ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.
Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…
Effective hydrogen generator testing for on-site small engine
NASA Astrophysics Data System (ADS)
Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.
2009-07-01
We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.
NASA Technical Reports Server (NTRS)
Hale, P. L.
1982-01-01
The weight and major envelope dimensions of small aircraft propulsion gas turbine engines are estimated. The computerized method, called WATE-S (Weight Analysis of Turbine Engines-Small) is a derivative of the WATE-2 computer code. WATE-S determines the weight of each major component in the engine including compressors, burners, turbines, heat exchangers, nozzles, propellers, and accessories. A preliminary design approach is used where the stress levels, maximum pressures and temperatures, material properties, geometry, stage loading, hub/tip radius ratio, and mechanical overspeed are used to determine the component weights and dimensions. The accuracy of the method is generally better than + or - 10 percent as verified by analysis of four small aircraft propulsion gas turbine engines.
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Larkin, T. R.
1986-01-01
The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.
NASA Technical Reports Server (NTRS)
Turk, M. A.; Zeiner, P. K.
1986-01-01
In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.
Small gas turbine engine technology
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.; Meitner, Peter L.
1988-01-01
Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.
NASA Astrophysics Data System (ADS)
Creswick, F. A.
Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.
Small Engine Repair Course Outline.
ERIC Educational Resources Information Center
DeClouet, Fred
Small engines as referred to here are engines used on lawn mowers, chain saws, power plants, outboards, and cycles. It does not include engines used on automobiles. The course outlined is intended to show how small two-cycle and four-cycle gas engines are constructed, how they operate, what goes wrong, and how to service and repair them. It is…
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1990-01-01
Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Combustor technology for future small gas turbine aircraft
NASA Technical Reports Server (NTRS)
Lyons, Valerie J.; Niedzwiecki, Richard W.
1993-01-01
Future engine cycles proposed for advanced small gas turbine engines will increase the severity of the operating conditions of the combustor. These cycles call for increased overall engine pressure ratios which increase combustor inlet pressure and temperature. Further, the temperature rise through the combustor and the corresponding exit temperature also increase. Future combustor technology needs for small gas turbine engines is described. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is expected in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors.
NASA Technical Reports Server (NTRS)
Baez, A. N.
1985-01-01
Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.
A method to estimate weight and dimensions of large and small gas turbine engines
NASA Technical Reports Server (NTRS)
Onat, E.; Klees, G. W.
1979-01-01
A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1987-01-01
Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Durability Challenges for Next Generation of Gas Turbine Engine Materials
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2012-01-01
Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.
Wave rotor-enhanced gas turbine engines
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.
1995-01-01
The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.
NASA Technical Reports Server (NTRS)
Beatty, T. G.; Millan, P. P.
1984-01-01
The conventional means of improving gas turbine engine performance typically involves increasing the turbine inlet temperature; however, at these higher operational temperatures the high pressure turbine blades require air-cooling to maintain durability. Air-cooling imposes design, material, and economic constraints not only on the turbine blades but also on engine performance. The use of uncooled turbine blades at increased operating temperatures can offer significantly improved performance in small gas turbine engines. A program to demonstrate uncooled MA6000 high pressure turbine blades in a GTEC TFE731 turbofan engine is being conducted. The project goals include demonstration of the advantages of using uncooled MA6000 turbine blades as compared with cast directionally solidified MAR-M 247 blades.
ERIC Educational Resources Information Center
Hill, Pamela
This student manual on repairing the starter rewind spring on a small gas engine is the third of three in an instructional package on the starting system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use in repairing the starter rewind spring and…
Liner cooling research at NASA Lewis Research Center. [for gas turbine combustion chambers
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.
1987-01-01
Described are recently completed and current advanced liner research applicable to advanced small gas turbine engines. Research relating to the evolution of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently under way at NASA Lewis Research Center. As part of this research, a reverse-flow combustor geometry was maintained while different advanced liner wall cooling techniques were investigated and compared to a baseline combustor. The performance of the combustors featuring counterflow film-cooled (CFFC) panels, transpiration cooled liner walls (TRANS), and compliant metal/ceramic (CMC) walls was obtained over a range of simulated flight conditions of a 16:1 pressure ratio gas turbine engine and fuel/air ratios up to 0.034. All the combustors featured an identical fuel injection system, identical geometric configuration outline, and similar designed internal aerothermodynamics.
Small Engine Repair Modules (Workbook) = Reparacion de Motores Pequenos (Guia de Trabajo)
ERIC Educational Resources Information Center
New York State Dept. of Correctional Services, Albany.
This package contains an English-Language set of task procedure sheets dealing with small-engine repair and a Spanish translation of the same material. Addressed in the individual sections of the manual are the following aspects of engine tune-up, reconditioning, and troubleshooting: servicing air cleaners; cleaning gas tanks, fuel lines, and fuel…
Fuel Consumption Reduction and Weight Estimate of an Intercooled-Recuperated Turboprop Engine
NASA Astrophysics Data System (ADS)
Andriani, Roberto; Ghezzi, Umberto; Ingenito, Antonella; Gamma, Fausto
2012-09-01
The introduction of intercooling and regeneration in a gas turbine engine can lead to performance improvement and fuel consumption reduction. Moreover, as first consequence of the saved fuel, also the pollutant emission can be greatly reduced. Turboprop seems to be the most suitable gas turbine engine to be equipped with intercooler and heat recuperator thanks to the relatively small mass flow rate and the small propulsion power fraction due to the exhaust nozzle. However, the extra weight and drag due to the heat exchangers must be carefully considered. An intercooled-recuperated turboprop engine is studied by means of a thermodynamic numeric code that, computing the thermal cycle, simulates the engine behavior at different operating conditions. The main aero engine performances, as specific power and specific fuel consumption, are then evaluated from the cycle analysis. The saved fuel, the pollution reduction, and the engine weight are then estimated for an example case.
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, Y. L.
2017-07-01
Periodic and spontaneous on-off oscillation belongs to the onset and damping behaviors of thermoacoustic engines, and investigations on this phenomenon lead to better operation of the thermoacoustic engines with stable performances. In this paper, the quasi- periodic on-off oscillation in a small-scale traveling wave thermoacoustic heat engine with a resonator length of only 1 m was experimentally investigated. The type of working media, mean pressure and the input heating power are the main operating parameters, which significantly affect the formation of the periodic on-off oscillation. The experimental results demonstrated there was a critical charge pressure over which the periodic on-off oscillation could happen. For the small- scale engine with helium gas as the working media, the mean pressure threshold value was about 1.4 MPa and the on-off oscillation occurred with a single frequency. Using nitrogen and argon gas as the working media, the on-off oscillation was not observed. The reason was qualitatively analyzed as well.
SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE
A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...
Investigations of thermal barrier coatings of turbine parts using gas flame heating
NASA Astrophysics Data System (ADS)
Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.
2017-09-01
The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.
Performance of a small compression ignition engine fuelled by liquified petroleum gas
NASA Astrophysics Data System (ADS)
Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar
2017-09-01
In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.
Performance Evaluation of an Experimental Turbojet Engine
NASA Astrophysics Data System (ADS)
Ekici, Selcuk; Sohret, Yasin; Coban, Kahraman; Altuntas, Onder; Karakoc, T. Hikmet
2017-11-01
An exergy analysis is presented including design parameters and performance assessment, by identifying the losses and efficiency of a gas turbine engine. The aim of this paper is to determine the performance of a small turbojet engine with an exergetic analysis based on test data. Experimental data from testing was collected at full-load of small turbojet engine. The turbojet engine exhaust data contains CO2, CO, CH4, H2, H2O, NO, NO2, N2 and O2 with a relative humidity of 35 % for the ambient air of the performed experiments. The evaluated main components of the turbojet engine are the air compressor, the combustion chamber and the gas turbine. As a result of the thermodynamic analysis, exergy efficiencies (based on product/fuel) of the air compressor, the combustion chamber and the gas turbine are 81.57 %, 50.13 % and 97.81 %, respectively. A major proportion of the total exergy destruction was found for the combustion chamber at 167.33 kW. The exergy destruction rates are 8.20 %, 90.70 % and 1.08 % in the compressor, the combustion chamber and the gas turbine, respectively. The rates of exergy destruction within the system components are compared on the basis of the exergy rate of the fuel provided to the engine. Eventually, the exergy rate of the fuel is calculated to be 4.50 % of unusable due to exergy destruction within the compressor, 49.76 % unusable due to exergy destruction within the combustion chamber and 0.59 % unusable due to exergy destruction within the gas turbine. It can be stated that approximately 55 % of the exergy rate of the fuel provided to the engine can not be used by the engine.
Design and experimental investigations on a small scale traveling wave thermoacoustic engine
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, Y. L.
2013-02-01
A small scale traveling wave or Stirling thermoacoustic engine with a resonator of only 1 m length was designed, constructed and tested by using nitrogen as working gas. The small heat engine achieved a steady working frequency of 45 Hz. The pressure ratio reached 1.189, with an average charge pressure of 0.53 MPa and a heating power of 1.14 kW. The temperature and the pressure characteristics during the onset and damping processes were also observed and discussed. The experimental results demonstrated that the small engine possessed the potential to drive a Stirling-type pulse tube cryocooler.
Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia
2012-01-01
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670
Development and Validation of an NPSS Model of a Small Turbojet Engine
NASA Astrophysics Data System (ADS)
Vannoy, Stephen Michael
Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.
NASA Astrophysics Data System (ADS)
Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.
2018-03-01
downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.
Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco
2018-03-12
There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.
Study of an advanced General Aviation Turbine Engine (GATE)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.
1979-01-01
The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.
Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1997-01-01
The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.
Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Tuma, J.; Kubata, J.; Betak, V.; Hybl, R.
2013-04-01
New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Singh, B.
1986-01-01
Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, L. Y.; Hao, H. X.
2014-01-01
Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.
Small engine components test facility compressor testing cell at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Brokopp, Richard A.; Gronski, Robert S.
1992-01-01
LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.
External combustion engine having a combustion expansion chamber
NASA Astrophysics Data System (ADS)
Duva, Anthony W.
1993-03-01
This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.
NASA Astrophysics Data System (ADS)
Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.
2018-05-01
There are two categories of aircraft engines, namely, piston and gas turbine engines. Piston engine extracts energy from a combustion compartment through a piston and crank apparatus that engages the propellers, which in turn, provides an aircraft the needed momentum. On the other hand, gas turbine engine heats a compressed air in the combustion compartment resulting in propulsion that drives an aircraft. Piston engine aircrafts might appear small but together thousands of piston engine aircraft, which encompasses a bulk of the general aviation fleet, present a considerable health threat. That is because these aircraft, which depend on avgas and mogas to run, comprise major remaining sources of lead emissions. People exposed to even small levels of lead, particularly children, have tendencies to suffer from cognitive and neurological harm. Dissimilar from commercial airliners that do not utilize leaded fuels, piston engine aircraft account for nearly half of the lead discharge in skies. But, what is the extent of the impact caused by these airborne emissions on the country’s economy and public health? To answer this query, a thorough literature review on emissions of piston engine aircraft ought to be undertaken. This article conducts a literature review on emissions of piston engine aircraft using avgas as fuel and mogas as fuel.
Improved Stirling engine performance using jet impingement
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Britt, E. J.; Thieme, L. G.
1982-01-01
Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.
Mainshaft seals for small gas turbine engines
NASA Technical Reports Server (NTRS)
Ludwig, L. P.; Lynwander, P.
1974-01-01
An experimental evaluation of mainshaft seals for small gas turbine engines was conducted with shaft speeds to 213 m/s (700 ft/sec), air pressures to 148 Newtons per square centimeter abs. (215 psia), and air temperatures to 412k(282 F). A radial face seal incorporating self-acting geometry for lift augmentation was evaluated. In addition, three conventional carbon seal types (face, circumferential segmented, and rotating ring) were run for comparison. Test results indicated that the conventional seals used in this evaluation may not be satisfactory in future advanced engines because of excessive air leakage. On the other hand, the self-acting face seal was shown to have the potential capability of limiting leakages to one-half that of the conventional face seals and one-fifth that of conventional ring seals. A 150-hour endurance test of the self-acting face seal was conducted.
1954-11-01
small Pelton air turbine in Fig. U supplies this power and provides a speed control for the rotor. The engine consists of a rotor which runs betwen...inherent in existing gas turbine power plants are circumvented by using intermittent flow in which the components are either alternately exposed to...investigators, wave processes while imperfectly understood, seemed very attractiveo The first successful heat machine which used waves was the gas turbine
Johnson, Derek; Heltzel, Robert; Nix, Andrew; Darzi, Mahdi; Oliver, Dakota
2018-05-01
Natural gas from shale plays dominates new production and growth. However, unconventional well development is an energy intensive process. The prime movers, which include over-the-road service trucks, horizontal drilling rigs, and hydraulic fracturing pumps, are predominately powered by diesel engines that impact air quality. Instead of relying on certification data or outdated emission factors, this model uses new in-use emissions and activity data combined with historical literature to develop a national emissions inventory. For the diesel only case, hydraulic fracturing engines produced the most NO x emissions, while drilling engines produced the most CO emissions, and truck engines produced the most THC emissions. By implementing dual-fuel and dedicated natural gas engines, total fuel energy consumed, CO 2 , CO, THC, and CH 4 emissions would increase, while NO x emissions, diesel fuel consumption, and fuel costs would decrease. Dedicated natural gas engines offered significant reductions in NO x emissions. Additional scenarios examined extreme cases of full fleet conversions. While deep market penetrations could reduce fuel costs, both technologies could significantly increase CH 4 emissions. While this model is based on a small sample size of engine configurations, data were collected during real in-use activity and is representative of real world activity.
Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.
Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru
2010-02-01
This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.
1994-01-01
advanced diesel engine components; high-temperature titanium aluminide and Al-Fe alloys for aircraft and missile engines; environmentally compliant...gun-chamber liners and KE penetrator stabilizer fins, tips, and leading edges; low cost, ceramic thermal barrier coatings for gas turbine blades and
Centrifugal Compressor Aeroelastic Analysis Code
NASA Astrophysics Data System (ADS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Thermal Loss Determination for a Small Internal Combustion Engine
2014-03-27
calibration temperature rc Compression ratio S̄ p Mean piston speed T Temperature Vc Combustion chamber volume Vd Displacement volume Wc,i Indicated work...are typically fueled by gasoline, ignited by a spark, and operate on either a two or four-stroke cycle. Compression-ignition diesel engines as seen in...engine, the fuel is usually withheld from the cylinder until the combustion event is desired as in diesel engines. Similarly, the fuel in a gas
Characterization of Ceramic Vane Materials for 10KW Turboalternator.
1983-04-01
eide if necessary end identify by block number) Silicon nitride Gas turbine engine Failure analysis Silicon carbide Mechanical properties Ceramics...silicon carbide, and sil- iconized silicon carbide, being considered for use in a small turbine engine . Chemistry, phase content, and room-temperature...sponsored by USAMERADCOK, Ft. Belvoir, Va., and the engine testing and development was done by Solar Turbines International, San Diego, Calif. ANMHRC
2004-04-15
This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.
PBF (PER620) north facade. Camera facing south. Small metal shed ...
PBF (PER-620) north facade. Camera facing south. Small metal shed at right is Stack Gas Monitor Building, PER-629. Date: March 2004. INEEL negative no. HD-41-2-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2014-01-01
The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.
Active Pattern Factor Control for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
May, James E.
1998-01-01
Small variations in fuel/air mixture ratios within gas turbine combustors can result in measurable, and potentially detrimental, exit thermal gradients. Thermal gradients can increase emissions, as well as shorten the design life of downstream turbomachinery, particularly stator vanes. Uniform temperature profiles are usually sought through careful design and manufacturing of related combustor components. However, small componentto-component variations as well as numerous aging effects degrade system performance. To compensate for degraded thermal performance, researchers are investigating active, closed-loop control schemes.
High-Temperature Rocket Engine
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.
1994-01-01
Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.
Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho
2014-07-01
We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.
40 CFR 86.094-14 - Small-volume manufacturers certification procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light...-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-14 Small-volume...
A review of NASA's propulsion programs for aviation
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Johnson, H. W.; Weber, R. J.
1978-01-01
A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.
Thermal Analysis and Testing of Fastrac Gas Generator Design
NASA Technical Reports Server (NTRS)
Nguyen, H.
1998-01-01
The Fastrac Engine is being developed by the Marshall Space Flight Center (MSFC) to help meet the goal of substantially reducing the cost of access to space. This engine relies on a simple gas-generator cycle, which burns a small amount of RP-1 and oxygen to provide gas to drive the turbine and then exhausts the spent fuel. The Fastrac program envisions a combination of analysis, design and hot-fire evaluation testing. This paper provides the supporting thermal analysis of the gas generator design. In order to ensure that the design objectives were met, the evaluation tests have started on a component level and a total of 15 tests of different durations were completed to date at MSFC. The correlated thermal model results will also be compared against hot-fire thermocouple data gathered.
Uprating the Frontal Thrust of a Spherical Gas-Dynamical Resonator-Pulse Amplifier
NASA Astrophysics Data System (ADS)
Bogdanov, V. I.; Khantalin, D. S.
2017-01-01
Calculations were carried out with application of current numerical methods and with the use of scientific-technical developments of a gas-dynamical resonator-thrust amplifier. The possibility of creating an exit device with a resonator for a small-size gas-turbine engine that in flight provides for thrust uprating by no less than 6% via gas mass attachment in the pulsating process is shown. In this way the size-mass characteristics of the exit device are preserved in the process.
NASA Technical Reports Server (NTRS)
Probst, H. B.
1978-01-01
The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.
AGT (Advanced Gas Turbine) technology project
NASA Technical Reports Server (NTRS)
1988-01-01
An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.
NASA Astrophysics Data System (ADS)
Kubasco, A. J.
1991-07-01
The objective of Gas Engine Heat Recovery Unit was to design, fabricate, and test an efficient, compact, and corrosion resistant heat recovery unit (HRU) for use on exhaust of natural gas-fired reciprocating engine-generator sets in the 50-500 kW range. The HRU would be a core component of a factory pre-packaged cogeneration system designed around component optimization, reliability, and efficiency. The HRU uses finned high alloy, stainless steel tubing wound into a compact helical coil heat exchanger. The corrosion resistance of the tubing allows more heat to be taken from the exhaust gas without fear of the effects of acid condensation. One HRU is currently installed in a cogeneration system at the Henry Ford Hospital Complex in Dearborn, Michigan. A second unit underwent successful endurance testing for 850 hours. The plan was to commercialize the HRU through its incorporation into a Caterpillar pre-packaged cogeneration system. Caterpillar is not proceeding with the concept at this time because of a downturn in the small size cogeneration market.
NASA Technical Reports Server (NTRS)
Heady, Joel; Pereira, J. Michael; Ruggeri, Charles R.; Bobula, George A.
2009-01-01
A test methodology currently employed for large engines was extended to quantify the ballistic containment capability of a small turboshaft engine compressor case. The approach involved impacting the inside of a compressor case with a compressor blade. A gas gun propelled the blade into the case at energy levels representative of failed compressor blades. The test target was a full compressor case. The aft flange was rigidly attached to a test stand and the forward flange was attached to a main frame to provide accurate boundary conditions. A window machined in the case allowed the projectile to pass through and impact the case wall from the inside with the orientation, direction and speed that would occur in a blade-out event. High-peed, digital-video cameras provided accurate velocity and orientation data. Calibrated cameras and digital image correlation software generated full field displacement and strain information at the back side of the impact point.
Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine
NASA Astrophysics Data System (ADS)
Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.
2016-11-01
Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.
Radiative Heat Transfer modelling in a Heavy-Duty Diesel Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less
Multi-fuel combustor for gas turbine engines: Phase 1, Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melconian, J.O.; Marden, W.W., III
An innovative can combustor configuration has been developed for gas turbine engines which has the potential of burning fuels ranging from gasoline to coal/water slurries at high efficiencies. The design is based on a Variable Residence Time (VRT) concept which allows large and agglomerated fuel particles adequate time to completely burn. High durability of the combustor is achieved by dual function use of the incoming air. For applications which require the burning of coal/water slurries, the design has the capability of removing the ash particles directly from the primary zone of the combustor. It is anticipated that because of themore » small size requirement of this combustor design, existing gas turbine engines could be retrofitted within the confines of the current engine envelope. In Phase 1, the feasibility of the concept was successfully demonstrated by three-dimensional mathematical modeling and water analogue tests. The Plexiglas model used in the water analogue tests was designed to fit the current production engine of a major manufacturer. 19 figs., 2 tabs.« less
ERIC Educational Resources Information Center
Arnott, Michael
This book describes one approach to building and operating biogas systems. The biogas systems include raw material preparation, digesters, separate gas storage tanks, use of the gas to run engines, and the use of the sludge as fertilizer. Chapters included are: (1) "Introduction"; (2) "Biogas Systems are Small Factories"; (3)…
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
Analysis of long-time operation of micro-cogeneration unit with fuel cell
NASA Astrophysics Data System (ADS)
Patsch, Marek; Čaja, Alexander
2015-05-01
Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.
