When categorized by phase of handling, 30 events occurred during preparation, 67 during prescribing, and 179 during administration. The most common error type was accidental administration of the wrong dose (N = 84), followed by syringe swap (accidental administration of the wrong syringe, N = 49). Fifty-seven (21%) reported medication errors involved medications prepared as infusions as opposed to 1 time bolus administrations. Medication errors were committed by all types of anesthesia providers, most commonly by attendings. Over 80% of reported medication errors reached the patient and more than half of these events caused patient harm. Fifteen events (5%) required a life sustaining intervention. Nearly all cases (97%) were judged to be either likely or certainly preventable. Our findings characterize the most common types of medication errors in pediatric anesthesia practice and provide guidance on future preventative strategies. Many of these errors will be almost entirely preventable with the use of prefilled medication syringes to avoid accidental ampule swap, bar-coding at the point of medication administration to prevent syringe swap and to confirm the proper dose, and 2-person checking of medication infusions for accuracy.

  2. Consolidation and fabrication techniques for vanadium-20 w/o titanium /TV-20/

    NASA Technical Reports Server (NTRS)

    Burt, W. R.; Karasek, F. J.; Kramer, W. C.; Mayfield, R. M.; Mc Gowan, R. D.

    1968-01-01

    Tests of the mechanical properties, fuel compatibility, sodium corrosion and irradiation behavior were made for vanadium and vanadium alloy. Improved methods for consolidation and fabrication of bar, rod, sheet, and high-quality, small diameter, thin-wall tubing of vanadium-20 without titanium are reported.

  3. 14 CFR 1274.933 - Summary of recipient reporting responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... bar exists, otherwise within 2 years 1274.913 Patent Rights—Retention by the Recipient (Small Business... As required 1274.911 Patent Rights(Paragraph (b)(4)) Interim Report of Reportable Items Every 12 months 1274.912 Patent Rights—Retention by the Recipient (Large Business)(Paragraph (e)(3)(i)) Final...

  4. On the robustness of bucket brigade quantum RAM

    NASA Astrophysics Data System (ADS)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  5. Backus Effect on a Perpendicular Errors in Harmonic Models of Real vs. Synthetic Data

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.; Santana, J.; Sabaka, T.

    1999-01-01

    Measurements of geomagnetic scalar intensity on a thin spherical shell alone are not enough to separate internal from external source fields; moreover, such scalar data are not enough for accurate modeling of the vector field from internal sources because of unmodeled fields and small data errors. Spherical harmonic models of the geomagnetic potential fitted to scalar data alone therefore suffer from well-understood Backus effect and perpendicular errors. Curiously, errors in some models of simulated 'data' are very much less than those in models of real data. We analyze select Magsat vector and scalar measurements separately to illustrate Backus effect and perpendicular errors in models of real scalar data. By using a model to synthesize 'data' at the observation points, and by adding various types of 'noise', we illustrate such errors in models of synthetic 'data'. Perpendicular errors prove quite sensitive to the maximum degree in the spherical harmonic expansion of the potential field model fitted to the scalar data. Small errors in models of synthetic 'data' are found to be an artifact of matched truncation levels. For example, consider scalar synthetic 'data' computed from a degree 14 model. A degree 14 model fitted to such synthetic 'data' yields negligible error, but amplifies 4 nT (rmss) added noise into a 60 nT error (rmss); however, a degree 12 model fitted to the noisy 'data' suffers a 492 nT error (rmms through degree 12). Geomagnetic measurements remain unaware of model truncation, so the small errors indicated by some simulations cannot be realized in practice. Errors in models fitted to scalar data alone approach 1000 nT (rmss) and several thousand nT (maximum).

  6. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00278e Click here for additional data file.

    PubMed Central

    Moghadam, Peyman Z.; Ivy, Joshua F.; Arvapally, Ravi K.; dos Santos, Antonio M.; Pearson, John C.; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W. H.; Kaipa, Ushasree

    2017-01-01

    FMOF-1 is a flexible, superhydrophobic metal–organic framework with a network of channels and side pockets decorated with –CF3 groups. CO2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg–1 (11.0 mol L–1) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N2, O2, and CO2. Neutron diffraction in situ experiments on the crystalline powder show that CO2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N2 and O2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO2 in the presence of 80% relative humidity predict that water does not influence the CO2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO2 capture from humid gas streams. PMID:28553541

  7. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation.

