Sample records for small fire years

  1. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

  2. Controls on carbon consumption during Alaskan wildland fires

    Treesearch

    Eric S. Kasischke; Elizabeth E. Hoy

    2012-01-01

    A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium-spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006-2008. Total carbon consumed during the large fire...

  3. Effects of fire on small mammal communities in frequent-fire forests in California

    USGS Publications Warehouse

    Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.

    2015-01-01

    Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.

  4. Fire monitoring capability of the joint Landsat and Sentinel 2 constellation

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Wright, R.

    2017-12-01

    Fires are a global hazard. Landsat and Sentinel 2 can monitor the Earth's surface every 2 - 4 days. This provides an important opportunity to complement the operational (lower resolution) fire monitoring systems. Landsat-class sensors can detect small fires that would be missed by MODIS-classed sensors. All large fires start out as small fires. We analyze fire patterns in California from 1984 to 2017 and compare the performance of Landsat-type and MODIS-type sensors. Had an operational Landsat-Sentinel 2 fire detection system been in place at the time of the Soberanes fire last year (i.e. August 2016), the cost of suppressing of this fire event (US $236 million) could potentially have been reduced by an order of magnitude.

  5. 2006 Joint Services Small Arms Systems Annual Symposium, Exhibition and Firing Demonstration

    DTIC Science & Technology

    2006-05-18

    FE FE FE /F H FE/FH FE FH EXIT EX IT EX IT EX IT EXIT FH - FIRE HOSE FE - FIRE EXTINGUISHER N S W E LOUNGE 20 20 LOUNGE 20 20 31’ AAI Corporation 302...Sniper Rifle Congressional Program, Mr. Neil E . Lee, US Army ARDEC • Plasma Transfer Arc Fabrication of Enhanced Performance Barrels, Mr. Kris C...Years of Small Arms (1326 – 1626)”, Dr. Stephen C. Small, JSSAP/ARDEC Session IV: International Programs • Small Arms in NATO Transformation, Mr. Vernon E

  6. Post-fire recovery of torpor and activity patterns of a small mammal.

    PubMed

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  7. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.

    PubMed

    Tarimo, Beatrice; Dick, Øystein B; Gobakken, Terje; Totland, Ørjan

    2015-12-01

    Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.

  8. Surgical fires: a patient safety perspective.

    PubMed

    2006-02-01

    A surgical fire is a fire that occurs on or in a surgical patient. Such fires are rare--they occur in only an extremely small percentage of surgical cases. Nevertheless, the actual number of incidents that occur each year may surprise many healthcare professionals. ECRI estimates that 50 to 100 or more surgical fires occur each year in the United States alone. And such fires can have devastating consequences, not only for the patient, but also for the surgical staff and for the healthcare facility. Fortunately, through awareness of the hazards-and with emphasis placed on following safe practices-virtually all surgical fires can be prevented. Thus, it's important that surgical fire safety be incorporated into formal patient safety initiatives. In this article, we describe a few surgical fire patient safety initiatives that have been instituted in recent years. In addition, we describe in detail the causes of surgical fires and the preventive measures that are available for healthcare personnel to follow. In addition, we review how staff should respond in the event of a surgical fire.

  9. Small mammal abundance in Mediterranean post-fire habitats: a role for predators?

    NASA Astrophysics Data System (ADS)

    Torre, I.; Díaz, M.

    2004-05-01

    We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m 2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently-burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.

  10. RST-FIRES, an exportable algorithm for early/small fires detection: field validation and algorithm inter-comparison by using MSG-SEVIRI data over Italian Regions

    NASA Astrophysics Data System (ADS)

    Lisi, M.; Paciello, R.; Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V.

    2016-12-01

    Fire detection by sensors on-board polar orbiting platforms, due to their relatively low temporal resolution (hours), could results decidedly not adequate to detect short-living events or fires characterized by a strong diurnal cycle and rapid evolution times. The challenge is therefore to try to exploit the very high temporal resolution offered by the geostationary sensors (from 30 to 2,5 minutes) to guarantee a continuous monitoring. Over the last years, many algorithms have been adapted from polar to (or have been specifically designed for) geostationary sensors. Most of them are based on fixed thresholds tests which, to avoid false alarm proliferation, are generally set up in the most conservative way. The result is a low algorithm sensitivity (i.e. only large and/or extremely intense events are generally detected) which could drastically affect Global Fire Emission (GFE) estimate: small fires were recognized to contribute for more than 35% to the global biomass burning carbon emissions. This work describes the multi-temporal change-detection technique named RST-FIRES (Robust Satellite Techniques for FIRES detection and monitoring) which, try to overcome the above mentioned issues being, moreover, immediately exportable on different geographic area and sensors. Its performance in terms of reliability and sensitivity was verified by more than 20,000 SEVIRI images collected throughout the day during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions which provided about 950 near real-time ground and aerial checks of the RST-FIRES detections. This study fully demonstrates the added value of the RST-FIRES technique for the detection of early/small fires and a sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.

  11. Trembling aspen response to a mixed-severity wildfire in the Black Hills, South Dakota, USA

    Treesearch

    Tara L. Keyser; Frederick W. Smith; Wayne D. Shepperd

    2005-01-01

    Trembling aspen (Populus tremuloides Michx.) regeneration dynamics including sprout production, growth, and clone size were measured to determine the effects of fire on small aspen clone persistence following a mixedseverity wildfire in the Black Hills, South Dakota. Four years postfire, 10 small, isolated aspen clones per low and high fire severity...

  12. Non-Lethal Weapons in Noncombatant Evacuation Operations

    DTIC Science & Technology

    1999-12-01

    against your small squad of peacekeepers. If any of the three men decides to shoot, your rules of engagement unambiguously allow you to shoot back in...personnel (Siegel, pp. 7-8). By 30 December, Mogadishu resembled a war zone, with shells being fired into tribal neighborhoods, and uncontrolled small arms...his sentiments changed during his New Year’s Day jog in the compound; the constant small arms fire outside the walls forced him to reconsider the

  13. Fish Mercury Loads and Lake Productivity Are Not Impacted by Wildland Fire in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Riggs, C.; Kolka, R. K.; Nater, E. A.; Witt, E.; Wickman, T.; Woodruff, L. G.; Butcher, J.

    2016-12-01

    Wildland fire can significantly alter mercury (Hg) cycling on land and in adjacent aquatic environments. In addition to enhancing local atmospheric Hg deposition, fire can influence terrestrial movement of Hg and other elements into lakes via runoff from burned upland soil. However, the impact of fire on water quality and the accumulation of Hg in fish remains equivocal. We investigated the effects of fire - specifically a low severity prescribed fire and moderate severity wildfire - on young-of-the-year yellow perch (Perca flavescens) and lake chemistry in two small remote watersheds in the Boundary Waters Canoe Area Wilderness in northeastern Minnesota using a paired watershed approach (fire-impacted vs. control watershed). Prior to fire, surface soil in the two study watersheds contained significant loads of Hg, mainly from atmospheric deposition. We expected fire to increase transport and deposition of Hg from smoke and burned soil into the fire-impacted lake, leading to changes in lake productivity and fish Hg loads. In contrast to our prediction, and despite significant effects of the moderate severity wildfire fire on upland soil Hg stocks, fish Hg accumulation and lake productivity were not affected by fire. Instead, climate and lake water levels were the strongest predictors of lake chemistry and fish responses in our study lakes. Our results suggest that low to moderate severity wildland fire does not alter lake productivity nor Hg accumulation in young-of-the-year yellow perch in these small, shallow lakes in the northern deciduous and boreal forest region. The effect of a high severity fire remains to be tested.

  14. Forest fire spatial pattern analysis in Galicia (NW Spain).

    PubMed

    Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W

    2013-10-15

    Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An evaluation of three wood shred blends for post-fire erosion control using indoor simulated rain events on small plots

    Treesearch

    R. B. Foltz; N. S. Wagenbrenner

    2010-01-01

    The assessment teams who make post-fire stabilization and treatment decisions are under pressure to employ more effective and economic post-fire treatments, as wild fire activity and severity has increased in recent years across the western United States. Use of forest-native wood-based materials for hillslope mulching has been on the rise due to potential...

  16. Do repeated wildfires change homebuyers' demand for homes in high-risk areas?

    Treesearch

    Julie M. Mueller; John D. Loomis; Armando González-Cabán

    2009-01-01

    Unlike most hedonic studies that analyze the effects of a one-time event, this paper analyzes the effects of forest fires that are several years apart in a small geographical area. We find that repeated forest fires cause house prices to decrease for houses located near the fires. We test and reject the hypothesis that the house price reduction from the first fire is...

  17. Late Holocene influence of societies on the fire regime in southern Québec temperate forests

    NASA Astrophysics Data System (ADS)

    Blarquez, Olivier; Talbot, Julie; Paillard, Jordan; Lapointe-Elmrabti, Lyna; Pelletier, Nicolas; Gates St-Pierre, Christian

    2018-01-01

    Climatic change that occurred during the Holocene is often recognized as the main factor for explaining fire dynamics, while the influence of human societies is less apparent. In eastern North America, human influence on fire regime before European settlement has been debated, mainly because of a paucity of sites and paleoecological techniques that can distinguish human influences unequivocally from climate. We applied a multiproxy analysis to a 12 000-year-old paleoecological sequence from a site in the vicinity of known settlement areas that were occupied over more than 7000 years. From this analysis, we were able detect the human influence on the fire regime before and after European colonization. Fire occurrence and fire return intervals (FRI) were based on analysis of sedimentary charcoals at a high temporal and spatial resolution. Fire occurrence was then compared to vegetation that was reconstructed from pollen analysis, from population densities deduced from archeological site dating, from demographic and technological models, and from climate reconstructed using general circulation models and ice-core isotopes. Holocene mean FRI was short (164 ± 134 years) and associated with small charcoal peaks that were likely indicative of surface fires affecting small areas. After 1500 BP, large vegetation changes and human demographic growth that was demonstrated through increased settlement evidence likely caused the observed FRI lengthening (301 ± 201 years), which occurred without significant changes in climate. Permanent settlement by Europeans in the area around 1800 AD was followed by a substantial demographic increase, leading to the establishment of Gatineau, Hull and Ottawa. This trend was accompanied by a shift in the charcoal record toward anthropogenic particles that were reflective of fossil fuel burning and an apparent absence of wood charcoal that would be indicative of complete fire suppression. An anthropogenic fire regime that was characterized by severe and large fires and long fire-return intervals occurred more than 1000 years ago, concomitant with the spread of native agriculture, which intensified with European colonization over the past two centuries.

  18. The Effects of Prescribed Burning and Thinning on Herpetofauna and Small Mammals in the Upper Piedmont of South Carolina: Preliminary Results of the National Fire and Fire Surrogate Study

    Treesearch

    Eran S. Kilpatrick; Dean B. Kubacz; David C. Guynn; J. Drew Lanham; Thomas A. Waldrop

    2004-01-01

    Due to heavy fuel loads resulting from years of fire suppression, upland pine and mixed pine hardwood forests in the Upper Piedmont of South Carolina are at risk of severe wildfire. The National Fire and Fire Surrogate Study (NFFS) was conducted on the Clemson Experimental Forest to study the effects of prescribed burning and thinning on a multitude of factors,...

  19. Thinning – a tool for restoration of California's Southern Sierra Nevada blue oak woodlands

    Treesearch

    Richard B. Standiford; Ralph L. Phillips; Neil K. McDougald

    2015-01-01

    Fire frequency on a blue oak (Quercus douglasii) dominated rangeland in California's southern Sierra Nevada foothills was approximately every 10 years until 1965, followed by a 30 year period of fire exclusion. This resulted in a dense tree overstory with small diameters, high crown cover, poor acorn and forage production, and limited...

  20. Climate Change Transforms Fire Regimes but Does not Eliminate Forest Carbon Sequestration in the Greater Yellowstone Ecosystem

    NASA Astrophysics Data System (ADS)

    Henne, P. D.; Hawbaker, T. J.; Berryman, E.

    2017-12-01

    Annual area burned in the Rocky Mountains varies with climatic conditions. However, projecting long-term changes in wildfire presents an enduring challenge because climate also constrains vegetation and fuel availability. We combined an aridity-threshold fire model with the Landis-II dynamic landscape vegetation model (NECN extension) to project climate change impacts on vegetation, area burned, and ecosystem carbon balance in the Greater Yellowstone Ecosystem (GYE). We developed a fire model that relates drought stress to area burned by quantifying an aridity threshold separating large and small years in 15 ecoregions in the Intermountain West. A significant positive correlation (r2 = 0.97) exists between mean fire-season aridity and ecoregion-specific aridity thresholds. We simulated vegetation and fire dynamics in the GYE at 250 m spatial resolution with Landis-II, using projections from five climate models and two emissions scenarios for the period 1980-2100 AD. We determined if each simulation year exceeded the regional aridity threshold, then randomly drew the number of fires and size of individual fires from fire-size distributions from large or small fire years. Burned area increases dramatically in most climate scenarios, especially after 2060, when most years exceed the aridity threshold. Productivity gains due to rising temperatures partially offset biomass lost to fire, but C stocks plateau or decline after 2060 in most simulations as burned area increases, and drought stress causes post-fire regeneration to decline at low elevations. However, species level changes (e.g. expansion by drought-tolerant Pseuodotsuga menziesii) help maintain productivity in sites where water becomes limiting. Fire-adapted Pinus contorta occupies less total area, but a greater proportion of remaining forests, and Picea engelmannii and Abies lasiocarpa significantly decline. Although fire and climate change will alter species distributions and forest structure, our results suggest that the GYE can maintain a C sink through 2100. However, C stocks will likely shift to higher elevations, and forests will be less resilient to disturbance, in a warmer future. Our landscape-level approach identifies regions likely to maintain high conservation value and ecosystem services under multiple climate scenarios.

  1. Fire and forest history at Mount Rushmore.

    PubMed

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.

  2. Reducing fire hazard: balancing costs and outcomes.

    Treesearch

    Valerie Rapp

    2004-01-01

    Massive wildfires in recent years have given urgency to questions of how to reduce fire hazard in Western forests, how to finance the work, and how to use the wood, especially in forests crowded with small trees. Scientists have already developed tools that estimate fire hazard in a forest stand. But hazard is more difficult to estimate at a landscape scale, involving...

  3. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    PubMed

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.

  4. Dynamics, Patterns and Causes of Fires in Northwestern Amazonia

    PubMed Central

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests. PMID:22523580

  5. Dynamics, patterns and causes of fires in Northwestern Amazonia.

    PubMed

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.

  6. Comparison of 1949 summer forest fuel moisture in Oregon and Washington with other years.

    Treesearch

    Owen P. Cramer

    1949-01-01

    There is much speculation about the competitive severity of the 1949 fire season. Forest fire protection agencies and sponsors of fire prevention campaigns wonder if the large or small acreage burned during the season is a valid measure of the success or failure of their efforts, or whether the burning conditions as influenced by weather were wholly responsible for any...

  7. Fire-protection research for energy technology: Fy 80 year end report

    NASA Astrophysics Data System (ADS)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  8. Effects of Precommercial Thinning and Midstory Control on Avian and Small Mammal Communities during Longleaf Pine Savanna Restoration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Vanessa R; Kilgo, John C

    Abstract - Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf pine restoration with plantation silviculture on avian and small mammal communities using four treatments in four 8- to 11- year-old plantations within the Savannah River Site in South Carolina. Treatments included prescribed burning every 3 to 5 years, plus: (1) no additional treatment (burn-only control);more » (2) precommercial thinning; (3) non-pine woody control with herbicides; and (4) combined thinning and woody control. We surveyed birds (1996-2003) using 50-m point counts and small mammals with removal trapping. Thinning and woody control alone had short-lived effects on avian communities, and the combination treatment increased avian parameters over the burn-only control in all years. Small mammal abundance showed similar trends as avian abundance for all three treatments when compared with the burn-only control, but only for 2 years post-treatment. Both avian and small mammal communities were temporarily enhanced by controlling woody vegetation with chemicals in addition to prescribed fire and thinning. Therefore, precommercial thinning in longleaf plantations, particularly when combined with woody control and prescribed fire, may benefit early-successional avian and small mammal communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire.« less

  9. Assessing the influence of small fires on trends in fire regime features at mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    Small fires, i.e. fires smaller than 1 Ha, represent a huge proportion of total wildfire occurrence in the Mediterranean region. In the case of Spain, around 53% of fires in the period 1988-2013 fall into this category according to the Spanish EGIF statistics. However, the proportion of small fires is not stationary over time. Small fires are usually excluded from most analysis, given the chance of introducing or falling into temporal bias, being almost mandatory in those assessments using data before the 90s. Inconsistences and inhomogeneity problems related to the diversity of criteria and/or registration procedures among Autonomous Regions are found before that date, although it is widely agreed that small fires are consistently registered starting from 1988. Nevertheless, in terms of fire regimen characterization it is important to know to what extent small fires contribute to the overall fire behaviour. The aim of this study is to analyse spatial-temporal trends of several fire features such as total number of fires and burned area, number and burned area of natural and human fires, and the proportion of natural/human cause in the period 1988-2013 at province level (NUTS3). The analysis is conducted at the mainland Spain at annual and seasonal time scales. We are mainly interested in exploring differences in spatial-temporal trends including or excluding small fires and dealing with them separately as well. This allows determining the extent to which small fires may affect fire regime characterization. We employed a Mann-Kendall test for trend detection and Sen's slope to evaluate the magnitude of the change. Both tests were applied for each fire feature aggregated at NUTS3 level for both autumn-winter and spring-summer seasons. Our results show significant changes in the evolution of annual wildfire frequency; especially strong when small fires are accounted for. A similar outcome was observed in natural and human number fires during the spring-summer season. The increase in number of fires seems to be reversed during autumn-winter. At seasonal scale, the inclusion of small fires allows to detect significant trends in all of fire frequency features, except natural fires. In turn, neither burned area features do not significantly affect the trends through incorporating small fires. Therefore, the inclusion/exclusion of small fires do influence observed trends mostly in terms of fire frequency.

  10. Fire - Southern Oscillation relations in the southwestern United States

    USGS Publications Warehouse

    Swetnam, T.W.; Betancourt, J.L.

    1990-01-01

    Fire scar and tree growth chronologies (1700 to 1905) and fire statistics (since 1905) from Arizona and New Mexico show that small areas burn after wet springs associated with the low phase of the Southern Oscillation (SO), whereas large areas burn after dry springs associated with the high phase of the SO. Through its synergistic influence on spring weather and fuel conditions, climatic variability in the tropical Pacific significantly influences vegetation dynamics in the southwestern United States. Synchrony of fire-free and severe fire years across diverse southwestern forests implies that climate forces fire regimes on a subcontinental scale; it also underscores the importance of exogenous factors in ecosystem dynamics.

  11. Global fire emissions estimates during 1997-2016

    NASA Astrophysics Data System (ADS)

    van der Werf, Guido R.; Randerson, James T.; Giglio, Louis; van Leeuwen, Thijs T.; Chen, Yang; Rogers, Brendan M.; Mu, Mingquan; van Marle, Margreet J. E.; Morton, Douglas C.; Collatz, G. James; Yokelson, Robert J.; Kasibhatla, Prasad S.

    2017-09-01

    Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997-2016. The modeling system, based on the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 × 1015 grams of carbon per year (Pg C yr-1) during 1997-2016, with a maximum in 1997 (3.0 Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997-2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (-19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr-1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org.

  12. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    PubMed

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  13. Restoring and managing low-severity fire in dry-forest landscapes of the western USA

    PubMed Central

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning. PMID:28199416

  14. Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year.

    PubMed

    Pounden, Edith; Greene, David F; Michaletz, Sean T

    2014-10-01

    Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number.In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta).We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape.

  15. Regionally synchronous fires in interior British Columbia, Canada, driven by interannual climate variability and weakly associated with large-scale climate patterns between AD 1600-1900

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Smith, D. J.

    2016-12-01

    We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.

  16. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.

    2015-11-01

    Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125-250 μm) and large (250 μm-1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125-250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.

  17. Post-wildfire physiological ecology of an Australian microbat.

    PubMed

    Doty, Anna C; Stawski, Clare; Law, Brad S; Geiser, Fritz

    2016-10-01

    Historical patterns of wildfires are being altered as a result of changing climate and therefore are becoming an increasingly pressing global issue. How small mammals deal physiologically with changes in landscape and food availability due to fire remains largely unknown, although recent studies on small heterothermic terrestrial mammals have shown an increase in post-fire torpor use to reduce energy and foraging requirements. However, data on the behavioural and physiological responses of bats after fires are scarce, although potentially these volant species may differ from terrestrial mammals. Therefore, we investigated the post-fire thermal biology and activity of lesser long-eared bats (Nyctophilus geoffroyi) using temperature-telemetry in Warrumbungle National Park, NSW, which experienced a devastating wildfire in 2013. The study comprised two field seasons, one in 2013 within 4 months after the fire, and one in 2015 two years after the fire to identify potential changes in behaviour and physiology. Interestingly, soon after the fire, bats showed significantly shorter torpor bout duration (11.8 ± 12.5 h) and longer normothermia duration (8.7 ± 4.6 h) in comparison to those in 2015 (torpor bout duration: 24.1 ± 23.5 h; normothermia duration: 2.5 ± 1.5 h). Insect availability was significantly (20-fold) higher in 2013 than in 2015, which was likely an important factor resulting in the short average torpor bout duration by N. geoffroyi after the fire. Our data indicate that volant bats appear to show the opposite post-fire behavioural and physiological responses to small terrestrial mammals, showing longer normothermic and active periods and shorter torpor bouts to capitalise on an increase in available post-fire resources.

  18. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    PubMed

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

  19. Effects of fire and browsing on regeneration of blue oak

    Treesearch

    James W. Bartolome; Mitchel P. McClaran; Barbara H. Allen-Diaz; Jim Dunne; Lawrence D. Ford; Richard B. Standiford; Neil K. McDougald; Larry C. Forero

    2002-01-01

    Blue oaks (Quercus douglasii) are not regenerating well over much of California. The roles of fire and browsing in regeneration are probably significant, but poorly understood. We burned two foothill blue oak woodland sites which contained significant numbers of small trees between 40 and 70 cm tall, then compared height growth over 14 years among 48...

  20. A New Application to Facilitate Post-Fire Recovery and Rehabilitation in Savanna Ecosystems

    NASA Technical Reports Server (NTRS)

    Carroll, Mark L.; Schnase, John L.; Weber, Keith T.; Brown, Molly E.; Gill, Roger L.; Haskett, George W.; Gardner, Tess A.

    2013-01-01

    The U.S. government spends an estimated $3billion per year to fight forest fires in the United States. Post-fire rehabilitation activities represent a small but essential portion of that total. The Rehabilitation Capability Convergence for Ecosystem Recovery (RECOVER) system is currently under development for Savanna ecosystems in the western U.S. The prototype of this system has been built and will have realworld testing during the summer 2013 fire season. When fully deployed, the RECOVER system will provide the emergency rehabilitation teams with critical and timely information for management decisions regarding stabilization and rehabilitation strategies.

  1. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.

  2. Role of wildfire in controlling the source and flux of particulate organic carbon from a small, mountainous, semi-arid watershed

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Goni, M. A.; Gray, A. B.; Pasternack, G. B.; Warrick, J. A.; Watson, E.; Wheatcroft, R. A.

    2016-12-01

    The delivery of particulate organic carbon (POC) from rivers to marine sediments is the major long-term sink of CO2 on Earth and a net source of oxygen over millennial time scales. Small mountainous river systems (SMRS) may be responsible for half of the POC delivery to global oceans. The flux of POC in semi-arid SMRS has been thought to be regulated by hydro-geomorphic factors, such as runoff, tectonic uplift rates, and bedrock geology. Fire has been shown to be very important for the flux of suspended sediment from chaparral dominated watersheds, therefore the same should be true for carbon associated with sediment. To date, the role of landscape disturbances such as fire has not been investigated. A large wildfire (2008) in the chaparral-dominated Arroyo Seco watershed, a smaller watershed within the Salinas River basin, provided a unique opportunity to examine the effects of fire on POC source and flux at the watershed-scale. Suspended sediments were collected from the Arroyo Seco for 2 years post fire, and 1 year pre- and 3 years post-fire in the Salinas River. We analyzed these sediments for C, N, 13C, 15N, ad CuO oxidation products (e.g. lignin, char). We found there was an increase in POC flux that is largely a function of elevated sediment flux, but elemental, stable isotope, and biomarker analyses show that both burned and unburned organic matter has contributed to the elevated carbon flux as a result of enhanced surface erosion processes. While these fire-flood events may be rare, sediment associated constituent yield will be greatly underestimated if these events are not considered. Fire-flood events may be especially important to consider in light of shifting fire regimes and more frequent extreme precipitation events predicted as a result of climate change.

  3. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    PubMed

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes. © 2017 by the Ecological Society of America.

  4. The effects of wildfire on mercury and stable isotopes (δ(15)N, δ(13)C) in water and biota of small boreal, acidic lakes in southern Norway.

    PubMed

    Moreno, Clara E; Fjeld, Eirik; Lydersen, Espen

    2016-03-01

    Effects of wildfire on main water chemistry and mercury (Hg) in water and biota were studied during the first 4 post-fire years. After severe water chemical conditions during hydrological events a few months following the wildfire, the major water chemical parameters were close to pre-fire conditions 4 years after the fire. Concentrations of total Hg and methyl Hg in the surface water 4 years after the fire ranged between 1.17-2.63 ng L(-1) and 0.053-0.188 ng L(-1), respectively. Both variables were positive and strongly correlated with total organic carbon (TOC), TOC-related variables (color, UV absorbance), total phosphorous, and total iron. In addition, MeHg was positively correlated with total nitrogen and chlorophyll-a. The concurrence of increased concentrations of nutrients and chlorophyll-a in the lakes, the more enriched δ(15)N-signatures and higher Hg levels in fish 2 years after the fire, might be a result of the wildfire. However, natural factors as year-to-year variations in thermocline depth and suboxic status in the lakes make it difficult to draw any strong conclusions about wildfire effects on Hg in the biota from our investigated lakes.

  5. Oak savanna restoration: Oak response to fire and thinning through 28 years

    Treesearch

    Ronald E. Masters; Jack R. Waymire

    2012-01-01

    We used a small plot study on Pushmataha Wildlife Management Area in southeast Oklahoma to determine the efficacy of fire frequency and thinning as management tools for restoration of oak savanna, oak woodlands, pine-bluestem woodlands, and pine savanna for application on a landscape scale. On selected experimental units, we initially reduced stand density to favor...

  6. Three years of hillslope sediment yields following the Valley Complex fires, western Montana

    Treesearch

    Peter R. Robichaud; Joseph W. Wagenbrenner; Robert E. Brown; Kevin M. Spigel

    2009-01-01

    The 2000 Bitterroot Valley wildfires provided an opportunity to measure post-fire effects and recovery rates. We established 24 small (0.01 ha [0.02 acre]) plots in four high-severity burn sites. We measured sediment yields at each site with silt fences. We also measured rainfall characteristics, soil water repellency, vegetative cover, and other site characteristics....

  7. The effects of fepeated prescribed burning on Pinus ponderosa growth

    Treesearch

    David L. Peterson; Stephen S. Sackett; Lindsay J. Robinson; Sally M. Haase

    1994-01-01

    The effect of repeated prescribed burning on long term growth of Pinus ponderosa in northern Arizona was examined. Fire treatments for hazard reduction were initiated in 1976,and growthwas evaluated in 1988 for fire rotations of 1, 2, 4, 6, 8, and 10 years. Dendroecological analysis shows that there were only small changes in treegrowth (compared tocontrols) in the...

  8. Small-area estimation of forest attributes within fire boundaries

    Treesearch

    T. Frescino; G. Moisen; K. Adachi; J. Breidt

    2014-01-01

    Wildfires are gaining more attention every year as they burn more frequently, more intensely, and across larger landscapes. Generating timely estimates of forest resources within fire perimeters is important for land managers to quickly determine the impact of fi res on U.S. forests. The U.S. Forest Service’s Forest Inventory and Analysis (FIA) program needs tools to...

  9. The role of fire-return interval and season of burn in snag dynamics in a south Florida slash pine forest

    USGS Publications Warehouse

    Lloyd, John D.; Slater, Gary L.; Snyder, James R.

    2012-01-01

    Standing dead trees, or snags, are an important habitat element for many animal species. In many ecosystems, fire is a primary driver of snag population dynamics because it can both create and consume snags. The objective of this study was to examine how variation in two key components of the fire regime—fire-return interval and season of burn—affected population dynamics of snags. Using a factorial design, we exposed 1 ha plots, located within larger burn units in a south Florida slash pine (Pinus elliottii var. densa Little and Dorman) forest, to prescribed fire applied at two intervals (approximately 3-year intervals vs. approximately 6-year intervals) and during two seasons (wet season vs. dry season) over a 12- to 13-year period. We found no consistent effect of fire season or frequency on the density of lightly to moderately decayed or heavily decayed snags, suggesting that variation in these elements of the fire regime at the scale we considered is relatively unimportant in the dynamics of snag populations. However, our confidence in these findings is limited by small sample sizes, potentially confounding effects of unmeasured variation in fire behavior and effects (e.g., intensity, severity, synergy with drought cycles) and wide variation in responses within a treatment level. The generalizing of our findings is also limited by the narrow range of treatment levels considered. Future experiments incorporating a wider range of fire regimes and directly quantifying fire intensity would prove useful in identifying more clearly the role of fire in shaping the dynamics of snag populations.

  10. Bark heat resistance of small trees in Californian mixed conifer forests: Testing some model assumptions

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Schwartz, Mark

    2003-01-01

    An essential component to models of fire-caused tree mortality is an assessment of cambial damage. Cambial heat resistance has been traditionally measured in large overstory trees with thick bark, although small trees have thinner bark and thus are more sensitive to fire. We undertook this study to determine if current models of bark heat transfer are applicable to small trees (<20 cm diameter at breast height (dbh)). We performed this work in situ on four common species in the mixed conifer forests of the Sierra Nevada, California.The allometric relationship between bole diameter and bark thickness for each species was linear, even for very small trees (5 cm dbh). Heating experiments demonstrated that bark thickness was the primary determinant of cambial heat resistance. We found only slight, but statistically significant, among species differences in bark thermal properties. Our most significant finding was that small trees were more resistant to heating than expected from commonly used models of bark heat transfer. Our results may differ from those of existing models because we found smaller trees to have a greater proportion of inner bark, which appears to have superior insulating properties compared to outer bark. From a management perspective, growth projections suggest that a 50-year fire-free interval may allow some fire intolerant species to achieve at least some degree of cambial heat resistance in the Sierra Nevada.

  11. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year-1 with significant interannual variability during 1997-2001 (2.8 Pg C year-1 in 1998 and 1.6 Pg C year-1 in 2001). Globally, emissions during 2002-2007 were relatively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg C year-1) and 2009 (1.5 Pg C year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

  12. Life-history traits predict perennial species response to fire in a desert ecosystem

    USGS Publications Warehouse

    Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.

  13. Lightning and forest fires in the northern Rocky Mountain region

    Treesearch

    H. T. Gisborne

    1926-01-01

    During the past 18 years lightning has caused 39 per cent of the forest fires in the northern Rocky Mountain district, which includes Montana, northern Idaho, and a small portion of northeastern Washington. For the seasons of 1924 and 1925 the figures are 51 per cent and 80 per cent, respectively. As long as such conditions prevail it should be of decided value to know...

  14. 76 FR 80531 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... boilers are small (less than 10 MMBtu/hr heat input) and are generally owned and operated by contractors... (> 5MMBtu/h) or five-year ( New boilers with heat input capacity greater than 10 million Btu per hour that... with heat input capacity greater than 10 million Btu per hour that are biomass-fired or oil-fired must...

  15. Control of depth to permafrost and soil temperature by the forest floor in black spruce/feathermoss communities.

    Treesearch

    C.T. Dyrness

    1982-01-01

    Changes in depth to permafrost and soil temperature were investigated for 4 years after treatment of the forest floor on small plots by fire and mechanical removal of half the forest floor layer and the entire layer. The only treatments to show a consistent, statistically significant effect were the mechanical removals. Fire treatments usually did not have a...

  16. ESA fire_cci product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Ramo Sanchez, Ruben; Kaiser, Johannes W.

    2017-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project has computed a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the ENVISAT-MERIS archive. The algorithm relies on MODIS active fire information as "seed". It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.25 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64 Collection 6, MCD45, GFED4, GFED4s and GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2005-2011 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  17. The need for a juvenile fire setting database.

    PubMed

    Klein, Julianne J; Mondozzi, Mary A; Andrews, David A

    2008-01-01

    A juvenile fire setter can be classified as any youth setting a fire regardless of the reason. Many communities have programs to deal with this problem, most based on models developed by the United States Fire Administration. We reviewed our programs data to compare it with that published nationally. Currently there is not a nationwide database to compare fire setter data. A single institution, retrospective chart review of all fire setters between the years of January 1, 2003 and December 31, 2005 was completed. There were 133 participants ages 3 to 17. Information obtained included age, location, ignition source, court order and recidivism. Analysis from our data set found 26% of the peak ages for fire involvement to be 12 and 14. Location, ignition source, and court ordered participants were divided into two age groups: 3 to 10 (N = 58) and 11 to 17 (N = 75). Bedrooms ranked first for the younger population and schools for the latter. Fifty-four percentage of the 133 participants used lighters over matches. Twelve percentage of the 3- to 10-year-olds were court mandated, compared with 52% of the 11- to 17-year-olds. Recidivism rates were 4 to 10% with a 33 to 38% survey return rate. Currently there is no state or nationwide, time honored data base to compare facts from which conclusions can be drawn. Starting small with a statewide database could educe a stimulus for a national database. This could also enhance the information provided by the United States Fire Administration, National Fire Data Center beginning one juvenile firesetter program and State Fire Marshal's office at a time.

  18. Fire, Lava Flows, and Human Evolution

    NASA Astrophysics Data System (ADS)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  19. Simulated Net Ecosystem Carbon Balance of Western US Forests Under Contemporary Climate and Management

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Law, B. E.; Jones, M. O.

    2015-12-01

    Previous projections of the contemporary forest carbon balance in the western US showed uncertainties associated with impacts of climate extremes and a coarse spatio-temporal resolution implemented over heterogeneous mountain regions. We modified the Community Land Model (CLM) 4.5 to produce 4km resolution forest carbon changes with drought, fire and management in the western US. We parameterized the model with species data using local plant trait observations for 30 species. To quantify uncertainty, we evaluated the model with data from flux sites, inventories and ancillary data in the region. Simulated GPP was lower than the measurements at our AmeriFlux sites by 17-22%. Simulated burned area was generally higher than Landsat observations, suggesting the model overestimates fire emissions with the new fire model. Landsat MTBS data show high severity fire represents only a small portion of the total burnt area (12-14%), and no increasing trend from 1984 to 2011. Moderate severity fire increased ~0.23%/year due to fires in the Sierra Nevada (Law & Waring 2014). Oregon, California, and Washington were a net carbon sink, and net ecosystem carbon balance (NECB) declined in California over the past 15 years, partly due to drought impacts. Fire emissions were a small portion of the regional carbon budget compared with the effect of harvest removals. Fossil fuel emissions in CA are more than 3x that of OR and WA combined, but are lower per capita. We also identified forest regions that are most vulnerable to climate-driven transformations and to evaluate the effects of management strategies on forest NECB. Differences in forest NECB among states are strongly influenced by the extent of drought (drier longer in the SW) and management intensity (higher in the PNW).

  20. Predicted effects of prescribed burning and harvesting on forest recovery and sustainability in southwest Georgia, USA.

    PubMed

    Garten, Charles T

    2006-12-01

    A model-based analysis of the effect of prescribed burning and forest thinning or clear-cutting on stand recovery and sustainability was conducted at Fort Benning, GA, in the southeastern USA. Two experiments were performed with the model. In the first experiment, forest recovery from degraded soils was predicted for 100 years with or without prescribed burning. In the second experiment simulations began with 100 years of predicted stand growth, then forest sustainability was predicted for an additional 100 years under different combinations of prescribed burning and forest harvesting. Three levels of fire intensity (low, medium, and high), that corresponded to 17%, 33%, and 50% consumption of the forest floor C stock by fire, were evaluated at 1-, 2-, and 3-year fire return intervals. Relative to the control (no fire), prescribed burning with a 2- or 3-year return interval caused only a small reduction in predicted steady state soil C stocks (< or =25%) and had no effect on steady state tree wood biomass, regardless of fire intensity. Annual high intensity burns did adversely impact forest recovery and sustainability (after harvesting) on less sandy soils, but not on more sandy soils that had greater N availability. Higher intensity and frequency of ground fires increased the chance that tree biomass would not return to pre-harvest levels. Soil N limitation was indicated as the cause of unsustainable forests when prescribed burns were too frequent or too intense to permit stand recovery.

  1. Examining Fire Department Injury Data as a Tool for Epidemiological Investigation

    PubMed Central

    Perry, Elise C.; Shields, Wendy C.; O’Brocki, Raymond; Bishai, David; Frattaroli, Shannon; Jones, Vanya; Gielen, Andrea C.

    2014-01-01

    Objective Residential fires, while constituting a small fraction of fire incidents, are responsible for the majority of civilian fire-related injuries. This study investigates census tract neighborhood socioeconomic factors as correlates of civilian injuries occurring during residential fires in Baltimore, Maryland between 2004 and 2007. Methods Civilian residential-fire related injuries were geocoded and linked to the American Community Survey 2005–2009 data. Negative binomial regression was used to analyze the relationship between fire-injury rates and neighborhood socioeconomic indicators including household income and percentages of households below the poverty line, persons 25 years or older with at least a bachelor’s degree, homes built in 1939 or earlier, vacant properties, and owner occupied homes. Results Between January 2004 and July 2007, there were 482 civilian fire-related injuries that occurred during 309 fires. At the census tract level, a ten percent increase in the number of vacant homes was associated with an increase in injury rates by a factor of 1.28 (95% CI 1.05, 1.55). A ten percent increase in persons over 25 years with at least a bachelor’s degree was associated with a decrease in injury rates by a factor of 0.86 (95% CI 0.77, 0.96). Conclusions Neighborhood measures of education and housing age proved good indicators for identifying areas with a higher burden of fire-related injuries. Such analyses can be useful for fire department planning. PMID:24823338

  2. [Considering the current state of fire safety in Taiwan's care environment from the perspective of the nation's worst recent hospital fire].

    PubMed

    Tseng, Wei-Wen; Shih, Chung-Liang; Chien, Shen-Wen

    2013-04-01

    Taiwan's worst hospital fire in history on October 23rd, 2012 at Sinying Hospital's Bei-Men Branch resulted in 13 elderly patient deaths and over 70 injuries. The heavy casualties were due in part to the serious condition of patients. Some patients on life-support machines were unable to move or be moved. This disaster highlights the issue of fire safety in small-scale hospitals that have transformed existing hospital space into special care environments for elderly patients. Compared with medical centers and general hospitals, these small-scale health facilities are ill equipped to deal properly with fire safety management and emergency response issues due to inadequate fire protection facilities, fire safety equipment, and human resources. Small-scale facilities that offer health care and medical services to mostly immobile patients face fire risks that differ significantly from general health care facilities. This paper focuses on fire risks in small-scale facilities and suggests a strategy for fire prevention and emergency response procedures, including countermeasures for fire risk assessment, management, and emergency response, in order to improve fire safety at these institutions in Taiwan.

  3. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    PubMed Central

    Cowling, Richard M.; van Wilgen, Brian W.; Rikhotso, Diba R.; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid recruitment responses are not related to the season of fire. Germination appeared less rainfall-dependent than in winter-rainfall shrublands, suggesting that summer drought-avoiding dormancy is limited and has less influence on variation in recruitment success among fire seasons. The varied response of proteoid recruitment to fire season (or its simulation) implies that burning does not have to be restricted to particular seasons in eastern coastal fynbos, affording more flexibility for fire management than in shrublands associated with winter rainfall. PMID:28828239

  4. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    PubMed

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid recruitment responses are not related to the season of fire. Germination appeared less rainfall-dependent than in winter-rainfall shrublands, suggesting that summer drought-avoiding dormancy is limited and has less influence on variation in recruitment success among fire seasons. The varied response of proteoid recruitment to fire season (or its simulation) implies that burning does not have to be restricted to particular seasons in eastern coastal fynbos, affording more flexibility for fire management than in shrublands associated with winter rainfall.

  5. Long-term boreal forest dynamics and disturbances: a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki

    2017-04-01

    The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.

  6. Acacia shrubs respond positively to high severity wildfire: Implications for conservation and fuel hazard management.

    PubMed

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M; Denham, Andrew J

    2017-01-01

    High severity wildfires pose threats to human assets, but are also perceived to impact vegetation communities because a small number of species may become dominant immediately after fire. However there are considerable gaps in our knowledge about species-specific responses of plants to different fire severities, and how this influences fuel hazard in the short and long-term. Here we conduct a floristic survey at sites before and two years after a wildfire of unprecedented size and severity in the Warrumbungle National Park (Australia) to explore relationships between post-fire growth of a fire responsive shrub genera (Acacia), total mid-story vegetation cover, fire severity and fuel hazard. We then survey 129 plots surrounding the park to assess relationships between mid-story vegetation cover and time-since-fire. Acacia species richness and cover were 2.3 and 4.3 times greater at plots after than before the fire. However the same common dominant species were present throughout the study. Mid-story vegetation cover was 1.5 times greater after than before the wildfire, and Acacia species contribution to mid-story cover increased from 10 to 40%. Acacia species richness was not affected by fire severity, however strong positive associations were observed between Acacia and total mid-story vegetation cover and severity. Our analysis of mid-story vegetation recovery showed that cover was similarly high between 2 and 30years post-fire, then decreased until 52years. Collectively, our results suggest that Acacia species are extremely resilient to high severity wildfire and drive short to mid-term increases in fuel hazard. Our results are discussed in relation to fire regime management from the twin perspectives of conserving biodiversity and mitigating human losses due to wildfire. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    PubMed

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is maintained.

  8. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in U.S. fire-prone forests.

    PubMed

    Fontaine, Joseph B; Kennedy, Patricia L

    2012-07-01

    Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.

  9. Negligent and intentional fires in Portugal: the role of human and biophysical drivers on the temporal distribution

    NASA Astrophysics Data System (ADS)

    Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina

    2017-04-01

    Portugal is the European country with higher number of fires (NF) and burnt area (BA) per unit of land area. The annual number of fires for which the cause of fire is known is not constant and relatively small (typically less than 50% of annual number of records). Nevertheless, the analysis of the fire causes reveals that the vast majority (99%) of the fires in Portugal are of human origin and only a small fraction are of natural origin (1% caused by lightning). The study period will be the recent years of 2012 - 2014, when fire recording procedures are more reliable and the cause of ignition was assessed for more than 50% (19376) of the fires. The fires with approximately seventy different causes of fire defined/recognized by the Portuguese Forest Service (ICNF) were grouped into negligent, intentional and natural fires. For this study the authors proposes the use of the Nomenclature of Territorial Units for Statistics level II, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Área Metropolitana de Lisboa, Alentejo, and Algarve. Most of the fires (54%) occur in the so-called critical period defined between July and September, but high wildfire activity may also occur in few periods of the remaining months (especially in February and March). The intentional fires represent 40% of total NF but accounts for 53% of total BA during the study period. The temporal distribution are described and interpreted in terms of the climate, fire weather, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope) using statistical analysis and GIS techniques. Results points to: a) higher number of negligent than intentional fires; b) higher BA on critical period in years 2012 and 2013; c) decrease in time and decrease from critical period to non-critical period of the number of fires, in all regions; and d) the dominant role of fire weather in the observed temporal patterns. We strongly believe that the findings of this study contribute to a better fire prevention, firefighting and crisis management. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire data.

  10. The effect of wildfire on population dynamics for two native small mammal species in a coastal heathland in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Liedloff, Adam C.; Wilson, John C.; Engeman, Richard M.

    2018-04-01

    The influences of wildfire through population dynamics and life history for two species of small mammals in a south-east Queensland heathland on Bribie Island are presented. Trapping results provided information on breeding, immigration and movement of Melomys burtoni (Grassland melomys) and Rattus lutreolus (Swamp rat). We first investigated and optimized the design of trapping methodology for producing mark-recapture population estimates to compare two adjacent populations, one of which was subjected to an extensive wildfire during the two year study. We consider how well rodents survive wildfire and whether the immediate impacts of fire or altered habitat have the greatest impact on each species. We found the R. lutreolus population was far more influenced by the fire than the M. burtoni population both immediately after the fire and over 18 months of vegetation recovery.