2010-05-12
m) YXX:........................................Molar Fraction of Compound XX 12 1 Introduction and Background Small internal combustion...Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988. [9] Judge, A.W. High Speed Diesel Engines. London...performance and exergy potential of the exhaust gas. Energy Conversion and Management 46:489-499. [11] Parlak A., Yasar H., and Sahin B. 2003. Performance
NASA Astrophysics Data System (ADS)
Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.
2018-05-01
Since there is a developing practice of utilizing automotive fuels as flight fuel, there are higher chances of dangerous scenarios, particularly in the operation of piston aircraft engines. The use of motor vehicle gas (MOGAS) or aviation gas (AVGAS) in the operation of aviation piston engine increases the risk of vapour locking. A statistical examination of European aviation industry indicates that around 20,000 aircraft are affected either specifically or conceivably by the different negative impacts of gasoline blended with ethanol. Particularly, for most contemporary carburettor engines, there are risks associated with ethanol-admixed fuels that have potential to upset engine operation. The danger of vapour locking, which is the generation of gas bubbles inside the fuel system causing an impairment of fuel movement in the engine, is well documented particularly by studies on aircraft using MOGAS. Contrasted with AVGAS, MOGAS is inclined to demonstrate this phenomenon. Vapour lock is perhaps the leading serious problem that ought to be addressed if MOGAS is to be used as a substitute for AVGAS. Vapour lock problem is critical because it causes malfunctions to aircraft engines. Thus, an understanding of vapour handling ability of small aircraft is essential to establish safe operating confines at existing fuel temperature and pressures.
Assessment of total efficiency in adiabatic engines
NASA Astrophysics Data System (ADS)
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Transition in Gas Turbine Engine Control System Architecture: Modular, Distributed, Embedded
2009-08-01
Design + Development + Certification + Procurement + Life Cycle Cost = Net Savings for our Customers Approved for Public Release 16 Economic ...Supporting Small Quantity Electronics Need Broadly Applicable High Temperature Electronics Supply Base Approved for Public Release 17 Economic ...rc ec ures Approved for Public Release 18 Economic Drivers for New FADEC Designs FADEC Implementation Time Pacing Engine Development Issues • FADEC
Propulsion engineering study for small-scale Mars missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J.
1995-09-12
Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardwaremore » mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.« less
Water Electrolyzers and the Zero-Point Energy
NASA Astrophysics Data System (ADS)
King, M. B.
The gas emitted from popular water electrolyzer projects manifests unusual energetic anomalies, which include vaporizing tungsten when used in a welding torch and running internal combustion engines on small quantities of the gas. Some claim to run generators in closed loop fashion solely on the gas from the electrolyzer, which is powered solely from the generator. Most investigators believe the energy is from burning hydrogen. A hypothesis is proposed that the dominant energy is not coming from hydrogen, but rather it is coming from charged water gas clusters, which activate and coherently trap zero-point energy.
Lean burn natural gas fueled S.I. engine and exhaust emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varde, K.S.; Patro, N.; Drouillard, K.
1995-12-31
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in themore » engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads. Most of these hydrocarbons were made up of methane with small concentrations of ethane and propane. Coefficient of variations in hydrocarbons were generally high at very lean operating conditions and light loads, but decreased with increasing equivalence ratio and engine speed. Methane concentrations in the engine exhaust decreased with increasing load and equivalence ratio. At lean air-to-fuel ratios and light loads oxidation of methane in the catalyst was substantially limited and no NOx reduction was achieved. In addition, the proportion of nitric oxide in oxides of nitrogen increased with increasing amount of NOx in the engine exhaust. A major problem encountered in the study was the inability of the fuel system to maintain near constant air-to-fuel ratios at steady operating conditions.« less
A Stirling engine for use with lower quality fuels
NASA Astrophysics Data System (ADS)
Paul, Christopher J.
There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.
Optimizing power cylinder lubrication on a large bore natural gas engine
NASA Astrophysics Data System (ADS)
Luedeman, Matthew R.
More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.
NASA Astrophysics Data System (ADS)
Browne, Joshua B.
Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that converts natural gas to synthesis gas (syngas) in a reciprocating internal combustion engine and then converts the syngas into methanol in a small-scale reactor. With methanol as the product, this research aims to show that such a system can not only address current and future natural gas flaring regulation, but eventually can compete economically with historically large-scale, centralized methanol production infrastructure. If successful, such systems could contribute to a shift away from large, multi-billion dollar capital cost chemical plants towards smaller systems with shorter lifetimes that may decrease the time to transition to more sustainable forms of energy and chemical conversion technologies. This research also quantifies the potential for such a system to contribute to mitigating GHG emissions, not only by addressing flared gas in the near-term, but also supporting future natural gas infrastructure ideas that may help to redefine the way the current natural gas pipeline system is used. The introduction of new, small-scale, distributed energy and chemical conversion systems located closer to the point of extraction may contribute to reducing methane leakage throughout the natural gas distribution system by reducing the reliance and risks associated with the aging natural gas pipeline infrastructure. The outcome of this thesis will result in several areas for future work. From an economic perspective, factors that contribute to overall system cost, such as operation and maintenance (O&M) and capital cost multiplier (referred to as the Lang Factor for large-scale petro-chemical plants), are not yet known for novel systems such as the technology presented here. From a technical perspective, commercialization of small-scale, distributed chemical conversion systems may create a demand for economical compression and air-separation technologies at this scale that do not currently exist. Further, new business cases may arise aimed at utilizing small, remote sources of methane, such as biogas from agricultural and municipal waste. Finally, while methanol was selected as the end-product for this thesis, future applications of this technology may consider methane conversion to hydrogen, ammonia, and ethylene for example, challenging the orthodoxy in the chemical industry that "bigger is better."
Preliminary analysis of a downsized advanced gas-turbine engine in a subcompact car
NASA Technical Reports Server (NTRS)
Klann, J. L.; Johnsen, R. L.
1982-01-01
Relative fuel economy advantages exist for a ceramic turbine engine when it is downsized for a small car were investigated. A 75 kW (100 hp) single shaft engine under development was analytically downsized to 37 kW (50 hp) and analyzed with a metal belt continuously variable transmission in a synthesized car. With gasoline, a 25% advantage was calculated over that of a current spark ignition engine, scaled to the same power, using the same transmission and car. With diesel fuel, a 21% advantage was calculated over that of a similar diesel engine vehicle.
Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, M.A.
1996-01-01
Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, theremore » should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.« less
2017-01-01
In general, a space propulsion system has a crucial role in the normal mission operations of a spacecraft. Depending on the types and number of propellants, a monopropellant and a bipropellant thrusters are mostly utilized for low thrust liquid rocket engines. As the plume gas flow exhausted from these small thrusters expands freely in a vacuum space environment along all directions, adverse effects of the plume impingement onto the spacecraft surfaces can dramatically reduce the function and performance of a spacecraft. Thus, the purpose of the present study is to investigate and compare the major differences of the plume gas flow behaviors numerically between the small monopropellant and bipropellant thrusters. To ensure efficient numerical calculations, the whole physical domain was divided into three different subdomains depending on the flow conditions, and then the appropriate numerical methods were combined and applied for each subdomain sequentially. With the present analysis results, the plume gas behaviors including the density, the overall temperature and the separation of the chemical species are compared and discussed between the monopropellant and the bipropellant thrusters. Consequently, the present results are expected to provide useful information on selecting the appropriate propulsion system, which can be very helpful for actual engineers practically during the design process. PMID:28481892
Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.
Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less
Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines
Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; ...
2017-07-18
Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less
Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed
2012-10-02
Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.
Combination probes for stagnation pressure and temperature measurements in gas turbine engines
NASA Astrophysics Data System (ADS)
Bonham, C.; Thorpe, S. J.; Erlund, M. N.; Stevenson, R. J.
2018-01-01
During gas turbine engine testing, steady-state gas-path stagnation pressures and temperatures are measured in order to calculate the efficiencies of the main components of turbomachinery. These measurements are acquired using fixed intrusive probes, which are installed at the inlet and outlet of each component at discrete point locations across the gas-path. The overall uncertainty in calculated component efficiency is sensitive to the accuracy of discrete point pressures and temperatures, as well as the spatial sampling across the gas-path. Both of these aspects of the measurement system must be considered if more accurate component efficiencies are to be determined. High accuracy has become increasingly important as engine manufacturers have begun to pursue small gains in component performance, which require efficiencies to be resolved to within less than ± 1% . This article reports on three new probe designs that have been developed in a response to this demand. The probes adopt a compact combination arrangement that facilitates up to twice the spatial coverage compared to individual stagnation pressure and temperature probes. The probes also utilise novel temperature sensors and high recovery factor shield designs that facilitate improvements in point measurement accuracy compared to standard Kiel probes used in engine testing. These changes allow efficiencies to be resolved within ± 1% over a wider range of conditions than is currently achievable with Kiel probes.
NASA Technical Reports Server (NTRS)
Acosta, W. A.; Norgren, C. T.
1986-01-01
Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1)splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.
NASA Technical Reports Server (NTRS)
Acosta, W. A.; Norgren, C. T.
1986-01-01
Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.
Numerical simulation of the flow field and fuel sprays in an IC engine
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Schock, H. J.; Ramos, J. I.; Carpenter, M. H.; Stegeman, J. D.
1987-01-01
A two-dimensional model for axisymmetric piston-cylinder configurations is developed to study the flow field in two-stroke direct-injection Diesel engines under motored conditions. The model accounts for turbulence by a two-equation model for the turbulence kinetic energy and its rate of dissipation. A discrete droplet model is used to simulate the fuel spray, and the effects of the gas phase turbulence on the droplets is considered. It is shown that a fluctuating velocity can be added to the mean droplet velocity every time step if the step is small enough. Good agreement with experimental data is found for a range of ambient pressures in Diesel engine-type microenvironments. The effects of the intake swirl angle in the spray penetration, vaporization, and mixing in a uniflow-scavenged two-stroke Diesel engine are analyzed. It is found that the swirl increases the gas phase turbulence levels and the rates of vaporization.
Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings
NASA Technical Reports Server (NTRS)
Dyson, Rodger
2012-01-01
Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.
NASA Technical Reports Server (NTRS)
Tolhurst, William H., Jr.; Hickey, David H.; Aoyagi, Kiyoshi
1961-01-01
Wind-tunnel tests have been conducted on a large-scale model of a swept-wing jet transport type airplane to study the factors affecting exhaust gas ingestion into the engine inlets when thrust reversal is used during ground roll. The model was equipped with four small jet engines mounted in nacelles beneath the wing. The tests included studies of both cascade and target type reversers. The data obtained included the free-stream velocity at the occurrence of exhaust gas ingestion in the outboard engine and the increment of drag due to thrust reversal for various modifications of thrust reverser configuration. Motion picture films of smoke flow studies were also obtained to supplement the data. The results show that the free-stream velocity at which ingestion occurred in the outboard engines could be reduced considerably, by simple modifications to the reversers, without reducing the effective drag due to reversed thrust.
NASA Astrophysics Data System (ADS)
Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.
2017-10-01
Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.
CO2Explorer: Conducting Greenhouse-Gas Measurements of Landfills using a Small Fixed-wing UAV
NASA Astrophysics Data System (ADS)
Hollingsworth, Peter; Allen, Grant; Kabbabe, Khristopher; Pitt, Joseph
2017-04-01
Quantifying inventories of Greenhouse gas emissions, primarily Methane and Carbon Dioxide, from distributed sources such as a landfill has historically been undertaken using one of several ground based measurement techniques. These methods are either time and/or resource intensive. As a result regulatory agencies have started looking at the potential of using small-unmanned aircraft to supplement or supplant the current methods. The challenge of using a UAV to perform these tasks is the trade-off between accuracy, operational flexibility and operational productivity. This is driven by the state-of-the-art in measurement instruments, the operating environment at landfills and the regulatory/safety environment surrounding UAV operations. This work describes the development of the operational concept, and associated UAV measurement platform for the CO2Explorer. It looks at the scientific, engineering and possible policy trades and compares the use of small rotary and fixed-wing UAVs from both an operational and measurement perspective. This work also makes recommendations on system development and operation for users lacking in both systems engineering and operational experience.
Aithal, S. M.
2018-01-01
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume
NASA Astrophysics Data System (ADS)
Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen
2017-10-01
For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.
Structural integrity and containment aspects of small gas turbine engines
NASA Astrophysics Data System (ADS)
Gupta, S. S.; Gomuc, R.
1994-03-01
Structural integrity of rotating components in gas turbine engines is very crucial since their failure implies high impact energy, which, if uncontained, could mean damage to aircraft structures, controls, and so forth, and, in the worst scenario, even loss of lives. This final consequence has led to very stringent airworthiness regulations for engine/aircraft certifications. This paper discusses the historical statistics of noncontainment events in turbofans, turboprops, and turboshafts and shows how the damage severity varies between different applications and how changes to regulations are continuing in order to improve the reliability of aircraft/rotorcraft. The paper also presents design challenges resulting from the analysis complexity of containment/noncontainment event and the way Pratt & Whitney Canada design/analysis/test system caters to all the requirements. The weight and cost impact of possible changes to current regulations are also presented.
Iridium-Coated Rhenium Combustion Chamber
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.
1994-01-01
Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raflo, D.
1994-07-01
Allison has been on its own since December 1, when General Motors Corporation sold its former Allison Gas Turbine Division to Clayton, Dubilier & Rice Inc, a private New York investment firm, and a group of senior Allison managers for $318 million. Allison engine Company`s current product line includes large engines, small aircraft engines, and industrial engines. Over 140,000 engines have been produced since 1915, giving Allison a large stake in world leaderhsip. With strong cogeneration markets already established in Europe and Japan, Allison`s industrial engines are being positioned to compete in emerging markets in China, Indonesia and the Sovietmore » Union. Cogeneration market potential in the US improves despite the current popularity with abundant, low-cost natural gas because of the South Coast Air Control Management District`s push for reduced emissions. The new 7000-shp KB7 industrial engine is the latest addition to the 501K engine family, and adds increased power (by 1700 shp), with a boost compressor to the current core compressor increasing air flow, along with a new low-loss exhaust system. Allison`s new AE series of turboprop (AE 2100) and turbofan (AE 3007) engines, with engine cores derived from the T406 design, have been selected to power regional airliners. 2 figs.« less
NASA Astrophysics Data System (ADS)
Steiner, Matthias
A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.
Thin film heat flux sensor for Space Shuttle Main Engine turbine environment
NASA Technical Reports Server (NTRS)
Will, Herbert
1991-01-01
The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.
1985-08-01
time were spurious transits observed during the recording of the chromatographic output data. *Packaged gas purification filters supplied by Alltech ... Alltech ) that were needed for these unusual installations. When the column diameters were small and of comparable size, the assembly attach- ments at...into an MDGC system has definite advantages as separations can be made faster and with greater detectability. However, specific precautions must be
Small Engine Component Technology (SECT) study. Program report
NASA Technical Reports Server (NTRS)
Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.
1986-01-01
The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.
1980-12-01
underrepresentation . As one can see from Figure 2-4, the greatest density of women is in traditional skills, the medical/dental and administrat- ion... Industrial Elec Motors/Generators Electric Wiring Food Service Gas Engine Repair General Merch Sales Graphic Arts Hotel & Motel Mgt Masonry Office...Small Engine Repair (marine ment of Vocational and industrial ) Education Welding Truck Driving Simulator Connecticut State Depart- Training ment of
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1987-01-01
A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Air Products and Chemicals
2008-09-30
An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less
NASA Technical Reports Server (NTRS)
Biesiadny, T. J.; Mcdonald, G. E.; Hendricks, R. C.; Little, J. K.; Robinson, R. A.; Klann, G. A.; Lassow, E. S.
1985-01-01
The results of an experimental and analytical evaluation of ceramic turbine tip shrouds within a small turbine engine operating environment are presented. The ceramic shrouds were subjected to 1001 cycles between idle and high power and steady-state conditions for a total of 57.8 engine hr. Posttest engine inspection revealed mud-flat surface cracking, which was attributed to microcracking under tension with crack penetration to the ceramic and bond coat interface. Sections and micrographs tend to corroborate the thesis. The engine test data provided input to a thermomechanical analysis to predict temperature and stress profiles throughout the ceramic gas-path seal. The analysis predicts cyclic thermal stresses large enough to cause the seal to fail. These stresses are, however, mitigated by inelastic behavior of the shroud materials and by the microfracturing that tensile stresses produce. Microfracturing enhances shroud longevity during early life but provides the failure mechanism during life but provides the failure mechanism during extended life when coupled with the time dependent inelastic materials effects.
Hybrid Turbine Electric Vehicle
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.
NASA Astrophysics Data System (ADS)
Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal
2017-05-01
Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.
Advanced liner-cooling techniques for gas turbine combustors
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Riddlebaugh, S. M.
1985-01-01
Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).
Code of Federal Regulations, 2010 CFR
2010-07-01
... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...
Code of Federal Regulations, 2011 CFR
2011-07-01
... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...
A Curriculum Guide for Power Technology, Grades 9-12.
ERIC Educational Resources Information Center
Callahan, J. Thomas
Designed to help the high school industrial arts instructor in teaching power technology, this curriculum guide concentrates on seven subject areas: exploratory power technology, electricity, electronics, small gas engines, automotive repair, transportation, and alternate energy sources. The general course objectives are identified as enabling the…
NASA Technical Reports Server (NTRS)
2001-01-01
Through Small Business Innovation Research (SBIR) funding from NASA's Glenn Research Center, Moller International created a new coating for rotary engines, which significantly improves the fuel consumption of a vehicle while reducing emissions. The new coatings are offered in the new Rotapower(R) engine, which is produced and distributed by Moller subsidiary, Freedom Motors, Inc. The coating allows the Rotapower engine to function smoother than other models, reducing wear and protecting the engine. The Rotapower engine has the ability to operate on a variety of fuels, including gasoline, natural gas, diesel, alcohol, and kerosene. A small and lightweight engine, it is projected to replace many of today's bulkier versions. The 10 horsepower model fits in the palm of one's hand, while the 160 horsepower model fits into a 5-gallon bucket. The clean running Rotapower engine is environmentally appealing, because it eliminates over 98 percent of the total emissions given off by traditional piston engines. Fewer pollutants are spewed into the air, making it especially attractive in areas where air pollution is a major problem. Due to the clean-burning nature of the engine, it meets the stringent standards set by the California Air Resources Board. The engine also has numerous commercial benefits in several types of recreational, industrial, and transportation applications, including personal watercraft, snowmobiles, portable generators. and pumps.
An Investigation into Performance Modelling of a Small Gas Turbine Engine
2012-10-01
b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a
The Role of Flow Field Computation in Improving Turbomachinery.
1986-06-01
sad total pressure within Solls-Royce t9 design turbine blade %hopes. loan. The comressors need in engines designed in Moruigesn and ReJily. 7 0 ) wrote... engine improve efficiency. In one case, blading designed specific fuel conaumption improved by some I Z. by NOTS for a mall Industrial turbine anufact...the corners Nost small aeronautical gas turbines have there- between wall and blade , and in due course also for fore chosen to use several axial stages
Small Laminated Axial Turbine Design and Test Program.
1980-12-01
ILLUSTRATIONS Figure No. Title Page 1 Typical Test Results from TFE731 -3 Hot-Rig Testing. 5 2 Laminated Blade Chordwise Flow Patterns 8 3 Laminated Blade Cooling...Flow Parameter Versus Pressure Ratio 36 24 Blade Flow Distribution 37 25 TFE731 Turbofan Engine 38 26 Laminated Turbine Wheel 40 27 Selected Blade...facility, which was specifically developed to permit evaluation of cooled compo- nents for gas turbine engines. Four TFE731 -3 Laminated Turbine Wheels
Small Engine Component Technology (SECT)
NASA Technical Reports Server (NTRS)
Early, M.; Dawson, R.; Zeiner, P.; Turk, M.; Benn, K.
1986-01-01
A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000.
Study of research and development requirements of small gas-turbine combustors
NASA Technical Reports Server (NTRS)
Demetri, E. P.; Topping, R. F.; Wilson, R. P., Jr.
1980-01-01
A survey is presented of the major small-engine manufacturers and governmental users. A consensus was undertaken regarding small-combustor requirements. The results presented are based on an evaluation of the information obtained in the course of the study. The current status of small-combustor technology is reviewed. The principal problems lie in liner cooling, fuel injection, part-power performance, and ignition. Projections of future engine requirements and their effect on the combustor are discussed. The major changes anticipated are significant increases in operating pressure and temperature levels and greater capability of using heavier alternative fuels. All aspects of combustor design are affected, but the principal impact is on liner durability. An R&D plan which addresses the critical combustor needs is described. The plan consists of 15 recommended programs for achieving necessary advances in the areas of liner thermal design, primary-zone performance, fuel injection, dilution, analytical modeling, and alternative-fuel utilization.