    PubMed

    Moghadam, Peyman Z; Ivy, Joshua F; Arvapally, Ravi K; Dos Santos, Antonio M; Pearson, John C; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W H; Kaipa, Ushasree; Wang, Xiaoping; Wilson, Angela K; Snurr, Randall Q; Omary, Mohammad A

    2017-05-01

    FMOF-1 is a flexible, superhydrophobic metal-organic framework with a network of channels and side pockets decorated with -CF 3 groups. CO 2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg -1 (11.0 mol L -1 ) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N 2 , O 2 , and CO 2 . Neutron diffraction in situ experiments on the crystalline powder show that CO 2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N 2 and O 2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO 2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO 2 in the presence of 80% relative humidity predict that water does not influence the CO 2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO 2 capture from humid gas streams.

  8. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  9. Quantified Choice of Root-Mean-Square Errors of Approximation for Evaluation and Power Analysis of Small Differences between Structural Equation Models

    ERIC Educational Resources Information Center

    Li, Libo; Bentler, Peter M.

    2011-01-01

    MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…

  10. Current measurement by Faraday effect on GEPOPU

    NASA Astrophysics Data System (ADS)

    N, Correa; H, Chuaqui; E, Wyndham; F, Veloso; J, Valenzuela; M, Favre; H, Bhuyan

    2014-05-01

    The design and calibration of an optical current sensor using BK7 glass is presented. The current sensor is based on the polarization rotation by Faraday effect. GEPOPU is a pulsed power generator, double transit time 120ns, 1.5 Ohm impedance, coaxial geometry, where Z pinch experiment are performed. The measurements were performed at the Optics and Plasma Physics Laboratory of Pontificia Universidad Catolica de Chile. The verdet constant for two different optical materials was obtained using He-Ne laser. The values obtained are within the experimental error bars of measurements published in the literature (less than 15% difference). Two different sensor geometries were tried. We present the preliminary results for one of the geometries. The values obtained for the current agree within the measurement error with those obtained by means of a Spice simulation of the generator. Signal traces obtained are completely noise free.

  11. Confidence limits for data mining models of options prices

    NASA Astrophysics Data System (ADS)

    Healy, J. V.; Dixon, M.; Read, B. J.; Cai, F. F.

    2004-12-01

    Non-parametric methods such as artificial neural nets can successfully model prices of financial options, out-performing the Black-Scholes analytic model (Eur. Phys. J. B 27 (2002) 219). However, the accuracy of such approaches is usually expressed only by a global fitting/error measure. This paper describes a robust method for determining prediction intervals for models derived by non-linear regression. We have demonstrated it by application to a standard synthetic example (29th Annual Conference of the IEEE Industrial Electronics Society, Special Session on Intelligent Systems, pp. 1926-1931). The method is used here to obtain prediction intervals for option prices using market data for LIFFE “ESX” FTSE 100 index options ( http://www.liffe.com/liffedata/contracts/month_onmonth.xls). We avoid special neural net architectures and use standard regression procedures to determine local error bars. The method is appropriate for target data with non constant variance (or volatility).

  12. Comparison between thermochemical and phase stability data for the quartz-coesite-stishovite transformations

    NASA Technical Reports Server (NTRS)

    Weaver, J. S.; Chipman, D. W.; Takahashi, T.

    1979-01-01

    Phase stability and elasticity data have been used to calculate the Gibbs free energy, enthalpy, and entropy changes at 298 K and 1 bar associated with the quartz-coesite and coesite-stishovite transformations in the system SiO2. For the quartz-coesite transformation, these changes disagree by a factor of two or three with those obtained by calorimetric techniques. The phase boundary for this transformation appears to be well determined by experiment; the discrepancy, therefore, suggests that the calorimetric data for coesite are in error. Although the calorimetric and phase stability data for the coesite-stishovite transformation yield the same transition pressure at 298 K, the phase-boundary slopes disagree by a factor of two. At present, it is not possible to determine which of the data are in error. Thus serious inconsistencies exist in the thermodynamic data for the polymorphic transformations of silica.