  11. Too hot to trot? evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat-specialist

    USGS Publications Warehouse

    Varner, Johanna; Lambert, Mallory S.; Horns, Joshua J.; Laverty, Sean; Dizney, Laurie; Beever, Erik; Dearing, M. Denise

    2015-01-01

    Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps). We determine the effects of a fire on microclimates within talus and explore habitat factors promoting persistence and abundance in fire-affected habitat. During the fire, temperatures in talus interstices remained below 19°C, suggesting that animals could have survived in situ. Within 2 years, pikas were widely distributed throughout burned areas and did not appear to be physiologically stressed at severely burned sites. Furthermore, pika densities were better predicted by topographic variables known to affect this species than by metrics of fire severity. This widespread distribution may reflect quick vegetation recovery and the fact that the fire did not alter the talus microclimates in the following years. Together, these results highlight the value of talus as a thermal refuge for small animals during and after fire. They also underscore the importance of further study in individual species’ responses to typical and altered disturbance regimes.

  12. ESA Fire CCI product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes

    2016-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  13. Life-history traits predict perennial species response to fire in a desert ecosystem

    PubMed Central

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. PMID:25247062

  14. Significant or negligible sediment and nutrient losses after fire? Pre- and post-fire comparisons

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.; Ferreira, A. J. D.; Ferreira, C. S. S.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.

    2009-04-01

    Prescribed fire (or a controlled burn) is a management tool used in wildfire-prone areas to reduce the fuel load of living and dead biomass, while attempting to keep disturbance of the ground surface and soil to a minimum. We know that wildfire, particularly of moderate or extreme severity, can cause important changes to the chemical and physical properties of soil, typically leading to a reduction in aggregate stability, surface roughness and water storage capacity, and an increase in overland flow. It has also been shown that wildfire disturbance can cause major loss of soil, particularly at plot and hillslope scales. There is less information on soil losses at catchment scales, but it is known that losses particularly of organic-rich fine sediment and nutrients can undergo hillslope to channel transfer, where they can affect water quality. Far less research has been carried out into the effects of prescribed fire on soil and nutrient losses at all scales, but particularly at catchment scales. This paper considers the impact of an experimental fire (equivalent to a severe prescribed fire) on soil and nutrient losses. These losses have been monitored at a range of scales (small rainfall simulation plots, long-term erosion plot, erosion plot, hillslope sediment traps (sediment fences) and catchment) before and after the fire in a 10-ha catchment near Góis, central Portugal, which forms part of the 5-year DESIRE research programme concerning desertification and its mitigation at a range of study sites worldwide. The catchment has steep slopes covered mainly with scrub vegetation ranging from c. 0.15 to 2m in height. The soil is thin, stony and highly water repellent. Long-term pre-burn erosion rates are known from a c. 10-year record of soil losses from a small erosion plot (8 x 2m in size) and sediment accumulation in the weir pool of a subcatchment gauging station. Rainfall simulations carried out under dry and wet antecedent conditions before and after the fire, eroded soil collected in sediment fences installed in strategic locations on the catchment slopes and suspended sediment and bedload determinations at the catchment gauging station provide the evidence for pre- and post-fire erosional losses. Comparison with wildfire effects is provided by instrumented scrub-covered hillslopes burnt in early summer 2008 in the same area. In addition to monitoring soil losses in the small catchment, losses of selected nutrients in eroded soil and runoff together with determinations of pre- and post-fire vegetation cover, fuel loads and soil water repellency have been determined. The soil degradational implications are discussed and placed in the context of the literature on prescribed fire and wildfire impacts from elsewhere in the Mediterranean and from further afield.

  15. A comprehensive reconstruction of Alaskan Arctic fire history over the last 30,000 years as inferred from a novel multi-proxy suite of organic geochemical and paleoecological methodology.

    NASA Astrophysics Data System (ADS)

    Vachula, R. S.; Longo, W. M.; Reinert, S. T.; Russell, J. M.; Huang, Y.

    2016-12-01

    The frequency and spatial extent of tundra fires have increased contemporaneously with anthropogenic climate change in the Arctic. These fires threaten the stability of permafrost carbon stores, subsistence resources, and ecosystem nutrient cycling and are thus important components of rapidly changing Arctic systems. Future projections of tundra fire rely upon reconstructions of fire regime and ecosystem response to climatic variations of the past. High resolution lake sediment records from Northern Alaska have facilitated important insights into the dynamic relationships between fire, climate, and vegetation throughout the Holocene. However, our understanding of how fire regimes in this region have responded to climate on glacial-interglacial timescales remains speculative. We present a 30,000 year fire history reconstruction from Lake E5, a small lake in the northern foothills of the Brooks Range. Our reconstruction, inferred from sedimentary charcoal particles, polycyclic aromatic hydrocarbons (PAHs), and bulk sediment Black Carbon (BC) content, offers unique insights into how Arctic terrestrial ecosystems of the past and present have interacted with climate on glacial-interglacial time scales via the mechanism of fire. This unique approach pairs traditional (charcoal) and novel (PAHs and BC) proxies and thereby (1) allows for a simultaneous interpretation of local and regional fire history (2) quantifies the abundance of all sizes of all byproducts of incomplete combustion and (3) gains insights into relative changes in combustion temperature, fire severity, and fuel type. While traditional methods would focus on a narrow range of the size spectrum of the physical and chemical byproducts of fire (charcoal particles >0.15 mm), the suite of methods used in this study facilitates a more holistic and comprehensive fire history reconstruction from the E5 sediment record. Results indicate that moisture and vegetation variations were likely the primary drivers of fire in this region over the last 30,000 years. Furthermore, sea level changes and related shifts in atmospheric circulation likely influenced fire regimes in this area prior to the Holocene.

  16. Motor vehicle-related burns: a review of 107 cases.

    PubMed

    Papaevangelou, J; Batchelor, J S; Roberts, A H

    1995-02-01

    Motor vehicles are a major cause of morbidity and mortality. Burn injuries sustained from motor vehicles form a small but important subgroup. The authors have reviewed the case notes of 107 patients with motor vehicle-related burns over a 13-year period. The age ranged from 18 months to 65 years and the male to female ratio was 4:1. The mechanisms of injury were variable, although four major categories could be identified. These accounted for 83 per cent of the cases. Car fires following road traffic accidents was the largest group accounting for 48.5 per cent of cases. The remaining three groups were: motorcycle-related burns following road traffic accidents (6.5 per cent of cases), garage fire-related burns (15 per cent of cases) and car radiator-related burns (13 per cent of cases). Garage fire-related burns had the highest mortality of the four groups (25 per cent). This study demonstrated that garage fire burns are an important subgroup of motor vehicle-related burns.

  17. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

    USGS Publications Warehouse

    Swetnam, Thomas W.; Farella, Joshua; Roos, Christopher I.; Liebmann, Matthew J.; Falk, Donald A.; Allen, Craig D.

    2016-01-01

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.

  18. Evidence of hominin control of fire at Gesher Benot Ya'aqov, Israel.

    PubMed

    Goren-Inbar, Naama; Alperson, Nira; Kislev, Mordechai E; Simchoni, Orit; Melamed, Yoel; Ben-Nun, Adi; Werker, Ella

    2004-04-30

    The presence of burned seeds, wood, and flint at the Acheulian site of Gesher Benot Ya'aqov in Israel is suggestive of the control of fire by humans nearly 790,000 years ago. The distribution of the site's small burned flint fragments suggests that burning occurred in specific spots, possibly indicating hearth locations. Wood of six taxa was burned at the site, at least three of which are edible--live, wild barley, and wild grape.

  19. Thirty Years of Change in Subalpine Forest Cover from Landsat Image Analysis in the Sierra Nevada Mountains of California

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra-Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared to the early 1930s), the 30-year analysis of Landsat greenness index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at eastern Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. Landsat imagery was further analyzed to understand patterns of post-wildfire vegetation recovery, focusing on high burn severity (HBS) patches within burned areas dating from the late 1940s. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.

  20. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.

    PubMed

    McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.

  1. Landscape Management of Fire and Grazing Regimes Alters the Fine-Scale Habitat Utilisation by Feral Cats

    PubMed Central

    McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores. PMID:25329902

  2. Aboriginal hunting buffers climate-driven fire-size variability in Australia's spinifex grasslands.

    PubMed

    Bliege Bird, Rebecca; Codding, Brian F; Kauhanen, Peter G; Bird, Douglas W

    2012-06-26

    Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet-dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes.

  3. 75 FR 69032 - Naval Surface Warfare Center, Potomac River, Dahlgren, VA; Danger Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... hazardous operations such as firing large and small caliber guns and projectiles, aerial bombing, use of... protect the public from hazardous operations such as firing large and small caliber guns and projectiles... zone to include firing of large or small caliber guns and projectiles, aerial bombing, use of directed...

  4. Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

    NASA Technical Reports Server (NTRS)

    Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.

    2015-01-01

    An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).

  5. Modeling the effects of fire severity and spatial complexity on Small Mammals in Yosemite National Park, California

    USGS Publications Warehouse

    Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.

    2008-01-01

    We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.

  6. Exploring the uses for small-diameter trees

    Treesearch

    Susan L. LeVan-Green; Jean. Livingston

    2001-01-01

    Small-diameter and underutilized (SDU) material refers to the timber that is left in the forest because it is not economical to remove, or local capacity to process it does not exist. SDU material also includes the dense, understory present through-out the forest as a result of 50 years of successful fire suppression. It has become apparent that there are many...

  7. Postfire soil erosion processes are conditioned by aridity

    NASA Astrophysics Data System (ADS)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    In this work we have studied the runoff and rate of erosion in severely burnt Mediterranean shrublands of southern Spain by simulating high intensity rainfall over a period of 5 years. We have also observed temporal changes in soil surface properties (0-10 mm) of two scrub areas in different years. In both cases, surface runoff increased appreciably during the first year after the fire, compared to burning bushes in more rainy areas. Although differences in the rate of infiltration (determined by a mini-disk infiltrometer with ethanol, to avoid the effect of hydrophobicity) were observed, the increase in the rate of runoff was related to the increase of water repellency in the first millimeters of the soil surface, regardless of other physical properties (texture or percentage of rock fragments), chemical (acidity, organic matter content) or fire severity. Sediment loss was also exceptionally high during the first year. Then, runoff and soil loss rates were progressively approaching the values observed in the control zones. However, most of the physical and chemical properties of the soil after the fire did not change during the post-fire period, suggesting erosion of sediment depletion. No large differences were observed between the study points along the precipitation gradient, suggesting that, independently of this and other factors, the impact of high severity fires can be long over time. Although other authors have shown that relatively small changes in aridity have great impacts on erosion processes, this does not seem to be valid in the case of high severity fires in Mediterranean areas.

  8. Changes in very fine root respiration and morphology with time since last fire in a boreal forest

    NASA Astrophysics Data System (ADS)

    Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank

    2016-04-01

    We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

  9. Occupational burns from oxygen resuscitator fires: the hazard of aluminum regulators.

    PubMed

    Hodous, Thomas K; Washenitz, Frank; Newton, Barry

    2002-07-01

    There have been over 30 incidents of oxygen resuscitator fires over the last 6 years, causing severe burns to a number of fire fighters, emergency medical service personnel, health care workers, and patients. The National Institute for Occupational Safety and Health (NIOSH) was requested to investigate three such incidents. NIOSH conducted site investigations of the incidents, and the requesters also sent the involved oxygen resuscitators to a forensic engineering company for a causal analysis. The investigated fires were associated with aluminum regulators, all from one manufacturer, on compressed pure oxygen cylinders. The investigations indicated that the cause of the fires was an initial small ignition in the high-pressure area of the aluminum regulator, which then consumed itself in a massive burnout. Aluminum regulators used with high-pressure oxygen systems are subject to rare, but potentially catastrophic combustion in normal use. Replacement of such regulators with those made of more fire-resistant materials or designs, as well as education and improved safety practices are needed to reduce this hazard.

  10. Influence of fire on mammals in eastern oak forests

    Treesearch

    Patrick D. Keyser; W. Mark Ford

    2006-01-01

    With the exception of small mammals, little research has been conducted in eastern oak forests on the influence of fire on mammals. Several studies have documented little or no change inrelative abundance or community measures for non-volant small mammals in eastern oak (Quercus spp.) forests following fires despite reductions in leaf litter, small woody debris, and...

  11. Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States

    USGS Publications Warehouse

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Brooks, Matthew

    2012-01-01

    The reintroduction of fire to historically fire-prone forests has been repeatedly shown to reduce understory fuels and promote resistance to high severity fire. However, there is concern that prescribed fire may also have unintended consequences, such as high rates of mortality for large trees and fire-tolerant Pinus species. To test this possibility we evaluated mortality patterns for two common genera in the western US, Pinus and Abies, using observations from a national-scale prescribed fire effects monitoring program. Our results show that mortality rates of trees >50 DBH were similar for Pinus (4.6% yr-1) and Abies (4.0% yr-1) 5 years following prescribed fires across seven sites in the southwestern US. In contrast, mortality rates of trees >50 cm DBH differed between Pinus (5.7% yr-1) and Abies (9.0% yr-1). Models of post-fire mortality probabilities suggested statistically significant differences between the genera (after including differences in bark thickness), but accounting for these differences resulted in only small improvements in model classification. Our results do not suggest unusually high post-fire mortality for large trees or for Pinus relative to the other common co-occurring genus, Abies, following prescribed fire in the southwestern US.

  12. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA.

    PubMed

    Swetnam, Thomas W; Farella, Joshua; Roos, Christopher I; Liebmann, Matthew J; Falk, Donald A; Allen, Craig D

    2016-06-05

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Authors.

  13. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

    PubMed Central

    Farella, Joshua; Liebmann, Matthew J.; Falk, Donald A.; Allen, Craig D.

    2016-01-01

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216525

  14. Burning in Banksia Woodlands: How Does the Fire-Free Period Influence Reptile Communities?

    PubMed Central

    Valentine, Leonie E.; Reaveley, Alice; Johnson, Brent; Fisher, Rebecca; Wilson, Barbara A.

    2012-01-01

    Fire is an important management tool for both hazard reduction burning and maintenance of biodiversity. The impact of time since last fire on fauna is an important factor to understand as land managers often aim for prescribed burning regimes with specific fire-free intervals. However, our current understanding of the impact of time since last fire on fauna is largely unknown and likely dependent on vegetation type. We examined the responses of reptiles to fire age in banksia woodlands, and the interspersed melaleuca damplands among them, north of Perth, Western Australia, where the current prescribed burning regime is targeting a fire-free period of 8–12 years. The response of reptiles to fire was dependent on vegetation type. Reptiles were generally more abundant (e.g. Lerista elegans and Ctenophorus adelaidensis) and specious in banksia sites. Several species (e.g. Menetia greyii, Cryptoblepharus buchananii) preferred long unburnt melaleuca sites (>16 years since last fire, YSLF) compared to recently burnt sites (<12 YSLF). Several of the small elapids (e.g. the WA priority listed species Neelaps calonotus) were only detected in older-aged banksia sites (>16 YSLF). The terrestrial dragon C. adelaidensis and the skink Morethia obscura displayed a strong response to fire in banksia woodlands only. Highest abundances of the dragon were detected in the recently burnt (<7 YSLF) and long unburnt (>35 YSLF) banksia woodlands, while the skink was more abundant in older sites. Habitats from a range of fire ages are required to support the reptiles we detected, especially the longer unburnt (>16 YSLF) melaleuca habitat. Current burning prescriptions are reducing the availability of these older habitats. PMID:22496806

  15. Impact and Recovery Pattern of a Spring Fire on a Pacific Coast Marsh - Observations and Implications for Endangered Species

    NASA Astrophysics Data System (ADS)

    Brown, L. N.; Willis, K. S.; Ambrose, R. F.; MacDonald, G. M.

    2015-12-01

    The flammability of California coastal marsh vegetation is highest in winter and spring when dominant high marsh plants such as Sarcocornia pacifica are dormant. With climate change the number of cool-season fires are increasing in the state, and marsh systems are becoming more vulnerable to fire disturbance. Very little information exists in peer-reviewed or grey literature on the presence of fire in Pacific Coast tidal marshes. In 1993, the Green Meadows fire in Ventura County, California burned a small portion of tidally influenced Sarcocornia­-dominated marsh at Point Mugu. After the May 2013 Springs Fire burned a similar portion of the salt marsh vegetation, we conducted a two-year vegetation recovery survey using transects of surface vegetation plots and MODIS derived NDVI remote sensing monitoring. Recovery during the first year was limited. Sixteen months into the recovery period, percent plant coverage reached an average of approximately 60% for all plots in the burned area, as opposed to an average of 100% in control plots, and remained at that level for the duration of the study. NDVI did not approach near pre-fire conditions until 19 months after the fire. While recovery may have been influenced by California's current extreme drought conditions, the recurrence of fire and rate of recovery raise many important questions as to the role of fire in Pacific coast tidal marshes. For example, the lack of Salicornia cover over more than an entire breeding season would be detrimental to protected species such as Rallus obsoletus. Fire adds new vulnerabilities on critical tidal marsh habitat already taxed by the threat of sea-level rise, coastal squeeze and invasive species.

  16. Burning in banksia woodlands: how does the fire-free period influence reptile communities?

    PubMed

    Valentine, Leonie E; Reaveley, Alice; Johnson, Brent; Fisher, Rebecca; Wilson, Barbara A

    2012-01-01

    Fire is an important management tool for both hazard reduction burning and maintenance of biodiversity. The impact of time since last fire on fauna is an important factor to understand as land managers often aim for prescribed burning regimes with specific fire-free intervals. However, our current understanding of the impact of time since last fire on fauna is largely unknown and likely dependent on vegetation type. We examined the responses of reptiles to fire age in banksia woodlands, and the interspersed melaleuca damplands among them, north of Perth, Western Australia, where the current prescribed burning regime is targeting a fire-free period of 8-12 years. The response of reptiles to fire was dependent on vegetation type. Reptiles were generally more abundant (e.g. Lerista elegans and Ctenophorus adelaidensis) and specious in banksia sites. Several species (e.g. Menetia greyii, Cryptoblepharus buchananii) preferred long unburnt melaleuca sites (>16 years since last fire, YSLF) compared to recently burnt sites (<12 YSLF). Several of the small elapids (e.g. the WA priority listed species Neelaps calonotus) were only detected in older-aged banksia sites (>16 YSLF). The terrestrial dragon C. adelaidensis and the skink Morethia obscura displayed a strong response to fire in banksia woodlands only. Highest abundances of the dragon were detected in the recently burnt (<7 YSLF) and long unburnt (>35 YSLF) banksia woodlands, while the skink was more abundant in older sites. Habitats from a range of fire ages are required to support the reptiles we detected, especially the longer unburnt (>16 YSLF) melaleuca habitat. Current burning prescriptions are reducing the availability of these older habitats.

  17. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny-Zahemena Corridor, Madagascar.

    PubMed

    Tabor, Karyn; Jones, Kelly W; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A

    2017-01-01

    Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities' dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 -years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context.

  18. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny-Zahemena Corridor, Madagascar

    PubMed Central

    Jones, Kelly W.; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A.

    2017-01-01

    Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities’ dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 –years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context. PMID:29267356

  19. Impact of Fire on Streamflow in Southern California Watersheds

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Hope, A. S.

    2007-12-01

    Post-fire streamflow dynamics in Southern California have primarily been studied using small watershed experiments. These studies have concluded that increases in streamflow are a consequence of an increase in soil hydrophobicity, along with a decrease in transpiration rates associated with less vegetation. Extrapolation of the results from these studies to large watersheds (>50 km2) has been limited because large watersheds may not burn completely and other processes may emerge at these scales. In this study, six paired watersheds were used to test the hypothesis that there is an increase in streamflow following fire in large California watersheds (54-632 km2). The percentage of area burned in these watersheds ranged from 23 to 100%. The effects of fires on streamflow were examined at annual, seasonal, and monthly time-steps for the five years following fire. In addition, this study attempted to address fundamental regression assumptions that are commonly ignored, and create uncertainty bounds for evaluating the changes in streamflow before and after fire. Results of this experiment indicate that differences in pre and post-fire streamflows, at all time scales and in all the test catchments, were generally within the 95% uncertainty bounds of the regression equation. It is uncertain whether the apparent lack of significant difference between the pre and post-fire streamflow reflects no actual change in streamflow or is a consequence of the errors and uncertainties in the streamflow data. Furthermore, persistent drought in the years following fire made it challenging to interpret differences in pre and post-fire flows using the paired watershed methodology. The effects of hydrophobicity on post-fire streamflow may have been reduced by a limited number of storm flow events during these drought years. Under these dry conditions, soil moisture was the dominant control over transpirational losses, minimizing the effects of a reduction in vegetation cover. These results indicate that the consequences of fires are likely to vary depending on the post-fire meteorological conditions. The study addresses the challenges of using non-experimental watersheds for paired watershed studies.

  20. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    USGS Publications Warehouse

    Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S.

    2011-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.

  1. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape.

    PubMed

    Ramalho, Cristina E; Ottewell, Kym M; Chambers, Brian K; Yates, Colin J; Wilson, Barbara A; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare.

  2. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape

    PubMed Central

    Ottewell, Kym M.; Chambers, Brian K.; Yates, Colin J.; Wilson, Barbara A.; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare. PMID:29444118

  3. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands

    PubMed Central

    Bliege Bird, Rebecca; Codding, Brian F.; Kauhanen, Peter G.

    2012-01-01

    Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet–dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes. PMID:22689979

  4. Numerical response of small vertebrates to prescribed fire in California oak woodland

    Treesearch

    Justin K. Vreeland; William D. Tietje

    2002-01-01

    Use of prescribed fire is increasing in California oak woodlands, but its effects on vertebrate wildlife are unknown. We conducted a light-intensity prescribed fire in mixed blue oak?coast live-oak woodlands in coastal-central California and assessed vegetation change and numerical response of small, nongame vertebrates to the fire. Four of 13 vegetation and habitat...

  5. No genetic adaptation of the Mediterranean keystone shrub Cistus ladanifer in response to experimental fire and extreme drought.

    PubMed

    Torres, Iván; Parra, Antonio; Moreno, José M; Durka, Walter

    2018-01-01

    In Mediterranean ecosystems, climate change is projected to increase fire danger and summer drought, thus reducing post-fire recruitment of obligate seeder species, and possibly affecting the population genetic structure. We performed a genome-wide genetic marker study, using AFLP markers, on individuals from one Central Spain population of the obligate post-fire seeder Cistus ladanifer L. that established after experimental fire and survived during four subsequent years under simulated drought implemented with a rainout shelter system. We explored the effects of the treatments on marker diversity, spatial genetic structure and presence of outlier loci suggestive of selection. We found no effect of fire or drought on any of the genetic diversity metrics. Analysis of Molecular Variance showed very low genetic differentiation among treatments. Neither fire nor drought altered the small-scale spatial genetic structure of the population. Only one locus was significantly associated with the fire treatment, but inconsistently across outlier detection methods. Neither fire nor drought are likely to affect the genetic makeup of emerging C. ladanifer, despite reduced recruitment caused by drought. The lack of genetic change suggests that reduced recruitment is a random, non-selective process with no genome-wide consequences on this keystone, drought- and fire tolerant Mediterranean species.

  6. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  7. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  8. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  9. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  10. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  11. The combined use of the RST-FIRES algorithm and geostationary satellite data to timely detect fires

    NASA Astrophysics Data System (ADS)

    Filizzola, Carolina; Corrado, Rosita; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2017-04-01

    Timely detection of fires may enable a rapid contrast action before they become uncontrolled and wipe out entire forests. Remote sensing, especially based on geostationary satellite data, can be successfully used to this aim. Differently from sensors onboard polar orbiting platforms, instruments on geostationary satellites guarantee a very high temporal resolution (from 30 to 2,5 minutes) which may be usefully employed to carry out a "continuous" monitoring over large areas as well as to timely detect fires at their early stages. Together with adequate satellite data, an appropriate fire detection algorithm should be used. Over the last years, many fire detection algorithms have been just adapted from polar to geostationary sensors and, consequently, the very high temporal resolution of geostationary sensors is not exploited at all in tests for fire identification. In addition, even when specifically designed for geostationary satellite sensors, fire detection algorithms are frequently based on fixed thresholds tests which are generally set up in the most conservative way to avoid false alarm proliferation. The result is a low algorithm sensitivity which generally means that only large and/or extremely intense events are detected. This work describes the Robust Satellite Techniques for FIRES detection and monitoring (RST-FIRES) which is a multi-temporal change-detection technique trying to overcome the above mentioned issues. Its performance in terms of reliability and sensitivity was verified using data acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat Second Generation (MSG) geostationary platform. More than 20,000 SEVIRI images, collected during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions, were used. About 950 near real-time ground and aerial checks of the RST-FIRES detections were performed. This study also demonstrates the added value of the RST-FIRES technique to detect starting/small fires and its sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.

  12. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  13. Fire management strategies to maintain species population processes in a fragmented landscape of fire-interval extremes.

    PubMed

    Tulloch, Ayesha I T; Pichancourt, Jean-Baptiste; Gosper, Carl R; Sanders, Angela; Chadès, Iadine

    2016-10-01

    Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly reduced number of species exhibiting positive growth rates after 100 years of management. By exploring the consequences of managing fire, we are able to identify which species are likely to disappear under a given fire regime. Identifying the appropriate complementarity of fire intervals, and their species-specific as well as community-level consequences, is crucial to reduce local extinctions of species in fragmented fire-prone landscapes. © 2016 by the Ecological Society of America.

  14. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    NASA Astrophysics Data System (ADS)

    Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean-François; De Smedt, Isabelle; Van Roozendael, Michel; van der Werf, Guido R.; Wiedinmyer, Christine; Kaiser, Johannes W.; Sindelarova, Katerina; Guenther, Alex

    2016-08-01

    As formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The long record of space-based HCHO column observations from the Ozone Monitoring Instrument (OMI) is used to infer emission flux estimates from pyrogenic and biogenic volatile organic compounds (VOCs) on the global scale over 2005-2013. This is realized through the method of source inverse modeling, which consists in the optimization of emissions in a chemistry-transport model (CTM) in order to minimize the discrepancy between the observed and modeled HCHO columns. The top-down fluxes are derived in the global CTM IMAGESv2 by an iterative minimization algorithm based on the full adjoint of IMAGESv2, starting from a priori emission estimates provided by the newly released GFED4s (Global Fire Emission Database, version 4s) inventory for fires, and by the MEGAN-MOHYCAN inventory for isoprene emissions. The top-down fluxes are compared to two independent inventories for fire (GFAS and FINNv1.5) and isoprene emissions (MEGAN-MACC and GUESS-ES). The inversion indicates a moderate decrease (ca. 20 %) in the average annual global fire and isoprene emissions, from 2028 Tg C in the a priori to 1653 Tg C for burned biomass, and from 343 to 272 Tg for isoprene fluxes. Those estimates are acknowledged to depend on the accuracy of formaldehyde data, as well as on the assumed fire emission factors and the oxidation mechanisms leading to HCHO production. Strongly decreased top-down fire fluxes (30-50 %) are inferred in the peak fire season in Africa and during years with strong a priori fluxes associated with forest fires in Amazonia (in 2005, 2007, and 2010), bushfires in Australia (in 2006 and 2011), and peat burning in Indonesia (in 2006 and 2009), whereas generally increased fluxes are suggested in Indochina and during the 2007 fires in southern Europe. Moreover, changes in fire seasonal patterns are suggested; e.g., the seasonal amplitude is reduced over southeast Asia. In Africa, the inversion indicates increased fluxes due to agricultural fires and decreased maxima when natural fires are dominant. The top-down fire emissions are much better correlated with MODIS fire counts than the a priori inventory in regions with small and agricultural fires, indicating that the OMI-based inversion is well-suited to assess the associated emissions. Regarding biogenic sources, significant reductions in isoprene fluxes are inferred in tropical ecosystems (30-40 %), suggesting overestimated basal emission rates in those areas in the bottom-up inventory, whereas strongly positive isoprene emission updates are derived over semiarid and desert areas, especially in southern Africa and Australia. This finding suggests that the parameterization of the soil moisture stress used in MEGAN greatly exaggerates the flux reduction due to drought in those regions. The isoprene emission trends over 2005-2013 are often enhanced after optimization, with positive top-down trends in Siberia (4.2 % year-1) and eastern Europe (3.9 % year-1), likely reflecting forest expansion and warming temperatures, and negative trends in Amazonia (-2.1 % year-1), south China (-1 % year-1), the United States (-3.7 % year-1), and western Europe (-3.3 % year-1), which are generally corroborated by independent studies, yet their interpretation warrants further investigation.

  15. Hydrologic Effects of Prescribed Burning and Deadening Upland Hardwoods in Northern Mississippi

    Treesearch

    S.J. Ursic

    1970-01-01

    A winter burn and deadening of hardwoods with herbicide significantly increased stormflows, overland flows, peak discharges, and sediment production from two small watersheds in northern Mississippi. Most of the hydrologic effects were still evident 3 years after the fire.

  16. Informing the network: Improving communication with interface communities during wildland fire

    USGS Publications Warehouse

    Taylor, J.G.; Gillette, S.C.; Hodgson, R.W.; Downing, J.L.; Burns, M.R.; Chavez, D.J.; Hogan, J.T.

    2007-01-01

    An interagency research team studied fire communications that took place during different stages of two wildfires in southern California: one small fire of short duration and one large fire of long duration. This "quick- response" research showed that pre-fire communication planning was particularly effective for smaller fire events and parts of that planning proved invaluable for the large fire event as well. Information seeking by the affected public relied on locally convenient sources during the small fire. During the large fire, widespread evacuations disrupted many of the local informal communication networks. Residents' needs were for "real-time, " place-specific information: precise location, severity, size, and direction of spread of the fires. Fire management agencies must contribute real-time, place-specific fire information when it is most needed by the affected public, as they try to make sense out of the chaos of a wildland fire. Disseminating fire information as broadly as possible through multiple pathways will maximize the probability of the public finding the information they need. ?? Society for Human Ecology.

  17. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion.

    PubMed

    Prats, Sergio Alegre; Wagenbrenner, Joseph W; Martins, Martinho António Santos; Malvar, Maruxa Cortizo; Keizer, Jan Jacob

    2016-12-15

    Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m 2 micro-plots and 100m 2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm -2 ) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Towards improved quantification of post-fire conifer mortality and recovery: Impacts of fire radiative flux on seedling and mature tree mortality, physiology, and growth

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Kolden, C.; Smith, A. M.

    2016-12-01

    Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with changing climate. A challenge for landscape level assessment of fire effects, termed burn severity, is that current assessments provide very little information regarding vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. To address these limitations, we evaluated an alternative dose-response methodology for quantifying fire effects that attempts to bridge fire combustion dynamics and ecophysiology. Specifically, we conducted a highly controlled, laboratory assessment of seedling response to increasing doses of fire radiative energy applied through surface fires, for two western U.S. conifer species. Seedling physiology and spectral reflectance were acquired pre- and up to 1 year post-fire. Post-fire mortality, physiological performance, and spectral reflectance were strongly related with fire radiative energy density (FRED: J m-2) dose. To examine how these relationships change with tree size and age, we conducted small prescribed fires at the tree scale (35 m2) in a mature conifer stand. Radial growth and resin duct defenses were assessed on the mature conifer trees following the prescribed fires. Differences in dose-response relationships between seedlings and mature trees indicate the importance of fire behavior (e.g., flaming-dominated versus smoldering-dominated combustion) in characterizing these relationships. Ultimately, these results suggest that post-fire impacts on growth of surviving seedlings and mature trees require modes of heat transfer to impact tree canopies.

  19. Taxonomic and Functional Resilience of Grasshoppers (Orthoptera, Caelifera) to Fire in South Brazilian Grasslands.

    PubMed

    Ferrando, C P R; Podgaiski, L R; Costa, M K M; Mendonça, M D S

    2016-08-01

    Fire is a frequent disturbance in grassland ecosystems enabling variability in habitat characteristics and creating important environmental filters for community assembly. Changes in vegetation have a large influence on herbivore insect assemblages. Here, we explored the responses of grasshoppers to disturbance by fire in grasslands of southern Brazil through a small-scale experiment based in paired control and burned plots. The resilience of grasshoppers was assessed by monitoring changes to their abundance, taxonomic, and functional parameters along time. Burned patches have been already recolonized by grasshoppers 1 month after fire and did not differ in terms of abundance and richness from control areas in any evaluated time within 1 year. Simpson diversity decreased 1 month after fire due to the increased dominance of Dichroplus misionensis (Carbonell) and Orphulella punctata (De Geer). In this period, grasshoppers presented in average a smaller body and a larger relative head size; these are typically nymph characteristics, which are possibly indicating a preference of juveniles for the young high-quality vegetation, or a diminished vulnerability to predation in open areas. Further, at 6 months after fire grasshoppers with smaller relative hind femur and thus lower dispersal ability seemed to be benefitted in burned patches. Finally, 1 year after fire grasshoppers became more similar to each other in relation to their set of traits. This study demonstrates how taxonomic and functional aspects of grasshopper assemblages can be complementary tools to understand their responses to environmental change.

  20. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2002-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ˜97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ˜2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  1. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2003-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ~97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ~2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  2. Recurrent fires and environment shape the vegetation in Quercus suber L. woodlands and maquis.

    PubMed

    Schaffhauser, Alice; Curt, Thomas; Véla, Errol; Tatoni, Thierry

    2012-06-01

    The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Wildfire Induced Degradation of Woody Vegetation in Dry Zone of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Terekhov, A.

    2011-08-01

    Small bushy tree species dominate the semi-arid areas of Kazakhstan. In the course of their life cycle, they form a layer of litter that is resistant to wind transport. This small shrub species with its own litter play a significant role in the spectral characteristics of the Earth surface. Changes in the density of shrub canopy forms or replacing them with herbaceous species is accompanied by significant changes in the spectral characteristics in the visible and near infrared spectral bands in the autumn. These changes can be recorded from satellite data. LANDSAT-TM images during 1985-2007 years and MODIS data (USGS: MOD09Q1, 2000-2010) used to diagnose changes in relation between woodyherbaceous vegetation species in the dry zone of Kazakhstan. It was found that over the past 10 years, spreading small shrub forms of semi-arid vegetation significantly decreased. There is a persistent expansion of herbal forms, leading to the semi-steppe formation areas. The mechanism of repression of wood forms constructed through the accumulation of dry plant mass during wet years, with its subsequent burnout during wildfires. In the case of a strong fire, a complete destruction of species is observed. The restoration of small shrub cover demands more than 20 years. Comparative analysis of LANDSAT-TM images showed a 10 times increasing of the fire scar areas in the test area in the central part of Kazakhstan between 1985 and 2007. According MOD09Q1 was conducted mapping small shrub forms of degradation in Kazakhstan. Reducing the area occupied by woody vegetation, semi-desert was about 30 million hectares or over 30% of their total range in Kazakhstan.

  4. Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains.

    PubMed

    Tepley, Alan J; Thompson, Jonathan R; Epstein, Howard E; Anderson-Teixeira, Kristina J

    2017-10-01

    In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches. © 2017 John Wiley & Sons Ltd.

  5. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  6. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  7. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  8. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  9. FireBird - a small satellite fire monitoring mission: Status and first results

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  10. An operational system of fire danger rating over Mediterranean Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.

    2017-04-01

    A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing information about fire meteorological danger for Portugal for a wide range of users.

  11. Scientists assess impact of Indonesia fires

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The fires burning in Indonesia over the past several months are setting aflame the biomass and wildlife habitat of the tropical forests, spreading a dangerously unhealthy haze across the populous country and nearby nations in southeast Asia, causing transportation hazards, and sending plumes of smoke up into the troposphere.Most of the fires have been set—by big landowners, commercial loggers, and small farmers—in attempts to clear and cultivate the land, as people have done in the past. But this year a drought induced by El Niño limited the rainfall that could help extinguish the flames and wash away the smoke and haze. In addition, some scientists say that smoke could even delay the monsoon, which usually arrives in early November.

  12. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  13. Photochemical potential of forest fire smoke

    Treesearch

    W. Henry Benner; Paul Urone; Charles K. McMahon; Paul Ryan

    1977-01-01

    A stainless steel laboratory chamber to hold the entire combustion products from a small scale pine needle fire was useful for measuring the photochemical activity of pine needle fire smoke. Particle size distributions indicated that the nucleation of small numbers of submicron particles was sufficient to increase the amount of light a plume would scatter. Artificial...

  14. 46 CFR 181.300 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must be...

  15. 46 CFR 181.300 - Fire pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must be...

  16. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  17. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    PubMed

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  18. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest

    PubMed Central

    Power, M. J.; Whitney, B. S.; Mayle, F. E.; Neves, D. M.; de Boer, E. J.; Maclean, K. S.

    2016-01-01

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216522

  19. Effects of an introduced pathogen and fire exclusion on the demography of sugar pine

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Keifer, MaryBeth; Keeley, Jon E.

    2004-01-01

    An introduced pathogen, white pine blister rust (Cronartium ribicola), has caused declines in five-needled pines throughout North America. Simultaneously, fire exclusion has resulted in dense stands in many forest types, which may create additional stress for these generally shade-intolerant pines. Fire exclusion also allows fuels to accumulate, and it is unclear how affected populations will respond to the reintroduction of fire. Although white pine blister rust and fire exclusion are widely recognized threats, long-term demographic data that document the effects of these stressors are rare. We present population trends from 2168 individuals over 5–15 years for an affected species, sugar pine (Pinus lambertiana), at several burned and unburned sites in the Sierra Nevada of California. Size-based matrix models indicate that most unburned populations have negative growth rates (λ range: 0.82–1.04). The growth rate of most populations was, however, indistinguishable from replacement levels (λ = 1.0), implying that, if populations are indeed declining, the progression of any such decline is slow, and longer observations are needed to clearly determine population trends. We found significant differences among population growth rates, primarily due to variation in recruitment rates. Deaths associated with blister rust and stress (i.e., resource competition) were common, suggesting significant roles for both blister rust and fire exclusion in determining population trajectories. Data from 15 prescribed fires showed that the immediate effect of burning was the death of many small trees, with the frequency of mortality returning to pre-fire levels within five years. In spite of a poor prognosis for sugar pine, our results suggest that we have time to apply and refine management strategies to protect this species.

  20. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude 27°50...

  1. Prevalence of risk factors for residential fire and burn injuries in an American Indian community.

    PubMed Central

    Mobley, C; Sugarman, J R; Deam, C; Giles, L

    1994-01-01

    Fatality rates from residential fires are high among American Indians. Contact burns and scalds are also among the leading types of thermal injuries. Information about the prevalence of risk factors for burn injuries is required to design interventions aimed at reducing residential fire and burn injuries. The authors conducted a survey in July and August 1992 of 68 households located in a small American Indian community in Washington State to ascertain the prevalence of selected risk factors for residential fire and burn injuries. Nearly all households (96 percent) in the study had a smoke detector, and 95 percent of those tested were functioning. However, a high prevalence of other household characteristics associated with excess risk of residential fire and burn injuries was identified: 59 percent of households had at least one member who smoked, 25 percent had a member who smoked in bed, 38 percent had a member who drank alcohol and smoked at the same time, 46 percent used wood stoves as a heat source, and 15 percent of households were mobile homes. Thirteen percent of households had at least one fire during the previous 3 years, and the incidence of burns due to all causes and requiring medical treatment was 1.5 per 100 persons per year. Hot water temperature was measured to determine the potential risk for scald burns, and 48 percent of households had a maximum hot water temperature of 130 degrees or more Fahrenheit. Such surveys can guide intervention strategies to reduce residential fire and burn injuries in American Indian communities. PMID:7938394

  2. Planning for burn disasters: lessons learned from one hundred years of history.

    PubMed

    Barillo, David J; Wolf, Steven

    2006-01-01

    The terrorist attacks of September 11th have prompted interest in developing plans to manage thousands of burn casualties. There is little actual experience in the United States in managing disasters of this magnitude. As an alternative, lessons may be learned from the historical experiences of previous civilian burn or fire disasters occurring in this country. A review of relevant medical, fire service, and popular literature pertaining to civilian burn or fire disasters occurring in the United States between the years 1900 and 2000 was performed. In the 20th century, 73 major U.S. fire or burn disasters have occurred. With each disaster prompting a strengthening of fire regulations or building codes, the number of fatalities per incident has steadily decreased. Detailed examination of several landmark fires demonstrated that casualty counts were great but that most victims had fatal injuries and died on the scene or within 24 hours. A second large cohort comprised the walking wounded, who required minimal outpatient treatment. Patients requiring inpatient burn care comprise a small percentage of the total casualty figure but consume enormous resources during hospitalization. Burn mass casualty incidents are uncommon. The number of casualties per incident decreased over time. In most fire disasters, the majority of victims either rapidly die or have minimal injuries and can be treated and released. As a result, most disasters produce fewer than 25 to 50 patients requiring inpatient burn care. This would be a rational point to begin burn center preparations for mass casualty incidents. A robust outpatient capability to manage the walking wounded is also desirable.

  3. Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites

    USGS Publications Warehouse

    Allen, Craig D.; Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Baisan, C.H.

    2008-01-01

    Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuen??os Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ???1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America. ?? IAWF 2008.

  4. Fire safety at home

    MedlinePlus

    ... over the smoke alarm as needed. Using a fire extinguisher can put out a small fire to keep it from getting out of control. Tips for use include: Keep fire extinguishers in handy locations, at least one on ...

  5. Wildfires and geochemical change in a subalpine forest over the past six millennia

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Higuera, Philip E.; McLauchlan, Kendra K.; Dunnette, Paul V.

    2016-12-01

    The frequency of large wildfires in western North America has been increasing in recent decades, yet the geochemical impacts of these events are poorly understood. The multidecadal timescales of both disturbance-regime variability and ecosystem responses make it challenging to study the effects of fire on terrestrial nutrient cycling. Nonetheless, disturbance-mediated changes in nutrient concentrations could ultimately limit forest productivity over centennial to millennial time scales. Here, we use a novel approach that combines quantitative elemental analysis of lake sediments using x-ray fluorescence to assess the geochemical impacts of high-severity fires in a 6200 year long sedimentary record from a small subalpine lake in Rocky Mountain National Park, Colorado, USA. Immediately after 17 high-severity fires, the sedimentary concentrations of five elements increased (Ti, Ca, K, Al, and P), but returned to pre-fire levels within three decades. Multivariate analyses indicate that erosion of weathered mineral material from the catchment is a primary mechanism though which high-severity fires impact element cycling. A longer-term trend in sediment geochemistry was also identified over millennial time scales. This decrease in the concentrations of six elements (Al, Si, K, Ti, Mn, and Fe) over the past 6200 years may have been due to a decreased rate of high-severity fires, long-term ecosystem development, or changes in precipitation regime. Our results indicate that high-severity fire events can determine elemental concentrations in subalpine forests. The degree of variability in geochemical response across time scales suggests that shifting rates of high-severity burning can cause significant changes in key rock-derived nutrients. To our knowledge, these results are the first to reveal repeated loss of rock-derived nutrients from the terrestrial ecosystem due to high-severity fires. Understanding the future of fire-prone coniferous forests requires further documentation and quantification of this important mechanism linking fire regimes and biogeochemical cycles.

  6. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  7. Fire and explosion hazards to flora and fauna from explosives.

    PubMed

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  8. Numerical response of small vertebrates to prescribed fire in a California oak woodland

    Treesearch

    Justin K. Vreeland; William D. Tietje

    2002-01-01

    Use of prescribed fire for management of livestock forage and fuel load is increasing in California oak woodlands, but its effects on vertebrate wildlife are unknown. We conducted a light-intensity prescribed fire in mixed blue oak-coast live-oak woodlands in coastal-central California and assessed vegetation change and numerical response of small, non-game vertebrates...