Low-btu gas in the US Midcontinent: A challenge for geologists and engineers
Newell, K. David; Bhattacharya, Saibal; Sears, M. Scott
2009-01-01
Several low-btu gas plays can be defined by mapping gas quality by geological horizon in the Midcontinent. Some of the more inviting plays include Permian strata west of the Central Kansas uplift and on the eastern flank of Hugoton field and Mississippi chat and other pays that subcrop beneath (and directly overlie) the basal Pennsylvanian angular unconformity at the southern end of the Central Kansas uplift. Successful development of these plays will require the cooperation of reservoir geologists and process engineers so that the gas can be economically upgraded and sold at a nominal pipeline quality of 950 btu/scf or greater. Nitrogen is the major noncombustible contaminant in these gas fields, and various processes can be utilized to separate it from the hydrocarbon gases. Helium, which is usually found in percentages corresponding to nitrogen, is a possible ancillary sales product in this region. Its separation from the nitrogen, of course, requires additional processing. The engineering solution for low-btu gas depends on the rates, volumes, and chemistry of the gas needing upgrading. Cryogenic methods of nitrogen removal are classically used for larger feed volumes, but smaller feed volumes characteristic of isolated, low-pressure gas fields can now be handled by available small-scale PSA technologies. Operations of these PSA plants are now downscaled for upgrading stripper well gas production. Any nitrogen separation process should be sized, within reason, to match the anticipated flow rate. If the reservoir rock surprises to the upside, the modularity of the upgrading units is critical, for they can be stacked to meet higher volumes. If a reservoir disappoints (and some will), modularity allows the asset to be moved to another site without breaking the bank.
Small Engine Component Technology (SECT) studies
NASA Technical Reports Server (NTRS)
Meyer, P. K.; Harbour, L.
1986-01-01
A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.
Tempest gas turbine extends EGT product line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chellini, R.
With the introduction of the 7.8 MW (mechanical output) Tempest gas turbine, ECT has extended the company`s line of its small industrial turbines. The new Tempest machine, featuring a 7.5 MW electric output and a 33% thermal efficiency, ranks above the company`s single-shaft Typhoon gas turbine, rated 3.2 and 4.9 MW, and the 6.3 MW Tornado gas turbine. All three machines are well-suited for use in combined heat and power (CHP) plants, as demonstrated by the fact that close to 50% of the 150 Typhoon units sold are for CHP applications. This experience has induced EGT, of Lincoln, England, tomore » announce the introduction of the new gas turbine prior to completion of the testing program. The present single-shaft machine is expected to be used mainly for industrial trial cogeneration. This market segment, covering the needs of paper mills, hospitals, chemical plants, ceramic industry, etc., is a typical local market. Cogeneration plants are engineered according to local needs and have to be assisted by local organizations. For this reason, to efficiently cover the world market, EGT has selected a number of associates that will receive from Lincoln completely engineered machine packages and will engineer the cogeneration system according to custom requirements. These partners will also assist the customer and dispose locally of the spares required for maintenance operations.« less
Preliminary study of Low-Cost Micro Gas Turbine
NASA Astrophysics Data System (ADS)
Fikri, M.; Ridzuan, M.; Salleh, Hamidon
2016-11-01
The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.
A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; Quataert, Eliot; MacFadyen, Andrew I., E-mail: duffell@berkeley.edu
2015-11-01
We use two-dimensional relativistic hydrodynamic numerical calculations to show that highly collimated relativistic jets can be produced in neutron star merger models of short-duration gamma-ray bursts (GRBs) without the need for a highly directed engine or a large net magnetic flux. Even a hydrodynamic engine generating a very wide sustained outflow on small scales can, in principle, produce a highly collimated relativistic jet, facilitated by a dense surrounding medium that provides a cocoon surrounding the jet core. An oblate geometry to the surrounding gas significantly enhances the collimation process. Previous numerical simulations have shown that the merger of two neutronmore » stars produces an oblate, expanding cloud of dynamical ejecta. We show that this gas can efficiently collimate the central engine power much like the surrounding star does in long-duration GRB models. For typical short-duration GRB central engine parameters, we find jets with opening angles of an order of 10° in which a large fraction of the total outflow power of the central engine resides in highly relativistic material. These results predict large differences in the opening angles of outflows from binary neutron star mergers versus neutron star–black hole mergers.« less
General Mechanical Trades: A Curriculum Guide. Revised Edition.
ERIC Educational Resources Information Center
Henderson, W. Charles; And Others
The guide contains six sections, each consisting of one or more units of general mechanical trades instruction. The sections cover: safety and tools, measuring and blueprint reading, gas welding, arc welding, small engines, and metal work. Each unit includes performance objectives stated as terminal objectives, indicating the subject matter to be…
40 CFR 1036.150 - Interim provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Interim provisions. 1036.150 Section... 13 CFR 121.201 are not subject to the greenhouse gas emission standards in § 1036.108. Qualifying... small business under 13 CFR 121.201. You must label your excluded engines with the statement: “THIS...
NASA Astrophysics Data System (ADS)
Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas
2014-02-01
In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.
Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Makaryants, G. M.
2018-01-01
There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.
Systems-Level Energy Audit for Main Complex, Construction Engineering Research Laboratory
2003-08-01
gas-fired boilers. Cooling is provided by two York electric chillers housed in the Utilities Building. Electric- ity and gas are metered by...small “instant recovery” electric water heater with a 20-gal size tank. Cooling In the spring of 1993, two R-22 (HCFC) York chiller units (rated at 180...tons each, but which can be peaked at 230 tons under favorable conditions) were in- stalled to replace the old chiller in the Utilities Building
NASA Astrophysics Data System (ADS)
Darzi, M.; Johnson, D.; Heltzel, R.; Clark, N.
2017-12-01
Researchers at West Virginia University's Center for Alternative Fuels, Engines, and Emissions have recently participated in a variety of studies targeted at direction quantification of methane emissions from across the natural gas supply chain. These studies included assessing methane emissions from heavy-duty vehicles and their fuel stations, active unconventional well sites - during both development and production, natural gas compression and storage facilities, natural gas engines - both large and small, two- and four-stroke, and low-throughput equipment associated with coal bed methane wells. Engine emissions were sampled using conventional instruments such as Fourier transform infrared spectrometers and heated flame ionization detection analyzers. However, to accurately quantify a wide range of other sources beyond the tailpipe (both leaks and losses), a full flow sampling system was developed, which included an integrated cavity-enhanced absorption spectrometer. Through these direct quantification efforts and analysis major sources of methane emissions were identified. Technological solutions and best practices exist or could be developed to reduce methane emissions by focusing on the "lowest-hanging fruit." For example, engine crankcases from across the supply chain should employ vent mitigation systems to reduce methane and other emissions. An overview of the direct quantification system and various campaign measurements results will be presented along with the identification of other targets for additional mitigation.
The design of an air-cooled metallic high temperature radial turbine
NASA Technical Reports Server (NTRS)
Snyder, Philip H.; Roelke, Richard J.
1988-01-01
Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.
Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines
Flowers, Daniel L.
2005-08-02
A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.
Method of making an aero-derivative gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. Amore » can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.« less
Cost/benefit analysis of advanced material technologies for small aircraft turbine engines
NASA Technical Reports Server (NTRS)
Comey, D. H.
1977-01-01
Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.
Application of Background Oriented Schlieren for Altitude Testing of Rocket Engines
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Stiegemeier, Benjamin R.
2017-01-01
A series of experiments was performed to determine the feasibility of using the Background Oriented Schlieren, BOS, flow visualization technique to image a simulated, small, rocket engine, plume under altitude test conditions. Testing was performed at the NASA Glenn Research Centers Altitude Combustion Stand, ACS, using nitrogen as the exhaust gas simulant. Due to limited optical access to the facility test capsule, all of the hardware required to conduct the BOS were located inside the vacuum chamber. During the test series 26 runs were performed using two different nozzle configurations with pressures in the test capsule around 0.3 psia. No problems were encountered during the test series resulting from the optical hardware being located in the test capsule and acceptable resolution images were captured. The test campaign demonstrated the ability of using the BOS technique for small, rocket engine, plume flow visualization during altitude testing.
NASA Technical Reports Server (NTRS)
Shih, C. C.
1973-01-01
A theoretical investigation of gas flow inside a multilayer insulation system has been made for the case of the broadside pumping process. A set of simultaneous first-order differential equations for the temperature and pressure of the gas mixture was obtained by considering the diffusion mechanism of the gas molecules through the perforations on the insulation layers. A modified Runge-Kutta method was used for numerical experiment. The numerical stability problem was investigated. It has been shown that when the relaxation time is small compared with the time period over which the gas properties change appreciably, the set of differential equations can be replaced by a set of algebraic equations for solution. Numerical examples were given, and comparisons with experimental data were made.
Automated Heat-Flux-Calibration Facility
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Weikle, Donald H.
1989-01-01
Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.
GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.
Spencer, Charles W.
1985-01-01
The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.
Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigel N. Clark
Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, amore » percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.« less
Composite Matrix Cooling Scheme for Small Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.
1990-01-01
The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.
a Thermoacoustically-Driven Pulse Tube Cryocryocooler Operating around 300HZ
NASA Astrophysics Data System (ADS)
Yu, G. Y.; Zhu, S. L.; Dai, W.; Luo, E. C.
2008-03-01
High frequency operation of the thermoacoustic cryocooler system, i.e. pulse tube cryocooler driven by thermoacoustic engine, leads to reduced size, which is quite attractive to small-scale cryogenic applications. In this work, a no-load coldhead temperature of 77.8 K is achieved on a 292 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic engine with 3.92 MPa helium gas and 1750 W heat input. To improve thermal efficiency, a high frequency thermoacoustic-Stirling heat engine is also built to drive the same pulse tube cryocooler, and a no-load temperature of 109 K was obtained with 4.38 MPa helium gas, 292 Hz working frequency and 400W heating power. Ideas such as tapered resonators, acoustic amplifier tubes and simple thin tubes without reservoir are used to effectively suppress harmonic modes, amplify the acoustic pressure wave available to the pulse tube cryocooler and provide desired acoustic impedance for the pulse tube cryocooler, respectively. Comparison of systems with different thermoacoustic engines is made. Numerical simulations based on the linear thermoacoustic theory have also been done for comparison with experimental results, which shows reasonable agreement.
Technical Path Evaluation for High Efficiency, Low Emission Natural Gas Engine
2002-05-01
Modeling and Mitigation for Large Bore Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine ...Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine Water Spray Injection for Knock...91 vi D. MICROFINE WATER SPRAY INJECTION FOR
Two-tank working gas storage system for heat engine
Hindes, Clyde J.
1987-01-01
A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.
Combustion Gas Heating Tests of C/C Composites Coated with SiC Layer
NASA Astrophysics Data System (ADS)
Sato, Masaki; Moriya, Shin-ichi; Sato, Masahiro; Tadano, Makoto; Kusaka, Kazuo; Hasegawa, Keiichi; Kumakawa, Akinaga; Yoshida, Makoto
2008-02-01
In order to examine the applicability of carbon fiber/carbon matrix composites coated with a silicon carbide layer (C/C-SiCs) to an advanced nozzle for the future reusable rocket engines, two series of combustion gas heating tests were conducted using a small rocket combustor. In the first series of heating tests, five different kinds of C/C-SiCs were tested with specimens in the shape of a square plate for material screening. In the second series of heating tests, two selected C/C-SiCs were tested with specimens in the shape of a small nozzle. The effectiveness of an interlayer between a C/C composite and a SiC layer, which was introduced to improve the durability based on the concept of functionally graded materials (FGMs), can be observed. The typical damage mode was also pointed out in the results of heating test using the small nozzle specimens.
Jovian Small Orbiter for Magnetospheric and Auroral Studies
NASA Astrophysics Data System (ADS)
Takashima, T.; Kasaba, Y.; Misawa, H.; Kawaguchi, J.
2005-12-01
Solar-Sail Project to have been examined by ISAS/JAXA as an engineering mission has a possibility of a small probe into the Jovian orbit. This paper summarizes the basic design of Jovian magnetospheric and auroral studies by this small chance. The large-scale Jovian mission has been a hope since the 1970s when the examinations of planetary exploration were started in Japan. In the one of plans, the largest planet in the solar system would be solved by two main objectives: (1) Structure of a gas planet: the internal & atmospheric structures of a gas planet which could not become a star (following the objectives of Planet-C and BepiColombo). (2) Jovian-type magnetosphere: the process of a pulsar-like magnetosphere with the strongest magnetospheric activities in the solar system (following the objectives of BepiColombo and SCOPE). The small polar-orbit orbiter in Solar-Sail Project aims to establish the feasibility of such future outer planet missions by ISAS/JAXA. It aims the former target in its limited resources.
Small Gas Turbine Combustor Primary Zone Study
NASA Technical Reports Server (NTRS)
Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.
1983-01-01
A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.
LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor W. Wong; Tian Tian; Grant Smedley
2004-09-30
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scalemore » Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.« less
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1993-01-01
The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Gas Turbine Engine with Air/Fuel Heat Exchanger
NASA Technical Reports Server (NTRS)
Krautheim, Michael Stephen (Inventor); Chouinard, Donald G. (Inventor); Donovan, Eric Sean (Inventor); Karam, Michael Abraham (Inventor); Vetters, Daniel Kent (Inventor)
2017-01-01
One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
NASA Technical Reports Server (NTRS)
Prince, W.R.; Schulze, F.W.
1952-01-01
An investigation of the effect of inlet pressure, corrected engine speed, and turbine temperature level on turbine-inlet gas temperature distributions was conducted on a J40-WE-6, interim J40-WE-6, and prototype J40-WE-8 turbojet engine in the altitude wind tunnel at the NAC.4 Lewis laboratory. The engines were investigated over a range of simulated pressure altitudes from 15,000 to 55,000 feet, flight Mach numbers from 0.12 to 0.64, and corrected engine speeds from 7198 to 8026 rpm, The gas temperature distribution at the turbine of the three engines over the range of operating conditions investigated was considered satisfactory from the standpoint of desired temperature distribution with one exception - the distribution for the J40-WE-6 engine indicated a trend with decreasing engine-inlet pressure for the temperature to exceed the desired in the region of the blade hub. Installation of a compressor-outlet mixer vane assembly remedied this undesirable temperature distribution, The experimental data have shown that turbine-inlet temperature distributions are influenced in the expected manner by changes in compressor-outlet pressure or mass-flow distribution and by changes in combustor hole-area distribution. The similarity between turbine-inlet and turbine-outlet temperature distribution indicated only a small shift in temperature distribution imposed by the turbine rotors. The attainable jet thrusts of the three engines were influenced in different degrees and directions by changes in temperature distributions with change in engine-inlet pressure. Inability to match the desired temperature distribution resulted, for the J40-WE-6 engine, in an 11-percent thrust loss based on an average turbine-inlet temperature of 1500 F at an engine-inlet pressure of 500 pounds per square foot absolute. Departure from the desired temperature distribution in the Slade tip region results, for the prototype J40-WE-8 engine, in an attainable thrust increase of 3 to 4 percent as compared with that obtained if tip-region temperature limitations were observed.
Comparison of advanced engines for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Bowyer, J. M.; Gajanana, B. C.
1980-01-01
A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Mendelson, Alexander
1945-01-01
Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D.J.
1994-07-01
Solar Turbines Incorporated has elected to pursue an intercooled and recuperated (ICR) gas turbine system to exceed the goals of the DOE Advanced Turbine Systems (ATS) program, which are to develop and commercialize an industrial gas turbine system that operates at thermal efficiencies at least 15% higher than 1991 products, and with emissions not exceeding eight ppmv NOx and 20 ppmv CO and UHC. Solar`s goal is to develop a commercially viable industrial system (3--20 MW) driven by a gas turbine engine with a thermal efficiency of 50% (ATS50), with the flexibility to meet the differing operational requirements of variousmore » markets. Dispersed power generation is currently considered to be the primary future target market for the ICR in the 5--15 MW size class. The ICR integrated system approach provides an ideal candidate for the assumed dispersed power market, with its small footprint, easy transportability, and environmental friendliness. In comparison with other systems that use water or toxic chemicals such as ammonia for NOx control, the ICR has no consumables other than fuel and air. The low pressure ratio of the gas turbine engine also is favorable in that less parasitic power is needed to pump the natural gas into the combustor than for simple-cycle machines. Solar has narrowed the ICR configuration to two basic approaches, a 1-spool, and a 2-spool version of the ATS50. The 1-spool engine will have a lower first-cost but lower part-power efficiencies. The 2-spool ATS may not only have better part-power efficiency, its efficiency will also be less sensitive to reduced turbine rotor inlet temperature levels. Thus hot-end parts life can be increased with only small sacrifices in efficiency. The flexibility of the 2-spool arrangement in meeting customer needs is its major advantage over the 1-spool. This Task 3 Topical Report is intended to present Solar`s preliminary system selection based upon the initial trade-off studies performed to date.« less
40 CFR 1042.670 - Special provisions for gas turbine engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND VESSELS Special Compliance Provisions § 1042.670 Special provisions for gas turbine engines. The provisions of this section apply for gas turbine engines. (a) Implementation schedule. The requirements of this part do not apply for gas turbine engines below 600 kW before the 2014 model year. The...
40 CFR 1042.670 - Special provisions for gas turbine engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND VESSELS Special Compliance Provisions § 1042.670 Special provisions for gas turbine engines. The provisions of this section apply for gas turbine engines. (a) Implementation schedule. The requirements of this part do not apply for gas turbine engines below 600 kW before the 2014 model year. The...
Evaluation of auxiliary power subsystems for gas engine heat pumps, phase 2
NASA Astrophysics Data System (ADS)
Rasmussen, R. W.; Wahlstedt, D. A.; Planer, N.; Fink, J.; Persson, E.
1988-12-01
The need to determine the practical, technical and economic viability for a stand-alone Gas Engine Heat Pump (GEHP) system capable of generating its own needed electricity is addressed. Thirty-eight reasonable design configurations were conceived based upon small-sized power conversion equipment that is either commercially available or close to emerging on the market. Nine of these configurations were analyzed due to their potential for low first cost, high conversion efficiency, availability or simplicity. It was found that electric consumption can be reduced by over 60 percent through the implementation of high efficiency, brushless, permanent magnet motors as fan and pump drivers. Of the nine selected configurations employing variable-speed fans, two were found to have simple incremental payback periods of 4.2 to 16 years, depending on the U.S. city chosen for analysis. Although the auxiliary power subsystem option is only marginally attractive from an economic standpoint, the increased gas load provided to the local gas utility may be sufficient to encourage further development. The ability of the system to operate completely disconnected from the electric power source may be a feature of high merit.
Cylindrical Asymmetrical Capacitors for Use in Outer Space
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W.
2007-01-01
A report proposes that cylindrical asymmetrical capacitors (CACs) be used to generate small thrusts for precise maneuvering of spacecraft on long missions. The report notes that it has been known for decades that when high voltages are applied to CACs in air, thrusts are generated - most likely as a result of ionization of air molecules and acceleration of the ions by the high electric fields. The report goes on to discuss how to optimize the designs of CACs for operation as thrusters in outer space. Components that could be used to enable outerspace operation include a supply of gas and a shroud, partly surrounding a CAC, into which the gas would flow. Other elements of operation and design discussed in the report include variation of applied voltage and/or of gas flow to vary thrust, effects of CAC and shroud dimensions on thrust and weight, some representative electrode configurations, and several alternative designs, including one in which the basic CAC configuration would be modified into something shaped like a conventional rocket engine with converging/diverging nozzle and an anode with gas feed in the space that, in a conventional rocket engine, would be the combustion chamber.
NASA Technical Reports Server (NTRS)
Sokhey, Jagdish S. (Inventor); Pierluissi, Anthony F. (Inventor)
2017-01-01
One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1982-01-01
A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.
Contingency power for small turboshaft engines using water injection into turbine cooling air
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett
1987-01-01
Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.
Methods of Si based ceramic components volatilization control in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine
NASA Astrophysics Data System (ADS)
Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro
2017-05-01
In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.
Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Kolmakova, D.; Popov, G.
2018-01-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
High-temperature solar receiver integrated with a short-term storage system
NASA Astrophysics Data System (ADS)
Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria
2017-06-01
Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.
An overview of the Small Engine Component Technology (SECT) studies
NASA Technical Reports Server (NTRS)
Vanco, M. R.; Wintucky, W. T.; Niedzwiecki, R. W.
1986-01-01
The objectives of the joint NASA/Army SECT Studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.