  13. Information technology-based approaches to reducing repeat drug exposure in patients with known drug allergies.

    PubMed

    Cresswell, Kathrin M; Sheikh, Aziz

    2008-05-01

    There is increasing interest internationally in ways of reducing the high disease burden resulting from errors in medicine management. Repeat exposure to drugs to which patients have a known allergy has been a repeatedly identified error, often with disastrous consequences. Drug allergies are immunologically mediated reactions that are characterized by specificity and recurrence on reexposure. These repeat reactions should therefore be preventable. We argue that there is insufficient attention being paid to studying and implementing system-based approaches to reducing the risk of such accidental reexposure. Drawing on recent and ongoing research, we discuss a number of information technology-based interventions that can be used to reduce the risk of recurrent exposure. Proven to be effective in this respect are interventions that provide real-time clinical decision support; also promising are interventions aiming to enhance patient recognition, such as bar coding, radiofrequency identification, and biometric technologies.

  14. Fermi-Pasta-Ulam-Tsingou problems: Passage from Boltzmann to q-statistics

    NASA Astrophysics Data System (ADS)

    Bagchi, Debarshee; Tsallis, Constantino

    2018-02-01

    The Fermi-Pasta-Ulam (FPU) one-dimensional Hamiltonian includes a quartic term which guarantees ergodicity of the system in the thermodynamic limit. Consistently, the Boltzmann factor P(ε) ∼e-βε describes its equilibrium distribution of one-body energies, and its velocity distribution is Maxwellian, i.e., P(v) ∼e - βv2 /2. We consider here a generalized system where the quartic coupling constant between sites decays as 1 / dijα (α ≥ 0 ;dij = 1 , 2 , …) . Through first-principle molecular dynamics we demonstrate that, for large α (above α ≃ 1), i.e., short-range interactions, Boltzmann statistics (based on the additive entropic functional SB [ P(z) ] = - k ∫ dzP(z) ln P(z)) is verified. However, for small values of α (below α ≃ 1), i.e., long-range interactions, Boltzmann statistics dramatically fails and is replaced by q-statistics (based on the nonadditive entropic functional Sq [ P(z) ] = k(1 - ∫ dz[ P(z) ]q) /(q - 1) , with S1 =SB). Indeed, the one-body energy distribution is q-exponential, P(ε) ∼ eqε-βε ε ≡[ 1 +(qε - 1) βε ε ]-1 /(qε - 1) with qε > 1, and its velocity distribution is given by P(v) ∼ eqv-βvv2 / 2 with qv > 1. Moreover, within small error bars, we verify qε =qv = q, which decreases from an extrapolated value q ≃ 5 / 3 to q = 1 when α increases from zero to α ≃ 1, and remains q = 1 thereafter.

  15. Coupling Nuclear Induced Phonon Propagation with Conversion Electron Moessbauer Spectroscopy

    DTIC Science & Technology

    2015-06-18

    penetrating and a small detector with low density will be insensitive to the gammas. Thus, a small gas proportional counter is ideal for this application ...and Materials Science Vol. 1. Plenum: New York, 1993. 16. Long, G. J. and Stevens, J. G., eds. (1986) " Industrial applications of the Mössbauer...proportional gas detector attached to left side of 1” diameter stainless steel type-310 bar, phonon source encased in a mounting device attached to the right

  16. Small Atomic Orbital Basis Set First‐Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources

    PubMed Central

    Sure, Rebecca; Brandenburg, Jan Gerit

    2015-01-01

    Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221

  17. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  18. First-principles binary diffusion coefficients for H, H 2 and four normal alkanes + N 2

    DOE PAGES

    Jasper, Ahren W.; Kamarchik, Eugene; Miller, James A.; ...

    2014-09-30

    Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N 2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N 2 and H 2 + N 2 and with recent experimental results for C n H 2n+2 + N 2, n = 2–4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential asmore » isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R –12 repulsive interactions. The effect of anisotropy is found to be negligible for H + N 2 and H 2 + N 2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N 2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R –12 interaction is a significant source of error at all temperatures for the weakly interacting systems H + N 2 and H 2 + N 2, with errors as large as 40%. For the normal alkanes in N 2, which feature stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly at temperatures above –700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N 2. For these systems, anisotropy and inelasticity can safely be neglected but a more detailed description of the repulsive wall is required for quantitative predictions. Moreover, a straightforward approach for calculating effective isotropic potentials with realistic repulsive walls is described. An analytic expression for the calculated diffusion coefficient for H + N 2 is presented and is estimated to have a 2-sigma error bar of only 0.7%.« less

  19. Hubble Parameter and Baryon Acoustic Oscillation Measurement Constraints on the Hubble Constant, the Deviation from the Spatially Flat ΛCDM Model, the Deceleration–Acceleration Transition Redshift, and Spatial Curvature

    NASA Astrophysics Data System (ADS)