  9. Ecological surveillance of small mammals at Firing Points 10 and 60, Gyeonggi Province, Republic of Korea, 2001-2005.

    PubMed

    O'Guinn, Monica L; Klein, Terry A; Lee, John S; Kim, Heung-Chul; Baek, Luck-Ju; Chong, Sung-Tae; Turell, Michael J; Burkett, Douglas A; Schuster, Anthony; Lee, In-Yong; Yi, Suk-Hee; Sames, William J; Song, Ki-Joon; Song, Jin-Won

    2008-12-01

    Throughout Korea, small mammals are hosts to a number of disease-causing agents that pose a health threat to U.S. and Korean military forces while they conduct field-training exercises. A seasonal rodent-borne disease surveillance program was established at two firing points (FP), FP-10, and FP-60, and conducted over five years from 2001 through 2005 in response to hantavirus cases among U.S. soldiers. The ecology of these sites consisted primarily of tall grasses associated with semi-permanent and temporary water sources (drainage ditches and a small stream) and dry-land agriculture farming. Eight species of rodents and one species of insectivore were collected, including Apodemus agrarius, Micromys minutus, Mus musculus, Rattus norvegicus, Tscherskia triton, Microtus fortis, Myodes regulus, and Crocidura lasiura. The striped field mouse, A. agrarius, (primary reservoir for Hantaan virus, the causative agent of Korean hemorrhagic fever), was the most frequently collected, representing 90.6% of the 1,288 small mammals captured at both sites. Reported herein are the ecological parameters, seasonal population densities, and seasonal population characteristics associated with small mammals collected at two military training sites in the Republic of Korea.

  10. Multi-season climate synchronized historical fires in dry forests (1650-1900), northern Rockies, U.S.A.

    PubMed

    Heyerdahl, Emily K; Morgan, Penelope; Riser, James P

    2008-03-01

    Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to existing tree-ring reconstructions of climate (temperature and the Palmer Drought Severity Index [PDSI]) and large-scale climate patterns that affect modern spring climate in this region (El Niño Southern Oscillation [ENSO] and the Pacific Decadal Oscillation [PDO]). We identified 32 regional-fire years as those with five or more sites with fire. Fires were remarkably widespread during such years, including one year (1748) in which fires were recorded at 10 sites across what are today seven national forests plus one site on state land. During regional-fire years, spring-summers were significantly warm and summers were significantly warm-dry whereas the opposite conditions prevailed during the 99 years when no fires were recorded at any of our sites (no-fire years). Climate in prior years was not significantly associated with regional- or no-fire years. Years when fire was recorded at only a few of our sites occurred under a broad range of climate conditions, highlighting the fact that the regional climate drivers of fire are most evident when fires are synchronized across a large area. No-fire years tended to occur during La Niña years, which tend to have anomalously deep snowpacks in this region. However, ENSO was not a significant driver of regional-fire years, consistent with the greater influence of La Niña than El Niño conditions on the spring climate of this region. PDO was not a significant driver of past fire, despite being a strong driver of modern spring climate and modern regional-fire years in the northern Rockies.

  11. Climate Change and Mountain Community Fire Management in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    All, J.; Medler, M.; Cole, R. J.; Arques, S.; Schmitt, C. G.

    2014-12-01

    In the central Andes of Peru, climate change is altering fire risk through changes in local meteorology and fuel loading. Greater moisture and favorable growing conditions are increasing vegetative productivity, which in turn increases fuel loads. This process is accentuated during El Nino events and potentially results in increased fire occurrence and frequency during relatively dry La Nina events. Park officials are concerned about the ramification of the changes on local ecology and tourist use of the resources. However, using a time-series of two different products from the MODIS Terra and Aqua platforms (Active Fire and Burned Area), TRMM 3B43 precipitation data, and Multivariate ENSO Index data we document fire occurrence and extent from 2000 to 2010 and our analysis indicates that fires are burning exclusively during winter months when there are no natural ignition sources. Globally, fire is used in conjunction with grazing to improve the regeneration and yield of grasses. During our interviews, locals claimed to only set fires in the buffer zone outside of the park, but our analysis indicates that the buffer zone rarely burns and that most fires begin within the park and only occasionally move into the buffer zones. Additionally, we determined that although this is small-scale fire activity every year, overall fire is having a very minor effect on local systems. The park service must develop programs to work with local grazing stakeholders to better limit the impacts of fire, while also address the negative perceptions from tourists in the future. In this instance, fire perception and fire reality are not the same and the challenge for resource managers is how to reconcile these two factors in order to more effectively manage the parklands.

  12. NASA Fire Protection Coordinators' Conference

    NASA Technical Reports Server (NTRS)

    Clark, Theodore

    2001-01-01

    Fire prevention activities at NASA's Stennis Space Center are reviewed in this viewgraph presentation. The Fire Prevention Office of the Fire Department at NASA Stennis conducts inspections and issues small appliance permits, while the Operations Section responds to emergencies.

  13. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions

  14. Effects of past burning frequency on plant species structure and composition in dry dipterocarp forest

    NASA Astrophysics Data System (ADS)

    Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.

    2009-04-01

    Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency not shorter than every 6-7 years, or 1-2 fires per decade, to maintain ecosystem structure and function. Variation in time and space in this way, the biodiversity of the landscape may be maintained for the long-term. Keywords: Prescribed burning, burning history, burning frequency, plant species, vegetation structure, dry dipterocarp forest, Huay Kha Khaeng wildlife Sanctuary

  15. Post-disturbance sediment recovery: Implications for watershed resilience

    NASA Astrophysics Data System (ADS)

    Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.

    2018-03-01

    Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.

  16. Suspended sediment transport in an ephemeral stream following wildfire

    USGS Publications Warehouse

    Malmon, D.V.; Reneau, Steven L.; Katzman, D.; Lavine, A.; Lyman, J.

    2007-01-01

    We examine the impacts of a stand-clearing wildfire on the characteristics and magnitude of suspended sediment transport in ephemeral streams draining the burn area. We report the results of a monitoring program that includes 2 years of data prior to the Cerro Grande fire in New Mexico, and 3 years of postfire data. Suspended sediment concentration (SSC) increased by about 2 orders of magnitude following the fire, and the proportion of silt and clay increased from 50% to 80%. For a given flow event, SSC is highest at the flood bore and decreases monotonically with time, a pattern evident in every flood sampled both before and after the fire. We propose that the accumulation of flow and wash load at the flow front is an inherent characteristic of ephemeral stream flows, due to amplified momentum losses at the flood bore. We present a new model for computing suspended sediment transport in ephemeral streams (in the presence or absence of wildfire) by relating SSC to the time following the arrival of the flood bore, rather than to instantaneous discharge. Using this model and a rainfall history, we estimate that in the 3 years following the fire, floods transported in suspension a mass equivalent to about 3 mm of landscape lowering across the burn area, 20% of this following a single rainstorm. We test the model by computing fine sediment delivery to a small reservoir in an adjacent watershed, where we have a detailed record of postfire sedimentation based on repeat surveys. Systematic discrepancies between modeled and measured sedimentation rates in the reservoir suggest rapid reductions in suspended sediment delivery in the first several years after the fire.

  17. Fire-management policies and programs

    Treesearch

    S.J. Husari; K.S. McKelvey

    1996-01-01

    For most of this century the goal of fire management in the Sierra was to control fire. The policy was aggressively and successfully ap-plied, substantially reducing annual acres burned. This goal was based on a fire policy that emphasized keeping wildland fires as small and inexpensive as possible. As the role of fire in maintaining Sierran ecosystems has been...

  18. Cable tunnel fire experiment study based on linear optical fiber fire detectors

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun

    2013-09-01

    Aiming at exiting linear temperature fire detection technology including temperature sensing cable, fiber Raman scattering, fiber Bragg grating, this paper establish an experimental platform in cable tunnel, set two different experimental scenes of the fire and record temperature variation and fire detector response time in the processing of fire simulation. Since a small amount of thermal radiation and no flame for the beginning of the small-scale fire, only directly contacting heat detectors can make alarm response and the rest of other non- contact detectors are unable to respond. In large-scale fire, the alarm response time of the fiber Raman temperature sensing fire detector and fiber Bragg grating temperature sensing fire detector is about 30 seconds, and depending on the thermocouples' record the temperature over the fire is less than 35° in first 60 seconds of large-scale fire, while the temperature rising is more than 5°/min within the range of +/- 3m. According to the technical characteristics of the three detectors, the engineering suitability of the typical linear heat detectors in cable tunnels early fire detection is analyzed, which provide technical support for the preparation of norms.

  19. Spacecraft Fire Safety and Microgravity Combustion Research

    NASA Technical Reports Server (NTRS)

    Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    Fire safety is an important concern in our daily lives and it plays a special role in the human presence in space. In a spacecraft, the outside environment is hostile and the opportunity to escape is small. Rescue missions are difficult and time consuming. As a result, we should avoid the occurrence of fires in spacecraft as much as possible. If a fire occurs, we need to keep it small and under control. This implies that the materials used on board the spacecraft should be screened carefully, all the machines and devices need to be operated without accident, and fire detectors have to function properly. Once a fire is detected, it can be extinguished quickly and the cabin can be cleaned up to restore operation and sustain life.

  20. Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection

    Treesearch

    W. Wang; J.J. Qu; X. Hao; Y. Liu

    2009-01-01

    In the southeastern United States, most wildland fires are of low intensity. Asubstantial number of these fires cannot be detected by the MODIS contextual algorithm. Toimprove the accuracy of fire detection for this region, the remote-sensed characteristics ofthese fires have to be systematically...

  1. Dirty Snow, Atmospheric Warming, and Climate Feedbacks from Boreal Black Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Flanner, M. G.; Zender, C. S.; Randerson, J. T.; Jin, Y.

    2005-12-01

    Black carbon (BC) emitted from boreal fires darkens snow and sea-ice surfaces, increases solar absorption in the atmosphere, and decreases the incident flux at the surface. Although global surface forcing of darkened snow/ice is small relative to atmospheric forcing, the former directly triggers ice-albedo feedback, whereas the latter directly alters the atmospheric lapse rate. This highlights the importance of examining climate feedback strength as well as instantaneous forcings. We used a coupled land-atmosphere GCM (NCAR CAM3) to compare the relative forcings and climate feedbacks of BC emitted from a suite of boreal forest fires over the last decade, accounting for both enhanced snow/ice and atmospheric absorption by BC. The net change in absorbed energy at the surface was about three times greater than the instantaneous surface forcing when BC interactively heated the snow. Timing and location of fires determined the magnitude of darkened snow/ice feedback potential. We also assessed climate feedback strength from BC emitted globally during extreme high and low fire years, including the 1998 fire season.

  2. Earth observations taken by the Expedition 12 crew

    NASA Image and Video Library

    2005-11-15

    ISS012-E-13692 (2 Jan. 2006) --- A Forest Fire in Ouachita National Wildlife Refuge, Louisiana is featured in this image photographed by an Expedition 12 crew member on the International Space Station. Dry conditions and high winds have led to numerous recent fire outbreaks throughout much of the southwestern and south-central USA. This image captures the smoke plume from a fire in the Upper Ouachita National Wildlife Refuge in northeastern Louisiana. Drought conditions have persisted for much of the past year, leading to an increased fuel load comprised of dried grasses, shrubs, and trees. The combination of high amounts of dry fuel and frequent high winds has stoked small point fires into widespread brush fires. The fires generating this minimum 25-kilometer smoke plume started at approximately 13:00 hours local time. This image was acquired approximately 3.5 hours later as the station passed over the Texas/Louisiana border to the southwest. The extent of the plume reflects the strong westerly winds that drove the fire eastwards and damaged an estimated 200-300 acres of the wildlife refuge. The striking illumination of the plume is caused by a very low sun angle (angle between the horizon and the Sun directly below the space station), but this also results in generally low illumination of other scene features such as agricultural fields.

  3. INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE DEPRESSIONS, WHICH WERE COVERED WITH IRON GRATES TO SUSPEND POTS OVER THE HEAT SOURCE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  4. Fire Safety Countermeasures for Urban Rail Vehicles

    DOT National Transportation Integrated Search

    1992-07-01

    The Volpe National Transportation Systems Center (VNTSC) has analyzed transit system fire statistics to learn how often fire and smoke incidents occur on rail transit systems. While the threat of fire accounts for only a small percentage of all rail ...

  5. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year

    USGS Publications Warehouse

    Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

    2011-01-01

    Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

  6. Assessing and validating RST-FIRES on MSG-SEVIRI data by means a Total Validation Approach (TVA).

    NASA Astrophysics Data System (ADS)

    Filizzola, Carolina; Corrado, Rosita; Marchese, Francesco; Mazzeo, %Giuseppe; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2015-04-01

    Several fire detection methods have been developed through the years for detecting forest fires from space. These algorithms (which may be grouped in single channel, multichannel and contextual algorithms) are generally based on the use of fixed thresholds that, being intrinsically exposed to false alarm proliferation, are often used in a conservative way. As a consequence, most of satellite-based algorithms for fire detection show low sensitivity resulting not suitable in operational contexts. In this work, the RST-FIRES algorithm, which is based on an original multi-temporal scheme of satellite data analysis (RST-Robust Satellite Techniques), is presented. The implementation of RST-FIRES on data provided by Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG) that, offering the best revisit time (i.e. 15 minutes), can be successfully used for detecting fires at early stage, is described here. Moreover, results of a Total Validation Approach (TVA) experimented both in Northern and Southern Italy, in collaboration with local and regional civil protection agencies, are also reported. In particular, TVA allowed us to assess RST-FIRES detections by means of ground check and aerial surveys, demonstrating the good performances offered by RST-FIRES using MSG-SEVIRI data. Indeed, this algorithm was capable of detecting several fires that for their features (e.g., small size, short time duration) would not have appeared in the official reports, highlighting a significant improvement in terms of sensitivity in comparison with other established satellite-based fire detection techniques still preserving a high confidence level of detection.

  7. Guide Specification For Small, Dual Agent Aircraft Rescue and Firefighting Vehicles

    DOT National Transportation Integrated Search

    1993-12-07

    This advisory circular (AC) contains performance standards, specifications, and : recommendations for the design, construction, and testing of a family of small, : dual agent aircraft rescue and fire fighting (ARFF) vehicles. The National : Fire Prot...

  8. Plant diversity and structure describe the presence of a new, threatened Australian marsupial within its highly restricted, post-fire habitat.

    PubMed

    Mason, Eugene D; Firn, Jennifer; Hines, Harry B; Baker, Andrew M

    2017-01-01

    Management of critical habitat for threatened species with small ranges requires location-specific, fine-scale survey data. The silver-headed antechinus (Antechinus argentus) is known from only two isolated, fire-prone locations. At least one of these populations, at Kroombit Tops National Park in central-eastern Queensland, Australia, possesses a very small range. Here, we present detailed vegetation species diversity and structure data from three sites comprising the known habitat of A. argentus at Kroombit Tops and relate it to capture data obtained over two years. We found differences in both vegetation and capture data between burnt and unburnt habitat. Leaf litter and grasstrees (Xanthorrhoea johnsonii) were the strongest vegetative predictors for A. argentus capture. The species declined considerably over the two years of the trapping study, and we raise concern for its survival at Kroombit Tops. We suggest that future work should focus on structural vegetative variables (specifically, the diameter and leaf density of grasstree crowns) and relate them to A. argentus occurrence. We also recommend a survey of invertebrate diversity in grasstrees and leaf litter with a comparison to A. argentus prey. The data presented here illustrates how critical detailed monitoring is for planning habitat management and fire regimes, and highlights the utility of a high-resolution approach to habitat mapping. While a traditional approach to fire management contends that pyrodiversity encourages biodiversity, the present study demonstrates that some species prefer long-unburnt habitat. Additionally, in predicting the distribution of rare species like A. argentus, data quality (i.e., spatial resolution) may prevail over data quantity (i.e., number of data).

  9. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Treesearch

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  10. The role of fire severity, distance from fire perimeter and vegetation on post-fire recovery of small-mammal communities in chaparal

    Treesearch

    Jay Diffendorfer; Genie M. Fleming; Scott Tremor; Wayne Spencer; Jan L. Beyers

    2012-01-01

    Chaparral shrublands in southern California, US, exhibit significant biodiversity but are prone to large, intense wildfires. Debate exists regarding fuel reduction to prevent such fires in wildland areas, but the effects of these fires on fauna are not well understood. We studied whether fire severity and distance from unburned fire perimeter influenced recovery of the...

  11. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  12. Environmental disturbance increases social connectivity in a passerine bird.

    PubMed

    Lantz, Samantha M; Karubian, Jordan

    2017-01-01

    Individual level response to natural and anthropogenic disturbance represents an increasingly important, but as yet little understood, component of animal behavior. Disturbance events often alter habitat, which in turn can modify behaviors of individuals in affected areas, including changes in habitat use and associated changes in social structure. To better understand these relationships, we investigated aspects of habitat selection and social connectivity of a small passerine bird, the red-backed fairywren (Malurus melanocephalus), before vs. after naturally occurring fire disturbance in Northern Territory, Australia. We utilized a social network framework to evaluate changes in social dynamics pre- vs. post-fire. Our study covered the non-breeding season in two consecutive years in which fires occurred, and individuals whose habitat was affected and those that were not affected by fire. Individuals in habitat affected by fires had stronger social ties (i.e. higher weighted degree) after fires, while those that were in areas that were not affected by fire actually had lower weighted degree. We suggest that this change in social connections may be linked to habitat. Before fires, fairywrens used habitat that had similar grass cover to available habitat plots randomly generated within our study site. Fire caused a reduction in grass cover, and fairywrens responded by selecting habitat with higher grass cover relative to random plots. This study demonstrates how changes in habitat and/or resource availability caused by disturbance can lead to substantive changes in the social environment that individuals experience.

  13. Environmental disturbance increases social connectivity in a passerine bird

    PubMed Central

    Lantz, Samantha M.; Karubian, Jordan

    2017-01-01

    Individual level response to natural and anthropogenic disturbance represents an increasingly important, but as yet little understood, component of animal behavior. Disturbance events often alter habitat, which in turn can modify behaviors of individuals in affected areas, including changes in habitat use and associated changes in social structure. To better understand these relationships, we investigated aspects of habitat selection and social connectivity of a small passerine bird, the red-backed fairywren (Malurus melanocephalus), before vs. after naturally occurring fire disturbance in Northern Territory, Australia. We utilized a social network framework to evaluate changes in social dynamics pre- vs. post-fire. Our study covered the non-breeding season in two consecutive years in which fires occurred, and individuals whose habitat was affected and those that were not affected by fire. Individuals in habitat affected by fires had stronger social ties (i.e. higher weighted degree) after fires, while those that were in areas that were not affected by fire actually had lower weighted degree. We suggest that this change in social connections may be linked to habitat. Before fires, fairywrens used habitat that had similar grass cover to available habitat plots randomly generated within our study site. Fire caused a reduction in grass cover, and fairywrens responded by selecting habitat with higher grass cover relative to random plots. This study demonstrates how changes in habitat and/or resource availability caused by disturbance can lead to substantive changes in the social environment that individuals experience. PMID:28854197

  14. Wildfire as a hydrological and geomorphological agent

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.; Doerr, S. H.

    2006-02-01

    Wildfire can lead to considerable hydrological and geomorphological change, both directly by weathering bedrock surfaces and changing soil structure and properties, and indirectly through the effects of changes to the soil and vegetation on hydrological and geomorphological processes. This review summarizes current knowledge and identifies research gaps focusing particularly on the contribution of research from the Mediterranean Basin, Australia and South Africa over the last two decades or so to the state of knowledge mostly built on research carried out in the USA. Wildfire-induced weathering rates have been reported to be high relative to other weathering processes in fire-prone terrain, possibly as much as one or two magnitudes higher than frost action, with important implications for cosmogenic-isotope dating of the length of rock exposure. Wildfire impacts on soil properties have been a major focus of interest over the last two decades. Fire usually reduces soil aggregate stability and can induce, enhance or destroy soil water repellency depending on the temperature reached and its duration. These changes have implications for infiltration, overland flow and rainsplash detachment. A large proportion of publications concerned with fire impacts have focused on post-fire soil erosion by water, particularly at small scales. These have shown elevated, sometimes extremely large post-fire losses before geomorphological stability is re-established. Soil losses per unit area are generally negatively related to measurement scale reflecting increased opportunities for sediment storage at larger scales. Over the last 20 years, there has been much improvement in the understanding of the forms, causes and timing of debris flow and landslide activity on burnt terrain. Advances in previously largely unreported processes (e.g. bio-transfer of sediment and wind erosion) have also been made. Post-fire hydrological effects have generally also been studied at small rather than large scales, with soil water repellency effects on infiltration and overland flow being a particular focus. At catchment scales, post-fire accentuated peakflow has received more attention than changes in total flow, reflecting easier measurement and the greater hazard posed by the former. Post-fire changes to stream channels occur over both short and long terms with complex feedback mechanisms, though research to date has been limited. Research gaps identified include the need to: (1) develop a fire severity index relevant to soil changes rather than to degree of biomass destruction; (2) isolate the hydrological and geomorphological impacts of fire-induced soil water repellency changes from other important post-fire changes (e.g. litter and vegetation destruction); (3) improve knowledge of the hydrological and geomorphological impacts of wildfire in a wider range of fire-prone terrain types; (4) solve important problems in the determination and analysis of hillslope and catchment sediment yields including poor knowledge about soil losses other than at small spatial and short temporal scales, the lack of a clear measure of the degradational significance of post-fire soil losses, and confusion arising from errors in and lack of scale context for many quoted post-fire soil erosion rates; and (5) increase the research effort into past and potential future hydrological and geomorphological changes resulting from wildfire.

  15. Fire as a control agent of demographic structure and plant performance of a rare Mediterranean endemic geophyte.

    PubMed

    Diadema, Katia; Médail, Frédéric; Bretagnolle, François

    2007-09-01

    We examine the effects of fire and/or surrounding vegetation cover on demographic stage densities and plant performance for a rare endemic geophyte, Acis nicaeensis (Alliaceae), in Mediterranean xerophytic grasslands of the 'Alpes-Maritimes' French 'département', through sampling plots in unburned and burned treatments. Fire increases density of flowering individuals and seedling emergence, as well as clump densities and number of individuals per clump, per limiting vegetation height and cover, and increasing bare soil cover. In contrast, fire has no effect on reproductive success. Nevertheless, two growing seasons after fire, all parameters of demographic stages and plant performance do not significantly differ between the two treatments. Small-scale fire is beneficial for the regeneration of this threatened geophyte at a short-time scale. In this context, a conservation planning with small and controlled fires could maintain the regeneration window for populations of rare Mediterranean geophytes.

  16. Quantifying Fire Impact on Alaskan Tundra from Satellite Observations and Field Measurements

    NASA Astrophysics Data System (ADS)

    Loboda, T. V.; Chen, D.; He, J.; Jenkins, L. K.

    2017-12-01

    Wildfire is a major disturbance agent in Alaskan tundra. The frequency and extent of fire events obtained from paleo, management, and satellite records may yet underestimate the scope of tundra fire impact. Field measurements, collected within the NASA's ABoVE campaign, revealed unexpectedly shallow organic soils ( 15 cm) across all sampled sites of the Noatak valley with no significant difference between recently burned and unburned sites. In typical small and medium-sized tundra burns vegetation recovers rapidly and scars are not discernable in 30 m optical satellite imagery by the end of the first post-fire season. However, field observations indicate that vegetation and subsurface characteristics within fire scars of different ages vary across the landscape. In this study we develop linkages between fire-induced changes to tundra and satellite-based observations from optical, thermal, and microwave imagers to enable extrapolation of in-situ observations to cover the full extent of Alaskan tundra. Our results show that recent ( 30 years) fire history can be reconstructed from optical observations (R2 0.65, p<0.001) within a specific narrow temporal window or thermal signatures (R2 0.54, p < 0.001), in both cases controlled for slope and southern exposure. Using microwave SAR imagery fire history can be determined for 4 years post fire primarily due to increased soil moisture at burned sites. Field measurements suggest that the relatively quick SAR signal dissipation results from more even distribution of surface moisture through the soil column with increases in Active Layer Thickness (ALT). Similar to previous long-term field studies we find an increase in shrub fraction and shrub height within burns over time at the landscape scale; however, the strength and significance of the relationship between shrub fraction and time since fire is governed by burn severity with more severe burns predictably (p < 0.01) resulting in higher post-fire shrub cover. Although reasonably well-correlated to each other when adjusted for topography (R2 0.35, p < 0.001), neither ALT nor soil temperature can be directly linked to optical or thermal brightness observations with acceptable statistical significance, necessitating a more complex modeling environment for wall-to-wall mapping of subsurface parameters.

  17. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.

  18. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  19. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia.

    PubMed

    Price, Owen F; Bradstock, Ross A

    2012-12-30

    Treatment of fuel (e.g. prescribed fire, logging) in fire-prone ecosystems is done to reduce risks to people and their property but effects require quantification, particularly under severe weather conditions when the destructive potential of fires on human infrastructure is maximised. We analysed the relative effects of fuel age (i.e. indicative of the effectiveness of prescribed fire) and logging on remotely sensed (SPOT imagery) severity of fires which occurred in eucalypt forests in Victoria, Australia in 2009. These fires burned under the most severe weather conditions recorded in Australia and caused large losses of life and property. Statistical models of the probability of contrasting extremes of severity (crown fire versus fire confined to the understorey) were developed based on effects of fuel age, logging, weather, topography and forest type. Weather was the primary influence on severity, though it was reduced at low fuel ages in Moderate but not Catastrophic, Very High or Low fire-weather conditions. Probability of crown fires was higher in recently logged areas than in areas logged decades before, indicating likely ineffectiveness as a fuel treatment. The results suggest that recently burnt areas (up to 5-10 years) may reduce the intensity of the fire but not sufficiently to increase the chance of effective suppression under severe weather conditions. Since house loss was most likely under these conditions (67%), effects of prescribed burning across landscapes on house loss are likely to be small when weather conditions are severe. Fuel treatments need to be located close to houses in order to effectively mitigate risk of loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Afforestation, subsequent forest fires and provision of hydrological services: a model-based analysis for a Mediterranean mountainous catchment

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Naranjo Quintanilla, Paula; Santos, Juliana; Serpa, Dalila; Carvalho-Santos, Cláudia; Rocha, João; Keizer, Jan Jacob; Keesstra, Saskia

    2017-04-01

    Mediterranean landscapes have experienced extensive abandonment and reforestation in recent decades, which should have improved the provision of hydrological services, such as flood mitigation, soil erosion protection and water quality regulation. However, these forests are fire-prone, and the post-fire increase in runoff, erosion and sediment exports could negatively affect service provision. This issue was assessed using the SWAT model for a small mountain agroforestry catchment, which was monitored between 2010 and 2014 and where some eucalypt stands burned in 2011 and were subsequently plowed for replanting. The model was calibrated and validated for streamflow, sediment yield and erosion in agricultural fields and the burnt hillslopes, showing that it can be adapted for post-fire simulation. It was then used to perform a decadal assessment of surface runoff, erosion, and sediment exports between 2004 and 2014. Results show that the fire did not noticeably affect flood mitigation but that it increased erosion by 3 orders of magnitude, which subsequently increased sediment yield. Erosion in the burnt forest during this decade was one order of magnitude above that in agricultural fields. SWAT was also used to assess different fire and land-use scenarios during the same period. Results indicate that the impacts of fire were lower without post-fire soil management, and when the fire occurred in pine forests (i.e. before the 1990s) or in shrublands (i.e. before afforestation in the 1930s). These impacts were robust to changes in post-fire weather conditions and to a lower fire frequency (20-year intervals). The results suggest that, in the long term, fire-prone forests might not provide the anticipated soil protection and water quality regulation services in wet Mediterranean regions.

  1. The effects of precommercial thinning and midstory-control on the flora and fauna of young longleaf pine plantations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Robert.

    2007-05-01

    I examined the effects of longleaf pine (Pinus palustris) restoration using plantation silviculture on the avian, small mammal, and herpetofauna communities on the Savannah River Site, a National Environmental Research Park near Aiken, South Carolina. Vertebrate populations were surveyed from 1995 through 2003 on a series of plantations that had been precommercially thinned and/or received midstory-control via herbicides between 1994 and 1996. Understory and overstory vegetation was surveyed from 1994 through 2004. Thinning and midstory vegetation reduction treatments had greater herbaceous cover than the control through 2004 after a 1-2 year decline on midstory-control plots. Initially, thinned plots had themore » greatest herbaceous cover. However from 1998 through 2004, the combined treatment had the most herbaceous cover. Without midstory-control, thinning released midstory hardwoods. The effect of thinning or midstory-control alone on bird abundance was positive but short-lived. The positive effects were larger and persisted longer on combined treatment plots. My results indicate that precommercial thinning longleaf plantations, particularly when combined with midstory-control and prescribed fire, had a modest beneficial impact on avian communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire. All treatments resulted in short-term increases in small mammal abundance, but effects were minimal by 5-7 years after treatment. By 2001, pine basal area had returned to pre-treatment levels on thinned plots suggesting that frequent thinning may be required to maintain abundant and diverse small mammal communities in longleaf pine plantations. I did not detect any treatment related differences in herpetofauna abundance. These results suggest that restoring longleaf with a combination of precommercial thinning, midstory-control with herbicides, and prescribed fire can have a short-term positive effect on the avian and small mammal communities without affecting the herpetofauna community. However, periodic thinnings may be necessary to extend the positive effects.« less

  2. Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection.

    PubMed

    Fallows, Eric A; Cleary, Thomas G; Miller, J Houston

    2009-02-01

    A portable cavity ringdown spectroscopy (CRDS) apparatus was used to detect effluents from small test fires in the Fire Emulator/Detector Evaluator (FE/DE) and a small room in the Building Fire and Research Laboratory at the National Institute of Standards and Technology (NIST). The output from two lasers is combined to detect four combustion gases, CO, CO(2), HCN, and C(2)H(2), near simultaneously using CRDS. The goal of this work was to demonstrate the feasibility of using a CRDS sensor as a fire detector. Fire effluents were extracted from several test facilities and measurements of CO, CO(2), HCN, and C(2)H(2) were obtained every 25-30 s. In the FE/DE test, peak concentrations of the gases from smoldering paper were 420 parts in 10(6) (ppm) CO, 1600 ppm CO(2), 530 parts in 10(9) (ppb) HCN, and 440 ppb C(2)H(2). Peak gas concentrations from the small room were 270 ppm CO, 2100 ppm CO(2), and 310 ppb C(2)H(2).

  3. Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico

    Treesearch

    Ashley E. Van Beusekom; William A. Gould; A. Carolina Monmany; Azad Henareh Khalyani; Maya Quiñones; Stephen J. Fain; Maria José Andrade-Núñez; Grizelle González

    2018-01-01

    Abstract Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant...

  4. Informing the network: improving communication with interface communities during wildland fire

    Treesearch

    J.G. Taylor; S.C. Gillette; R.W. Hodgson; J.L. Downing; M.R. Burns; D.J. Chavez; J.T. Hogan

    2007-01-01

    An interagency research team studied fire communications that took place during different stages of two wildfires in southern California: one small fire of short duration and one large fire of long duration. This “quick-response” research showed that pre-fire communication planning was particularly effective for smaller fire events and parts of that planning proved...

  5. Trait shifts associated with the subshrub life-history strategy in a tropical savanna.

    PubMed

    Giroldo, A B; Scariot, A; Hoffmann, W A

    2017-10-01

    Over the past 10 million years, tropical savanna environments have selected for small growth forms within woody plant lineages. The result has been the evolution of subshrubs (geoxyles), presumably as an adaptation to frequent fire. To evaluate the traits associated with the shift from tree to subshrub growth forms, we compared seed biomass, germination, survival, resprouting, biomass allocation, and photosynthesis between congeneric trees and subshrubs, and quantified phylogenetic conservatism. Despite large differences in adult morphology between trees and subshrub species, the differences are modest in seedlings, and most of the variation in traits was explained by genus, indicating considerable phylogenic conservatism. Regardless, tree seedlings invested more heavily in aboveground growth, compared to subshrubs, which is consistent with the adult strategy of savanna trees, which depend on a large resistant-fire stem. Subshrub seedlings also invest in greater non-structural carbohydrate reserves, likely as an adaptation to the high fire frequencies typical of tropical savannas. The modest differences as seedlings suggest that selective pressures during early development may not have contributed substantially to the evolution of the subshrub growth form and that the distinct allocation and life history must arise later in life. This is consistent with the interpretation that the subshrub growth form arose as a life-history strategy in which maturity is reached at a small stem size, allowing them to reproduce despite repeated fire-induced topkill. The convergent evolution of subshrubs within multiple tree lineages reaffirms the importance of fire in the origin and diversification of the flora of mesic savannas.

  6. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  7. Investigating the effects of forest structure on the small mammal community in frequent-fire coniferous forests using capture-recapture models for stratified populations

    Treesearch

    Rahel Sollmann; Angela M. White; Beth Gardner; Patricia N. Manley

    2015-01-01

    Small mammals comprise an important component of forest vertebrate communities. Our understanding of how small mammals use forested habitat has relied heavily on studies in forest systems not naturally prone to frequent disturbances. Small mammal populations that evolved in frequent-fire forests, however, may be less restricted to specific habitat conditions due to the...

  8. Fire, Carbon, and Greenhouse Gas Emissions from Aquatic Ecosystems in the Yukon-Kuskokwim River Delta

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Kuhn, M. A.; Mann, P. J.; Holmes, R. M.; Natali, S.; Ludwig, S.; Wagner, S.

    2016-12-01

    Northern latitudes are experiencing rapid changes in climate that are profoundly altering permafrost-dominated ecosystems. Increased permafrost thaw and fire frequency and severity are changing the structure and function of these ecosystems in ways likely to alter greenhouse gas (GHG) emission, leading to feedbacks on climate that may accelerate warming. Our objective was to investigate changes in GHG emissions and carbon and nitrogen dynamics in aquatic ecosystems in response to recent fires in the Yukon-Kuskokwim river delta in western Alaska. In summer 2015, more area in the YK Delta burned then in the previous 74 years combined (726 km2 in 2015 vs. 477 km2 during 1940-2014). In June of 2016, we sampled water and dissolved gases from a variety of aquatic ecosystems, including small upland ponds and wetlands and streams lower in the landscape, in recently burned and control sites near the Kuka Creek 2015 burn scar in the Yukon Delta National Wildlife Refuge. We measured a range of physical parameters, including water temperature, conductivity, dissolved oxygen, and pH. We also estimated fluxes of CO2 and CH4 from surface waters using a floating chamber connected to a Los Gatos Ultraportable gas analyzer. Water samples were analyzed for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). Results show reduced DOC concentrations in small upland ponds in burned sites and evidence for loss of DOC downslope in control sites. In contrast, TDN concentration was higher in streams draining burned sites, suggesting fire mobilized N in soils, which was then transported to downslope ecosystems. Furthermore, fire generally increased pH, particularly in small ponds. Finally, we observed 3-4 fold higher CO2 and CH4 fluxes from aquatic ecosystems in burned sites as compared with control sites. We hypothesize that this is due to increased thaw depth and increased pH, which combine to increase resource availability and release methane-producing microbes from the constraints of low pH. These results suggest a strong positive feedback on climate from short-term responses of aquatic ecosystems to fire in the Arctic.

  9. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae) in Northern Tallgrass Prairie Preserves.

    PubMed

    Swengel, Ann B; Swengel, Scott R

    2013-11-20

    We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988-2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin), divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops) than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire) compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others' butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s). In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent need to identify how to manage preserves successfully for H. ottoe, such research now needs to be very cautious, because of the extreme fragility of the few remaining populations and the ruggedness of the preserves where H. ottoe is still known to occur.

  10. Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection, Journal of Applied Remote Sensing Vol.3

    Treesearch

    W. Wang; J.J. Qu; X. Hao; Y. Liu

    2009-01-01

    In the southeastern United States, most wildland fires are of low intensity. A substantial number of these fires cannot be detected by the MODIS contextual algorithm. To improve the accuracy of fire detection for this region, the remote-sensed characteristics of these fires have to be...

  11. Fire extinguishing agents for oxygen-enriched atmospheres

    NASA Astrophysics Data System (ADS)

    Plugge, M. A.; Wilson, C. W.; Zallen, D. M.; Walker, J. L.

    1985-12-01

    Fire-suppression agent requirements for extinguishing fires in oxygen-enriched atmospheres were determined employing small-, medium-, large-, and full-scale test apparatuses. The small- and medium-scale tests showed that a doubling of the oxygen concentration required five times more HALON for extinguishment. For fires of similar size and intensity, the effect of oxygen enrichment of the diluent volume in the HC-131A was not as grate as in the smaller compartments of the B-52 which presented a higher damage scenario. The full-scale tests showed that damage to the airframe was as important a factor in extinguishment as oxygen enrichment.

  12. Prototype of microbolometer thermal infrared camera for forest fire detection from space

    NASA Astrophysics Data System (ADS)

    Guerin, Francois; Dantes, Didier; Bouzou, Nathalie; Chorier, Philippe; Bouchardy, Anne-Marie; Rollin, Joël.

    2017-11-01

    The contribution of the thermal infrared (TIR) camera to the Earth observation FUEGO mission is to participate; to discriminate the clouds and smoke; to detect the false alarms of forest fires; to monitor the forest fires. Consequently, the camera needs a large dynamic range of detectable radiances. A small volume, low mass and power are required by the small FUEGO payload. These specifications can be attractive for other similar missions.

  13. Climate effects on historical fires (1630-1900) in Utah

    Treesearch

    Peter M. Brown; Emily K. Heyerdahl; Stanley G. Kitchen; Marc H. Weber

    2008-01-01

    We inferred climate effects on fire occurrence from 1630 to 1900 for a new set of crossdated fire-scar chronologies from 18 forested sites in Utah and one site in eastern Nevada. Years with regionally synchronous fires (31 years with fire at ≥20% of sites) occurred during drier than average summers and years with no fires at any site (100 years) were wetter...

  14. Processing woody debris biomass for co-milling with pulverized coal

    Treesearch

    Dana Mitchell; Bob Rummer

    2007-01-01

    The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...

  15. Trout Creek 1999 Burn

    Treesearch

    Sherel Goodrich

    2008-01-01

    A small prescribed fire near the mouth of Trout Creek in Strawberry Valley, Wasatch County, Utah, on the Uinta National Forest provided an opportunity to compare production and vascular plant composition in unburned and burned areas. At four years post burn, production of herbaceous plants was about four times greater in the burned area than in the unburned area. Most...

  16. Strategic Studies Quarterly. Volume 4, Number 4, Winter 2010

    DTIC Science & Technology

    2010-01-01

    routinely comes up with such graphic one- liners as: “Anybody who recognizes Israel will burn in the fire of the Islamic nation’s fury.” Jeru- salem Post...after the sinking of the Lusitania in 1915, they preoccupied the United States, too, for 75 years. The small cadre of EUR’s “German hands” had

  17. Prescribed burning for understory restoration

    Treesearch

    Kenneth W. Outcalt

    2006-01-01

    Because the longleaf ecosystem evolved with and is adapted to frequent fire, every 2 to 8 years, prescribed burning is often useful for restoring understory communities to a diverse ground layer of grasses, herbs, and small shrubs. This restoration provides habitat for a number of plant and animal species that are restricted to or found mostly in longleaf pine...

  18. Trends and causes of severity, size, and number of fires in northwestern California, USA.

    PubMed

    Miller, J D; Skinner, C N; Safford, H D; Knapp, E E; Ramirez, C M

    2012-01-01

    Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.

  19. Smoke Alarm Giveaway and Installation Programs

    PubMed Central

    Liu, Ying; Mack, Karin A.; Diekman, Shane T.

    2015-01-01

    Background The burden of residential fire injury and death is substantial. Targeted smoke alarm giveaway and installation programs are popular interventions used to reduce residential fire mortality and morbidity. Purpose To evaluate the cost effectiveness and cost benefit of implementing a giveaway or installation program in a small hypothetic community with a high risk of fire death and injury through a decision-analysis model. Methods Model inputs included program costs; program effectiveness (life-years and quality-adjusted life-years saved); and monetized program benefits (medical cost, productivity, property loss and quality-of-life losses averted) and were identified through structured reviews of existing literature (done in 2011) and supplemented by expert opinion. Future costs and effectiveness were discounted at a rate of 3% per year. All costs were expressed in 2011 U.S. dollars. Results Cost-effectiveness analysis (CEA) resulted in anaverage cost-effectiveness ratio (ACER) of $51,404 per quality-adjusted life-years (QALYs) saved and $45,630 per QALY for the giveaway and installation programs, respectively. Cost–benefit analysis (CBA) showed that both programs were associated with a positive net benefit with a benefit–cost ratio of 2.1 and 2.3, respectively. Smoke alarm functional rate, baseline prevalence of functional alarms, and baseline home fire death rate were among the most influential factors for the CEA and CBA results. Conclusions Both giveaway and installation programs have an average cost-effectiveness ratio similar to or lower than the median cost-effectiveness ratio reported for other interventionsto reduce fatal injuries in homes. Although more effort is required, installation programs result in lower cost per outcome achieved compared with giveaways. PMID:22992356

  20. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over the FRP strengthening system.

  1. Forest fires are associated with elevated mortality in a dense urban setting.

    PubMed

    Analitis, Antonis; Georgiadis, Ioannis; Katsouyanni, Klea

    2012-03-01

    The climate and vegetation of the greater Athens area (population over three million) make forest fires a real threat to the environment during the summer. A few studies have reported the adverse health effects of forest fires, mainly using morbidity outcomes. The authors investigated the short-term effects of forest fires on non-accidental mortality in the population of Athens, Greece, during 1998-2004. The authors used generalised additive models to investigate the effect of forest fires on daily mortality, adjusting for time trend and meteorological variables, taking into account air pollution as measured from fixed monitors. Forest fires were classified by size according to the area burnt. Small fires do not have an effect on mortality. Medium sized fires are associated with an increase of 4.9% (95% CI 0.3% to 9.6%) in the daily total number of deaths, 6.0% (95% CI -0.3% to 12.6%) in the number of cardiovascular deaths and 16.2% (95% CI 1.3% to 33.4%) in the number of respiratory deaths. Cardiovascular effects are larger in those aged <75 years, while respiratory effects are larger in older people. The corresponding effects of the one large fire are: 49.7% (95% CI 37.2% to 63.4%), 60.6% (95% CI 43.1% to 80.3%) and 92.0% (95% CI 47.5% to 150.0%). These effects cannot be completely explained by an increase in ambient particle concentrations. Forest fires have an immediate effect on mortality, not associated with accidental deaths, which is a significant public health problem, especially if the fire occurs near a densely populated area.

  2. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...

  3. Glossary of Fire Terms

    Science.gov Websites

    a slope faces. Backfiring When attacking a wildland fire using the indirect attack method convective column. Black Line When putting in control lines, the process of burning out any pockets of small wildland fire. Burning Out When attack on the wildland fire is direct, or parallel with the

  4. 46 CFR 118.300 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS FIRE PROTECTION EQUIPMENT Fire Main System § 118.300...

  5. 46 CFR 181.610 - Fire bucket.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven...

  6. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    Treesearch

    K. Barrett; A.D. McGuire; E.E. Hoy; E.S. Kasischke

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the...

  7. Burn center management of operating room fire injuries.

    PubMed

    Haith, Linwood R; Santavasi, Wil; Shapiro, Tyler K; Reigart, Cynthia L; Patton, Mary Lou; Guilday, Robert E; Ackerman, Bruce H

    2012-01-01

    Approximately 100 operating room (OR) fires occur per year in the United States, with 15% resulting in serious injuries. Intraoperative cautery was frequently associated with OR fires before 1994; however, use of supplemental oxygen (O(2)), ethanol-based products, and disposable drapes have been more frequently associated with OR fires. Fires resulting from cosmetic and other small procedures involving use of nasal canula O(2) and electrocautery have been described in six published reports. We report five thermal injury cases admitted to our burn treatment center because of fires during surgical procedures over a 5-year period. Two patients undergoing supraorbital excision experienced 2.5 and 3% TBSA involvement burns; in a third patient surgical excision of a nasal polyp resulted in a 1% TBSA burn; in a fourth patient an excisional biopsy of a lymph node resulted in a 2.75% TBSA burn; and the last patient was burned during placement of a pacemaker, with resulting TBSA of 10.5%. Two of the five patients required intubation for inhalational injury. Two patients required tangential excision and grafting of their thermal injuries. All patients had received local or parenteral anesthesia with supplemental O(2)/nitrous oxide (N(2)O) for surgical procedure. There are a number of ignition sources in the OR, including electrocautery, lasers, and faulty OR equipment. The risk of OR fires increases with surgical procedures involving the face and neck, including tracheostomy and tracheobronchial surgery. The common use of O(2)/N(2)O mixtures or enriched O(2) for minimally complex surgical procedures and disposable drapes adds to the risk of an OR fire: the O(2)/N(2)O provides a fuel source, and the disposable drapes trap thedelivered gas. Electrocautery near an O(2)/N(2)O source resulted in the five thermal injuries and warrants careful reconsideration of technique for surgical procedures.