ERIC Educational Resources Information Center
Field, Christopher Ryan
2009-01-01
Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…
1985-02-01
numbers. At high altitudes aircraft gas turbine engine fan, compressor, and turbine blades with their small chords encounter Reynolds numhers...light man-carrying/man-powered aircraft , minl-RPVs at low altitude, and wind turbines . Since the airfoil section forms the basic element in the...Wind turbine blades also require high aerodynamic efficiency and all-weather capabilities. The need for efficient low Reynolds number airfoils which
Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.
1988-01-01
In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.
The response of turbine engine rotors to interference rubs
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1980-01-01
A method was developed for the direct integration of a rotor dynamics system experiencing a blade loss induced rotor rub. Both blade loss and rotor rub were simulated on a rotor typical of a small gas turbine. A small change in the coefficient of friction (from 0.1 to 0.2) caused the rotor to change from forward to backward whirl and to theoretically destroy itself in a few rotations. This method provides an analytical capability to study the susceptibility of rotors to rub induced backward whirl problems.
On-Board Hydrogen Gas Production System For Stirling Engines
Johansson, Lennart N.
2004-06-29
A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.
NASA Astrophysics Data System (ADS)
Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.
2018-03-01
The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
NASA Technical Reports Server (NTRS)
Pratt, B. S.; Pratt, D. T.
1984-01-01
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.
Sodium reflux pool-boiler solar receiver on-sun test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, C E; Moreno, J B; Diver, R B
1992-06-01
The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the formmore » of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.« less
Johnson, Derek R; Covington, April N; Clark, Nigel N
2015-07-07
As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, M.L.; Kittelson, D.B.; Leuer, R.H.
1996-10-01
A two-dimensional optimization process, which simultaneously adjusts the spark timing and equivalence ratio of a lean-burn, natural gas, Hercules G1600 engine, has been demonstrated. First, the three-dimensional surface of thermal efficiency was mapped versus spark timing and equivalence ratio at a single speed and load combination. Then the ability of the control system to find and hold the combination of timing and equivalence ratio that gives the highest thermal efficiency was explored. NO{sub x}, CO, and HC maps were also constructed from the experimental data to determine the tradeoffs between efficiency and emissions. The optimization process adds small synchronous disturbancesmore » to the spark timing and air flow while the fuel injected per cycle is held constant for four cycles. The engine speed response to these disturbances is used to determine the corrections for spark timing and equivalence ratio. The control process, in effect, uses the engine itself as the primary sensor. The control system can adapt to changes in fuel composition, operating conditions, engine wear, or other factors that may not be easily measured. Although this strategy was previously demonstrated in a Volkswagen 1.7 liter light duty engine (Frankling et al., 1994b), until now it has not been demonstrated in a heavy-duty engine. This paper covers the application of the approach to a Hercules G1600 engine.« less
NASA Technical Reports Server (NTRS)
Schulz, Harry
1987-01-01
The ignition, combustion, and expansion characteristics of hypergolic liquid propellant mixtures in small rocket engines are studied theoretically and experimentally. It is shown by using the Bray approximation procedure that the reaction H + OH + M = H2O + M (where M is the molecular mass of the gas mixture) has a strong effect on the combustion efficiency. Increases in recombination energies ranging from 30 to 65% were obtained when the rate of this reaction was increased by a factor of 10 in gas mixtures containing 90% oxygen. The effect of aluminum additions and various injection techniques on the combustion process is investigated.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineer of steam, motor, and/or gas turbine-propelled vessels. 11.510 Section 11.510 Shipping COAST GUARD... endorsement as chief engineer of steam, motor, and/or gas turbine-propelled vessels. (a) The minimum service required to qualify an applicant for endorsement as chief engineer of steam, motor, and/or gas turbine...
INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd Kollross; Mike Connolly
2004-06-30
Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, butmore » low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy costs, (2) lower building peak electric load, (3) increase energy efficiency, and (4) provide standby power. This new hybrid product is designed to allow the engine to generate electricity or drive the chiller's compressor, based on the market price and conditions of the available energy sources. Building owners can minimize cooling costs by operating with natural gas or electricity, depending on time of day energy rates. In the event of a backout, the building owner could either operate the product as a synchronous generator set, thus providing standby power, or continue to operate a chiller to provide air conditioning with support of a small generator set to cover the chiller's electric auxiliary requirements. The ability to utilize the same piece of equipment as a hybrid gas/electric chiller or a standby generator greatly enhances its economic attractiveness and would substantially expand the opportunities for high efficiency cooling products.« less
Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review
NASA Astrophysics Data System (ADS)
Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet
2016-05-01
It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.
Numerical and Experimental Study of a Cooling for Vanes in a Small Turbine Engine
NASA Astrophysics Data System (ADS)
Šimák, Jan; Michálek, Jan
2016-03-01
This paper is concerned with a cooling system for inlet guide vanes of a small turbine engine which are exposed to a high temperature gas leaving a combustion chamber. Because of small dimensions of the vanes, only a simple internal cavity and cooling holes can be realized. The idea was to utilize a film cooling technique. The proposed solution was simulated by means of a numerical method based on a coupling of CFD and heat transfer solvers. The numerical results of various scenarios (different coolant temperature, heat transfer to surroundings) showed a desired decrease of the temperature, especially on the most critical part - the trailing edge. The numerical data are compared to results obtained by experimental measurements performed in a test facility in our institute. A quarter segment model of the inlet guide vanes wheel was equipped with thermocouples in order to verify an effect of cooling. Despite some uncertainty in the results, a verifiable decrease of the vane temperature was observed.
Turbojet-engine Starting and Acceleration
NASA Technical Reports Server (NTRS)
Mc Cafferty, R. J.; Straight, D. M.
1956-01-01
From considerations of safety and reliability in performance of gas-turbine aircraft, it is clear that engine starting and acceleration are of utmost importance. For this reason extensive efforts have been devoted to the investigation of the factors involved in the starting and acceleration of engines. In chapter III it is shown that certain basic combustion requirements must be met before ignition can occur; consequently, the design and operation of an engine must be tailored to provide these basic requirements in the combustion zone of the engine, particularly in the vicinity of the ignition source. It is pointed out in chapter III that ignition by electrical discharges is aided by high pressure, high temperature, low gas velocity and turbulence, gaseous fuel-air mixture, proper mixture strength, and-an optimum spark. duration. The simultaneous achievement of all these requirements in an actual turbojet-engine combustor is obviously impossible, yet any attempt to satisfy as many requirements as possible will result in lower ignition energies, lower-weight ignition systems, and greater reliability. These factors together with size and cost considerations determine the acceptability of the final ignition system. It is further shown in chapter III that the problem of wall quenching affects engine starting. For example, the dimensions of the volume to be burned must be larger than the quenching distance at the lowest pressure and the most adverse fuel-air ratio encountered. This fact affects the design of cross-fire tubes between adjacent combustion chambers in a tubular-combustor turbojet engine. Only two chambers in these engines contain spark plugs; therefore, the flame must propagate through small connecting tubes between the chambers. The quenching studies indicate that if the cross-fire tubes are too narrow the flame will not propagate from one chamber to another. In order to better understand the role of the basic factors in actual engine operation, many investigations have been conducted in single combustors from gas-turbine engines and in full-scale engines in altitude tanks and in flight. The purpose of the present chapter is to discuss the results of such studies and, where possible, to interpret these results qualitatively in terms of the basic requirements reported in chapter III. The discussion parallels the three phases of turbojet engine starting: (1) Ignition of the fuel-air mixture (2) Propagation of flame throughout the combustion zone (3) Acceleration of the engine to operating speed.
Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods
NASA Astrophysics Data System (ADS)
Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.
2017-08-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
Solid fuel combustion system for gas turbine engine
Wilkes, Colin; Mongia, Hukam C.
1993-01-01
A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.
Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies
Kariolis, Mihalis S.; Miao, Yu Rebecca; Diep, Anh; ...
2016-11-28
The AXL receptor and its activating ligand, growth arrest–specific 6 (GAS6), are important drivers of metastasis and therapeutic resistance in human cancers. Given the critical roles that GAS6 and AXL play in refractory disease, this signaling axis represents an attractive target for therapeutic intervention. But, the strong picomolar binding affinity between GAS6 and AXL and the promiscuity of small molecule inhibitors represent important challenges faced by current anti-AXL therapeutics. We have addressed these obstacles by engineering a second-generation, high-affinity AXL decoy receptor with an apparent affinity of 93 femtomolar to GAS6. Our decoy receptor, MYD1-72, profoundly inhibited disease progression inmore » aggressive preclinical models of human cancers and induced cell killing in leukemia cells. When directly compared with the most advanced anti-AXL small molecules in the clinic, MYD1-72 achieved superior antitumor efficacy while displaying no toxicity. Furthermore, we uncovered a relationship between AXL and the cellular response to DNA damage whereby abrogation of AXL signaling leads to accumulation of the DNA-damage markers γH2AX, 53BP1, and RAD51. MYD1-72 exploited this relationship, leading to improvements upon the therapeutic index of current standard-of-care chemotherapies in preclinical models of advanced pancreatic and ovarian cancer.« less
Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kariolis, Mihalis S.; Miao, Yu Rebecca; Diep, Anh
The AXL receptor and its activating ligand, growth arrest–specific 6 (GAS6), are important drivers of metastasis and therapeutic resistance in human cancers. Given the critical roles that GAS6 and AXL play in refractory disease, this signaling axis represents an attractive target for therapeutic intervention. But, the strong picomolar binding affinity between GAS6 and AXL and the promiscuity of small molecule inhibitors represent important challenges faced by current anti-AXL therapeutics. We have addressed these obstacles by engineering a second-generation, high-affinity AXL decoy receptor with an apparent affinity of 93 femtomolar to GAS6. Our decoy receptor, MYD1-72, profoundly inhibited disease progression inmore » aggressive preclinical models of human cancers and induced cell killing in leukemia cells. When directly compared with the most advanced anti-AXL small molecules in the clinic, MYD1-72 achieved superior antitumor efficacy while displaying no toxicity. Furthermore, we uncovered a relationship between AXL and the cellular response to DNA damage whereby abrogation of AXL signaling leads to accumulation of the DNA-damage markers γH2AX, 53BP1, and RAD51. MYD1-72 exploited this relationship, leading to improvements upon the therapeutic index of current standard-of-care chemotherapies in preclinical models of advanced pancreatic and ovarian cancer.« less
Gas flow path for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.
A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline thatmore » is misaligned with a centerline of the combustor.« less
Theory of deposition of condensible impurities on surfaces immersed in combustion gases
NASA Technical Reports Server (NTRS)
Rosner, D. E.
1979-01-01
The components resulting from the deposition of inorganic salts (e.g., Na2S04) and oxides present in the combustion products from gas turbine engines were investigated. Emphasis was placed on the effects of multicomponent vapor transport, thermophoretic transport of vapor and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence.
Advanced Microgrid Concepts and Technologies Workshop
2013-04-01
number of wind turbines (2) Battery charge/discharge rates Max instantaneous load (600 kW) Required duration of energy storage (10-day episode...for components that have developed methods (gearbox, generator, sensors , small gas turbines , or reciprocating engines, etc.) o The health information...Force), superconducting wind turbine generators (DOE ARPA-E), and thermoelectric waste-heat recovery for vehicles (DOE EERE and NSF). 111 1145
Density and mixture fraction measurements in a GO2/GH2 uni-element rocket chamber
NASA Technical Reports Server (NTRS)
Moser, M. D.; Pal, S.; Santoro, R. J.
1994-01-01
In recent years, there has been a renewed interest in gas/gas injectors for rocket combustion. Specifically, the proposed new concept of full-flow oxygen rich preburner systems calls for the injection of both oxygen and hydrogen into the main chamber as gaseous propellants. The technology base for gas/gas injection must mature before actual booster class systems can be designed and fabricated. Since the data base for gas/gas injection is limited to studies focusing on the global parameters of small reaction engines, there is a critical need for experiment programs that emphasize studying the mixing and combustion characteristics of GO2 and GH2 propellants from a uni-element injector point of view. The experimental study of the combusting GO2/GH2 propellant combination in a uni-element rocket chamber also provides a simplified environment, in terms of both geometry and chemistry, that can be used to verify and validate computational fluid dynamic (CFD) models.
[Purification of complicated industrial organic waste gas by complex absorption].
Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang
2011-12-01
Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.
Temperature distortion generator for turboshaft engine testing
NASA Technical Reports Server (NTRS)
Klann, G. A.; Barth, R. L.; Biesiadny, T. J.
1984-01-01
The procedures and unique hardware used to conduct an experimental investigation into the response of a small-turboshaft-engine compression system to various hot gas ingestion patterns are presented. The temperature distortion generator described herein uses gaseous hydrogen to create both steady-state and time-variant, or transient, temperature distortion at the engine inlet. The range of transient temperature ramps produced by the distortion generator during the engine tests was from less than 111 deg K/sec (200 deg R/sec) to above 611 deg K/sec (1100 deg R/sec); instantaneous temperatures to 422 deg K (760 deg R) above ambient were generated. The distortion generator was used to document the maximum inlet temperatures and temperature rise rates that the compression system could tolerate before the onset of stall for various circumferential distortions as well as the compressor system response during stall.
Practical internal combustion engine laser spark plug development
NASA Astrophysics Data System (ADS)
Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.
2007-09-01
Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.
Contingency power for a small turboshaft engine by using water injection into turbine cooling air
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J.; Klann, Gary A.
1992-01-01
Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.
Exhaust gas recirculation in a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL
2008-05-27
A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.
2004-01-01
The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
Problems of elimination of low emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepniowski, A.
1995-12-31
The Cracow Municipal Gas Distribution Enterprises is subordinated to the Carpathian Regional Gas Engineering Plant in Tarnow, which - in turn - is a part of Polish Oil Mining and Gas Engineering with its seat in Warsaw. The required quick development of power engineering in Poland needs harmonized development of all branches of power engineering, including the gas production and distribution industry which constitutes an element of technical infrastructure of Poland influencing the direction of development. After World War II, the gas engineering industry was transformed from a typical communal service to a big industrial structure which covers the entiremore » territory of the state and has considerable technical and material measures at its disposal. Programming of the gas industry development ranges from development of installation of gas-supply arrangements for communal purposes including modification of local gas generators - to the development of gas transportation, storage and purification system. At present gas is taken from following sources: import, own natural gas deposits (high-methane content gas and high-nitrogen content gas within Polish Lowland); cokeries, and local gas generators. Gas sorts obtained in these sources have differentiated physico-chemical properties and they are distributed by three independent transmission systems assigned for high-methane natural gas, high-nitrogen natural gas, and coke-oven gas. Taking into consideration the forecast demand and potential capacity of natural gas production in Poland, the required import of natural gas is estimated.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... (NO X ), compliance flexibilities, and other regulatory requirements for aircraft turbofan or turbojet... adopting the gas turbine engine test procedures of the International Civil Aviation Organization (ICAO...
NASA Astrophysics Data System (ADS)
Plotnikov, L. V.
2017-09-01
Comparison of experimental research results of gas dynamics and instantaneous local heat transfer in the intake pipes for piston internal combustion engines (ICE) without and with supercharging are presented in the article. Studies were conducted on full-scale experimental setups in terms of gas dynamic nonstationarity, which is characteristic of piston engines. It has been established that the turbocharger installation in a gas-air system of piston internal combustion engine leads to significant differences in the patterns of change in gas-dynamic and heat transfer characteristics of flows. These data can be used in a modernization of piston engines due to installation of a turbocharger or in a development of gas-air systems for piston ICE with supercharging.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
Thermal engine driven heat pump for recovery of volatile organic compounds
Drake, Richard L.
1991-01-01
The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.
Carbonyl Emissions From Oil and Gas Production Facilities
NASA Astrophysics Data System (ADS)
Lyman, S. N.; O'Neil, T.; Tran, T.
2015-12-01
A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable to accurately simulate inversion conditions or wintertime chemistry, thus leading to low ozone production in spite of an accurate inventory.
NASA Technical Reports Server (NTRS)
Vanco, M. R.; Wintucky, W. T.; Niedwiecki, R. W.
1986-01-01
The objectives of the joint NASA/Army SECT studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.
Experimental impact testing and analysis of composite fan cases
NASA Astrophysics Data System (ADS)
Vander Klok, Andrew Joe
For aircraft engine certification, one of the requirements is to demonstrate the ability of the engine to withstand a fan blade-out (FBO) event. A FBO event may be caused by fatigue failure of the fan blade itself or by impact damage of foreign objects such as bird strike. An un-contained blade can damage flight critical engine components or even the fuselage. The design of a containment structure is related to numerous parameters such as the blade tip speed; blade material, size and shape; hub/tip diameter; fan case material, configuration, rigidity, etc. To investigate all parameters by spin experiments with a full size rotor assembly can be prohibitively expensive. Gas gun experiments can generate useful data for the design of engine containment cases at much lower costs. To replicate the damage modes similar to that on a fan case in FBO testing, the gas gun experiment has to be carefully designed. To investigate the experimental procedure and data acquisition techniques for FBO test, a low cost, small spin rig was first constructed. FBO tests were carried out with the small rig. The observed blade-to-fan case interactions were similar to those reported using larger spin rigs. The small rig has the potential in a variety of applications from investigating FBO events, verifying concept designs of rotors, to developing spin testing techniques. This rig was used in the developments of the notched blade releasing mechanism, a wire trigger method for synchronized data acquisition, high speed video imaging and etc. A relationship between the notch depth and the release speed was developed and verified. Next, an original custom designed spin testing facility was constructed. Driven by a 40HP, 40,000rpm air turbine, the spin rig is housed in a vacuum chamber of phi72inx40in (1829mmx1016mm). The heavily armored chamber is furnished with 9 viewports. This facility enables unprecedented investigations of FBO events. In parallel, a 15.4ft (4.7m) long phi4.1inch (105mm) diameter single stage gas gun was developed. A thermodynamic based relationship between the required gas pressure and targeted velocity was proposed. The predicted velocity was within +/-7%. Quantitative measurements of force and displacement were attempted. The transmitted impact force was measured with load cells. The out-of-plane deformation was measured with a projection grating profilometry method. The composite panels and fan cases used in this work were made of S2-glass plain weave fabrics with API SC-15 toughened epoxy resin using the vacuum assisted resin transfer molding (VARTM) method. Using the gas gun, the impact behavior of the composite was investigated at velocities ranging from 984ft/s to 1502ft/s (300m/s to 458m/s) following a draft ASTM testing standard. To compare the ballistic protection capability of different materials, a new parameter EBL, the projectile kinetic energy at the target ballistic limit normalized by the contact area of the projectile, was proposed. S2-glass/epoxy composite is ranked very high in EBL per areal weight. Finally, a testing method for replicating spin pit testing with a gas gun test was developed. Major differences between the two tests are the initial conditions of the blade upon contact with the target. In spin testing, the released blade has two velocity components, rotational and translational whereas in gas gun testing, the projectile has only the translational velocity. To account for the influence of the rotational velocity, three projectile designs were experimentally investigated. The results show that to generate similar damage modes in gas gun testing, it is critical to ensure the deformation of the projectile before testing is similar to that of a released blade. With the pre-bent blade, the gas gun experiment was able to replicate the damage modes of the fan case in FBO test on flat composite panels.
The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...
Economic Impacts of Infrastructure Damages on Industrial Sector
NASA Astrophysics Data System (ADS)
Kajitani, Yoshio
This paper proposes a basic model for evaluating economic impacts on industrial sectors under the conditions that multiple infrastructures are simultaneously damaged during the earthquake disasters. Especially, focusing on the available economic data developed in the smallest spatial scale in Japan (small area statistics), economic loss estimation model based on the small area statistics and its applicability are investigated on. In the detail, a loss estimation framework, utilizing survey results on firms' activities under electricity, water and gas disruptions, and route choice models in Transportation Engineering, are applied to the case of 2004 Mid-Niigata Earthquake.
Gas Path On-line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Lu, Feng; Huang, Jin-quan; Ji, Chun-sheng; Zhang, Dong-dong; Jiao, Hua-bin
2014-08-01
Gas turbine engine gas path fault diagnosis is closely related technology that assists operators in managing the engine units. However, the performance gradual degradation is inevitable due to the usage, and it result in the model mismatch and then misdiagnosis by the popular model-based approach. In this paper, an on-line integrated architecture based on nonlinear model is developed for gas turbine engine anomaly detection and fault diagnosis over the course of the engine's life. These two engine models have different performance parameter update rate. One is the nonlinear real-time adaptive performance model with the spherical square-root unscented Kalman filter (SSR-UKF) producing performance estimates, and the other is a nonlinear baseline model for the measurement estimates. The fault detection and diagnosis logic is designed to discriminate sensor fault and component fault. This integration architecture is not only aware of long-term engine health degradation but also effective to detect gas path performance anomaly shifts while the engine continues to degrade. Compared to the existing architecture, the proposed approach has its benefit investigated in the experiment and analysis.
NASA Astrophysics Data System (ADS)
Lensch, D.