    Yu, Hai; Ratra, Bharat; Wang, Fa-Yin

    2018-03-01

    We compile a complete collection of reliable Hubble parameter H(z) data to redshift z ≤ 2.36 and use them with the Gaussian Process method to determine continuous H(z) functions for various data subsets. From these continuous H(z)'s, summarizing across the data subsets considered, we find H 0 ∼ 67 ± 4 km s‑1 Mpc‑1, more consistent with the recent lower values determined using a variety of techniques. In most data subsets, we see a cosmological deceleration–acceleration transition at 2σ significance, with the data subsets transition redshifts varying over 0.33< {z}da}< 1.0 at 1σ significance. We find that the flat-ΛCDM model is consistent with the H(z) data to a z of 1.5 to 2.0, depending on data subset considered, with 2σ deviations from flat-ΛCDM above this redshift range. Using the continuous H(z) with baryon acoustic oscillation distance-redshift observations, we constrain the current spatial curvature density parameter to be {{{Ω }}}K0=-0.03+/- 0.21, consistent with a flat universe, but the large error bar does not rule out small values of spatial curvature that are now under debate.

  20. Impact erosion of the primordial atmosphere of Mars.

    PubMed

    Melosh, H J; Vickery, A M

    1989-04-06

    Abundant geomorphic evidence for fluvial processes on the surface of Mars suggests that during the era of heavy bombardment, Mars's atmospheric pressure was high enough for liquid water to flow on the surface. Many authors have proposed mechanisms by which Mars could have lost (or sequestered) an earlier, thicker atmosphere but none of these proposals has gained general acceptance. Here we examine the process of atmospheric erosion by impacts and show that it may account for an early episode of atmosphere loss from Mars. On the basis of this model, the primordial atmospheric pressure on Mars must have been in the vicinity of 1 bar, barring other sources or sinks of CO2. Current impact fluxes are too small to erode significantly the present martian atmosphere.

  1. Installation Restoration Program. Phase I - Records Search 92nd Bombardment Wing (Heavy), Fairchild AFB, Washington.

    DTIC Science & Technology

    1985-01-01

    a pavillion with a snack bar, six cabins, eight recreational vehicle camping sites with electrical -- hookup only, a covered picnic area, and a small...solidification. Lava: The material extruded by a volcano which consists of molten or part- molten silicate material. Leachate: A solution resulting from

  2. Age-Appropriate Ecology: Are You Practicing It?

    ERIC Educational Resources Information Center

    Shantal, Raquel

    1998-01-01

    Presents ways that early childhood educators can use classroom activities and routines to portray values related to ecology and to teach children respect for the planet. Describes strategies such as recycling materials, opening a milk and juice bar where children could purchase drinks rather than use small juice boxes, using cloth napkins, and…

  3. Optimization of rheological properties of self-consolidating concrete by means of numerical simulations, to avoid formwork filling problems in presence of reinforcement bars.

    DOT National Transportation Integrated Search

    2012-02-01

    The influence of the rebar configuration on the occurrence of dead zones (= zero velocity) during flow of Self-Consolidating Concrete : in formworks has been investigated by single fluid numerical simulations. The main findings showed that for small ...

  4. Screening wild oat accessions from Morocco for resistance to Puccinia coronata

    USDA-ARS?s Scientific Manuscript database

    Here we report the screening of 338 new accessions of 11 different wild oat species (Avena) from the USDA Small Grains Collection for resistance to crown rust (Puccinia coronata). Wild oat species were originally collected in Morocco by C. Al Faiz, INRAT Rabat: Avena agadiriana, A. atlantica, A. bar...

  5. Treatment of a delayed zipper injury.

    PubMed

    Mydlo, J H

    2000-01-01

    Penile zipper injuries have been reported occurring usually in the pediatric population, and occasionally in adults. Usually, the zipper can be dislodged with mineral oil or by breaking the median bar. When these attempts fail, a small elliptical incision may be used to remove the zipper and any devitalized tissue. Copyright 2000 S. Karger AG, Basel

  6. GEOMAG[TM] Paradoxes

    ERIC Educational Resources Information Center

    Defrancesco, Silvia; Logiurato, Fabrizio; Karwasz, Grzegorz

    2007-01-01

    As often happens, a lot of physics can come out of a toy. What we found interesting is the observation of the magnetic field produced by different configurations built with GEOMAG[TM]. This toy provides small magnetic bars and steel spheres to play with. Amusing 3-D structures can be built; nevertheless, this possibility is not so obvious. Indeed,…