  8. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  9. Warfighter Information Network-Tactical Increment 3 (WIN-T Inc 3)

    DTIC Science & Technology

    2013-12-01

    T vehicles employed at BCT, Fires, (Ch-1) WIN-T Inc 3 December 2013 SAR April 16, 2014 16:49:41 UNCLASSIFIED 13 AVN , BfSB, and select force...passengers and crew from small arms fire, mines, IED and other anti-vehicle/ personnel threats. AVN , BfSB, and select force pooled assets...small arms fire, mines, IED and other anti-vehicle/ personnel threats. AVN , BfSB, and select force pooled assets operating within the

  10. Evaluation of a boron-nitrogen, phosphate-free fire-retardant treatment. Part II, Testing of small clear specimens per ASTM Standard D 5664-95, Methods A and B

    Treesearch

    Jerrold E. Winandy; Douglas Herdman

    2003-01-01

    The objective of this work was to evaluate the effects of a new boron-nitrogen, phosphate-free fire-retardant (FR) formulation on several mechanical properties of FR-treated wood and to assess the potential of this treatment for in-service thermal-induced strength loss resulting from exposure to high temperature. Fire-retardant-treated and untreated small clear...

  11. Spacecraft Fire Suppression: Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Delplanque, Jean-Pierre; Kailasanath, Kazhikathra; Gokoglu, Suleyman; Wu, Ming-Shin

    2004-01-01

    The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and ventilation will be added to represent actual spacecraft conditions (e.g., a series of cards in a card rack).

  12. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  13. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  14. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  15. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  16. 76 FR 38590 - Proposed National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Performance for Fossil-Fuel- Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial...

  17. Fire History of a Ridge and Valley Oak Forest

    Treesearch

    Thomas M. Schuler; W. Russ McClain

    2003-01-01

    The fire history of an oak stand located near Pike Knob, Pendleton County, WV is described. A 156-year fire history chronology was developed from 1846 to 2002 and fire intervals ranged from 7 to 32 years for a single forest stand. The Weibull median fire interval was 14.76 years for one or more trees scarred during a single year, and 17.11 years when at least two trees...

  18. Hydrologic response and recovery to prescribed fire and vegetation removal in a small rangeland catchment

    USDA-ARS?s Scientific Manuscript database

    Prescribed fire can be used to return wild lands to their natural fire cycle, control invasive weeds, and reduce fuel loads, but there are gaps in the understanding of post-disturbance responses of vegetation and hydrology. The impact of a prescribed fire and subsequent aspen cutting on evapotransp...

  19. Can Southern California Wildland Conflagrations be Stopped?

    Treesearch

    Clive M. Countryman

    1974-01-01

    In southern California, many fires start and burn under conditions that permit their control with little burned acreage and fire damage. In contrast, under other conditions of weather and topography, on a small group of fires, control effort is relatively ineffective; they become large and destructive. A major reason for these "conflagration fires" is the...

  20. 46 CFR 181.600 - Fire axe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire axe. 181.600 Section 181.600 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Additional Equipment § 181.600 Fire axe. A vessel of more than 19.8 meters (65 feet) in length...

  1. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension firedmore » combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.« less

  2. Assessment of Small Arms Munitions Impacts on Natural Infrastructure in Sensitive Downrange Areas on Military Installations

    DTIC Science & Technology

    2016-02-01

    forecasting the risk of munitions constituents (MC), such as high explosives and metals , that leave firing and training ranges and contaminate the...quality terrestrial natural infrastructure exist down- range of small arms training ranges on Department of Defense (DoD) in- stallations. Live- fire ...CERL TN-16-1 iv Illustrations Figures A-1 Initial horizontal trajectory of a tracer bullet fired at a 600 m target at the Malone 5 range on Fort

  3. Phenotypic plasticity of post-fire activity and thermal biology of a free-ranging small mammal.

    PubMed

    Stawski, Clare; Körtner, Gerhard; Nowack, Julia; Geiser, Fritz

    2016-05-15

    Ecosystems can change rapidly and sometimes irreversibly due to a number of anthropogenic and natural factors, such as deforestation and fire. How individual animals exposed to such changes respond behaviourally and physiologically is poorly understood. We quantified the phenotypic plasticity of activity patterns and torpor use - a highly efficient energy conservation mechanism - in brown antechinus (Antechinus stuartii), a small Australian marsupial mammal. We compared groups in densely vegetated forest areas (pre-fire and control) with a group in a burned, open habitat (post-fire). Activity and torpor patterns differed among groups and sexes. Females in the post-fire group spent significantly less time active than the other groups, both during the day and night. However, in males only daytime activity declined in the post-fire group, although overall activity was also reduced on cold days in males for all groups. The reduction in total or diurnal activity in the post-fire group was made energetically possible by a ~3.4-fold and ~2.2-fold increase in the proportion of time females and males, respectively, used torpor in comparison to that in the pre-fire and control groups. Overall, likely due to reproductive needs, torpor was more pronounced in females than in males, but low ambient temperatures increased torpor bout duration in both sexes. Importantly, for both male and female antechinus and likely other small mammals, predator avoidance and energy conservation - achieved by reduced activity and increased torpor use - appear to be vital for post-fire survival where ground cover and refuges have been obliterated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. FIREX (Fire Influence on Regional and Global Environments Experiment): Measurements of Nitrogen Containing Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.

    2017-12-01

    A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.

  5. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model.

    PubMed

    Keeley, Jon E; Zedler, Paul H

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10,000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (> or = 50,000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating.

  6. Large, high-intensity fire events in Southern California shrublands: Debunking the fine-grain age patch model

    USGS Publications Warehouse

    Keeley, J.E.; Zedler, P.H.

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating. ?? 2009 by the Ecological Society of America.

  7. The viability of prescribed fire for mitigating the soil degradational impacts of wildfire

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.; Bento, C. P. M.; Ferreira, C. S. S.; Ferreira, A. J. D.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.

    2012-04-01

    Prescribed (controlled) fire has become an important strategy primarily to limit the likelihood of more devastating wildfire. The considerable increase in wildfire activity in recent decades throughout the Mediterranean, and in Portugal in particular, has meant that this strategy has become increasingly popular despite inherent fears of people about fire of any sort. Despite many studies of the impact of wildfire on soil erosion and degradation, relatively little research has assessed impacts of prescribed fire on soil in Portugal or elsewhere in the Mediterranean. As part of the DESIRE research programme, this paper addresses this research gap by investigating hillslope-scale losses of soil, soil organic matter and selected nutrients before and after an experimental fire (representing a 'worst case-scenario' prescribed fire) in a shrub-vegetated catchment in central Portugal. Comparison is provided by post-fire monitoring of a nearby hillslope affected by a wildfire of moderate severity. Hillslope-scale measurements were carried out over c. 3 years using sediment fences with contributing areas of up to c. 0.5 ha. Eroded sediment was periodically removed from the fences both before and after the fire at intervals ranging from a few weeks to several months depending on rainfall characteristics and logistics. Erosion expressed as g/m2 and g/m2/mm of rainfall was determined. Figures for long-term (c. 10 years) erosion under unburnt conditions for this vegetation type were obtained from a small bounded plot and from sediment accumulating in a weir pool draining a sub-catchment within the prescribed-fire catchment. In addition, soil organic matter and selected nutrients, including K2O, P2O5 and Total N, were measured in the eroded sediment and in the pre-burn and post-burn in situ soil. The results indicate that both the wildfire and prescribed fire caused erosion that was orders of magnitude higher than for long-term plot-scale and hillslope-scale erosion recorded under unburnt conditions. Total post-fire erosion measured over 21 /2 years was relatively high for this worst case scenario prescribed fire even when compared with published results from smaller-scale plots monitored after wildfire elsewhere in the Mediterranean, which would be expected to be higher. Nevertheless, the post-fire hillslope-scale losses appear to have had a relatively low impact on the thin, stony, degraded soils. This is thought also to be the case following the wildfire, even though it caused somewhat higher erosion. Its other serious effects (damage to habitat and property, loss of life), however, mean that wildfire can never be viewed as acceptable, particularly where people live in close proximity to highly fire-prone terrain. The results support the viability of prescribed fire as a strategy for combating wildfire on shrub-vegetated terrain in this wet Mediterranean environment. This view of a low impact of prescribed fire on the terrain may be different where the stability of the soil is reduced by disturbance through ploughing, where soils are very thin or contain relatively few stones, or where fire is carried out too frequently.

  8. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    USGS Publications Warehouse

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  9. Fire regimes for pine-grassland communities in the southeastern United States

    Treesearch

    Thomas A. Waldrop; David L. White; Steven M. Jones

    1992-01-01

    Abstract - Four combinations of season and frequency of burning were applied in Coastal Plain loblolly pine stands over a 43-year period. Overstory species composition and growth were unaffected by treatment. Above-ground portions of small hardwoods Qess than 12.5 cm d.b.h.1 were hilled and replaced by numerous sprouts under periodic summer, periodic winter, and annual...

  10. Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest

    USGS Publications Warehouse

    Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.

    2016-01-01

    Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression, seem to have limited impacts on waterfowl abundance and productivity. For waterfowl managers, our results suggest that adaptive models of waterfowl harvest, which annually guide hunting quotas, do not need to emphasize fires when integrating climate change effects.

  11. School Fires. Topical Fire Research Series. Volume 8, Issue 1

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2007

    2007-01-01

    Using the past 3 years of data, for 2003 to 2005, from the National Fire Incident Reporting System (NFIRS) database, the yearly national fire loss for fires on nonadult school properties is estimated at $85 million. Such losses are the result of an estimated annual average of 14,700 fires that required a fire department response. Fires on school…

  12. Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA.

    PubMed

    Kalies, E L; Dickson, B G; Chambers, C L; Covington, W W

    2012-01-01

    In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on progressively larger treatment implementation, better and more efficiently obtained ecological information is needed to inform these efforts.

  13. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65+degN). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 +/- 49 years (based on firescars) and 106 +/- 36 years (based on firescars and tree natality dates). FRIs were increased with latitude increase and observed to be about 80 years at 64N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approx.71+degN). Northward FRIs increase correlated with incoming solar radiation (r = -0.95). Post- Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. Keywords Fire ecology Fire history Fire frequency Siberian wildfires Larch forests Climate change

  14. Effects of fire intensity on vital rates of an endemic herb of the Florida keys, USA

    USGS Publications Warehouse

    Liu, H.; Menges, E.S.; Snyder, J.R.; Koptur, S.; Ross, M.S.

    2005-01-01

    Fire intensity is one of the important components of a fire regime. However, relatively few studies have linked fire intensity with post-fire population vital rates. In this study, we explored the effects of fire intensity on population vital rates of Chamaecrista keyensis Pennell (Fabaceae) up to two years post-fire. C. keyensis is an endemic understory plant of pine rockland, a fire-dependent ecosystem of the Lower Florida Keys. We measured one fire intensity indicator, fire temperature reached by steel plates on the ground, during three prescribed fires at different sites. We followed marked individuals up to two years post-fire to derive annual survival, annual growth rate, percentage of fruiting plants, mean number of fruits per reproductive plant, and number of seedlings per census plot (1 m2) of C. keyensis. We found fire intensity had significant effects on reproduction in the first year post-fire only. More specifically, mean number of fruits and percentage of fruiting plants increased as fire intensity increased. Results from this study suggest that extremely low fire intensity caused by very short fire return intervals (e.g., less than three years) may not provide sufficient stimulation to reproduction to achieve the best post-fire recovery for C. keyensis.

  15. Evaluation of carbon uptake and emissions by forests in Korea during the last thirty years (1973-2002).

    PubMed

    Choi, Sung-Deuk; Chang, Yoon-Seok

    2006-06-01

    The contribution of Korean forests to carbon sequestration for anthropogenic carbon emissions was evaluated. In addition, monitoring of carbon species released from forest fires was conducted. Despite a high carbon uptake by Korean forests, a tremendous increase in fossil fuel burning resulted in a small contribution by forests to carbon removal. The removal efficiency had a 5-31% range with an average of 12% during the period 1973-2002. In 2000, the amount of carbon released from burned trees corresponded to 1.6% of carbon uptake by forests. The distribution of surface CO concentration (ppb) derived from MOPITT (Measurement of Pollution in the Troposphere) showed high CO levels over the East/Japan Sea on April 10, 2000 when the largest forest fires occurred along the east coast of Korea. Trajectory analysis and ground CO measurements also indicated that CO levels over the East/Japan Sea were influenced by forest fires. This study suggests that continuous monitoring of carbon emissions from forest fires is needed for a more reliable estimate of carbon flux in the environment.

  16. Post-fire bedload sediment delivery across spatial scales in the interior western United States

    Treesearch

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2014-01-01

    Post-fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post-fire erosion rates has been at small scales (100m2 or less), and post-fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post-fire bedload sediment delivery...

  17. A multi-sensor burned area algorithm for crop residue burning in northwestern India: validation and sources of error

    NASA Astrophysics Data System (ADS)

    Liu, T.; Marlier, M. E.; Karambelas, A. N.; Jain, M.; DeFries, R. S.

    2017-12-01

    A leading source of outdoor emissions in northwestern India comes from crop residue burning after the annual monsoon (kharif) and winter (rabi) crop harvests. Agricultural burned area, from which agricultural fire emissions are often derived, can be poorly quantified due to the mismatch between moderate-resolution satellite sensors and the relatively small size and short burn period of the fires. Many previous studies use the Global Fire Emissions Database (GFED), which is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product MCD64A1, as an outdoor fires emissions dataset. Correction factors with MODIS active fire detections have previously attempted to account for small fires. We present a new burned area classification algorithm that leverages more frequent MODIS observations (500 m x 500 m) with higher spatial resolution Landsat (30 m x 30 m) observations. Our approach is based on two-tailed Normalized Burn Ratio (NBR) thresholds, abbreviated as ModL2T NBR, and results in an estimated 104 ± 55% higher burned area than GFEDv4.1s (version 4, MCD64A1 + small fires correction) in northwestern India during the 2003-2014 winter (October to November) burning seasons. Regional transport of winter fire emissions affect approximately 63 million people downwind. The general increase in burned area (+37% from 2003-2007 to 2008-2014) over the study period also correlates with increased mechanization (+58% in combine harvester usage from 2001-2002 to 2011-2012). Further, we find strong correlation between ModL2T NBR-derived burned area and results of an independent survey (r = 0.68) and previous studies (r = 0.92). Sources of error arise from small median landholding sizes (1-3 ha), heterogeneous spatial distribution of two dominant burning practices (partial and whole field), coarse spatio-temporal satellite resolution, cloud and haze cover, and limited Landsat scene availability. The burned area estimates of this study can be used to build a new agricultural fire emissions inventory to re-evaluate the contributions of winter agricultural fires to rural and urban air quality degradation.

  18. Stratifying Tropical Fires by Land Cover: Insights into Amazonian Fires, Aerosol Loading, and Regional Deforestation

    NASA Technical Reports Server (NTRS)

    TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2010-01-01

    This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.

  19. The effects of fire severity on black carbon additions to forest soils - 10 years post fire

    NASA Astrophysics Data System (ADS)

    Poore, R.; Wessman, C. A.; Buma, B.

    2013-12-01

    Wildfires play an active role in the global carbon cycle. While large amounts of carbon dioxide are released, a small fraction of the biomass consumed by the fire is only partially combusted, yielding soot and charcoal. These products, also called black carbon (BC) make up only 1-5% of the biomass burnt, yet they can have a disproportionate effect on both the atmosphere and fluxes in long-term carbon pools. This project specifically considers the fraction that is sequestered in forest soils. Black carbon is not a specific compound, and exists along a continuum ranging from partially burned biomass to pure carbon or graphite. Increasing aromaticity as the result of partial combustion means charcoal is highly resistant to oxidation. Although debated, most studies indicate a turnover time on the order of 500-1,000 years in warm, wet, aerobic soils. Charcoal may function as a long-term carbon sink, however its overall significance depends on its rate of formation and loss. At the landscape level, fire characteristics are one of the major factors controlling charcoal production. A few studies suggest that charcoal production increases with cooler, less-severe fires. However, there are many factors to tease apart, partly because of a lack of specificity in how fire severity is defined. Within this greater context, our lab has been working on a landscape-level study within Routt National Forest, north of Steamboat Springs, Colorado. In 2002, a large fire swept through a subalpine spruce, fir and lodgepole pine forest. In 2011-2013 we sampled BC pools in 44 plots across a range of fire severities from unburned to severe crown We hypothesized that charcoal stocks will be higher in areas of low severity fire as compared to high severity because of decreased re-combustion of charcoal in the organic soil and increased overall charcoal production due to lower temperatures. In each of our plots we measured charcoal on snags and coarse woody debris, sampled the entire organic horizon and the top 10cm mineral horizon. The soils were sieved to 2mm and their BC content measured using the Kurth-MacKenzie-DeLuca method of digesting labile carbon using nitric acid and hydrogen peroxide at 95C for 20hrs. We integrated both remotely sensed data and field observations. We used the Relative Difference Normalized Burn Ratio (RdNBR) calculated by Monitoring Trends in Burn Severity (MTBS). This index used Landsat images from July in the years before and after the fire and is based on differences in bands 4 and 7, with the aim of assessing coarse scale changes in soil and vegetation post fire. For each plot we also collected data on tree mortality and organic soil depth. These metrics were chosen from the Composite Burn Index as those that were most reliable even 10 years after the fire. We observed no significant differences in BC totals between high severity fire and unburned plots, although BC increased slightly on burned plots. Early results for low severity sites (analysis still in progress) suggest that BC increased in plots experiencing lower severity fires compared to unburned and high severity plots. Comparing carbon and BC totals on unburned and severely burned plots, and assuming no loss of BC from mineral soil during the fire, we observed a 1.2% conversion of burned biomass to BC, which corresponds with literature estimates of 1-4%.

  20. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    NASA Technical Reports Server (NTRS)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  1. Fire Safety of Passenger Trains : Phase II : Application of Fire Hazard Analysis Techniques

    DOT National Transportation Integrated Search

    2001-12-01

    On May 12, 1999, the Federal Railroad Administration (FRA) issued regulations for passenger rail equipment safety standards that included small-scale fire tests and performance criteria to evaluate the flammability and smoke characteristics of indivi...

  2. Fire safety of passenger trains. Phase II, Application of fire hazard analysis techniques.

    DOT National Transportation Integrated Search

    2001-12-01

    On May 12, 1999, the Federal Railroad Administration (FRA) issued regulations for passenger rail equipment safety standards that included small-scale fire tests and performance criteria to evaluate the flammability and smoke characteristics of indivi...

  3. Concepts for Future Large Fire Modeling

    Treesearch

    A. P. Dimitrakopoulos; R. E. Martin

    1987-01-01

    A small number of fires escape initial attack suppression efforts and become large, but their effects are significant and disproportionate. In 1983, of 200,000 wildland fires in the United States, only 4,000 exceeded 100 acres. However, these escaped fires accounted for roughly 95 percent of wildfire-related costs and damages (Pyne, 1984). Thus, future research efforts...

  4. Creation and implementation of a certification system for insurability and fire risk classification for forest plantations

    Treesearch

    Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.

    2015-01-01

    Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...

  5. Behaviour and effects of prescribed fire in masticated fuelbeds

    Treesearch

    Eric Knapp; J. Morgan Varner; Matt Busse; Carl Skinner; Carol Shestak

    2011-01-01

    Mechanical mastication converts shrub and small tree fuels into surface fuels, and this method is being widely used as a treatment to reduce fire hazard. The compactness of these fuelbeds is thought to moderate fire behaviour, but whether standard fuel models can accurately predict fire behaviour and effects is poorly understood. Prescribed burns were conducted in...

  6. Glare-reducing goggles for lookouts.

    Treesearch

    Richard E. McArdle; William G. Morris; Thornton T. Munger

    1936-01-01

    Detection of forest fires while they are still small is so important in forest protection that studies of the visibility of forest fire smokes from lookout points has been one of the principal phases of the fire studies program of the Pacific Northwest Forest Experiment Station. One phase of fire detection is the personal efficiency of the lookout. The Station has...

  7. Fire spread in chaparral -"go or no-go?"

    Treesearch

    D.R. Weise; Xiangyang Zhou; Lulu Sun; Shankar Mahalingam

    2005-01-01

    Current fire models are designed to model the spread of a linear fire front in dead, small-diameter fuels. Fires in predominantly living vegetation account for a large proportion of annual burned area nationally. Prescribed burning is used to manage living fuels; however, prescribed burning is currently conducted under conditions that result in marginal burning. We do...

  8. Fire intensity drives post-fire temporal pattern of soil carbon accumulation in Australian fire-prone forests.

    PubMed

    Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John

    2018-01-01

    The impact of fire on global C cycles is considerable but complex. Nevertheless, studies on patterns of soil C accumulation following fires of differing intensity over time are lacking. Our study utilised 15 locations last burnt by prescribed fire (inferred low intensity) and 18 locations last burnt by wildfire (inferred high intensity), with time since fire (TSF) up to 43years, in a homogenous forest type in south eastern Australia. Following a stratified approach to mineral soil sampling, the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC), were estimated. Generalised additive models indicated increases in % C Tot at TSF >30years in sites last burnt by wildfire. Estimates in sites last subjected to prescribed fire however, remained constant across the TSF chronosequence. There was no significant difference in % C Tot between the different fire types for the first 20years after fire. In the first 10years after wildfires, % RPC was elevated, declining to a minimum at ca. TSF 25years. After prescribed fires, % RPC was unaffected by TSF. Differences in response of % C Tot and % RPC to fire type may reflect the strength of stimulation of early successional processes and extent of charring. The divergent response to fire type in % C Tot was apparent at TSF longer than the landscape average fire return interval (i.e., 15 to 20years). Thus, any attempt to increase C sequestration in soils would require long-term exclusion of fire. Conversely, increased fire frequency is likely to have negligible impact on soil C stocks in these forests. Further investigation of the effects of fire frequency, fire intensity combinations and interaction of fire with other disturbances will enhance prediction of the likely impact of imposed or climatically induced changes to fire regimes on soil C. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Smoke alarm giveaway and installation programs: an economic evaluation.

    PubMed

    Liu, Ying; Mack, Karin A; Diekman, Shane T

    2012-10-01

    The burden of residential fire injury and death is substantial. Targeted smoke alarm giveaway and installation programs are popular interventions used to reduce residential fire mortality and morbidity. To evaluate the cost effectiveness and cost benefit of implementing a giveaway or installation program in a small hypothetic community with a high risk of fire death and injury through a decision-analysis model. Model inputs included program costs; program effectiveness (life-years and quality-adjusted life-years saved); and monetized program benefits (medical cost, productivity, property loss and quality-of-life losses averted) and were identified through structured reviews of existing literature (done in 2011) and supplemented by expert opinion. Future costs and effectiveness were discounted at a rate of 3% per year. All costs were expressed in 2011 U.S. dollars. Cost-effectiveness analysis (CEA) resulted in an average cost-effectiveness ratio (ACER) of $51,404 per quality-adjusted life-years (QALYs) saved and $45,630 per QALY for the giveaway and installation programs, respectively. Cost-benefit analysis (CBA) showed that both programs were associated with a positive net benefit with a benefit-cost ratio of 2.1 and 2.3, respectively. Smoke alarm functional rate, baseline prevalence of functional alarms, and baseline home fire death rate were among the most influential factors for the CEA and CBA results. Both giveaway and installation programs have an average cost-effectiveness ratio similar to or lower than the median cost-effectiveness ratio reported for other interventions to reduce fatal injuries in homes. Although more effort is required, installation programs result in lower cost per outcome achieved compared with giveaways. Published by Elsevier Inc.

  10. AmeriFlux US-Wrc Wind River Crane Site

    DOE Data Explorer

    Bible, Ken [University of Washington; Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.

  11. Effects of a Community Restoration Fire on Small Mammals and Herpetofauna in the Southern Appalachains

    Treesearch

    William M. Ford; M. Alex Menzel; David W. McGill; Joshua Laerm; Timothy S. McCay

    1999-01-01

    As part of the Wine Spring Creek ecosystem management project on the Nantahala National forest, North Carolina, we assessed effects of a community restoration fire on small mammals and herpetofauna in the upper slope pitch pine (Pinus rigida) stands, neighboring midslope oak (Quercus spp.) stands and rhododendron (...

  12. Analyzing post-fire topography at the hillslope-channel interface with terrestrial LiDAR: contrasting geomorphic responses from the 2012 Waldo Canyon Fire of Colorado and the 2013 Springs Fire of California

    NASA Astrophysics Data System (ADS)

    Storesund, R.; Chin, A.; Florsheim, J. L.; O'Hirok, L.; Williams, K.; Austin, K. E.

    2014-12-01

    Mountains areas are increasingly susceptible to wildfires because of warming climates. Although knowledge of the hydro-geomorphological impacts of wildfire has advanced in recent years, much is still unknown regarding how environmental fluxes move through burned watersheds. Because of the loss of vegetation and hydrophobic soils, flash floods often accompany elevated runoff events from burned watersheds, making direct process measurements challenging. Direct measurements are also only partly successful at capturing the spatial variations of post-fire effects. Coupled with short temporal windows for observing such responses, opportunities are often missed for collecting data needed for developing predictive models. Terrestrial LiDAR scanning (TLS) of burned areas allows detailed documentation of the post-fire topography to cm-level accuracy, providing pictures of geomorphic responses not previously possible. This paper reports a comparative study of hillslope-channel interactions, using repeat TLS, in two contrasting environments. Burned by the 2012 Waldo Canyon Fire and 2013 Springs Fire, in Colorado and California respectively, the study sites share many similarities including steep erosive slopes, small drainage areas, and step-pool channel morphologies. TLS provided a tool to test the central hypothesis that, dry ravel, distinct in the California Mediterranean environment, would prompt a greater sedimentological response from the Springs Fire compared to the Waldo Canyon Fire. At selected sites in each area, TLS documented baseline conditions immediately following the fire. Repeat scanning after major storms allowed detection of changes in the landscape. Results show a tendency for sedimentation in river channels in the study sites interacting with dry ravel on hillslopes, whereas erosion dominated the response from the Waldo Canyon Fire with an absence of dry ravel. These data provide clues to developing generalizations for post-fire effects at regional scales, which could assist with managing hazards from wildfires. TLS provides a promising tool to expand the range of studies concerning environmental responses through burned landscapes.

  13. Quantifying the Influence of Agricultural Fires in Northwest India on Urban Air Pollution in Delhi, India.

    NASA Astrophysics Data System (ADS)

    Cusworth, D.; Mickley, L. J.; Payer Sulprizio, M.; Marlier, M. E.; DeFries, R. S.; Liu, T.; Guttikunda, S. K.

    2017-12-01

    In recent decades, farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers burn to ready their fields for subsequent planting. A key question is to what extent the intense smoke emitted by these fires contributes to the already severe pollution in Delhi and across the heavily populated Indus-Ganges Plain, downwind of the fires. Using a combination of observed and modeled variables, including surface measurements of PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air pollution in Delhi. We first derive the signal of regional PM2.5 enhancements from the Delhi network of surface air monitors during each winter burning season (Oct. 17 - Nov. 30) for 2012-2016. We next use the Stochastic Time-Inverted Lagrangian Transport model (STILT) to generate particle back-trajectories from Delhi, which allows us to map the sensitivity of Delhi pollution to agricultural fires in each grid cell upwind. By combining these sensitivity maps with emissions from a suite of fire inventories, we can reproduce 15-36% of the weekly variability in observed PM2.5. Our method attributes 7-84% of maximum observed PM2.5 enhancement in Delhi to fires upwind, depending on the year and emission inventory. The large range of these attribution estimates points to the uncertainties in fire emission parameterizations, especially in regions where thick smoke may mask the hotspots of fire radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in Delhi air quality for 1-3 consecutive days each fire season, it fails to capture many smaller daily enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By quantifying the magnitude of the influence of agricultural fire emissions on Delhi air pollution, our work helps clarify the pollution exposure and potential health risk of this harvesting practice.

  14. Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India

    NASA Astrophysics Data System (ADS)

    Cusworth, Daniel H.; Mickley, Loretta J.; Sulprizio, Melissa P.; Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Guttikunda, Sarath K.; Gupta, Pawan

    2018-04-01

    Since at least the 1980s, many farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers typically burn to prepare their fields for subsequent planting. A key question is to what extent the large quantity of smoke emitted by these fires contributes to the already severe pollution in Delhi and across other parts of the heavily populated Indo-Gangetic Plain located downwind of the fires. Using a combination of observed and modeled variables, including surface measurements of PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air pollution in Delhi. With surface measurements, we first derive the signal of regional PM2.5 enhancements (i.e. the pollution above an anthropogenic baseline) during each post-monsoon burning season for 2012–2016. We next use the Stochastic Time-Inverted Lagrangian Transport model (STILT) to simulate surface PM2.5 using five fire emission inventories. We reproduce up to 25% of the weekly variability in total observed PM2.5 using STILT. Depending on year and emission inventory, our method attributes 7.0%–78% of the maximum observed PM2.5 enhancements in Delhi to fires. The large range in these attribution estimates points to the uncertainties in fire emission parameterizations, especially in regions where thick smoke may interfere with hotspots of fire radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in Delhi air quality for 1–3 consecutive days each fire season, it fails to capture many smaller daily enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By quantifying the influence of upwind agricultural fire emissions on Delhi air pollution, our work underscores the potential health benefits of changes in farming practices to reduce fires.

  15. NASA helicopter helps fight fire at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A NASA helicopter drops water from a special '''bucket''' onto a small fire on Kennedy Space Center grounds. The site is between Kennedy Parkway North and the Indian River. The fire is one of many throughout Central Florida, which is suffering from drought.

  16. NASA helicopter helps fight fire at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A NASA helicopter takes off to bring water to fight a small fire on Kennedy Space Center grounds. The site is between Kennedy Parkway North and the Indian River. The fire is one of many throughout Central Florida, which is suffering from drought.

  17. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  18. North African savanna fires and atmospheric carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacobellis, S.F.; Frouni, Razafimpaniolo, H.

    1994-04-20

    The effect of north African savanna fires on atmospheric CO{sub 2} is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO{sub 2} concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO{sub 2} sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO{sub 2} concentrations in South America. The effect is more pronounced during the period from January through March,more » when biomass burning in South America is almost nonexistent. During this period, atmospheric CO{sub 2} concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO{sub 2} concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO{sub 2} concentration increase at 970 mbar. 20 refs., 15 figs., 1 tab.« less

  19. Lessons learned from post-wildfire monitoring and implications for land management and regional drinking water treatability in Southern Rockies of Alberta

    NASA Astrophysics Data System (ADS)

    Diiwu, J.; Silins, U.; Kevin, B.; Anderson, A.

    2008-12-01

    Like many areas of the Rocky Mountains, Alberta's forests on the eastern slopes of the Rockies have been shaped by decades of successful fire suppression. These forests are at high risk to fire and large scale insect infestation, and climate change will continue to increase these risks. These headwaters forests provide the vast majority of usable surface water supplies to large region of the province, and large scale natural disasters can have dramatic effects on water quality and water availability. The population in the region has steadily increased and now this area is the main source water for many Alberta municipalities, including the City of Calgary, which has a population of over one million. In 2003 a fire burned 21,000 ha in the southern foothills area. The government land managers were concerned about the downstream implications of the fire and salvage operations, however there was very limited scientific information to guide the decision making. This led to establishment of the Southern Rockies Watershed Project, which is a partnership between Alberta Sustainable Resource Development, the provincial government department responsible for land management and the University of Alberta. After five years of data collection, the project has produced quantitative information that was not previously available about the effects of fire and management interventions such as salvage logging on headwaters and regional water quality. This information can be used to make decisions on forest operations, fire suppression, and post-fire salvage operations. In the past few years this project has captured the interest of large municipalities and water treatment researchers who are keen to investigate the potential implications of large natural disturbances to large and small drinking water treatment facilities. Examples from this project will be used to highlight the challenges and successes encountered while bridging the gap between science and land management policy.

  20. Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons

    PubMed Central

    Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David

    2007-01-01

    Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d, and it is delayed for larger g d. As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction. PMID:17696606

  1. Mechanisms of firing patterns in fast-spiking cortical interneurons.

    PubMed

    Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David

    2007-08-01

    Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.

  2. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands

    PubMed Central

    Ballhorn, Uwe; Siegert, Florian; Mason, Mike; Limin, Suwido

    2009-01-01

    During the 1997/98 El Niño-induced drought peatland fires in Indonesia may have released 13–40% of the mean annual global carbon emissions from fossil fuels. One major unknown in current peatland emission estimations is how much peat is combusted by fire. Using a light detection and ranging data set acquired in Central Kalimantan, Borneo, in 2007, one year after the severe peatland fires of 2006, we determined an average burn scar depth of 0.33 ± 0.18 m. Based on this result and the burned area determined from satellite imagery, we estimate that within the 2.79 million hectare study area 49.15 ± 26.81 megatons of carbon were released during the 2006 El Niño episode. This represents 10–33% of all carbon emissions from transport for the European Community in the year 2006. These emissions, originating from a comparatively small area (approximately 13% of the Indonesian peatland area), underline the importance of peat fires in the context of green house gas emissions and global warming. In the past decade severe peat fires occurred during El Niño-induced droughts in 1997, 2002, 2004, 2006, and 2009. Currently, this important source of carbon emissions is not included in IPCC carbon accounting or in regional and global carbon emission models. Precise spatial measurements of peat combusted and potential avoided emissions in tropical peat swamp forests will also be required for future emission trading schemes in the framework of Reduced Emissions from Deforestation and Degradation in developing countries. PMID:19940252

  3. Contemporary hazards in the home: keeping children safe from thermal injuries.

    PubMed

    Deave, Toity; Goodenough, Trudy; Stewart, Jane; Towner, Elizabeth; Majsak-Newman, Gosia; Hawkins, Adrian; Coupland, Carol; Kendrick, Denise

    2013-07-01

    To explore the knowledge and reported thermal injury prevention practices among parents of children aged 0-4 years in disadvantaged areas. Parents of pre-school children in Children's Centres in four study areas in England (Nottingham, Newcastle, Norwich and Bristol) were interviewed using a structured schedule. Interviews covered smoke alarms, bedtime routines, fire escape plans, other thermal prevention practices and parental knowledge of first aid. Of the 200 respondents, most reported ownership of at least one smoke alarm (n=191, 96%), of which 95% were working. Half reported a fire prevention bedtime routine (n=105, 53%) or fire escape plan (n=81, 42%). Most parents had matches or lighters in the home (n=159, 80%), some stored where children under 5 years of age could reach them (n=30, 19%). There was a high prevalence of irons (n=188, 94%) and hair straighteners (n=140, 70%). A third of both devices were used daily. Just 17 (12%) parents reported leaving hair straighteners, when hot but not in use, in a heatproof bag. Knowledge of correct initial first aid for a small burn was good (n=165, 83%), but parents reported other potentially harmful actions, for example, applying ointment (n=44, 22%). Most families report at least one working smoke alarm, but many do not have fire escape plans or fire prevention bedtime routines. A number of reported practices could compromise child safety, such as storage of matches or lighters and leaving hair straighteners to cool unprotected. Reappraisal of health promotion messages, in light of new household consumables, is necessary.

  4. Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Glaab, Louis J.; Craig, Timothy

    2016-01-01

    This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).

  5. Solar thermal power plants in small utilities - An economic impact analysis

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Ferber, R. R.; Mayo, L. G.

    1979-01-01

    A study was performed to assess the potential economic impact of small solar thermal electric power systems in statistically representative synthetic small utilities of the Southwestern United States. Power supply expansion plans were compared on the basis of present worth of future revenue requirements for 1980-2000 with and without solar thermal plants. Coal-fired and oil-fired municipal utility expansion plans with 5 percent solar penetration were 0.5 percent and 2.25 percent less expensive, respectively, than the corresponding conventional plan. At $969/kWe, which assumes the same low cost solar equipment but no improvement in site development costs, solar penetration of 5 percent in the oil-fired municipal reduced revenue requirements 0.88 percent. The paper concludes that some solar thermal plants are potentially economic in small community utilities of the Southwest.

  6. Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales

    USGS Publications Warehouse

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.

  7. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon.

    PubMed

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  8. Linking surface-fire behavior, stem heating, and tissue necrosis

    Treesearch

    A.S. Bova; M.B. Dickinson; M.B. Dickinson

    2005-01-01

    Data from 69 experimental, small-plot fires are used to describe relationships among fire intensity, barksurface heat flux, and depth of necrosis in stem tissue for red maple (Acer rubrum L.) and chestnut oak (Quercus prinus L.j. A tetrazolium staining technique was used to determine the depth of necrosis in tree boles subjected to fires with intensities of 20 to 2000...

  9. How Hot Can a Fire Piston Get?

    ERIC Educational Resources Information Center

    Scott-Brown, J. A.; Cunningham, O. A.; Goad, B. C.

    2010-01-01

    The fire piston is just a sealed syringe containing a small amount of tinder. When the plunger is forced downwards, the air inside is compressed and heats up, setting fire to the tinder. It has been used as a convenient and portable way of starting fires "over a wide area from northern Burma and Siam through the Malay Peninsula and the Malayan…

  10. The impact of aging on laboratory fire behaviour in masticated shrub fuelbeds of California and Oregon, USA

    Treesearch

    Jesse K. Kreye; J. Morgan Varner; Jeffrey M. Kane; Eric E. Knapp; Warren P. Reed

    2016-01-01

    Mastication of shrubs and small trees to reduce fire hazard has become a widespread management practice, yet many aspects of the fire behaviour of these unique woody fuelbeds remain poorly understood. To examine the effects of fuelbed aging on fire behaviour, we conducted laboratory burns with masticated Arctostaphylos spp. and Ceanothus...

  11. Spatially and temporally variable fire regime on Rincon Peak, Arizona, USA

    Treesearch

    Jose M. Iniguez; Thomas W. Swetnam; Christopher H. Baisa

    2009-01-01

    Spatial and temporal patterns of fire history are affected by factors such as topography, vegetation, and climate. It is unclear, however, how these factors influenced fire history patterns in small isolated forests, such as that found on Rincon Peak, a "sky island" mountain range in southern Arizona, USA. We reconstructed the fire history of Rincon Peak to...

  12. Ecological foundations for fire management in North American forest and shrubland ecosystems

    Treesearch

    J.E. Keeley; G.H. Aplet; N.L. Christensen; S.G. Conard; E.A. Johnson; P.N. Omi; D.L. Peterson; T.W. Swetnam

    2009-01-01

    This synthesis provides an ecological foundation for management of the diverse ecosystems and fire regimes of North America based on scientific principles of fire interactions with vegetation, fuels, and biophysical processes. Although a large amount of scientific data on fire exists, most of those data have been collected at small spatial and temporal scales. Thus, it...

  13. Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; Eaton, B. C.

    2014-12-01

    In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is exceeded, and decreases as the forest regenerates. In all cases, the effects are greatest in small to intermediate sized streams where wood is the dominant driver of channel morphology, and become negligible in large streams governed by fluvial processes.

  14. Long term effects of fire on carbon and nitrogen pools and fluxes in the arctic permafrost and subarctic forests (ARCTICFIRE)

    NASA Astrophysics Data System (ADS)

    Pumpanen, Jukka; Köster, Kajar; Aaltonen, Heidi; Köster, Egle; Zhou, Xuan; Zhang-Turpeinen, Huizhong; Heinonsalo, Jussi; Palviainen, Marjo; Sun, Hui; Biasi, Christina; Bruckman, Viktor; Prokushkin, Anatoly; Berninger, Frank

    2017-04-01

    Boreal forests, which are to a large extent located on permafrost soils, are a crucial part of the climate system because of their large soil carbon (C) pool. Even small change in this pool may change the terrestrial C sink in the arctic into a source with a consequent increase in CO2 concentrations. About 1% of boreal forests are exposed to fire annually, which affects the soil and permafrost under them. Thawing of permafrost increases the depth of the active layer containing large C and N stocks. In addition to temperature, the decomposition of soil organic matter depends on its chemical composition which may also be affected by fires. Part of the soil organic matter is turned into pyrogenic C and N resistant to decomposition. We studied the effect of forest fires on soil greenhouse gas fluxes (CO2, CH4 and N2O)and biogenic volatile organic compound fluxes using portable chambers. The amount of easily decomposable and recalcitrant fractions in soil organic matter were determined with water, ethanol and acid extraction, and the natural 13C and 15N abundances as well as chemical quality with Fourier Transform Infrared Spectroscopy (FTIR) were studied. Also, changes in microbial community structure and composition were analyzed with next generation pyrosequencing. Our preliminary results indicate that soil CO2 effluxes were significantly decreased immediately after the fire, and the recovery to pre-fire level took several decades. Soils were a small sink of CH4 and a source of N2O in all age classes, and the CH4 uptake was increased and N2O fluxes decreased still 20 years following the fire. A clear vertical distribution was observed in the amount of extractable soil organic matter the amount of extractable organic matter being highest in the soil surface layers and decreasing with depth. The natural 13C and 15N abundances and FTIR spectra and changes in microbial community composition are still under analysis.

  15. Landscape characteristics of disturbed shrubsteppe habitats in southwestern Idaho (USA)

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    1997-01-01

    We compared 5 zones in shrubsteppe habitats of southwestern Idaho to determine the effect of differing disturbance combinations on landscapes that once shared historically similar disturbance regimes. The primary consequence of agriculture, wildfires, and extensive fires ignited by the military during training activities was loss of native shrubs from the landscape. Agriculture created large square blocks on the landscape, and the landscape contained fewer small patches and more large shrub patches than non-agricultural areas. In contrast, fires left a more fragmented landscape. Repeated fires did not change the distribution of patch sizes, but decreased the total area of remaining shrublands and increased the distance between remaining shrub patches that provide seed sources. Military training with tracked vehicles was associated with a landscape characterized by small, closely spaced, shrub patches. Our results support the general model hypothesized for conversion of shrublands to annual grasslands by disturbance. Larger shrub patches in our region, historically resistant to fire spread and large-scale fires because of a perennial bunchgrass understory, were more fragmented than small patches. Presence of cheatgrass (Bromus tectorum), an exotic annual, was positively related to landscape patchiness and negatively related to number of shrub cells. Thus, cheatgrass dominance can contribute to further fragmentation and loss of the shrub patch by facilitating spread of subsequent fires, carried by continuous fuels, through the patch. The synergistic processes of fragmentation of shrub patches by disturbance, invasion and subsequent dominance by exotic annuals, and fire are converting shrubsteppe in southwestern Idaho to a new state dominated by exotic annual grasslands and high fire frequencies.

  16. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65 + deg N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 ± 49 years (based on fire scars) and 106 ± 36 years (based on fire scars and tree natality dates). FRI were increased with latitude increase and observed to be about 80 years at 64 deg N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approximately 71 deg + N). Northward FRI increase correlated with incoming solar radiation (r = -0.95). Post Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase.

  17. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    PubMed Central

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2017-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65+°N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRI) were found to be 112 ± 49 years (based on fire scars) and 106 ± 36 years (based on fire scars and tree natality dates). FRI were increased with latitude increase, and observed to be about 80 years at 64°N, about 200 years near the Arctic Circle, and about 300 years nearby the northern range limit of larch stands (~71°+N). Northward FRI increase correlated with incoming solar radiation (r = − 0.95). Post Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. PMID:28966554

  18. Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.

    PubMed

    Rothkegel, Alexander; Lehnertz, Klaus

    2009-03-01

    We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.

  19. Fire-driven alien invasion in a fire-adapted ecosystem

    USGS Publications Warehouse

    Keeley, Jon E.; Brennan, Teresa J.

    2012-01-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels, and changes in carbon storage.

  20. Fire-driven alien invasion in a fire-adapted ecosystem.

    PubMed

    Keeley, Jon E; Brennan, Teresa J

    2012-08-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels, and changes in carbon storage.

  1. Evaluation of runoff prediction from WEPP-based erosion models for harvested and burned forest watersheds

    Treesearch

    S. A. Covert; P. R. Robichaud; W. J. Elliot; T. E. Link

    2005-01-01

    This study evaluates runoff predictions generated by GeoWEPP (Geo-spatial interface to the Water Erosion Prediction Project) and a modified version of WEPP v98.4 for forest soils. Three small (2 to 9 ha) watersheds in the mountains of the interior Northwest were monitored for several years following timber harvest and prescribed fires. Observed climate variables,...