In the context of Spacelab and Shuttle utilization, it is possible to conduct experiments in 'Small Self Contained Packages' (SSCP). This possibility exists primarily for experiments related to materials research/industrial processing engineering. The program involved is called 'get away special' (GAS). The project Maus was established in West Germany with the aim to participate in the program GAS. The autonomous design of the considered experiments made it necessary to develop an electronic unit for the control and the automatic conduction of the experiment. In addition, the process of the acquisition and the recording of the experimental data is also controlled.
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
Serres, Nicolas
2010-11-09
A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.
NASA Astrophysics Data System (ADS)
Vizgalov, S. V.; Volkov, M. V.; Chekushkin, G. N.; Khisameev, I. G.
2017-08-01
A positive displacement Roots blower with two- or three-lobe straight-tooth or twisted rotors demonstrates high performance with small specific dimensions and is used to boost internal combustion engines, aerate tanks of treatment facilities, is employed in air and gas transport systems in the food, petrochemical and metallurgical industry. It is common knowledge that several solutions have been implemented in Roots blower designs with straight-tooth with three-lobe or more-lobes rotors. It is more practical to bypass a portion of the compressed gas to the working cavity of the blower through an ejector. The purpose of developing a mathematical model for a blower working in conjunction with an ejector adapter and the further research is to determine the efficiency of this scheme un-der different discharge pressure conditions and different ejector active flow temperatures (the gas cooling effect before the nozzle).
Experiments and modelling of surge in small centrifugal compressor for automotive engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galindo, J.; Serrano, J.R.; Climent, H.
2008-01-15
In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneousmore » pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)« less
Integration of a wave rotor to an ultra-micro gas turbine (UmuGT)
NASA Astrophysics Data System (ADS)
Iancu, Florin
2005-12-01
Wave rotor technology has shown a significant potential for performance improvement of thermodynamic cycles. The wave rotor is an unsteady flow machine that utilizes shock waves to transfer energy from a high energy fluid to a low energy fluid, increasing both the temperature and the pressure of the low energy fluid. Used initially as a high pressure stage for a gas turbine locomotive engine, the wave rotor was commercialized only as a supercharging device for internal combustion engines, but recently there is a stronger research effort on implementing wave rotors as topping units or pressure gain combustors for gas turbines. At the same time, Ultra Micro Gas Turbines (UmuGT) are expected to be a next generation of power source for applications from propulsion to power generation, from aerospace industry to electronic industry. Starting in 1995, with the MIT "Micro Gas Turbine" project, the mechanical engineering research world has explored more and more the idea of "Power MEMS". Microfabricated turbomachinery like turbines, compressors, pumps, but also electric generators, heat exchangers, internal combustion engines and rocket engines have been on the focus list of researchers for the past 10 years. The reason is simple: the output power is proportional to the mass flow rate of the working fluid through the engine, or the cross-sectional area while the mass or volume of the engine is proportional to the cube of the characteristic length, thus the power density tends to increase at small scales (Power/Mass=L -1). This is the so-called "cube square law". This work investigates the possibilities of incorporating a wave rotor to an UmuGT and discusses the advantages of wave rotor as topping units for gas turbines, especially at microscale. Based on documented wave rotor efficiencies at larger scale and subsidized by both, a gasdynamic model that includes wall friction, and a CFD model, the wave rotor compression efficiency at microfabrication scale could be estimated at about 70%, which is much higher than the obtained efficiency obtained for centrifugal compressors in a microfabricated gas turbine. This dissertation also proposes several designs of ultra-micro wave rotors, including the novel concept of a radial-flow configuration. It describes a new and simplified design procedure as well as numerical simulations of these wave rotors. Results are obtained using FLUENT, a Computational Fluid Dynamics (CFD) commercial code. The vast information about the unsteady processes occurring during simulation is visualized. Last, two designs for experimental tests have been created, one for a micro shock tube and one for the ultra-micro wave rotor. Theoretical and numerical results encourage the idea that at microscale, compression by shock waves may be more efficient than by conventional centrifugal compressors, thus making the ultra-micro wave rotor (UmuWR) a feasible idea for enhancing (upgrading) UmuGT.
Profiling Systems Using the Defining Characteristics of Systems of Systems (SoS)
2010-02-01
system exhaust and emissions system gas engine heating and air conditioning system fuel system regenerative braking system safety system...overcome the limitations of these fuzzy scales, measurement scales are often divided into a relatively small number of disjoint categories so that the...precision is not justified. This lack of precision can typically be addressed by breaking the measurement scale into a set of categories , the use of
Practical Techniques for Modeling Gas Turbine Engine Performance
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.
2016-01-01
The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.
Effect of Swirl on an Unstable Single-Element Gas-Gas Rocket Engine
2014-06-01
at 300 K, and the combustor is filled with a mixture of water and carbon dioxide at 1500 K. The warmer temperature in the combustor enables the auto...a variety of configurations including gas turbines and rocket engines.4–13 The single-element engine chosen for this study is the continuously...combustion systems including gas turbines , rocket engines, and industrial furnaces. Swirl can have dramatic effects on the flowfield; these include jet growth
Perspective on thermal barrier coatings for industrial gas turbine applications
NASA Technical Reports Server (NTRS)
Mutasim, Zaher; Brentnall, William
1995-01-01
Thermal barrier coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in providing thermal protection and increasing engine efficiencies. TBC life requirements for aircraft engines are typically less than those required for industrial gas turbines. This paper describes current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's is reviewed. Areas of concern from the engine designer's and materials engineer's perspective are identified and evaluated. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and highly effective coating systems will be produced that will ultimately improve engine efficiency and performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, Andrew; Johnson, Derek; Heltzel, Robert
Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findingsmore » from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO 2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO 2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.« less
2006-09-01
MONITORING , AND PROGNOSTICS Alireza R. Behbahani Controls / Engine Health Management Turbine Engine Division / PRTS U.S. Air Force Research...Technical Report 2005. 8. Greitzer, Frank et al, “Gas Turbine Engine Health Monitoring and Prognostics ”, International Society of Logistics (SOLE...AFRL-PR-WP-TP-2007-217 NEED FOR ROBUST SENSORS FOR INHERENTLY FAIL-SAFE GAS TURBINE ENGINE CONTROLS, MONITORING , AND PROGNOSTICS (POSTPRINT
Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.
2008-01-01
Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated but connected through electric power lines to the fans. This paper presents a brief description of the earlier CESTOL vehicle concept and the newly proposed electrically driven fan concept vehicle, using the previous CESTOL vehicle as a baseline.
40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...
40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... assistant engineer (limited) of steam, motor, and/or gas turbine-propelled vessels. 11.522 Section 11.522... requirements for national endorsement as assistant engineer (limited) of steam, motor, and/or gas turbine... engineer (limited) of steam, motor, and/or gas turbine-propelled vessels is 3 years of service in the...
NASA Technical Reports Server (NTRS)
Wheeler, D. B.
1978-01-01
Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.
Thermal barrier coatings for gas turbine and diesel engines
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Brindley, William J.; Bailey, M. Murray
1989-01-01
The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.
Multi-bottle, no compressor, mean pressure control system for a Stirling engine
Corey, John A.
1990-01-01
The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.
El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E
2013-06-04
Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.
2009-06-09
ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD
Upgraded automotive gas turbine engine design and development program, volume 2
NASA Technical Reports Server (NTRS)
Wagner, C. E. (Editor); Pampreen, R. C. (Editor)
1979-01-01
Results are presented for the design and development of an upgraded engine. The design incorporated technology advancements which resulted from development testing on the Baseline Engine. The final engine performance with all retro-fitted components from the development program showed a value of 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44. The miss in power was primarily due to missing the efficiency targets of small size turbomachinery. Most of the SFC deficit was attributed to missed goals in the heat recovery system relative to regenerator effectiveness and expected values of heat loss. Vehicular fuel consumption, as measured on a chassis dynamometer, for a vehicle inertia weight of 3500 lbs., was 15 MPG for combined urban and highway driving cycles. The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight.
Sevimoğlu, Orhan; Tansel, Berrin
2013-01-01
Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2010-01-01
Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed
Foreign Object Damage Identification in Turbine Engines
NASA Technical Reports Server (NTRS)
Strack, William; Zhang, Desheng; Turso, James; Pavlik, William; Lopez, Isaac
2005-01-01
This report summarizes the collective work of a five-person team from different organizations examining the problem of detecting foreign object damage (FOD) events in turbofan engines from gas path thermodynamic and bearing accelerometer sensors, and determining the severity of damage to each component (diagnosis). Several detection and diagnostic approaches were investigated and a software tool (FODID) was developed to assist researchers detect/diagnose FOD events. These approaches include (1) fan efficiency deviation computed from upstream and downstream temperature/ pressure measurements, (2) gas path weighted least squares estimation of component health parameter deficiencies, (3) Kalman filter estimation of component health parameters, and (4) use of structural vibration signal processing to detect both large and small FOD events. The last three of these approaches require a significant amount of computation in conjunction with a physics-based analytic model of the underlying phenomenon the NPSS thermodynamic cycle code for approaches 1 to 3 and the DyRoBeS reduced-order rotor dynamics code for approach 4. A potential application of the FODID software tool, in addition to its detection/diagnosis role, is using its sensitivity results to help identify the best types of sensors and their optimum locations within the gas path, and similarly for bearing accelerometers.
Preparation and emission characteristics of ethanol-diesel fuel blends.
Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin
2004-01-01
The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.
Demonstration and evaluation of gas turbine transit buses
NASA Technical Reports Server (NTRS)
1983-01-01
The Gas Turbine Transit Bus Demonstration Program was designed to demonstrate and evaluate the operation of gas turbine engines in transit coaches in revenue service compared with diesel powered coaches. The main objective of the program was to accelerate development and commercialization of automotive gas turbines. The benefits from the installation of this engine in a transit coach were expected to be reduced weight, cleaner exhaust emissions, lower noise levels, reduced engine vibration and maintenance requirements, improved reliability and vehicle performance, greater engine braking capability, and superior cold weather starting. Four RTS-II advanced design transit coaches were converted to gas turbine power using engines and transmissions. Development, acceptance, performance and systems tests were performed on the coaches prior to the revenue service demonstration.
Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Theiss, Timothy J; Kass, Michael D
This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third taskmore » to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.514 Section 11.514 Shipping... requirements for national endorsement as second assistant engineer of steam, motor, and/or gas turbine... assistant engineer of steam, motor, and/or gas turbine-propelled vessels is— (1) One year of service as an...
Code of Federal Regulations, 2014 CFR
2014-10-01
... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.512 Section 11.512 Shipping... requirements for national endorsement as first assistant engineer of steam, motor, and/or gas turbine-propelled... engineer of steam, motor, and/or gas turbine-propelled vessels is— (1) One year of service as an assistant...
Code of Federal Regulations, 2012 CFR
2012-07-01
... as if these were nonroad diesel engines. (e) You may request an exemption under this section by... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of..., LARGE NONROAD SPARK-IGNITION ENGINES Compliance Provisions § 1048.620 What are the provisions for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... as if these were nonroad diesel engines. (e) You may request an exemption under this section by... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of..., LARGE NONROAD SPARK-IGNITION ENGINES Compliance Provisions § 1048.620 What are the provisions for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... as if these were nonroad diesel engines. (e) You may request an exemption under this section by... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of..., LARGE NONROAD SPARK-IGNITION ENGINES Compliance Provisions § 1048.620 What are the provisions for...
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...
Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.
Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian
2018-01-17
Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.
The effect of local parameters on gas turbine emissions
NASA Technical Reports Server (NTRS)
Kauffman, C. W.; Correa, S. M.; Orozco, N. J.
1980-01-01
Gas turbine engine inlet parameters reflect changes in local atmospheric conditions. The pollutant emissions for the engine reflects these changes. In attempting to model the effect of the changing ambient conditions on the emissions it was found that these emissions exhibit an extreme sensitivity to some of the details of the combustion process such as the local fuel-air ratio and the size of the drops in the fuel spray. Fuel-air ratios have been mapped under nonburning conditions using a single JT8D-17 combustion can at simulated idle conditions, and significant variations in the local values have been found. Modelling of the combustor employs a combination of perfectly stirred and plug flow reactors including a finite rate vaporization treatment of the fuel spray. Results show that a small increase in the mean drop size can lead to a large increase in hydrocarbon emissions and decreasing the value of the CO-OH rate constant can lead to large increases in the carbon monoxide emissions. These emissions may also be affected by the spray characteristics with larger drops retarding the combustion process. Hydrocarbon, carbon monoxide, and oxides of nitrogen emissions calculated using the model accurately reflect measured emission variations caused by changing engine inlet conditions.
Large eddy simulation modelling of combustion for propulsion applications.
Fureby, C
2009-07-28
Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.
Christie, Simon; Lobo, Prem; Lee, David; Raper, David
2017-01-17
This study evaluates the relationship between the emissions parameters of smoke number (SN) and mass concentration of nonvolatile particulate matter (nvPM) in the exhaust of a gas turbine engine for a conventional Jet A-1 and a number of alternative fuel blends. The data demonstrate the significant impact of fuel composition on the emissions and highlight the magnitude of the fuel-induced uncertainty for both SN within the Emissions Data Bank as well as nvPM mass within the new regulatory standard under development. Notwithstanding these substantial differences, the data show that correlation between SN and nvPM mass concentration still adheres to the first order approximation (FOA3), and this agreement is maintained over a wide range of fuel compositions. Hence, the data support the supposition that the FOA3 is applicable to engines burning both conventional and alternative fuel blends without adaptation or modification. The chemical composition of the fuel is shown to impact mass and number concentration as well as geometric mean diameter of the emitted nvPM; however, the data do not support assertions that the emissions of black carbon with small mean diameter will result in significant deviations from FOA3.
Leak Location and Classification in the Space Shuttle Main Engine Nozzle by Infrared Testing
NASA Technical Reports Server (NTRS)
Russell, Samuel S.; Walker, James L.; Lansing, Mathew
2003-01-01
The Space Shuttle Main Engine (SSME) is composed of cooling tubes brazed to the inside of a conical structural jacket. Because of the geometry there are regions that can't be inspected for leaks using the bubble solution and low-pressure method. The temperature change due escaping gas is detectable on the surface of the nozzle under the correct conditions. The methods and results presented in this summary address the thermographic identification of leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera is used to record the minute temperature change associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner "hot wall" surface as the nozzle is pressurized. These images are enhanced by digitally subtracting a thermal reference image taken before pressurization, greatly diminishing background noise. The method provides a nonintrusive way of localizing the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation.
NASA Technical Reports Server (NTRS)
Barranger, John P.
1993-01-01
Higher operating temperatures required for increased engine efficiency can be achieved by using ceramic materials for engine components. Ceramic turbine rotors are subject to the same limitations with regard to gas path efficiency as their superalloy predecessors. In this study, a modified frequency-modulation system is proposed for the measurement of blade tip clearance on ceramic rotors. It is expected to operate up to 1370 C (2500 F), the working temperature of present engines with ceramic turbine rotors. The design of the system addresses two special problems associated with nonmetallic blades: the capacitance is less than that of a metal blade and the effects of temperature may introduce uncertainty with regard to the blade tip material composition. To increase capacitance and stabilize the measurement, a small portion of the rotor is modified by the application of 5-micron-thick platinum films. The platinum surfaces on the probe electrodes and rotor that are exposed to the high-velocity gas stream are coated with an additional 10-micron-thick protective ceramic topcoat. A finite-element method is applied to calculate the capacitance as a function of clearance.
Power control system for a hot gas engine
Berntell, John O.
1986-01-01
A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Briehl, D.
1982-01-01
An experimental program to investigate hardware configurations which attempt to minimize carbon formation and soot production without sacrificing performance in small gas turbine combustors has been conducted at the United Technologies Research Center. Four fuel injectors, embodying either airblast atomization, pressure atomization, or fuel vaporization techniques, were combined with nozzle air swirlers and injector sheaths, and evaluated at test conditions which included and extended beyond standard small gas turbine combustor operation. Extensive testing was accomplished with configurations embodying either a spill return or a T-vaporizer injector. Minimal carbon deposits were observed on the spill return nozzle for tests using either Jet A or ERBS test fuel. A more extensive film of soft carbon was observed on the vaporizer after operation at standard engine conditions, with large carbonaceous growths forming on the device during off-design operation at low combustor inlet temperature. Test results indicated that smoke emission levels depended on the combustor fluid mechanics (especially the mixing rates near the injector), the atomization quality of the injector and the fuel hydrogen content.
Exhaust gas recirculation system for an internal combustion engine
Wu, Ko-Jen
2013-05-21
An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.
Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study
NASA Technical Reports Server (NTRS)
Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)
2003-01-01
Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.
Development of natural gas rotary engines
NASA Astrophysics Data System (ADS)
Mack, J. R.
1991-08-01
Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.
Investigation of the misfueling of reciprocating piston aircraft engines
NASA Technical Reports Server (NTRS)
Scott, J. Holland, Jr.
1988-01-01
The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and...
Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David
2014-05-13
A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.
Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet
2016-12-06
suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas
NASA Astrophysics Data System (ADS)
L'Heureux, Zara E.
This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first time, this thesis provides a mathematical analysis of scaling with a combination of both changing individual unit size and varying the total number of units produced. Different paths to meet a particular cumulative capacity are analyzed and show that total costs are path dependent and vary as a function of the unit size and number of units produced. The path dependence identified is fairly weak, however, and for all practical applications, the underlying scaling laws seem unaffected. This analysis continues to support the interest in pursuing designs built around small, modular infrastructure. Building on the observation that internal combustion engines are an inexpensive power-producing unit, the first optimization in this thesis focuses on quantifying the value of engine capacity committing to deliver power in the day-ahead electricity and reserve markets, specifically based on pricing from the New York Independent System Operator (NYISO). An optimization was written in Python to determine, based on engine cost, fuel cost, engine wear, engine lifetime, and electricity prices, when and how much of an engine's power should be committed to a particular energy market. The optimization aimed to maximize profit for the engine and generator (engine genset) system acting as a price-taker. The result is an annual profit on the order of \\$30 per kilowatt. The most value in the engine genset is in its commitments to the spinning reserve market, where power is often committed but not always called on to deliver. This analysis highlights the benefits of modularity in energy generation and provides one example where the system is so inexpensive and short-lived, that the optimization views the engine replacement cost as a consumable operating expense rather than a capital cost. Having the opportunity to incorporate incremental technological improvements in a system's infrastructure throughout its lifetime allows introduction of new technology with higher efficiencies and better designs. An alternative to traditionally large infrastructure that locks in a design and today's state-of-the-art technology for the next 50 - 70 years, is a system designed to incorporate new technology in a modular fashion. The modular engine genset system used for power generation is one example of how this works in practice. The largest single component of this thesis is modeling, designing, retrofitting, and testing a reciprocating piston engine used as a compressor. Motivated again by the low cost of an internal combustion engine, this work looks at how an engine (which is, in its conventional form, essentially a reciprocating compressor) can be cost-effectively retrofitted to perform as a small-scale gas compressor. In the laboratory, an engine compressor was built by retrofitting a one-cylinder, 79 cc engine. Various retrofitting techniques were incorporated into the system design, and the engine compressor performance was quantified in each iteration. Because the retrofitted engine is now a power consumer rather than a power-producing unit, the engine compressor is driven in the laboratory with an electric motor. Experimentally, compressed air engine exhaust (starting at elevated inlet pressures) surpassed 650 psia (about 45 bar), which makes this system very attractive for many applications in chemical engineering and refining industries. A model of the engine compressor system was written in Python and incorporates experimentally-derived parameters to quantify gas leakage, engine friction, and flow (including backflow) through valves. The model as a whole was calibrated and verified with experimental data and is used to explore engine retrofits beyond what was tested in the laboratory. Along with the experimental and modeling work, a techno-economic assessment is included to compare the engine compressor system with state-of-the-art, commercially-available compressors. Included in the financial analysis is a case study where an engine compressor system is modeled to achieve specific compression needs. The result of the assessment is that, indeed, the low engine cost, even with the necessary retrofits, provides a cost advantage over incumbent compression technologies. Lastly, this thesis provides an algorithm and case study for another application of small-scale units in energy infrastructure, specifically in energy storage. This study focuses on quantifying the value of small-scale, onsite energy storage in shaving peak power demands. This case study focuses on university-level power demands. The analysis finds that, because peak power is so costly, even small amounts of energy storage, when dispatched optimally, can provide significant cost reductions. This provides another example of the value of small-scale implementations, particularly in energy infrastructure. While the study focuses on flywheels and batteries as the energy storage medium, engine gensets could also be used to deliver power and shave peak power demands. The overarching goal of this thesis is to introduce small-scale, modular infrastructure, with a particular focus on the opportunity to retrofit and repurpose inexpensive, mass-manufactured internal combustion engines in new and unconventional applications. The modeling and experimental work presented in this dissertation show very compelling results for engines incorporated into both energy generation infrastructure and chemical engineering industries via compression technologies. The low engine cost provides an opportunity to add retrofits whilst remaining cost competitive with the incumbent technology. This work supports the claim that modular infrastructure, built on the indivisible unit of an internal combustion engine, can revolutionize many industries by providing a low-cost mechanism for rapid change and promoting small-scale designs.