  7. Multi-wavelength photoacoustic system based on high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Wiśniowski, Bartosz; Gawali, Sandeep Babu; Rodríguez, Sergio; Sánchez, Miguel; Gallego, Daniel; Carpintero, Guillermo; Lamela, Horacio

    2017-03-01

    Multi-wavelength laser sources are necessary for a functional photoacoustic (PA) spectroscopy. The use of high-power diode lasers (HPDLs) has aroused great interest for their relatively low costs and small sizes if compared to solid state lasers. However, HPDLs are only available at few wavelengths and can deliver low optical energy (normally in the order of μJ), while diode laser bars (DLBs) offer more wavelengths in the market and can deliver more optical energy. We show the simulations of optical systems for beam coupling of single high-power DLBs operating at different wavelengths (i.e. 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm) into 400-μm optical fibers. Then, in a separate design, the beams of the DLBs are combined in a compact system making use of dichroic mirrors and focusing lenses for beam coupling into a 400-μm optical fiber. The use of optical fibers with small core diameter (< 1 mm) is particularly suggestive for future photoacoustic endoscopy (PAE) applications that require interior examination of the body.

  8. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    NASA Astrophysics Data System (ADS)

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-05-01

    SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.

  9. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    USGS Publications Warehouse

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-01-01

    The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.

  10. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  11. Characterization of chromia scales formed in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.; Unocic, Kinga A.; Brese, Robert G.

    Initial experimental work at 700°–800 °C is in progress to develop a lifetime model for supercritical CO2 (sCO2) compatibility for a 30-year lifetime of a >700 °C concentrated solar power system. Nickel-based alloys 282, 740H and 625 and Fe-based alloy 25 are being evaluated in 500-h cycles at 1 and 300 bar, and 10-h cycles in 1 bar industrial grade CO2. The alloys showed similar low rates of oxidation in 1 and 300 bar CO2 in 500-h cycles at 750 °C. However, in 10-h cycles, alloy 25 showed accelerated attack at 700° and 750 °C. Transmission electron microscopy scale cross-sectionsmore » on alloy 25 after 1000 h at 700 °C in sCO2 and in air only showed a small row of carbides beneath the scale in the former environment. Similar characterisation was performed on alloys 625 and 282 after sCO2 exposure at 750 °C.« less

  12. Economic Statistical Design of Integrated X-bar-S Control Chart with Preventive Maintenance and General Failure Distribution

    PubMed Central

    Caballero Morales, Santiago Omar

    2013-01-01

    The application of Preventive Maintenance (PM) and Statistical Process Control (SPC) are important practices to achieve high product quality, small frequency of failures, and cost reduction in a production process. However there are some points that have not been explored in depth about its joint application. First, most SPC is performed with the X-bar control chart which does not fully consider the variability of the production process. Second, many studies of design of control charts consider just the economic aspect while statistical restrictions must be considered to achieve charts with low probabilities of false detection of failures. Third, the effect of PM on processes with different failure probability distributions has not been studied. Hence, this paper covers these points, presenting the Economic Statistical Design (ESD) of joint X-bar-S control charts with a cost model that integrates PM with general failure distribution. Experiments showed statistically significant reductions in costs when PM is performed on processes with high failure rates and reductions in the sampling frequency of units for testing under SPC. PMID:23527082

  13. Novel high-brightness fiber coupled diode laser device

    NASA Astrophysics Data System (ADS)

    Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas

    2007-02-01

    High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.

  14. The CKM Matrix and The Unitarity Triangle: Another Look

    NASA Astrophysics Data System (ADS)

    Buras, Andrzej J.; Parodi, Fabrizio; Stocchi, Achille

    2003-01-01

    The unitarity triangle can be determined by means of two measurements of its sides or angles. Assuming the same relative errors on the angles (alpha,beta,gamma) and the sides (Rb,Rt), we find that the pairs (gamma,beta) and (gamma,Rb) are most efficient in determining (bar varrho,bar eta) that describe the apex of the unitarity triangle. They are followed by (alpha,beta), (alpha,Rb), (Rt,beta), (Rt,Rb) and (Rb,beta). As the set |Vus|, |Vcb|, Rt and beta appears to be the best candidate for the fundamental set of flavour violating parameters in the coming years, we show various constraints on the CKM matrix in the (Rt,beta) plane. Using the best available input we determine the universal unitarity triangle for models with minimal flavour violation (MFV) and compare it with the one in the Standard Model. We present allowed ranges for sin 2beta, sin 2alpha, gamma, Rb, Rt and DeltaMs within the Standard Model and MFV models. We also update the allowed range for the function Ftt that parametrizes various MFV-models.