  2. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia's Tropical Savannas.

    PubMed

    Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C Z; Astheimer, Lee

    2015-01-01

    Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species--one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)--from two large areas (> 2,830 km2) with initial contrasting fire regimes ('extreme': frequent, extensive, intense fire; versus 'benign': less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the 'benign' fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species.

  3. Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations

    PubMed Central

    Traub, Roger D.; Schmitz, Dietmar; Maier, Nikolaus; Whittington, Miles A.; Draguhn, Andreas

    2012-01-01

    Evidence has been presented that CA1 pyramidal cells, during spontaneous in vitro sharp wave/ripple (SPW-R) complexes, generate somatic action potentials that originate in axons. ‘Participating’ (somatically firing) pyramidal cells fire (almost always) at most once during a particular SPW-R whereas non-participating cells virtually never fire during an SPW-R. Somatic spikelets were small or absent, while ripple-frequency EPSCs and IPSCs occurred during the SPW-R in pyramidal neurons. These experimental findings could be replicated with a network model in which electrical coupling was present between small pyramidal cell axonal branches. Here, we explore this model in more depth. Factors that influence somatic participation include: (i) the diameter of axonal branches that contain coupling sites to other axons, because firing in larger branches injects more current into the main axon, increasing antidromic firing probability; (ii) axonal K+ currents; and (iii) somatic hyperpolarization and shunting. We predict that portions of axons fire at high frequency during SPW-R, while somata fire much less. In the model, somatic firing can occur by occasional generation of full action potentials in proximal axonal branches, which are excited by high-frequency spikelets. When the network contains phasic synaptic inhibition, at the axonal gap junction site, gamma oscillations result, again with more frequent axonal firing than somatic firing. Combining the models, so as to generate gamma followed by sharp waves, leads to strong overlap between the population of cells firing during gamma the population of cells firing during a subsequent sharp wave, as observed in vivo. PMID:22697272

  4. Comparison of the characteristics of fire and non-fire households in the 2004-2005 survey of fire department-attended and unattended fires.

    PubMed

    Greene, Michael A

    2012-06-01

    Comparison of characteristics of fire with non-fire households to determine factors differentially associated with fire households (fire risk factors). National household telephone survey in 2004-2005 by the US Consumer Product Safety Commission with 916 fire households and a comparison sample of 2161 non-fire households. There were an estimated 7.4 million fires (96.6% not reported to fire departments) with 130,000 injuries. Bivariate analysis and multivariate logistic regression analyses to assess differences in household characteristics. Significant factors associated with fire households were renting vs. owning (OR 1.988 p<0.0001); household members under 18 year of age (OR 1.277 p<0.0001); lack of residents over 64 years old (OR 0.552 p=0.0007); and college or higher education (some college OR 1.444 p=0.0360, college graduate OR 1.873, p<0.0001, postgraduate OR 2.156 p<0.0001). Not significant were age of house; race; ethnicity; and income. Number of smokers was borderline significant (OR 1.132 p=0.1019) but was significant in the subset of fire households with non-cooking fires (OR 1.383 p=0.0011). Single family houses were associated with non-fire households in the bivariate analysis but not in the multivariate analyses. Renting, household members under 18 years old and smokers are risk factors for unattended fires, similar to the literature for fatal and injury fires. Differences included household members over 65 years old (associated with non-fire households), college/postgraduate education (associated with fire households) and lack of significance of income. Preventing cooking fires (64% of survey incidents), smoking prevention efforts and fire prevention education for families with young children have the potential for reducing unattended fires and injuries.

  5. Emissions of volatile organic compounds and particulate matter from small-scale peat fire

    EPA Science Inventory

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...

  6. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    EPA Science Inventory

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...

  7. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data

    NASA Astrophysics Data System (ADS)

    Chang, D.; Song, Y.

    2009-09-01

    Biomass burning in tropical Asia emits large amounts of trace gases and particulate matters into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000-2006 (1 April 2000-31 March 2007). Burned areas were estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned for each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions clearly showed spatial and seasonal variations. The L3JRC burned areas ranged from 31 165 km2 in fire year 2005 to 57 313 km2 in 2000, while the MCD45A1 burned areas ranged from 54 260 km2 in fire year 2001 to 127 068 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas with ground-based measurements and other satellite information were constructed in several major burning regions, and results suggested that MCD45A1 performed better in most areas than L3JRC did although with a certain degree of underestimation of burned forest areas. The average annual L3JRC-based emissions were 125, 12, 0.98, 1.91, 0.11, 0.89, 0.044, 0.022, 0.42, 3.40, and 3.68 Tg yr

  8. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  9. El Niño-southern oscillation effect on a fire regime in northeastern Mexico has changed over time.

    PubMed

    Yocom, Larissa L; Fulé, Peter Z; Brown, Peter M; Cerano, Julian; Villanueva-Díaz, José; Falk, Donald A; Cornejo-Oviedo, Eladio

    2010-06-01

    The El Niño Southern Oscillation (ENSO) is a climate-forcing mechanism that has been shown to affect precipitation and the occurrence of wildfires in many parts of the world. In the southern United States and northern Mexico, warm events (El Niño) are associated with moist winter conditions and fewer fires, while cool events (La Niñia) tend to favor dry winters and more fires. We tested this relationship in a region of northeastern Mexico by characterizing the historical fire regime and climatic influences: Fire regimes were reconstructed from fire-scar samples collected from 100 trees in three high-elevation sites on Peña Nevada in southern Nuevo Le6n. The sites were approximately 25 ha each, and the site centers were approximately 1 km apart. The earliest recorded fire occurred in 1521 and the time period we used for analysis was 1645-1929. The sites were characterized by frequent surface fires before the 1920s. In the three sites, mean fire intervals ranged from 8.6 to 9.6 years (all fires) and 11.9 to 18.6 years (fires that scarred > or = 25% of recording trees). The per-tree mean fire return interval was 17 years, and all three sites burned in the same year seven times between 1774 and 1929. After 1929, fires were nearly eliminated in all sites, likely due to human causes. We found a temporal change in the association between ENSO events and fires; before the 1830s La Niña events were significantly associated with fire years, while after the 1830s this association was not significant. In 1998, when the most severe El Niño event of the past century occurred, the three sites experienced severe, stand-replacing fires that killed many trees that had survived multiple surface fires in the past. Prior to the 1830s, fires tended to occur during dry La Niña years, but since then both La Niña and El Niño have been associated with dry years in this region, especially during the last three decades. This result suggests that ENSO effects have changed over time in this location and that phases of ENSO are not consistent indicators of precipitation, fire occurrence, or fire behavior in this area of northeastern Mexico.

  10. Recovery dynamics of evapotranspiration, flow, sediment and nutrients following severe wildfire in eucalypt forests

    NASA Astrophysics Data System (ADS)

    Lane, P. N.; Sheridan, G. J.; Nyman, P.; Nolan, R.; Nokse, P. J.

    2013-12-01

    Wildfire is a particularly significant disturbance event in forested landscapes. Around 40,000 km2 of largely forested land has been burnt in south eastern Australia in the past decade. Fire effects on erosion and water quality have been widely reported and studied in many environments, but nutrient dynamics and evapotranspiration (ET) and streamflow are also of significant concern or interest. However the hydrologic response and recovery trajectories of the majority of eucalypt forests has been poorly known. Likewise, the coupling of ET response with sediment and nutrient dynamics has not been explored widely. Our research over the past decade into sediment, nutrients and ET/flow dynamics in differing forest types has led to new insights into this resilience/recovery question in eucalypt forests. This research has encompassed scales from the point to large catchment, identified the driving processes, and led to models that deal with discrete events and risk/probability frameworks. Broadly, we suggest there are two distinct 'sets' of responses and recovery trajectories depending on forest type. (1) wet eucalypt stands of E. regnans and E. delegatensis and associated 'ash' stands; and (2) the drier 'mixed-species' forests. The hydrologic responses of (1) may be summarized as: (i) Widespread mortality of trees exposed to moderate-hot fire, leading to dense single-age regeneration. ET is suppressed for 1-3 years, then increases to exceed that of a stands > 30 years old, with a concomitant inverse effect on flow. This recovery trajectory may play out until forests reach maturity (~100 years) or are re-burnt (ii) Sediment and nutrients (P and N principally) exports can increase by 1-2 orders of magnitude, but export rates recover with 2 years of the fire. Erosion processes are largely non-rill. Water quality issues (per event) are relatively short term (days) For case (2): (i) These stands are fire-resistant and show low (~10 %) rates of mortality. Leaf are recovery (and hence ET) is via epicormic leaves and seedling recruitment. ET response appears to be related to fire severity, with moderate severities producing higher ET rates for some years following leaf recovery. However ecological responses indicate theories of hydrologic equilibrium fit these forests and pre-fire ET rates are likely to recover within 5-10 years. (ii) Changes to peak flow can occur, but are scale-dependent, with only small convective storms cells likely to produce flood flows, and recovery likely within 2 years (iii) Erosion can be by both rill and non-rill processes, and may also be in form of debris flows (DF) in steeper topography. Debris flows produce increased loads x orders of magnitude, and can cause water quality issues on the scale of weeks or months. The key factors (aside from topography and background sediment supply) in rainfall return interval and water repellency/infiltration dynamics mean the time domain for DF is about 2 years. Although the impacts of discrete fire events are relatively short for most disturbance issues, fire return intervals and intensities may have longer term consequences. Higher frequency fires combined with a drying climate may result in less resilient forests systems with changed hydrologic characteristics. An example is re-seeding forests re-burnt before seed can develop, with consequent ET changes.

  11. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  12. Short-term responses of birds to prescribed fire in fire-suppressed forests of California

    Treesearch

    Bagne Karen; Kathryn Purcell

    2011-01-01

    Prescribed fire is one tool for restoring fire-suppressed forests, but application of fire during spring coincides with breeding and arrival of migrant birds. We examined effects of low-severity prescribed fires on counts of birds in a managed forest in the Sierra Nevada of California immediately, 1 year, and 3–6 years after fire was applied in spring. Of 26 species...

  13. Post-fire mulching for runoff and erosion mitigation; Part II: Effectiveness in reducing runoff and sediment yields from small catchments

    Treesearch

    Peter R. Robichaud; Joseph W. Wagenbrenner; Sarah A. Lewis; Louise E. Ashmun; Robert E. Brown; Peter M. Wohlgemuth

    2013-01-01

    Agricultural straw, hydromulch, and wood shred or wood strand mulches increasingly are being used as post-fire hillslope treatments, but the differences in effectiveness among these mulch treatments are not fully understood. Following the 2002 Hayman fire in central Colorado and the 2003 Cedar fire in southern California, matched catchments were monitored for five to...

  14. Frequency of dry east winds over northwest Oregon and southwest Washington.

    Treesearch

    Owen P. Cramer

    1957-01-01

    There is a close relation between occurrences of severe easterly winds and large forest fires in northwest Oregon and southwest Washington. With the east winds comes the dreaded combination of low humidity and high wind that in the past has whipped small fires into conflagrations such as the Tillamook fire of 1933 and the fire that burned Bandon in 1936. These easterly...

  15. Post-wildfire erosion in the Chiricahua Mountains

    Treesearch

    Ann Youberg; Daniel G. Neary; Karen A. Koestner; Peter E. Koestner

    2013-01-01

    The Horseshoe 2 Fire burned 90,226 ha (222,954 ac) of the Chiricahua Mountains in the Coronado National Forest of southeast Arizona from May 8 to June 25, 2011. This mountain range in the Madrean Archipelago was burned by widespread fires prior to 1890, numerous small fires after 1890, and, more recently, the 11,129 ha (27,500 ac) Rattlesnake Fire in 1994. The latter...

  16. Estimated smoldering probability: a new tool for predicting ground fire in the organic soils on the North Carolina Coastal Plain

    Treesearch

    James Reardon; Gary Curcio

    2011-01-01

    In the Southeastern United States, fires in pocosin wetlands and other similar vegetation communities with deep organic soils are a serious concern to fire managers. Highly flammable shrubs, such as gallberry and fetterbush, and small evergreen trees, such as red and loblolly bay, create the potential for extreme surface fire behavior. Moreover, deep organic soils...

  17. Respiratory Symptoms Following Wildfire Smoke Exposure

    PubMed Central

    Mirabelli, Maria C.; Künzli, Nino; Avol, Edward; Gilliland, Frank D.; Gauderman, W. James; McConnell, Rob; Peters, John M.

    2015-01-01

    Background Associations between exposure to smoke during wild-fire events and respiratory symptoms are well documented, but the role of airway size remains unclear. We conducted this analysis to assess whether small airway size modifies these relationships. Methods We analyzed data from 465 nonasthmatic 16- to 19-year-old participants in the Children’s Health Study. Following an outbreak of wildfires in 2003, each student completed a questionnaire about smoke exposure, dry and wet cough, wheezing, and eye symptoms. We used log-binomial regression to evaluate associations between smoke exposure and fire-related health symptoms, and to assess modification of the associations by airway size. As a marker of airway size, we used the ratio of maximum midexpiratory flow to forced vital capacity. Results Forty percent (186 of 465) of this population (including students from 11 of 12 surveyed communities) reported the odor of wildfire smoke at home. We observed increased respiratory and eye symptoms with increasing frequency of wildfire smoke exposure. Associations between smoke exposure and having any of 4 respiratory symptoms were stronger in the lowest quartile of the lung function ratio (eg, fire smoke 6+ days: prevalence ratio: 3.8; 95% confidence interval (CI = 2.0 –7.2), compared with the remaining quartiles (fire smoke 6+ days: prevalence ratio = 2.0; 1.2–3.2). Analysis of individual symptoms suggests that this interaction may be strongest for effects on wheezing. Conclusions Small airways may serve as a marker of susceptibility to effects of wildfire smoke. Future studies should investigate the role of airway size for more common exposures and should include persons with asthma. PMID:19276978

  18. THE EFFECTS OF COMPUTER-BASED FIRE SAFETY TRAINING ON THE KNOWLEDGE, ATTITUDES, AND PRACTICES OF CAREGIVERS

    PubMed Central

    Harrington, Susan S.; Walker, Bonnie L.

    2010-01-01

    Background Older adults in small residential board and care facilities are at a particularly high risk of fire death and injury because of their characteristics and environment. Methods The authors investigated computer-based instruction as a way to teach fire emergency planning to owners, operators, and staff of small residential board and care facilities. Participants (N = 59) were randomly assigned to a treatment or control group. Results Study participants who completed the training significantly improved their scores from pre- to posttest when compared to a control group. Participants indicated on the course evaluation that the computers were easy to use for training (97%) and that they would like to use computers for future training courses (97%). Conclusions This study demonstrates the potential for using interactive computer-based training as a viable alternative to instructor-led training to meet the fire safety training needs of owners, operators, and staff of small board and care facilities for the elderly. PMID:19263929

  19. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Agricultural and fire fighting airplanes... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating limitations. (a) This section applies to propeller-driven, small airplanes having standard airworthiness...

  20. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Agricultural and fire fighting airplanes... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating limitations. (a) This section applies to propeller-driven, small airplanes having standard airworthiness...

  1. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Agricultural and fire fighting airplanes... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating limitations. (a) This section applies to propeller-driven, small airplanes having standard airworthiness...

  2. Fire Power

    ERIC Educational Resources Information Center

    Denker, Deb; West, Lee

    2009-01-01

    For education administrators, campus fires are not only a distressing loss, but also a stark reminder that a campus faces risks that require special vigilance. In many ways, campuses resemble small communities, with areas for living, working and relaxing. A residence hall fire may raise the specter of careless youth, often with the complication of…

  3. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Agricultural and fire fighting airplanes... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating limitations. (a) This section applies to propeller-driven, small airplanes having standard airworthiness...

  4. Impacts of fire on sage-grouse habitat and diet resources

    USDA-ARS?s Scientific Manuscript database

    Small (<40.5-ha) patch fires or mechanical manipulations to reduce big sagebrush (Artemisia tridentata) cover has been suggested as a management option to improve sage-grouse prenesting and brood rearing habitat and provide a diverse habitat mosaic. We evaluated the effects of prescribed fire and wi...

  5. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    NASA Astrophysics Data System (ADS)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  6. Fire-climate interactions in the Selway-Bitterroot Wilderness area

    Treesearch

    Kurt F. Kipfmueller; Thomas W. Swetnam

    2000-01-01

    Tree-ring reconstructed summer drought was examined in relation to the occurrence of 15 fires in the Selway-Bitterroot Wilderness Area (SBW). The ten largest fire years between 1880 and 1995 were selected from historical fire atlas data; five additional fire years were selected from a fire history completed in a subalpine forest within the SBW. Results of the analysis...

  7. Ultraviolet Source For Testing Hydrogen-Fire Detectors

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.

    1995-01-01

    Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.

  8. Seven hundred years of human-driven and climate-influenced fire activity in a British Columbia coastal temperate rainforest

    PubMed Central

    Gavin, Daniel G.; Starzomski, Brian M.

    2016-01-01

    While wildland fire is globally most common at the savannah-grassland ecotone, there is little evidence of fire in coastal temperate rainforests. We reconstructed fire activity with a ca 700-year fire history derived from fire scars and stand establishment from 30 sites in a very wet (up to 4000 mm annual precipitation) temperate rainforest in coastal British Columbia, Canada. Drought and warmer temperatures in the year prior were positively associated with fire events though there was little coherence of climate indices on the years of fires. At the decadal scale, fires were more likely to occur after positive El Niño-Southern Oscillation and Pacific Decadal Oscillation phases and exhibited 30-year periods of synchrony with the negative phase of the Arctic Oscillation. Fire frequency was significantly inversely correlated with the distance from former Indigenous habitation sites and fires ceased following cultural disorganization caused by disease and other European impacts in the late nineteenth century. Indigenous people were likely to have been the primary ignition source in this and many coastal temperate rainforest settings. These data are directly relevant to contemporary forest management and discredit the myth of coastal temperate rainforests as pristine landscapes. PMID:27853581

  9. Using Space Technologies for a timely detection of forest fires: the experience of end-users in 3 Italian Regions

    NASA Astrophysics Data System (ADS)

    Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio

    2013-04-01

    Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite system may have in assisting and complementing traditional surveillance systems to mitigate damages due to fires. In particular, the usefulness of satellite technology in an operational context was demonstrated mainly in reference to: i) the possibility of identifying fires at an early stage (so avoiding that small hotbeds could extend and become dangerous for citizens and destructive for environmental protected areas) as well as ii) the possibility to have an effective territorial control (e.g. discovering illegal burning fires such as unauthorized cleaning fires, and permitting local authorities to rapidly intervene and catch red-handed pyromaniacs).

  10. Soil hydraulic characteristics of a small southwest Oregon watershed following high-intensity wildfires

    Treesearch

    David S. Parks; Terrance W. Cundy

    1989-01-01

    The Angel Fire of September, 1987 caused extensive damage to second growth forest in the south fork drainage of Cow Creek, 55 km northeast of Grant's Pass, Oregon, USA. The fire was characterized by a high-intensity burn over areas of steep topography. The areal distribution of soil hydraulic properties in a small, tributary watershed following high-intensity...

  11. Summer moisture of forest fire fuels in Oregon and Washington in 1948 and previous years.

    Treesearch

    William G. Morris

    1948-01-01

    The forest fire season of 1948 in Oregon and Washington was regarded by fire suppression agencies as the most favorable for many years. The number of fires started and area burned were, in general, less than for many years. On the national forests the number of fires was the least since 1912 and the acreage burned was the least ever recorded. Was this primarily due to...

  12. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    PubMed

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  13. Determining Relative Contributions of Vegetation and Topography to Burn Severity from LANDSAT Imagery

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; He, Hong S.; Liang, Yu; Cai, Longyan; Lewis, Bernard J.

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  14. Response of white-footed mice (Peromyscus leucopus) to fire and fire surrogate fuel reduction treatments in a southern Appalachian hardwood forest

    Treesearch

    Cathryn H. Greenberg; David L. Otis; Thomas A. Waldrop

    2006-01-01

    An experiment conducted as part of the multidisciplinary National Fire and Fire Surrogate Study was designed to determine effects of three fuel reduction techniques on small mammals and habitat structure in the southern Appalachian mountains. Four experimental units, each >14-ha were contained within each of three replicate blocks at the Green River Game Land,...

  15. Do one percent of the forest fires cause ninety-nine percent of the damage? Forest Science

    Treesearch

    David Strauss; Larry Bednar; Romain Mees

    1989-01-01

    A relatively small number of forest fires are responsible for a very high proportion of the total damage. The proportion due to the fraction p of largest fires, when plotted against p, is a measure of variability of fire sizes that is especially sensitive to the important extreme events. We find the theoretical form of the plot for several commonly used distributions...

  16. Using prescribed fire to reduce the risk of large wildfires: A break-even analysis

    Treesearch

    James M. Saveland

    1987-01-01

    Nearly all wildfires are extinguished when they are still small. The 3-5% that get out of control cause 95% of all wildfire-related costs and damages (Dodge 1972, Wilson 1985). There are two ways to deal with these problem fires. One practice is to limit fire by suppressing fires as soon as possible after they are detected. Increasing the capability of suppression...

  17. Forest Management Shifts in the Western US and Potential Impacts on the Carbon Balance

    NASA Astrophysics Data System (ADS)

    Law, B. E.; Jones, M. O.; Yang, Z.; Berner, L. T.

    2015-12-01

    Forest harvest regimes are changing as land managers cope with fires, drought, and insect damage. Thinning on public lands, typically focused on removal of small trees that could act as fuel ladders, is increasing to reduce risk of crown fires and reduce competition for water in crowded stands. On private lands, drought and wildfires could lead to further shortening of harvest cycles (e.g. from 80 to 45 years) or thinning. To examine the effects of potential changes in management regimes vs climate on carbon processes in forests of Oregon, California and Washington, we used data from ancillary plots, inventories, and satellites to parameterize and test the CLM4.5 model. We first examined contemporary biomass loss over the western US to determine the baseline conditions prior to implementing harvest scenarios. Annual biomass mortality from fires and insects increased significantly (1996-2011), and mortality from insects was about twice that of fires. California, Oregon and Idaho were most impacted by fire-related biomass mortality, whereas Colorado, Montana and Washington were most impacted by insects. Harvest scenarios implemented in CLM4.5 include two thinning scenarios to reduce crown fire risk and drought stress, and a salvage scenario to remove trees remaining after recent beetle or fire related mortality; taking into account our previous work showing 70 - 85 % of salvaged biomass is removed and the remainder is left on-site. We simulated the effect of treatments on current and future net ecosystem carbon balance. Challenges of regional modeling of management effects on carbon and other important considerations are addressed.

  18. A High-Resolution Chronology of Rapid Forest Transitions following Polynesian Arrival in New Zealand

    PubMed Central

    McWethy, David B.; Wilmshurst, Janet M.; Whitlock, Cathy; Wood, Jamie R.; McGlone, Matt S.

    2014-01-01

    Human-caused forest transitions are documented worldwide, especially during periods when land use by dense agriculturally-based populations intensified. However, the rate at which prehistoric human activities led to permanent deforestation is poorly resolved. In the South Island, New Zealand, the arrival of Polynesians c. 750 years ago resulted in dramatic forest loss and conversion of nearly half of native forests to open vegetation. This transformation, termed the Initial Burning Period, is documented in pollen and charcoal records, but its speed has been poorly constrained. High-resolution chronologies developed with a series of AMS radiocarbon dates from two lake sediment cores suggest the shift from forest to shrubland occurred within decades rather than centuries at drier sites. We examine two sites representing extreme examples of the magnitude of human impacts: a drier site that was inherently more vulnerable to human-set fires and a wetter, less burnable site. The astonishing rate of deforestation at the hands of small transient populations resulted from the intrinsic vulnerability of the native flora to fire and from positive feedbacks in post-fire vegetation recovery that increased landscape flammability. Spatially targeting burning in highly-flammable seral vegetation in forests rarely experiencing fire was sufficient to create an alternate fire-prone stable state. The New Zealand example illustrates how seemingly stable forest ecosystems can experience rapid and permanent conversions. Forest loss in New Zealand is among the fastest ecological transitions documented in the Holocene; yet equally rapid transitions can be expected in present-day regions wherever positive feedbacks support alternate fire-inhibiting, fire-prone stable states. PMID:25372150

  19. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    PubMed

    Stock, Matt S; Thompson, Brennan J

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  20. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    PubMed

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  1. Assessing the role of federal community assistance programs to develop biomass utilization capacity in the Western United States

    Treesearch

    Dennis R. Becker; Mark Nechodom; Adam Barnett; Tad Mason; Eini C. Lowell; John Shelly; Dean Graham

    2008-01-01

    As forest biomass utilization becomes cost effective to harvest, more areas at risk of catastrophic wildfire can be thinned of dense brush and small-diameter trees. In an effort to increase biomass utilization, the USDA Forest Service granted more than $36 million in National Fire Plan-Economic Action Program funds in the Western United States during fiscal years 2001...

  2. Torpor and basking after a severe wildfire: mammalian survival strategies in a scorched landscape.

    PubMed

    Matthews, Jaya K; Stawski, Clare; Körtner, Gerhard; Parker, Cassandra A; Geiser, Fritz

    2017-02-01

    Wildfires can completely obliterate above-ground vegetation, yet some small terrestrial mammals survive during and after fires. As knowledge about the physiological and behavioural adaptations that are crucial for post-wildfire survival is scant, we investigated the thermal biology of a small insectivorous marsupial (Antechinus flavipes) after a severe forest fire. Some populations of antechinus survived the fire in situ probably by hiding deep in rocky crevices, the only fire-proof sites near where they were trapped. We hypothesised that survival in the post-fire landscape was achieved by decreasing daytime activity and using torpor frequently to save energy. Indeed, daytime activity was less common and torpor expression was substantially higher (≥2-fold) at the post-fire site than observed in an unburnt control site and also in comparison to a laboratory study, both when food was provided ad libitum and withheld. Basking in the post-fire site was also recorded, which was likely used to further reduce energy expenditure. Our data suggest that torpor and basking are used by this terrestrial mammal to reduce energy and foraging requirements, which is important in a landscape where food and shelter are limited and predation pressure typically is increased.

  3. Soil respiration and root biomass responses to burning in calabrian pine (Pinus brutia) stands in Edirne, Turkey.

    PubMed

    Tufekcioglu, Aydin; Kucuk, Mehmet; Bilmis, Tuncay; Altun, Lokman; Yilmaz, Murat

    2010-01-01

    In this study soil properties and root biomass responses to prescribed fire were investigated in 25-30 year-old calabrian pine (Pinus brutia Ten.) stands in Edirne, Turkey. The stands were established by planting and were subjected to prescribed burning in July 2005. Soil respiration rates were determined every two months using the soda-lime method over a two-year period. Fine (> or = 2 mm diameter) and small root (> 2-5 mm diameter) biomass were sampled approximately bimonthly using the sequential coring method. Soil respiration rates in burned sites were significantly higher than in control sites during the summer season but there was no significant difference in the other seasons. Soil respiration rates were correlated significantly with soil moisture and soil temperature. Fine and small root biomass were significantly lower in burned sites than in control sites. Mean fine root biomass values were 3204 kg ha(-1) for burned and 3772 kg ha(-1) for control sites. Annual soil CO2 releases totaled 515 g Cm(-2) for burned and 418 g C m(-2) for control sites. Our results indicate that, depending on site conditions, fire could be used successfully as a tool in the management of calabrian pine stands in the study area.

  4. Forest fires caused by lightning activity in Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Ramos, Alexandre M.; Benali, Akli; Trigo, Ricardo M.

    2017-04-01

    Wildfires in southern Europe have been causing in the last decades extensive economic and ecological losses and, even human casualties (e.g. Pereira et al., 2011). According to statistics provided by the EC-JRC European Forest Fires Information System (EFFIS) for Europe, the years of 2003 and 2007 represent the most dramatic fire seasons since the beginning of the millennium, followed by the years 2005 and 2012. These extreme years registered total annual burned areas for Europe of over 600.000 ha, reaching 800.000 ha in 2003. Over Iberia and France, the exceptional fire seasons registered in 2003 and 2005 were coincident respectively with one of the most severe heatwaves (Bastos et al., 2014) and droughts of the 20th century (Gouveia et al., 2009). On the other hand, the year 2007 was very peculiar as the area of the Peloponnese was struck by a severe winter drought followed by a subsequent wet spring, being also stricken by three heat heaves during summer and played a major role increasing the susceptibility of the region to wildfires (Gouveia et al., 2016). Some countries have a relatively large fraction of fires caused by natural factors such as lightning, e.g. northwestern USA, Canada, Russia. In contrast, Mediterranean countries such as Portugal has only a small percentage of fire records caused by lightning. Although significant uncertainties remain for the triggering mechanism for the majority of fires registered in the catalog, since they were cataloged without a likely cause. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2002-2009, with the original data provided by the National forestry Authority; 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Portuguese Institute for Sea and Atmosphere (IPMA). The main objective of this work was to evaluate and quantify the relations between the wildfires' occurrence and the lightning activity. In particularly we were able to verify if wildfires which were identified as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets. - Bastos A., Gouveia C.M., Trigo R.M., Running S.W., 2014. Biogeosciences, 11, 3421-3435. - Pereira M.G., B.D. Malamud R.M. Trigo, P.I. Alves, 2011. Nat. Hazards Earth Syst. Sci., 11, 3343-3358. - Gouveia C., Trigo R.M., DaCamara C.C., 2009. Nat. Hazards Earth Syst. Sci., 9, 185-195 - Gouveia C.M., Bistinas I., Liberato M.L.R., Bastos A., Koutsiasd N., Trigo R., 2016. Agricultural and Forest Meteorology, 218-219, 135-145. Acknowledgements Research performed was supported by FAPESP/FCT Project Brazilian Fire-Land-Atmosphere System (BrFLAS) (1389/2014 and 2015/01389-4). Ana Russo thanks FCT for granted support (SFRH/BPD/99757/2014). A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012).

  5. 12,000-Years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): a data-model approach

    NASA Astrophysics Data System (ADS)

    Feurdean, A.; Liakka, J.; Vannière, B.; Marinova, E.; Hutchinson, S. M.; Mosburgger, V.; Hickler, T.

    2013-12-01

    The usefulness of sedimentary charcoal records to document centennial to millennial scale trends in aspects of fire regimes (frequency, severity) is widely acknowledged, yet the long-term variability in these regimes is poorly understood. Here, we use a high-resolution, multi-proxy analysis of a lacustrine sequence located in the lowlands of Transylvania (NW Romania), alongside global climate simulations in order to disentangle the drivers of fire regimes in this dry climatic region of Central-Eastern Europe. Periods of greater fire activity and frequency occurred between 10,700 and 7100 cal yr BP (mean Fire Interval = mFI 112 yr), and between 3300 and 700 cal yr BP (mFI 150 yr), whereas intervals of lower fire activity were recorded between 12,000 and 10,700 cal yr BP (mFI 217 yr), 7100 and 3300 cal yr BP (mFI 317 yr), and over last 700 years (no fire events detected). We found good correlations between simulated early summer (June, July) soil moisture content and near-surface air temperature with fire activity, particularly for the early to mid Holocene. A climate-fire relationship is further supported by local hydrological changes, i.e., lake level and runoff fluctuations. Fuel limitation, as a result of arid and strongly seasonal climatic conditions, led to low fire activity before 10,700 cal yr BP. However, fires were most frequent during climatically drier phases for the remaining, fuel-sufficient, part of the Holocene. Our results also suggest that the occurrence of more frequent fires in the early Holocene has kept woodlands open, promoted grassland abundance and sustained a more flammable ecosystem (mFI < 150 years) whereas the decline in fire risk under cooler and wetter climate conditions (mFI = 317 years) favoured woodland development. From 3300 cal yr BP, human impacts clearly were partly responsible for changes in fire activity, first increasing fire frequency and severity in periods with fire-favourable climatic conditions (halving the mFI from 300 years to about 150 years), then effectively suppressing fires over the last several centuries. Given the projected future temperature increase and moisture decline and the biomass accumulation due to the agricultural land abandonment in the region, natural fire frequency would be expected to return to <150 years.

  6. Radar system components to detect small and fast objects

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Zech, Christian; Klenner, Mathias; Tessmann, Axel; Leuther, Arnulf; Lopez-Diaz, Daniel; Schlechtweg, Michael; Ambacher, Oliver

    2015-05-01

    Small and fast objects, for example bullets of caliber 5 to 10 mm, fired from guns like AK-47, can cause serious problems to aircrafts in asymmetric warfare. Especially slow and big aircrafts, like heavy transport helicopters are an easy mark of small caliber hand fire weapons. These aircrafts produce so much noise, that the crew is not able to recognize an attack unless serious problems occur and important systems of the aircraft fail. This is just one of many scenarios, where the detection of fast and small objects is desirable. Another scenario is the collision of space debris particles with satellites.

  7. Erosion and Sedimentation from the Bagley Fire, Eastern Klamath Mountains, Northern CA

    NASA Astrophysics Data System (ADS)

    De La Fuente, J. A.; Bachmann, S.; Mai, C.; Mikulovsky, R.; Mondry, Z. J.; Rust, B.; Young, D.

    2014-12-01

    The Bagley Fire burned about 19,000 hectares on the Shasta-Trinity National Forest in the late summer of 2012, with soil burn severities of 11% high, 19% moderate and 48% low. Two strong storms in November and December followed the fire. The first storm had a recurrence interval of about 2 years, and generated runoff with a return interval of 10-25 years, causing many road stream crossing failures in parts of the fire. The second storm had a recurrence interval of 25-50 years, and initiated more severe erosion throughout the fire area. Erosional processes were dominated by sheet, rill and gully erosion, and landslides were uncommon. A model predicted high potential for debris flows, but few were documented, and though most stream channels exhibited fresh scour and deposition, residual deposits lacked boulder levees or other evidence of debris flow. Rather, deposits were stratified and friable, suggesting a sediment laden flood flow rather than debris flow origin. The resulting sediment was rich in gravel and finer particles, and poor in larger rock. Soil loss was estimated at 0.5-5.6 cm on most hillslopes. A high resolution DEM (LiDAR) was used to measure gullies, small landslides, and stream scour, and also to estimate sedimentation in Squaw Creek, and Shasta Lake. A soil erosion model was used to estimate surface erosion. Total erosion in the Squaw Creek watershed was estimated at 2.24 million metric tons, which equates to 260 metric tons/hectare. Of this, about 0.89 million metric tons were delivered to the stream system (103 metric tons/hectare). Nearly half of this sediment, 0.41 million metric tons, was temporarily stored in the Squaw Creek channel, and around 0.33 million metric tons of fine sediment were carried into Shasta Lake. Squaw Creek also delivered about 0.17 million metric tons of sand, gravel and cobbles to the lake. This estimate is very tenuous, and was made by measuring the volume of a delta in Shasta Lake from a tributary to Squaw Creek and extrapolating to the entire watershed. LidAR measurements of gully and landslide volume were considered the most reliable values, followed by estimates of channel scour and deposition in Squaw Creek and tributaries. The soil erosion model outputs were calibrated with data from a small debris basin. The most uncertain estimates were those for Shasta Lake sedimentation.

  8. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    PubMed

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.

  9. Measuring the impact of prescribed fire management on the carbon balance of a flatwoods ecosystem in Kissimmee, Florida

    NASA Astrophysics Data System (ADS)

    Becker, K.; Hinkle, C.

    2012-12-01

    It has been well documented that terrestrial ecosystems have a great potential to store and sequester carbon. Therefore, a former ranch land at the Disney Wilderness Preserve (DWP), Kissimmee, Florida, USA is being restored to native ecosystems and managed to preserve biodiversity and increase carbon storage. Here, we present measurements of C flux from an eddy covariance system located in a longleaf pine flatwoods ecosystem at DWP. C flux measurements were taken at the site before, during, and after a prescribed fire event. C stock measurements were also taken for aboveground biomass immediately before and after the fire, as well as one year post fire. This study indicated that this ecosystem typically serves as a net sink of C. However, the system became a net source of C immediately following the fire event, with a ~40% loss of aboveground C stock, but recovered to a net sink of C within 6 weeks of the fire. Annually this ecosystem was found to serve as a net C sink even with a prescribed fire event, with annual net ecosystem productivity (NEP) of 508 g C/m2 in a non-fire year (2010) and 237 g C/m2 in a fire year (2011). In addition to the fire, it is important to note that the growing season of 2011 was anomalously dry, which likely hindered productivity, and thus the NEP of the fire year would probably be more similar to the non-fire year under more typical hydrologic conditions. Despite the variability of rainfall between years, this study shows that the longleaf pine flatwoods ecosystem provides the service of C sequestration even in the context of frequent prescribed fire management.

  10. Urban residential fire and flame injuries: a population based study

    PubMed Central

    DiGuiseppi, C; Edwards, P; Godward, C; Roberts, I; Wade, A

    2000-01-01

    Background—Fires are a leading cause of death, but non-fatal injuries from residential fires have not been well characterised. Methods—To identify residential fire injuries that resulted in an emergency department visit, hospitalisation, or death, computerised databases from emergency departments, hospitals, ambulance and helicopter services, the fire department, and the health department, and paper records from the local coroner and fire stations were screened in a deprived urban area between June 1996 and May 1997. Result—There were 131 fire related injuries, primarily smoke inhalation (76%), an incidence of 36 (95% confidence interval (CI) 30 to 42)/100 000 person years. Forty one patients (32%) were hospitalised (11 (95% CI 8 to 15)/100 000 person years) and three people (2%) died (0.8 (95% CI 0.2 to 2.4)/100 000 person years). Injury rates were highest in those 0–4 (68 (95% CI 39 to 112)/100 000 person years) and ≥85 years (90 (95% CI 29 to 213)/100 000 person years). Rates did not vary by sex. Leading causes of injury were unintentional house fires (63%), assault (8%), clothing and nightwear ignition (6%), and controlled fires (for example, gas burners) (4%). Cooking (31%) and smoker's materials (18%) were leading fire sources. Conclusions—Because of the varied causes of fire and flame injuries, it is likely that diverse interventions, targeted to those at highest risk, that is, the elderly, young children, and the poor, may be required to address this important public health problem. PMID:11144621

  11. Drought, multi-seasonal climate, and wildfire in northern New Mexico

    USGS Publications Warehouse

    Margolis, Ellis; Woodhouse, Connie A.; Swetnam, Thomas W.

    2017-01-01

    Wildfire is increasingly a concern in the USA, where 10 million acres burned in 2015. Climate is a primary driver of wildfire, and understanding fire-climate relationships is crucial for informing fire management and modeling the effects of climate change on fire. In the southwestern USA, fire-climate relationships have been informed by tree-ring data that extend centuries prior to the onset of fire exclusion in the late 1800s. Variability in cool-season precipitation has been linked to fire occurrence, but the effects of the summer North American monsoon on fire are less understood, as are the effects of climate on fire seasonality. We use a new set of reconstructions for cool-season (October–April) and monsoon-season (July–August) moisture conditions along with a large new fire scar dataset to examine relationships between multi-seasonal climate variability, fire extent, and fire seasonality in the Jemez Mountains, New Mexico (1599–1899 CE). Results suggest that large fires burning in all seasons are strongly influenced by the current year cool-season moisture, but fires burning mid-summer to fall are also influenced by monsoon moisture. Wet conditions several years prior to the fire year during the cool season, and to a lesser extent during the monsoon season, are also important for spring through late-summer fires. Persistent cool-season drought longer than 3 years may inhibit fires due to the lack of moisture to replenish surface fuels. This suggests that fuels may become increasingly limiting for fire occurrence in semi-arid regions that are projected to become drier with climate change.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargent, S.A.

    Apple pomace or presscake, was evaluated for suitability as a boiler feedstock for Michigan firms processing apple juice. Based upon the physical and chemical characteristics of pomace, handling/direct combustion systems were selected to conform with operating parameters typical of the industry. Fresh pomace flow rates of 29,030 and 88,998 kg/day (64,000 and 194,000 lb/day) were considered as representative of small and large processors, respectively, and the material was assumed to be dried to 15% moisture content (wet basis) prior to storage and combustion. Boilers utilizing pile-burning, fluidized-bed-combustion, and suspension-firing technologies were sized for each flow rate, resulting in energy productionmore » of 2930 and 8790 kW (10 and 30 million Btu/h), respectively. A life-cycle cost analysis was performed giving Average Annual Costs for the three handling/combustion system combinations (based on the Uniform Capital Recovery factor). An investment loan at 16% interest with a 5-year payback period was assumed. The break-even period for annual costs was calculated by anticipated savings incurred through reduction of fossil-fuel costs during a 5-month processing season. Large processors, producing more than 88,998 kg pomace/day, could economically convert to a suspension-fired system substituting for fuel oil, with break-even occurring after 4 months of operation of pomace per year. Small processors, producing less than 29,030 kg/day, could not currently convert to pomace combustion systems given these economic circumstances. A doubling of electrical-utility costs and changes in interest rates from 10 to 20% per year had only slight effects on the recovery of Average Annual Costs. Increases in fossil-fuel prices and the necessity to pay for pomace disposal reduced the cost-recovery period for all systems, making some systems feasible for small processors. 39 references, 13 figures, 10 tables.« less

  13. Importance of charcoal in determining the age and chemistry of organic carbon in surface soils

    NASA Astrophysics Data System (ADS)

    Krull, Evelyn S.; Swanston, Christopher W.; Skjemstad, Jan O.; McGowan, Janine A.

    2006-12-01

    Understanding the chemical character and turnover time of the oldest soil organic carbon (SOC) fraction is fundamental in deciphering soil carbon sequestration processes and the fate of soil-eroded carbon in aquatic sediments. Two main processes are thought to extend the turnover time of SOC: protection by the mineral matrix and chemical recalcitrance. Various oxidation methods have been proposed to isolate the oldest and most recalcitrant SOC fraction, which is often assumed to be black carbon (BC). However, few data have been published that confirm the chemical character of the isolated fractions. Using established and newly developed methods together with 13C-NMR spectroscopy and AMS dating, we show that protection by the mineral matrix prolonged the turnover time of SOC by tens of years, but long-term (hundreds of years) stabilization was controlled by the inherent recalcitrance of SOC, determined by the type of ecosystems. In ecosystem without significant fire occurrences, the older SOC pool was comparably small and was represented by alkyl carbon. In ecosystems with high fire frequency charcoal constituted the oldest SOC pool, and constituted up to 35% of the total SOC. By applying methods with different oxidative strengths, it was possible to isolate different age groups of charcoal with different degrees of weathering. Further substantiation of this finding could provide a much greater resolution of paleo-fire events. Our results demonstrate that fire frequency plays a dominant role in determining the chemical nature and 14C abundance of SOC and that the separation of age groups of charcoal provides a means to reconstruct detailed fire histories. Our results indicate that modeling SOC turnover, transport and sequestration for frequently burnt environments requires modification of existing models, specifying an input and decay function for the charcoal pool in different environments.

  14. Estimates of CO2 from fires in the United States: implications for carbon management.

    PubMed

    Wiedinmyer, Christine; Neff, Jason C

    2007-11-01

    Fires emit significant amounts of CO2 to the atmosphere. These emissions, however, are highly variable in both space and time. Additionally, CO2 emissions estimates from fires are very uncertain. The combination of high spatial and temporal variability and substantial uncertainty associated with fire CO2 emissions can be problematic to efforts to develop remote sensing, monitoring, and inverse modeling techniques to quantify carbon fluxes at the continental scale. Policy and carbon management decisions based on atmospheric sampling/modeling techniques must account for the impact of fire CO2 emissions; a task that may prove very difficult for the foreseeable future. This paper addresses the variability of CO2 emissions from fires across the US, how these emissions compare to anthropogenic emissions of CO2 and Net Primary Productivity, and the potential implications for monitoring programs and policy development. Average annual CO2 emissions from fires in the lower 48 (LOWER48) states from 2002-2006 are estimated to be 213 (+/- 50 std. dev.) Tg CO2 yr-1 and 80 (+/- 89 std. dev.) Tg CO2 yr-1 in Alaska. These estimates have significant interannual and spatial variability. Needleleaf forests in the Southeastern US and the Western US are the dominant source regions for US fire CO2 emissions. Very high emission years typically coincide with droughts, and climatic variability is a major driver of the high interannual and spatial variation in fire emissions. The amount of CO2 emitted from fires in the US is equivalent to 4-6% of anthropogenic emissions at the continental scale and, at the state-level, fire emissions of CO2 can, in some cases, exceed annual emissions of CO2 from fossil fuel usage. The CO2 released from fires, overall, is a small fraction of the estimated average annual Net Primary Productivity and, unlike fossil fuel CO2 emissions, the pulsed emissions of CO2 during fires are partially counterbalanced by uptake of CO2 by regrowing vegetation in the decades following fire. Changes in fire severity and frequency can, however, lead to net changes in atmospheric CO2 and the short-term impacts of fire emissions on monitoring, modeling, and carbon management policy are substantial.