Primary atomization of liquid jets issuing from rocket engine coaxial injectors
NASA Astrophysics Data System (ADS)
Woodward, Roger D.
1993-01-01
The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. This work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, has been used to make the measurements. Nitrogen and helium were employed as the fuel simulants while an x-ray absorbing potassium iodide aqueous solution was used as the liquid oxygen (LOX) simulant. The intact-liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results clearly show that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study. A small number of hot-fire, LOX/hydrogen tests were also conducted to attempt intact-LOX-core measurements under realistic conditions in a single-coaxial-element rocket engine. The tests were not successful in terms of measuring the intact core, but instantaneous imaging of LOX jets suggests that LOX jet breakup is qualitatively similar to that of cold-flow, propellant-simulant jets. The liquid oxygen jets survived in the hot-fire environment much longer than expected, and LOX was even visualized exiting the chamber nozzle under some conditions. This may be an effect of the single element configuration.
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
Pumping Performance or RBCC Engine under Sea Level Static Condition
NASA Astrophysics Data System (ADS)
Kouchi, Toshinori; Tomioka, Sadatake; Kanda, Takeshi
Numerical simulations were conducted to predict the ejector pumping performance of a rocket-ramjet combined-cycle engine under a take-off condition. The numerical simulations revealed that the suction airflow was chocked at the exit of the engine throat when the ejector rocket was driven by cold N2 gas at the chamber pressure of 3MPa. When the ejector-driving gas was changed from cold N2 gas to hot combustion gas, the suction performance decreased remarkably. Mach contours in the engine revealed that the rocket plume constricted when the driving gas was the hot combustion gas. The change of the area of the stream tube area seemed to induce the pressure rise in the duct and decreasing in the pumping performance.
Combustion Stability of the Gas Generator Assembly from J-2X Engine E10001 and Powerpack Tests
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Kenny, R. L.; Casiano, M. J.
2013-01-01
Testing of a powerpack configuration (turbomachinery and gas generator assembly) and the first complete engine system of the liquid oxygen/liquid hydrogen propellant J-2X rocket engine have been completed at the NASA Stennis Space Center. The combustion stability characteristics of the gas generator assemblies on these two systems are of interest for reporting since considerable effort was expended to eliminate combustion instability during early development of the gas generator assembly with workhorse hardware. Comparing the final workhorse gas generator assembly development test data to the powerpack and engine system test data provides an opportunity to investigate how the nearly identical configurations of gas generator assemblies operate with two very different propellant supply systems one the autonomous pressure-fed test configuration on the workhorse development test stand, the other the pump-fed configurations on the powerpack and engine systems. The development of the gas generator assembly and the elimination of the combustion instability on the pressure-fed workhorse test stand have been reported extensively in the two previous Liquid Propulsion Subcommittee meetings 1-7. The powerpack and engine system testing have been conducted from mid-2011 through 2012. All tests of the powerpack and engine system gas generator systems to date have been stable. However, measureable dynamic behavior, similar to that observed on the pressure-fed test stand and reported in Ref. [6] and attributed to an injection-coupled response, has appeared in both powerpack and engine system tests. As discussed in Ref. [6], these injection-coupled responses are influenced by the interaction of the combustion chamber with a branch pipe in the hot gas duct that supplies gaseous helium to pre-spin the turbine during the start transient. This paper presents the powerpack and engine system gas generator test data, compares these data to the development test data, and provides additional combustion stability analyses of the configurations.
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
Perspective on thermal barrier coatings for industrial gas turbine applications
NASA Technical Reports Server (NTRS)
Mutasim, Z. Z.; Hsu, L. L.; Brentnall, W. D.
1995-01-01
Thermal Barrier Coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in allowing higher turbine inlet temperatures. TBC life requirements for aircraft engines are typically less than those required in industrial gas turbines. The use of TBC's for industrial gas turbines can increase if durability and longer service life can be successfully demonstrated. This paper will describe current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's will also be reviewed. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and high effective coating systems will be produced that will ultimately improve engine efficiency and performance.
The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass
NASA Astrophysics Data System (ADS)
Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.
2018-05-01
The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.
CCARES: A computer algorithm for the reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1993-01-01
Structural components produced from laminated CMC (ceramic matrix composite) materials are being considered for a broad range of aerospace applications that include various structural components for the national aerospace plane, the space shuttle main engine, and advanced gas turbines. Specifically, these applications include segmented engine liners, small missile engine turbine rotors, and exhaust nozzles. Use of these materials allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, this class of materials offers significant potential for raising the thrust-to-weight ratio of gas turbine engines by tailoring directions of high specific reliability. The emerging composite systems, particularly those with silicon nitride or silicon carbide matrix, can compete with metals in many demanding applications. Laminated CMC prototypes have already demonstrated functional capabilities at temperatures approaching 1400 C, which is well beyond the operational limits of most metallic materials. Laminated CMC material systems have several mechanical characteristics which must be carefully considered in the design process. Test bed software programs are needed that incorporate stochastic design concepts that are user friendly, computationally efficient, and have flexible architectures that readily incorporate changes in design philosophy. The CCARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) program is representative of an effort to fill this need. CCARES is a public domain computer algorithm, coupled to a general purpose finite element program, which predicts the fast fracture reliability of a structural component under multiaxial loading conditions.
Brayton cycle solarized advanced gas turbine
NASA Technical Reports Server (NTRS)
1986-01-01
Described is the development of a Brayton Engine/Generator Set for solar thermal to electrical power conversion, authorized under DOE/NASA Contract DEN3-181. The objective was to design, fabricate, assemble, and test a small, hybrid, 20-kW Brayton-engine-powered generator set. The latter, called a power conversion assembly (PCA), is designed to operate with solar energy obtained from a parobolic dish concentrator, 11 meters in diameter, or with fossil energy supplied by burning fuels in a combustor, or by a combination of both (hybrid model). The CPA consists of the Brayton cycle engine, a solar collector, a belt-driven 20-kW generator, and the necessary control systems for automatic operation in solar-only, fuel-only, and hybrid modes to supply electrical power to a utility grid. The original configuration of the generator set used the GTEC Model GTP36-51 gas turbine engine for the PCA prime mover. However, subsequent development of the GTEC Model AGT101 led to its selection as the powersource for the PCA. Performance characteristics of the latter, thermally coupled to a solar collector for operation in the solar mode, are presented. The PCA was successfully demonstrated in the fuel-only mode at the GTEC Phoenix, Arizona, facilities prior to its shipment to Sandia National Laboratory in Albuquerque, New Mexico, for installation and testing on a test bed concentractor (parabolic dish). Considerations relative to Brayton-engine development using the all-ceramic AGT101 when it becomes available, which would satisfy the DOE heat engine efficiency goal of 35 to 41 percent, are also discussed in the report.
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
14 CFR 23.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1511 - Exhaust gas analysis system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
Ceramic regenerator systems development program. [for automobile gas turbine engines
NASA Technical Reports Server (NTRS)
Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.
1977-01-01
Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.
Applications of high-temperature powder metal aluminum alloys to small gas turbines
NASA Technical Reports Server (NTRS)
Millan, P. P., Jr.
1982-01-01
A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.
Determinants of pulmonary blood flow distribution.
Glenny, Robb W; Robertson, H Thomas
2011-01-01
The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels. © 2011 American Physiological Society.
Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2007-01-01
The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.
Challenges and Opportunities of Gas Engine Driven Heat Pumps: Two Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac; Mehdizadeh Momen, Ayyoub
Gas engine driven heat pumps (GHP) currently hold a small market share. This share is considerably smaller than what the full potential of GHP technology can realize. Of the main benefits of the GHP technology is their better primary energy utilization mainly due to the ability to recover the engine heat. However, development and market penetration of GHP technology have been challenged by various market and technical barriers. The main barriers are the high initial cost, low awareness of the technology, and poor perception. On the other hand, several opportunities arise that the GHP technology can take advantage of tomore » increase its market share. The most direct opportunity is the abundance of cheap natural gas. This translates directly into monetary savings and higher ROI. GHPs offer the advantage of reducing the peak demand by 80% compared to electric counterpart. From the point of view of utilities, this eliminates the need for lower-efficiency peaking power plants and over-expansion only to cover maximum peak times. From the point of view of renewable customers, GHPs eliminate the need to buy power from the grid at a high price. This is especially important in hot climates with high cooling loads. When built and operated as distributed generation, GHPs can improve the reliability of power delivery to consumers. The paper discusses the challenges and opportunities as seen during the development and commercialization of two different GHP products; a 10-ton packaged unit and 5-ton split unit.« less
Lubrication contributes to improved landfill cogeneration plant operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-10-01
The Prince George`s county, Maryland, cogeneration plant consists of three lean-burn, 12-cylinder, Waukesha 5790GL turbocharged gas engines, each powering an 850 kW Kato generator. Four Waukesha F1197G engines run gas compressors that draw and compress gas from the landfill, pumping an average of 28000 m{sup 3}/day at 6.2 bar from 29 wells. Landfill gas is 50% methane, 30% carbon dioxide, 10% nitrogen and 10% other gas constituents. These other gas constituents consist of 160 chemical compounds, many of which are very destructive to engines and other equipment. Probably the worst of these are the total organic halide expressed as chloridemore » (TOH/CL), formed from the decomposition of household cleaning preparations and other materials containing chlorides. Landfill gas also contains an abundance of water, which combines not only with the TOH/CLs but with oxides of nitrogen, which are by-products of the combustion process, to form acids. To handle the highly contaminated landfill gas, the Waukesha Engine Division and people from Curtis Engine and Equipment modified the equipment and maintenance practices. One of the first changes was in lubrication. Curtis switched from a standard gas engine oil to Mobile Pegasus 446 oil, an SAE 40 oil that has a total base number (TBN) of 9.5, because of its extended acid-neutralizing capabilities.« less
Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course
2016-01-01
American Institute of Aeronautics and Astronautics 1 Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course...development costs, engine production costs, and scheduling (Byerley A. R., 2013) as well as the linkage between turbine inlet temperature, blade cooling...analysis SE majors have studied and how this is linked to the specific issues they must face in aircraft gas turbine engine design. Aeronautical and
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... , compliance flexibilities, and other regulatory requirements for aircraft turbofan or turbojet engines with...)(v). 6. Standards for Supersonic Aircraft Turbine Engines This final rule contains carbon monoxide...
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2003-01-01
The objective is to develop the capability to numerically model the performance of gas turbine engines used for aircraft propulsion. This capability will provide turbine engine designers with a means of accurately predicting the performance of new engines in a system environment prior to building and testing. The 'numerical test cell' developed under this project will reduce the number of component and engine tests required during development. As a result, the project will help to reduce the design cycle time and cost of gas turbine engines. This capability will be distributed to U.S. turbine engine manufacturers and air framers. This project focuses on goals of maintaining U.S. superiority in commercial gas turbine engine development for the aeronautics industry.
How gas cools (or, apples can fall up)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This primer on gas cooling systems explains the basics of heat exchange within a refrigeration system, the principle of reverse-cycle refrigeration, and how a gas-engine-driven heat pump can provide cooling, additional winter heating capacity, and hot water year-round. Gas cooling equipment available or under development include natural gas chillers, engine-driven chillers, and absorption chillers. In cogeneration systems, heat recovered from an engine's exhaust and coolant may be used in an absorption chiller to provide air-conditioning. Gas desiccant cooling systems may be used in buildings and businesses that are sensitive to high humidity levels.
A quantitative evaluation of the public response to climate engineering
NASA Astrophysics Data System (ADS)
Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M.
2014-02-01
Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.
Transpiration Cooling Experiment
NASA Technical Reports Server (NTRS)
Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.
1997-01-01
The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...
40 CFR 87.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Standards for exhaust... each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of...
40 CFR 87.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) Definitions. Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8... in-use aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...
Code of Federal Regulations, 2011 CFR
2011-01-01
... In-Use Aircraft Gas Turbine Engines) § 34.10 Applicability. (a) The provisions of this subpart are applicable to all new aircraft gas turbine engines of classes T3, T8, TSS, and TF equal to or greater than 36... applicable to all new aircraft gas turbine engines of class TF less than 36 kilonewtons (8090 pounds) rated...
14 CFR 34.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...) Exhaust emission of smoke from each new aircraft gas turbine engine of class T3 manufactured on or after...
14 CFR 34.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...) Exhaust emission of smoke from each new aircraft gas turbine engine of class T3 manufactured on or after...
Code of Federal Regulations, 2010 CFR
2010-01-01
... In-Use Aircraft Gas Turbine Engines) § 34.10 Applicability. (a) The provisions of this subpart are applicable to all new aircraft gas turbine engines of classes T3, T8, TSS, and TF equal to or greater than 36... applicable to all new aircraft gas turbine engines of class TF less than 36 kilonewtons (8090 pounds) rated...
Economic aspects of advanced coal-fired gas turbine locomotives
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Houser, B. C.
1983-01-01
Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.
Study on the variable cycle engine modeling techniques based on the component method
NASA Astrophysics Data System (ADS)
Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan
2016-01-01
Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.
40 CFR 86.1503 - Abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
Feasibility Study for a Practical High Rotor Tip Clearance Turbine.
GAS TURBINE BLADES ), (* TURBINE BLADES , TOLERANCES(MECHANICS)), (* TURBOFAN ENGINES , GAS TURBINES , AXIAL FLOW TURBINES , AXIAL FLOW TURBINE ROTORS...AERODYNAMIC CONFIGURATIONS, LEAKAGE(FLUID), MEASUREMENT, TEST METHODS, PERFORMANCE( ENGINEERING ), MATHEMATICAL PREDICTION, REDUCTION, PRESSURE, PREDICTIONS, NOZZLE GAS FLOW, COMBUSTION CHAMBER GASES, GAS FLOW.
NASA Astrophysics Data System (ADS)
Budiman, Agus; Majid, Akmal Irfan; Pambayun, Nirmala Adhi Yoga; Yuswono, Lilik Chaerul; Sukoco
2016-06-01
In relation to pollution control and environmental friendliness, the quality of exhaust gas from diesel engine needs to be considered. The influences of injection pressure and timing to exhaust gas opacity were investigated. A series of experiments were conducted in a one-cylinder conventional diesel engine with a naturally aspirated system and indirect injection. The default specification of injection pressure was 120 kg/cm2. To investigate the injection pressure, the engine speed was retained on 1000 rpm with pressure variations from 80 to 215 kg/cm2. On the other hand, the various injection timing (8, 10, 12, 16 degrees before TDC point and exact 18 degrees before TDC point) were used to determine their effects to exhaust gas opacity. In this case, the engine speed was varied from 1000 to 2400 rpm. The injector tester was used to measure injection pressure whereas the exhaust gas opacity was determined by the smoke meter. Those data were also statistically analyzed by product moment correlation. As the results, the injection pressure of diesel engine had a non-significant positive correlation to the exhaust gas opacity with r = 0.113 and p > 5 %. Injection pressure should be adjusted to the specification listed on the diesel engine as if it was too high or too low will lead to the higher opacity. Moreover, there was a significant positive correlation between injection timing and the exhaust gas opacity in all engine speeds.
Control apparatus for hot gas engine
Stotts, Robert E.
1986-01-01
A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.60 Introduction. (a) Except as provided... determine the conformity of new aircraft gas turbine engines with the applicable standards set forth in this...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
2017-01-01
A space propulsion system is important for the normal mission operations of a spacecraft by adjusting its attitude and maneuver. Generally, a mono- and a bipropellant thruster have been mainly used for low thrust liquid rocket engines. But as the plume gas expelled from these small thrusters diffuses freely in a vacuum space along all directions, unwanted effects due to the plume collision onto the spacecraft surfaces can dramatically cause a deterioration of the function and performance of a spacecraft. Thus, aim of the present study is to investigate and compare the major differences of the plume gas impingement effects quantitatively between the small mono- and bipropellant thrusters using the computational fluid dynamics (CFD). For an efficiency of the numerical calculations, the whole calculation domain is divided into two different flow regimes depending on the flow characteristics, and then Navier-Stokes equations and parallelized Direct Simulation Monte Carlo (DSMC) method are adopted for each flow regime. From the present analysis, thermal and mass influences of the plume gas impingements on the spacecraft were analyzed for the mono- and the bipropellant thrusters. As a result, it is concluded that a careful understanding on the plume impingement effects depending on the chemical characteristics of different propellants are necessary for the efficient design of the spacecraft. PMID:28636625
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes...
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines...
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes...
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes...
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes...
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.80 Introduction. Except... determine the conformity of new and in-use gas turbine engines with the applicable standards set forth in...
Integrated gas analyzer for complete monitoring of turbine engine test cells.
Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G
2004-01-01
Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas turbine engines in ground-based facilities such as sea-level test cells and altitude test cells. FT-IR measurement applications include engine-generated exhaust gases, facility air provided as input to engines, and ambient air in and around test cells. Potentially, the traditionally used assembly of many gas-specific single gas analyzers will be eliminated. However, the quest for a single instrument capable of complete gas-phase monitoring at turbine engine test cells has previously suffered since the FT-IR method cannot measure infrared-inactive oxygen molecules, a key operational gas to both air-breathing propulsion systems and test cell personnel. To further the quest, the FT-IR sensor used for the measurements presented in this article was modified by integration of a miniature, solid-state electrochemical oxygen sensor. Embedded in the FT-IR unit at a location near the long-effective-optical-path-length gas sampling cell, the amperometric oxygen sensor provides simultaneous, complementary information to the wealth of spectroscopic data provided by the FT-IR method.
Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Storey, John Morse; Theiss, Timothy J
Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance ismore » straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.« less
40 CFR 86.1514 - Analytical gases.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1519 - CVS calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1542 - Information required.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1501 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2004-01-01
Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.
40 CFR 87.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of class TF and of... gas turbine engine of class T3 manufactured on or after January 1, 1978, shall not exceed: Smoke...
40 CFR 87.21 - Standards for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of class TF and of... gas turbine engine of class T3 manufactured on or after January 1, 1978, shall not exceed: Smoke...
Code of Federal Regulations, 2014 CFR
2014-10-01
... designated duty engineer (DDE) of steam, motor, and/or gas turbine-propelled vessels. 11.524 Section 11.524... requirements for national endorsement as designated duty engineer (DDE) of steam, motor, and/or gas turbine... steam, motor, and/or gas turbine-propelled vessels of unlimited propulsion power, the applicant must...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 87.10 Applicability. (a) The provisions of this subpart are applicable to all new aircraft gas turbines of classes T3, T8, TSS..., and to all in-use aircraft gas turbine engines of classes T3, T8, TSS and TF equal to or greater than...
36th International Symposium on Combustion (ISOC2016)
2016-12-01
GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants
Advanced Gas Turbine (AGT) Technology Project
NASA Technical Reports Server (NTRS)
1984-01-01
Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine engine is reviewed. Development of the engine compressor, gasifier turbine, power turbine, combustor, regenerator, and secondary system is discussed. Ceramic materials development and the application of such materials in the gas turbine engine components is described.
Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L
2013-12-17
Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.
Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine
NASA Astrophysics Data System (ADS)
Patil, N. N.; Chavan, C. B.; More, A. S.; Baskar, P.
2017-11-01
Considering the current scenario of petroleum fuels, it has been observed that, they will last for few years from now. On the other hand, the ever increasing cost of a gasoline fuels and their related adverse effects on environment caught the attention of researchers to find a supplementary source. For commercial fuels, supplementary source is not about replacing the entire fuel, instead enhancing efficiency by simply making use of it in lesser amount. From the recent research that has been carried out, focus on the use of Hydrogen rich gas as a supplementary source of fuel has increased. But the problem related to the storage of hydrogen gas confines the application of pure hydrogen in petrol engine. Using oxy-hydrogen gas (HHO) generator the difficulties of storing the hydrogen have overcome up to a certain limit. The present study highlights on performance evaluation of conventional petrol engine by using HHO gas as a supplementary fuel. HHO gas was generated from the electrolysis of water. KOH solution of 3 Molar concentration was used which act as a catalyst and accelerates the rate of generation of HHO gas. Quantity of gas to be supplied to the engine was controlled by varying amount of current. It was observed that, engine performance was improved on the introduction of HHO gas.
The Cummins advanced turbocompound diesel engine evaluation
NASA Technical Reports Server (NTRS)
Hoehne, J. L.; Werner, J. R.
1982-01-01
An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas
NASA Astrophysics Data System (ADS)
Meisner, G. P.
2013-03-01
The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.
Defining relative humidity in terms of water activity. Part 1: definition
NASA Astrophysics Data System (ADS)
Feistel, Rainer; Lovell-Smith, Jeremy W.