  15. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  16. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Pollack, James B.; Seiff, Alvin

    1998-09-01

    During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.

  17. Headspace sorptive extraction-gas chromatography-mass spectrometry method to measure volatile emissions from human airway cell cultures.

    PubMed

    Yamaguchi, Mei S; McCartney, Mitchell M; Linderholm, Angela L; Ebeler, Susan E; Schivo, Michael; Davis, Cristina E

    2018-05-12

    The human respiratory tract releases volatile metabolites into exhaled breath that can be utilized for noninvasive health diagnostics. To understand the origin of this metabolic process, our group has previously analyzed the headspace above human epithelial cell cultures using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). In the present work, we improve our model by employing sorbent-covered magnetic stir bars for headspace sorptive extraction (HSSE). Sorbent-coated stir bar analyte recovery increased by 52 times and captured 97 more compounds than SPME. Our data show that HSSE is preferred over liquid extraction via stir bar sorptive extraction (SBSE), which failed to distinguish volatiles unique to the cell samples compared against media controls. Two different cellular media were also compared, and we found that Opti-MEM® is preferred for volatile analysis. We optimized HSSE analytical parameters such as extraction time (24 h), desorption temperature (300 °C) and desorption time (7 min). Finally, we developed an internal standard for cell culture VOC studies by introducing 842 ng of deuterated decane per 5 mL of cell medium to account for error from extraction, desorption, chromatography and detection. This improved model will serve as a platform for future metabolic cell culture studies to examine changes in epithelial VOCs caused by perturbations such as viral or bacterial infections, opening opportunities for improved, noninvasive pulmonary diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Medication errors in the emergency department: a systems approach to minimizing risk.

    PubMed

    Peth, Howard A

    2003-02-01

    Adverse drug events caused by medication errors represent a common cause of patient injury in the practice of medicine. Many medication errors are preventable and hence particularly tragic when they occur, often with serious consequences. The enormous increase in the number of available drugs on the market makes it all but impossible for physicians, nurses, and pharmacists to possess the knowledge base necessary for fail-safe medication practice. Indeed, the greatest single systemic factor associated with medication errors is a deficiency in the knowledge requisite to the safe use of drugs. It is vital that physicians, nurses, and pharmacists have at their immediate disposal up-to-date drug references. Patients presenting for care in EDs are usually unfamiliar to their EPs and nurses, and the unique patient factors affecting medication response and toxicity are obscured. An appropriate history, physical examination, and diagnostic workup will assist EPs, nurses, and pharmacists in selecting the safest and most optimum therapeutic regimen for each patient. EDs deliver care "24/7" and are open when valuable information resources, such as hospital pharmacists and previously treating physicians, may not be available for consultation. A systems approach to the complex problem of medication errors will help emergency clinicians eliminate preventable adverse drug events and achieve a goal of a zero-defects system, in which medication errors are a thing of the past. New developments in information technology and the advent of electronic medical records with computerized physician order entry, ward-based clinical pharmacists, and standardized bar codes promise substantial reductions in the incidence of medication errors and adverse drug events. ED patients expect and deserve nothing less than the safest possible emergency medicine service.

  19. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    NASA Astrophysics Data System (ADS)

    Zafar, Adeel; Andrawes, Bassem

    2012-02-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.

  20. Dynamic High-Temperature Tensile Characterization of an Iridium Alloy with Kolsky Tension Bar Techniques

    DOE PAGES

    Song, Bo; Nelson, Kevin; Lipinski, Ronald; ...

    2015-05-29

    In this study, conventional Kolsky tension bar techniques were modified to characterize an iridium alloy in tension at elevated strain rates and temperatures. The specimen was heated to elevated temperatures with an induction coil heater before dynamic loading; whereas, a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends ofmore » the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. The dynamic high-temperature tensile stress–strain curves of a DOP-26 iridium alloy were experimentally obtained at two different strain rates (~1000 and 3000 s -1) and temperatures (~750 and 1030°C). The effects of strain rate and temperature on the tensile stress–strain response of the iridium alloy were determined. Finally, the iridium alloy exhibited high ductility in stress–strain response that strongly depended on strain-rate and temperature.« less

Top