  15. Info-Gap Decision Theory for Assessing the Management of Catchments for Timber Production and Urban Water Supply

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael A.; Lindenmayer, David B.

    2007-04-01

    While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.

  16. Info-gap decision theory for assessing the management of catchments for timber production and urban water supply.

    PubMed

    McCarthy, Michael A; Lindenmayer, David B

    2007-04-01

    While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.

  17. Early effects of forest fire on streamflow characteristics.

    Treesearch

    H.W. Berndt

    1971-01-01

    A comparison of streamflow records from three small mountain streams in north-central Washington before, during, and after a severe forest fire showed three immediate effects of destructive burning. These were: 1. Flow rate was greatly reduced while the fire was actively burning. 2. Destruction of vegetation in the riparian zone reduced...

  18. 76 FR 36392 - Airworthiness Directives; Gulfstream Aerospace Corporation Model GV and GV-SP Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... third Halon fire extinguisher bottle is installed in the auxiliary power unit (APU) fragment impact zone... that the third fire extinguisher bottle is mounted in a small-fragment impact zone. We are proposing... impact zone (rotor burst zone). Some operators might have installed this third fire extinguisher bottle...

  19. Release and establishment of the little decapitating fly Pseudacteon cultellatus on imported fire ants in Florida

    USDA-ARS?s Scientific Manuscript database

    The little decapitating fly Pseudacteon cultellatus from Argentina was released as a self-sustaining biological control agent against the red imported fire ant, Solenopsis invicta, in Florida to parasitize small fire ant workers associated with multiple-queen colonies. This fly appears to be establi...

  20. Fuel loading and fire intensity-effects on longleaf pine seedling survival

    Treesearch

    Steven B. Jack; J. Kevin Hiers; Robert J. Mitchell; Jennifer L. Gagnon

    2010-01-01

    Modeling silvicultural practices after natural disturbance, with a particular focus on the use of fire and small canopy openings, may be particularly appropriate in longleaf pine (Pinus palustris Mill.) woodlands managed for multiple age classes and over long time scales. However, information about the effects of litter accumulation and fire...

  1. Multi-season climate synchronized forest fires throughout the 20th century, Northern Rockies, USA

    Treesearch

    Penelope Morgan; Emily K. Heyerdahl; Carly E. Gibson

    2008-01-01

    We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12 070 086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the...

  2. Impacts of changing fire weather conditions on reconstructed trends in U.S. wildland fire activity from 1979 to 2014

    Treesearch

    Patrick H. Freeborn; W. Matt Jolly; Mark A. Cochrane

    2016-01-01

    One component of climate‐fire interactions is the relationship between weather conditions concurrent with burning (i.e., fire danger) and the magnitude of fire activity. Here daily environmental conditions are associated with daily observations of fire activity within ecoregions across the continental United States (CONUS) by aligning the latter 12 years of a 36 year...

  3. Air quality impacts from prescribed forest fires under different management practices.

    PubMed

    Tian, Di; Wang, Yuhang; Bergin, Michelle; Hu, Yongtao; Liu, Yongqiang; Russell, Armistead G

    2008-04-15

    Large amounts of air pollutants are emitted during prescribed forest fires. Such emissions and corresponding air quality impacts can be modulated by different forest management practices. The impacts of changing burning seasons and frequencies and of controlling emissions during smoldering on regional air quality in Georgia are quantified using source-oriented air quality modeling, with modified emissions from prescribed fires reflecting effects of each practice. Equivalent fires in the spring and winter are found to have a greater impact on PM2.5 than those in summer, though ozone impacts are larger from spring and summer fires. If prescribed fires are less frequent more biofuel is burnt in each fire, leading to larger emissions and air quality impacts per fire. For example, emissions from a fire with a 5-year fire return interval (FRI) are 72% larger than those from a fire of the same acreage with a 2-year FRI. However, corresponding long-term regional impacts are reduced with the longer FRI since the annual burned area is reduced. Total emissions for fires in Georgia with a 5-year FRI are 32% less than those with a 2-year FRI. Smoldering emissions can lead to approximately 1.0 or 1.9 microg/m3 of PM2.5 in the Atlanta PM2.5 nonattainment area during March 2002.

  4. Annual runoff and erosion in a recently burn Mediterranean forest - The effects of plowing and time-since-fire

    NASA Astrophysics Data System (ADS)

    Vieira, D. C. S.; Malvar, M. C.; Fernández, C.; Serpa, D.; Keizer, J. J.

    2016-10-01

    The impacts of forest fires on runoff and soil erosion have been assessed by many studies, so the effects of fires on the hydrological and geomorphological processes of burnt forest areas, globally and in the Mediterranean region, are well established. Few studies, however, have assessed post-fire runoff and erosion on large time scales. In addition, a limited number of studies are available that consider the effect of pre-fire land management practices on post-fire runoff and erosion. This study evaluated annual runoff and sediment losses, at micro plot scale, for 4 years after a wildfire in three eucalypt plantations with different pre-fire land management practices (i.e., plowed and unplowed). During the four years following the fire, runoff amounts and coefficients at the downslope plowed (1257 mm, 26%) and contour plowed eucalypt sites (1915 mm, 40%) were higher than at the unplowed site (865 mm, 14%). Sediment losses over the 4 years of study were also consistently higher at the two plowed sites (respectively, 0.47 and 0.83 Mg ha- 1 y- 1 at the downslope and contour plowed eucalypt site) than at the unplowed site (0.11 Mg ha- 1 y- 1). Aside from pre-fire land management, time-since-fire also seemed to significantly affect post-fire annual runoff and erosion. In general, annual runoff amounts and erosion rates followed the rainfall pattern. Runoff amounts presented a peak during the third year of monitoring while erosion rates reached their maximum one year earlier, in the second year. Runoff coefficients increased over the 4 years of monitoring, in disagreement to the window of disturbance post-fire recovery model, but sediment concentrations decreased over the study period. When compared with other long-term post-fire studies and with studies evaluating the effects of pre- and post-fire management practices, the results of the present work suggest that an ecosystem's recovery after fire is highly dependent on the background of disturbances of each site, as runoff and erosion values were higher at the plowed sites than at the unplowed site.

  5. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests

    PubMed Central

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853

  6. Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng

    2014-06-01

    This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.

  7. Evaluating Water Quality Response and Controlling Variables for Burned Watersheds in the Western United States

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.

    2016-12-01

    Increasing wildfire size and frequency in the Western United States creates short-term and long-term impacts on water quality. Surface water in forested watersheds provides water for municipal water supplies and aquatic ecosystems. After fire, increased runoff and erosion lead to elevated loading of nutrients, sediment, and metals. Studies on individual fires have observed mobilization of contaminants, nutrients, metals and sediments into receiving waters. Other studies focused on individual fires over a short period, 1-3 years after fire. The objective of this study is to utilize an extensive historical water quality database, assembled by the authors, to identify trends in post-fire water quality response for the ten years following a significant fire. Specifically, we investigate the variability of post-fire water quality response and determine the key drivers impacting the immediate contaminant flux, recovery over the longer-term and ultimate resiliency of impacted watersheds and municipal water supplies. Results show that the most common post-fire response was increased nutrient loading. Thirty-two western watersheds experienced significant increases in NO3-, NO2-, NH3, and total nitrogen loading for the first five years after fire and remained elevated ten years after fire. Dissolved and total phosphorous significantly increased in 32 western watersheds for the first five years after fire. The majority of these water bodies returned to normal loading after 10 years. Dissolved ions such as calcium, magnesium, and chloride were also exported from over 32 watersheds for the first five years after fire. Using multiple linear regression analysis, we also identify the key physical watershed characteristics that drive post-fire water quality response and recovery. Burn severity, burn area and aridity index all influence the degree of water quality response. Our work provides managers with critical information to evaluate water supply impacts, including short-term treatment needs, as well as the potential long-term resiliency of impacted watersheds.

  8. Fire in Eastern Hardwood Forests through 14,000 Years

    Treesearch

    Martin A. Spetich; Roger W. Perry; Craig A. Harper; Stacy L. Clark

    2011-01-01

    Fire helped shape the structure and species composition of hardwood forests of the eastern United States over the past 14,000 years. Periodic fires were common in much of this area prior to European settlement, and fire-resilient species proliferated. Early European settlers commonly adopted Native American techniques of applying fire to the landscape. As the demand...

  9. Post-fire saguaro community: impacts on associated vegetation still apparent 10 years later

    Treesearch

    Marcia Narog; Ruth Wilson

    2005-01-01

    Fire impacts on saguaro (Carnegiea gigantea) associated vegetation were studied in unburned and burned areas over a 10 year post-fire period after the 1993 Vista View fire, Tonto National Forest, Arizona. Many associated species, crucial for saguaro survival, regenerate by vegetative growth after fire. Bushes were the most common nearest-neighbor,...

  10. Adding Fuel to the Fire: The Contribution of Perennial Bunchgrasses in Altering Fire Regimes in the Great Basin

    USDA-ARS?s Scientific Manuscript database

    The historic fire return interval in Wyoming sagebrush ecosystems has been estimated in the hundreds of years; however, the current fire regime has shifted to short fire return intervals with some areas burning six times in the past 60 years. Invasive annual grasses (e.g. Bromus tectorum) are freque...

  11. Interactions among wildland fires in a long-established Sierra Nevada natural fire area

    USGS Publications Warehouse

    Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2009-01-01

    We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term 'self-limiting' to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. ?? 2008 Springer Science+Business Media, LLC.

  12. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  13. Population dynamics of the endangered Cape Sable seaside-sparrow

    USGS Publications Warehouse

    Curnutt, J.L.; Mayer, A.L.; Brooks, T.M.; Manne, L.; Bass, O.L.; Fleming, D.M.; Philip, Nott M.; Pimm, S.L.

    1998-01-01

    The Cape Sable seaside-sparrow (Ammodramus maritimus mirabilis) has disappeared from its only known breeding areas episodically since its discovery early this century. Systematic surveys across its range in the southern Everglades find the sparrow's range to be fragmented into six subpopulations. The sparrow population decreased by 58% between 1992 and 1995, with the near extinction of the western half of the population and the temporary local extinction of some eastern populations. Other similar grassland sparrows have populations that vary considerably from year to year. Yet the decline in the western subpopulation and the local extinction of some of the peripheral populations cannot be explained by natural variability alone. Hurricane Andrew passed over several subpopulations prior to the particularly poor year of 1993. However, the geographical and temporal patterns of subpopulation decline are not consistent with what would be expected following a hurricane. Frequent fires prevent successful breeding as does flooding during the breeding season. Better management can prevent frequent fires and episodic flooding. However, the long-term survival of the sparrow depends on managing the unanticipated risks that attend its small, fragmented population.

  14. Forest fires in Pennsylvania.

    Treesearch

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  15. German General Officer Casualties in World War II -- Harbinger for U.S. Army General Officer Casualties in Airland Battle

    DTIC Science & Technology

    1988-12-07

    grenades, air attacks, tank fire, snipers, and partisans. Many of these causes, such as air attacks and tank fire, were relatively infrequent occurrences...Tank Fire 5 9 Small Arms Fire 7 13 Grenade 3 5 Air Attack 18 32 Tank Fire 2 4 Partisans 5 9 Sniper 3 5 In World War I personal danger for officers had...accounts of individual demises reflect this increased lethality, and better describe the significant dangers to these senior commanders. 18 AIR ATTACK

  16. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia’s Tropical Savannas

    PubMed Central

    Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C. Z.; Astheimer, Lee

    2015-01-01

    Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species–one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)—from two large areas (> 2,830 km2) with initial contrasting fire regimes (‘extreme’: frequent, extensive, intense fire; versus ‘benign’: less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the ‘benign’ fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species. PMID:26445496

  17. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that may lead to opposing climate feedbacks. At effectively large scales these changes constitute positive and negative climate feedbacks, respectively. Accurate predictive understanding of terrestrial Arctic climate feedbacks requires improved knowledge regarding the ecological consequences of changing fire regimes in Siberian boreal forests.

  18. Pyrodiversity promotes avian diversity over the decade following forest fire.

    PubMed

    Tingley, Morgan W; Ruiz-Gutiérrez, Viviana; Wilkerson, Robert L; Howell, Christine A; Siegel, Rodney B

    2016-10-12

    An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity-defined as the standard deviation of fire severity-increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called 'mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes. © 2016 The Author(s).

  19. Pyrodiversity promotes avian diversity over the decade following forest fire

    PubMed Central

    Ruiz-Gutiérrez, Viviana; Wilkerson, Robert L.; Howell, Christine A.; Siegel, Rodney B.

    2016-01-01

    An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity—defined as the standard deviation of fire severity—increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called ‘mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes. PMID:27708152

  20. Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    2012-01-01

    Plant invasions can increase fire frequency in desert ecosystems where fires were historically infrequent. Although there are many resource management concerns associated with high frequency fire in deserts, fundamental effects on plant community characteristics remain largely unstudied. Here I describe the effects of fire frequency on creosote bush scrub vegetation in the Mojave Desert, USA. Biomass of the invasive annual grass Bromus rubens L. increased following fire, but did not increase further with additional fires. In contrast, density, cover and species richness of native perennial plants each decreased following fire and continued to decrease with subsequent fires, although not as dramatically as after the initial fire. Responses were similar 5 and 14 years post-fire, except that cover of Hymenoclea salsola Torr. & A. Gray and Achnatherum speciosa Trin. & Rupr. both increased in areas burnt once. These results suggest that control of B. rubens may be equally warranted after one, two or three fires, but revegetation of native perennial plants is most warranted following multiple fires. These results are valid within the scope of this study, which is defined as relatively short term vegetation responses (???14 years) to short fire return intervals (6.3 and 7.3 years for the two and three fire frequency levels) within creosote bush scrub of the Mojave Desert. ?? 2012 IAWF.

  1. Post-fire Water Quality Response and Associated Physical Drivers

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response. Ultimately, improved understanding of post-fire response and related drivers will advance potential mitigation and treatment strategies as well as aid in the parametrization of post-fire models of water quality.

  2. Biogeochemical legacy of prescribed fire in a giant sequoia - Mixed conifer forest: A 16-year record of watershed balances

    USGS Publications Warehouse

    Engle, D.L.; Sickman, J.O.; Moore, C.M.; Esperanza, A.M.; Melack, J.M.; Keeley, J.E.

    2008-01-01

    The effects of prescription burning on watershed balances of major ions in mixed conifer forest were examined in a 16-year paired catchment study in Sequoia National Park, California. The objective was to determine whether fire-related changes in watershed balances persist as long as estimated low-end natural fire-return intervals (???10 years), and whether cumulative net export caused by fire could deplete nutrient stocks between successive fires. Inputs (wet + dry deposition) and outputs (stream export) of N, S, Cl-, HCO3-, Ca2+, Mg2+, Na+, K+, H+, and SiO2 were measured for 7 years preceding, and 9 years following, a prescribed burn of one of the catchments. After fire, runoff coefficients increased by 7% (in dry years) to 35% (in wet years). Inorganic N was elevated in stream water for 3 years after fire. Increased export of water, SO42-, Cl-,SiO2, and base cations continued through the end of the study. Pools and processes attributed to fire led to the cumulative loss, per hectare, of 1.2 kg N, 16 kg S, 25 kg Cl-, 130 kg Ca2+, 19 kg Mg2+, 71 kg Na+, 29 kg K+ and 192 kg Si, above that predicted by prefire regression equations relating export in the paired catchments. This additional export equaled <1% of the N, up to one-third of the Ca and Mg, and up to three-fourths of the K, contained in the forest floor prior to combustion. Changes in watershed balances indicated that low-end natural fire-return intervals may prevent complete reaccumulation of several elements between fires. Copyright 2008 by the American Geophysical Union.

  3. Wildland fire emissions, carbon, and climate: U.S. emissions inventories

    Treesearch

    Narasimhan K. Larkin; Sean M. Raffuse; Tara M. Strand

    2014-01-01

    Emissions from wildland fire are both highly variable and highly uncertain over a wide range of temporal and spatial scales. Wildland fire emissions change considerably due to fluctuations from year to year with overall fire season severity, from season to season as different regions pass in and out of wildfire and prescribed fire periods, and from day to day as...

  4. Economic benefits of reducing fire-related sediment in southwestern fire-prone ecosystems

    Treesearch

    John Loomis; Pete Wohlgemuth; Armando González-Cabán; Don English

    2003-01-01

    A multiple regression analysis of fire interval and resulting sediment yield (controlling for relief ratio, rainfall, etc.) indicates that reducing the fire interval from the current average 22 years to a prescribed fire interval of 5 years would reduce sediment yield by 2 million cubic meters in the 86.2 square kilometer southern California watershed adjacent to and...

  5. Effectiveness of fire-retardant treatments for shingles after 10 years of outdoor weathering

    Treesearch

    S. L. LeVan; C. A. Holmes

    Some building codes require wood shingles to be fire-retardant treated. Because exterior fire-retardant treatments are subjected to weathering, treatment durability and leach resistance are critical for insuring adequate fire protection. We examined the effectiveness of various fire-retardant treatments on wood after 0, 2, 5, and 10 years of outdoor exposure. We used a...

  6. Climate drivers of regionally synchronous fires in the inland northwest (1651-1900)

    Treesearch

    Emily K. Heyerdahl; Donald McKenzie; Lori D. Daniels; Amy E. Hessl; Jeremy S. Littell; Nathan J. Mantua

    2008-01-01

    We inferred climate drivers of regionally synchronous surface fires from 1651 to 1900 at 15 sites with existing annually accurate fire-scar chronologies from forests dominated by ponderosa pine or Douglas-fir in the inland Northwest (interior Oregon,Washington and southern British Columbia).Years with widespread fires (35 years with fire at 7 to 11 sites) had warm...

  7. Fire-danger rating in the future.

    Treesearch

    James E. Hefner

    1967-01-01

    The forest resources of this country must be protected from wildfire. Protection does not eliminate fire but does reduce loss from fire. In recent years, more acres have been burned on the unprotected 3 percent of forest land than on the 97 percent under organized fire protection. Protection from fire has saved more than 100 million acres per year. This figure is based...

  8. Fire tolerance of a resprouting Artemisia (Asteraceae) shrub

    USGS Publications Warehouse

    Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.

    2011-01-01

    In North America, most Artemisia (Asteraceae) shrub species lack the ability to resprout after disturbances that remove aboveground biomass. We studied the response of one of the few resprouting Artemisia shrubs, Artemisia filifolia (sand sagebrush), to the effects of prescribed fires. We collected data on A. filifolia density and structural characteristics (height, canopy area, and canopy volume) in an A. filifolia shrubland in the southern Great Plains of North America. Our study sites included areas that had not been treated with prescribed fire, areas that had been treated with only one prescribed fire within the previous 5 years, and areas that had been treated with two prescribed fires within the previous 10 years. Our data were collected at time periods ranging from 1/2 to 5 years after the prescribed fires. Density of A. filifolia was not affected by one or two fires. Structural characteristics, although initially altered by prescribed fire, recovered to levels characteristic of unburned areas in 3-4 years after those fires. In contrast to most non-sprouting North American Artemisia shrub species, our research suggested that the resprouting A. filifolia is highly tolerant to the effects of fire. ?? 2011 Springer Science+Business Media B.V.

  9. Evidence of repeated wildfires prior to human occupation on San Nicolas Island, California

    USGS Publications Warehouse

    Pigati, Jeffrey S.; McGeehin, John P.; Skipp, Gary L.; Muhs, Daniel R.

    2014-01-01

    Understanding how early humans on the California Channel Islands might have changed local fire regimes requires a baseline knowledge of the frequency of natural wildfires on the islands prior to human occupation. A sedimentary sequence that was recently discovered in a small canyon on San Nicolas Island contains evidence of at least 24 burn events that date to between ~37 and 25 ka (thousands of calibrated 14C years before present), well before humans entered North America. The evidence includes abundant macroscopic charcoal, blackened sediments, and discrete packages of oxidized, reddish-brown sediments that are similar in appearance to sedimentary features called “fire areas” on Santa Rosa Island and elsewhere. Massive fine-grained sediments that contain the burn evidence are interpreted as sheetwash deposits and are interbedded with coarse-grained, clast-supported alluvial sediments and matrix supported sands, pebbles, and cobbles that represent localized debris flows. These sedimentary sequences suggest that the catchment area above our study site underwent multiple cycles of relative quiescence that were interrupted by fire and followed by slope instability and mass wasting events. Our 14C-based chronology dates these cycles to well before the arrival of humans on the Channel Islands and shows that natural wildfires occurred here, at a minimum, every 300–500 years prior to human occupation.

  10. Factors Affecting Survival of Longleaf Pine Seedlings

    Treesearch

    John S. Kush; Ralph S. Meldahl; William D. Boyer

    2004-01-01

    Longleaf pine may be managed most efficiently in large even-aged stands. Past research has shown that the effect of trees surrounding the openings (gaps) or the use of fire is a complicating factor, especially with small openings. Longleaf seedlings are considered more susceptible to fire under and nearer to standing trees, and seedling size, kind of fire, soil type,...

  11. 76 FR 19765 - Toutant Hydropower Inc.; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... refurbished and re-installed small ``fire pump'' turbine direct coupled to a 120 kilowatt, 2300 volt, AC synchronous vertically mounted generator. The ``fire pump'' turbine is located in the southwest corner of the existing turbine pit. The ``fire pump'' turbine has a rated maximum hydraulic capacity of 106 cubic feet...

  12. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape

    Treesearch

    Frederick B. Pierson; Peter R. Robichaud; Corey A. Moffet; Kenneth E. Spaeth; Stuart P. Hardegree; Patrick E. Clark; C. Jason Williams

    2008-01-01

    Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow...

  13. Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires

    Treesearch

    Patrick H. Freeborn; Martin J. Wooster; Wei Min Hao; Cecily A. Nordgren Ryan; Stephen P. Baker; Charles Ichoku

    2008-01-01

    Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent...

  14. Examination of Wildland Fire Spread at Small Scales Using Direct Numerical Simulations and High-Speed Laser Diagnostics

    NASA Astrophysics Data System (ADS)

    Wimer, N. T.; Mackoweicki, A. S.; Poludnenko, A. Y.; Hoffman, C.; Daily, J. W.; Rieker, G. B.; Hamlington, P.

    2017-12-01

    Results are presented from a joint computational and experimental research effort focused on understanding and characterizing wildland fire spread at small scales (roughly 1m-1mm) using direct numerical simulations (DNS) with chemical kinetics mechanisms that have been calibrated using data from high-speed laser diagnostics. The simulations are intended to directly resolve, with high physical accuracy, all small-scale fluid dynamic and chemical processes relevant to wildland fire spread. The high fidelity of the simulations is enabled by the calibration and validation of DNS sub-models using data from high-speed laser diagnostics. These diagnostics have the capability to measure temperature and chemical species concentrations, and are used here to characterize evaporation and pyrolysis processes in wildland fuels subjected to an external radiation source. The chemical kinetics code CHEMKIN-PRO is used to study and reduce complex reaction mechanisms for water removal, pyrolysis, and gas phase combustion during solid biomass burning. Simulations are then presented for a gaseous pool fire coupled with the resulting multi-step chemical reaction mechanisms, and the results are connected to the fundamental structure and spread of wildland fires. It is anticipated that the combined computational and experimental approach of this research effort will provide unprecedented access to information about chemical species, temperature, and turbulence during the entire pyrolysis, evaporation, ignition, and combustion process, thereby permitting more complete understanding of the physics that must be represented by coarse-scale numerical models of wildland fire spread.

  15. Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Ramos, Alexandre; Trigo, Ricardo

    2013-04-01

    Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and lightning occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by lightning, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by lightning. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire activity in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Instituto de Meteorologia (IM). The main objective of this work is to analyze for possible relations between the PRFD and the Portuguese lightning database for the 2003 and 2005 extreme fire seasons. In particularly we were able to verify the forest fires labeled as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets.

  16. Precipitation-fire linkages in Indonesia (1997-2015)

    NASA Astrophysics Data System (ADS)

    Fanin, Thierry; van der Werf, Guido R.

    2017-09-01

    Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as in intermediary years. We combined nighttime active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the nighttime subset of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the coefficient of determination for the overlapping period was high (R2 = 0. 97, based on monthly data) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997-2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998-2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest coefficient of determination with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200 and 305 mm average rainfall accumulation before each active fire were identified to generate a high-incidence fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between nighttime and total active fires did not change, the 1997 season was thus about twice as severe as the one in 2015. Although large, the difference is smaller than found in fire emission estimates from the Global Fire Emissions Database (GFED). Besides different rainfall amounts and patterns, the two-fold difference between 1997 and 2015 may be attributed to a weaker El Niño and neutral Indian Ocean Dipole (IOD) conditions in the later year. The fraction of fires burning in peatlands was higher in 2015 compared to 1997 (61 and 45 %, respectively). Finally, we found that the non-linearity between rainfall and fire in Indonesia stems from longer periods without rain in extremely dry years.

  17. Engagement Skills Trainer: The Commander’s Perspective

    DTIC Science & Technology

    2017-06-09

    recommends using EST as a record of fire for a sustainment training event . This record of fire event can only occur once per year and after a live fire...mandatory part of marksmanship training. The author also recommends using EST as a record of fire for a sustainment training event . This record of fire... event can only occur once per year and after a live fire qualification. v ACKNOWLEDGMENTS The author would like to thank the following persons

  18. Residential fire related deaths and injuries among children: fireplay, smoke alarms, and prevention.

    PubMed

    Istre, G R; McCoy, M; Carlin, D K; McClain, J

    2002-06-01

    The aim of the study was to describe the epidemiology of residential fire related deaths and injuries among children, and identify risk factors for these injuries through a linked dataset for the city of Dallas, Texas. Data for all residential fires were linked with fire related injury data, using fire department records, ambulance transports, hospital admissions, and medical examiner records, for children 0-19 years of age. Causes of fires, including fireplay (children playing with fire or combustibles), arson and other causes, were determined by fire department investigation. From 1991-98, 76 children were injured in residential fires (39 deaths, 37 non-fatal). The highest rates occurred in the youngest children (<5 years) and in census tracts with lowest income. Fireplay accounted for 42% (32/76) of all injuries, 62% (15/24) of deaths in children 0-4 years, and 94% (13/14) of deaths from apartment and mobile home fires. Most of the fireplay related injuries (27/32, 84%) were from children playing with matches or lighters. Most started in a bedroom. Smoke alarms showed no protective efficacy in preventing deaths or injuries in fires started by fireplay or arson, but there was significant protective efficacy for a functional smoke alarm in fires started from all other causes (p<0.01). Residential fire related injuries among children in Dallas occurred predominantly in the youngest ages (<5 years) and in poor neighborhoods. Most of the deaths, especially those in apartments and mobile homes, resulted from fireplay. Smoke alarms appeared to offer no protection against death or injury in fireplay associated fires, possibly from the nature of the child's behavior in these fires, or from the placement of the smoke alarm. Prevention of childhood residential fire related deaths may require interventions to prevent fireplay in order to be successful.

  19. Post-fire Water Quality in the Western United States: Understanding and Predicting Short and Long-term Response

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Rust, A.

    2016-12-01

    Fire frequency is increasing across mid-elevation forests, especially in the Northern Rockies, Sierra Nevada, southern Cascades, as well as the coastal ranges in California and southern Oregon. Numerous studies have noted increased discharge, floods and debris flows after wildfire. More recent work also shows increased water yield during dry seasons for up to ten years post-fire. However, few studies have evaluated long-term water quality response in fire-impacted watersheds. The current presentation will overview recent development of an extensive database on post-fire water quality response across the western U.S. A range of water quality parameters were gathered from 271 burned watersheds through local, state and federal agencies. Short and long-term response was evaluated for watersheds with at least 5 years of pre-fire data. Over 30 watersheds showed significant increases in NO3-, NO2-, NH3, and total nitrogen loading in the initial five years after fire and remained elevated ten years after fire. The burn severity influenced the degree of nitrogen response, where more severely burned watersheds showed higher nitrogen loading than less severely burned watersheds. Dissolved and total phosphorous showed significant increases in 32 watersheds for the first five years after fire. Dissolved ions such as calcium, magnesium, and chloride were also exported from over 32 watersheds, primarily during the first five years after fire, with the majority of impacted watersheds returning to pre-fire water quality conditions after ten years. Ongoing work includes evaluating key determinants that drive short and long-term response and developing predictive models for post-fire water quality. Watersheds impacted by wildfire are known to pose significant risks for downstream communities. Understanding short and long-term water quality change that can impact regional water supplies is critical for establishing potential treatment priorities and alternative source planning.

  20. Thinning and burning result in low-level invasion by nonnative plants but neutral effects on natives.

    PubMed

    Nelson, Cara R; Halpern, Charles B; Agee, James K

    2008-04-01

    Many historically fire-adapted forests are now highly susceptible to damage from insects, pathogens, and stand-replacing fires. As a result, managers are employing treatments to reduce fuel loadings and to restore the structure, species, and processes that characterized these forests prior to widespread fire suppression, logging, and grazing. However, the consequences of these activities for understory plant communities are not well understood. We examined the effects of thinning and prescribed fire on plant composition and diversity in Pinus ponderosa forests of eastern Washington (USA). Data on abundance and richness of native and nonnative plants were collected in 70 stands in the Colville, Okanogan, and Wenatchee National Forests. Stands represented one of four treatments: thinning, burning, thinning followed by burning, or control; treatments had been conducted 3-19 years before sampling. Multi-response permutation procedures revealed no significant effect of thinning or burning on understory plant composition. Similarly, there were no significant differences among treatments in cover or richness of native plants. In contrast, nonnative plants showed small, but highly significant, increases in cover and richness in response to both thinning and burning. In the combined treatment, cover of nonnative plants averaged 2% (5% of total plant cover) but did not exceed 7% (16% of total cover) at any site. Cover and richness of nonnative herbs showed small increases with intensity of disturbance and time since treatment. Nonnative plants were significantly less abundant in treated stands than on adjacent roadsides or skid trails, and cover within these potential source areas explained little of the variation in abundance within treated stands. Although thinning and burning may promote invasion of nonnative plants in these forests, our data suggest that their abundance is limited and relatively stable on most sites.

  1. Temporal trends in mammal responses to fire reveals the complex effects of fire regime attributes.

    PubMed

    Lindenmayer, David B; Blanchard, Wade; MacGregor, Christopher; Barton, Philip; Banks, Sam C; Crane, Mason; Michael, Damian; Okada, Sachiko; Berry, Laurence; Florance, Daniel; Gill, Malcolm

    2016-03-01

    Fire is a major ecological process in many ecosystems worldwide. We sought to identify which attributes of fire regimes affect temporal change in the presence and abundance of Australian native mammals. Our detailed study was underpinned by time series data on 11 mammal species at 97 long-term sites in southeastern Australia between 2003 and 2013. We explored how temporal aspects of fire regimes influenced the presence and conditional abundance of species. The key fire regime components examined were: (1) severity of a major fire in 2003, (2) interval between the last major fire (2003) and the fire prior to that, and (3) number of past fires. Our long-term data set enabled quantification of the interactions between survey year and each fire regime variable: an ecological relationship missing from temporally restricted studies. We found no evidence of any appreciable departures from the assumption of independence of the sites. Multiple aspects of fire regimes influenced temporal variation in the presence and abundance of mammals. The best models indicated that six of the 11 species responded to two or more fire regime variables, with two species influenced by all three fire regime attributes. Almost all species responded to time since fire, either as an interaction with survey year or as a main effect. Fire severity or its interaction with survey year was important for most terrestrial rodents. The number of fires at a site was significant for terrestrial rodents and several other species. Our findings contain evidence of the effects on native mammals of heterogeneity in fire regimes. Temporal response patterns of mammal species were influenced by multiple fire regime attributes, often in conjunction with survey year. This underscores the critical importance of long-term studies of biota that are coupled with data sets characterized by carefully documented fire history, severity, and frequency. Long-term studies are essential to predict animal responses to fires and guide management of when and where (prescribed) fire or, conversely, long-unburned vegetation is needed. The complexity of observed responses highlights the need for large reserves in which patterns of heterogeneity in fire regimes can be sustained in space and over time.

  2. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  3. Recommendations related to Browns Ferry Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-02-01

    Based on its review of the events transpiring before, during and after the Browns Ferry fire, the Review Group concludes that the probability of disruptive fires of the magnitude of the Browns Ferry event is small, and that there is no need to restrict operation of nuclear power plants for public safety. However, it is clear that much can and should be done to reduce even further the likelihood of disabling fires and to improve assurance of rapid extinguishment of fires that occur. Consideration should be given also to features that would increase further the ability of nuclear facilities tomore » withstand large fires without loss of important functions should such fires occur. The Review Group believes that improvements, especially in the areas of fire prevention and fire control, can and should be made in most existing facilities.« less

  4. The dynamics of fire regimes in tropical peatlands in Central Kalimantan, Borneo

    NASA Astrophysics Data System (ADS)

    Hoscilo, Agata; Page, Susan; Tansey, Kevin

    2010-05-01

    As a carbon-rich ecosystem, tropical peatland contributes significantly to terrestrial carbon storage and stability of the global carbon cycle. Vast areas of tropical peatland in SE Asia are degraded by the increasingly intensive scale of human activities, illustrated by high rates of deforestation, poor land-use management, selective illegal logging, and frequently repeated fires. Analysis of time-series satellite images performed in this study confirmed that fire regimes have dramatically changed in tropical peatlands over the last three decades (1973-2005). The study was conducted in the southern part of Central Kalimantan (Indonesian Borneo). We found that there was an evident increase in fire frequency and a decline in the fire return interval after implementation of the Mega Rice Project (1997-2005). Up until 1997, fires had affected a relatively small area, in total 23% of the study area, and were largely related to land clearance. This situation changed significantly during the last decade (1997-2005), when the widespread, intensive fires of 1997 affected a much larger area. Five years later, in 2002, extensive fires returned, affecting again 22% of the study area. Then, in 2004 and 2005, a further large area of peatland was on fire. Fire frequency analysis showed that during the period 1997-2005, around 45% of the study area was subject to multiple fires, with 37% burnt twice and 8% burnt three or more times. Near-annual occurrence of fire events reduces the rate and nature of vegetation regrowth. Hence, we observed a shift in the fire fuel type and amount over the period of investigation. After 1997, the fire fuel shifted from mainly peat swamp forest biomass towards non-woody biomass, dominated by regenerating vegetation, mainly ferns and a few trees. This secondary vegetation has been shown to be fire prone, although fire propagation is slower than in forest and restricted by both low fuel quality and load. Furthermore, we investigated the interaction between human impacts and presence and extent of fires. We found that the majority of fire events were directly or indirectly associated with human activities (i.e. selective logging, land clearance, intensive drainage and transmigration re-settlement). The intensive drainage infrastructure associated with the Mega Rice Project initiative greatly impaired the peatland hydrological system, increasing the risk of fire. In addition, the network of canals allowed easy access for people whose activities provided ignition sources. Hence, multiple fires were located within close proximity to canals and declined with distance away from canals. These results emphasise the vulnerability of degraded tropical peatlands to fire and confirm that widespread and intensive fires have become an integral part of tropical peatland ecosystem and are now associated with most dry seasons.

  5. A stand-replacing fire history in upper montane forests of the southern Rocky Mountains

    USGS Publications Warehouse

    Margolis, E.Q.; Swetnam, T.W.; Allen, Craig D.

    2007-01-01

    Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen (Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.

  6. Reassessment of the use of fire as a management tool in deciduous forests of eastern North America.

    PubMed

    Matlack, Glenn R

    2013-10-01

    Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie-woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire-history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point-return times ranging from 5-10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke-cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine-grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information is available, it seems prudent to limit the use of prescribed burning east of the prairie-woodland transition zone. © 2013 Society for Conservation Biology.

  7. The Ramifications of Meddling with Systems Governed by Self-organized Critical Dynamics

    NASA Astrophysics Data System (ADS)

    Carreras, B. A.; Newman, D. E.; Dobson, I.

    2002-12-01

    Complex natural, well as man-made, systems often exhibit characteristics similar to those seen in self-organized critical (SOC) systems. The concept of self-organized criticality brings together ideas of self-organization of nonlinear dynamical systems with the often-observed near critical behavior of many natural phenomena. These phenomena exhibit self-similarities over extended ranges of spatial and temporal scales. In those systems, scale lengths may be described by fractal geometry and time scales that lead to 1/f-like power spectra. Natural applications include modeling the motion of tectonics plates, forest fires, magnetospheric dynamics, spin glass systems, and turbulent transport. In man-made systems, applications have included traffic dynamics, power and communications networks, and financial markets among many others. Simple cellular automata models such as the running sandpile model have been very useful in reproducing the complexity and characteristics of these systems. One characteristic property of the SOC systems is that they relax through what we call events. These events can happen over all scales of the system. Examples of these events are: earthquakes in the case of plate tectonic; fires in forest evolution extinction in the co evolution of biological species; and blackouts in power transmission systems. In a time-averaged sense, these systems are subcritical (that is, they lie in an average state that should not trigger any events) and the relaxation events happen intermittently. The time spent in a subcritical state relative to the time of the events varies from one system to another. For instance, the chance of finding a forest on fire is very low with the frequency of fires being on the order of one fire every few years and with many of these fires small and inconsequential. Very large fires happen over time periods of decades or even centuries. However, because of their consequences, these large but infrequent events are the important ones to understand, control and minimize. The main thrust of this research is to understand how and when global events occur in such systems when we apply mitigation techniques and how this impacts risk assessment. As sample systems we investigate both forest fire models and electrical power transmission network models, though the results are probably applicable to a wide variety of systems. It is found, perhaps counter intuitively, that apparently sensible attempts to mitigate failures in such complex systems can have adverse effects and therefore must be approached with care. The success of mitigation efforts in SOC systems is strongly influenced by the dynamics of the system. Unless the mitigation efforts alter the self-organization forces driving the system, the system will in general be pushed toward criticality. To alter those forces with mitigation efforts may be quite difficult because the forces are an intrinsic part of the system. Moreover, in many cases, efforts to mitigate small disruptions will increase the frequency of large disruptions. This occurs because the large and small disruptions are not independent but are strongly coupled by the dynamics. Before discussing this in the more complicated case of power systems, we will illustrate this phenomenon with a forest fire model.

  8. Fire and vegetation dynamics in the Cross Timbers forests of south-central North America

    Treesearch

    Steve W. Hallgren; Ryan D. DeSantis; Jesse A. Burton

    2012-01-01

    The vegetation of the Cross Timbers forests was maintained for thousands of years by fire; the historic fire return interval was likely 1 to 10 years. Fire suppression over the past century led to a doubling of stand basal area, increased diversity of tree species, reduced dominance of oak, and increased mesic species intolerant of fire. Dendrochronological studies...

  9. Fire history of the Peron Peninsula, Shark Bay, Western Australia based on remote sensing, dendrochronology, and anecdotal evidence

    NASA Astrophysics Data System (ADS)

    Beller, Benjamin J.

    Remote sensing data, dendrochronology, Geographical Information Systems (GIS), and anecdotal information were used to describe the fire regime of the 180,000 ha Peron Peninsula of Western Australia. Fire scars present in 1944 aerial photos were still visible in 2009, both in imagery and on the ground. Tree-ring dates from specimens sampled within these burned areas indicated the occurrence of at least three separate fires before 1944. The oldest fire occurred ca. 1911 and burned at least 5,880 ha. Subsequent fires ca. 1922 and 1936 burned across 8,240 ha and 9,400 ha respectively. The fire dates determined from tree-ring counts were consistent with precipitation data which showed conditions particularly favorable for fire before or during the estimated year of each fire. Plant communities most often burned before 1944 were the Acacia ramulosa var. linophylla Scrub and the Acacia - Lamarchea hakefolia Thicket with, respectively, 73% and 75% of these plant community types at the study area found to have been burned at some time. Remote sensing imagery from 1944-2009 identified only 300 additional hectares burned, a 25 ha fire in 1991 in the combined Acacia ramulosa var. linophylla Scrub and A.ligulata and A. rostellifora Thicket, ten prescribed burns in 1995 totaling 274 ha in various habitats, and two late 1990's scars from prescribed burns designed to create fire buffers, one 4.6 km and the other 7.4 km long. Combined data for all years assessed showed 59,000 ha (66%) of the total study area to have been burned or reburned since ca. 1911, most prior to 1944, with a total of nearly 24,000 ha (27%) of the study area unburned for more than 110 years. Birridas, which cannot burn, accounted for the remaining 6,000 ha (7%) of the study area. These results show fire occurred more frequently 100 years ago (fires every 10-15 years) than at present (> 65 years between fires) suggesting that more frequent prescribed burning than occurs at present on the Peron Peninsula would be most consistent with the pre-European fire regimes of the region and the ecosystems they maintained.

  10. Effects of a fire-retardant chemical to fathead minnows in experimental streams

    USGS Publications Warehouse

    Calfee, R.D.; Little, E.E.

    2003-01-01

    Background. Each year millions of liters of fire-retardant chemicals are applied to wildfires across the nation. Recent laboratory studies with long-term fire-retardant chemicals indicate a significant photoenhanced toxicity of products containing sodium ferrocyanide corrosion inhibitors. Our objective of this study was to determine the toxicity of fire-retardant chemicals to fathead minnows during exposure in experimental outdoor streams. Methods. Stream tests were conducted to determine the potential toxicity of a pulse of exposure as might occur when fire retardant chemical is rinsed from the watershed by rainfall. Two artificial 55-meter experimental streams were dosed with different concentrations of Fire-Trol?? GTS-R, or uncontaminated for a control. Replicate groups of fathead minnows were added to screened containers (10 fish per container) and exposed to retardant chemicals in the recirculating flow of the stream for up to 6 hours. Results and Discussion. Under field conditions toxicity of GTS-R only occurred in the presence of sunlight. When GTS-R was tested on sunny days, 100% mortality occurred. However, when tested during heavily overcast conditions, no mortality occurred. Conclusions. Lethal concentrations of cyanide were measured when GTS-R with YPS exposures were conducted under sunny conditions, but not under cloudy conditions, indicating that a minimum UV level is necessary to induce toxicity as well as the release of cyanide from YPS. The toxicity observed with GTS-R was likely associated with lethal concentrations of cyanide. Rainwater runoff following applications of this fire-retardant at the recommended rate could result in lethal concentrations in small ponds and streams receiving limited water flow under sunny conditions. Recommendations and Outlook. In addition to avoiding application to aquatic habitats, it is important to consider characteristics of the treated site including soil binding affinity and erosive properties.

  11. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Caprio, Anthony C.; Stephenson, Nathan L.; Das, Adrian J.

    2016-01-01

    Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs).  It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought.  Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed fire may help forests adapt to a future of more frequent and severe drought.During the third year of drought, in 2014, we surveyed 9950 trees in 38 burned and 18 unburned mixed conifer forest plots at low elevation (<2100 m a.s.l.) in Kings Canyon, Sequoia, and Yosemite national parks in California, USA.  Fire had occurred in the burned plots from 6 yr to 28 yr before our survey.  After accounting for differences in individual tree diameter, common conifer species found in the burned plots had significantly reduced probability of mortality compared to unburned plots during the drought.  Stand density (stems ha-1) was significantly lower in burned versus unburned sites, supporting the idea that reduced competition may be responsible for the differential drought mortality response.  At the time of writing, we are not sure if burned stands will maintain lower tree mortality probabilities in the face of the continued, severe drought of 2015.  Future work should aim to better identify drought response mechanisms and how these may vary across other forest types and regions, particularly in other areas experiencing severe drought in the Sierra Nevada and on the Colorado Plateau.

  12. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis and Rectus Femoris

    PubMed Central

    Stock, Matt S.; Thompson, Brennan J.

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units. PMID:25531294

  13. Global Competency Education Catches Fire at a Rural University

    ERIC Educational Resources Information Center

    Talbot, Patricia A.; Gustafson, Glenna; Mistele, Jean

    2017-01-01

    World-ready learners require world-ready educators. One group of inspiring teacher educators share how they ignited a fire of awareness around the importance of global competency education at a small, rural teacher college.