2017-08-01
Relative humidity (RH) is a quantity widely used in various fields such as metrology, meteorology, climatology or engineering. However, RH is neither uniformly defined, nor do some definitions properly account for deviations from ideal-gas properties, nor is the application range of interest fully covered. In this paper, a new full-range definition of RH is proposed that is based on the thermodynamics of activities in order to include deviations from ideal-gas behaviour. Below the critical point of pure water, at pressures p < 22.064 MPa and temperatures T < 647.096 K, RH is rigorously defined as the relative activity (or relative fugacity) of water in humid air. For this purpose, reference states of the relative activity are specified appropriately. Asymptotically, the ideal-gas limit of the new definition is consistent with de-facto standard RH definitions published previously and recommended internationally. Virial approximations are reported for estimating small corrections to the ideal-gas equations.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
Internal combustion engine for natural gas compressor operation
Hagen, Christopher; Babbitt, Guy
2016-12-27
This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.
Distance Support In-Service Engineering for the High Energy Laser
2015-03-01
Wilson, Johnson, Tierney, and Saltzman 2014). A USN Arleigh Burke Class Guided Missile Destroyer has four gas turbine engines. With a typical deployment...lasting six 57 months, this means the data generated by the gas turbine engines alone would total to be 87,658 terabytes or 87 petabytes. If this...accounts for the gas turbine engines alone and does not include the rest of the systems on board of the ship (such as radar, communication, weapons
Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.
2008-11-25
A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.
NASA Technical Reports Server (NTRS)
Laumann, E. A.; Reynolds, R. K. (Inventor)
1978-01-01
A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.
NASA Astrophysics Data System (ADS)
Zerkle, Ronald D.; Prakash, Chander
1995-03-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
NASA Technical Reports Server (NTRS)
Zerkle, Ronald D.; Prakash, Chander
1995-01-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
An Explanation of the Varied Measurements of Gas Field Methane Leakage
NASA Astrophysics Data System (ADS)
Evans, W. F.; McHugh, M. J.
2014-12-01
In situ engineering measurements of natural gas well sites indicate leakage rates with a mean rate of 1.5% of the gas production rate from individual wells. These have been made at several gas basins using in situ measurements. These in situ engineering measurements are reported as the fugitive emission rates to the UNCCC by the EPA. On the other hand, atmospheric measurements at altitudes above the surface by several atmospheric groups indicate that gas fields are leaking at an average rate of over 9 %. Papers have been published in several highly reputable journals by government and university scientists. Both groups have been criticizing the methodologies of the opposite group. We propose that a more likely explanation is that both groups are correct. Although this appears as a direct conflict with one group on each side, a careful analysis shows that the two groups are measuring different air parcels. This is the only explanation which will explain the apparent conflicting situation. This can be understood if the basins in which the wells are sited are actually leaking from the bed rock formations in which the wells are drilled. If the geology of the natural gas basins is examined in detail, then the situation becomes understandable. Many basins contain gas in fault traps. These faults often leak, particularly if there is a small earthquake. The leaks can follow tilted layers, resulting in vertical transport of gas along the slanted layer cracks. This leakage may emerge into the atmosphere at large distances from the actual gas well under measurement. Fracking can obviously increase the leakage from a valley gas field. The methane leaks could alter the budgets of greenhouse gases reported by various gas producing countries by significant amounts. The potential increases and altered budgets for various countries as reported to the UNCCC are estimated and reported in this presentation. The fraction of these unreported leaks which should be reported will have to wait for the development of appropriate methodologies to determine how much of the observed leakage is natural and how much is due to natural gas exploitation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.80 Introduction. Except as provided under § 34.5, the... of new and in-use gas turbine engines with the applicable standards set forth in this part. The test...
40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas pollutant standards. (a) For purposes of certification, your engine family is considered in compliance with the emission standards in § 1036.108 if all emission-data engines representing the tested...
40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas pollutant standards. (a) For purposes of certification, your engine family is considered in compliance with the emission standards in § 1036.108 if all emission-data engines representing the tested...
40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas pollutant standards. (a) For purposes of certification, your engine family is considered in compliance with the emission standards in § 1036.108 if all emission-data engines representing the tested...
Integrated gas turbine engine-nacelle
NASA Technical Reports Server (NTRS)
Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (Inventor)
1977-01-01
A nacelle for use with a gas turbine engine is presented. An integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine.
Aeronautical Engineering. A Continuing Bibliography with Indexes
1987-09-01
engines 482 01 AERONAUTICS (GENERAL) i-10 aircraft equipped with turbine engine ...rate adaptive control with applications to lateral Statistics on aircraft gas turbine engine rotor failures Unified model for the calculation of blade ...PUMPS p 527 A87-35669 to test data for a composite prop-tan model Gas turbine combustor and engine augmentor tube GENERAL AVIATION AIRCRAFT
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1522 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1524 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1540 - Idle exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1530 - Test sequence; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1526 - Calibration of other equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1527 - Idle test procedure; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1505 - Introduction; structure of subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
49 CFR 192.171 - Compressor stations: Additional safety equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... operates with pressure gas injection must be equipped so that stoppage of the engine automatically shuts off the fuel and vents the engine distribution manifold. (e) Each muffler for a gas engine in a...
49 CFR 192.171 - Compressor stations: Additional safety equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operates with pressure gas injection must be equipped so that stoppage of the engine automatically shuts off the fuel and vents the engine distribution manifold. (e) Each muffler for a gas engine in a...
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineer (limited) of steam, motor, and/or gas turbine-propelled vessels. 11.518 Section 11.518 Shipping... requirements for national endorsement as chief engineer (limited) of steam, motor, and/or gas turbine-propelled... (limited) of steam, motor, and/or gas turbine-propelled vessels is 5 years of total service in the...
Environmental Degradation of Nickel-Based Superalloys Due to Gypsiferous Desert Dusts
2015-09-17
twenty-five years of continuous operation in the dusty environments of Southwest Asia have shown that degradation of gas turbine engine components...proven to initiate hot corrosion at temperatures associated with modern gas turbine engine operation, which are beyond the range at which sodium sulfate...Relevant Research into Failure Due to Molten Deposits . . . . . . . . . 13 2.1 The Gas Turbine Engine
Topology optimization of a gas-turbine engine part
NASA Astrophysics Data System (ADS)
Faskhutdinov, R. N.; Dubrovskaya, A. S.; Dongauzer, K. A.; Maksimov, P. V.; Trufanov, N. A.
2017-02-01
One of the key goals of aerospace industry is a reduction of the gas turbine engine weight. The solution of this task consists in the design of gas turbine engine components with reduced weight retaining their functional capabilities. Topology optimization of the part geometry leads to an efficient weight reduction. A complex geometry can be achieved in a single operation with the Selective Laser Melting technology. It should be noted that the complexity of structural features design does not affect the product cost in this case. Let us consider a step-by-step procedure of topology optimization by an example of a gas turbine engine part.
Multiple volume compressor for hot gas engine
Stotts, Robert E.
1986-01-01
A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, K.
1974-04-24
An installation for the catalytic afterburning of exhaust gases of a multi-cylinder internal combustion engine has two cylinder rows with two exhaust gas lines, each of which includes at least one catalyst. A temperature-responsive control is operable during engine start-up to conduct substantially the entire exhaust gas flow from the internal combustion engine during warmup for a predetermined time by way of only one of the two catalyst and then, after a short period of time, to conduct the exhaust gas flow from each row of cylinders by way of its associated gas line and catalyst.
Reviewing sulfidation corrosion—Yesterday and today
NASA Astrophysics Data System (ADS)
Bornstein, Norman S.
1996-11-01
At one time, sulfidation corrosion threatened to severely limit the use of gas turbines in marine applications, markedly reduce the life of industrial gas turbines, and affect the performance of aircraft engines. Today, gas turbine engines drive U.S. naval ships, produce electricity, and power aircraft. However, the problem of sulfidation corrosion has not disappeared. The rapid rate of degradation of airfoil materials in the presence of condensed sulfates is still a concern for gas turbine engines that operate in industrial and marine environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.
Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.
2006-02-14
A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.
1977-08-01
237 265 X A E DC-T R-77-80 CHAPTER I INTRODUCTION Stable aerodynamic operation of the compression system of an aircraft gas turbine engine is...of an aircraft gas turbine engine consists of one or more compressors arranged in configurations such as those illustrated in Fig. 1 (Appendix A). 1...difficulties in the operation of several aircraft gas turbine engines which have been experienced because of compressor stability problems. Montgomery’s
Stirling engines for hybrid electric vehicle applications
NASA Astrophysics Data System (ADS)
Ernst, William D.
Laboratory and vehicle chassis dynamometer test data based on natural gas fuel are presented for kinematic Stirling engine emissions levels over a range of air/fuel ratios and exhaust gas recirculation levels. It is concluded that the natural-gas-fired Stirling engine is capable of producing exhaust pipe emissions levels significantly below those of other engines. The projected emissions levels are found to be compliant with the 1995 California Air Resources Board Mobile Source Emission Standards for ultra-low-emissions vehicles.
40 CFR 1042.1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
40 CFR 1042.1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
40 CFR 1042.1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
2001-01-01
A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.
40 CFR 1042.1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
40 CFR 1042.1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of “compression-ignition” in § 1042.901. (2) Marine gas turbine engines. (3) Other marine internal... engines powered by natural gas or other gaseous fuels with maximum engine power at or above 250 kW. Note... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
NASA Technical Reports Server (NTRS)
Kowalski, E. J.
1979-01-01
A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.
Code of Federal Regulations, 2013 CFR
2013-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 34.10 Applicability. (a) The provisions of this subpart are applicable to all new aircraft gas turbine engines of classes T3, T8, TSS, and TF equal to or greater than 36...
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 34.10 Applicability. (a) The provisions of this subpart are applicable to all new aircraft gas turbine engines of classes T3, T8, TSS, and TF equal to or greater than 36...
Code of Federal Regulations, 2014 CFR
2014-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 34.10 Applicability. (a) The provisions of this subpart are applicable to all new aircraft gas turbine engines of classes T3, T8, TSS, and TF equal to or greater than 36...
Ceramic regenerator systems development program
NASA Technical Reports Server (NTRS)
Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.
1978-01-01
Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.
Assessment of a 40-kilowatt stirling engine for underground mining applications
NASA Technical Reports Server (NTRS)
Cairelli, J. E.; Kelm, G. G.; Slaby, J. G.
1982-01-01
An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.
Additional support for the TDK/MABL computer program
NASA Technical Reports Server (NTRS)
Nickerson, G. R.; Dunn, Stuart S.
1993-01-01
An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort.
Numerical Study of Stratified Charge Combustion in Wave Rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi
1997-01-01
A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.
Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-06-01
This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.
Technology for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Kempke, E. E., Jr.
1975-01-01
Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.
Waste heat recovery on multiple low-speed reciprocating engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.E.
1982-09-01
With rising fuel costs, energy conservation has taken on added significance. Installation of Waste Heat Recovery Units (WHRU) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines has also been identified as having energy conservation potential. This paper reviews the development and implementation of a Waste Heat Recovery Unit (WHRU) for multiple low speed engines at the Katy Gas Plant. WHRU's for these engines should be differentiated from high speed engines and gas turbines in that low speed engines produce low frequency, highmore » amplitude pulsating exhaust. The design of a waste heat system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high amplitude frequencies and then used to design structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less
Waste heat recovery on multiple low-speed reciprocating engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.E.
1984-09-01
With rising fuel costs, energy conservation has taken on added significance. Installation of waste heat recovery units (WHRU's) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines also has been identified as having energy conservation potential. This paper reviews the development and implementation of a WHRU for multiple low-speed engines at the Katy (TX) gas plant. WHRU's for these engines should be differentiated from high-speed engines and gas turbines in that low-speed engines produce low-frequency, high-amplitude pulsating exhaust. The design of a WHRUmore » system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high-amplitude frequencies and then used to design a pulsation filter and structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less
Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines
NASA Astrophysics Data System (ADS)
Korakianitis, T.; Beier, K. J.
1994-04-01
Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
Engine with pulse-suppressed dedicated exhaust gas recirculation
Keating, Edward J.; Baker, Rodney E.
2016-06-07
An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.
Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting
NASA Astrophysics Data System (ADS)
Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David
2013-05-01
Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).
Diesel Engine With Air Boosted Turbocharger
2010-05-26
of the exhaust turbocharger over the entire RPM range of the internal combustion engine . To this end, the...Kriegler, discloses that in order to utilize recycling of exhaust gases at high engine loads in an internal- combustion engine with an exhaust gas...October 29, 2002) to Cook, discloses an apparatus for and method of exhaust gas recirculation in an internal combustion engine that operates
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat
NASA Astrophysics Data System (ADS)
Cherednichenko, Oleksandr; Serbin, Serhiy
2018-03-01
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.
NASA Technical Reports Server (NTRS)
Warren, E. L.
1980-01-01
The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.
Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L
2016-04-19
Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.
Karthikeya Sharma, T
2015-11-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; VANrOODE, mARK
2006-01-01
The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.
Development of a Low-Emission Spray Combustor for Emulsified Crude Oil
2017-03-03
has been studied for diesel [11,12] and gas turbine [13,14] engines for some time, but none of these fuels contain the wide range of hydrocarbons...measurements. We conducted the tests on the flight deck and discovered that the constantly shifting wind moved the exhaust plume away from the plume...when the wind speed was very low. This small period of about one hour, and the required set up time, severely 10 limited our ability to conduct
1980-02-01
maneuver conditions, and transmit the net axial thrust force between the turbine and fan sections due to pressure and aero dynamic gas loads . 49 Lm...stiffness composite material shaft. Both~~ balancing demonstration and the composite shaft design ad as their objective the management of small turbofan ...CONFIGURATIONS 99 LIST OF ILLUSTRATIONS Figure Title Page 1 High Speed Balancing Program Schedule 4 2 Teledyne CAE Model 471-11DX Turbofan Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... on the International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for Marine... Organization guidelines for exhaust gas cleaning systems for marine engines in Washington, DC. The purpose of... exhaust gas cleaning systems for marine engines to remove sulphur oxide emissions in order to comply with...
Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Vehicles Work?
AddThis.com... How Do Bi-fuel Natural Gas Vehicles Work? A bi-fuel natural gas vehicle can use either gasoline or natural gas in the same internal combustion engine. Both fuels are stored on board and the driver Components of a Bi-fuel Natural Gas Vehicle Battery: The battery provides electricity to start the engine and
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., manufactured on or after January 1, 1974, and to all in-use aircraft gas turbine engines of classes T3, T8, TSS... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 87.10 Applicability. (a) The provisions of this subpart are applicable to all new...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., manufactured on or after January 1, 1974, and to all in-use aircraft gas turbine engines of classes T3, T8, TSS... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 87.10 Applicability. (a) The provisions of this subpart are applicable to all new...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., manufactured on or after January 1, 1974, and to all in-use aircraft gas turbine engines of classes T3, T8, TSS... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 87.10 Applicability. (a) The provisions of this subpart are applicable to all new...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., manufactured on or after January 1, 1974, and to all in-use aircraft gas turbine engines of classes T3, T8, TSS... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 87.10 Applicability. (a) The provisions of this subpart are applicable to all new...
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.V.
This book reports on remedial measures for gas wells and new methods for calculating the position of the stabilized performance curves for gas wells as well as the heating value for natural gases from compositional analyses. In addition, the author includes problem solutions in an appendix and a section showing the relation between the conventional empirical equation and the theoretical performance equation of A.S. Odeh. The author successfully bridges the gap between the results of empirical testing and the theory of unsteady-state flow in porous media. It strengthens the bond between conventional reservoir engineering practices and understanding gas well behavior.more » Problems listed at the end of each chapter are excellent exercises for practitioners. This book provides information on: Natural Gas Engineering; Properties of natural gas; Application of gas laws to reservoir engineering; Gas measurement; Flow of natural gas in circular pipe and annular conductors; Flow of gas in porous media (a review); Gas well testing; Unsteady-state flow behavior of gas wells; Production forecasting for gas wells; Production decline curves for gas wells; Sizing flow strings for gas wells; Remedial measures for gas wells; Gas sales contracts; and appendices on Compressibility for natural gas, Gas measurement factors, SI metric conversion factors, and Solutions to problems.« less
NASA Astrophysics Data System (ADS)
Mather, Daniel Kelly
1998-11-01
The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.
Hydraulically actuated gas exchange valve assembly and engine using same
Carroll, Thomas S.; Taylor, Gregory O.
2002-09-03
An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.
Integrated gas turbine engine-nacelle
NASA Technical Reports Server (NTRS)
Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (Inventor)
1979-01-01
A nacelle for use with a gas turbine engine is provided with an integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine. The nacelle is entirely supported in its spacial relationship with the engine by means of the webbed structure. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus, while the outer surface of the nacelle defines a streamlined envelope for the engine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... transporting a person. Some gas turbine engines are subject to the prohibitions of § 1068.101, but we do not presume that all gas turbine engines are subject to these prohibitions. Other engines that do not have a... selling or shipping engines that are not yet in their certified configuration? 1068.260 Section 1068.260...
Integral Engine Inlet Particle Separator. Volume 1. Technology Program
1975-07-01
inlet particle separators for future Army aircraft gas turbine engines . Appropriate technical personnel of this Directorate have reviewed this report...USAAMRDL-TR-75-31A I - / INTEGRAL ENGINE INLET PARTICLE SEPARATOR Volume I-- Technology Program General Electric Company Aircraft Engine Group...N1 i 9ap mm tm~qu INTRODUCTION The adverse environments in which Army equipment operates impose severe )enalties upon gas turbine engine performance
Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine
2016-09-01
are suitable. To model the behavior of the engine, an autoregressive distributed lag (ARDL) time series model of engine speed and exhaust gas... time series model of engine speed and exhaust gas temperature is derived. The lag length for ARDL is determined by whitening of residuals using the...15 B. REGRESSION ANALYSIS ....................................................................15 1. Time Series Analysis
Improved ceramic heat exchanger material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, H.W. Sr.
Various ceramic materials in the form of small, monolithic bars were screened as candidate materials in heat exchanger structures for automotive gas turbine engines. The material finally selected consists of 60 w/o* petalite (LAS) and 40 w/o of a recrystallizable glass which converts during thermal processing to cordierite (MAS). This new material, GE-3200, was fabricated by Coors Porcelain Company into a circular honeycomb structure 53.3 cm diameter and 10.2 cm thick (21'' x 4'') and having 69.8 holes/cm/sup 2/ (450 holes/in./sup 2/) of rectangular geometry. Dimensions of each cell are about 2.5 mm x 0.5 mm (0.1'' x 0.02'') withmore » wall thicknesses about 0.20 mm (0.008''). Small bar-shaped specimens of the honeycomb were used to measure thermal, chemical, and mechanical properties and for macro- and microstructure examination. Cylindrical honeycomb specimens about 15.2 cm diameter and 10.2 in. thick (6'' x 4'') were sent to Ford Motor Company and are currently being tested in a gas turbine engine. Data obtained from testing the bar-shaped honeycomb specimens of GE-3200 and from testing bar-shaped honeycomb specimens of Corning 9455 were compared. Results indicate that GE-3200 has significantly better resistance to sulfuric acid and to sodium chloride than Corning 9455; thermal expansion of GE-3200 is higher than that of Corning 9455 (1.7 x 10/sup -6///sup 0/C vs. 0.65 x 10/sup -6///sup 0/C over the temperature range 25/sup 0/C to 1000/sup 0/C); mechanical properties of GE-3200 are higher in the tangential direction, but lower in the radial direction than Corning 9455; and during thermal cycling between R.T. 1000/sup 0/C and R.T. -1100/sup 0/C, GE-3200 tends to elongate while Corning 9455 tends to slightly contract. Overall assessment of GE-3200 properties, ease of material preparation, ready adaptability to honeycomb fabrication, and refractoriness qualify this new material as a candidate for heat exchanger application in automotive gas turbine engines.« less
NASA Astrophysics Data System (ADS)
Negroni, Garry Inocentes
Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated efficiency was 11.4%. The average voltage efficiency of the electrolyser during dynamometer testing was 69.16%, producing a solar-to-electrolysis efficiency of 7.88%. At varying engine speeds, HC emissions decreased an average of 54.4% at multiple engine speeds at part-load, while CO2 increased by 2.54% due to oxygen enrichment of intake air. However, the auto-ignition of a small amount of hydrogen (0.0035% of diesel fuel energy) had a negative impact on part-load power (-3.671%) and torque (-3.296%). Full-load sweep testing showed an increase in peak power (1.562%) and peak torque (2.608%). Solar electrolysis gas aspiration reduced soot opacity by 31.5%. The alternator-less part-load step tests show average HC and CO2 emissions decrease on average 25.05% and 1.14% respectively. The test also indicates an increase in average part-load power (1.57%) and torque (2.12%). Alternator-less operation can reduce soot opacity by 56.76%. Full-load testing of the vehicle with alternator unplugged indicates that alternator load upon an engine increase with engine ne speed even with no load and no pilot excitation. Alternator load elimination's performance and emissions improvements should be considered, however, practical limitations exist in winter-night, summer-midday scenarios and for longer duration of operation.