  14. Human dimensions of climate change: the vulnerability of small farmers in the Amazon.

    PubMed

    Brondizio, Eduardo S; Moran, Emilio F

    2008-05-27

    This paper argues for a twofold perspective on human adaptation to climate change in the Amazon. First, we need to understand the processes that mediate perceptions of environmental change and the behavioural responses at the levels of the individual and the local population. Second, we should take into account the process of production and dissemination of global and national climate information and models to regional and local populations, especially small farmers. We discuss the sociocultural and environmental diversity of small farmers in the Amazon and their susceptibility to climate change associated with drought, flooding and accidental fire. Using survey, ethnographic and archival data from study areas in the state of Pará, we discuss farmers' sources of knowledge and long-term memory of climatic events, drought and accidental fire; their sources of climate information; their responses to drought and fire events and the impact of changing rainfall patterns on land use. We highlight the challenges of adaptation to climate change created by the influence of migration and family turnover on collective action and memory, the mismatch of scales used to monitor and disseminate climate data and the lack of extension services to translate large-scale forecasts to local needs. We found that for most farmers, memories of extended drought tend to decrease significantly after 3 years. Over 50% of the farmers interviewed in 2002 did not remember as significant the El Niño Southern Oscillation (ENSO) drought of 1997/1998. This helps explain why approximately 40% of the farmers have not changed their land-use behaviours in the face of the strongest ENSO event of the twentieth century.

  15. Rapid recovery of gross ecosystem production and ecosystem-level respiration in a semiarid sagebrush shrubland following prescribed fire.

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Flerchinger, G. N.

    2016-12-01

    The impact of fire remains a key uncertainty in our understanding of the spatio-temporal dynamics of carbon cycling on Western US rangelands. We, therefore, tracked the recovery of carbon fluxes and vegetative carbon stocks following prescribed fire in a sagebrush shrubland located in the Western US Great Basin. We quantified the change in plant function type, Leaf Area Index (LAI), aboveground carbon stocks, Gross Ecosystem Production (GEP), and Ecosystem-level Respiration (Reco) for 2 years before and 5 years following a prescribed fire that burned in 2007. Recruitment of burned sagebrush shrubland by fast growing grasses and forbs drove a rapid recovery of LAI, GEP, and Reco following fire; LAI, GEP, and Reco recovered within 1-3 years. These findings are consistent with previous measurement and modeling work by Flerchinger that demonstrated rooting depths, soil moisture withdrawal, and evapotranspiration also recovered within a few years of this fire. Live aboveground biomass reached 15% of pre-fire aboveground biomass after 5 years. The rapid recovery of LAI, rooting depth, GEP and Reco may partially reflect conducive environmental conditions at this site and at the time of the fire. In particular, the site was wet for a sagebrush shrubland; annual precipitation averaged 545 mm during the study and large-deep snow drifts formed upslope of the site. Post-fire weather was particularly wet, with the second, third and fourth years following fire receiving 587, 614, and 745 mm of water. Grazing was excluded from the burned area, which limited herbivory and may have facilitated vegetation establishment and growth. Lastly, the fire burned in September after many grasses and herbaceous plants had already senesced.

  16. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Ecosystems

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2017-01-01

    The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.

  17. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semi-arid forests of the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Flatley, W. T.; Masek Lopez, S.; Fulé, P. Z.; Springer, A. E.

    2017-12-01

    Climate change and fire suppression are interacting to reduce forest health, drive high-intensity wildfires, and potentially reduce water quantity and quality in high-elevation forests of the southwestern US. Forest restoration including thinning and prescribed fire, is a management approach that reduces fire risk. It may also improve forest health by increasing soil moisture through the combined effects of increased snow pack and reduced evapotranspiration (ET), though the relative importance of these mechanisms is unknown. It is also unclear how small-scale changes in the hydrologic cycle will scale-up to influence watershed dynamics. We conducted field and modeling studies to investigate these issues. We measured snow depth, snow water equivalent (SWE), and soil moisture at co-located points in paired restoration-control plots near Flagstaff, AZ. Soil moisture was consistently higher in restored plots across all seasons. Snow depth and SWE were significantly higher in restored plots immediately after large snow events with no difference one week after snowfall, suggesting that restoration leads to both increased accumulation and sublimation. At the point scale, there was a small (ρ=0.28) but significant correlation between fall-to-spring soil moisture increase and peak SWE during the winter. Consistent with previous studies, soil drying due to ET was more rapid in recently restored sites than controls, but there was no difference 10 years after restoration. In addition to the small role played by snow and ET, we also observed more rapid soil moisture loss in the 1-2 days following rain or rapid snowmelt in control than in restoration plots. We hypothesize that this is due to a loss of macropores when woody plants are replaced by herbaceous vegetation and warrants further study. To investigate watershed-scale dynamics, we combined spatially-explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape on the Kaibab Plateau, AZ. Our results predicted that climate-induced vegetation changes will result in annual runoff declines of 2%-10% in the next century, but that restoration reversed these declines. We also predict that restoration treatments will protect water quality by reducing the incidence of high severity fire and the associated erosion.

  18. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest

    USGS Publications Warehouse

    Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, David M.

    2011-01-01

    Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests. ?? 2011 Springer Science+Business Media B.V.

  19. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure hasmore » economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.« less

  20. Opportunities for making wood products from small diameter trees in Colorado

    Treesearch

    Dennis L. Lynch; Kurt H. Mackes

    2002-01-01

    Colorado's forests are at risk to forest health problems and catastrophic fire. Forest areas at high risk to catastrophic fire, commonly referred to as Red Zones, contain 2.4 million acres in the Colorado Front Range and 6.3 million acres Statewide. The increasing frequency, size, and intensity of recent forest fires have prompted large appropriations of Federal...

  1. Small-diameter timber alchemy: can utilization pay the way toward fire-resistant forests

    Treesearch

    Jeremy S. Fried; R. Jamie Barbour; Roger D. Fight; Glenn Christensen; Guy Pinjuv

    2008-01-01

    There is growing interest in using biomass removed from hazardous fuels reduction treatments in wood-fired electrical generation facilities. An application of FIA BioSum to southwest Oregon’s Klamath ecoregion assessed the financial feasibility of fuel treatment and biomass generation under a range of product prices and fire hazard-motivated silvicultural prescriptions...

  2. Silvicultural tools applicable in forests burned by a mixed severity fire regime

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    The silvicultural tools applicable for use in forests burned by mixed severity fire regimes are as highly variable as the structures and compositions the fires have historically created. Singly or in combination chunking, chipping, slashing, and piling can alter the character of surface fuels (e.g., small trees, shrubs, branches, and stems). These treatments can be...

  3. The influence of a fire-induced convection column on radiological fallout patterns

    Treesearch

    A. Broido; A.W. McMasters

    1959-01-01

    Since no nuclear devices have been detonated by the United States under conditions leading to both mass fires and radiological fallout, a theoretical and small-scale experimental study was undertaken to see if fire-induced convection columns could significantly affect fallout patterns. Experiments were conducted in a 6- by 6-foot low-velocity wind tunnel using full-...

  4. Modelling Middle Infrared Thermal Imagery from Observed or Simulated Active Fire

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Gastellu-Etchegorry, J. P.; Mell, W.; Johnston, J.; Filippi, J. B.

    2016-12-01

    The Fire Radiative Power (FRP) is used in the atmospheric and fire communities to estimate fire emission. For example, the current version of the emission inventory GFAS is using FRP observation from the MODIS sensors to derive daily global distribution of fire emissions. Although the FRP product is widely accepted, most of its theoretical justifications are still based on small scale burns. When up-scaling to large fires effects of view angle, canopy cover, or smoke absorption are still unknown. To cover those questions, we are building a system based on the DART radiative transfer model to simulate the middle infrared radiance emitted by a propagating fire front and propagating in the surrounding scene made of ambient vegetation and plume aerosols. The current version of the system was applied to fire ranging from a 1m2 to 7ha. The 3D fire scene used as input in DART is made of the flame, the vegetation (burnt and unburnt), and the plume. It can be either set up from [i] 3D physical based model scene (ie WFDS, mainly applicable for small scale burn), [ii] coupled 2D fire spread - atmospheric models outputs (eg ForeFire-MesoNH) or [iii] derived from thermal imageries observations (here plume effects are not considered). In the last two cases, as the complexity of physical processes occurring in the flame (in particular soot formation and emission) is not to solved, the flames structures are parameterized with (a) temperature and soot concentration based on empirical derived profiles and (b) 3D triangular shape hull interpolated at the fire front location. Once the 3D fire scene is set up, DART is then used to render thermal imageries in the middle infrared. Using data collected from burns conducted at different scale, the modelled thermal imageries are compared against observations, and effects of view angle are discussed.

  5. Pre-fire fuel reduction treatments influence plant communities and exotic species 9 years after a large wildfire

    Treesearch

    Kristen L. Shive; Amanda M. Kuenzi; Carolyn H. Sieg; Peter Z. Fule

    2013-01-01

    We used a multi-year data set from the 2002 Rodeo-Chediski Fire to detect post-fire trends in plant community response in burned ponderosa pine forests. Within the burn perimeter, we examined the effects of pre-fire fuels treatments on post-fire vegetation by comparing paired treated and untreated sites on the Apache-Sitgreaves National Forest.We sampled these paired...

  6. Warfare rather than agriculture as a critical influence on fires in the late Holocene, inferred from northern Vietnam

    PubMed Central

    Li, Zhen; Saito, Yoshiki; Dang, Phong X.; Matsumoto, Eiji; Vu, Quang Lan

    2009-01-01

    Fire has played an essential role in the development of human civilization. Most previous research suggests that frequent-fire regimes in the late Holocene were associated with intensification of human activities, especially agriculture development. Here, we analyze fire regimes recorded in the Song Hong delta area of Vietnam over the past 5,000 years. In the prehistoric period, 2 long-term, low-charcoal abundance periods have been linked to periods of low humidity and cool climate, and 5 short-term fire regimes of 100–150 years in duration occurred at regular intervals of ≈700 years. However, over the last 1,500 years, the number, frequency, and intensity of fire regimes clearly increased. Six intensified-fire regime periods in northern Vietnam during this time coincided with changes of Vietnamese dynasties and associated warfare and unrest. In contrast, agricultural development supported by rulers of stable societies at this time does not show a positive correlation with intensified-fire regime periods. Thus, warfare rather than agriculture appears to have been a critical factor contributing to fire regimes in northern Vietnam during the late Holocene. PMID:19597148

  7. Atlas of climatic controls of wildfire in the western United States

    USGS Publications Warehouse

    Hostetler, S.W.; Bartlein, P.J.; Holman, J.O.

    2006-01-01

    Wildfire behavior depends on several factors including ecologic characteristics, near-term and antecedent climatic conditions,fuel availability and moisture level, weather, and sources of ignition (lightning or human). The variability and interplay of these factors over many spatial and temporal scales present an ongoing challenge to our ability to forecast a given wildfire season. Here we focus on one aspect of wildfire in the western US through a retrospective analysis of wildfire (starts and area burned) and climate over monthly time scales. We consider prefire conditions up to a year preceding fire outbreaks. For our analysis, we used daily and monthly wildfire records and a combination of observed and model-simulated atmospheric and surface climate data. The focus of this report is on monthly wildfire and climate for the period 1980-2000. Although a longer fire record is desirable, the 21-year record is the longest currently available and it is sufficient for the purpose of a first-order regional analysis. We present the main results in the form of a wildfire-climate atlas for 8 subregions of the West that can be used by resource managers to assess current wildfire conditions relative to high, normal, and low fire years in the historical record. Our results clearly demonstrate the link between wildfire conditions and a small set of climatic variables, and our methodology is a framework for providing near-real-time assessments of current wildfire conditions in the West.

  8. Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from remotely sensed data.

    PubMed

    Shi, Yusheng; Matsunaga, Tsuneo

    2017-07-01

    Biomass burning is a large important source of greenhouse gases and atmospheric aerosols, and can contribute greatly to the temporal variations of CO 2 emissions at regional and global scales. In this study, we compared four globally gridded CO 2 emission inventories from biomass burning during the period of 2002-2011, highlighting the similarities and differences in seasonality and interannual variability of the CO 2 emissions both at regional and global scales. The four datasets included Global Fire Emissions Database 4s with small fires (GFED4s), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0), and Global Inventory for Chemistry-Climate studies-GFED4s (G-G). The results showed that in general, the four inventories presented consistent temporal trend but with large differences as well. Globally, CO 2 emissions of GFED4s, GFAS1.0, and G-G all peaked in August with the exception in FINN1.0, which recorded another peak in annual March. The interannual trend of all datasets displayed an overall decrease in CO 2 emissions during 2002-2011, except for the inconsistent FINN1.0, which showed a tendency to increase during the considered period. Meanwhile, GFED4s and GFAS1.0 noted consistent agreement from 2002 to 2011 at both global (R 2  > 0.8) and continental levels (R 2  > 0.7). FINN1.0 was found to have the poorest temporal correlations with the other three inventories globally (R 2  < 0.6). The lower estimation in savanna CO 2 emissions and higher calculation in cropland CO 2 emissions by FINN1.0 from 2002 to 2011 was the primary reason for the temporal differences of the four inventories. Besides, the contributions of the three land covers (forest, savanna, and cropland) on CO 2 emissions in each region varied greatly within the year (>80%) but showed small variations through the years (<40%).

  9. Using small-scale rainfall simulation to assess temporal changes in pre- and post-fire soil hydrology and erosion: the value of fixed-position plots

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Shakesby, Rick A.; Bento, Célia P. M.; Walsh, Rory P. D.; Ferreira, António J. D.

    2013-04-01

    In recent decades, wildfire has become both frequent and severe in southern Europe leading to widespread research into its impacts on soil erosion, soil and water quality. Rainfall simulation has become established as a popular technique to assess these impacts, as it can be conducted under controlled conditions (notably, with respect to rainfall) and is a very cost-effective and rapid way to compare overland flow and suspended sediment generation within burned and unburned sites. Particular advantages are that: (1) results can be obtained before the first post-fire rainfall events; and (2) experiments can reproduce controlled storm events, with similar characteristics to natural rain. Although plot sizes vary (0.09-30m2), most researchers have used < 1m2 plots because of logistical difficulties of setting up larger plots especially in burned areas that may lack good access and local water supplies. Disadvantages with using small plots, however, particularly on burned terrain, include: (1) the difficulty of installing the plots without disturbing the soil; (2) the strong influence of plot boundaries on overland flow and sediment production. Significant replication is generally considered necessary to take account of high variability in results that are due in part to these effects. One response to these problems is a 'fixed plot' approach in which bounded plots are left in place for re-use throughout the study. A problem here, however, would be progressive sediment exhaustion due to the 'island' effect of the plots caused by their isolation from upslope sediment transfer. This paper assesses the usefulness of a repeat-simulation plot approach in assessing temporal change in overland flow and erosion in post-fire situations that minimizes the island effect by partial removal of plot boundaries between surveys. This approach was tested over a 2.5-year period in a small (9 ha) catchment in central Portugal subjected to an experimental fire in 2009. Five rainfall simulation plots 0.25m2 in size were installed close to sediment traps (contributing areas: 498-4238m2) collecting sediment eroded by overland flow caused by natural rainfall. The plots were installed pre-fire and experiments carried out under 'dry' and 'wet' antecedent conditions on six occasions from pre-fire to two years after the fire. The lateral boundaries of each plot were left in place, but the upslope boundary and central (outlet) section of the downslope boundary were removed between surveys and re-installed and sealed each time measurements were carried out. Having fixed positions of plots minimised soil disturbance on each monitoring occasion and meant that, for any given plot, results were directly comparable and gave a more reliable picture of change through time. Removing the upper and lower boundaries of the plots between measurements allowed the soil to undergo processes similar to those on the surrounding slope and reduced the 'island' effect associated with continuously bounded plots. Results from the adjacent sediment traps, which provided a parallel temporal record of hillslope-scale overland flow and sediment redistribution patterns under natural rainfall, are used to judge the usefulness of the in situ simulation plots approach.

  10. An Ozark fire history

    Treesearch

    Richard Guyette; Mavis Dey; Dan Dey

    1999-01-01

    Missouri's natural communities have been shaped by humans and wildland fires for thousands of years. In many ways, the history of fire in Missouri also is a history of human population, culture and migration. Fires caused by natural ignition, like lightning, are rare. Despite as many as 50 to 70 thunderstorm days per year, Conservation Department studies indicate...

  11. Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem

    PubMed Central

    Blarquez, Olivier; Carcaillet, Christopher

    2010-01-01

    Background Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks. Methods To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events. Principal Findings We show that fuel build-up from arolla pine (Pinus cembra) always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp.), then by ericaceous species after 25–75 years, and by herbs after 50–100 years. European larch (Larix decidua), which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate), with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years. Conclusion Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less than 150 years would threaten the dominant species and might override the resilience of subalpine forests. PMID:20814580

  12. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  13. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    PubMed

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  14. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    PubMed

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  15. Human versus lightning ignition of presettlement surface fires in costal pine forests of the upper Great Lakes

    USGS Publications Warehouse

    Loope, Walter L.; Anderton, John B.

    1998-01-01

    To recover direct evidence of surface fires before European settlement, we sectioned fire-scarred logging-era stumps and trees in 39 small, physically isolated sand patches along the Great Lakes coast of northern Michigan and northern Wisconsin. While much information was lost to postharvest fire and stump deterioration, 147 fire-free intervals revealed in cross-sections from 29 coastal sand patches document numerous close interval surface fires before 1910; only one post-1910 fire was documented. Cross-sections from the 10 sections with records spanning >150 yr suggest local fire occurrence rates before 1910 ca. 10 times the present rate of lightning-caused fire. Since fire spread between or into coastal sand patches is rare, and seasonal use of the patches by Native people before 1910 is well documented, both historically and ethnographically, ignition by humans probably accounts for more than half of the pre-1910 fires recorded in cross-sections.

  16. Surface Fire Influence on Carbon Balance Components in Scots Pine Forest of Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Ivanova, G. A.; Conard, S. G.; Soja, A. J.

    2008-12-01

    Wildfire is one of the most important disturbances in boreal forests, and it can have a profound effect on forest-atmosphere carbon exchange. Pinus sylvestris (Scots pine) stands of Siberia are strongly impacted by fires of low to high severity. Biomass distribution in mature lichen/feathermoss Scots pine stands indicates that they are carbon sinks before fire. Fires contribute significantly to the carbon budget resulting in a considerable carbon efflux, initially through direct consumption of forest fuels and later as a result of tree mortality and decomposition of dead material accumulated on the forest floor. In initial postfire years these processes dominate over photosynthetic carbon assimilation, and the ecosystems become a carbon source. Over several postfire years, above-ground carbon in dead biomass tends to increase, with the increase depending significantly on fire severity. High-severity fire enhances dead biomass carbon, while moderate- and low-severity fires have minimal effect on above-ground carbon distribution in Scots pine ecosystems. Dead stand biomass carbon increases, primarily during the first two years following fires, due to tree mortality. This increase can account for up to 12.4% of the total stand biomass after low- and moderate- intensity fires. We found tree dieback following a high-intensity fire is an order of magnitude higher, and thus the dead biomass increases up to 88.1% of total above-ground biomass. Photosynthetic CO2 uptake decreases with increasing tree mortality, and needle foliage and bark are incorporated into the upper layer of the forest floor in the course of years. Ground vegetation and duff carbon were >90, 71-83, and 82% of prefire levels after fires of low, moderate, and high severity, respectively for the first 4 to 5 years after fire. Fires of low and moderate severity caused down woody fuel carbon to increase by 2.1 and 3.6 t ha-1 respectively by four years after burning as compared to the pre-fire values. Climate change and increasing drought length observed in recent decades have increased the probability of high-intensity fire occurrence. Areas burned have increased in extent and severity across Siberia, resulting in increased carbon emissions to the atmosphere from fuel combustion and post fire decomposition.

  17. Feasibility of a small central cogenerated energy facility: Energy management memorandum

    NASA Astrophysics Data System (ADS)

    Porter, R. N.

    1982-10-01

    The thermal economic feasibility of a small cogenerated energy facility designed to serve several industries in the Stockyards area was investigated. Cogeneration options included two dual fuel diesels and two gas turbines, all with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired boiler cases, also low sulphur coal and municipal refuse. For coal and refuse, the option of steam only without cogeneration was also assessed. The fired boiler cogeneration systems employed back pressure steam turbines. The refuse fired cases utilized electrical capacities, 8500 to 52,400 lbm/hr and 0 to 9.9 MW (e), respectively. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which was displaced was sold to Commonwealth Edison Company under PURPA (Public Utility Regulatory Policies Act). The facility was operated by a mutually owned corporation formed by the cogenerated power users.

  18. Fire safety knowledge and practices among residents of an assisted living facility.

    PubMed

    Jaslow, David; Ufberg, Jacob; Yoon, Russell; McQueen, Clay; Zecher, Derek; Jakubowski, Greg

    2005-01-01

    Assisted living facilities (ALFs) pose unique fire risks to the elderly that may be linked to specific fire safety (FS) practices. To evaluate self-reported FS practices among ALF residents. All residents of a small ALF were surveyed regarding actual and hypothetical FS behaviors, self-perceived fire risk, and FS preparedness. Fifty-eight ALF residents completed the survey. Thirty-three (58%) individuals reported one or more disabilities. Seven (12%) residents ignored the fire alarm and 21 (35%) could not hear it clearly. Sixteen (28%) residents would attempt to locate the source of a fire rather than escape from the building. Only 24 (42%) residents were familiar with the building fire plan. Twenty-three (40%) people surveyed believed that they were not at risk of fire in the study facility. Residents of an ALF may be at increased fire injury risk due to their FS practices and disabilities.

  19. Soil properties and root biomass responses to prescribed burning in young Corsican pine (Pinus nigra Arn.) stands.

    PubMed

    Tufekcioglu, Aydin; Kucuk, Mehmet; Saglam, Bulent; Bilgili, Ertugrul; Altun, Lokman

    2010-05-01

    Fire is an important tool in the management of forest ecosystems. Although both prescribed and wildland fires are common in Turkey, few studies have addressed the influence of such disturbances on soil properties and root biomass dynamics. In this study, soil properties and root biomass responses to prescribed fire were investigated in 25-year-old corsican pine (Pinus nigra Arn.) stands in Kastamonu, Turkey. The stands were established by planting and were subjected to prescribed burning in July 2003. Soil respiration rates were determined every two months using soda-lime method over a two-year period. Fine (0-2 mm diameter) and small root (2-5 mm diameter) biomass were sampled approximately bimonthly using sequential coring method. Mean daily soil respiration ranged from 0.65 to 2.19 g Cm(-2) d(-1) among all sites. Soil respiration rates were significantly higher in burned sites than in controls. Soil respiration rates were correlated significantly with soil moisture and soil temperature. Fine root biomass was significantly lower in burned sites than in control sites. Mean fine root biomass values were 4940 kg ha(-1) for burned and 5450 kg ha(-1) for control sites. Soil pH was significantly higher in burned sites than in control sites in 15-35 cm soil depth. Soil organic matter content did not differ significantly between control and burned sites. Our results indicate that, depending on site conditions, fire could be used successfully as a tool in the management of forest stands in the study area.

  20. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    USGS Publications Warehouse

    Barrett, K.; McGuire, A. David; Hoy, E.E.; Kasischke, E.S.

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep‐burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity.This new approach was used to identify black spruce stands that experienced intermediate‐ to high‐severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (∼4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co‐dominated by deciduous forest stands by 20%. Such disturbance‐driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.

  1. Nitrogen balance along a northern boreal forest fire chronosequence.

    PubMed

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  2. Nitrogen balance along a northern boreal forest fire chronosequence

    PubMed Central

    Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests. PMID:28358884

  3. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity.

    PubMed

    Barrett, K; McGuire, A D; Hoy, E E; Kasischke, E S

    2011-10-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep-burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity. This new approach was used to identify black spruce stands that experienced intermediate- to high-severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (approximately 4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co-dominated by deciduous forest stands by 20%. Such disturbance-driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.

  4. Decadal time-scale monitoring of forest fires in Similipal Biosphere Reserve, India using remote sensing and GIS.

    PubMed

    Saranya, K R L; Reddy, C Sudhakar; Rao, P V V Prasada; Jha, C S

    2014-05-01

    Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004-2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km(2). There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km(2) (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km(2) is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km(2)) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.

  5. Fabrication Studies of Ternary Rare Earth Sulfides for Infrared Applications.

    DTIC Science & Technology

    1981-05-01

    sulfides. 1 The initial thrust of this investigation has been two-fold. The first objective was to satisfy a need for small , fully dense samples of...0I 60 55.50 45 40 15 30 25 20 28, CuKa Figure 3. X-ray diffraction pattern of CaLa 2S 4fired for 100 hours at 10600C. Small amounts of CaS (and...been increased 9 PBN-81-511 100 urn Figure 4. SEM micrograph of a mixture of La O and CaCO 3 before firing. The small cubes are CaCO The Ia2ോ

  6. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes

    Treesearch

    Jamie Lydersen; Malcolm North; Brandon M. Collins

    2014-01-01

    The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...

  7. Using the NASA NEESPI Portal Data to Study Land, Climate, and Socio-Economic Changes in Northern Eurasia

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Shen, Suhung; Csiszar, Ivan; Romanov, Peter; Loboda, Tatiana; Gerasimov, Irina

    2008-01-01

    A large number of fires detected in July of 2003 - a nearly 200-time increase in fire detections compared to other years during 2001-2006. despite the summer monsoon suppression of large fire occurrence. Traditional vegetation indices (NDVI and EVI) included in operational fire danger assessment provide little information on the fuel state in this ecosystem pre- or post-fire. No considerable differences in surface temperature and soil moisture in July were observed between the catastrophic year of 2003 and the two subsequent years of low summer fire occurrence of 2004 and 2005. However, the temporal analysis indicates that dry spring conditions in 2003 (detected through low soil moisture measurements in April and May) may have led to a stressed vegetative state and created conditions conducive to catastrophic fire occurrence.

  8. KSC00pp0744

    NASA Image and Video Library

    2000-06-02

    A NASA helicopter takes off to bring water to fight a small fire on Kennedy Space Center grounds. The site is between Kennedy Parkway North and the Indian River. The fire is one of many throughout Central Florida, which is suffering from drought

  9. KSC-00pp0744

    NASA Image and Video Library

    2000-06-02

    A NASA helicopter takes off to bring water to fight a small fire on Kennedy Space Center grounds. The site is between Kennedy Parkway North and the Indian River. The fire is one of many throughout Central Florida, which is suffering from drought

  10. The Effectiveness of Aerial Hydromulch as a Post-Fire Erosion Control Treatment in Southern California

    Treesearch

    P.M. Wohlgemuth; J.L. Beyers; P.R. Robichaud

    2010-01-01

    Following a wildfire in the Santa Ana Mountains of northeast Orange County, California, a monitoring project was established to test whether aerial hydromulch reduced post-fire hillslope and small watershed erosion, and to document its impact on re-growing vegetation. The study site received below normal rainfall both the first and second winters after the fire. A high...

  11. A brush fire forensic case.

    PubMed

    Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Casellato, U; Vadalà, G

    2005-01-01

    In Italy, every summer forest fires attract public attention due to the number of victims, the intensity of the fires, the areas devastated, the environmental damage and the loss of property. Excluding some fires by natural causes, other causes are related to the social, economic, and productive profile of the territory. The erroneous expectation is that wooded areas destroyed by fire can then be used for private interests. Often, a fire, started to clear a small area, can completely change the expected result, producing disaster, loss of property, destruction of entire forests and resident fauna, and kill innocent people. In this case report, the reconstruction of an arson scene, the analytical techniques and the results obtained are illustrated in this paper, with the aim of sharing with other research laboratories the current knowledge on forest fire.

  12. Effectiveness of Roundtable on Sustainable Palm Oil (RSPO) for reducing fires on oil palm concessions in Indonesia from 2012 to 2015

    NASA Astrophysics Data System (ADS)

    Cattau, Megan E.; Marlier, Miriam E.; DeFries, Ruth

    2016-10-01

    Fire is a common tool for land conversion and management associated with oil palm production. Fires can cause biodiversity and carbon losses, emit pollutants that deteriorate air quality and harm human health, and damage property. The Roundtable on Sustainable Palm Oil (RSPO) prohibits the use of fire on certified concessions. However, efforts to suppress fires are more difficult during El Niño conditions and on peatlands. In this paper, we address the following questions for oil palm concessions developed prior to 2012 in Sumatra and Kalimantan, the leading producers of oil palm both within Indonesia and globally: (1) for the period 2012-2015, did RSPO-certified concessions have a lower density of fire detections, fire ignitions, or ‘escaped’ fires compared with those concessions that are not certified? and (2) did this pattern change with increasing likelihood of fires in concessions located on peatland and in dry years? These questions are particularly critical in fuel-rich peatlands, of which approximately 46% of the area was designated as oil palm concession as of 2010. We conducted propensity scoring to balance covariate distributions between certified and non-certified concessions, and we compare the density of fires in certified and non-certified concessions using Kolmogorov-Smirnov tests based on moderate resolution imaging spectroradiometer Active Fire Detections from 2012-2015 clustered into unique fire events. We find that fire activity is significantly lower on RSPO certified concessions than non-RSPO certified concessions when the likelihood of fire is low (i.e., on non-peatlands in wetter years), but not when the likelihood of fire is high (i.e., on non-peatlands in dry years or on peatlands). Our results provide evidence that RSPO has the potential to reduce fires, though it is currently only effective when fire likelihood is relatively low. These results imply that, in order for this mechanism to reduce fire, additional strategies will be needed to control fires in oil palm plantations in dry years and on peatlands.

  13. Lead exposures and biological responses in military weapons systems: Aerosol characteristics and acute lead effects among US Army artillerymen: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, M.H.; Stebbings, J.H.; Peterson, D.P.

    1993-03-01

    This study was to determine the concentration and chemical nature of lead (Pb) aerosols produced during the firing of artillery and to determine the exposures and biological responses of crew members exposed to lead aerosols during such firing. The concentrations of lead-containing aerosols at crew positions depended on wind conditions, with higher concentrations when firing into a head wind. Aerosol concentrations were highest in the muzzle blast zone. Concentrations of lead in the blood of crew members rose during the first 12 days of exposure to elevated airborne lead concentrations and then leveled off. There was no rapid decrease inmore » blood lead concentrations after completion of firing. Small decreases in hematocrit and small increases in free erythrocyte porphyrin were correlated with increasing exposure to airborne lead. These changes were reversed by seven weeks after firing. Changes in nerve conduction velocity had borderline statistical significance to airborne lead exposure. In measuring nerve conduction velocity, differences in skin temperature must be taken into account.« less

  14. Effects of Fire on Understory Vegetation Communities in Siberian Boreal Forests and Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Pena, H., III; Alexander, H. D.; Natali, S.; Loranty, M. M.; Holmes, R. M.; Mack, M. C.; Schade, J. D.; Mann, P. J.; Davydov, S. P.; Frey, B.; Zimov, N.; Jardine, L. E.

    2017-12-01

    Fire is an important disturbance in Arctic ecosystems that is increasing in frequency and severity as a result of climate warming. Fire alters the landscape, changes soil conditions, and influences vegetation regrowth, favoring early-successional plants and those with well-established root systems capable of surviving fire. Post-fire vegetation establishment contributes to the recovery of the soil organic layer (SOL), which insulates the soil and protects soil and permafrost carbon pools. In order to better understand successional dynamics following fire in the Arctic we assessed the short-(years) and long-(decades) term effects of fire on vegetation communities, SOL depth, and thaw depth across fire-affected sites located in two regions of the Arctic- a 76-year old fire scar in a larch forest in Siberia near Cherskiy, Russia, and a 2-year old fire scar in tundra in the Yukon-Kuskokwim Delta, Alaska. We measured species diversity, plant carbon (C) pools, SOL conditions and NDVI at both study areas. As expected, there was a decline in vegetation C pools following fire in Alaskan tundra, and as a result of higher severity fire in Siberian boreal forests. Two years following fire in Alaskan tundra, vegetation C pools decreased six-fold from 600 g C m-2 at unburned areas, to 100 g C m-2 at the 2015 burn areas. In larch forests, understory C pools were three-times lower in stands with high intensity fires (135 g C m-2) compared to those with low intensity fires (415 g C m-2), due to the absence of dwarf birch (Betula nana). Our results illustrate how fire influences vegetation at both early and later stages of succession, which can have cascading effects on SOL development and permafrost integrity, with the potential for release of large C stocks that may further exacerbate climate warming.

  15. Residential fire related deaths and injuries among children: fireplay, smoke alarms, and prevention

    PubMed Central

    Istre, G; McCoy, M; Carlin, D; McClain, J

    2002-01-01

    Background: The aim of the study was to describe the epidemiology of residential fire related deaths and injuries among children, and identify risk factors for these injuries through a linked dataset for the city of Dallas, Texas. Methods: Data for all residential fires were linked with fire related injury data, using fire department records, ambulance transports, hospital admissions, and medical examiner records, for children 0–19 years of age. Causes of fires, including fireplay (children playing with fire or combustibles), arson and other causes, were determined by fire department investigation. Results: From 1991–98, 76 children were injured in residential fires (39 deaths, 37 non-fatal). The highest rates occurred in the youngest children (<5 years) and in census tracts with lowest income. Fireplay accounted for 42% (32/76) of all injuries, 62% (15/24) of deaths in children 0–4 years, and 94% (13/14) of deaths from apartment and mobile home fires. Most of the fireplay related injuries (27/32, 84%) were from children playing with matches or lighters. Most started in a bedroom. Smoke alarms showed no protective efficacy in preventing deaths or injuries in fires started by fireplay or arson, but there was significant protective efficacy for a functional smoke alarm in fires started from all other causes (p<0.01). Conclusions: Residential fire related injuries among children in Dallas occurred predominantly in the youngest ages (<5 years) and in poor neighborhoods. Most of the deaths, especially those in apartments and mobile homes, resulted from fireplay. Smoke alarms appeared to offer no protection against death or injury in fireplay associated fires, possibly from the nature of the child's behavior in these fires, or from the placement of the smoke alarm. Prevention of childhood residential fire related deaths may require interventions to prevent fireplay in order to be successful. PMID:12120831

  16. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire.

    PubMed

    Arbellay, Estelle; Daniels, Lori D; Mansfield, Shawn D; Chang, Alice S

    2017-12-01

    Both mountain pine beetle (MPB) Dendroctonus ponderosae Hopkins and fire leave scars with similar appearance on lodgepole pine Pinus contorta Dougl. ex Loud. var. latifolia Engelm. that have never been compared microscopically, despite the pressing need to determine the respective effects of MPB and fire injury on tree physiology. We analysed changes in wood formation in naturally caused scars on lodgepole pine, and tested the hypotheses that (i) MPB and fire injury elicit distinct anomalies in lodgepole pine wood and (ii) anomalies differ in magnitude and/or duration between MPB and fire. Mountain pine beetle and fire injury reduced radial growth in the first year post-injury. Otherwise, radial growth and wood density increased over more than 10 years in both MPB and fire scars. We found that the general increase in radial growth was of greater magnitude (up to 27%) and of longer duration (up to 5 years) in fire scars compared with MPB scars, as shown in earlywood width. We also observed that the increase in latewood density was of greater magnitude (by 12%) in MPB scars, but of longer duration (by 4 years) in fire scars. Crystallinity decreased following MPB and fire injury, while microfibril angle increased. These changes in fibre traits were of longer duration (up to 4 years) in MPB scars compared with fire scars, as shown in microfibril angle. We found no significant changes in carbon and nitrogen concentrations. In conclusion, we stress that reduced competition and resistance to cavitation play an important role alongside cambial injury in influencing the type and severity of changes. In addition, more research is needed to validate the thresholds introduced in this study. Our findings serve as a foundation for new protocols to distinguish between bark beetle and fire disturbance, which is essential for improving our knowledge of historical bark beetle and fire regimes, and their interactions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Using climate information for fuels management

    USGS Publications Warehouse

    Kolden, Crystal A.; Brown, Timothy J.

    2008-01-01

    Climate has come to the forefront of wildfire discussions in recent years as research contributes to the general understanding of how climate influences fuels availability to burn, the occurrence of severe fire weather conditions and other wildfire parameters. This understanding has crossed over into wildfire management applications through the creation of tools like climate forecasts for wildfire and drought indices, which are now widely used in wildfire suppression and mitigation planning. The overall question is how can climate information help fire managers meet management objectives? Climate underlies weather. For example, a number of days could be generally wet, but that may occur in the context of a two-year overall drought. Knowing the baseline climate is not only critical to preventing escaped prescribed fires, but also how it may affect fire behavior, fire effects and whether or not fire managers will meet their fuels management objectives. Thus, for fire managers to use prescribed and WFU fire safely and effectively, and to minimize the number of escaped fires and conversions to suppression, they need to understand how current climate conditions will impact the use of fire. One example is the need to use prescribed fire under set “burn windows”. Since meteorological conditions vary considerably from year to year for a given day, fire managers will be more successful in utilizing burn windows effectively if they understand those climate thresholds conducive to an increased number of safe burn windows, and are able to predict and take advantage of those burn windows. While climate and wildfire has been studied extensively, climate and fire use has not. The initial goal of this project was to assess how climate impacts prescribed fire use in a more general sense. After a preliminary informal survey in the spring of 2003, we determined that 1) there is insufficient data (less than 10 years) to conduct empirical correlative studies similar to those of the relationships between climate and wildfire (e.g., Swetnam and Betancourt 1990), and 2) prescribed fire policy has many regulations that potentially inhibited the use of climate information for decision-making. It was also determined that because fire use is a human decision, it would be more informative to ask fire managers themselves how climate impacts fire use through their decision-making processes, and whether or not they use climate information for prescribed fire. The first task for this project was to complete a regional survey of prescribed fire managers in California and Nevada. During the second phase of the project, additional prescribed fire managers were surveyed across the country. During the third year a second survey of WFU managers was completed. The goals of these inquiries were to determine: 1) If fire managers use climate information for fuels management; 2) The perspective fire managers have towards climate affecting fuels management; 3) Determine any obstacles that make it difficult to use climate information for fuels management; and 4) Determine climate information managers need to help them make better decisions for fire use.

  18. Impact of a community based fire prevention intervention on fire safety knowledge and behavior in elementary school children

    PubMed Central

    Hwang, V; Duchossois, G P; Garcia‐Espana, J F; Durbin, D R

    2006-01-01

    The objective of this study was to determine the impact of a community based fire prevention intervention directed only to parents on the fire safety knowledge and behavior in elementary school children. This was a prospective, quasi‐randomized controlled study in which third and fourth grade students from two elementary schools in an urban, poor, minority community completed knowledge/behavior surveys at baseline and following completion of the intervention. The intervention group received an in‐home visit from fire department personnel who installed free lithium smoke detectors and provided a fire escape plan. After accounting for a small difference in baseline summary scores of knowledge and behavior between the control and intervention groups, this study found a modest improvement in fire safety behavior among children whose families received a fire prevention intervention reflecting a change in household fire safety practices. However, there was no significant change in fire safety knowledge. PMID:17018679

  19. Curve Number and Peakflow Responses Following the Cerro Grande Fire on a Small Watershed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, E. P.; Hawkins, Richard H.

    The Curve Number (CN) method is routinely used to estimate runoff and peakflows following forest fires, but there has been essentially no literature on the estimated value and temporal variation of CNs following wildland fires. In May 2000, the Cerro Grande Fire burned the headwaters of the major watersheds that cross Los Alamos National Laboratory, and a stream gauging network presented an opportunity to assess CNs following the fire. Analysis of rainfall-runoff events indicated that the pre-fire watershed response was complacent or limited watershed area contributed to runoff. The post-fire response indicated that the complacent behavior continued so the watershedmore » response was not dramatically changed. Peakflows did increase by 2 orders of magnitude following the fire, and this was hypothesized to be a function of increase in runoff volume and changes in watershed network allowing more efficient delivery of runoff. More observations and analyses following fires are needed to support definition of CNs for post-fire response and mitigation efforts.« less

  20. Contribution of forensic autopsy to scene reconstruction in mass fire casualties: a case of alleged arson on a floor consisting of small compartments in a building.

    PubMed

    Michiue, Tomomi; Ishikawa, Takaki; Oritani, Shigeki; Maeda, Hitoshi

    2015-01-01

    A fire is an important cause of mass disasters, involving various forensic issues. Before dawn on an early morning, 16 male visitors in their twenties to sixties were killed in a possibly incendiary fire at a 'private video parlor' consisting of small compartments in a building. The main causes of death as determined by forensic autopsy were acute carbon monoxide (CO) intoxication for all of the 15 found-dead victims, and hypoxic-ischemic encephalopathy following acute CO intoxication for a victim who died in hospital. Burns were mild (<20% of body surface) in most victims, except for three victims found between the entrance and the estimated fire-outbreak site; thus, identification was completed without difficulty, supported by DNA analysis. Blood carboxyhemoglobin saturation (COHb) was higher for victims found dead in the inner area. Blood cyanide levels were sublethal, moderately correlated to COHb, but were higher in victims found around the estimated fire-outbreak site. There was no evidence of thinner, alcohol or drug abuse, or an attack of disease as a possible cause of an accidental fire outbreak. These observations contribute to evidence-based reconstruction of the fire disaster, and suggest how deaths could have been prevented by appropriate disaster measures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Inaja Fire - 1956, Pine Hills Fire - 1967...similar, yet different

    Treesearch

    Mark J. Schroeder; Bernadine B. Taylor

    1968-01-01

    Two fires burned in the same area in southern California under nearly similar weather conditions, 11 years apart. Yet the Inaja fire of 1956 was much more disastrous than the Pine Hills fire of 1967. The earlier fire claimed 11 lives, and covered an area five times larger than the 1967 fire. Differences in fuels, topography, fire behavior, fire-control action, and...

  2. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  3. Empirical Estimates of Tree Carbon Storage Over a Century due to Fire Reduction in California Montane Conifer Forests.

    NASA Astrophysics Data System (ADS)

    Bouldin, J.

    2008-12-01

    Fire reduction policies are globally widespread and cause large changes in natural disturbance regimes. They should affect C accrual rates, but there is uncertainty in both modeling- and empirically-based estimates on the rate, and sometimes even the sign thereof, due to a lack of high quality data and to the confounding by logging or other ecological changes. Here I present data on tree density and C stock changes over 93 years from a never-logged, mid-montane (1370 to 2130 m) landscape in the central Sierra Nevada, California. Literature-based mean pre-1870 fire return intervals in the region were on the order of 8 to 20 years, but declined precipitously afterwards. The area was originally sampled without bias in 1911, and in 2004 I randomly re-sampled 20 1.6 ha plots in the area. I found very large increases in tree density and tree C, with mean tree densities increasing in each of 13 diameter classes. Total density increased from 54 to 289 trees per ha (530 percent); the smallest diameter class increased 1100 percent while progressively larger classes had smaller relative increases. Allometrically estimated increases in tree C across the size classes were more uniform, and total tree C, excluding fine roots, increased from 100 to 228 Mg C per ha. These values very likely underestimate ecosystem C gain, because likely increases in snags, down logs, small trees, shrubs, and forest litter and duff are not included. Also, sheep grazing likely hampered regeneration in the few decades following initial fire declines, and recent controlled burns in 65 percent of the plots have likely reduced C levels somewhat. In many Sierran locations, controlled burns are now quite risky due to increased fuel loads and the consequent risk of historically unnatural catastrophic crown fires. Such fires instantly release very high C amounts and continue to emit C for many years due to dead wood decomposition and increased soil respiration. There is also a substantial risk of permanent conversion to shrub dominated systems in a warmer dryer climate, as forests and shrublands comprise a climatically-determined unstable equilibrium in the Sierra. These results are important relative to GHG reduction and land management policies in landscapes naturally prone to burning.

  4. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic-continental climatic gradient in northern Poland

    NASA Astrophysics Data System (ADS)

    Marcisz, Katarzyna; Gałka, Mariusz; Pietrala, Patryk; Miotk-Szpiganowicz, Grażyna; Obremska, Milena; Tobolski, Kazimierz; Lamentowicz, Mariusz

    2017-12-01

    Fire is a critical component of many ecosystems and, as predicted by various climate models, fire activity may increase significantly in the following years due to climate change. Therefore, knowledge about the past fire activity of various ecosystems is highly important for future nature conservation purposes. We present results of high-resolution investigation of fire activity and hydrological changes in northern Poland. We analyzed microscopic charcoal from three Sphagnum-dominated peatlands located on the south of Baltic, on the oceanic-continental (west-east) climatic gradient, and reconstructed the history of fire in the last 5700 years. We hypothesize that air circulation patterns are highly important for local fire activity, and that fire activity is more intensive in peatlands influenced by continental air masses. We have found out that forest fires have been occurring regularly since the past millennia and were linked to climatic conditions. We show that fire activity (related to climate and fuel availability) was significantly higher in sites dominated by continental climate (northeastern Poland) than in the site located under oceanic conditions (northwestern Poland)-microscopic charcoal influx was 13.3 times higher in the eastern study site of the gradient, compared to the western study site. Recorded fire activity patterns were different between the sites in a long timescale. Moreover, most of the recorded charcoal peaks occurred during high water tables. Rising human pressure has caused droughts and water table instability, and substantial increase in fire activity in the last 400 years.

  5. Western Spruce Budworm Outbreaks Did Not Increase Fire Risk over the Last Three Centuries: A Dendrochronological Analysis of Inter-Disturbance Synergism

    PubMed Central

    Flower, Aquila; G. Gavin, Daniel; Heyerdahl, Emily K.; Parsons, Russell A.; Cohn, Gregory M.

    2014-01-01

    Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk. PMID:25526633

  6. Western spruce budworm outbreaks did not increase fire risk over the last three centuries: a dendrochronological analysis of inter-disturbance synergism.

    PubMed

    Flower, Aquila; Gavin, Daniel G; Heyerdahl, Emily K; Parsons, Russell A; Cohn, Gregory M

    2014-01-01

    Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk.

  7. Effects of fire and subsequent channel-reorganizing events on invertebrate drift and rainbow trout diet in small headwater streams 10 years post-disturbance

    NASA Astrophysics Data System (ADS)

    Rosenberger, A. E.; Dunham, J. B.; Wipfli, M. S.; Buffington, J. M.

    2005-05-01

    Studies examining the effects of fire on the biota of streams are often confined to immediate post-disturbance impacts; however it is also important to consider longer-term effects of fire and fire-related channel disturbances, including both negative and positive influences on stream communities. Fire and subsequent debris flows and hyperconcentrated flows destroy streamside vegetation and alter the channel morphology such that streams are wider and shallower with larger, less mobile substrate. Increased light, high temperatures, and altered stream morphology have the potential to greatly impact invertebrate communities, invertebrate drift, and drift-feeding fish diet. The goal of our study was to determine the effects of wildfire and wildfire-related disturbance on the amount and composition of stream invertebrate drift and how that translates to the diet of resident fishes 10 years post-disturbance. In the summer and fall of 2003, we set drift nets and examined the diet of fishes in 9 streams: 3 unburned; 3 burned (1992-4); and 3 burned with a subsequent channel disturbance (1992-4). Key questions include: does the taxonomic composition (richness, functional feeding groups), origin (terrestrial or aquatic), or total production (biomass) of invertebrate drift and fish diet vary with burn history? Does the composition and biomass of invertebrate drift indicate main sources of energy (allochthonous vs. autochthonous) for headwater streams affected by fire? Differences among streams in channel morphology, streamside vegetation, light input, and temperature did not correspond to consistent or marked differences in invertebrate drift productivity and only slight differences in functional feeding group composition. However, preliminary data suggest that taxon richness, though similar among burned and unburned streams, is lowest in burned and disturbed streams. Although there is a terrestrial component to fish diet in all three treatment groups, in the summer, there is a greater terrestrial contribution in burned streams; while fish in unburned streams have a greater terrestrial component in their diet in the fall. Our results indicate that the effects of fire and disturbance on invertebrate communities are difficult to detect 10-years post event. Resilience in the invertebrate community and a flexible diet may be contributing to the resilience of resident trout found throughout our study streams. However, geomorphic changes and habitat alterations caused by massive channel-reorganizing events after wildfire may prevent full invertebrate community recovery for some time after the disturbance.

  8. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.

    PubMed

    Yildiz, Oktay; Esen, Derya; Sarginci, Murat; Toprak, Bulent

    2010-01-01

    Fire is a long-standing and poorly understood component of the Mediterranean forestlands in Turkey. Fire can alter plant composition, destroy biomass, alter soil physical and chemical properties and reduce soil nutrient pools. However fire can also promote productivity of certain ecosystems by mineralizing soil nutrients and promoting fast growing nitrogen fixing plant species. Fire effects on soils and ecosystems in Turkey and Mediterranean regions are not well understood. This study uses a retrospective space-for-time substitution to study soil macro-nutrient changes on sites which were burned at different times during the last 8 years. The study sites are in the Fethiye Forest Management Directorate in the western Mediterranean Sea region of Turkey. Our samples show 40% less Soil C, and cation exchange capacity (CEC) at 0-20 cm soil depth two weeks after the fire. Soil C and CEC appear to recover to pre-fire level in one year. Concentrations of Mg were significantly lower on new-burn sites, but returned to pre-fire levels in one year. Total soil N concentrations one and two years after fire were 90% higher than other sites, and total P was 9 times higher on new-burn site than averages from other sites. Some implications of these results for forest managers are discussed.

  9. Health effects after firing small arms comparing leaded and unleaded ammunition.

    PubMed

    Voie, Øyvind; Borander, Anne-Katrine; Sikkeland, Liv Ingunn Bjoner; Grahnstedt, Svein; Johnsen, Arnt; Danielsen, Tor Erik; Longva, Kjetil; Kongerud, Johny

    2014-12-01

    A number of Norwegian soldiers have reported health problems after live-fire training using the HK416 rifle. The objective of this study was to characterize gaseous and particulate emissions from three different types of ammunition, and record the health effects after exposure to emissions from live-firing. Fifty-five healthy, non-smoking men (mean age 40 years) were recruited and divided randomly into three groups, one for each type of ammunition. All subjects fired the HK416 rifle in a semi-airtight tent for 60 min using leaded ammunition, unleaded ammunition and modified unleaded ammunition. Gaseous and particulate emissions were monitored within the tent. The symptoms experienced by the subjects were recorded immediately after and the day after firing using a standardized questionnaire. The concentrations of particulate matter and copper exceeded their respective occupational exposure limits (eight hours per day, five days a week) by a factor of 3 and 27, respectively. Of the 55 subjects, 54 reported general and respiratory symptoms. The total number of symptoms reported was significantly higher among shooters using unleaded ammunition as compared with the use of leaded and modified unleaded ammunition. Copper was the substance that had the highest concentration relative to its toxicity. Although the general symptoms were found to be consistent with the development of metal fume fever, the respiratory symptoms indicated an irritant effect of the airways different from that seen in metal fume fever. More symptoms were reported when unleaded ammunition was used compared with leaded and modified unleaded ammunition.

  10. Major Losses

    ERIC Educational Resources Information Center

    Kravis, Miles

    2009-01-01

    From 2003 to 2005, fires on school properties cost about $85 million a year. An estimated 14,700 fires required a fire department response: 36 percent were trash fires, 19 percent were fires in open fields, and 43 percent were structural fires. Sometimes, the needs of school security seem to conflict with the requirements of fire safety. In this…

  11. Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept

    NASA Astrophysics Data System (ADS)

    Zuo, Q. L.; Wang, Y. J.; Li, J. S.

    2018-05-01

    In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.

  12. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in the burnt area; in agricultural fields, rill formation occurred during the post-harvest period and before the full development of winter pasture. After this period, post-fire management operations (clear-cutting, deep plowing and replanting) disturbed the soil profiles and left little protective vegetation and litter cover. Relatively mild rainstorms provoked most of the erosion features in the burnt area, but none were observed in the agricultural fields which were fully covered by pasture at this time. The present results indicate that forest fires and especially post-fire management operations can lead to much higher erosion rates than agricultural practices. Different timings of soil losses throughout a year would be linked with different periods when soils are exposed: typically 2-3 years following fire and plowing/terracing as opposed to 2- 3 months following the harvest of annual crops (October-December). Assuming a recurrence period of forest fires of c. 25 years, burnt forests in the region would suffer similar long-term erosion rates as agricultural fields under comparable conditions, casting doubt on the role of forest plantations for soil protection in this region.

  13. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest

    PubMed Central

    Xiang, Xingjia; Shi, Yu; Yang, Jian; Kong, Jianjian; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Chu, Haiyan

    2014-01-01

    Fires affect hundreds of millions of hectares annually. Above-ground community composition and diversity after fire have been studied extensively, but effects of fire on soil bacterial communities remain largely unexamined despite the central role of bacteria in ecosystem recovery and functioning. We investigated responses of bacterial community to forest fire in the Greater Khingan Mountains, China, using tagged pyrosequencing. Fire altered soil bacterial community composition substantially and high-intensity fire significantly decreased bacterial diversity 1-year-after-burn site. Bacterial community composition and diversity returned to similar levels as observed in controls (no fire) after 11 years. The understory vegetation community typically takes 20–100 years to reach pre-fire states in boreal forest, so our results suggest that soil bacteria could recover much faster than plant communities. Finally, soil bacterial community composition significantly co-varied with soil pH, moisture content, NH4+ content and carbon/nitrogen ratio (P < 0.05 in all cases) in wildfire-perturbed soils, suggesting that fire could indirectly affect bacterial communities by altering soil edaphic properties. PMID:24452061

  14. Past and future changes in Canadian boreal wildfire activity.

    PubMed

    Girardin, Martin P; Mudelsee, Manfred

    2008-03-01

    Climate change in Canadian boreal forests is usually associated with increased drought severity and fire activity. However, future fire activity could well be within the range of values experienced during the preindustrial period. In this study, we contrast 21st century forecasts of fire occurrence (FireOcc, number of large forest fires per year) in the southern part of the Boreal Shield, Canada, with the historical range of the past 240 years statistically reconstructed from tree-ring width data. First, a historical relationship between drought indices and FireOcc is developed over the calibration period 1959-1998. Next, together with seven tree-ring based drought reconstructions covering the last 240 years and simulations from the CGCM3 and ECHAM4 global climate models, the calibration model is used to estimate past (prior to 1959) and future (post 1999) FireOcc. Last, time-dependent changes in mean FireOcc and in the occurrence rate of extreme fire years are evaluated with the aid of advanced methods of statistical time series analysis. Results suggest that the increase in precipitation projected toward the end of the 21st century will be insufficient to compensate for increasing temperatures and will be insufficient to maintain potential evapotranspiration at current levels. Limited moisture availability would cause FireOcc to increase as well. But will future FireOcc exceed its historical range? The results obtained from our approach suggest high probabilities of seeing future FireOcc reach the upper limit of the historical range. Predictions, which are essentially weighed on northwestern Ontario and eastern boreal Manitoba, indicate that, by 2061-2100, typical FireOcc could increase by more than 34% when compared with the past two centuries. Increases in fire activity as projected by this study could negatively affect the implementation in the next century of forest management inspired by historical or natural disturbance dynamics. This approach is indeed feasible only if current and future fire activities are sufficiently low compared with the preindustrial fire activity, so a substitution of fire by forest management could occur without elevating the overall frequency of disturbance. Conceivable management options will likely have to be directed toward minimizing the adverse impacts of the increasing fire activity.

  15. G-Guidance Interface Design for Small Body Mission Simulation

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John; Phan, Linh

    2008-01-01

    The G-Guidance software implements a guidance and control (G and C) algorithm for small-body, autonomous proximity operations, developed under the Small Body GN and C task at JPL. The software is written in Matlab and interfaces with G-OPT, a JPL-developed optimization package written in C that provides G-Guidance with guaranteed convergence to a solution in a finite computation time with a prescribed accuracy. The resulting program is computationally efficient and is a prototype of an onboard, real-time algorithm for autonomous guidance and control. Two thruster firing schemes are available in G-Guidance, allowing tailoring of the software for specific mission maneuvers. For example, descent, landing, or rendezvous benefit from a thruster firing at the maneuver termination to mitigate velocity errors. Conversely, ascent or separation maneuvers benefit from an immediate firing to avoid potential drift toward a second body. The guidance portion of this software explicitly enforces user-defined control constraints and thruster silence times while minimizing total fuel usage. This program is currently specialized to small-body proximity operations, but the underlying method can be generalized to other applications.

  16. KSC-00pp0745

    NASA Image and Video Library

    2000-06-02

    A NASA helicopter drops water from a special “bucket” onto a small fire on Kennedy Space Center grounds. The site is between Kennedy Parkway North and the Indian River. The fire is one of many throughout Central Florida, which is suffering from drought

  17. KSC00pp0745

    NASA Image and Video Library

    2000-06-02

    A NASA helicopter drops water from a special “bucket” onto a small fire on Kennedy Space Center grounds. The site is between Kennedy Parkway North and the Indian River. The fire is one of many throughout Central Florida, which is suffering from drought

  18. The Role of Low-severity Fire and Thermal Alteration of Soil Organic Matter in Carbon Preservation and GHG Flux From Global Peatlands

    NASA Astrophysics Data System (ADS)

    Flanagan, N. E.; Wang, H.; Hodgkins, S. B.; Richardson, C. J.

    2017-12-01

    Many global peatlands are dominated by fire-adapted plant communities and are subject to frequent wildfires with return intervals ranging between 3 to 100 years. Wildfires in peatlands are typically low-severity events that occur in winter and spring when vegetation is desiccated and soil moisture content is high. As a result, most wildfires consume aboveground fuels in a matter of minutes without igniting the nearly saturated peat. In such fires, surface soil layers are subjected to flash heating with a rapid loss of soil moisture but little loss of soil organic matter (SOM). Such fires have the potential to alter the chemical structure of SOM, even in the absence of combustion, through Maillard's Reaction and similar chemical processes, and through structural changes that protect SOM from decomposition. This study examines the effects of low-intensity surface fires on the recalcitrance of SOM from fire-adapted communities located in subtropical, temperate and sub-boreal peatlands. In addition, soil from a non-fire-adapted Peruvian palm peatland was examined for response to thermal alteration. The timing and temperatures of low-intensity fires were measured in the field during prescribed burns and replicated in simulated fires. The effects of fire on the chemical structure of SOM were examined with FTIR, SEM and XPS. Burned and unburned peat replicates were incubated at three temperatures (5oC, 15oC, 25oC) in controlled chambers for more than six months. Burned replicates initially showed higher CO2, CH4 and NO2 emissions. Yet, within four weeks emissions from the burned replicates dropped below those of unburned replicates and remained significantly lower (10-50%) for the duration of the experiment. In addition, thermal alteration significantly reduced the temperature sensitivity (Q10) of thermally altered peat. After accounting for small initial losses of organic matter (<10 %) during the fire simulations, thermal alteration of SOM resulted in a net long-term reduction in carbon losses to microbial respiration. Such thermal alteration of SOM might be an underestimated factor influencing carbon accretion in frequently burned peatlands and could be globally relevant if climate change increases fire frequency in boreal peatlands.

  19. Post-fire response of coast redwood one year after the Mendocino lightning complex fires

    Treesearch

    Robert B. Douglas; Tom. Bendurel

    2012-01-01

    Coast redwood (Sequoia sempervirens) forests have undergone significant changes over the past century and are now in state more conducive for wildfires. Because fires have been uncommon in redwood forests over the past 80 years, managers have limited data to make decisions about the post-fire environment. In June 2008, a series of lightning storms...

  20. Growth Response From Herbicide, Prescribed Fire, and Fertilizer Treatments in Midrotational Loblolly Pine: Fire-Year Response

    Treesearch

    Mary Michelle Barnett; Sandra Rideout; Brian P. Oswald; Kenneth W. Farrish; Hans M. Williams

    2002-01-01

    This study was initiated to determine growth response resulting from the application of prescribed fire and herbicide, with and without fertilization. In southeast Texas, herbicide, prescribed fire and fertilizer treatments were applied in mid-rotational loblolly pine plantations 1.5 years after thinning. Five replications were established at each of two study sites...

  1. Effects of prescribed fire, supplemental feeding, and mammalian predator exclusion on hispid cotton rat populations.

    PubMed

    Morris, Gail; Hostetler, Jeffrey A; Conner, L Mike; Oli, Madan K

    2011-12-01

    Predation and food resources can strongly affect small mammal population dynamics directly by altering vital rates or indirectly by influencing behaviors. Fire may also strongly influence population dynamics of species inhabiting fire-adapted habitats because fire can alter food and cover availability. We used capture-mark-recapture and radio-telemetry studies to experimentally examine how supplemental feeding, mammalian predator exclusion, and prescribed fire affected survival, abundance, and reproduction of hispid cotton rats (Sigmodon hispidus) in southwestern Georgia, USA. Prescribed fire reduced survival, abundance, and rates of transitions to reproductive states. Food supplementation increased survival, transitions to reproductive states, and abundance, but was not sufficient to prevent post-fire declines in any of these parameters. Mammalian predator exclusion did not strongly affect any of the considered parameters. Our results show that fire strongly influenced cotton rat populations in our study site, primarily by reducing cover and increasing predation risk from non-mammalian predators.

  2. Experiments with the Skylab fire detectors in zero gravity

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  3. Apparatus and methodology for fire gas characterization by means of animal exposure

    NASA Technical Reports Server (NTRS)

    Marcussen, W. H.; Hilado, C. J.; Furst, A.; Leon, H. A.; Kourtides, D. A.; Parker, J. A.; Butte, J. C.; Cummins, J. M.

    1976-01-01

    While there is a great deal of information available from small-scale laboratory experiments and for relatively simple mixtures of gases, considerable uncertainty exists regarding appropriate bioassay techniques for the complex mixture of gases generated in full-scale fires. Apparatus and methodology have been developed based on current state of the art for determining the effects of fire gases in the critical first 10 minutes of a full-scale fire on laboratory animals. This information is presented for its potential value and use while further improvements are being made.

  4. Climate Variability and Wildfires: Insights from Global Earth System Models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J. F.; Wittenberg, A. T.

    2016-12-01

    Better understanding of the relationship between variability in global climate and emissions from wildfires is needed for predictions of fire activity on interannual to multi-decadal timescales. Here we investigate this relationship using the long, preindustrial control simulations and historical ensembles of two Earth System models; CESM1 and the NOAA/GFDL ESM2Mb. There is smaller interannual variability of global fires in both models than in present day inventories, especially in boreal regions where observed fires vary substantially from year to year. Patterns of fire response to climate oscillation indices, including the El Niño / Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Oscillation (AMO) are explored with the model results and compared to the response derived from satellite measurements and proxy observations. Increases in fire emissions in southeast Asia and boreal North America are associated with positive ENSO and PDO, while United States fires and Sahel fires decrease for the same climate conditions. Boreal fire emissions decrease in CESM1 for the warm phase of the AMO, while ESM2Mb did not produce a reliable AMO. CESM1 produces a weak negative trend in global fire emissions for the period 1920 to 2005, while ESM2Mb produces a positive trend over the same period. Both trends are statistically significant at a confidence level of 95% or greater given the variability derived from the respective preindustrial controls. In addition to climate variability impacts on fires, we also explore the impacts of fire emissions on climate variability and atmospheric chemistry. We analyze three long, free-evolving ESM2Mb simulations; one without fire emissions, one with constant year-over-year fire emissions based on a present day inventory, and one with interannually varying fire emissions coupled between the terrestrial and atmospheric components of the model, to gain a better understanding of the role of fire emissions in climate over long timescales.

  5. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.

  6. Cost-effectively automating fire door release.

    PubMed

    Pearce, Chris

    2004-04-01

    UK care home fire statistics are the worst for 40 years. After catastrophic fires in Scotland and Wales this year the death toll in care homes rose to 18 fatalities over a single month. No larger loss of life in a fire at a care home in Britain has been recorded since regulations covering these homes were introduced in the 1960s. It is against this background of heightened national vigilance that Fireco's Chris Pearce explains, in a timely overview, how the very latest "add-on" automatic fire door release technology can revolutionize integrated fire alarm systems by easing access in the care setting.

  7. Quantifying the Causes and Propogation of the 2015 Washington Wildfires

    NASA Astrophysics Data System (ADS)

    Engel, R.; Marlier, M. E.; Lettenmaier, D. P.

    2017-12-01

    In the summer of 2015, Washington state experienced wildfires that burned over 450,000 ha, more than five times the average and more than three times the next-most severe fire season in the 30-year record. We examine the confluence of factors that led to the extreme fire season, and evaluate whether 2015 can be used as a predictor of possible future conditions that will be affected by climate warming. In previous work, we have found that 2015 was an extremely warm summer (nearly 1 degree C warmer than the previous year in the 30-year record) but was not particularly anomalous in terms of many other climatic indicators, including reconstructed soil moisture, the Palmer Drought Severity Index (PDSI), and the Canadian Fire Weather Index. However, according to the Dead Fuel Moisture (DFM), a drying index used by the US Forest Service, 2015 was an extreme year of record. The DFM relies on temperature, precipitation, and relative humidity to establish a daily equilibrium moisture content of dead material. We examine both Washington's 2015 fire season and the 30-year fire record with respect to climatology and other potential drivers of fire (e.g. forest health, ignition). Additionally, we explore the role of land cover with respect to fire propagation through the season. While too many potential causes of extreme fires exist to establish a concrete long-term relationship at such a fine scale, we find that the 2015 fire anomaly was at least partially climatically driven.

  8. Water-quality response to a high-elevation wildfire in the Colorado Front Range

    USGS Publications Warehouse

    Mast, M. Alisa; Murphy, Sheila F.; Clow, David W.; Penn, Colin A.; Sexstone, Graham A.

    2016-01-01

    Water quality of the Big Thompson River in the Front Range of Colorado was studied for 2 years following a high-elevation wildfire that started in October 2012 and burned 15% of the watershed. A combination of fixed-interval sampling and continuous water-quality monitors was used to examine the timing and magnitude of water-quality changes caused by the wildfire. Prefire water quality was well characterized because the site has been monitored at least monthly since the early 2000s. Major ions and nitrate showed the largest changes in concentrations; major ion increases were greatest in the first postfire snowmelt period, but nitrate increases were greatest in the second snowmelt period. The delay in nitrate release until the second snowmelt season likely reflected a combination of factors including fire timing, hydrologic regime, and rates of nitrogen transformations. Despite the small size of the fire, annual yields of dissolved constituents from the watershed increased 20–52% in the first 2 years following the fire. Turbidity data from the continuous sensor indicated high-intensity summer rain storms had a much greater effect on sediment transport compared to snowmelt. High-frequency sensor data also revealed that weekly sampling missed the concentration peak during snowmelt and short-duration spikes during rain events, underscoring the challenge of characterizing postfire water-quality response with fixed-interval sampling.

  9. An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States

    Treesearch

    Wanting Wang; John J. Qu; Xianjun Hao; Yongqiang Liu; William T. Sommers

    2006-01-01

    Traditional fire detection algorithms mainly rely on hot spot detection using thermal infrared (TIR) channels with fixed or contextual thresholds. Three solar reflectance channels (0.65 μm, 0.86 μm, and 2.1 μm) were recently adopted into the MODIS version 4 contextual algorithm to improve the active fire detection. In the southeastern United...

  10. Flammability across the gymnosperm phylogeny: the importance of litter particle size.

    PubMed

    Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C

    2015-04-01

    Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. The Pictorial Fire Stroop: A Measure of Processing Bias for Fire-Related Stimuli

    ERIC Educational Resources Information Center

    Gallagher-Duffy, Joanne; MacKay, Sherri; Duffy, Jim; Sullivan-Thomas, Meara; Peterson-Badali, Michele

    2009-01-01

    Fire interest is a risk factor for firesetting. This study tested whether a fire-specific emotional Stroop task can effectively measure an information-processing bias for fire-related stimuli. Clinic-referred and nonreferred adolescents (aged 13-16 years) completed a pictorial "Fire Stroop," as well as a self-report fire interest questionnaire and…

  12. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments Riparian Buffer (Version 2.1) for the Conterminous United States: Wildland Fire Perimeters By Year 2000 - 2010

    EPA Pesticide Factsheets

    This dataset represents the historical fire perimeters within individual local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers based on the GeoMAC (Geospatial Multi-Agency Coordination) mapping tool (See Supplementary Info for Glossary of Terms). Fire perimeters contain data as they are submitted by field offices to GeoMAC (Geospatial Multi-Agency Coordination) in a polygon format. Fire perimeter data is based on input from incident intelligence sources, GPS data, infrared (IR) imagery from fixed wing and satellite platforms. Polygons are selected by year and then converted into a binary raster format where values of 1 represent fire perimeters of the given year and 0 describes the remaining areas across the CONUS, leaving No Data to be anything outside the CONUS border. The wildland fire characteristics (% forest loss to fire) were summarized by year to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  13. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Wildland Fire Perimeters By Year 2000 - 2010

    EPA Pesticide Factsheets

    This dataset represents the historical fire perimeters within individual local NHDPlusV2 catchments and upstream, contributing watersheds based on the GeoMAC (Geospatial Multi-Agency Coordination) mapping tool (See Supplementary Info for Glossary of Terms). Fire perimeters contain data as they are submitted by field offices to GeoMAC (Geospatial Multi-Agency Coordination) in a polygon format. Fire perimeter data is based on input from incident intelligence sources, GPS data, infrared (IR) imagery from fixed wing and satellite platforms. Polygons are selected by year and then converted into a binary raster format where values of 1 represent fire perimeters of the given year and 0 describes the remaining areas across the CONUS, leaving No Data to be anything outside the CONUS border. The wildland fire characteristics (% forest loss to fire) were summarized by year to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  14. Fire effects in northeastern forests: oak.

    Treesearch

    Cary Rouse

    1986-01-01

    Effects of fire on the oak timber type are reviewed. Many oak stands of today originated under severe fire regimes. Fire can ill or injure oak trees. Factors determining direct injury or mortality from fire include: season of year; bark characteristics; size, vigor and form of tree; fire characteristics and stocking level.

  15. Climatic and socio-economic fire drivers in the Mediterranean basin at a century scale: Analysis and modelling based on historical fire statistics and dynamic global vegetation models (DGVMs)

    NASA Astrophysics Data System (ADS)

    Mouillot, F.; Koutsias, N.; Conedera, M.; Pezzatti, B.; Madoui, A.; Belhadj Kheder, C.

    2017-12-01

    Wildfire is the main disturbance affecting Mediterranean ecosystems, with implications on biogeochemical cycles, biosphere/atmosphere interactions, air quality, biodiversity, and socio-ecosystems sustainability. The fire/climate relationship is time-scale dependent and may additionally vary according to concurrent changes climatic, environmental (e.g. land use), and fire management processes (e.g. fire prevention and control strategies). To date, however, most studies focus on a decadal scale only, being fire statistics ore remote sensing data usually available for a few decades only. Long-term fire data may allow for a better caption of the slow-varying human and climate constrains and for testing the consistency of the fire/climate relationship on the mid-time to better apprehend global change effects on fire risks. Dynamic Global Vegetation Models (DGVMs) associated with process-based fire models have been recently developed to capture both the direct role of climate on fire hazard and the indirect role of changes in vegetation and human population, to simulate biosphere/atmosphere interactions including fire emissions. Their ability to accurately reproduce observed fire patterns is still under investigation regarding seasonality, extreme events or temporal trend to identify potential misrepresentations of processes. We used a unique long-term fire reconstruction (from 1880 to 2016) of yearly burned area along a North/South and East/West environmental gradient across the Mediterranean Basin (southern Switzerland, Greece, Algeria, Tunisia) to capture the climatic and socio economic drivers of extreme fire years by linking yearly burned area with selected climate indices derived from historical climate databases and socio-economic variables. We additionally compared the actual historical reconstructed fire history with the yearly burned area simulated by a panel of DGVMS (FIREMIP initiative) driven by daily CRU climate data at 0.5° resolution across the Mediterranean basin. We will present and discuss the key processes driving interannual fire hazard along the 20th century, and analysed how DGVMs capture this interannual variability.

  16. Development of a hazard-based method for evaluating the fire safety of passenger trains

    DOT National Transportation Integrated Search

    1999-01-01

    The fire safety of U.S. passenger rail trains currently is addressed through small-scale flammability and smoke emission tests and performance criteria promulgated by the Federal Railroad Administration (FRA). The FRA approach relies heavily on test ...

  17. Comparison of the U.S. and European approaches to passenger train fire safety

    DOT National Transportation Integrated Search

    2012-09-28

    The Federal Railroad Administration (FRA) approach to passenger rail equipment fires safety requires the use of primarily small-scale flammability and smoke emission tests and performance criteria for interior materials, such as seats and wall and ce...

  18. Comparing different approaches for an effective monitoring of forest fires based on MSG/SEVIRI images

    NASA Astrophysics Data System (ADS)

    Laneve, Giovanni

    2010-05-01

    The remote sensing sensors on board of geostationary satellite, as consequence of the high frequency of the observations, allow, in principle, the monitoring of these phenomena characterized by a fast dynamics. The only condition for is that the events to be monitored should be enough strong to be recognizable notwithstanding the low spatial resolution of the present geostationary systems (MSG/SEVIRI, GOES Imager, MTSAT). Apart from meteorological phenomena other events, like those associated with forest fires and/or volcanic eruption, are characterized by a very fast dynamics. These events are also associated with a very strong signal that make them observable by geostationary satellite in a quasi-continuous way. However, in order to make possible the detection of small fires by using the low resolution multi-spectral imagery provided by geostationary sensor like SEVIRI (3x3 km2 at the equator) new algorithms, capable to exploit it high observation frequency, has been developed. This paper is devoted to show the results obtained by comparing some of these algorithms trying to highlight their advantages and limits. The algorithms herein considered are these developed by CRPSM (SFIDE®), UNIBAS/CNR (RST-FIRES) and ESA-ESRIN (MDIFRM). In general, the new approaches proposed by each one of them are capable to promptly detect small fires making possible an operational utilization of the satellite based fire detection system in the fire fighting phases. In fact, these algorithms are quite different from these introduced in the past and specifically devoted to fire detection using low resolution multi-spectral imagery on LEO (Low Earth Orbit) satellite. Thanks to these differences they are capable of detecting sub-hectare (0.2 ha) forest fires providing an useful instrument for monitoring quasi-continuously forest fires, estimating the FRP (Fire Radiative Power), evaluating the burned biomass, retrieving the emission in the atmosphere.

  19. Report on Technical Advisory Services. Fiscal Year 1965

    DTIC Science & Technology

    1965-12-01

    and train- ing problem areas depicted in movies of ET firings were reviewed . e. Visitors were provided information on requirementsfor a small tracking...Director’s Office from Division No. 1 served on a special Army committee to prepare an historical review of the training and use of marginnl personnel...Personnel: of. Smith. Capt. Shepherd (USN net.) Dotes: Sp-Doec 64 Days expentlef. 1 2ri ’-A ,,C VL 7. Assistance is being given in the review of Army

  20. Navy Littoral Combat Ship (LCS) Program: Background and Issues for Congress

    DTIC Science & Technology

    2013-09-27

    classified memo, “Vision for the 2025 Surface Fleet,” submitted late last year by the head of Naval Surface Forces, Vice Adm. Tom Copeman, to Chief of Naval...Monitor-class would prove its worth. There were Monitors with Farragut at Mobile Bay. They took part in the Red River campaigns of the West and...more than a pea- shooter . The Phalanx system, poorly situated aft on the O-2 level, fired rounds too small to be effective against incoming missiles

  1. East Europe Report, Economic and Industrial Affairs

    DTIC Science & Technology

    1984-09-14

    there are still places in the fields not adequately treated. Neither can one ignore the effect of contaminating the environment. In order to rectify... underwear , and a small quantity of women’s lingerie. About 30 percent of our production is subject to contract prices. We verify these once a year...34Polish Klondike": A Test of Ore and ... Character"] pText] In the fired interior of the furnace stands a ceramic crucible con- taining 100 kg of melted

  2. Fire weather in western Oregon and western Washington in 1952 compared with other years.

    Treesearch

    Owen P. Cramer

    1953-01-01

    How did the potential burning conditions of the 1952 fire season compare with those of previous years? The answer is important to those who protect forests from fire. Knowing the relative severity of the burning conditions will help them judge the effectiveness of their fire protection programs. This paper reports ratings of the weather factors most closely related to...

  3. Fire Danger Rating: The next 20 Years

    Treesearch

    John E. Deeming

    1987-01-01

    For the next 10 years, few changes will be made to the fire-danger rating system. During that time, the focus will be on the automation of weather observing systems and the streamlining of the computation and display of ratings. The time horizon for projecting fire danger will be pushed to 30 days by the late 1990's. A close alignment of the fire-danger rating...

  4. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  5. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  6. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  7. Firefighters as distributors of workplace safety and health information to small businesses

    PubMed Central

    Keller, Brenna M.; Cunningham, Thomas R.

    2016-01-01

    Background Small businesses bear a large burden of injury and death, and are difficult to reach with occupational safety and health (OSH) information. The National Institute for Occupational Safety and Health (NIOSH) developed a pilot study testing the feasibility of fire departments disseminating OSH information to small businesses during fire inspections. Methods Two sets of postcards were developed with unique, trackable URLs for the NIOSH Small Business Resource Guide. One set was distributed by firefighters, the other was mailed to small businesses. Participating inspectors were met with to discuss their experience. Results Neither distribution method resulted in a substantial number of site visits. Inspectors believed distributing postcards was an easy addition to their duties, and saw value in safety information. Conclusions There are barriers beyond awareness of availability that prevent small business owners from seeking OSH information. Research should focus on identifying barriers and developing better OSH information diffusion mechanisms. PMID:27594768

  8. Descriptive epidemiology of unintentional residential fire injuries in King County, WA, 1984 and 1985.

    PubMed Central

    Ballard, J E; Koepsell, T D; Rivara, F P; Van Belle, G

    1992-01-01

    Although most studies have concentrated on fatal residential fire injuries, which are a leading cause of fatal injuries in the United States, few investigators have examined in detail nonfatal injuries as a consequence of residential fires. This population-based study used the Washington State Fire Incident Reporting System to assess the incidence and descriptive epidemiology of fatal and nonfatal burns or respiratory tract damage resulting from unintentional residential fires. For the 2-year period 1984-85 in King County, WA, the mortality rate due to injury in a residential fire was 0.7 per 100,000 per year, and the incidence of nonfatal injuries was 5.6 per 100,000 per year. Of 17 fatalities, 59 percent of the deaths occurred at the scene of the fire. Of 128 persons with nonfatal injuries, 19 percent were hospitalized; although the 55 percent seen as outpatients and the 26 percent treated by the fire department or paramedics at the fire scene usually had minor injuries, they would not have been captured if only traditional data sources had been employed. Those injured averaged 2.8 days of restricted activity, but the range was from less than 1 day to 1 year. Injuries were more common in the households with a low socioeconomic status and among nonwhites, especially American Indians. Variation in incidence by age, sex, and source of ignition for deaths and nonfatal injuries suggests appropriate targets for future fire injury prevention programs. PMID:1641436

  9. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  10. Phytoliths as a tool to track plant community changes after fire regime shift

    NASA Astrophysics Data System (ADS)

    Kirchholtes, R.; van Mourik, J. M.; Johnson, B. R.

    2016-12-01

    Anthropogenically induced changes to the historical fire regime are excellent analogues to study the dynamics of terrestrial ecosystem responses to present-day environmental changes. Fire suppression and loss of indigenous burning practices in the Willamette Valley, Oregon (USA) has led to near disappearance of the Oregon white oak savanna. The specific goal of this study was to better understand the pace and character with which the Oregon oak savannas are disappearing. Under suppressed fire regimes the shade-intolerant Garry oaks (Quercus garryana) are outcompeted by Douglas-fir (Pseudotsuga menziesii). As a consequence, the Oregon white oak savanna has been reduced to <5% of its former extent. While detrimental to the regional biodiversity due to habitat loss and fragmentation of the many savanna-dependent plant and animal species, this system does capture a long-term continuous record of the plant community response to ecological disturbances. Because conventional indicators used in floristic reconstructions (pollen, spores etc.) are seldom preserved in the dry, oxidized sediments of savannas, we used phytoliths to establish the change in plant communities. Phytoliths are small yet robust silica particles produced by most plants. Many phytoliths take on cell shapes diagnostic of specific plant lineages, acting as indicators of their past presence. By reconstructing the vegetation patterns at the Jim's Creek Research Area using phytoliths, we confirm the pattern of rapid tree encroachment. In addition to grasses, the phytolith assemblages which represent the landscape from about 150 years ago, also document the presence of pines and firs. This suggests that (1) the Willamette Valley savannas did not exclusively consist of grass and oaks and (2) it took less than 150 years to change from and open landscape to a densely forested one. Under a warming climate and changing precipitation patterns, reducing fire risk, fire intensity and fuel loading is critical. Combined with increased attention to hydrological impacts of denser forests, an accurate reconstruction of pre-modern forest density and composition is critical to evaluate efforts to restore forests to their natural condition.

  11. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  12. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  13. The 2016 Ft. McMurray Wildfire: Déjà vu or re-thinking the scope wildland and urban-wildland interface fires on water supplies?

    NASA Astrophysics Data System (ADS)

    Silins, U.; Emelko, M.; Cooke, C. A.; Charrois, J. W. A.; Stone, M.

    2016-12-01

    A growing number of large severe wildfires have impacted drinking water supplies of both small and larger municipalities in western North America over the past 20 years. While some of these fires include components of wildland-urban interface fire impacts to water or water treatment infrastructure, the vast majority have been wildland fires in critical source water supply regions serving these municipalities. A large body of research has provided key insights on magnitude, variability, and longevity of post-wildfire impacts on erosion, sediment production, and water quality, however assessing the impact of wildfires on water supplies often requires measuring or predicting the downstream propagation of upstream wildfire impacts to water supplies and this remains a comparatively less well explored area of wildfire-water research. The 2016 Horse River wildfire during May-June burned 590,000 ha. forcing the evacuation of the entire City of McMurray ( 90,000 residents) and represents the most expensive natural disaster in Canadian history ($3.6 billion in insurable losses alone). While the wildfire impacted extensive source water supply regions in the area surrounding Ft. McMurray, this fire serves to illustrate a broader range of challenging wildfire-water science and engineering research issues that are needed to assess the impacts of this and potentially other large wildfires on water supplies. Unlike wildfires in headwaters regions, these include unique challenges in assessing impacts of burned tributaries adjacent sources from a large wildfire situated immediately surrounding a very large river system (Athabasca River), post-fire contaminant dilution, mixing, and transport, and contaminant runoff from severely burned residential and commercial/industrial regions of the city on downstream water supplies among others.

  14. How long will my reservoir be contaminated following a post-fire erosion event?

    NASA Astrophysics Data System (ADS)

    Schärer, Christine; Yeates, Peter; Sheridan, Gary; Doerr, Stefan; Nyman, Petter; Langhans, Christoph; Haydon, Shane; Santin, Cristina

    2017-04-01

    Post fire erosion processes such as debris flows can generate large volumes of sediment, contaminating streams and reservoirs for extended periods. Recent research has enabled the magnitude of the generated load to be reasonably estimated, but what happens once this load of sediment and ash reaches the reservoir? Water treatment plants typically have a threshold contaminant level, above which the treatment capacity is exceeded and the water becomes undeliverable. As hydrologists, soils scientists and geomorphologists we think in terms of volumes of water and masses of sediment, but for water managers the metric that really matters is "How many days will my reservoir be unable to supply water, and what is the chance of that occurring?" Answering this question is difficult as it involves modelling the weather, the fire regime, the post fire hydrology and erosion processes, and finally the hydrodynamics of the reservoir so to be able to predict the propagation of the contaminant plume from the entry point to the reservoir take off point. These models are numerically intensive, and this study develops a new method to combine these models in a way that allows them to be implemented within a Monte Carlo simulation. The new approach was applied to the case study of the Upper Yarra reservoir in south east Australia, the main water supply for Melbourne's 4M residents. The results indicate that following fire water managers should be prepared for post-fire reservoir contamination events extending from several months to more than a year. The duration of the contamination events was found to be extremely sensitive to the quantity, size distribution, and density of the <5um particles of ash and soil, which makes up a small fraction of the total debris flow load.

  15. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  16. Abrupt and severe 20th Century changes in the fire regimes of southeastern Australia: Evidence from a 3000 year multi-proxy analysis

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Mooney, Scott; Allen, Kathryn; Willersdorf, Timothy

    2015-04-01

    Fire is the dominant natural disturbance in southeastern Australia. For millennia it has been the driving force shaping terrestrial ecosystems in the region -- simultaneously killing vegetation and initiating regeneration across whole landscapes. Fire regimes across the region are driven by several factors including climate, vegetation, and ignition sources. Humans have been a significant contributing factor to past and present fire regimes. Prior to European settlement in the late 1700s, Aboriginal Australians used frequent, low-intensity fires to manage vegetation across much of the landscape. European settlement led to the displacement of Aboriginal communities and a shift to active fire suppression and control. This changing approach to fire management is widely believed to have initiated a fundamental shift towards extreme, high-intensity fire events as fuel loads increased. In addition, during the 20th Century prolonged periods of warm, dry conditions have occurred with greater frequency and intensity. The relative importance of climate and fire management practices on contemporary fire regimes is vigorously debated in Australia and is directly relevant to land management policies and their implementation. To put the current fire regime into historical context, we used a multi-proxy approach combining palaeo-charcoal and tree-ring analyses to assess how fire regimes have changed over the last 3000 years in the Snowy Mountains region of southeastern Australia. We found almost no evidence of high-intensity fires in the 3000 years that preceded the 20th Century. However, in the mid-20th Century there is a sudden and dramatic increase in the presence of charcoal and the pulsed establishment of trees across the landscape, suggesting a recent shift from low-intensity fires with minimal charcoal signatures to moderate- to high-intensity fires with substantial charcoal inputs. Importantly, the tree-ring data demonstrate that most of these fires were not stand-replacing and led to the establishment of multiple-age cohorts. While there is a clear shift in the fire regime in the 20th Century, the intensification of fire occurs nearly 150 years after European settlement in this area and has led to the establishment of complex, multi-aged forests across the landscape, suggesting an important interaction between fire management practices associated with European settlement and changing climatic conditions.

  17. Laboratory fire behavior measurements of chaparral crown fire

    Treesearch

    C. Sanpakit; S. Omodan; D. Weise; M Princevac

    2015-01-01

    In 2013, there was an estimated 9,900 wildland fires that claimed more than 577,000 acres of land. That same year, about 542 prescribed fires were used to treat 48,554 acres by several agencies in California. Being able to understand fires using laboratory models can better prepare individuals to combat or use fires. Our research focused on chaparral crown fires....

  18. Fire effects on the Point Reyes Mountain Beaver at Point Reyes National Seashore, California

    USGS Publications Warehouse

    Fellers, Gary M.; Pratt, David; Griffin, Jennifer L.

    2004-01-01

    In October 1995, a wildlands fire burned 5,000 ha on the Point Reyes peninsula, California, USA. In most of the nonforested areas, the fire effectively cleared the ground of litter and vegetation and revealed thousands of Point Reyes mountain beaver (Aplodontia rufa phaea) burrow openings. In the first 6 months after the fire, we surveyed burned coastal scrub and riparian habitat to (1) count the number of burrow openings that existed at the time of the fire, and (2) evaluate whether signs of post-fire mountain beaver activity were evident. We estimated that only 0.4–1.7% of mountain beavers within the burn area survived the fire and immediate post-fire period. We monitored mountain beaver activity for 5 years at 8 sites where mountain beavers survived, and found little or no recovery. We estimate that the mountain beaver population will take 15–20 years post-fire to recover.

  19. Repeated prescribed fires decrease stocks and change attributes of coarse woody debris in a temperate eucalypt forest.

    PubMed

    Aponte, Cristina; Tolhurst, Kevin G; Bennett, Lauren T

    2014-07-01

    Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of -8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (-0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless, negative impacts on CWD of repeated low-intensity prescribed fires could be lessened by fire intervals of 10 rather than three years (to decrease losses of decayed CWD), and fires in moist rather than dry conditions (to conserve large CWD).

  20. Predicting fire severity using surface fuels and moisture

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2012-01-01

    Fire severity classifications have been used extensively in fire management over the last 30 years to describe specific environmental or ecological impacts of fire on fuels, vegetation, wildlife, and soils in recently burned areas. New fire severity classifications need to be more objective, predictive, and ultimately more useful to fire management and planning. Our...

Top