Oil-Free Turbomachinery Being Developed
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
2001-01-01
NASA and the Army Research Laboratory (ARL) along with industry and university researchers, are developing Oil-Free technology that will have a revolutionary impact on turbomachinery systems used in commercial and military applications. System studies have shown that eliminating an engine's oil system can yield significant savings in weight, maintenance, and operational costs. The Oil-Free technology (foil air bearings, high-temperature coatings, and advanced modeling) is being developed to eliminate the need for oil lubrication systems on high-speed turbomachinery such as turbochargers and gas turbine engines that are used in aircraft propulsion systems. The Oil-Free technology is enabled by recent breakthroughs in foil bearing load capacity, solid lubricant coatings, and computer-based analytical modeling. During the past fiscal year, a U.S. patent was awarded for the NASA PS300 solid lubricant coating, which was developed at the NASA Glenn Research Center. PS300 has enabled the successful operation of foil air bearings to temperatures over 650 C and has resulted in wear lives in excess of 100,000 start/stop cycles. This leapfrog improvement in performance over conventional solid lubricants (limited to 300 C) creates new application opportunities for high-speed, high-temperature Oil-Free gas turbine engines. On the basis of this break-through coating technology and the world's first successful demonstration of an Oil-Free turbocharger in fiscal year 1999, industry is partnering with NASA on a 3-year project to demonstrate a small, Oil-Free turbofan engine for aeropropulsion.
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.
2015-01-01
This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2009-01-01
Rotating-wing aircraft or helicopters are heavily used by the US military and also a wide range of commercial applications around the world, but emissions data for this class of engines are limited. In this study, we focus on emissions from T700-GE-700 and T700-GE-701C engines; T700 engine was run with military JP-8 and T701C run with both JP-8 and Fischer-Tropsch (FT) fuels. Each engine was run at three engine power settings from the idle to maximum power in sequence. Exhaust particles measured at the engine exhaust plane (EEP) have a peak mobility diameter less than 50nm in all engine power settings.more » At a 4-m downstream location, sulfate/sulfur measurements indicate all particulate sulfur exists practically as sulfate, and the particulate sulfur and sulfate contents increased as the engine power increased. The conversion of sulfur to sulfate was found not to be dependent on engine power setting. Analysis also showed that conversion of sulfur to sulfate was not by the adsorption of sulfur dioxide gas on the soot particles and then subsequently oxidized to form sulfate, but by gas-phase conversion of SO2 via OH or O then subsequently forming H2SO4 and condensing on soot particles. Without the sulfur and aromatic components, use of the FT fuel led to significant reduction of soot emissions as compared to that of the JP-8 fuel producing less number of particles than that of the JP-8 fuel; however, the FT fuel produced much higher number concentrations of particles smaller than 7nm than that of JP-8 in all engine power settings. This indicates non-aromatics components in the FT fuel could have contributed to the enhancement of emissions of particles smaller than 7nm. These small particles are volatile, not observed at the EEP, and may be important in playing a role for the formation of secondary particles in the atmosphere or serving as a site for effective cloud nuclei condensation to occur.« less
Parametric tests of a traction drive retrofitted to an automotive gas turbine
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Lowenthal, S. H.; Anderson, N. E.
1980-01-01
The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine.
Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Wey, Chown Chou (Compiler)
1999-01-01
In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.
Gas turbine engines with particle traps
Boyd, Gary L.; Sumner, D. Warren; Sheoran, Yogendra; Judd, Z. Daniel
1992-01-01
A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).
Non-intrusive measurement of hot gas temperature in a gas turbine engine
DeSilva, Upul P.; Claussen, Heiko; Yan, Michelle Xiaohong; Rosca, Justinian; Ulerich, Nancy H.
2016-09-27
A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.
Submarine Construction (Unterseebootsbau)
1972-08-01
PIPE FOR THE SNORKEL EXHAUST MAST 11 AIR EXIT (GENERALLY TO MAIN AIR INDUCTION LINE) 12 EXHAUST GAS INLET FROM EXHAUST GAS LINE SIDE VIEW (MAST...Electric Engine 76 Diesel Engines 79 Air Intake and Gas Exhaust Systems for the Diesel Engines 79 Diesel Fuel and Pressurized Water System 82...Lines of a Submarine ■. 31 Figure 6 - Lines of a Submersible 31 Figure 7 - Twin- Screw Stern Configurations 34 Figure 8 - Single- Screw Stern
Dynamics of Supercritical Flows
2012-08-26
to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi
High load operation in a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Liechty, Michael P [Chillicothe, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL
2008-12-23
A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic
Extreme sensitivity in Thermoacoustics
NASA Astrophysics Data System (ADS)
Juniper, Matthew
2017-11-01
In rocket engines and gas turbines, fluctuations in the heat release rate can lock in to acoustic oscillations and grow catastrophically. Nine decades of engine development have shown that these oscillations are difficult to predict but can usually be eliminated with small ad hoc design changes. The difficulty in prediction arises because the oscillations' growth rate is exceedingly sensitive to parameters that cannot always be measured or simulated reliably, which introduces severe systematic error into thermoacoustic models of engines. Passive control strategies then have to be devised through full scale engine tests, which can be ruinously expensive. For the Apollo F1 engine, for example, 2000 full-scale tests were required. Even today, thermoacoustic oscillations often re-appear unexpectedly at full engine test stage. Although the physics is well known, a novel approach to design is required. In this presentation, the parameters of a thermoacoustic model are inferred from many thousand automated experiments using inverse uncertainty quantification. The adjoint of this model is used to obtain cheaply the gradients of every unstable mode with respect to the model parameters. This gradient information is then used in an optimization algorithm to stabilize every thermoacoustic mode by subtly changing the geometry of the model.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...
Computational thermo-fluid dynamics contributions to advanced gas turbine engine design
NASA Technical Reports Server (NTRS)
Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.
1984-01-01
The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.
NASA Technical Reports Server (NTRS)
Hannum, Richard W; Zimmerman, Richard H
1945-01-01
Calculations based on dynamometer test-stand data obtained on an 18-cylinder radial engine were made to determine the improvement in fuel consumption that can be obtained at various altitudes by gearing an exhaust-gas turbine to the engine crankshaft in order to increase the engine-shaft work.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.516 Section 11.516 Shipping... OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.516 Service requirements for national endorsement as third assistant engineer of steam, motor, and/or gas turbine-propelled...
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...
NASA Astrophysics Data System (ADS)
Cevik, Mert
Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.
NASA Technical Reports Server (NTRS)
Rom, Frank E.
1968-01-01
The three basic types of nuclear power-plants (solid, liquid, and gas core) are compared on the bases of performance potential and the status of current technology. The solid-core systems are expected to have impulses in the range of 850 seconds, any thrust level (as long as it is greater than 10,000 pounds (44,480 newtons)), and thrust-to-engine-weight ratios of 2 to 20 pounds per pound (19.7 to 197 newtons per kilogram). There is negligible or no fuel loss from the solid-core system. The solid-core system, of course, has had the most work done on it. Large-scale tests have been performed on a breadboard engine that has produced specific impulses greater than 700 seconds at thrust levels of about 50,000 pounds (222,000 newtons). The liquid-core reactor would be interesting in the specific impulse range of 1200 to 1500 seconds. Again, any thrust level can be obtained depending on how big or small the reactor is made. The thrust-to-engine weight ratio for these systems would be in the range of 1 to 10. The discouraging feature of the liquid-core system is the high fuel-loss ratio anticipated. Values of 0.01 to 0.1 pound (0.00454 to 0.0454 kilograms) or uranium loss per pound (0.454 kilograms) of hydrogen are expected, if impulses in the range of 1200 to 1500 seconds are desired. The gas-core reactor shows specific impulses in the range of 1500 to 2500 seconds. The thrust levels should be at least as high as the weight so that the thrust-to-weight ratio does not go below 1. Because the engine weight is not expected to be under 100,000 pounds (444,800 newtons), thrust levels higher than 100,000 pounds (448,000 newtons) are of interest. The thrust-to-engine weights, in that case, would run from 1 to 20 pounds per pound (9.8 to 19.7 kilograms). Gas-core reactors tend to be very large, and can have high thrust-to-weight ratios. As in the case of the liquid-core system, the fuel loss that will be attendant with gas cores as envisioned today will be rather high. The loss rates will be 0.01 to 0.1 pound of uranium (0.00454 to 0.0454 kilograms) for each pound (0.454 kilograms) of hydrogen.
Method and apparatus for controlling fuel/air mixture in a lean burn engine
Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James
1998-04-07
The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.
One dimensional modeling of a diesel-CNG dual fuel engine
NASA Astrophysics Data System (ADS)
Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir
2017-04-01
Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
An acoustic transceiver is implemented for measuring acoustic properties of a gas in a turbine engine combustor. The transceiver housing defines a measurement chamber and has an opening adapted for attachment to a turbine engine combustor wall. The opening permits propagation of acoustic signals between the gas in the turbine engine combustor and gas in the measurement chamber. An acoustic sensor mounted to the housing receives acoustic signals propagating in the measurement chamber, and an acoustic transmitter mounted to the housing creates acoustic signals within the measurement chamber. An acoustic measurement system includes at least two such transceivers attached tomore » a turbine engine combustor wall and connected to a controller.« less
Variable mixer propulsion cycle
NASA Technical Reports Server (NTRS)
Rundell, D. J.; Mchugh, D. P.; Foster, T.; Brown, R. H. (Inventor)
1978-01-01
A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.
Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Thurman, Douglas R.
2010-01-01
In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project; an engine system study has been undertaken to help define and understand some of the major gas turbine engine parameters required to meet performance and weight requirements as defined by earlier vehicle system studies. These previous vehicle studies will be reviewed to help define gas turbine performance goals. Assumptions and analysis methods used will be described. Performance and weight estimates for a few conceptual gas turbine engines meeting these requirements will be given and discussed. Estimated performance for these conceptual engines over a wide speed variation (down to 50 percent power turbine rpm at high torque) will be presented. Finally, areas needing further effort will be suggested and discussed.
Karthikeya Sharma, T.
2014-01-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918
Fuel property effects on USN gas turbine combustors
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mosier, S. A.; Nowack, C. J.
1984-01-01
For several years the Department of Defense has been sponsoring fuel accommodation investigations with gas turbine engine manufacturers and supporting organizations to quantify the effect of changes in fuel properties and characteristics on the operation and performance of military engine components and systems. Inasmuch as there are many differences in hardware between the operational engines in the military inventories, due to differences in design philosophy and requirements, efforts were initially expended to acquire fuel effects data from rigs simulating the hot sections of these different engines. Correlations were then sought using the data acquired to produce more general, generic relationships that could be applied to all military gas turbine engines regardless of their origin. Finally, models could be developed from these correlations that could predict the effect of fuel property changes on current and future engines. This presentation describes some of the work performed by Pratt and Whitney Aircraft, under Naval Air Propulsion Center sponsorship, to determine the effect of fuel properties on the hot section and fuel system of the Navy's TF30-P-414 gas turbine engine.
Gas-engine-based, low-emission cogeneration units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chellini, R.
1994-04-01
Continental Energy Systems (CES) of Westmalle, Belgium, has been specializing, since its foundation in 1983, in the supply of cogeneration packages in the 50-300 KW power range. CES activity is mainly concentrated in the transformation of Valmet, Scania, Iveco and MAN diesel engines into spark-ignited engines capable of running on natural gas, CNG, LPG, biogas, landfill gas, etc. In the upper power range they also package Waukesha gas engines supplied from the Dutch plant of the American engine manufacturer. The new closed-loop combustion control system allows engines in the naturally-aspirated or turbocharged configuration with catalytic converters to operate well belowmore » Euro 2 limits. In fact, these engines already comply with 1995 CARB (California Air Resources Board) emission limits and with those that will become mandatory in Europe with the 1996 step. The new system still makes use of conventional components for metering and mixing functions, but these are considered as three separate devices; the electronic control unit, the oxygen sensor and an actuator enabling closed loop air/fuel ratio control. 4 figs.« less
Use of exhaust gas as sweep flow to enhance air separation membrane performance
Dutart, Charles H.; Choi, Cathy Y.
2003-01-01
An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.
2016-07-01
The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.
Engine with exhaust gas recirculation system and variable geometry turbocharger
Keating, Edward J.
2015-11-03
An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.
Temperature measurement in a gas turbine engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul
A method and system for determining a temperature of a working gas passing through a passage to a turbine section of a gas turbine engine. The method includes identifying an acoustic frequency at a first location in the engine upstream from the turbine section, and using the acoustic frequency for determining a first temperature value at the first location that is directly proportional to the acoustic frequency and a calculated constant value. A second temperature of the working gas is determined at a second location in the engine and, using the second temperature, a back calculation is performed to determinemore » a temperature value for the working gas at the first location. The first temperature value is compared to the back calculated temperature value to change the calculated constant value to a recalculated constant value. Subsequent first temperature values at the first location may be determined based on the recalculated constant value.« less
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.
2017-01-01
This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby S. Chapman; Amar Patil
2007-06-30
Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the leanmore » operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.« less
Investigation of Water-spray Cooling of Turbine Blades in a Turbojet Engine
NASA Technical Reports Server (NTRS)
Freche, John C; Stelpflug, William J
1953-01-01
An analytical and experimental investigation was made with a J33-A-9 engine to determine the effectiveness of spray cooling as a means of increasing thrust by permitting engine operation at inlet-gas temperatures and speeds above rated. With the assumption of adequate spray cooling at a coolant-to-gas flow ratio of 3 percent, calculations for the sea-level static condition indicated a thrust may be achieved by engine operation at an inlet-gas temperature of 2000 degrees F and an overspeed of 10 percent. Of the water-injection configurations investigated experimentally, those located in the inner ring of the stator diaphragm provided the best cooling at rated engine speed.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled... dilute sampling. (6) For bag sampling, sample idle emissions long enough to obtain a sufficient bag...
Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Thurman, Douglas R.
2010-01-01
In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.
76 FR 11940 - Airworthiness Directives; Turbomeca Model Arriel 1E2, 1S, and 1S1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... discrepancies led to a ``one-off'' abnormal evolution of gas generator (NG) rating during engine starting. In... evolution of gas generator (NG) rating during engine starting. In one of these cases, this resulted in an...
Code of Federal Regulations, 2011 CFR
2011-07-01
... subject to the provisions of this part 1042. (c) Recreational gas turbine engines. The requirements and prohibitions of this part do not apply to gas turbine engines installed on recreational vessels, as defined in... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
Code of Federal Regulations, 2014 CFR
2014-07-01
... subject to the provisions of this part 1042. (c) Recreational gas turbine engines. The requirements and prohibitions of this part do not apply to gas turbine engines installed on recreational vessels, as defined in... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
14 CFR 34.3 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... powered by aircraft gas turbine engines of the classes specified herein and that have U.S. standard...), this FAR applies to civil airplanes that are powered by aircraft gas turbine engines of the classes... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.3 General...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subject to the provisions of this part 1042. (c) Recreational gas turbine engines. The requirements and prohibitions of this part do not apply to gas turbine engines installed on recreational vessels, as defined in... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
14 CFR 34.3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... powered by aircraft gas turbine engines of the classes specified herein and that have U.S. standard...), this FAR applies to civil airplanes that are powered by aircraft gas turbine engines of the classes... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.3 General...
Code of Federal Regulations, 2012 CFR
2012-07-01
... subject to the provisions of this part 1042. (c) Recreational gas turbine engines. The requirements and prohibitions of this part do not apply to gas turbine engines installed on recreational vessels, as defined in... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
Code of Federal Regulations, 2010 CFR
2010-07-01
... subject to the provisions of this part 1042. (c) Recreational gas turbine engines. The requirements and prohibitions of this part do not apply to gas turbine engines installed on recreational vessels, as defined in... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Overview and Applicability...
40 CFR Appendix B to Subpart S of... - Test Procedures
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent or the vehicle's engine stalls at any time during the test sequence. (4) Multiple exhaust pipes. Exhaust gas concentrations from vehicle engines equipped with multiple exhaust pipes shall be sampled... pipes. Exhaust gas concentrations from vehicle engines equipped with multiple exhaust pipes shall be...
14 CFR 34.3 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.3 General... powered by aircraft gas turbine engines of the classes specified herein and that have U.S. standard...), this FAR applies to civil airplanes that are powered by aircraft gas turbine engines of the classes...
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.
2017-03-01
In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.
1980-12-01
now developed to the point where they could be considered as true engineering materials. ** Nickel-based alloys are used for turbine blading and...Introduction Implicit in the design of modern gas turbine engines is the premise that their aerofoil components, made of nickel- and cobalt-based...the deposit. Hot corrosion is a principal process of degradation of aerofoil surface integrity in gas turbine engines . 2.2 Mechanisms of Hot Corrosion
Suppression of Thermal Emission from Exhaust Components Using an Integrated Approach
2002-08-01
design model must, as a minimum, include an accurate estimate of space required for the exhaust , backpressure to the engine , system weight, gas species...hot flovw testing. The virtual design model provides an estimate of space required for: tih exhaust , backiressure to the engine ., svsie:. weigar. gas...either be the engine for the exhaust system or is capable of providing more than the required mass flow rate and enough gas temperature margins so that
Laser engines operating by resonance absorption.
Garbuny, M; Pechersky, M J
1976-05-01
The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.
Model-based diagnostics of gas turbine engine lubrication systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byington, C.S.
1998-09-01
The objective of the current research was to develop improved methodology for diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. The effort focused on the development of reasoning modules that utilize the existing, inexpensive sensors and are applicable to on-line monitoring within the full-authority digital engine controller (FADEC) of the engine. The target application is the Enhanced TF-40B gas turbine engine that powers the Landing Craft Air Cushion (LCAC) platform. To accomplish the development of the requisite data fusion algorithms and automated reasoning for the diagnostic modules, Penn State ARL produced a generic Turbine Engine Lubrication Systemmore » Simulator (TELSS) and Data Fusion Workbench (DFW). TELSS is a portable simulator code that calculates lubrication system parameters based upon one-dimensional fluid flow resistance network equations. Validation of the TF- 40B modules was performed using engineering and limited test data. The simulation model was used to analyze operational data from the LCAC fleet. The TELSS, as an integral portion of the DFW, provides the capability to experiment with combinations of variables and feature vectors that characterize normal and abnormal operation of the engine lubrication system. The model-based diagnostics approach is applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication systems.« less
NASA Astrophysics Data System (ADS)
Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.
2017-12-01
This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.
Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain
NASA Astrophysics Data System (ADS)
Moreno-Gutiérrez, J.; Durán-Grados, V.; Uriondo, Z.; Ángel Llamas, J.
2012-08-01
A reliable and up-to-date maritime emission inventory is essential for atmospheric scientists quantifying the impact of shipping. The objective of this study is to estimate the atmospheric emissions of SO2, NOx, CO2 and PM10 by international merchant shipping in 2007 in the Strait of Gibraltar, Spain, including the Algeciras Bay by two methods. Two methods (both bottom-up) have been used in this study: 1. Establishing engine power-based emission factors (g kWh-1, EPA) or the mass of pollutant per work performed by the engine for each of the relevant components of the exhaust gas from diesel engines and power for each ship. 2. Establishing fuel-based emission factors (kg emitted/t of fuel) or mass of pollutant per mass of combusted fuel for each of the relevant components of the exhaust gas and a fuel-consumption inventory (IMO). In both methods, the means to estimate engine power and fuel-consumption inventories are the same. The exhaust from boilers and incinerators is regarded as a small contributor and excluded. In total, an estimated average of 1 389 111.05 t of CO2, 23 083.09 t of SO2, 32 005.63 t of NOx and 2972 t of PM10 were emitted from January 2007 until December 2007 by international and domestic shipping. The estimated total fuel consumption amounts to 437 405.84 t. The major differences between the estimates generated by the two methods are for NOx (16% in certain cases) and CO (up to 23%). A total difference for all compounds of 3038 t (approximately 2%) has been found between the two methods but it is not areasonable estimate of uncertainty. Therefore, the results for both methods may be considered acceptable because the actual uncontrolled deviations appear in the changes in emission factors that occur for a given engine with age. These deviations are often difficult to quantify and depend on individual shipboard service and maintenance routines. Emission factors for CO and NOx are not constant and depend on engine condition. For example, tests conducted by the authors of this paper demonstrate that when an engine operates under normal in-service conditions, the emissions are within limits. However, with a small fault in injection timing, the NOx emission exceeds the limits (30% higher value in some cases). A fault in the maintenance of the injection nozzles increases the CO emission (15% higher value in some cases).
NASA Technical Reports Server (NTRS)
Evans, D. G.; Miller, T. J.
1978-01-01
Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.
14 CFR 34.31 - Standards for exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall...