Sample records for small geometric variations

  1. Simple microfluidic stagnation point flow geometries

    PubMed Central

    Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan

    2016-01-01

    A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382

  2. Transverse Kick Analysis of SSR1 Due to Possible Geometrical Variations in Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, V.P.; /Fermilab; Awida, M.H.

    2012-05-01

    Due to fabrication tolerance, it is expected that some geometrical variations could happen to the SSR1 cavities of Project X, like small shifts in the transverse direction of the beam pipe or the spoke. It is necessary to evaluate the resultant transverse kick due to these geometrical variations, in order to make sure that they are within the limits of the correctors in the solenoids. In this paper, we report the transverse kick values for various fabrications errors and the sensitivity of the beam to these errors. Transverse kick that could happen in SSR1 cavities due to geometrical variations ofmore » the fabricated cavities from the designed geometry has been analysed and evaluated. From fabrication experience, three kinds of variations were under investigation concerning the alignment of both the beam pipe and spoke with respect to the beam axis. Simulation study has been carried out implementing these variations in the simulation model. CMM measurements of five fabricated SSR1 cavities were carried out to investigate the amount of physical misalignments of the beam pipe and spoke. Bead-pull measurements were also conducted to evaluate the transverse kick values in the fabricated cavities. Simulation and measurements are relatively in good agreement. Maximum kick in the fabricated cavities is within 154 keV that would induce about 1.12 mrad beam deviation, which could be definitely corrected with the 10 mrad specified correctors of Project X.« less

  3. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  4. Glomerular epithelial foot processes in normal man and rats. Distribution of true width and its intra- and inter-individual variation.

    PubMed

    Gundersen, H J; Seefeldt, T; Osterby, R

    1980-01-01

    The width of individual glomerular epithelial foot processes appears very different on electron micrographs. A method for obtainining distributions of the true width of foot processes from that of their apparent width on electron micrographs has been developed based on geometric probability theory pertaining to a specific geometric model. Analyses of foot process width in humans and rats show a remarkable interindividual invariance implying rigid control and therefore great biological significance of foot process width or a derivative thereof. The very low inter-individual variation of the true width, shown in the present paper, makes it possible to demonstrate slight changes in rather small groups of patients or experimental animals.

  5. Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners

    PubMed Central

    Viscosi, Vincenzo; Cardini, Andrea

    2011-01-01

    Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature. PMID:21991324

  6. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  7. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    PubMed

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  8. Geometric constrained variational calculus. II: The second variation (Part I)

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2016-10-01

    Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

  9. An automated geometric correction system for airborne multispectral scanner imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis-King, E.; Tinney, L.; Brickey, D.

    1996-10-01

    The United States Department of Energy (USDOE) maintains a Remote Sensing Laboratory (RSL) to support nuclear related programs of the US Government. The mission of the organization includes both emergency response and more routine environmental assessments of nuclear facilities. The USDOE RSL maintains a small fleet of specially equipped aircraft that are used as platforms for remote sensor systems. The aircraft include helicopters, light aircraft, and a business jet suitable for high altitude acquisitions. Multispectral scanners flown on these platforms are subject to geometric distortions related to variations in aircraft orientation (pitch, roll, and yaw), position, and velocity during datamore » acquistions.« less

  10. Landsat 8 thermal infrared sensor geometric characterization and calibration

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  11. The inverse problem of the calculus of variations for discrete systems

    NASA Astrophysics Data System (ADS)

    Barbero-Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián; Martín de Diego, David

    2018-05-01

    We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.

  12. Lujiatun Psittacosaurids: Understanding Individual and Taphonomic Variation Using 3D Geometric Morphometrics

    PubMed Central

    Hedrick, Brandon P.; Dodson, Peter

    2013-01-01

    Psittacosaurus is one of the most abundant and speciose genera in the Dinosauria, with fifteen named species. The genus is geographically and temporally widespread with large sample sizes of several of the nominal species allowing detailed analysis of intra- and interspecific variation. We present a reanalysis of three separate, coeval species within the Psittacosauridae; P. lujiatunensis, P. major, and Hongshanosaurus houi from the Lujiatun beds of the Yixian Formation, northeastern China, using three-dimensional geometric morphometrics on a sample set of thirty skulls in combination with a reevaluation of the proposed character states for each species. Using these complementary methods, we show that individual and taphonomic variation are the joint causes of a large range of variation among the skulls when they are plotted in a morphospace. Our results demonstrate that there is only one species of Psittacosaurus within the Lujiatun beds and that the three nominal species represent different taphomorphotypes of P. lujiatunensis. The wide range of geometric morphometric variation in a single species of Psittacosaurus implies that the range of variation found in other dinosaurian groups may also be related to taphonomic distortion rather than interspecific variation. As the morphospace is driven primarily by variation resulting from taphonomic distortion, this study demonstrates that the geometric morphometric approach can only be used with great caution to delineate interspecific variation in Psittacosaurus and likely other dinosaur groups without a complementary evaluation of character states. This study presents the first application of 3D geometric morphometrics to the dinosaurian morphospace and the first attempt to quantify taphonomic variation in dinosaur skulls. PMID:23950887

  13. Reduced basis technique for evaluating the sensitivity coefficients of the nonlinear tire response

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    An efficient reduced-basis technique is proposed for calculating the sensitivity of nonlinear tire response to variations in the design variables. The tire is modeled using a 2-D, moderate rotation, laminated anisotropic shell theory, including the effects of variation in material and geometric parameters. The vector of structural response and its first-order and second-order sensitivity coefficients are each expressed as a linear combination of a small number of basis vectors. The effectiveness of the basis vectors used in approximating the sensitivity coefficients is demonstrated by a numerical example involving the Space Shuttle nose-gear tire, which is subjected to uniform inflation pressure.

  14. A new approach to estimate the geometrical factors, solid angle approximation, geometrical efficiency and their use in basic interaction cross section measurements

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.

    2002-10-01

    A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.

  15. MPT Prediction of Aircraft-Engine Fan Noise

    NASA Technical Reports Server (NTRS)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh, the second file defines the geometry variations of each blade in a complete fan. Superposition is used to predict the spectra resulting from the geometric variations.

  16. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation

    PubMed Central

    Ivan Perez, S; Bernal, Valeria; Gonzalez, Paula N

    2006-01-01

    Over the last decade, geometric morphometric methods have been applied increasingly to the study of human form. When too few landmarks are available, outlines can be digitized as series of discrete points. The individual points must be slid along a tangential direction so as to remove tangential variation, because contours should be homologous from subject to subject whereas their individual points need not. This variation can be removed by minimizing either bending energy (BE) or Procrustes distance (D) with respect to a mean reference form. Because these two criteria make different assumptions, it becomes necessary to study how these differences modify the results obtained. We performed bootstrapped-based Goodall's F-test, Foote's measurement, principal component (PC) and discriminant function analyses on human molars and craniometric data to compare the results obtained by the two criteria. Results show that: (1) F-scores and P-values were similar for both criteria; (2) results of Foote's measurement show that both criteria yield different estimates of within- and between-sample variation; (3) there is low correlation between the first PC axes obtained by D and BE; (4) the percentage of correct classification is similar for BE and D, but the ordination of groups along discriminant scores differs between them. The differences between criteria can alter the results when morphological variation in the sample is small, as in the analysis of modern human populations. PMID:16761977

  17. Origin of the X-ray Spectral Variation and Seemingly Broad Iron Line Strucuture in the Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Naoki, Iso

    2012-07-01

    X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.

  18. Poisson regression models outperform the geometrical model in estimating the peak-to-trough ratio of seasonal variation: a simulation study.

    PubMed

    Christensen, A L; Lundbye-Christensen, S; Dethlefsen, C

    2011-12-01

    Several statistical methods of assessing seasonal variation are available. Brookhart and Rothman [3] proposed a second-order moment-based estimator based on the geometrical model derived by Edwards [1], and reported that this estimator is superior in estimating the peak-to-trough ratio of seasonal variation compared with Edwards' estimator with respect to bias and mean squared error. Alternatively, seasonal variation may be modelled using a Poisson regression model, which provides flexibility in modelling the pattern of seasonal variation and adjustments for covariates. Based on a Monte Carlo simulation study three estimators, one based on the geometrical model, and two based on log-linear Poisson regression models, were evaluated in regards to bias and standard deviation (SD). We evaluated the estimators on data simulated according to schemes varying in seasonal variation and presence of a secular trend. All methods and analyses in this paper are available in the R package Peak2Trough[13]. Applying a Poisson regression model resulted in lower absolute bias and SD for data simulated according to the corresponding model assumptions. Poisson regression models had lower bias and SD for data simulated to deviate from the corresponding model assumptions than the geometrical model. This simulation study encourages the use of Poisson regression models in estimating the peak-to-trough ratio of seasonal variation as opposed to the geometrical model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Calibrating SANS data for instrument geometry and pixel sensitivity effects: access to an extended Q range

    PubMed Central

    Karge, Lukas; Gilles, Ralph

    2017-01-01

    An improved data-reduction procedure is proposed and demonstrated for small-angle neutron scattering (SANS) measurements. Its main feature is the correction of geometry- and wavelength-dependent intensity variations on the detector in a separate step from the different pixel sensitivities: the geometric and wavelength effects can be corrected analytically, while pixel sensitivities have to be calibrated to a reference measurement. The geometric effects are treated for position-sensitive 3He proportional counter tubes, where they are anisotropic owing to the cylindrical geometry of the gas tubes. For the calibration of pixel sensitivities, a procedure is developed that is valid for isotropic and anisotropic signals. The proposed procedure can save a significant amount of beamtime which has hitherto been used for calibration measurements. PMID:29021734

  20. Sensitivity of tire response to variations in material and geometric parameters

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    A computational procedure is presented for evaluating the analytic sensitivity derivatives of the tire response with respect to material and geometric parameters of the tire. The tire is modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The computational procedure is applied to the case of uniform inflation pressure on the Space Shuttle nose-gear tire when subjected to uniform inflation pressure. Numerical results are presented showing the sensitivity of the different response quantities to variations in the material characteristics of both the cord and the rubber.

  1. Use of shear horizontal waves to distinguish adhesive thickness variation from reduction in bonding strength.

    PubMed

    Predoi, Mihai Valentin; Ech Cherif El Kettani, Mounsif; Leduc, Damien; Pareige, Pascal; Coné, Khadidiatou

    2015-08-01

    The capability of shear horizontal (SH) guided waves, to evaluate geometrical imperfections in a bonding layer, is investigated. SH waves are used in a three-layer structure in which the adhesive layer has variable thickness. It is proven that the SH waves are adapting to the local thickness of the adhesive layer (adiabatic waves). This is particularly useful in case of small thickness variations, which is of technical interest. The influence of thickness and stiffness of the adhesive layer on the wavenumbers are investigated. The selected SH2 mode is proven to be very sensitive to the adhesive layer thickness variation in the given frequency range and considerably less sensitive to the adhesive stiffness variation. This property is due to its specific displacement field and is important in practical applications, such as inspection techniques based on SH waves, in order to avoid false alarms.

  2. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches

    PubMed Central

    Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo

    2015-01-01

    External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335

  3. Small-Scale Tests of MX Vertical Shelter Structures.

    DTIC Science & Technology

    1983-06-29

    models were built with as much geometric and material similitude as practical. They 7were not identical to the 1/3-scale structures tested in the VST ...comparison with the 1/30-scale models and the 1/6-scale models, the 1/3-scale VST 7 models had different geometry (wall thickness variations), different...1/30-scale and 1/6-scale results with the 1/3-scale VST results. For example, the strains measured in the 1/3-scale ’B’ structure are about twice as

  4. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Ellison, Charles Leland

    Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator assumes coordinates such that one component of the magnetic field is zero; it is shown how to construct such coordinates for nested magnetic surface configurations. Additionally, collisional drag effects are incorporated in the variational guiding center algorithm for the first time, allowing simulation of energetic particle thermalization. Advantages relative to existing canonical-symplectic and non-geometric algorithms are numerically demonstrated. All algorithms have been implemented as part of a modern, parallel, ODE-solving library, suitable for use in high-performance simulations.

  5. Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards.

    PubMed

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-12-20

    A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.

  6. Body size and allometric variation in facial shape in children.

    PubMed

    Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt

    2018-02-01

    Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.

  7. Global geometric morphometric analyses of the human pelvis reveal substantial neutral population history effects, even across sexes.

    PubMed

    Betti, Lia; von Cramon-Taubadel, Noreen; Manica, Andrea; Lycett, Stephen J

    2013-01-01

    Recent applications of population genetic models to human craniodental traits have revealed a strong neutral component to patterns of global variation. However, little work has been undertaken to determine whether neutral processes might also be influencing the postcranium, perhaps due to substantial evidence for selection and plastic environmental responses in these regions. Recent work has provided evidence for neutral effects in the pelvis, but has been limited in regard to shape data (small numbers of linear measurements) and restricted only to males. Here, we use geometric morphometric methods to examine population variation in the human os coxae (pelvic bone) in both males and females. Neutrality is examined via apportionment of variance patterns and fit to an Out-of-Africa serial founder effect model, which is known to structure neutral genetic patterns. Moreover, we compare males and females directly, and the true versus false pelvis, in order to examine potential obstetrical effects. Our results indicate evidence for substantial neutral population history effects on pelvic shape variation. They also reveal evidence for the effect of obstetrical constraints, but these affect males and females to equivalent extents. Our results do not deny an important role for selection in regard to specific aspects of human pelvic variation, especially in terms of features associated with body size and proportions. However, our analyses demonstrate that at a global level, the shape of the os coxae reveals substantial evidence for neutral variation. Our analyses thus indicate that population variation in the human pelvis might be used to address important questions concerning population history, just as the human cranium has done.

  8. Global Geometric Morphometric Analyses of the Human Pelvis Reveal Substantial Neutral Population History Effects, Even across Sexes

    PubMed Central

    Betti, Lia; von Cramon-Taubadel, Noreen; Manica, Andrea; Lycett, Stephen J.

    2013-01-01

    Recent applications of population genetic models to human craniodental traits have revealed a strong neutral component to patterns of global variation. However, little work has been undertaken to determine whether neutral processes might also be influencing the postcranium, perhaps due to substantial evidence for selection and plastic environmental responses in these regions. Recent work has provided evidence for neutral effects in the pelvis, but has been limited in regard to shape data (small numbers of linear measurements) and restricted only to males. Here, we use geometric morphometric methods to examine population variation in the human os coxae (pelvic bone) in both males and females. Neutrality is examined via apportionment of variance patterns and fit to an Out-of-Africa serial founder effect model, which is known to structure neutral genetic patterns. Moreover, we compare males and females directly, and the true versus false pelvis, in order to examine potential obstetrical effects. Our results indicate evidence for substantial neutral population history effects on pelvic shape variation. They also reveal evidence for the effect of obstetrical constraints, but these affect males and females to equivalent extents. Our results do not deny an important role for selection in regard to specific aspects of human pelvic variation, especially in terms of features associated with body size and proportions. However, our analyses demonstrate that at a global level, the shape of the os coxae reveals substantial evidence for neutral variation. Our analyses thus indicate that population variation in the human pelvis might be used to address important questions concerning population history, just as the human cranium has done. PMID:23409086

  9. Effects of Small Oscillations on the Effective Area

    NASA Astrophysics Data System (ADS)

    Cotroneo, V.; Conconi, P.; Cusumano, G.; Pareschi, G.; Spiga, D.; Tagliaferri, G.

    2009-05-01

    We analyze the effective area of the Simbol-X mirrors as a function of the off-axis angle for small oscillations. A reduction is expected due to: 1) geometrical effects, because some of the photons miss the secondary mirror surface; 2) reflectivity effects, caused by the variation of the coating reflectivity with the incidence angle. The former are related to the length of the two mirror surfaces, and can be reduced by making the secondary mirror longer. The second ones are energy-dependent, and strongly related to the characteristics of the reflecting coating. These effects are analyzed by means of ray-tracing simulations in order to optimize the mirror and coating design, aiming to improve the effective area stability.

  10. Regional Variation in the Structural Response and Geometrical Properties of Human Ribs

    PubMed Central

    Cormier, Joseph M.; Stitzel, Joel D.; Duma, Stefan M.; Matsuoka, Fumio

    2005-01-01

    By incorporating material and geometrical properties into a model of the human thorax one can develop an injury criterion that is a function of stress and strain of the material and not a function of the global response of the thorax. Previous research on the mechanical properties of ribs has focused on a limited set of specific ribs. For this study a total of 52 rib specimens were removed from four cadaver subjects. Variation in peak moment by thoracic region was significant (p < 0.01) with average values of 2, 2.9 and 3.9 N-m for the anterior, lateral and posterior regions respectively. Two geometrical properties, radius of gyration and distance from the neutral axis, showed significant variation by region (p < 0.0001) as well as by rib level (p = < 0.01, 0.05). The results of this study can be used to update current models of the human thorax to account for the variation in strength and geometrical properties throughout the rib cage. Accounting for the variation in rib properties by region will improve injury predictive measures and, therefore, the ability to design systems to prevent thoracic injury. PMID:16179146

  11. Geometric Mechanics for Continuous Swimmers on Granular Material

    NASA Astrophysics Data System (ADS)

    Dai, Jin; Faraji, Hossein; Schiebel, Perrin; Gong, Chaohui; Travers, Matthew; Hatton, Ross; Goldman, Daniel; Choset, Howie; Biorobotics Lab Collaboration; LaboratoryRobotics; Applied Mechanics (LRAM) Collaboration; Complex Rheology; Biomechanics Lab Collaboration

    Animal experiments have shown that Chionactis occipitalis(N =10) effectively undulating on granular substrates exhibits a particular set of waveforms which can be approximated by a sinusoidal variation in curvature, i.e., a serpenoid wave. Furthermore, all snakes tested used a narrow subset of all available waveform parameters, measured as the relative curvature equal to 5.0+/-0.3, and number of waves on the body equal to1.8+/-0.1. We hypothesize that the serpenoid wave of a particular choice of parameters offers distinct benefit for locomotion on granular material. To test this hypothesis, we used a physical model (snake robot) to empirically explore the space of serpenoid motions, which is linearly spanned with two independent continuous serpenoid basis functions. The empirically derived height function map, which is a geometric mechanics tool for analyzing movements of cyclic gaits, showed that displacement per gait cycle increases with amplitude at small amplitudes, but reaches a peak value of 0.55 body-lengths at relative curvature equal to 6.0. This work signifies that with shape basis functions, geometric mechanics tools can be extended for continuous swimmers.

  12. Geometric morphometric footprint analysis of young women

    PubMed Central

    2013-01-01

    Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented the major axes of variation in foot morphology: low-arched versus high-arched feet, long and narrow versus short and wide feet, the relative length of the hallux, and the relative length of the forefoot. These shape features varied across the measured individuals without any distinct clusters or discrete types of footprint shape. A high body mass index (BMI) was associated with wide and flat feet, and a high frequency of wearing high-heeled shoes was associated with a larger forefoot area of the footprint and a relatively long hallux. Larger feet had an increased length-to-width ratio of the footprint, a lower-arched foot, and longer toes relative to the remaining foot. Footprint shape differed on average between left and right feet, and the variability of footprint asymmetry increased with BMI. Conclusions Foot shape is affected by lifestyle factors even in a sample of young women (median age 23 years). Geometric morphometrics proved to be a powerful tool for the detailed analysis of footprint shape that is applicable in various scientific disciplines, including forensics, orthopedics, and footwear design. PMID:23886074

  13. The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy.

    PubMed

    Zhang, Lian; Wang, Zhi; Shi, Chengyu; Long, Tengfei; Xu, X George

    2018-05-30

    Deformable image registration (DIR) is the key process for contour propagation and dose accumulation in adaptive radiation therapy (ART). However, currently, ART suffers from a lack of understanding of "robustness" of the process involving the image contour based on DIR and subsequent dose variations caused by algorithm itself and the presetting parameters. The purpose of this research is to evaluate the DIR caused variations for contour propagation and dose accumulation during ART using the RayStation treatment planning system. Ten head and neck cancer patients were selected for retrospective studies. Contours were performed by a single radiation oncologist and new treatment plans were generated on the weekly CT scans for all patients. For each DIR process, four deformation vector fields (DVFs) were generated to propagate contours and accumulate weekly dose by the following algorithms: (a) ANACONDA with simple presetting parameters, (b) ANACONDA with detailed presetting parameters, (c) MORFEUS with simple presetting parameters, and (d) MORFEUS with detailed presetting parameters. The geometric evaluation considered DICE coefficient and Hausdorff distance. The dosimetric evaluation included D 95 , D max , D mean , D min , and Homogeneity Index. For geometric evaluation, the DICE coefficient variations of the GTV were found to be 0.78 ± 0.11, 0.96 ± 0.02, 0.64 ± 0.15, and 0.91 ± 0.03 for simple ANACONDA, detailed ANACONDA, simple MORFEUS, and detailed MORFEUS, respectively. For dosimetric evaluation, the corresponding Homogeneity Index variations were found to be 0.137 ± 0.115, 0.006 ± 0.032, 0.197 ± 0.096, and 0.006 ± 0.033, respectively. The coherent geometric and dosimetric variations also consisted in large organs and small organs. Overall, the results demonstrated that the contour propagation and dose accumulation in clinical ART were influenced by the DIR algorithm, and to a greater extent by the presetting parameters. A quality assurance procedure should be established for the proper use of a commercial DIR for adaptive radiation therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Cross over of recurrence networks to random graphs and random geometric graphs

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2017-02-01

    Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.

  15. Photometric and spectroscopic investigation of the oscillating Algol type binary: EW Boo

    NASA Astrophysics Data System (ADS)

    Doğruel, Mustafa Burak; Gürol, Birol

    2015-10-01

    We obtained the physical and geometrical parameters of the EW Boo system, which exhibits short period and small amplitude pulsations as well as brightness variations due to orbital motion of components. Towards this end we carried out photometric observations at Ankara University Kreiken Observatory (AUKO) as well as spectroscopic observations at TUBITAK National Observatory (TNO). The light and radial velocity curves obtained from these observations have been simultaneously analyzed with PHOEBE and the absolute parameters of the system along with the geometric parameters of the components have been determined. Using model light curves of EW Boo, light curve regions in which the pulsations are active have been determined and as a result of analyses performed in the frequency region, characteristic parameters of pulsations have been obtained. We find that the results are compatible with current parameters of similar systems in the literature. The evolutionary status of the components is propounded and discussed.

  16. Variables separation of the spectral BRDF for better understanding color variation in special effect pigment coatings.

    PubMed

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-06-01

    A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.

  17. A new high-resolution 3-D quantitative method for analysing small morphological features: an example using a Cambrian trilobite.

    PubMed

    Esteve, Jorge; Zhao, Yuan-Long; Maté-González, Miguel Ángel; Gómez-Heras, Miguel; Peng, Jin

    2018-02-12

    Taphonomic processes play an important role in the preservation of small morphological features such as granulation or pits. However, the assessment of these features may face the issue of the small size of the specimens and, sometimes, the destructiveness of these analyses, which makes impossible carrying them out in singular specimen, such as holotypes or lectotypes. This paper takes a new approach to analysing small-morphological features, by using an optical surface roughness (OSR) meter to create a high-resolution three-dimensional digital-elevation model (DEM). This non-destructive technique allows analysing quantitatively the DEM using geometric morphometric methods (GMM). We created a number of DEMs from three populations putatively belonging to the same species of trilobite (Oryctocephalus indicus) that present the same cranidial outline, but differ in the presence or absence of the second and third transglabellar furrows. Profile analysis of the DEMs demonstrate that all three populations show similar preservation variation in the glabellar furrows and lobes. The GMM shows that all populations exhibit the same range of variation. Differences in preservation are a consequence of different degrees of cementation and rates of dissolution. Fast cementation enhances the preservation of glabellar furrows and lobes, while fast dissolution hampers preservation of the same structures.

  18. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  19. Skull shape and size variation within and between mendocinus and torquatus groups in the genus Ctenomys (Rodentia: Ctenomyidae) in chromosomal polymorphism context

    PubMed Central

    Fornel, Rodrigo; Cordeiro-Estrela, Pedro; de Freitas, Thales Renato O.

    2018-01-01

    Abstract We tested the association between chromosomal polymorphism and skull shape and size variation in two groups of the subterranean rodent Ctenomys. The hypothesis is based on the premise that chromosomal rearrangements in small populations, as it occurs in Ctenomys, produce reproductive isolation and allow the independent diversification of populations. The mendocinus group has species with low chromosomal diploid number variation (2n=46-48), while species from the torquatus group have a higher karyotype variation (2n=42-70). We analyzed the shape and size variation of skull and mandible by a geometric morphometric approach, with univariate and multivariate statistical analysis in 12 species from mendocinus and torquatus groups of the genus Ctenomys. We used 763 adult skulls in dorsal, ventral, and lateral views, and 515 mandibles in lateral view and 93 landmarks in four views. Although we expected more phenotypic variation in the torquatus than the mendocinus group, our results rejected the hypothesis of an association between chromosomal polymorphism and skull shape and size variation. Moreover, the torquatus group did not show more variation than mendocinus. Habitat heterogeneity associated to biomechanical constraints and other factors like geography, phylogeny, and demography, may affect skull morphological evolution in Ctenomys. PMID:29668015

  20. Application of Effective Medium Theory to the Three-Dimensional Heterogeneity of Mantle Anisotropy

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2015-12-01

    A self-consistent theory for the effective elastic parameters of stochastic media with small-scale 3D heterogeneities has been developed using a 2nd-order Born approximation to the scattered wavefield (T. H. Jordan, GJI, in press). Here we apply the theory to assess how small-scale variations in the local anisotropy of the upper mantle affect seismic wave propagation. We formulate a anisotropic model in which the local elastic properties are specified by a constant stiffness tensor with hexagonal symmetry of arbitrary orientation. This orientation is guided by a Gaussian random vector field with transversely isotropic (TI) statistics. If the outer scale of the statistical variability is small compared to a wavelength, then the effective seismic velocities are TI and depend on two parameters, a horizontal-to-vertical orientation ratio ξ and a horizontal-to-vertical aspect ratio, η. If ξ = 1, the symmetry axis is isotropically distributed; if ξ < 1, it is vertical biased (bipolar distribution), and if ξ > 1, it is horizontally biased (girdle distribution). If η = 1, the heterogeneity is geometrically isotropic; as η à∞, the medium becomes a horizontal stochastic laminate; as η à0, the medium becomes a vertical stochastic bundle. Using stiffness tensors constrained by laboratory measurements of mantle xenoliths, we explore the dependence of the effective P and S velocities on ξ and η. The effective velocities are strongly controlled by the orientation ratio ξ; e.g., if the hexagonal symmetry axis of the local anisotropy is the fast direction of propagation, then vPH > vPV and vSH > vSV for ξ > 1. A more surprising result is the 2nd-order insensitivity of the velocities to the heterogeneity aspect ratio η. Consequently, the geometrical anisotropy of upper-mantle heterogeneity significantly enhances seismic-wave anisotropy only through local variations in the Voigt-averaged velocities, which depend primarily on rock composition and not deformation history.

  1. Comparative Geostatistical Analysis of Flowmeter and Direct-Push Hydraulic Conductivity Profiles at the MADE Site

    NASA Astrophysics Data System (ADS)

    Bohling, G.; Liu, G.; Knobbe, S. J.; Reboulet, E. C.; Hyndman, D. W.; Dietrich, P.; Butler, J. J.

    2010-12-01

    Spatial variations in hydraulic conductivity (K) are a critical control on subsurface solute transport. Characterization of such variations at the resolution (cm to dm) required for transport investigations, however, has proven to be a formidable challenge. A new generation of direct-push (DP) tools has now been developed for the characterization of vertical K variations at this resolution. These tools, which can be run in high- (0.015-m) and low- (0.4 m) resolution modes, were recently applied to the extensively studied and highly heterogeneous MADE site. Results from a geostatistical analysis of 64 DP K profiles compare favorably with the flowmeter K data that have served as the primary basis for previous MADE studies. The global statistics of the low-resolution DP and flowmeter K data are in excellent agreement. The correlation structures for the high-resolution DP data show excellent agreement with those computed from the flowmeter data. However, the geometric mean DP K value for high-resolution profiling is roughly one order of magnitude lower than the geometric mean flowmeter K value, possibly as a result of the biases inherent in each approach compounded with differences in the areal distribution of flowmeter and DP profile locations. A DP profile through the MADE aquifer to a depth of 12 m can be completed as rapidly as 1.5-2 hours, a small fraction of the time required to obtain a single flowmeter profile when well drilling, installation, and development are considered. The results of this study demonstrate that DP profiling is a practically feasible approach for characterization of spatial variations in K at the resolution required for transport investigations in highly heterogeneous systems.

  2. Geometric factors influencing the diet of vertebrate predators in marine and terrestrial environments

    PubMed Central

    Carbone, Chris; Codron, Daryl; Scofield, Conrad; Clauss, Marcus; Bielby, Jon; Enquist, Brian

    2014-01-01

    Predator–prey relationships are vital to ecosystem function and there is a need for greater predictive understanding of these interactions. We develop a geometric foraging model predicting minimum prey size scaling in marine and terrestrial vertebrate predators taking into account habitat dimensionality and biological traits. Our model predicts positive predator–prey size relationships on land but negative relationships in the sea. To test the model, we compiled data on diets of 794 predators (mammals, snakes, sharks and rays). Consistent with predictions, both terrestrial endotherm and ectotherm predators have significantly positive predator–prey size relationships. Marine predators, however, exhibit greater variation. Some of the largest predators specialise on small invertebrates while others are large vertebrate specialists. Prey–predator mass ratios were generally higher for ectothermic than endothermic predators, although dietary patterns were similar. Model-based simulations of predator–prey relationships were consistent with observed relationships, suggesting that our approach provides insights into both trends and diversity in predator–prey interactions. PMID:25265992

  3. A constrained registration problem based on Ciarlet-Geymonat stored energy

    NASA Astrophysics Data System (ADS)

    Derfoul, Ratiba; Le Guyader, Carole

    2014-03-01

    In this paper, we address the issue of designing a theoretically well-motivated registration model capable of handling large deformations and including geometrical constraints, namely landmark points to be matched, in a variational framework. The theory of linear elasticity being unsuitable in this case, since assuming small strains and the validity of Hooke's law, the introduced functional is based on nonlinear elasticity principles. More precisely, the shapes to be matched are viewed as Ciarlet-Geymonat materials. We demonstrate the existence of minimizers of the related functional minimization problem and prove a convergence result when the number of geometric constraints increases. We then describe and analyze a numerical method of resolution based on the introduction of an associated decoupled problem under inequality constraint in which an auxiliary variable simulates the Jacobian matrix of the deformation field. A theoretical result of 􀀀-convergence is established. We then provide preliminary 2D results of the proposed matching model for the registration of mouse brain gene expression data to a neuroanatomical mouse atlas.

  4. Effect of multiple forming tools on geometrical and mechanical properties in incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Wernicke, S.; Dang, T.; Gies, S.; Tekkaya, A. E.

    2018-05-01

    The tendency to a higher variety of products requires economical manufacturing processes suitable for the production of prototypes and small batches. In the case of complex hollow-shaped parts, single point incremental forming (SPIF) represents a highly flexible process. The flexibility of this process comes along with a very long process time. To decrease the process time, a new incremental forming approach with multiple forming tools is investigated. The influence of two incremental forming tools on the resulting mechanical and geometrical component properties compared to SPIF is presented. Sheets made of EN AW-1050A were formed to frustums of a pyramid using different tool-path strategies. Furthermore, several variations of the tool-path strategy are analyzed. A time saving between 40% and 60% was observed depending on the tool-path and the radii of the forming tools while the mechanical properties remained unchanged. This knowledge can increase the cost efficiency of incremental forming processes.

  5. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  6. Variational principles for dissipative (sub)systems, with applications to the theory of linear dispersion and geometrical optics

    DOE PAGES

    Dodin, I. Y.; Zhmoginov, A. I.; Ruiz, D. E.

    2017-02-24

    Applications of variational methods are typically restricted to conservative systems. Some extensions to dissipative systems have been reported too but require ad hoc techniques such as the artificial doubling of the dynamical variables. We propose a different approach. Here, we show that for a broad class of dissipative systems of practical interest, variational principles can be formulated using constant Lagrange multipliers and Lagrangians nonlocal in time, which allow treating reversible and irreversible dynamics on the same footing. A general variational theory of linear dispersion is formulated as an example. Particularly, we present a variational formulation for linear geometrical optics inmore » a general dissipative medium, which is allowed to be nonstationary, inhomogeneous, anisotropic, and exhibit both temporal and spatial dispersion simultaneously.« less

  7. Distribution and mode of occurrence of selenium in US coals

    USGS Publications Warehouse

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  8. Validation of the Thematic Mapper radiometric and geometric correction algorithms

    NASA Technical Reports Server (NTRS)

    Fischel, D.

    1984-01-01

    The radiometric and geometric correction algorithms for Thematic Mapper are critical to subsequent successful information extraction. Earlier Landsat scanners, known as Multispectral Scanners, produce imagery which exhibits striping due to mismatching of detector gains and biases. Thematic Mapper exhibits the same phenomenon at three levels: detector-to-detector, scan-to-scan, and multiscan striping. The cause of these variations has been traced to variations in the dark current of the detectors. An alternative formulation has been tested and shown to be very satisfactory. Unfortunately, the Thematic Mapper detectors exhibit saturation effects suffered while viewing extensive cloud areas, and is not easily correctable. The geometric correction algorithm has been shown to be remarkably reliable. Only minor and modest improvements are indicated and shown to be effective.

  9. Analysis of zinc binding sites in protein crystal structures.

    PubMed

    Alberts, I L; Nadassy, K; Wodak, S J

    1998-08-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

  10. Total Variation Denoising and Support Localization of the Gradient

    NASA Astrophysics Data System (ADS)

    Chambolle, A.; Duval, V.; Peyré, G.; Poon, C.

    2016-10-01

    This paper describes the geometrical properties of the solutions to the total variation denoising method. A folklore statement is that this method is able to restore sharp edges, but at the same time, might introduce some staircasing (i.e. “fake” edges) in flat areas. Quite surprisingly, put aside numerical evidences, almost no theoretical result are available to backup these claims. The first contribution of this paper is a precise mathematical definition of the “extended support” (associated to the noise-free image) of TV denoising. This is intuitively the region which is unstable and will suffer from the staircasing effect. Our main result shows that the TV denoising method indeed restores a piece-wise constant image outside a small tube surrounding the extended support. Furthermore, the radius of this tube shrinks toward zero as the noise level vanishes and in some cases, an upper bound on the convergence rate is given.

  11. A Fundamental Relationship Between Genotype Frequencies and Fitnesses

    PubMed Central

    Lachance, Joseph

    2008-01-01

    The set of possible postselection genotype frequencies in an infinite, randomly mating population is found. Geometric mean heterozygote frequency divided by geometric mean homozygote frequency equals two times the geometric mean heterozygote fitness divided by geometric mean homozygote fitness. The ratio of genotype frequencies provides a measure of genetic variation that is independent of allele frequencies. When this ratio does not equal two, either selection or population structure is present. Within-population HapMap data show population-specific patterns, while pooled data show an excess of homozygotes. PMID:18780726

  12. Small-on-large geometric anelasticity

    PubMed Central

    2016-01-01

    In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids. PMID:27956887

  13. Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes.

    PubMed

    Lynch, J M; Wood, C G; Luboga, S A

    1996-01-01

    Traditionally, morphometric studies have relied on statistical analysis of distances, angles or ratios to investigate morphometric variation among taxa. Recently, geometric techniques have been developed for the direct analysis of landmark data. In this paper, we offer a summary (with examples) of three of these newer techniques, namely shape coordinate, thin-plate spline and relative warp analyses. Shape coordinate analysis detected significant craniofacial variation between 4 modern human populations, with African and Australian Aboriginal specimens being relatively prognathous compared with their Eurasian counterparts. In addition, the Australian specimens exhibited greater basicranial flexion than all other samples. The observed relationships between size and craniofacial shape were weak. The decomposition of shape variation into affine and non-affine components is illustrated via a thin-plate spline analysis of Homo and Pan cranial landmarks. We note differences between Homo and Pan in the degree of prognathism and basicranial flexion and the position and orientation of the foramen magnum. We compare these results with previous studies of these features in higher primates and discuss the utility of geometric morphometrics as a tool in primatology and physical anthropology. We conclude that many studies of morphological variation, both within and between taxa, would benefit from the graphical nature of these techniques.

  14. A non-invasive geometric morphometrics method for exploring variation in dorsal head shape in urodeles: sexual dimorphism and geographic variation in Salamandra salamandra.

    PubMed

    Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni

    2017-04-01

    The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Geometric Assortative Growth Model for Small-World Networks

    PubMed Central

    2014-01-01

    It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs. PMID:24578661

  16. Hierarchical Forms Processing in Adults and Children

    ERIC Educational Resources Information Center

    Harrison, Tamara B.; Stiles, Joan

    2009-01-01

    Two experiments examined child and adult processing of hierarchical stimuli composed of geometric forms. Adults (ages 18-23 years) and children (ages 7-10 years) performed a forced-choice task gauging similarity between visual stimuli consisting of large geometric objects (global level) composed of small geometric objects (local level). The…

  17. Children's Strategies in Imagining Spatio-Geometrical Transformations.

    ERIC Educational Resources Information Center

    McGillicuddy-De Lisi, Ann V.; De Lisi, Richard

    1981-01-01

    Seventy-five children, 6 to 13 years of age, were assigned to one of five groups on the basis of Piagetian tests of spatial-geometrical knowledge. Subjects imagined and executed three transformations of geometric figures: square-enlargement, diamond enlargement and transformation of a small diamond into a large square. (CM)

  18. Interface Technology for Geometrically Nonlinear Analysis of Multiple Connected Subdomains

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    1997-01-01

    Interface technology for geometrically nonlinear analysis is presented and demonstrated. This technology is based on an interface element which makes use of a hybrid variational formulation to provide for compatibility between independently modeled connected subdomains. The interface element developed herein extends previous work to include geometric nonlinearity and to use standard linear and nonlinear solution procedures. Several benchmark nonlinear applications of the interface technology are presented and aspects of the implementation are discussed.

  19. Pragmatic geometric model evaluation

    NASA Astrophysics Data System (ADS)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to calculate basically two model variations that can be seen as geometric extremes of all available input data. This does not lead to a probability distribution for the spatial position of geometric elements but it defines zones of major (or minor resp.) geometric variations due to data uncertainty. Both model evaluations are then analyzed together to give ranges of possible model outcomes in metric units.

  20. On well-posedness of variational models of charged drops.

    PubMed

    Muratov, Cyrill B; Novaga, Matteo

    2016-03-01

    Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespective of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, as the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast to the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges.

  1. On well-posedness of variational models of charged drops

    PubMed Central

    Novaga, Matteo

    2016-01-01

    Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespective of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, as the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast to the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges. PMID:27118921

  2. The Effects of Magnetic-Field Geometry on Longitudinal Oscillations of Solar Prominences: Cross-Sectional Area Variation for Thin Tubes

    NASA Technical Reports Server (NTRS)

    Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.

    2016-01-01

    Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, Adrian; Skokov, Vladimir

    The conventional and linearly polarized Weizsäcker-Williams gluon distributions at small x are defined from the two-point function of the gluon field in light-cone gauge. They appear in the cross section for dijet production in deep inelastic scattering at high energy. We determine these functions in the small-x limit from solutions of the JIMWLK evolution equations and show that they exhibit approximate geometric scaling. Also, we discuss the functional distributions of these WW gluon distributions over the JIMWLK ensemble at rapidity Y ~ 1/αs. These are determined by a 2d Liouville action for the logarithm of the covariant gauge function g2trmore » A+(q)A+(-q). For transverse momenta on the order of the saturation scale we observe large variations across configurations (evolution trajectories) of the linearly polarized distribution up to several times its average, and even to negative values.« less

  4. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Kettenis, Chris; van Hecke, Martin

    2018-01-01

    The architecture of mechanical metamaterials is designed to harness geometry, nonlinearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. Although a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape changers or topological insulators; a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations--relevant for small systems--and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials.

  5. Influence of Global Shapes on Children's Coding of Local Geometric Information in Small-Scale Spaces

    ERIC Educational Resources Information Center

    Chiang, Noelle C.

    2013-01-01

    This research uses enclosed whole shapes, rather than visual form fragments, to demonstrate that children's use of local geometric information is influenced by global shapes in small-scale spaces. Three- to six-year-old children and adults participated in two experiments with a table-top task. In Experiment 1, participants were presented with a…

  6. Geometrical families of mechanically stable granular packings

    NASA Astrophysics Data System (ADS)

    Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey S.

    2009-12-01

    We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N<16) , we find that the dynamics is deterministic and highly contracting. That is, if the system is initialized in a MS packing at a given shear strain, it will quickly lock into a periodic orbit at subsequent shear strain, and therefore sample only a very small fraction of the possible MS packings in steady state. In studies with N>16 , we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.

  7. Spatio-temporal Variations in Slow Earthquakes along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ide, S.; Maury, J.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2017-12-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here, we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress suggesting the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  8. Spatiotemporal Variations in Slow Earthquakes Along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Maury, J.; Ide, S.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2018-02-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However, some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, and tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress, suggesting that the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  9. A stochastic-geometric model of soil variation in Pleistocene patterned ground

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc

    2013-04-01

    In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.

  10. Constrained variational calculus for higher order classical field theories

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; de León, Manuel; Martín de Diego, David

    2010-11-01

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  11. Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers

    DTIC Science & Technology

    2011-03-01

    human rib cage through geometric morphometrics . J Biomech 41(7): 1545-54, 2008. Kent R, Trowbridge M, Lopez-Valdes FJ, et al. How many people are...to produce similar forces to those of the cadaver subjects (Figure 7). Due to variation in the geometrical characteristics of the cadaver subjects a...Figure 17: Views of 50th male CAD geometrical data. A. External view, transparent fascia, muscle groups and bone. B. Lateral view, transparent bone

  12. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  13. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  14. Nonthermal and geometric effects on the symmetric and anti-symmetric surface waves in a Lorentzian dusty plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-02-15

    The nonthermal and geometric effects on the propagation of the surface dust acoustic waves are investigated in a Lorentzian dusty plasma slab. The symmetric and anti-symmetric dispersion modes of the dust acoustic waves are obtained by the plasma dielectric function with the spectral reflection conditions the slab geometry. The variation of the nonthermal and geometric effects on the symmetric and the anti-symmetric modes of the surface plasma waves is also discussed.

  15. Geometrical Description of Chemical Equilibrium and Le Cha^telier's Principle: Two-Component Systems

    ERIC Educational Resources Information Center

    Novak, Igor

    2018-01-01

    Chemical equilibrium is one of the most important concepts in chemistry. The changes in properties of the chemical system at equilibrium induced by variations in pressure, volume, temperature, and concentration are always included in classroom teaching and discussions. This work introduces a novel, geometrical approach to understanding the…

  16. Dragging in a Dynamic Geometry Environment through the Lens of Variation

    ERIC Educational Resources Information Center

    Leung, Allen

    2008-01-01

    What makes Dynamic Geometry Environment (DGE) a powerful mathematical knowledge acquisition microworld is its ability to visually make explicit the implicit dynamism of thinking about mathematical geometrical concepts. One of DGE's powers is to equip us with the ability to retain the background of a geometrical configuration while we can…

  17. Analytical studies of the Space Shuttle orbiter nose-gear tire

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.; Robinson, Martha P.

    1991-01-01

    A computational procedure is presented for evaluating the analytic sensitivity derivatives of the tire response with respect to material and geometrical properties of the tire. The tire is modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The computational procedure is applied to the case of the Space Shuttle orbiter nose-gear tire subjected to uniform inflation pressure. Numerical results are presented which show the sensitivity of the different tire response quantities to variations in the material characteristics of both the cord and rubber.

  18. Rubik's Tesseract.

    ERIC Educational Resources Information Center

    Velleman, Dan

    1992-01-01

    Through the use of graphic computer simulation, this paper analyzes the combinatorial and geometric mathematics underlying a four-dimensional variation of the Rubik's Cube. This variation is called the Rubik's Tesseract and has dimensions, 3 x 3 x 3 x 3. (JJK)

  19. Naming games in two-dimensional and small-world-connected random geometric networks.

    PubMed

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  20. To 3D or Not to 3D, That Is the Question: Do 3D Surface Analyses Improve the Ecomorphological Power of the Distal Femur in Placental Mammals?

    PubMed Central

    Gould, Francois D. H.

    2014-01-01

    Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081

  1. A Theory for Stability and Buzz Pulsation Amplitude in Ram Jets and an Experimental Investigation Including Scale Effects

    NASA Technical Reports Server (NTRS)

    Trimpi, Robert L

    1956-01-01

    From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)

  2. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.

    PubMed

    Gay, C; Rognon, P; Reinelt, D; Molino, F

    2011-01-01

    Up to a global scaling, the geometry of foams squeezed between two solid plates (2D GG foams) essentially depends on two independent parameters: the liquid volume fraction and the degree of squeezing (bubble thickness to diameter ratio). We describe it in two main asymptotic regimes: fully dry floor tiles, where the Plateau border radius is smaller than the distance between the solid plates, and dry pancakes, where it is larger. We predict a rapid variation of the Plateau border radius in one part of the pancake regime, namely when the Plateau border radius is larger than the inter-plate distance but smaller than the geometric mean of that distance and the bubble perimeter. This rapid variation is not related to any topological change in the foam: in all the regimes we consider, the bubbles remain in mutual lateral contact through films located at mid-height between both plates. We provide asymptotic predictions in different types of experiments on such 2D GG foams: when foam is being progressively dried or wetted, when it is being squeezed further or stretched, when it coarsens through film breakage or through inter-bubble gas diffusion. Our analysis is restricted to configurations close to equilibrium, as we do not include stresses resulting from bulk viscous flow or from non-homogeneous surfactant concentrations. We also assume that the inter-plate distance is sufficiently small for gravity to be negligible. The present work does not provide a method for measuring small Plateau border radii experimentally, but it indicates that large (and easily observable) Plateau borders should appear or disappear rather suddenly in some types of experiments with small inter-plate gaps. It also gives expected orders of magnitude that should be helpful for designing experiments on 2D GG foams.

  3. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  4. Three-dimensional (3D) geometric morphometric analysis of human premolars to assess sexual dimorphism and biological ancestry in Australian populations.

    PubMed

    Yong, Robin; Ranjitkar, Sarbin; Lekkas, Dimitra; Halazonetis, Demetrios; Evans, Alistair; Brook, Alan; Townsend, Grant

    2018-06-01

    This study aimed to investigate size and shape variation of human premolars between Indigenous Australians and Australians of European ancestry, and to assess whether sex and ancestry could be differentiated between these groups using 3D geometric morphometrics. Seventy dental casts from each group, equally subdivided by sex, were scanned using a structured-light scanner. The 3D meshes of upper and lower premolars were processed using geometric morphometric methods. Seventy-two landmarks were recorded for upper premolars and 50 landmarks for lower premolars. For each tooth type, two-way ANOVA was used to assess group differences in centroid size. Shape variations were explored using principal component analysis and visualized using 3D morphing. Two-way Procrustes ANOVA was applied to test group differences for ancestry and sex, and a "leave-one-out" discriminant function was applied to assess group assignment. Centroid size and shape did not display significant difference between the sexes. Centroid size was larger in Indigenous Australians for upper premolars and lower second premolars compared to the Australians of European ancestry. Significant shape variation was noted between the two ancestral groups for upper premolars and the lower first premolar. Correct group assignment of individual teeth to their ancestral groups ranged between 80.0 and 92.8% for upper premolars and 60.0 and 75.7% for lower premolars. Our findings provide evidence of significant size and shape variation in human premolars between the two ancestral groups. High classification rates based on shape analysis of upper premolars highlight potential application of geometric morphometrics in anthropological, bioarcheological and forensic contexts. © 2018 Wiley Periodicals, Inc.

  5. Gate line edge roughness amplitude and frequency variation effects on intra die MOS device characteristics

    NASA Astrophysics Data System (ADS)

    Hamadeh, Emad; Gunther, Norman G.; Niemann, Darrell; Rahman, Mahmud

    2006-06-01

    Random fluctuations in fabrication process outcomes such as gate line edge roughness (LER) give rise to corresponding fluctuations in scaled down MOS device characteristics. A thermodynamic-variational model is presented to study the effects of LER on threshold voltage and capacitance of sub-50 nm MOS devices. Conceptually, we treat the geometric definition of the MOS devices on a die as consisting of a collection of gates. In turn, each of these gates has an area, A, and a perimeter, P, defined by nominally straight lines subject to random process outcomes producing roughness. We treat roughness as being deviations from straightness consisting of both transverse amplitude and longitudinal wavelength each having lognormal distribution. We obtain closed-form expressions for variance of threshold voltage ( Vth), and device capacitance ( C) at Onset of Strong Inversion (OSI) for a small device. Using our variational model, we characterized the device electrical properties such as σ and σC in terms of the statistical parameters of the roughness amplitude and spatial frequency, i.e., inverse roughness wavelength. We then verified our model with numerical analysis of Vth roll-off for small devices and σ due to dopant fluctuation. Our model was also benchmarked against TCAD of σ as a function of LER. We then extended our analysis to predict variations in σ and σC versus average LER spatial frequency and amplitude, and oxide-thickness. Given the intuitive expectation that LER of very short wavelengths must also have small amplitude, we have investigated the case in which the amplitude mean is inversely related to the frequency mean. We compare with the situation in which amplitude and frequency mean are unrelated. Given also that the gate perimeter may consist of different LER signature for each side, we have extended our analysis to the case when the LER statistical difference between gate sides is moderate, as well as when it is significantly large.

  6. Multiscale geometric modeling of macromolecules I: Cartesian representation

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.

  7. Optimal control of underactuated mechanical systems: A geometric approach

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela

    2010-08-01

    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.

  8. Lunar Flight Study Series: Volume 6. A Study of Geometrical and Terminal Characteristics of Earth-Moon Transits Embedded in the Earth-Moon Plane

    NASA Technical Reports Server (NTRS)

    Lisle, B. J.

    1963-01-01

    This report represents the results of a study of coplanar earth-moon transits. The study was initiated to provide information concerning coplanar geometrical characteristics of earth-moon trnasits. The geometrical aspects of transit behavior are related to variations injection conditions. The model of the earth-moon system used in this investigation is the Jacobian model of the restricted three body problem. All transits considered in this study are restricted to the moon-earth plane (MEP).

  9. Rational approach for assumed stress finite elements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.

    1984-01-01

    A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.

  10. Continuous variation caused by genes with graduated effects.

    PubMed Central

    Matthysse, S; Lange, K; Wagener, D K

    1979-01-01

    The classical polygenic theory of inheritance postulates a large number of genes with small, and essentially similar, effects. We propose instead a model with genes of gradually decreasing effects. The resulting phenotypic distribution is not normal; if the gene effects are geometrically decreasing, it can be triangular. The joint distribution of parent and offspring genic value is calculated. The most readily testable difference between the two models is that, in the decreasing-effect model, the variance of the offspring distribution from given parents depends on the parents' genic values. The more the parents deviate from the mean, the smaller the variance of the offspring should be. In the equal-effect model the offspring variance is independent of the parents' genic values. PMID:288073

  11. Variational analysis of the coupling between a geometrically exact Cosserat rod and an elastic continuum

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Schiela, Anton

    2014-12-01

    We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.

  12. Rapid changes in small fish mercury concentrations in estuarine wetlands: Implications for wildlife risk and monitoring programs

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2009-01-01

    Small fish are commonly used to assess mercury (Hg) risk to wildlife and monitor Hg in wetlands. However, limited research has evaluated short-term Hg variability in small fish, which can have important implications for monitoring programs and risk assessment. We conducted a time-series study of Hg concentrations in two small fish species representing benthic (longjaw mudsuckers [Gillichthys mirabilis]) and pelagic (threespine sticklebacks [Gasterosteus aculeatus]) food-webs within three wetland habitats in San Francisco Bay Estuary. We simultaneously monitored prey deliveries, nest initiation, and chick hatching dates of breeding Forster's terns (Sterna forsteri), the most abundant nesting piscivore in the region. Mudsuckers and sticklebacks were the predominant prey fish, comprising 36% and 25% of tern diet, and Hg concentrations averaged (geometric mean ?? SE, ??g/g dw) 0.44 ?? 0.01 and 0.68 ?? 0.03, respectively. Fish Hg concentrations varied substantially over time following a quadratic form in both species, increasing 40% between March and May then decreasing 40% between May and July. Importantly, Forster's terns initiated 68% of nests and 31% of chicks hatched during the period of peak Hg concentrations in prey fish. These results illustrate the importance of short-term temporal variation in small fish Hg concentrations for both Hg monitoring programs and assessing wildlife risk.

  13. LIDAR TS for ITER core plasma. Part III: calibration and higher edge resolution

    NASA Astrophysics Data System (ADS)

    Nielsen, P.; Gowers, C.; Salzmann, H.

    2017-12-01

    Calibration, after initial installation, of the proposed two wavelength LIDAR Thomson Scattering System requires no access to the front end and does not require a foreign gas fill for Raman scattering. As already described, the variation of solid angle of collection with scattering position is a simple geometrical variation over the unvignetted region. The additional loss over the vignetted region can easily be estimated and in the case of a small beam dump located between the Be tiles, it is within the specified accuracy of the density. The only additional calibration is the absolute spectral transmission of the front-end optics. Over time we expect the transmission of the two front-end mirrors to suffer a deterioration mainly due to depositions. The reduction in transmission is likely to be worse towards the blue end of the scattering spectrum. It is therefore necessary to have a method to monitor such changes and to determine its spectral variation. Standard methods use two lasers at different wavelength with a small time separation. Using the two-wavelength approach, a method has been developed to determine the relative spectral variation of the transmission loss, using simply the measured signals in plasmas with peak temperatures of 4-6 keV . Comparing the calculated line integral of the fitted density over the full chord to the corresponding interferometer data we also have an absolute calibration. At the outer plasma boundary, the standard resolution of the LIDAR Thomson Scattering System is not sufficient to determine the edge gradient in an H-mode plasma. However, because of the step like nature of the signal here, it is possible to carry out a deconvolution of the scattered signals, thereby achieving an effective resolution of ~ 1-2 cm in the outer 10-20 cm.

  14. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method.

    PubMed

    Zhu, Meiling; Worthington, Emma; Tiwari, Ashutosh

    2010-01-01

    This paper presents a design study on the geometric parameters of a cantilever-based piezoelectric energy-harvesting devices (EHD), which harvest energy from motion (vibration), for the purpose of scavenging more energy from ambient vibration energy sources. The design study is based on the coupled piezoelectric-circuit finite element method (CPCFEM), previously presented by Dr. Zhu. This model can calculate the power output of piezoelectric EHDS directly connected to a load resistor and is used in this paper to obtain the following simulation results for variations in geometric parameters such as the beam length, width and thickness, and the mass length, width, and height: 1) the current flowing through and the voltage developed across the load resistor, 2) the power dissipated by the resistor and the corresponding vibrational displacement amplitude, and 3) the resonant frequency. By studying these results, straightforward design strategies that enable the generation of more power are obtained for each geometric parameter, and a physical understanding of how each parameter affects the output power is given. It is suggested that, in designing with the aim of generating more power, the following strategies be used: 1) for the beam, a shorter length, larger width, and lower ratio of piezoelectric layer thickness to total beam thickness are preferred in the case of a fixed mass; 2) for the mass, a shortened mass length and a higher mass height are preferred in the case of variation in the mass length and the mass height with mass width and mass value remain fixed, and a wider width and small mass height are preferred in the case of variation in mass width and height (mass length and value remain fixed; and 3) for the case of a fixed total length, a shorter beam length and longer mass length are preferred. With the design strategies, output powers from the device can reach above 1 to 2 mW/cm(3), much higher than the 200 microW/cm(3) currently achieved in the published literature. This is an encouraging prospect for enabling a wider range of applications of the EHDs. In addition, physical insights into how each parameter influences output power are also discussed in detail.

  15. Small-Scale Surf Zone Geometric Roughness

    DTIC Science & Technology

    2017-12-01

    and an image of the tie points can be seen (Figure 6). 23 Figure 6. Screen Shot of Alignment Process On the left side is the workspace which...rest of the points, producing the 3D surface. 24 Figure 7. Screen Shot of Dense Cloud Process On the left side is the workspace which...maximum 200 words) Measurements of small-scale (O(mm)) geometric roughness (kf) associated with breaking wave foam were obtained within the surf zone on

  16. Broadband Spectroscopy Using Two Suzaku Observations of the HMXB GX 301-2

    NASA Technical Reports Server (NTRS)

    Suchy, Slawomir; Fuerst, Felix; Pottschmidt, Katja; Caballero, Isabel; Kreykenbohm, Ingo; Wilms, Joern; Markowitz, Alex; Rothschild, Richard E.

    2012-01-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a CRSF, multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.

  17. Broadband Spectroscopy Using Two Suzaku Observations of the HMXB GX 301-2

    NASA Astrophysics Data System (ADS)

    Suchy, Slawomir; Fürst, Felix; Pottschmidt, Katja; Caballero, Isabel; Kreykenbohm, Ingo; Wilms, Jörn; Markowitz, Alex; Rothschild, Richard E.

    2012-02-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a cyclotron resonance scattering feature (CRSF), multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.

  18. Threatened species richness along a Himalayan elevational gradient: quantifying the influences of human population density, range size, and geometric constraints.

    PubMed

    Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F

    2018-02-07

    A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.

  19. Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task.

    PubMed

    Bimler, David; Kirkland, John; Pichler, Shaun

    2004-02-01

    The structure of color perception can be examined by collecting judgments about color dissimilarities. In the procedure used here, stimuli are presented three at a time on a computer monitor and the spontaneous grouping of most-similar stimuli into gestalts provides the dissimilarity comparisons. Analysis with multidimensional scaling allows such judgments to be pooled from a number of observers without obscuring the variations among them. The anomalous perceptions of color-deficient observers produce comparisons that are represented well by a geometric model of compressed individual color spaces, with different forms of deficiency distinguished by different directions of compression. The geometrical model is also capable of accommodating the normal spectrum of variation, so that there is greater variation in compression parameters between tests on normal subjects than in those between repeated tests on individual subjects. The method is sufficiently sensitive and the variations sufficiently large that they are not obscured by the use of a range of monitors, even under somewhat loosely controlled conditions.

  20. Geometric Characterization of Multi-Axis Multi-Pinhole SPECT

    PubMed Central

    DiFilippo, Frank P.

    2008-01-01

    A geometric model and calibration process are developed for SPECT imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360° rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180° rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging. PMID:18293574

  1. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    DTIC Science & Technology

    2011-04-01

    features – geometric properties of epithelial cells/nuclei and lumens – that are quantified based on H&E stained images as well as FT-IR images of...the samples. By restricting the features used to geometric measures, we sought to mimic the pattern recognition process employed by human experts, and...relatively dark and can be modeled as small elliptical areas in the stained images. This geometrical model is often confounded as multiple nuclei can be

  2. Development of a benchmark factor to detect wrinkles in bending parts

    NASA Astrophysics Data System (ADS)

    Engel, Bernd; Zehner, Bernd-Uwe; Mathes, Christian; Kuhnhen, Christopher

    2013-12-01

    The rotary draw bending process finds special use in the bending of parts with small bending radii. Due to the support of the forming zone during the bending process, semi-finished products with small wall thicknesses can be bent. One typical quality characteristic is the emergence of corrugations and wrinkles at the inside arc. Presently, the standard for the evaluation of wrinkles is insufficient. The wrinkles' distribution along the longitudinal axis of the tube results in an average value [1]. An evaluation of the wrinkles is not carried out. Due to the lack of an adequate basis of assessment, coordination problems between customers and suppliers occur. They result from an imprecision caused by the lack of quantitative evaluability of the geometric deviations at the inside arc. The benchmark factor for the inside arc presented in this article is an approach to holistically evaluate the geometric deviations at the inside arc. The classification of geometric deviations is carried out according to the area of the geometric characteristics and the respective flank angles.

  3. BROADBAND SPECTROSCOPY USING TWO SUZAKU OBSERVATIONS OF THE HMXB GX 301-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchy, Slawomir; Markowitz, Alex; Rothschild, Richard E.

    2012-02-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a cyclotron resonance scattering feature (CRSF), multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set ofmore » geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.« less

  4. Reduction technique for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1995-01-01

    A reduction technique and a computational procedure are presented for predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of the reduction technique, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface.

  5. Riblets for aircraft skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Walsh, Michael J.

    1986-01-01

    Energy conservation and aerodynamic efficiency are the driving forces behind research into methods to reduce turbulent skin friction drag on aircraft fuselages. Fuselage skin friction reductions as small as 10 percent provide the potential for a 250 million dollar per year fuel savings for the commercial airline fleet. One passive drag reduction concept which is relatively simple to implement and retrofit is that of longitudinally grooved surfaces aligned with the stream velocity. These grooves (riblets) have heights and spacings on the order of the turbulent wall streak and burst dimensions. The riblet performance (8 percent net drag reduction thus far), sensitivity to operational/application considerations such as yaw and Reynolds number variation, an alternative fabrication technique, results of extensive parametric experiments for geometrical optimization, and flight test applications are summarized.

  6. Photogrammetry experiments with a model eye.

    PubMed Central

    Rosenthal, A R; Falconer, D G; Pieper, I

    1980-01-01

    Digital photogrammetry was performed on stereophotographs of the optic nerve head of a modified Zeiss model eye in which optic cups of varying depths could be simulated. Experiments were undertaken to determine the impact of both photographic and ocular variables on the photogrammetric measurements of cup depth. The photogrammetric procedure tolerates refocusing, repositioning, and realignment as well as small variations in the geometric position of the camera. Progressive underestimation of cup depth was observed with increasing myopia, while progressive overestimation was noted with increasing hyperopia. High cylindrical errors at axis 90 degrees led to significant errors in cup depth estimates, while high cylindrical errors at axis 180 degrees did not materially affect the accuracy of the analysis. Finally, cup depths were seriously underestimated when the pupil diameter was less than 5.0 mm. Images PMID:7448139

  7. Destabilizing geometrical and bimaterial effects in frictional sliding

    NASA Astrophysics Data System (ADS)

    Aldam, M.; Bar Sinai, Y.; Svetlizky, I.; Fineberg, J.; Brener, E.; Xu, S.; Ben-Zion, Y.; Bouchbinder, E.

    2017-12-01

    Asymmetry of the two blocks forming a fault plane, i.e. the lack of reflection symmetry with respect to the fault plane, either geometrical or material, gives rise to generic destabilizing effects associated with the elastodynamic coupling between slip and normal stress variations. While geometric asymmetry exists in various geophysical contexts, such as thrust faults and landslide systems, its effect on fault dynamics is often overlooked. In the first part of the talk, I will show that geometrical asymmetry alone can destabilize velocity-strengthening faults, which are otherwise stable. I will further show that geometrical asymmetry accounts for a significant weakening effect observed in rupture propagation and present laboratory data that support the theory. In the second part of the talk, I will focus on material asymmetry and discuss an unexpected property of the well-studied frictional bimaterial effect. I will show that while the bimaterial coupling between slip and normal stress variations is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a non-monotonic dependence on the bimaterial contrast. This non-monotonicity is demonstrated for the stability of steady-sliding and for unsteady rupture propagation in faults described by various friction laws (regularized Coulomb, slip-weakening, rate-and-state friction), using analytic and numerical tools. All in all, the importance of bulk asymmetry to interfacial fault dynamics is highlighted. [1] Michael Aldam, Yohai Bar-Sinai, Ilya Svetlizky, Efim A. Brener, Jay Fineberg, and Eran Bouchbinder. Frictional Sliding without Geometrical Reflection Symmetry. Phys. Rev. X, 6(4):041023, 2016. [2] Michael Aldam, Shiqing Xu, Efim A. Brener, Yehuda Ben-Zion, and Eran Bouchbinder. Non-monotonicity of the frictional bimaterial effect. arXiv:1707.01132, 2017.

  8. Specification and preliminary design of the CARTA system for satellite cartography

    NASA Technical Reports Server (NTRS)

    Machadoesilva, A. J. F. (Principal Investigator); Neto, G. C.; Serra, P. R. M.; Souza, R. C. M.; Mitsuo, Fernando Augusta, II

    1984-01-01

    Digital imagery acquired by satellite have inherent geometrical distortion due to sensor characteristics and to platform variations. In INPE a software system for geometric correction of LANDSAT MSS imagery is under development. Such connected imagery will be useful for map generation. Important examples are the generation of LANDSAT image-charts for the Amazon region and the possibility of integrating digital satellite imagery into a Geographic Information System.

  9. Nonlifting wing-body combinations with certain geometric restraints having minimum wave drag at low supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1957-01-01

    Several variational problems involving optimum wing and body combinations having minimum wave drag for different kinds of geometrical restraints are analyzed. Particular attention is paid to the effect on the wave drag of shortening the fuselage and, for slender axially symmetric bodies, the effect of fixing the fuselage diameter at several points or even of fixing whole portions of its shape.

  10. Quantitative detection of cartilage surfaces and ligament geometry of the wrist using an imaging cryomicrotome system.

    PubMed

    Dvinskikh, N A; Blankevoort, L; Foumani, M; Spaan, J A E; Streekstra, G J

    2010-03-22

    Biomechanical models may aid in improving diagnosis and treatment of wrist joint disorders. As input, geometrical information is required for model development. Previous studies acquired some elements of the average wrist joint geometry. However, there is a close geometric functional match between articulating surfaces and ligament geometry. Therefore, biomechanical models need to be fed with the geometric data of individual joints. This study is aimed at acquiring geometric data of cartilage surfaces and ligaments from individual wrist joints by using a cryomicrotome imaging system and the evaluation of inter- and intra-observer variability of the data. The 3D geometry of 30 cartilage surfaces and 15 ligaments in three cadaver wrists was manually detected and quantitatively reconstructed. The inter- and intra-observer variability of the cartilage surface detection was 0.14 and 0.19 mm, respectively. For the position of the radius attachment of the dorsal radiocarpal ligament (DRC), the observer variations were 0.12 and 0.65 mm, for intra-/inter-observer, respectively. For the DRC attachment on the triquetrum, the observer variations were 0.22 and 1.19 mm. Anatomic reconstruction from 3D cryomicrotome images offer a method to obtain unique geometry data of the entire wrist joint for modeling purposes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  11. Fetal head detection and measurement in ultrasound images by a direct inverse randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2005-04-01

    Object detection in ultrasound fetal images is a challenging task for the relatively low resolution and low signal-to-noise ratio. A direct inverse randomized Hough transform (DIRHT) is developed for filtering and detecting incomplete curves in images with strong noise. The DIRHT combines the advantages of both the inverse and the randomized Hough transforms. In the reverse image, curves are highlighted while a large number of unrelated pixels are removed, demonstrating a "curve-pass filtering" effect. Curves are detected by iteratively applying the DIRHT to the filtered image. The DIRHT was applied to head detection and measurement of the biparietal diameter (BPD) and head circumference (HC). No user input or geometric properties of the head were required for the detection. The detection and measurement took 2 seconds for each image on a PC. The inter-run variations and the differences between the automatic measurements and sonographers" manual measurements were small compared with published inter-observer variations. The results demonstrated that the automatic measurements were consistent and accurate. This method provides a valuable tool for fetal examinations.

  12. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    DTIC Science & Technology

    2010-03-01

    lassification a lgorithm u ses mo rphological f eatures – geometric pr operties of epithelial cells/nuclei and lumens – that are quantified based on H&E stained...images as well as FT-IR images of the samples. By restricting the features used to geometric measures, we sought to m imic t he pa ttern r...be modeled as small elliptical areas in the stained images. This geometrical model is often confounded as multiple nuclei can be so close as to ap

  13. Biomechanical implications of intraspecific shape variation in chimpanzee crania: moving towards an integration of geometric morphometrics and finite element analysis

    PubMed Central

    Smith, Amanda L.; Benazzi, Stefano; Ledogar, Justin A.; Tamvada, Kelli; Smith, Leslie C. Pryor; Weber, Gerhard W.; Spencer, Mark A.; Dechow, Paul C.; Grosse, Ian R.; Ross, Callum F.; Richmond, Brian G.; Wright, Barth W.; Wang, Qian; Byron, Craig; Slice, Dennis E.; Strait, David S.

    2014-01-01

    In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P3 and M2. Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only their magnitude. PMID:25529239

  14. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 3: Effects of configuration variations from baseline

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The aerodynamic characteristics of the components of the baseline E205 configuration is presented. Geometric variations from the baseline E205 configuration are also given including a matrix of conrad longitudinal locations and strake shapes.

  15. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  16. Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions

    NASA Astrophysics Data System (ADS)

    Waterman, S.; Lilly, J. M.

    2014-12-01

    Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.

  17. Appropriating Geometric Series as a Cultural Tool: A Study of Student Collaborative Learning

    ERIC Educational Resources Information Center

    Carlsen, Martin

    2010-01-01

    The aim of this article is to illustrate how students, through collaborative small-group problem solving, appropriate the concept of geometric series. Student appropriation of cultural tools is dependent on five sociocultural aspects: involvement in joint activity, shared focus of attention, shared meanings for utterances, transforming actions and…

  18. Interspecific variation in the tetradactyl manus of modern tapirs (Perissodactyla: Tapirus) exposed using geometric morphometrics.

    PubMed

    MacLaren, Jamie A; Nauwelaerts, Sandra

    2017-11-01

    The distal forelimb (autopodium) of quadrupedal mammals is a key morphological unit involved in locomotion, body support, and interaction with the substrate. The manus of the tapir (Perissodactyla: Tapirus) is unique within modern perissodactyls, as it retains the plesiomorphic tetradactyl (four-toed) condition also exhibited by basal equids and rhinoceroses. Tapirs are known to exhibit anatomical mesaxonic symmetry in the manus, although interspecific differences and biomechanical mesaxony have yet to be rigorously tested. Here, we investigate variation in the manus morphology of four modern tapir species (Tapirus indicus, Tapirus bairdii, Tapirus pinchaque, and Tapirus terrestris) using a geometric morphometric approach. Autopodial bones were laser scanned to capture surface shape and morphology was quantified using 3D-landmark analysis. Landmarks were aligned using Generalised Procrustes Analysis, with discriminant function and partial least square analyses performed on aligned coordinate data to identify features that significantly separate tapir species. Overall, our results support the previously held hypothesis that T. indicus is morphologically separate from neotropical tapirs; however, previous conclusions regarding function from morphological differences are shown to require reassessment. We find evidence indicating that T. bairdii exhibits reduced reliance on the lateral fifth digit compared to other tapirs. Morphometric assessment of the metacarpophalangeal joint and the morphology of the distal facets of the lunate lend evidence toward high loading on the lateral digits of both the large T. indicus (large body mass) and the small, long limbed T. pinchaque (ground impact). Our results support other recent studies on T. pinchaque, suggesting subtle but important adaptations to a compliant but inclined habitat. In conclusion, we demonstrate further evidence that the modern tapir forelimb is a variable locomotor unit with a range of interspecific features tailored to habitual and biomechanical needs of each species. © 2017 Wiley Periodicals, Inc.

  19. Hindlimb muscle architecture in non-human great apes and a comparison of methods for analysing inter-species variation

    PubMed Central

    Myatt, Julia P; Crompton, Robin H; Thorpe, Susannah K S

    2011-01-01

    By relating an animal's morphology to its functional role and the behaviours performed, we can further develop our understanding of the selective factors and constraints acting on the adaptations of great apes. Comparison of muscle architecture between different ape species, however, is difficult because only small sample sizes are ever available. Further, such samples are often comprised of different age–sex classes, so studies have to rely on scaling techniques to remove body mass differences. However, the reliability of such scaling techniques has been questioned. As datasets increase in size, more reliable statistical analysis may eventually become possible. Here we employ geometric and allometric scaling techniques, and ancovas (a form of general linear model, GLM) to highlight and explore the different methods available for comparing functional morphology in the non-human great apes. Our results underline the importance of regressing data against a suitable body size variable to ascertain the relationship (geometric or allometric) and of choosing appropriate exponents by which to scale data. ancova models, while likely to be more robust than scaling for species comparisons when sample sizes are high, suffer from reduced power when sample sizes are low. Therefore, until sample sizes are radically increased it is preferable to include scaling analyses along with ancovas in data exploration. Overall, the results obtained from the different methods show little significant variation, whether in muscle belly mass, fascicle length or physiological cross-sectional area between the different species. This may reflect relatively close evolutionary relationships of the non-human great apes; a universal influence on morphology of generalised orthograde locomotor behaviours or, quite likely, both. PMID:21507000

  20. Stress measurement in thin films by geometrical optics

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Gilstrap, P.; Rujkorakarn, R.

    1982-01-01

    A variation of Newton's rings experiment is proposed for measuring film stress. The procedure described, the geometrical optics method, is used to measure radii of curvature for a series of film depositions with Ta, Al, and Mo films. The method has a sensitivity of 1 x 10 to the 9th dyn/sq cm, corresponding to the practical radius limit of about 50 m, and a repeatability usually within five percent. For the purposes of comparison, radii are also measured by Newton's rings method and the Talysurf method; all results are found to be in general agreement. Measurement times are also compared: the geometrical optics method requires only 1/2-1 minute. It is concluded that the geometrical optics method provides an inexpensive, fast, and a reasonably correct technique with which to measure stresses in film.

  1. Spatially varying geometric phase in classically entangled vector beams of light

    NASA Astrophysics Data System (ADS)

    King-Smith, Andrew; Leary, Cody

    We present theoretical results describing a spatially varying geometric (Pancharatnam) phase present in vector modes of light, in which the polarization and transverse spatial mode degrees of freedom exhibit classical entanglement. We propose an experimental setup capable of characterizing this effect, in which a vector mode propagates through a Mach-Zehnder interferometer with a birefringent phase retarder present in one arm. Since the polarization state of a classically entangled light beam exhibits spatial variation across the transverse mode profile, the phase retarder gives rise to a spatially varying geometric phase in the beam propagating through it. When recombined with the reference beam from the other interferometer arm, the presence of the geometric phase is exhibited in the resulting interference pattern. We acknowledge funding from the Research Corporation for Science Advancement by means of a Cottrell College Science Award.

  2. Wing geometry of Phlebotomus stantoni and Sergentomyia hodgsoni from different geographical locations in Thailand.

    PubMed

    Sumruayphol, Suchada; Chittsamart, Boonruam; Polseela, Raxsina; Sriwichai, Patchara; Samung, Yudthana; Apiwathnasorn, Chamnarn; Dujardin, Jean-Pierre

    2017-01-01

    Geographic populations of the two main sandflies genera present in Thailand were studied for species and population identification. Size and shape of Phlebotomus stantoni and Sergentomyia hodgsoni from different island and mainland locations were examined by landmark-based geometric morphometrics. Intraspecific and interspecific wing comparison was carried out based on 12 anatomical landmarks. The wing centroid size of P. stantoni was generally larger than that of S. hodgsoni. Within both species, wings from the continent were significantly larger than those from island populations. Size variation could be significant between geographic locations, but could also overlap between genera. The wing venation geometry showed non-overlapping differences between two species. The within-species variation of geometric shape between different geographical locations was highly significant, but it could not interfere with the interspecies difference. The lack of species overlapping in shape, and the high discrimination between geographic populations, make geometric shape a promising character for future taxonomic and epidemiological studies. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. A taxonomy review of Oreoderus Burmeister, 1842 from China with a geometric morphometric evaluation (Coleoptera, Scarabaeidae, Valgini)

    PubMed Central

    Li, Sha; Ricchiardi, Enrico; Bai, Ming; Yang, Xingke

    2016-01-01

    Abstract The species of the genus Oreoderus are morphologically similar, and can be challenging to distinguish without dissecting the male genitalia. In this study, the Oreoderus species from China are reviewed. Three new species of Oreoderus are described: Oreoderus dasystibialis Li & Yang, sp. n., Oreoderus brevitarsus Li & Yang, sp. n. and Oreoderus oblongus Li & Yang, sp. n. A key of the male Oreoderus and a distribution map are provided. Oreoderus coomani Paulian, 1961 was found as a new record in China. The first description of the female of Oreoderus arrowi Ricchiardi, 2001 is provided. Oreoderus humeralis Gestro, 1891, Oreoderus quadricarinatus Arrow, 1944, Oreoderus crassipes Arrow, 1944, and Oreoderus momeitensis Arrow, 1910 are excluded from the Chinese fauna. Furthermore, we utilize geometric morphometric approaches (GM) to analyze the shape variation of four characters (pronotum, elytra, protibia and aedeagus) in Oreoderus. The morphological variations of Oreoderus and the taxonomic value of each character are discussed. The combined analysis of geometric morphometrics and comparative morphology support recognition of the three new species. PMID:26865816

  4. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  5. Frequency dependent Qα and Qβ in the Umbria-Marche (Italy) region using a quadratic approximation of the coda-normalization method

    NASA Astrophysics Data System (ADS)

    de Lorenzo, Salvatore; Bianco, Francesca; Del Pezzo, Edoardo

    2013-06-01

    The coda normalization method is one of the most used methods in the inference of attenuation parameters Qα and Qβ. Since, in this method, the geometrical spreading exponent γ is an unknown model parameter, the most part of studies assumes a fixed γ, generally equal to 1. However γ and Q could be also jointly inferred from the non-linear inversion of coda-normalized logarithms of amplitudes, but the trade-off between γ and Q could give rise to unreasonable values of these parameters. To minimize the trade-off between γ and Q, an inversion method based on a parabolic expression of the coda-normalization equation has been developed. The method has been applied to the waveforms recorded during the 1997 Umbria-Marche seismic crisis. The Akaike criterion has been used to compare results of the parabolic model with those of the linear model, corresponding to γ = 1. A small deviation from the spherical geometrical spreading has been inferred, but this is accompanied by a significant variation of Qα and Qβ values. For almost all the considered stations, Qα smaller than Qβ has been inferred, confirming that seismic attenuation, in the Umbria-Marche region, is controlled by crustal pore fluids.

  6. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  7. A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island

    NASA Astrophysics Data System (ADS)

    Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun

    2017-01-01

    A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.

  8. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  9. Geometrical optical illusionists.

    PubMed

    Wade, Nicholas J

    2014-01-01

    Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.

  10. Geometric constrained variational calculus I: Piecewise smooth extremals

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2015-05-01

    A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagin's equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagin's algorithm in Hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.

  11. Manufacture of threads with variable pitch by using noncircular gears

    NASA Astrophysics Data System (ADS)

    Slătineanu, L.; Dodun, O.; Coteață, M.; Coman, I.; Nagîț, G.; Beșliu, I.

    2016-08-01

    There are mechanical equipments in which shafts threaded with variable pitch are included. Such a shaft could be met in the case of worm specific to the double enveloping worm gearing. Over the years, the researchers investigated some possibilities to geometrically define and manufacture the shaft zones characterized by a variable pitch. One of the methods able to facilitate the manufacture of threads with variable pitch is based on the use of noncircular gears in the threading kinematic chain for threading by cutting. In order to design the noncircular gears, the mathematical law of pitch variation has to be known. An analysis of pitch variation based on geometrical considerations was developed in the case of a double enveloping globoid worm. Subsequently, on the bases of a proper situation, a numerical model was determined. In this way, an approximately law of pitch variation was determined and it could be taken into consideration when designing the noncircular gears included in the kinematic chain of the cutting machine tool.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  13. Dynamic facial expression recognition based on geometric and texture features

    NASA Astrophysics Data System (ADS)

    Li, Ming; Wang, Zengfu

    2018-04-01

    Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.

  14. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  15. Geometry of quantum Hall states: Gravitational anomaly and transport coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Can, Tankut, E-mail: tcan@scgp.stonybrook.edu; Laskin, Michael; Wiegmann, Paul B.

    2015-11-15

    We show that universal transport coefficients of the fractional quantum Hall effect (FQHE) can be understood as a response to variations of spatial geometry. Some transport properties are essentially governed by the gravitational anomaly. We develop a general method to compute correlation functions of FQH states in a curved space, where local transformation properties of these states are examined through local geometric variations. We introduce the notion of a generating functional and relate it to geometric invariant functionals recently studied in geometry. We develop two complementary methods to study the geometry of the FQHE. One method is based on iteratingmore » a Ward identity, while the other is based on a field theoretical formulation of the FQHE through a path integral formalism.« less

  16. The relaxed-polar mechanism of locally optimal Cosserat rotations for an idealized nanoindentation and comparison with 3D-EBSD experiments

    NASA Astrophysics Data System (ADS)

    Fischle, Andreas; Neff, Patrizio; Raabe, Dierk

    2017-08-01

    The rotation {{polar}}(F) \\in {{SO}}(3) arises as the unique orthogonal factor of the right polar decomposition F = {{polar}}(F) U of a given invertible matrix F \\in {{GL}}^+(3). In the context of nonlinear elasticity Grioli (Boll Un Math Ital 2:252-255, 1940) discovered a geometric variational characterization of {{polar}}(F) as a unique energy-minimizing rotation. In preceding works, we have analyzed a generalization of Grioli's variational approach with weights (material parameters) μ > 0 and μ _c ≥ 0 (Grioli: μ = μ _c). The energy subject to minimization coincides with the Cosserat shear-stretch contribution arising in any geometrically nonlinear, isotropic and quadratic Cosserat continuum model formulated in the deformation gradient field F :=\

  17. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1985-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades.

  18. Adventures in Mathematics: The N-dimensional Journeys. Monograph Number 3.

    ERIC Educational Resources Information Center

    Sanok, Gloria; Vissa, Jeanne

    This monograph presents geometric activities designed to foster curiosity and inquiry on the part of both students and teachers as they explore geometric ideas for 0 to 3 dimensions. Activities can be used in whole class presentation, small groups, or individual study. Grade levels span K-8. Suggested questions promote communication and sharing,…

  19. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  20. Size and shape variations of the bony components of sperm whale cochleae.

    PubMed

    Schnitzler, Joseph G; Frédérich, Bruno; Früchtnicht, Sven; Schaffeld, Tobias; Baltzer, Johannes; Ruser, Andreas; Siebert, Ursula

    2017-04-25

    Several mass strandings of sperm whales occurred in the North Sea during January and February 2016. Twelve animals were necropsied and sampled around 48 h after their discovery on German coasts of Schleswig Holstein. The present study aims to explore the morphological variation of the primary sensory organ of sperm whales, the left and right auditory system, using high-resolution computerised tomography imaging. We performed a quantitative analysis of size and shape of cochleae using landmark-based geometric morphometrics to reveal inter-individual anatomical variations. A hierarchical cluster analysis based on thirty-one external morphometric characters classified these 12 individuals in two stranding clusters. A relative amount of shape variation could be attributable to geographical differences among stranding locations and clusters. Our geometric data allowed the discrimination of distinct bachelor schools among sperm whales that stranded on German coasts. We argue that the cochleae are individually shaped, varying greatly in dimensions and that the intra-specific variation observed in the morphology of the cochleae may partially reflect their affiliation to their bachelor school. There are increasing concerns about the impact of noise on cetaceans and describing the auditory periphery of odontocetes is a key conservation issue to further assess the effect of noise pollution.

  1. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Light Scattering by Ice Crystals Containing Air Bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  3. Relation of average and highest solvent vapor concentrations in workplaces in small to medium enterprises and large enterprises.

    PubMed

    Ukai, Hirohiko; Ohashi, Fumiko; Samoto, Hajime; Fukui, Yoshinari; Okamoto, Satoru; Moriguchi, Jiro; Ezaki, Takafumi; Takada, Shiro; Ikeda, Masayuki

    2006-04-01

    The present study was initiated to examine the relationship between the workplace concentrations and the estimated highest concentrations in solvent workplaces (SWPs), with special references to enterprise size and types of solvent work. Results of survey conducted in 1010 SWPs in 156 enterprises were taken as a database. Workplace air was sampled at > or = 5 crosses in each SWP following a grid sampling strategy. An additional air was grab-sampled at the site where the worker's exposure was estimated to be highest (estimated highest concentration or EHC). The samples were analyzed for 47 solvents designated by regulation, and solvent concentrations in each sample were summed up by use of additiveness formula. From the workplace concentrations at > or = 5 points, geometric mean and geometric standard deviations were calculated as the representative workplace concentration (RWC) and the indicator of variation in workplace concentration (VWC). Comparison between RWC and EHC in the total of 1010 SWPs showed that EHC was 1.2 (in large enterprises with>300 employees) to 1.7 times [in small to medium (SM) enterprises with < or = 300 employees] greater than RWC. When SWPs were classified into SM enterprises and large enterprises, both RWC and EHC were significantly higher in SM enterprises than in large enterprises. Further comparison by types of solvent work showed that the difference was more marked in printing, surface coating and degreasing/cleaning/wiping SWPs, whereas it was less remarkable in painting SWPs and essentially nil in testing/research laboratories. In conclusion, the present observation as discussed in reference to previous publications suggests that RWC, EHC and the ratio of EHC/WRC varies substantially among different types of solvent work as well as enterprise size, and are typically higher in printing SWPs in SM enterprises.

  4. Geometric classification of scalp hair for valid drug testing, 6 more reliable than 8 hair curl groups.

    PubMed

    Mkentane, K; Van Wyk, J C; Sishi, N; Gumedze, F; Ngoepe, M; Davids, L M; Khumalo, N P

    2017-01-01

    Curly hair is reported to contain higher lipid content than straight hair, which may influence incorporation of lipid soluble drugs. The use of race to describe hair curl variation (Asian, Caucasian and African) is unscientific yet common in medical literature (including reports of drug levels in hair). This study investigated the reliability of a geometric classification of hair (based on 3 measurements: the curve diameter, curl index and number of waves). After ethical approval and informed consent, proximal virgin (6cm) hair sampled from the vertex of scalp in 48 healthy volunteers were evaluated. Three raters each scored hairs from 48 volunteers at two occasions each for the 8 and 6-group classifications. One rater applied the 6-group classification to 80 additional volunteers in order to further confirm the reliability of this system. The Kappa statistic was used to assess intra and inter rater agreement. Each rater classified 480 hairs on each occasion. No rater classified any volunteer's 10 hairs into the same group; the most frequently occurring group was used for analysis. The inter-rater agreement was poor for the 8-groups (k = 0.418) but improved for the 6-groups (k = 0.671). The intra-rater agreement also improved (k = 0.444 to 0.648 versus 0.599 to 0.836) for 6-groups; that for the one evaluator for all volunteers was good (k = 0.754). Although small, this is the first study to test the reliability of a geometric classification. The 6-group method is more reliable. However, a digital classification system is likely to reduce operator error. A reliable objective classification of human hair curl is long overdue, particularly with the increasing use of hair as a testing substrate for treatment compliance in Medicine.

  5. Cartographic evaluation of ERTS orbit and attitude data

    NASA Technical Reports Server (NTRS)

    Mcewen, R. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Without the required RBV images, increased attention has been directed toward evaluating the geometric quality of MSS images. A line scan anomaly was identified and analyzed. Successive generations of images have been checked for variations in geometric distortion; it has been consistent. Some recent MSS images have about 250 m rms of relative positional accuracy although earlier images were generally over 300 m. Efforts are continuing to isolate systematic errors in MSS images but present results are inconclusive.

  6. Internal and near nozzle measurements of Engine Combustion Network “Spray G” gasoline direct injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Kastengren, Alan L.; Matusik, Katarzyna E.

    Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. Inmore » order to develop a complete picture of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. In conclusion, these factors increase the likelihood of spray collapse with longer injection durations.« less

  7. Internal and near nozzle measurements of Engine Combustion Network “Spray G” gasoline direct injectors

    DOE PAGES

    Duke, Daniel J.; Kastengren, Alan L.; Matusik, Katarzyna E.; ...

    2017-07-25

    Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. Inmore » order to develop a complete picture of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. In conclusion, these factors increase the likelihood of spray collapse with longer injection durations.« less

  8. Analysis of variability in additive manufactured open cell porous structures.

    PubMed

    Evans, Sam; Jones, Eric; Fox, Pete; Sutcliffe, Chris

    2017-06-01

    In this article, a novel method of analysing build consistency of additively manufactured open cell porous structures is presented. Conventionally, methods such as micro computed tomography or scanning electron microscopy imaging have been applied to the measurement of geometric properties of porous material; however, high costs and low speeds make them unsuitable for analysing high volumes of components. Recent advances in the image-based analysis of open cell structures have opened up the possibility of qualifying variation in manufacturing of porous material. Here, a photogrammetric method of measurement, employing image analysis to extract values for geometric properties, is used to investigate the variation between identically designed porous samples measuring changes in material thickness and pore size, both intra- and inter-build. Following the measurement of 125 samples, intra-build material thickness showed variation of ±12%, and pore size ±4% of the mean measured values across five builds. Inter-build material thickness and pore size showed mean ranges higher than those of intra-build, ±16% and ±6% of the mean material thickness and pore size, respectively. Acquired measurements created baseline variation values and demonstrated techniques suitable for tracking build deviation and inspecting additively manufactured porous structures to indicate unwanted process fluctuations.

  9. Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-12-01

    Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.

  10. Changes in the transmission properties of multi-tooth plasmonic nano-filters (multi-TPNFs) caused by geometrical imperfection

    NASA Astrophysics Data System (ADS)

    Khaksar, A.; Fatemi, H.

    2012-08-01

    To model the filtering behavior of a multi-tooth plasmonic nano-filter (multi-TPNF), an equivalent circuitry composed of a set of serried impedances is considered. The changes caused in its filtering behavior are proposed as a measuring tool to investigate the effect of the geometrical imperfections occurring during the manufacture of the device. Consequently, the effects of changes in the nominal size of each of the geometrical parameters of a multi-TPNF sample, such as its tooth height, d, its tooth width, w, and the separation between two successive teeth, Δ, on its transmittance are investigated. It is observed that each single tooth of the multi-TPNF and also the waveguide between any of its two successive teeth exhibit a very Fabry-Perot interferometer like behavior. The variation of the transmission spectra of a multi-TPNF whose geometrical parameters are imperfect is compared with the desired filter, and also the effect of the number of geometrically imperfect teeth of the multi-TPNF on the filtering spectra is examined.

  11. Inexact trajectory planning and inverse problems in the Hamilton–Pontryagin framework

    PubMed Central

    Burnett, Christopher L.; Holm, Darryl D.; Meier, David M.

    2013-01-01

    We study a trajectory-planning problem whose solution path evolves by means of a Lie group action and passes near a designated set of target positions at particular times. This is a higher-order variational problem in optimal control, motivated by potential applications in computational anatomy and quantum control. Reduction by symmetry in such problems naturally summons methods from Lie group theory and Riemannian geometry. A geometrically illuminating form of the Euler–Lagrange equations is obtained from a higher-order Hamilton–Pontryagin variational formulation. In this context, the previously known node equations are recovered with a new interpretation as Legendre–Ostrogradsky momenta possessing certain conservation properties. Three example applications are discussed as well as a numerical integration scheme that follows naturally from the Hamilton–Pontryagin principle and preserves the geometric properties of the continuous-time solution. PMID:24353467

  12. Conductivity Variation Observed by Polarization and Depolarization Current Measurements of High-Voltage Equipment Insulation System

    NASA Astrophysics Data System (ADS)

    Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah

    2012-09-01

    Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.

  13. BMI and WHR Are Reflected in Female Facial Shape and Texture: A Geometric Morphometric Image Analysis.

    PubMed

    Mayer, Christine; Windhager, Sonja; Schaefer, Katrin; Mitteroecker, Philipp

    2017-01-01

    Facial markers of body composition are frequently studied in evolutionary psychology and are important in computational and forensic face recognition. We assessed the association of body mass index (BMI) and waist-to-hip ratio (WHR) with facial shape and texture (color pattern) in a sample of young Middle European women by a combination of geometric morphometrics and image analysis. Faces of women with high BMI had a wider and rounder facial outline relative to the size of the eyes and lips, and relatively lower eyebrows. Furthermore, women with high BMI had a brighter and more reddish skin color than women with lower BMI. The same facial features were associated with WHR, even though BMI and WHR were only moderately correlated. Yet BMI was better predictable than WHR from facial attributes. After leave-one-out cross-validation, we were able to predict 25% of variation in BMI and 10% of variation in WHR by facial shape. Facial texture predicted only about 3-10% of variation in BMI and WHR. This indicates that facial shape primarily reflects total fat proportion, rather than the distribution of fat within the body. The association of reddish facial texture in high-BMI women may be mediated by increased blood pressure and superficial blood flow as well as diet. Our study elucidates how geometric morphometric image analysis serves to quantify the effect of biological factors such as BMI and WHR to facial shape and color, which in turn contributes to social perception.

  14. The variation of riverbed material due to tropical storms in Shi-Wen River, Taiwan.

    PubMed

    Lin, Chin-Ping; Wang, Yu-Min; Tfwala, Samkele S; Chen, Ching-Nuo

    2014-01-01

    Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively.

  15. The Variation of Riverbed Material due to Tropical Storms in Shi-Wen River, Taiwan

    PubMed Central

    Lin, Chin-Ping; Tfwala, Samkele S.; Chen, Ching-Nuo

    2014-01-01

    Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively. PMID:24526910

  16. Registration methods for nonblind watermark detection in digital cinema applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Philippe; Balter, Raphaele; Montfort, Nicolas; Baudry, Severine

    2003-06-01

    Digital watermarking may be used to enforce copyright protection of digital cinema, by embedding in each projected movie an unique identifier (fingerprint). By identifying the source of illegal copies, watermarking will thus incite movie theatre managers to enforce copyright protection, in particular by preventing people from coming in with a handy cam. We propose here a non-blind watermark method to improve the watermark detection on very impaired sequences. We first present a study on the picture impairments caused by the projection on a screen, then acquisition with a handy cam. We show that images undergo geometric deformations, which are fully described by a projective geometry model. The sequence also undergoes spatial and temporal luminance variation. Based on this study and on the impairments models which follow, we propose a method to match the retrieved sequence to the original one. First, temporal registration is performed by comparing the average luminance variation on both sequences. To compensate for geometric transformations, we used paired points from both sequences, obtained by applying a feature points detector. The matching of the feature points then enables to retrieve the geometric transform parameters. Tests show that the watermark retrieval on rectified sequences is greatly improved.

  17. Three-dimensional rotational micro-angiography

    NASA Astrophysics Data System (ADS)

    Patel, Vikas

    Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.

  18. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes.

    PubMed

    Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi

    2018-07-30

    Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.

    PubMed

    Pindera, Maciej Z; Ding, Hui; Athavale, Mahesh M; Chen, Zhijian

    2009-05-01

    We describe results of numerical simulations of steady flows in tubes with branch bifurcations using fully 3D and reduced 1D geometries. The intent is to delineate the range of validity of reduced models used for simulations of flows in microcapillary networks, as a function of the flow Reynolds number Re. Results from model problems indicate that for Re less than 1 and possibly as high as 10, vasculatures may be represented by strictly 1D Poiseuille flow geometries with flow variation in the axial dimensions only. In that range flow rate predictions in the different branches generated by 1D and 3D models differ by a constant factor, independent of Re. When the cross-sectional areas of the branches are constant these differences are generally small and appear to stem from an uncertainty of how the individual branch lengths are defined. This uncertainty can be accounted for by a simple geometrical correction. For non-constant cross-sections the differences can be much more significant. If additional corrections for the presence of branch junctions and flow area variations are not taken into account in 1D models of complex vasculatures, the resultant flow predictions should be interpreted with caution.

  20. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  1. Compensation of long-range process effects on photomasks by design data correction

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Bloecker, Martin; Ballhorn, Gerd; Belic, Nikola; Eisenmann, Hans; Keogan, Danny

    2002-12-01

    CD requirements for advanced photomasks are getting very demanding for the 100 nm-node and below; the ITRS roadmap requires CD uniformities below 10 nm for the most critical layers. To reach this goal, statistical as well as systematic CD contributions must be minimized. Here, we focus on the reduction of systematic CD variations across the masks that may be caused by process effects, e.g. dry etch loading. We address this topic by compensating such effects via design data correction analogous to proximity correction. Dry etch loading is modeled by gaussian convolution of pattern densities. Data correction is done geometrically by edge shifting. As the effect amplitude has an order of magnitude of 10 nm this can only be done on e-beam writers with small address grids to reduce big CD steps in the design data. We present modeling and correction results for special mask patterns with very strong pattern density variations showing that the compensation method is able to reduce CD uniformity by 50-70% depending on pattern details. The data correction itself is done with a new module developed especially to compensate long-range effects and fits nicely into the common data flow environment.

  2. Impact of roadway geometric features on crash severity on rural two-lane highways.

    PubMed

    Haghighi, Nima; Liu, Xiaoyue Cathy; Zhang, Guohui; Porter, Richard J

    2018-02-01

    This study examines the impact of a wide range of roadway geometric features on the severity outcomes of crashes occurred on rural two-lane highways. We argue that crash data have a hierarchical structure which needs to be addressed in modeling procedure. Moreover, most of previous studies ignored the impact of geometric features on crash types when developing crash severity models. We hypothesis that geometric features are more likely to determine crash type, and crash type together with other occupant, environmental and vehicle characteristics determine crash severity outcome. This paper presents an application of multilevel models to successfully capture both hierarchical structure of crash data and indirect impact of geometric features on crash severity. Using data collected in Illinois from 2007 to 2009, multilevel ordered logit model is developed to quantify the impact of geometric features and environmental conditions on crash severity outcome. Analysis results revealed that there is a significant variation in severity outcomes of crashes occurred across segments which verifies the presence of hierarchical structure. Lower risk of severe crashes is found to be associated with the presence of 10-ft lane and/or narrow shoulders, lower roadside hazard rate, higher driveway density, longer barrier length, and shorter barrier offset. The developed multilevel model offers greater consistency with data generating mechanism and can be utilized to evaluate safety effects of geometric design improvement projects. Published by Elsevier Ltd.

  3. Phenotypic plasticity in haptoral structures of Ligophorus cephali (Monogenea: Dactylogyridae) on the flathead mullet (Mugil cephalus): a geometric morphometric approach.

    PubMed

    Rodríguez-González, Abril; Míguez-Lozano, Raúl; Llopis-Belenguer, Cristina; Balbuena, Juan Antonio

    2015-04-01

    Evaluating phenotypic plasticity in attachment organs of parasites can provide information on the capacity to colonise new hosts and illuminate evolutionary processes driving host specificity. We analysed the variability in shape and size of the dorsal and ventral anchors of Ligophorus cephali from Mugil cephalus by means of geometric morphometrics and multivariate statistics. We also assessed the morphological integration between anchors and between the roots and points in order to gain insight into their functional morphology. Dorsal and ventral anchors showed a similar gradient of overall shape variation, but the amount of localised changes was much higher in the former. Statistical models describing variations in shape and size revealed clear differences between anchors. The dorsal anchor/bar complex seems more mobile than the ventral one in Ligophorus, and these differences may reflect different functional roles in attachment to the gills. The lower residual variation associated with the ventral anchor models suggests a tighter control of their shape and size, perhaps because these anchors seem to be responsible for firmer attachment and their size and shape would allow more effective responses to characteristics of the microenvironment within the individual host. Despite these putative functional differences, the high level of morphological integration indicates a concerted action between anchors. In addition, we found a slight, although significant, morphological integration between roots and points in both anchors, which suggests that a large fraction of the observed phenotypic variation does not compromise the functional role of anchors as levers. Given the low level of genetic variation in our sample, it is likely that much of the morphological variation reflects host-driven plastic responses. This supports the hypothesis of monogenean specificity through host-switching and rapid speciation. The present study demonstrates the potential of geometric morphometrics to provide new and previously unexplored insights into the functional morphology of attachment and evolutionary processes of host-parasite coevolution. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  4. Analytical study on the thermal performance of a partially wet constructal T-shaped fin

    NASA Astrophysics Data System (ADS)

    Hazarika, Saheera Azmi; Zeeshan, Mohd; Bhanja, Dipankar; Nath, Sujit

    2017-07-01

    The present paper addresses the thermal analysis of a T-shaped fin under partially wet condition by adopting a cubic variation of the humidity ratio of saturated air with the corresponding fin surface temperature. The point separating the dry and wet parts may lie either in the flange or stem part of the fin and so, two different cases having different governing equations and boundary conditions are analyzed in this paper. Since the governing equations are highly non-linear, they are solved by using an analytical technique called the Differential Transform Method and subsequently, the dry fin length, temperature distribution and fin performances are evaluated and analyzed for a wide range of the various psychometric, geometric and thermo-physical parameters. Finally, it can be highlighted that relative humidity has a pronounced effect on the performance parameters when the fin surface is partially wet whereas this effect is marginally small for fully wet surface.

  5. Refraction effects on the Galileo probe telemetry carrier frequency

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Spilker, T. R.

    1991-01-01

    As the Galileo probe relay radio link (RRL) signal propagates outward through the Jovian atmosphere, the atmosphere will manifest itself in two ways. First, the geometric path length of the signal is increased, resulting in a small change of the RRL signal departure angle from the proble (transmitter). Secondly, the velocity of the signal is decreased. For a spherical, static atmosphere with a known profile of refractivity versus altitude the effects of refraction on the RRL frequency can be found using a variation of standard ray-tracing techniques, whereby the ray departure angle is found by an iterative process. From the dispersive characteristics of a mixture of hydrogen and helium with trace amounts of methane and ammonia a simple model of the Jovian atmosphere is constructed assuming spherical symmetry and uniform mixing. The contribution to the RRL Doppler frequency arising from refraction is calculated, and its effect on the Doppler wind measurements is discussed.

  6. Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake.

    PubMed

    Maercklin, Nils; Festa, Gaetano; Colombelli, Simona; Zollo, Aldo

    2012-01-01

    The 2011 Tohoku megathrust earthquake had an unexpected size for the region. To image the earthquake rupture in detail, we applied a novel backprojection technique to waveforms from local accelerometer networks. The earthquake began as a small-size twin rupture, slowly propagating mainly updip and triggering the break of a larger-size asperity at shallower depths, resulting in up to 50 m slip and causing high-amplitude tsunami waves. For a long time the rupture remained in a 100-150 km wide slab segment delimited by oceanic fractures, before propagating further to the southwest. The occurrence of large slip at shallow depths likely favored the propagation across contiguous slab segments and contributed to build up a giant earthquake. The lateral variations in the slab geometry may act as geometrical or mechanical barriers finally controlling the earthquake rupture nucleation, evolution and arrest.

  7. Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake

    PubMed Central

    Maercklin, Nils; Festa, Gaetano; Colombelli, Simona; Zollo, Aldo

    2012-01-01

    The 2011 Tohoku megathrust earthquake had an unexpected size for the region. To image the earthquake rupture in detail, we applied a novel backprojection technique to waveforms from local accelerometer networks. The earthquake began as a small-size twin rupture, slowly propagating mainly updip and triggering the break of a larger-size asperity at shallower depths, resulting in up to 50 m slip and causing high-amplitude tsunami waves. For a long time the rupture remained in a 100–150 km wide slab segment delimited by oceanic fractures, before propagating further to the southwest. The occurrence of large slip at shallow depths likely favored the propagation across contiguous slab segments and contributed to build up a giant earthquake. The lateral variations in the slab geometry may act as geometrical or mechanical barriers finally controlling the earthquake rupture nucleation, evolution and arrest. PMID:23050093

  8. Intrathoracic pressure variations in an anthropomorphic dummy exposed to air blast, blunt impact, and missiles.

    PubMed

    Jönsson, A; Arvebo, E; Schantz, B

    1988-01-01

    Experiments with an anthropomorphic dummy for blast research demonstrated that pressures recorded in the lung model of the dummy could be correlated to primary air blast effects on the lungs of experimental animals. The results presented here were obtained with a dummy of the type mentioned above, but with the lung model modified to improve geometric similarity to man. Blast experiments were performed in a shock tube, and impact experiments in a special impact machine. Experiments with nonpenetrating missiles were performed with small-caliber firearms and the dummy protected by body armor. Severity indices derived from the blast experiments were related to established criteria for primary lung injury in man. Impacts delivered in the impact machine and by nonpenetrating missiles are compared. Relationships between severity of impact based on experiments with animals and primary lung injury in man are discussed.

  9. Density estimation using the trapping web design: A geometric analysis

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.

    1994-01-01

    Population densities for small mammal and arthropod populations can be estimated using capture frequencies for a web of traps. A conceptually simple geometric analysis that avoid the need to estimate a point on a density function is proposed. This analysis incorporates data from the outermost rings of traps, explaining large capture frequencies in these rings rather than truncating them from the analysis.

  10. AutoCAD-To-NASTRAN Translator Program

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1989-01-01

    Program facilitates creation of finite-element mathematical models from geometric entities. AutoCAD to NASTRAN translator (ACTON) computer program developed to facilitate quick generation of small finite-element mathematical models for use with NASTRAN finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Written in Microsoft Quick-Basic (Version 2.0).

  11. Actual Romanian research in post-newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Mioc, V.; Stavinschi, M.

    2007-05-01

    We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.

  12. Thermodynamics of water structural reorganization due to geometric confinement

    NASA Astrophysics Data System (ADS)

    Stroberg, Wylie; Lichter, Seth

    2015-03-01

    Models of aqueous solvation have successfully quantified the behavior of water near convex bodies. However, many important processes occurring in aqueous solution involve interactions between solutes and surfaces with complicated non-convex geometries. Examples include the folding of proteins, hydrophobic association of solutes, ligand-receptor binding, and water confined within nanotubes and pores. For these geometries, models for solvation of convex bodies fail to account for the added interactions associated with structural confinement. Due to water's propensity to form networks of hydrogen bonds, small alterations to the confining geometry can induce large structural rearrangement within the water. We perform systematic Monte Carlo simulations of water confined to cylindrical cavities of varying aspect ratio to investigate how small geometric changes to the confining geometry may cause large changes to the structure and thermodynamic state of water. Using the Wang-Landau algorithm, we obtain free energies, enthalpies, entropies, and heat capacities across a broad range of temperatures, and show how these quantities are influenced by the structural rearrangement of water molecules due to geometric perturbations.

  13. On the Stator Slot Geometry of a Cable Wound Generator for Hydrokinetic Energy Conversion

    PubMed Central

    Grabbe, Mårten; Leijon, Mats

    2015-01-01

    The stator slot geometry of a cable wound permanent magnet synchronous generator for hydrokinetic energy conversion is evaluated. Practical experience from winding two cable wound generators is used to propose optimized dimensions of different parts in the stator slot geometry. A thorough investigation is performed through simulations of how small geometrical changes alter the generator performance. The finite element method (FEM) is used to model the generator and the simulations show that small changes in the geometry can have large effect on the performance of the generator. Furthermore, it is concluded that the load angle is especially sensitive to small geometrical changes. A new generator design is proposed which shows improved efficiency, reduced weight, and a possibility to decrease the expensive permanent magnet material by almost one-fifth. PMID:25879072

  14. Preliminary shape analysis of the outline of the baropodometric foot: patterns of covariation, allometry, sex and age differences, and loading variations.

    PubMed

    Bruner, E; Mantini, S; Guerrini, V; Ciccarelli, A; Giombini, A; Borrione, P; Pigozzi, F; Ripani, M

    2009-09-01

    Baropodometrical digital techniques map the pressures exerted on the foot plant during both static and dynamic loadings. The study of the distribution of such pressures makes it possible to evaluate the postural and locomotory biomechanics together with its pathological variations. This paper is aimed at evaluating the integration between baropodometric analysis (pressure distribution) and geometrical models (shape of the footprints), investigating the pattern of variation associated with normal plantar morphology. The sample includes 91 individuals (47 males, 44 females), ranging from 5 to 85 years of age (mean and standard deviation = 40 + or - 24).The first component of variation is largely associated with the breadth of the isthmus, along a continuous gradient of increasing/decreasing flattening of the foot plant. This character being dominant upon the whole set of morphological components even in a non-pathological sample, such multivariate computation may represent a good diagnostic tool to quantify its degree of expression in individual subject or group samples. Sexual differences are not significant, and allometric variations associated with increasing plantar surface or stature are not quantitatively relevant. There are some differences between adult and young individuals, associated in the latter with a widening of the medial and posterior areas. These results provide a geometrical framework of baropodometrical analysis, suggesting possible future applications in diagnosis and basic research.

  15. Laser beam micro-milling of nickel alloy: dimensional variations and RSM optimization of laser parameters

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Naveed, Madiha

    2016-12-01

    Micro-channels are considered as the integral part of several engineering devices such as micro-channel heat exchangers, micro-coolers, micro-pulsating heat pipes and micro-channels used in gas turbine blades for aerospace applications. In such applications, a fluid flow is required to pass through certain micro-passages such as micro-grooves and micro-channels. The fluid flow characteristics (flow rate, turbulence, pressure drop and fluid dynamics) are mainly established based on the size and accuracy of micro-passages. Variations (oversizing and undersizing) in micro-passage's geometry directly affect the fluid flow characteristics. In this study, the micro-channels of several sizes are fabricated in well-known aerospace nickel alloy (Inconel 718) through laser beam micro-milling. The variations in geometrical characteristics of different-sized micro-channels are studied under the influences of different parameters of Nd:YAG laser. In order to have a minimum variation in the machined geometries of each size of micro-channel, the multi-objective optimization of laser parameters has been carried out utilizing the response surface methodology approach. The objective was set to achieve the targeted top widths and depths of micro-channels with minimum degree of taperness associated with the micro-channel's sidewalls. The optimized sets of laser parameters proposed for each size of micro-channel can be used to fabricate the micro-channels in Inconel 718 with minimum amount of geometrical variations.

  16. Analogue modeling for science outreach: glacier flows at Antarctic National Museum, Italy

    NASA Astrophysics Data System (ADS)

    Zeoli, A.; Corti, G.; Folco, L.; Ossola, C.

    2012-12-01

    Comprehension of internal deformation and of ice flow in the Antarctic ice sheet in relation with the bedrock topography and with the thickness variation induced by climatic variations represent an important target for the scientific community. Analogue modelling technique aims to analyze geological or geomorphological processes through physical models built at a reduced geometrical scale in laboratory and deformed at reasonable scale of times. Corti et al. (2003 and 2008) have shown that this technique could also be used successfully for ice flow dynamic. Moreover, this technique gives a three-dimensional view of the processes. The models, that obviously simplify the geometry and rheology of natural processes, represent a geometrically, cinematically, dynamically and rheologically scaled analogue of the natural glacial environment. Following a procedure described in previous papers, proper materials have been selected to simulate the rheological behaviour of ice. In particular, during the experiments a Polydimethilsyloxane (PDMS) has been used to simulate glacial flow. PDMS is a transparent Newtonian silicone with a viscosity of 1.4 104 Pa s and a density of 965 kg m-3 (see material properties in Weijermars, 1986). The scaling of the model to natural conditions let to obtain reliable results for a correct comparison with the glacial processes under investigation. Models have been built with a with a geometrical scaling ratio of ~1.5 10-5, such that 1 cm in the model represents ~700 m in nature. The physical models have been deformed in terrestrial gravity field by allowing the PDMS to flow inside a Plexiglas box. In particular, the silicone has been poured inside the Plexiglas box and allowed to settle in order to obtain a flat free surface; the box has been then inclined of some degrees in order to allow the silicone to flow. Several boxes illustrating different glacial processes have been realized; each of them could be easily performed in short time and in standard laboratories. One of the main aims of the Antarctic National Museum in Siena (Italy) is to establish a strategy to deliver results to a broader scientific community. Time and spatial small scale of the experiments lead the analogue modeling technique easy to be shown to non-technical audiences through direct participation during Museum visits. All these experiments engage both teachers and students from primary and secondary schools and the general public.

  17. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  18. Modification of smoothing in 4253H[T

    NASA Astrophysics Data System (ADS)

    Azmi, Nurul Nisa'Khairol; Adam, Mohd Bakri; Shitan, Mahendran; Ali, Norhaslinda Mohd

    2017-05-01

    Some modified non-linear smoothers particularly 4253H[T] are explained in this paper. The modifications are focused on estimating the middle point of running median for even span by applying the following types of means; geometric, harmonic, quadratic and contraharmonic. The performance of the techniques is assessed by applying it to daily price index of a bank in Malaysia that issues sukuk for funding in Islamic banking and financial business. The results show that 4253H[T] with geometric mean modification is better than others in preserving variation and curve fitting.

  19. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  20. Frictionless contact of aircraft tires

    NASA Technical Reports Server (NTRS)

    Kim, Kyun O.; Tanner, John A.; Noor, Ahmed K.

    1989-01-01

    A computational procedure for the solution of frictionless contact problems of spacecraft tires was developed using a two-dimensional laminated anisotropic shell theory incorporating the effects of variations in material and geometric parameters, transverse shear deformation, and geometric nonlinearities to model the nose-gear tire of a space shuttle. Numerical results are presented for the case when the nose-gear tire is subjected to inflation pressure and pressed against a rigid pavement. The results are compared with experimental results obtained at NASA Langley, demonstrating a high accuracy of the model and the effectiveness of the computational procedure.

  1. Full-Field Stress Determination Around Circular Discontinuity in a Tensile-Loaded Plate using x-displacements Only

    NASA Astrophysics Data System (ADS)

    Baek, Tae Hyun; Chung, Tae Jin; Panganiban, Henry

    The significant effects of stress raisers demand well-defined evaluation techniques to accurately determine the stress along the geometric boundary. A simple and accurate method for the determination of stress concentration around circular geometric discontinuity in a tensile-loaded plate is illustrated. The method is based on the least-squares technique, mapping functions, and a complex power series representation (Laurent series) of the stress functions for the calculation of tangential stress around the hole. Traction-free conditions were satisfied at the geometric discontinuity using conformal mapping and analytic continuation. In this study, we use only a relatively small amount of x-component displacement data of points away from the discontinuity of concern with their respective coordinates. Having this information we can easily obtain full-field stresses at the edge of the geometric discontinuity. Excellent results were obtained when the number of terms of the power series expansions, m=1. The maximum stress concentration calculation results using the present method and FEM using ANSYS agree well by less than one per cent difference. Experimental advantage of the method underscores the use of relatively small amount of data which are conveniently determined being away from the edge. Moreover, the small amount of measured input data needed affords the approach suitable for applications such as the multi-parameter concept used to obtain stress intensity factors from measured data. The use of laser speckle interferometry and moiré interferometry are also potential future related fields since the optical system for one-directional measurement is much simple.

  2. Geometrical optics approach in liquid crystal films with three-dimensional director variations.

    PubMed

    Panasyuk, G; Kelly, J; Gartland, E C; Allender, D W

    2003-04-01

    A formal geometrical optics approach (GOA) to the optics of nematic liquid crystals whose optic axis (director) varies in more than one dimension is described. The GOA is applied to the propagation of light through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeotropic to multidomainlike transition (HMD cell). Properties of the GOA solution are explored, and comparison with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct computer calculation and a previously developed simplified model, are in good agreement.

  3. Viscous pulsational instability of the transonic region of isothermal geometrically thin accretion discs. I - Analytical results

    NASA Astrophysics Data System (ADS)

    Kato, Shoji; Honma, Fumio; Matsumoto, Ryoji

    1988-03-01

    Viscous instability of the transonic region of the conventional geometrically thin alpha-type accretion disks is examined analytically. For simplicity, isothermal disks and isothermal perturbations are assumed. It is found that when the value of alpha is larger than a critical value the disk is unstable against two types of perturbations. One is local propagating perturbations of inertial acoustic waves. Results suggest the possibility that unstable perturbations develop to overstable global oscillations which are restricted only in the innermost region of the disk. The other is standing growing perturbations localized just at the transonic point. The cause of these instabilities is that the azimuthal component of the Lagrangian velocity variation associated with the perturbations becomes in phase with the variation of the viscous stress force. Because of this phase matching work is done on perturbations, and they are amplified.

  4. High frequency scattering from a thin lossless dielectric slab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Burgener, K. W.

    1979-01-01

    A solution for scattering from a thin dielectric slab is developed based on geometrical optics and the geometrical theory of diffraction with the intention of developing a model for a windshield of a small private aircraft for incorporation in an aircraft antenna code. Results of the theory are compared with experimental measurements and moment method calculations showing good agreement. Application of the solution is also addressed.

  5. Certified Reduced Basis Model Characterization: a Frequentistic Uncertainty Framework

    DTIC Science & Technology

    2011-01-11

    14) It then follows that the Legendre coefficient random vector, (Z [0], Z [1], . . . , Z [I])(ω), is (I+1)– variate normally distributed with mean (δ...I. Note each two-sided inequality represents two constraints. 3. PDE-Based Statistical Inference We now proceed to the parametrized partial...appearance of defects or geometric variations relative to an initial baseline, or perhaps manufacturing departures from nominal specifications; if our

  6. Shell shape variation of queen conch Strombus gigas (Mesograstropoda: Strombidae) from Southwest Caribbean.

    PubMed

    Márquez, Edna Judith; Restrepo-Escobar, Natalia; Montoya-Herrera, Francisco Luis

    2016-12-01

    The endangered species Strombus gigas is a marine gastropod of significant economic importance through the Greater Caribbean region. In contrast to phenotypic plasticity, the role of genetics on shell variations in S. gigas has not been addressed so far, despite its importance in evolution, management and conservation of this species. This work used geometric morphometrics to investigate the phenotypic variation of 219 shells of S. gigas from eight sites of the Colombian Southwest Caribbean. Differences in mean size between sexes and among sites were contrasted by analysis of variance. Allometry was tested by multivariate regression and the hypothesis of common slope was contrasted by covariance multivariate analysis. Differences in the shell shape among sites were analyzed by principal component analysis. Sexual size dimorphism was not significant, whereas sexual shape dimorphism was significant and variable across sites. Differences in the shell shape among sites were concordant with genetic differences based on microsatellite data, supporting its genetic background. Besides, differences in the shell shape between populations genetically similar suggest a role of phenotypic plasticity in the morphometric variation of the shell shape. These outcomes evidence the role of genetic background and phenotypic plasticity in the shell shape of S. gigas. Thus, geometric morphometrics of shell shape may constitute a complementary tool to explore the genetic diversity of this species.

  7. Acquision of Geometrical Data of Small Rivers with AN Unmanned Water Vehicle

    NASA Astrophysics Data System (ADS)

    Sardemann, H.; Eltner, A.; Maas, H.-G.

    2018-05-01

    Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs) will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV) is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub-) catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle) based point clouds are fused.

  8. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a truly quantum regime, and allows, for the first time, the measurements of such phases associated with arbitrary non-cyclic evolutions of entangled linear-momentum photon -states. This non-classical manifestation of the geometrical phases is due to the entangled character of linear-momentum photon-states of two correlated photons produced by parametric down-conversion in non-linear crystals. Finally, the non-local aspect of the geometrical phase is contrasted with the fundamental non-locality of quantum mechanics due to the entangled character of quantum states.

  9. BMI and WHR Are Reflected in Female Facial Shape and Texture: A Geometric Morphometric Image Analysis

    PubMed Central

    Mayer, Christine; Windhager, Sonja; Schaefer, Katrin; Mitteroecker, Philipp

    2017-01-01

    Facial markers of body composition are frequently studied in evolutionary psychology and are important in computational and forensic face recognition. We assessed the association of body mass index (BMI) and waist-to-hip ratio (WHR) with facial shape and texture (color pattern) in a sample of young Middle European women by a combination of geometric morphometrics and image analysis. Faces of women with high BMI had a wider and rounder facial outline relative to the size of the eyes and lips, and relatively lower eyebrows. Furthermore, women with high BMI had a brighter and more reddish skin color than women with lower BMI. The same facial features were associated with WHR, even though BMI and WHR were only moderately correlated. Yet BMI was better predictable than WHR from facial attributes. After leave-one-out cross-validation, we were able to predict 25% of variation in BMI and 10% of variation in WHR by facial shape. Facial texture predicted only about 3–10% of variation in BMI and WHR. This indicates that facial shape primarily reflects total fat proportion, rather than the distribution of fat within the body. The association of reddish facial texture in high-BMI women may be mediated by increased blood pressure and superficial blood flow as well as diet. Our study elucidates how geometric morphometric image analysis serves to quantify the effect of biological factors such as BMI and WHR to facial shape and color, which in turn contributes to social perception. PMID:28052103

  10. Sensitivity of shock boundary-layer interactions to weak geometric perturbations

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Eaton, John K.

    2016-11-01

    Shock-boundary layer interactions can be sensitive to small changes in the inlet flow and boundary conditions. Robust computational models must capture this sensitivity, and validation of such models requires a suitable experimental database with well-defined inlet and boundary conditions. To that end, the purpose of this experiment is to systematically document the effects of small geometric perturbations on a SBLI flow to investigate the flow physics and establish an experimental dataset tailored for CFD validation. The facility used is a Mach 2.1, continuous operation wind tunnel. The SBLI is generated using a compression wedge; the region of interest is the resulting reflected shock SBLI. The geometric perturbations, which are small spanwise rectangular prisms, are introduced ahead of the compression ramp on the opposite wall. PIV is used to study the SBLI for 40 different perturbation geometries. Results show that the dominant effect of the perturbations is a global shift of the SBLI itself. In addition, the bumps introduce weaker shocks of varying strength and angles, depending on the bump height and location. Various scalar validation metrics, including a measure of shock unsteadiness, and their uncertainties are also computed to better facilitate CFD validation. Ji Hoon Kim is supported by an OTR Stanford Graduate Fellowship.

  11. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  12. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, B., E-mail: bbora@cchen.cl

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found tomore » work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.« less

  13. A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices

    PubMed Central

    Schein, Stan; Friedrich, Tara

    2008-01-01

    Carbon atoms self-assemble into the famous soccer-ball shaped Buckminsterfullerene (C60), the smallest fullerene cage that obeys the isolated-pentagon rule (IPR). Carbon atoms self-assemble into larger (n > 60 vertices) empty cages as well—but only the few that obey the IPR—and at least 1 small fullerene (n ≤ 60) with adjacent pentagons. Clathrin protein also self-assembles into small fullerene cages with adjacent pentagons, but just a few of those. We asked why carbon atoms and clathrin proteins self-assembled into just those IPR and small cage isomers. In answer, we described a geometric constraint—the head-to-tail exclusion rule—that permits self-assembly of just the following fullerene cages: among the 5,769 possible small cages (n ≤ 60 vertices) with adjacent pentagons, only 15; the soccer ball (n = 60); and among the 216,739 large cages with 60 < n ≤ 84 vertices, only the 50 IPR ones. The last finding was a complete surprise. Here, by showing that the largest permitted fullerene with adjacent pentagons is one with 60 vertices and a ring of interleaved hexagons and pentagon pairs, we prove that for all n > 60, the head-to-tail exclusion rule permits only (and all) fullerene cages and nanotubes that obey the IPR. We therefore suggest that self-assembly that obeys the IPR may be explained by the head-to-tail exclusion rule, a geometric constraint. PMID:19050075

  14. Traits drive global wood decomposition rates more than climate.

    PubMed

    Hu, Zhenhong; Michaletz, Sean T; Johnson, Daniel J; McDowell, Nate G; Huang, Zhiqun; Zhou, Xuhui; Xu, Chonggang

    2018-06-14

    Wood decomposition is a major component of the global carbon cycle. Decomposition rates vary across climate gradients, which is thought to reflect the effects of temperature and moisture on the metabolic kinetics of decomposers. However, decomposition rates also vary with wood traits, which may reflect the influence of stoichiometry on decomposer metabolism as well as geometry relating the surface areas that decomposers colonize with the volumes they consume. In this paper, we combined metabolic and geometric scaling theories to formalize hypotheses regarding the drivers of wood decomposition rates, and assessed these hypotheses using a global compilation of data on climate, wood traits, and wood decomposition rates. Our results are consistent with predictions from both metabolic and geometric scaling theories. Approximately half of the global variation in decomposition rates was explained by wood traits (nitrogen content and diameter), while only a fifth was explained by climate variables (air temperature, precipitation, and relative humidity). These results indicate that global variation in wood decomposition rates is best explained by stoichiometric and geometric wood traits. Our findings suggest that inclusion of wood traits in global carbon cycle models can improve predictions of carbon fluxes from wood decomposition. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  16. Complex quantum network geometries: Evolution and phase transitions.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  17. Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

    PubMed Central

    Alerstam, Thomas; Rosén, Mikael; Bäckman, Johan; Ericson, Per G. P; Hellgren, Olof

    2007-01-01

    Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)1/6 and (wing loading)1/2 among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, U e) of 138 species, ranging 0.01–10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of U e in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in U e. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in U e. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading. PMID:17645390

  18. Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site.

    PubMed

    Rosas, Antonio; Bastir, Markus

    2004-06-01

    Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.

  19. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.

    1990-01-01

    An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.

  20. The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1975-01-01

    The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.

  1. STATIC ANALYSIS OF SHELLS OF REVOLUTION USING DOUBLY-CURVED QUADRILATERAL ELEMENTS DERIVED FROM ALTERNATE VARIATIONAL MODELS.

    DTIC Science & Technology

    geometrical shape of the finite element in both of the models is a doubly-curved quadrilateral element whose edge curves are the lines-of-curvature coordinates employed to define the shell midsurface . (Author)

  2. Dentary Morphological Variation in Clevosaurus brasiliensis (Rhynchocephalia, Clevosauridae) from the Upper Triassic of Rio Grande do Sul, Brazil

    PubMed Central

    Romo de Vivar Martínez, Paula Rosario; Bento Soares, Marina

    2015-01-01

    Clevosaurus was a cosmopolitan rhynchocephalian genus, known from the Late Triassic to the Early Jurassic. In South America this genus is represented by C. brasiliensis, an important component of the Linha São Luiz taphocoenosis, on the top of the Norian Santa Maria 2 Sequence of Southern Brazil. The best preserved and most abundant bone elements of C. brasiliensis are dentaries, in which variations of shape and size are observed. The aim of this study is to describe and evaluate the variation, using geometric morphometrics methods. Geometric morphometric analysis of 10 specimens highlights variations in relative size of the dentary. Most of the variation observed for PC1 (83.3%) is likely related to ontogeny, and PC2 (10.0%) is likely related to taphonomic signatures. The development patterns observed, such as the growth of the dentary, consists of differential growth in length between the posterior portion of the dentary, that grows at a higher rate, regarding the anterior portion of the element. This allometric growth is similar to what is observed in other rhynchocephalians and is accompanied by the allometric skull growth, similar to the trend exhibited by clevosaurs. The taphocoenosis is bimodal (juveniles and adults) with a bias towards adult preservation. Some diagenetic influence is reflected in deformed skulls and this is observed in the tangent-plot. Finally, a strong correlation was detected between the taphonomic signatures and the PC2, regarding specially disarticulation and degree of fragmentation. PMID:25793754

  3. Geometrical and gravimetrical observations of the Aral Sea and its tributaries along with hydrological models

    NASA Astrophysics Data System (ADS)

    Singh, A.; Seitz, F.; Schwatke, C.; Güntner, A.

    2012-04-01

    Satellite altimetry is capable of measuring surface water level changes of large water bodies. This is especially interesting for regions where in-situ gauges are sparse or not available. Temporal variations of coastline and horizontal extent of a water body can be derived from optical remote sensing data. A joint analysis of both data types together with a digital elevation model allows for the estimation of water volume changes. Related variations of water mass map into the observations of the satellite gravity field mission GRACE. In this presentation, we demonstrate the application of heterogeneuous remote sensing methods for studying chages of water volume and mass of the Aral Sea and compare the results with respect to their consistency. Our analysis covers the period 2002-2011. In particular we deal with data from multi-mission radar and laser satellite altimetry that are analyzed in combination with coastlines from Landsat images. The resultant vertical and horizontal variations of the lake surface are geometrically intersected with the bathymetry of the Aral Sea in order to compute volumetric changes. These are transformed into variations of water mass that are subsequently compared with storage changes derived from GRACE satellite gravimetry. Hence we obtain a comprehensive picture of the hydrological changes in the region. Observations from all datasets correspond quite well with each other with respect to their temporal development. However, geometrically determined volume changes and mass changes observed by GRACE agree less well during years of heavy water inflow in to the Aral Sea from its southern tributary 'Amu Darya' since the GRACE signals are contaminated by the large mass of water stored in the river delta and prearalie region On the other hand, GRACE observations of the river basins of Syr Darya and Amu Dayra correspond very well with hydrological models and mass changes computed from the balance of precipitation, evaporation and runoff determined from the atmospheric-terrestrial water balance.

  4. Autophoretic locomotion from geometric asymmetry.

    PubMed

    Michelin, Sébastien; Lauga, Eric

    2015-02-01

    Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a chemically homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large locomotion speeds without the need of chemical patterning.

  5. Relaxation of the single-slip condition in strain-gradient plasticity

    PubMed Central

    Anguige, Keith; Dondl, Patrick W.

    2014-01-01

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales. PMID:25197243

  6. Refraction at a curved dielectric interface - Geometrical optics solution

    NASA Technical Reports Server (NTRS)

    Lee, S.-W.; Sheshadri, M. S.; Mittra, R.; Jamnejad, V.

    1982-01-01

    The transmission of a spherical or plane wave through an arbitrarily curved dielectric interface is solved by the geometrical optics theory. The transmitted field is proportional to the product of the conventional Fresnel's transmission coefficient and a divergence factor (DF), which describes the cross-sectional variation (convergence or divergence) of a ray pencil as the latter propagates in the transmitted region. The factor DF depends on the incident wavefront, the curvatures of the interface, and the relative indices of the two media. Explicit matrix formulas for calculating DF are given, and its physical significance is illustrated via examples.

  7. Relaxation of the single-slip condition in strain-gradient plasticity.

    PubMed

    Anguige, Keith; Dondl, Patrick W

    2014-09-08

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.

  8. Geometrical-optics approximation of forward scattering by coated particles.

    PubMed

    Xu, Feng; Cai, Xiaoshu; Ren, Kuanfang

    2004-03-20

    By means of geometrical optics we present an approximation algorithm with which to accelerate the computation of scattering intensity distribution within a forward angular range (0 degrees-60 degrees) for coated particles illuminated by a collimated incident beam. Phases of emerging rays are exactly calculated to improve the approximation precision. This method proves effective for transparent and tiny absorbent particles with size parameters larger than 75 but fails to give good approximation results at scattering angles at which refractive rays are absent. When the absorption coefficient of a particle is greater than 0.01, the geometrical optics approximation is effective only for forward small angles, typically less than 10 degrees or so.

  9. Backscattering from a Gaussian distributed, perfectly conducting, rough surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1977-01-01

    The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.

  10. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

    PubMed Central

    Eshraghi, Iman; Jalali, Seyed K.; Pugno, Nicola Maria

    2016-01-01

    Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs) is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ) method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs. PMID:28773911

  11. Geometric properties-dependent neural synchrony modulated by extracellular subthreshold electric field

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Si, Kaili; Yi, Guosheng; Wang, Jiang; Lu, Meili

    2016-07-01

    In this paper, we use a reduced two-compartment neuron model to investigate the interaction between extracellular subthreshold electric field and synchrony in small world networks. It is observed that network synchronization is closely related to the strength of electric field and geometric properties of the two-compartment model. Specifically, increasing the electric field induces a gradual improvement in network synchrony, while increasing the geometric factor results in an abrupt decrease in synchronization of network. In addition, increasing electric field can make the network become synchronous from asynchronous when the geometric parameter is set to a given value. Furthermore, it is demonstrated that network synchrony can also be affected by the firing frequency and dynamical bifurcation feature of single neuron. These results highlight the effect of weak field on network synchrony from the view of biophysical model, which may contribute to further understanding the effect of electric field on network activity.

  12. Modeling of flow stress size effect based on variation of dislocation substructure in micro-tension of pure nickel

    NASA Astrophysics Data System (ADS)

    Wang, Chuanjie; Liu, Huan; Zhang, Ying; Chen, Gang; Li, Yujie; Zhang, Peng

    2017-12-01

    Micro-forming is one promising technology for manufacturing micro metal parts. However, the traditional metal-forming theories fail to analyze the plastic deformation behavior in micro-scale due to the size effect arising from the part geometry scaling down from macro-scale to micro-scale. To reveal the mechanism of plastic deformation behavior size effect in micro-scale, the geometrical parameters and the induced variation of microstructure by them need to be integrated in the developed constitutive models considering the free surface effect. In this research, the variations of dislocation cell diameter with original grain size, strain and location (surface grain or inner grain) are derived according the previous research data. Then the overall flow stress of the micro specimen is determined by employing the surface layer model and the relationship between dislocation cell diameter and the flow stress. This new developed constitutive model considers the original grain size, geometrical dimension and strain simultaneously. The flow stresses in micro-tensile tests of thin sheets are compared with calculated results using the developed constitutive model. The calculated and experimental results match well. Thus the validity of the developed constitutive model is verified.

  13. Tube Bulge Process : Theoretical Analysis and Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Velasco, Raphael; Boudeau, Nathalie

    2007-05-01

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress.

  14. Extremal flows in Wasserstein space

    NASA Astrophysics Data System (ADS)

    Conforti, Giovanni; Pavon, Michele

    2018-06-01

    We develop an intrinsic geometric approach to the calculus of variations in the Wasserstein space. We show that the flows associated with the Schrödinger bridge with general prior, with optimal mass transport, and with the Madelung fluid can all be characterized as annihilating the first variation of a suitable action. We then discuss the implications of this unified framework for stochastic mechanics: It entails, in particular, a sort of fluid-dynamic reconciliation between Bohm's and Nelson's stochastic mechanics.

  15. Influence of third-degree geometric nonlinearities on the vibration and stability of pretwisted, preconed, rotating blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1986-01-01

    The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree geometric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.

  16. Sequential development of structural heterogeneity in the Granny Creek oil field of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.H.; Zheng, L.; Shumaker, R.C.

    1993-08-01

    Analysis of Vibroseis and weight-drop seismic data over the Granny Creek oil field in the Appalachian foreland of West Virginia indicates that the field's development has been effected by episodic Paleozoic reactivation of fault blocks rooted in the Precambrian crystalline basement. The imprint of structures associated with the Rome trough penetrates the overlying Paleozoic sedimentary cover. Reactivation histories of individual fault blocks vary considerably throughout the Paleozoic. In general, the relative displacement of these basement fault blocks decrease exponentially during the Paleozoic; however, this pattern is interrupted by periods of increased tectonic activity and relative inversion of offsets along somemore » faults. The distribution of late-stage detached structures during the Alleghenian orogeny also appears, in part, to be controlled by mechanical anisotrophy within the detached section related to the reactivation of deeper structures in the crystalline basement. The net effect is a complex time-variable pattern of structures that partly controls the location of the reservoir and heterogeneity within the geometric framework of the reservoir. Structural heterogeneity in the Granny Creek area is subdivided on the basis of scale into structures associated with variations of oil production within the reservoir. Variations of production within the field are related, in part, to small detached structures and reactivated basement faults.« less

  17. In vivo and in situ measurement and modelling of intra-body effective complex permittivity

    PubMed Central

    Blanes-Vidal, Victoria; Harslund, Jakob L.F.; Ramezani, Mohammad H.; Kjeldsen, Jens; Johansen, Per Michael; Thiel, David; Tarokh, Vahid

    2015-01-01

    Radio frequency tracking of medical micro-robots in minimally invasive medicine is usually investigated upon the assumption that the human body is a homogeneous propagation medium. In this Letter, the authors conducted various trial programs to measure and model the effective complex permittivity ε in terms of refraction ε′, absorption ε″ and their variations in gastrointestinal (GI) tract organs (i.e. oesophagus, stomach, small intestine and large intestine) and the porcine abdominal wall under in vivo and in situ conditions. They further investigated the effects of irregular and unsynchronised contractions and simulated peristaltic movements of the GI tract organs inside the abdominal cavity and in the presence of the abdominal wall on the measurements and variations of ε′ and ε′′. They advanced the previous models of effective complex permittivity of a multilayer inhomogeneous medium, by estimating an analytical model that accounts for reflections between the layers and calculates the attenuation that the wave encounters as it traverses the GI tract and the abdominal wall. They observed that deviation from the specified nominal layer thicknesses due to non-geometric boundaries of GI tract morphometric variables has an impact on the performance of the authors’ model. Therefore, they derived statistical-based models for ε′ and ε′′ using their experimental measurements. PMID:26713157

  18. In vivo and in situ measurement and modelling of intra-body effective complex permittivity.

    PubMed

    Nadimi, Esmaeil S; Blanes-Vidal, Victoria; Harslund, Jakob L F; Ramezani, Mohammad H; Kjeldsen, Jens; Johansen, Per Michael; Thiel, David; Tarokh, Vahid

    2015-12-01

    Radio frequency tracking of medical micro-robots in minimally invasive medicine is usually investigated upon the assumption that the human body is a homogeneous propagation medium. In this Letter, the authors conducted various trial programs to measure and model the effective complex permittivity ε in terms of refraction ε', absorption ε″ and their variations in gastrointestinal (GI) tract organs (i.e. oesophagus, stomach, small intestine and large intestine) and the porcine abdominal wall under in vivo and in situ conditions. They further investigated the effects of irregular and unsynchronised contractions and simulated peristaltic movements of the GI tract organs inside the abdominal cavity and in the presence of the abdominal wall on the measurements and variations of ε' and ε''. They advanced the previous models of effective complex permittivity of a multilayer inhomogeneous medium, by estimating an analytical model that accounts for reflections between the layers and calculates the attenuation that the wave encounters as it traverses the GI tract and the abdominal wall. They observed that deviation from the specified nominal layer thicknesses due to non-geometric boundaries of GI tract morphometric variables has an impact on the performance of the authors' model. Therefore, they derived statistical-based models for ε' and ε'' using their experimental measurements.

  19. A geometric morphometric analysis of hominin lower molars: Evolutionary implications and overview of postcanine dental variation.

    PubMed

    Gómez-Robles, Aida; Bermúdez de Castro, José María; Martinón-Torres, María; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2015-05-01

    Lower molars have been extensively studied in the context of hominin evolution using classic and geometric morphometric analyses, 2D and 3D approaches, evaluations of the external (outer enamel surface) and internal anatomy (dentine, pulp chamber, and radicular canals), and studies of the crown and root variation. In this study, we present a 2D geometric morphometric analysis of the crown anatomy of lower first, second, and third molars of a broad sample of hominins, including Pliocene and Lower, Middle, and Upper Pleistocene species coming from Africa, Asia, and Europe. We show that shape variability increases from first to second and third molars. While first molars tend to retain a relatively stable 5-cusped conformation throughout the hominin fossil record, second and third molars show marked distal reductions in later Homo species. This trend to distal reduction is similar to that observed in previous studies of premolars and upper second and third molars, and points to a correlated reduction of distal areas across the whole postcanine dentition. Results on lower molar variation, as well as on other postcanine teeth, show certain trends in European Pleistocene populations from the Atapuerca sites. Middle Pleistocene hominins from Sima de los Huesos show Neanderthal affinities and strong dental reduction, especially in the most distal molars. The degree of dental reduction in this population is stronger than that observed in classic Neanderthals. Homo antecessor hominins from Gran Dolina-TD6 have primitive lower teeth that contrast with their more derived upper teeth. The evolutionary implications of these dental affinities are discussed in light of recent paleogenetic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Parameterized reduced order models from a single mesh using hyper-dual numbers

    NASA Astrophysics Data System (ADS)

    Brake, M. R. W.; Fike, J. A.; Topping, S. D.

    2016-06-01

    In order to assess the predicted performance of a manufactured system, analysts must consider random variations (both geometric and material) in the development of a model, instead of a single deterministic model of an idealized geometry with idealized material properties. The incorporation of random geometric variations, however, potentially could necessitate the development of thousands of nearly identical solid geometries that must be meshed and separately analyzed, which would require an impractical number of man-hours to complete. This research advances a recent approach to uncertainty quantification by developing parameterized reduced order models. These parameterizations are based upon Taylor series expansions of the system's matrices about the ideal geometry, and a component mode synthesis representation for each linear substructure is used to form an efficient basis with which to study the system. The numerical derivatives required for the Taylor series expansions are obtained via hyper-dual numbers, and are compared to parameterized models constructed with finite difference formulations. The advantage of using hyper-dual numbers is two-fold: accuracy of the derivatives to machine precision, and the need to only generate a single mesh of the system of interest. The theory is applied to a stepped beam system in order to demonstrate proof of concept. The results demonstrate that the hyper-dual number multivariate parameterization of geometric variations, which largely are neglected in the literature, are accurate for both sensitivity and optimization studies. As model and mesh generation can constitute the greatest expense of time in analyzing a system, the foundation to create a parameterized reduced order model based off of a single mesh is expected to reduce dramatically the necessary time to analyze multiple realizations of a component's possible geometry.

  1. Correlation, Cost Risk, and Geometry

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    The geometric viewpoint identifies the choice of a correlation matrix for the simulation of cost risk with the pairwise choice of data vectors corresponding to the parameters used to obtain cost risk. The correlation coefficient is the cosine of the angle between the data vectors after translation to an origin at the mean and normalization for magnitude. Thus correlation is equivalent to expressing the data in terms of a non orthogonal basis. To understand the many resulting phenomena requires the use of the tensor concept of raising the index to transform the measured and observed covariant components into contravariant components before vector addition can be applied. The geometric viewpoint also demonstrates that correlation and covariance are geometric properties, as opposed to purely statistical properties, of the variates. Thus, variates from different distributions may be correlated, as desired, after selection from independent distributions. By determining the principal components of the correlation matrix, variates with the desired mean, magnitude, and correlation can be generated through linear transforms which include the eigenvalues and the eigenvectors of the correlation matrix. The conversion of the data to a non orthogonal basis uses a compound linear transformation which distorts or stretches the data space. Hence, the correlated data does not have the same properties as the uncorrelated data used to generate it. This phenomena is responsible for seemingly strange observations such as the fact that the marginal distributions of the correlated data can be quite different from the distributions used to generate the data. The joint effect of statistical distributions and correlation remains a fertile area for further research. In terms of application to cost estimating, the geometric approach demonstrates that the estimator must have data and must understand that data in order to properly choose the correlation matrix appropriate for a given estimate. There is a general feeling by employers and managers that the field of cost requires little technical or mathematical background. Contrary to that opinion, this paper demonstrates that a background in mathematics equivalent to that needed for typical engineering and scientific disciplines at the masters or doctorate level is appropriate within the field of cost risk.

  2. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    PubMed

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and HRclinCT images to improve the response of the model developed based on HRclinCT images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Resolving relationships between several Neolithic and Mesolithic populations in Northern Eurasia using geometric morphometrics.

    PubMed

    Stansfield Bulygina, Ekaterina; Rasskasova, Anna; Berezina, Natalia; Soficaru, Andrei D

    2017-09-01

    Remains from several Eastern European and Siberian Mesolithic and Neolithic sites are analysed to clarify their biological relationships. We assume that groups' geographical distances correlate with genetic and, therefore, morphological distances between them. Material includes complete male crania from several Mesolithic and Neolithic burial sites across Northern Eurasia and from several modern populations. Geometric morphometrics and multivariate statistical techniques are applied to explore morphological trends, group distances, and correlations with their geographical position, climate, and the time of origin. Despite an overlap in the morphology among the modern and archeological groups, some of them show significant morphological distances. Geographical parameters account for only a small proportion of cranial variation in the sample, with larger variance explained by geography and age together. Expectations of isolation by distance are met in some but not in all cases. Climate accounts for a large proportion of autocorrelation with geography. Nearest-neighbor joining trees demonstrate group relationships predicted by the regression on geography and on climate. The obtained results are discussed in application to relationships between particular groups. Unlike the Ukrainian Mesolithic, the Yuzhny Oleni Ostrov Mesolithic displays a high morphological affinity with several groups from Northern Eurasia of both European and Asian origin. A possibility of a common substrate for the Yuzhny Oleni Ostrov Mesolithic and Siberian Neolithic groups is reviewed. The Siberian Neolithic is shown to have morphological connection with both modern Siberian groups and the Native North Americans. © 2017 Wiley Periodicals, Inc.

  4. The effect of small-wave modulation on the electromagnetic bias

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin; Martin, Jan M.

    1992-01-01

    The effect of the modulation of small ocean waves by large waves on the physical mechanism of the EM bias is examined by conducting a numerical scattering experiment which does not assume the applicability of geometric optics. The modulation effect of the large waves on the small waves is modeled using the principle of conservation of wave action and includes the modulation of gravity-capillary waves. The frequency dependence and magnitude of the EM bias is examined for a simplified ocean spectral model as a function of wind speed. These calculations make it possible to assess the validity of previous assumptions made in the theory of the EM bias, with respect to both scattering and hydrodynamic effects. It is found that the geometric optics approximation is inadequate for predictions of the EM bias at typical radar altimeter frequencies, while the improved scattering calculations provide a frequency dependence of the EM bias which is in qualitative agreement with observation. For typical wind speeds, the EM bias contribution due to small-wave modulation is of the same order as that due to modulation by the nonlinearities of the large-scale waves.

  5. Structural changes in cross-border liabilities: A multidimensional approach

    NASA Astrophysics Data System (ADS)

    Araújo, Tanya; Spelta, Alessandro

    2014-01-01

    We study the international interbank market through a geometric analysis of empirical data. The geometric analysis of the time series of cross-country liabilities shows that the systematic information of the interbank international market is contained in a space of small dimension. Geometric spaces of financial relations across countries are developed, for which the space volume, multivariate skewness and multivariate kurtosis are computed. The behavior of these coefficients reveals an important modification acting in the financial linkages since 1997 and allows us to relate the shape of the geometric space that emerges in recent years to the globally turbulent period that has characterized financial systems since the late 1990s. Here we show that, besides a persistent decrease in the volume of the geometric space since 1997, the observation of a generalized increase in the values of the multivariate skewness and kurtosis sheds some light on the behavior of cross-border interdependencies during periods of financial crises. This was found to occur in such a systematic fashion, that these coefficients may be used as a proxy for systemic risk.

  6. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets.

    PubMed

    Daboul, Amro; Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea

    2018-01-01

    Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'.

  7. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets

    PubMed Central

    Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea

    2018-01-01

    Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'. PMID:29787586

  8. MEASURING THE GEOMETRY OF THE UNIVERSE FROM WEAK GRAVITATIONAL LENSING BEHIND GALAXY GROUPS IN THE HST COSMOS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie

    2012-04-20

    Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms,more » allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.« less

  9. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    NASA Astrophysics Data System (ADS)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  10. Geometric classification of scalp hair for valid drug testing, 6 more reliable than 8 hair curl groups

    PubMed Central

    Mkentane, K.; Gumedze, F.; Ngoepe, M.; Davids, L. M.; Khumalo, N. P.

    2017-01-01

    Introduction Curly hair is reported to contain higher lipid content than straight hair, which may influence incorporation of lipid soluble drugs. The use of race to describe hair curl variation (Asian, Caucasian and African) is unscientific yet common in medical literature (including reports of drug levels in hair). This study investigated the reliability of a geometric classification of hair (based on 3 measurements: the curve diameter, curl index and number of waves). Materials and methods After ethical approval and informed consent, proximal virgin (6cm) hair sampled from the vertex of scalp in 48 healthy volunteers were evaluated. Three raters each scored hairs from 48 volunteers at two occasions each for the 8 and 6-group classifications. One rater applied the 6-group classification to 80 additional volunteers in order to further confirm the reliability of this system. The Kappa statistic was used to assess intra and inter rater agreement. Results Each rater classified 480 hairs on each occasion. No rater classified any volunteer’s 10 hairs into the same group; the most frequently occurring group was used for analysis. The inter-rater agreement was poor for the 8-groups (k = 0.418) but improved for the 6-groups (k = 0.671). The intra-rater agreement also improved (k = 0.444 to 0.648 versus 0.599 to 0.836) for 6-groups; that for the one evaluator for all volunteers was good (k = 0.754). Conclusions Although small, this is the first study to test the reliability of a geometric classification. The 6-group method is more reliable. However, a digital classification system is likely to reduce operator error. A reliable objective classification of human hair curl is long overdue, particularly with the increasing use of hair as a testing substrate for treatment compliance in Medicine. PMID:28570555

  11. Hubble space telescope observations and geometric models of compact multipolar planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong

    2014-05-20

    We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less

  12. Dirac structures in nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-01-01

    Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169-193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.

  13. Binding energy and photoionization cross-section of hydrogen-like donor impurity in strongly oblate ellipsoidal quantum dot

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.

    2018-01-01

    Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.

  14. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  15. A critical examination of stresses in an elastic single lap joint

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1979-01-01

    The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.

  16. Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study.

    PubMed

    Pérez-Beteta, Julián; Martínez-González, Alicia; Molina, David; Amo-Salas, Mariano; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Claramonte, Marta; Barcia, Juan A; Iglesias, Lidia; Avecillas, Josué; Albillo, David; Navarro, Miguel; Villanueva, José M; Paniagua, Juan C; Martino, Juan; Velásquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Delgado, María Del Carmen; Del Valle, Ana; Falkov, Anthony; Schucht, Philippe; Arana, Estanislao; Pérez-Romasanta, Luis; Pérez-García, Víctor M

    2017-03-01

    The potential of a tumour's volumetric measures obtained from pretreatment MRI sequences of glioblastoma (GBM) patients as predictors of clinical outcome has been controversial. Mathematical models of GBM growth have suggested a relation between a tumour's geometry and its aggressiveness. A multicenter retrospective clinical study was designed to study volumetric and geometrical measures on pretreatment postcontrast T1 MRIs of 117 GBM patients. Clinical variables were collected, tumours segmented, and measures computed including: contrast enhancing (CE), necrotic, and total volumes; maximal tumour diameter; equivalent spherical CE width and several geometric measures of the CE "rim". The significance of the measures was studied using proportional hazards analysis and Kaplan-Meier curves. Kaplan-Meier and univariate Cox survival analysis showed that total volume [p = 0.034, Hazard ratio (HR) = 1.574], CE volume (p = 0.017, HR = 1.659), spherical rim width (p = 0.007, HR = 1.749), and geometric heterogeneity (p = 0.015, HR = 1.646) were significant parameters in terms of overall survival (OS). Multivariable Cox analysis for OS provided the later two parameters as age-adjusted predictors of OS (p = 0.043, HR = 1.536 and p = 0.032, HR = 1.570, respectively). Patients with tumours having small geometric heterogeneity and/or spherical rim widths had significantly better prognosis. These novel imaging biomarkers have a strong individual and combined prognostic value for GBM patients. • Three-dimensional segmentation on magnetic resonance images allows the study of geometric measures. • Patients with small width of contrast enhancing areas have better prognosis. • The irregularity of contrast enhancing areas predicts survival in glioblastoma patients.

  17. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P.; Hoerr, Verena

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows themore » measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal imaging routines including different standard MRI sequences.« less

  18. Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Hackett, J. E.; Lyman, V.

    1979-01-01

    The experimental data encompassing surface pressure measurements, and wake surveys at static and wind-on conditions are analyzed. Cruise performance trends reflecting nacelle geometric variations, and nozzle operating conditions are presented. Details of the modeling process are included.

  19. The universal function in color dipole model

    NASA Astrophysics Data System (ADS)

    Jalilian, Z.; Boroun, G. R.

    2017-10-01

    In this work we review color dipole model and recall properties of the saturation and geometrical scaling in this model. Our primary aim is determining the exact universal function in terms of the introduced scaling variable in different distance than the saturation radius. With inserting the mass in calculation we compute numerically the contribution of heavy productions in small x from the total structure function by the fraction of universal functions and show the geometrical scaling is established due to our scaling variable in this study.

  20. Performance analysis of SA-3 missile second stage

    NASA Technical Reports Server (NTRS)

    Helmy, A. M.

    1981-01-01

    One SA-3 missile was disassembled. The constituents of the second stage were thoroughly investigated for geometrical details. The second stage slotted composite propellant grain was subjected to mechanical properties testing, physiochemical analyses, and burning rate measurements at different conditions. To determine the propellant performance parameters, the slotted composite propellant grain was machined into a set of small-size tubular grains. These grains were fired in a small size rocket motor with a set of interchangeable nozzles with different throat diameters. The firings were carried out at three different conditions. The data from test motor firings, physiochemical properties of the propellant, burning rate measurement results and geometrical details of the second stage motor, were used as input data in a computer program to compute the internal ballistic characteristics of the second stage.

  1. [Differentiation by geometric morphometrics among 11 Anopheles (Nyssorhynchus) in Colombia].

    PubMed

    Calle, David Alonso; Quiñones, Martha Lucía; Erazo, Holmes Francisco; Jaramillo, Nicolás

    2008-09-01

    The correct identification of the Anopheles species of the subgenus Nyssorhynchus is important because this subgenus includes the main malaria vectors in Colombia. This information is necessary for focusing a malaria control program. Geometric morphometrics were used to evaluate morphometric variation of 11 species of subgenus Nyssorhynchus present in Colombia and to distinguish females of each species. Materials and methods. The specimens were obtained from series and family broods from females collected with protected human hosts as attractants. The field collected specimens and their progeny were identified at each of the associated stages by conventional keys. For some species, wild females were used. Landmarks were selected on wings from digital pictures from 336 individuals, and digitized with coordinates. The coordinate matrix was processed by generalized Procrustes analysis which generated size and shape variables, free of non-biological variation. Size and shape variables were analyzed by univariate and multivariate statistics. The subdivision of subgenus Nyssorhynchus in sections is not correlated with wing shape. Discriminant analyses correctly classified 97% of females in the section Albimanus and 86% in the section Argyritarsis. In addition, these methodologies allowed the correct identification of 3 sympatric species from Putumayo which have been difficult to identify in the adult female stage. The geometric morphometrics were demonstrated to be a very useful tool as an adjunct to taxonomy of females the use of this method is recommended in studies of the subgenus Nyssorhynchus in Colombia.

  2. NPP VIIRS Geometric Performance Status

    NASA Technical Reports Server (NTRS)

    Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro

    2011-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.

  3. Interfaces and hydrophobic interactions in receptor-ligand systems: A level-set variational implicit solvent approach.

    PubMed

    Cheng, Li-Tien; Wang, Zhongming; Setny, Piotr; Dzubiella, Joachim; Li, Bo; McCammon, J Andrew

    2009-10-14

    A model nanometer-sized hydrophobic receptor-ligand system in aqueous solution is studied by the recently developed level-set variational implicit solvent model (VISM). This approach is compared to all-atom computer simulations. The simulations reveal complex hydration effects within the (concave) receptor pocket, sensitive to the distance of the (convex) approaching ligand. The ligand induces and controls an intermittent switching between dry and wet states of the hosting pocket, which determines the range and magnitude of the pocket-ligand attraction. In the level-set VISM, a geometric free-energy functional of all possible solute-solvent interfaces coupled to the local dispersion potential is minimized numerically. This approach captures the distinct metastable states that correspond to topologically different solute-solvent interfaces, and thereby reproduces the bimodal hydration behavior observed in the all-atom simulation. Geometrical singularities formed during the interface relaxation are found to contribute significantly to the energy barrier between different metastable states. While the hydration phenomena can thus be explained by capillary effects, the explicit inclusion of dispersion and curvature corrections seems to be essential for a quantitative description of hydrophobically confined systems on nanoscales. This study may shed more light onto the tight connection between geometric and energetic aspects of biomolecular hydration and may represent a valuable step toward the proper interpretation of experimental receptor-ligand binding rates.

  4. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  5. Symmetry analysis of talus bone: A Geometric morphometric approach.

    PubMed

    Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M

    2014-01-01

    The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.

  6. The Strong Effects Of On-Axis Focal Shift And Its Nonlinear Variation In Ultrasound Beams Radiated By Low Fresnel Number Transducers

    NASA Astrophysics Data System (ADS)

    Makov, Y. N.; Espinosa, V.; Sánchez-Morcillo, V. J.; Ramis, J.; Cruañes, J.; Camarena, F.

    2006-05-01

    On the basis of theoretical concepts, an accurate and complete experimental and numerical examination of the on-axis distribution and the corresponding temporal profiles for low-Fresnel-number focused ultrasound beams under increasing transducer input voltage has been performed. For a real focusing transducer with sufficiently small Fresnel number, a strong initial (linear) shift of the main on-axis pressure maximum from geometrical focal point towards the transducer, and its following displacement towards the focal point and backward motion as the driving transducer voltage increase until highly nonlinear regimes were fixed. The simultaneous monitoring of the temporal waveform modifications determines the real roles and interplay between different nonlinear effects (refraction and attenuation) in the observed dynamics of on-axis pressure maximum. The experimental results are in good agreement with numerical solutions of KZK equation, confirming that the observed dynamic shift of the maximum pressure point is related only to the interplay between diffraction, dissipation and nonlinearity of the acoustic wave.

  7. First-principles variational formulation of polarization effects in geometrical optics

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-10-02

    The propagation of electromagnetic waves in isotropic dielectric media with local dispersion is studied under the assumption of small but nonvanishing λ/l, where λ is the wavelength and l is the characteristic inhomogeneity scale. It is commonly known that, due to nonzero λ/l, such waves can experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the wave "spin". The present work reports how Lagrangians describing these effects can be deduced, rather than guessed, within a strictly classical theory. In addition to the commonly known ray Lagrangian that features the Berry connection, amore » simple alternative Lagrangian is proposed that naturally has a canonical form. The presented theory captures not only the eigenray dynamics but also the dynamics of continuous-wave fields and rays with mixed polarization, or "entangled" waves. In conclusion, the calculation assumes stationary lossless media with isotropic local dispersion, but generalizations to other media are straightforward.« less

  8. Adsorption differences between low coverage enantiomers of alanine on the chiral Cu{421}R surface.

    PubMed

    Gladys, Michael J; Han, Jeong Woo; Pedersen, Therese S; Tadich, Anton; O'Donnell, Kane M; Thomsen, Lars

    2017-05-31

    Chiral separation using heterogeneous methods has long been sought after. Chiral metal surfaces have the potential to make it possible to model these systems using small amino acids, the building blocks for proteins. A comparison of submonolayer concentrations of alanine enantiomers adsorbed onto Cu{421} R has revealed a large geometrical differences between the two molecules as compared to the saturated coverage. Large differences were observed in HR-XPS and NEXAFS and complemented by theoretical DFT calculations. At approximately one third of a monolayer a comparison of the C1s XPS signal showed a shift in the methyl group of more than 300 meV indicating that the two enantiomers are in different chemical environments. NEXAFS spectroscopy confirmed the XPS variations and showed large differences in the orientation of the adsorbed molecules. Our DFT results show that the l-enantiomer is energetically the most stable in the {311} microfacet configuration. In contrast to the full monolayer coverage, these lower coverages showed enhanced selectivity.

  9. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  10. Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.

  11. Are Diet Preferences Associated to Skulls Shape Diversification in Xenodontine Snakes?

    PubMed Central

    Klaczko, Julia; Sherratt, Emma; Setz, Eleonore Z. F.

    2016-01-01

    Snakes are a highly successful group of vertebrates, within great diversity in habitat, diet, and morphology. The unique adaptations for the snake skull for ingesting large prey in more primitive macrostomatan snakes have been well documented. However, subsequent diversification in snake cranial shape in relation to dietary specializations has rarely been studied (e.g. piscivory in natricine snakes). Here we examine a large clade of snakes with a broad spectrum of diet preferences to test if diet preferences are correlated to shape variation in snake skulls. Specifically, we studied the Xenodontinae snakes, a speciose clade of South American snakes, which show a broad range of diets including invertebrates, amphibians, snakes, lizards, and small mammals. We characterized the skull morphology of 19 species of xenodontine snakes using geometric morphometric techniques, and used phylogenetic comparative methods to test the association between diet and skull morphology. Using phylogenetic partial least squares analysis (PPLS) we show that skull morphology is highly associated with diet preferences in xenodontine snakes. PMID:26886549

  12. Automated design of minimum drag light aircraft fuselages and nacelles

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.; Karlin, B. E.

    1982-01-01

    The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body.

  13. Diamagnetic susceptibility of a hydrogenic donor in a group IV-VI quantum dot-quantum well heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanamoorthy, S. N.; Peter, A. John, E-mail: a.john.peter@gmail.com

    2016-05-23

    Electronic properties of a hydrogenic donor impurity in a CdSe/Pb{sub 0.8}Cd{sub 0.2}Se/CdSe quantum dot quantum well system are investigated for various radii of core with shell materials. Confined energies are obtained taking into account the geometrical size of the system and thereby the donor binding energies are found. The diamagnetic susceptibility is estimated for a confined shallow donor in the well system. The results show that the diamagnetic susceptibility strongly depends on core and shell radii and it is more sensitive to variations of the geometrical size of the well material.

  14. Pulse height response of an optical particle counter to monodisperse aerosols

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Grice, S. S.; Cuda, V.

    1976-01-01

    The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.

  15. Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

    NASA Astrophysics Data System (ADS)

    Román-Roy, Narciso

    2009-11-01

    This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation (which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.

  16. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-07-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  17. Structure and structure-preserving algorithms for plasma physics

    NASA Astrophysics Data System (ADS)

    Morrison, P. J.

    2016-10-01

    Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.

  18. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-03-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  19. Titan-Like Exoplanets: Variations in Geometric Albedo and Effective Transit Height with Haze Production Rate

    NASA Technical Reports Server (NTRS)

    Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi

    2016-01-01

    Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 microns). In the geometric albedo spectra, the slope in the UV-visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 microns, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV-visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets.

  20. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    NASA Astrophysics Data System (ADS)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  1. Coccolith arrangement follows Eulerian mathematics in the coccolithophore Emiliania huxleyi.

    PubMed

    Xu, Kai; Hutchins, David; Gao, Kunshan

    2018-01-01

    The globally abundant coccolithophore, Emiliania huxleyi , plays an important ecological role in oceanic carbon biogeochemistry by forming a cellular covering of plate-like CaCO 3 crystals (coccoliths) and fixing CO 2 . It is unknown how the cells arrange different-sized coccoliths to maintain full coverage, as the cell surface area of the cell changes during daily cycle. We used Euler's polyhedron formula and CaGe simulation software, validated with the geometries of coccoliths, to analyze and simulate the coccolith topology of the coccosphere and to explore the arrangement mechanisms. There were only small variations in the geometries of coccoliths, even when the cells were cultured under variable light conditions. Because of geometric limits, small coccoliths tended to interlock with fewer and larger coccoliths, and vice versa. Consequently, to sustain a full coverage on the surface of cell, each coccolith was arranged to interlock with four to six others, which in turn led to each coccosphere contains at least six coccoliths. The number of coccoliths per coccosphere must keep pace with changes on the cell surface area as a result of photosynthesis, respiration and cell division. This study is an example of natural selection following Euler's polyhedral formula, in response to the challenge of maintaining a CaCO 3 covering on coccolithophore cells as cell size changes.

  2. A practical implementation of wave front construction for 3-D isotropic media

    NASA Astrophysics Data System (ADS)

    Chambers, K.; Kendall, J.-M.

    2008-06-01

    Wave front construction (WFC) methods are a useful tool for tracking wave fronts and are a natural extension to standard ray shooting methods. Here we describe and implement a simple WFC method that is used to interpolate wavefield properties throughout a 3-D heterogeneous medium. Our approach differs from previous 3-D WFC procedures primarily in the use of a ray interpolation scheme, based on approximating the wave front as a `locally spherical' surface and a `first arrival mode', which reduces computation times, where only first arrivals are required. Both of these features have previously been included in 2-D WFC algorithms; however, until now they have not been extended to 3-D systems. The wave front interpolation scheme allows for rays to be traced from a nearly arbitrary distribution of take-off angles, and the calculation of derivatives with respect to take-off angles is not required for wave front interpolation. However, in regions of steep velocity gradient, the locally spherical approximation is not valid, and it is necessary to backpropagate rays to a sufficiently homogenous region before interpolation of the new ray. Our WFC technique is illustrated using a realistic velocity model, based on a North Sea oil reservoir. We examine wavefield quantities such as traveltimes, ray angles, source take-off angles and geometrical spreading factors, all of which are interpolated on to a regular grid. We compare geometrical spreading factors calculated using two methods: using the ray Jacobian and by taking the ratio of a triangular area of wave front to the corresponding solid angle at the source. The results show that care must be taken when using ray Jacobians to calculate geometrical spreading factors, as the poles of the source coordinate system produce unreliable values, which can be spread over a large area, as only a few initial rays are traced in WFC. We also show that the use of the first arrival mode can reduce computation time by ~65 per cent, with the accuracy of the interpolated traveltimes, ray angles and source take-off angles largely unchanged. However, the first arrival mode does lead to inaccuracies in interpolated angles near caustic surfaces, as well as small variations in geometrical spreading factors for ray tubes that have passed through caustic surfaces.

  3. Rapid Prototyping Technology for Manufacturing GTE Turbine Blades

    NASA Astrophysics Data System (ADS)

    Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.

    2018-03-01

    The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.

  4. CNV-CH: A Convex Hull Based Segmentation Approach to Detect Copy Number Variations (CNV) Using Next-Generation Sequencing Data

    PubMed Central

    De, Rajat K.

    2015-01-01

    Copy number variation (CNV) is a form of structural alteration in the mammalian DNA sequence, which are associated with many complex neurological diseases as well as cancer. The development of next generation sequencing (NGS) technology provides us a new dimension towards detection of genomic locations with copy number variations. Here we develop an algorithm for detecting CNVs, which is based on depth of coverage data generated by NGS technology. In this work, we have used a novel way to represent the read count data as a two dimensional geometrical point. A key aspect of detecting the regions with CNVs, is to devise a proper segmentation algorithm that will distinguish the genomic locations having a significant difference in read count data. We have designed a new segmentation approach in this context, using convex hull algorithm on the geometrical representation of read count data. To our knowledge, most algorithms have used a single distribution model of read count data, but here in our approach, we have considered the read count data to follow two different distribution models independently, which adds to the robustness of detection of CNVs. In addition, our algorithm calls CNVs based on the multiple sample analysis approach resulting in a low false discovery rate with high precision. PMID:26291322

  5. CNV-CH: A Convex Hull Based Segmentation Approach to Detect Copy Number Variations (CNV) Using Next-Generation Sequencing Data.

    PubMed

    Sinha, Rituparna; Samaddar, Sandip; De, Rajat K

    2015-01-01

    Copy number variation (CNV) is a form of structural alteration in the mammalian DNA sequence, which are associated with many complex neurological diseases as well as cancer. The development of next generation sequencing (NGS) technology provides us a new dimension towards detection of genomic locations with copy number variations. Here we develop an algorithm for detecting CNVs, which is based on depth of coverage data generated by NGS technology. In this work, we have used a novel way to represent the read count data as a two dimensional geometrical point. A key aspect of detecting the regions with CNVs, is to devise a proper segmentation algorithm that will distinguish the genomic locations having a significant difference in read count data. We have designed a new segmentation approach in this context, using convex hull algorithm on the geometrical representation of read count data. To our knowledge, most algorithms have used a single distribution model of read count data, but here in our approach, we have considered the read count data to follow two different distribution models independently, which adds to the robustness of detection of CNVs. In addition, our algorithm calls CNVs based on the multiple sample analysis approach resulting in a low false discovery rate with high precision.

  6. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Proofs through Exploration in Dynamic Geometry Environments

    ERIC Educational Resources Information Center

    Christou, Constantinos; Mousoulides, Nikos; Pittalis, Marios; Pitta-Pantazi, Demetra

    2004-01-01

    The recent development of powerful new technologies such as dynamic geometry software (DGS) with drag capability has made possible the continuous variation of geometric configurations and allows one to quickly and easily investigate whether particular conjectures are true or not. Because of the inductive nature of the DGS, the…

  8. Proofs through Exploration in Dynamic Geometry Environments

    ERIC Educational Resources Information Center

    Christou, C.; Mousoulides, N.; Pittalis, M.; Pitta-Pantazi, D.

    2004-01-01

    The recent development of powerful new technologies such as dynamic geometry softwares (DGS) with drag capability has made possible the continuous variation of geometric configurations and allows one to quickly and easily investigate whether particular conjectures are true or not. Because of the inductive nature of the DGS, the…

  9. Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering

    PubMed Central

    Yu, Xinfei; Yue, Kan; Hsieh, I-Fan; Li, Yiwen; Dong, Xue-Hui; Liu, Chang; Xin, Yu; Wang, Hsiao-Fang; Shi, An-Chang; Newkome, George R.; Chen, Er-Qiang; Zhang, Wen-Bin; Cheng, Stephen Z. D.

    2013-01-01

    The engineering of structures across different length scales is central to the design of novel materials with controlled macroscopic properties. Herein, we introduce a unique class of self-assembling materials, which are built upon shape- and volume-persistent molecular nanoparticles and other structural motifs, such as polymers, and can be viewed as a size-amplified version of the corresponding small-molecule counterparts. Among them, “giant surfactants” with precise molecular structures have been synthesized by “clicking” compact and polar molecular nanoparticles to flexible polymer tails of various composition and architecture at specific sites. Capturing the structural features of small-molecule surfactants but possessing much larger sizes, giant surfactants bridge the gap between small-molecule surfactants and block copolymers and demonstrate a duality of both materials in terms of their self-assembly behaviors. The controlled structural variations of these giant surfactants through precision synthesis further reveal that their self-assemblies are remarkably sensitive to primary chemical structures, leading to highly diverse, thermodynamically stable nanostructures with feature sizes around 10 nm or smaller in the bulk, thin-film, and solution states, as dictated by the collective physical interactions and geometric constraints. The results suggest that this class of materials provides a versatile platform for engineering nanostructures with sub-10-nm feature sizes. These findings are not only scientifically intriguing in understanding the chemical and physical principles of the self-assembly, but also technologically relevant, such as in nanopatterning technology and microelectronics. PMID:23716680

  10. SU-E-J-205: Dose Distribution Differences Caused by System Related Geometric Distortion in MRI-Guided Radiation Treatment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Yang, J; Wen, Z

    2015-06-15

    Purpose: MRI has superb soft tissue contrast but is also known for geometric distortions. The concerns and uncertainty about MRI’s geometric distortion have contributed to the hesitation of using only MRI for simulation in radiation therapy. There are two major categories of geometric distortion in MRI; system related and patient related. In this presentation, we studied the impact of system-related geometric distortion on dose distribution in a digital body phantom under an MR-Linac environment. Methods: Residual geometric distortion (after built-in geometric correction) was modeled based on phantom measurements of the system-related geometric distortions of a MRI scanner of a combinedmore » MR guided Radiation Therapy (MRgRT) system. A digital oval shaped phantom (40×25 cm) as well as one ellipsoid shaped tumor volume was created to simulate a simplified human body. The simulated tumor volume was positioned at several locations between the isocenter and the body surface. CT numbers in HUs that approximate soft tissue and tumor were assigned to the respective regions in the digital phantom. To study the effect of geometric distortion caused by system imperfections, an IMRT plan was optimized with the distorted image set with the B field. Dose distributions were re-calculated on the undistorted image set with the B field (as in MR-Linac). Results: The maximum discrepancies in both body contour and tumor boundary was less than 2 mm, which leads to small dose distribution change. For the target in the center, coverage was reduced from 98.8% (with distortion) to 98.2%; for the other peripheral target coverage was reduced from 98.4% to 95.9%. Conclusion: System related geometric distortions over the 40×25 area were within 2mm and the resulted dosimetric effects were minor for the two tumor locations in the phantom. Patient study will be needed for further investigation. The authors received a corporate research grant from Elekta.« less

  11. Method for a detailed measurement of image intensity nonuniformity in magnetic resonance imaging.

    PubMed

    Wang, Deming; Doddrell, David M

    2005-04-01

    In magnetic resonance imaging (MRI), the MR signal intensity can vary spatially and this spatial variation is usually referred to as MR intensity nonuniformity. Although the main source of intensity nonuniformity arises from B1 inhomogeneity of the coil acting as a receiver and/or transmitter, geometric distortion also alters the MR signal intensity. It is useful on some occasions to have these two different sources be separately measured and analyzed. In this paper, we present a practical method for a detailed measurement of the MR intensity nonuniformity. This method is based on the same three-dimensional geometric phantom that was recently developed for a complete measurement of the geometric distortion in MR systems. In this paper, the contribution to the intensity nonuniformity from the geometric distortion can be estimated and thus, it provides a mechanism for estimation of the intensity nonuniformity that reflects solely the spatial characteristics arising from B1. Additionally, a comprehensive scheme for characterization of the intensity nonuniformity based on the new measurement method is proposed. To demonstrate the method, the intensity nonuniformity in a 1.5 T Sonata MR system was measured and is used to illustrate the main features of the method.

  12. Early sex differences in weighting geometric cues.

    PubMed

    Lourenco, Stella F; Addy, Dede; Huttenlocher, Janellen; Fabian, Lydia

    2011-11-01

    When geometric and non-geometric information are both available for specifying location, men have been shown to rely more heavily on geometry compared to women. To shed insight on the nature and developmental origins of this sex difference, we examined how 18- to 24-month-olds represented the geometry of a surrounding (rectangular) space when direct non-geometric information (i.e. a beacon) was also available for localizing a hidden object. Children were tested on a disorientation task with multiple phases. Across experiments, boys relied more heavily than girls on geometry to guide localization, as indicated by their errors during the initial phase of the task, and by their search choices following transformations that left only geometry available, or that, under limited conditions, created a conflict between beacon and geometry. Analyses of search times suggested that girls, like boys, had encoded geometry, and testing in a square space ruled out explanations concerned with motivational and methodological variables. Taken together, the findings provide evidence for an early sex difference in the weighting of geometry. This sex difference, we suggest, reflects subtle variation in how boys and girls approach the problem of combining multiple sources of location information. 2011 Blackwell Publishing Ltd.

  13. Tissue resistivity estimation in the presence of positional and geometrical uncertainties.

    PubMed

    Baysal, U; Eyüboğlu, B M

    2000-08-01

    Geometrical uncertainties (organ boundary variation and electrode position uncertainties) are the biggest sources of error in estimating electrical resistivity of tissues from body surface measurements. In this study, in order to decrease estimation errors, the statistically constrained minimum mean squared error estimation algorithm (MiMSEE) is constrained with a priori knowledge of the geometrical uncertainties in addition to the constraints based on geometry, resistivity range, linearization and instrumentation errors. The MiMSEE calculates an optimum inverse matrix, which maps the surface measurements to the unknown resistivity distribution. The required data are obtained from four-electrode impedance measurements, similar to injected-current electrical impedance tomography (EIT). In this study, the surface measurements are simulated by using a numerical thorax model. The data are perturbed with additive instrumentation noise. Simulated surface measurements are then used to estimate the tissue resistivities by using the proposed algorithm. The results are compared with the results of conventional least squares error estimator (LSEE). Depending on the region, the MiMSEE yields an estimation error between 0.42% and 31.3% compared with 7.12% to 2010% for the LSEE. It is shown that the MiMSEE is quite robust even in the case of geometrical uncertainties.

  14. Iris-based medical analysis by geometric deformation features.

    PubMed

    Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan

    2013-01-01

    Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis.

  15. Can skull form predict the shape of the temporomandibular joint? A study using geometric morphometrics on the skulls of wolves and domestic dogs.

    PubMed

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-11-01

    The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Skull shapes of the Lissodelphininae: radiation, adaptation and asymmetry.

    PubMed

    Galatius, Anders; Goodall, R Natalie P

    2016-06-01

    Within Delphinidae, the sub-family Lissodelphininae consists of 8 Southern Ocean species and 2 North Pacific species. Lissodelphininae is a result of recent phylogenetic revisions based on molecular methods. Thus, morphological radiation within the taxon has not been investigated previously. The sub-family consists of ecologically diverse groups such as (1) the Cephalorhynchus genus of 4 small species inhabiting coastal and shelf waters, (2) the robust species in the Lagenorhynchus genus with the coastal La. australis, the offshore La. cruciger, the pelagic species La. obscurus and La. obliquidens, and (3) the morphologically aberrant genus Lissodelphis. Here, the shapes of 164 skulls from adults of all 10 species were compared using 3-dimensional geometric morphometrics. The Lissodelphininae skulls were supplemented by samples of Lagenorhynchus albirostris and Delphinus delphis to obtain a context for the variation found within the subfamily. Principal components analysis was used to map the most important components of shape variation on phylogeny. The first component of shape variation described an elongation of the rostrum, lateral and dorsoventral compression of the neurocranium and smaller temporal fossa. The two Lissodelphis species were on the high extreme of this spectrum, while Lagenorhynchus australis, La. cruciger and Cephalorhynchus heavisidii were at the low extreme. Along the second component, La. cruciger was isolated from the other species by its expanded neurocranium and concave facial profile. Shape variation supports the gross phylogenetic relationships proposed by recent molecular studies. However, despite the great diversity of ecology and external morphology within the subfamily, shape variation of the feeding apparatus was modest, indicating a similar mode of feeding across the subfamily. All 10 species were similar in their pattern of skull asymmetry, but interestingly, two species using narrowband high frequency clicks (La. cruciger and C. hectori) were among the most asymmetric species, contradicting previous interpretations of odontocete skull asymmetry. J. Morphol. 277:776-785, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Type II superstring field theory: geometric approach and operadic description

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Münster, Korbinian

    2013-04-01

    We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a {N} = 1 generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.

  18. Complex pattern of variation in neurocranial ontogeny revealed by CT-scanning.

    PubMed

    Anzelmo, Marisol; Ventrice, Fernando; Kelmansky, Diana; Sardi, Marina

    2018-05-01

    The neurocranium of hominid species has been largely studied with reference to the midsagittal plane, with variations being attributed to brain evolution. By contrast, there is limited information on variation in non-midsagittal regions, which are the points of insertion of muscles and bony structures related to mastication. This work aims to analyze ontogenetic changes and sexual dimorphism (SD) in midsagittal and non-midsagittal neurocranial structures from a contemporary human sample comprising 138 computed tomography (CT) cranial images of individuals ranging from infants to adults. Morphology of the vault and the base was assessed by registering landmarks and semilandmarks, which were analyzed by geometric morphometrics, and the endocranial volume (EV). The results of regressions and Kruskal-Wallis test indicate that the major size and shape changes in both midsagittal and non-midsagittal regions occur during infancy and juvenility; shape changes are also associated with an increase in EV. The size of the midsagittal vault, the shape of the non-midsagittal vault and the size of the base show an extension of ontogenetic trajectories. Sexes show similar changes in shape but different changes in size. We conclude that brain growth appears to be an important factor influencing the morphology of the neurocranium, at least during infancy and childhood. Subsequent changes may be attributed to osteogenic activity and the differential growth of the brain lobes. Masticatory-related bony structures and muscles may not be strong enough factors to induce independent modifications in non-midsagittal structures. The small influence of the cranial muscles would explain why the human neurocranium is a quite integrated structure.

  19. Entropic depletion in colloidal suspensions and polymer liquids: Role of nanoparticle surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debapriya; Yang, Jian; Schweizer, Kenneth S.

    2015-01-01

    Here, we employ a hybrid Monte Carlo plus integral equation theory approach to study how dense fluids of small nanoparticles or polymer chains mediate entropic depletion interactions between topographically rough particles where all interaction potentials are hard core repulsion. The corrugated particle surfaces are composed of densely packed beads which present variable degrees of controlled topographic roughness and free volume associated with their geometric crevices. This pure entropy problem is characterized by competing ideal translational and (favorable and unfavorable) excess entropic contributions. Surface roughness generically reduces particle depletion aggregation relative to the smooth hard sphere case. However, the competition betweenmore » ideal and excess packing entropy effects in the bulk, near the particle surface and in the crevices, results in a non-monotonic variation of the particle-monomer packing correlation function as a function of the two dimensionless length scale ratios that quantify the effective surface roughness. As a result, the inter-particle potential of mean force (PMF), second virial coefficient, and spinodal miscibility volume fraction vary non-monotonically with the surface bead to monomer diameter and particle core to surface bead diameter ratios. A miscibility window is predicted corresponding to an optimum degree of surface roughness that completely destroys depletion attraction resulting in a repulsive PMF. Variation of the (dense) matrix packing fraction can enhance or suppress particle miscibility depending upon the amount of surface roughness. Connecting the monomers into polymer chains destabilizes the system via enhanced contact depletion attraction, but the non-monotonic variations with surface roughness metrics persist.« less

  20. Orientation-independent measures of ground motion

    USGS Publications Warehouse

    Boore, D.M.; Watson-Lamprey, Jennie; Abrahamson, N.A.

    2006-01-01

    The geometric mean of the response spectra for two orthogonal horizontal components of motion, commonly used as the response variable in predictions of strong ground motion, depends on the orientation of the sensors as installed in the field. This means that the measure of ground-motion intensity could differ for the same actual ground motion. This dependence on sensor orientation is most pronounced for strongly correlated motion (the extreme example being linearly polarized motion), such as often occurs at periods of 1 sec or longer. We propose two new measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent of the sensor orientations. Both are based on a set of geometric means computed from the as-recorded orthogonal horizontal motions rotated through all possible non-redundant rotation angles. GMRotDpp is determined as the ppth percentile of the set of geometric means for a given oscillator period. For example, GMRotDOO, GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum values, respectively. The rotations that lead to GMRotDpp depend on period, whereas a single-period-independent rotation is used for GMRotIpp, the angle being chosen to minimize the spread of the rotation-dependent geometric mean (normalized by GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-motion intensity measure being used in the development of new ground-motion prediction equations by the Pacific Earthquake Engineering Center Next Generation Attenuation project. Comparisons with as-recorded geometric means for a large dataset show that the new measures are systematically larger than the geometric-mean response spectra using the as-recorded values of ground acceleration, but only by a small amount (less than 3%). The theoretical advantage of the new measures is that they remove sensor orientation as a contributor to aleatory uncertainty. Whether the reduction is of practical significance awaits detailed studies of large datasets. A preliminary analysis contained in a companion article by Beyer and Bommer finds that the reduction is small-to-nonexistent for equations based on a wide range of magnitudes and distances. The results of Beyer and Bommer do suggest, however, that there is an increasing reduction as period increases. Whether the reduction increases with other subdivisions of the dataset for which strongly correlated motions might be expected (e.g., pulselike motions close to faults) awaits further analysis.

  1. An analysis of beak shape variation in two ages of domestic turkeys (Meleagris gallopavo) using landmark-based geometric morphometrics.

    PubMed

    Dalton, Hillary A; Wood, Benjamin J; Widowski, Tina M; Guerin, Michele T; Torrey, Stephanie

    2017-01-01

    The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96-54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment.

  2. An analysis of beak shape variation in two ages of domestic turkeys (Meleagris gallopavo) using landmark-based geometric morphometrics

    PubMed Central

    Widowski, Tina M.; Guerin, Michele T.

    2017-01-01

    The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96–54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment. PMID:28934330

  3. ShapeRotator: An R tool for standardized rigid rotations of articulated three-dimensional structures with application for geometric morphometrics.

    PubMed

    Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott

    2018-05-01

    The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.

  4. Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes

    PubMed Central

    Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik

    2014-01-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815

  5. Arabidopsis phenotyping through Geometric Morphometrics.

    PubMed

    Manacorda, Carlos A; Asurmendi, Sebastian

    2018-06-18

    Recently, much technical progress was achieved in the field of plant phenotyping. High-throughput platforms and the development of improved algorithms for rosette image segmentation make it now possible to extract shape and size parameters for genetic, physiological and environmental studies on a large scale. The development of low-cost phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis. However, objective descriptors of shape parameters that could be used independently of platform and segmentation software used are still lacking and shape descriptions still rely on ad hoc or even sometimes contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies. Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry, multivariate analysis and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately account for shape variations amongst groups and measure them in shape distance units. Here, a particular scheme of landmarks placement on Arabidopsis rosette images is proposed to study shape variation in the case of viral infection processes. Shape differences between controls and infected plants are quantified throughout the infectious process and visualized. Quantitative comparisons between two unrelated ssRNA+ viruses are shown and reproducibility issues are assessed. Combined with the newest automated platforms and plant segmentation procedures, geometric morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.

  6. Drag and stability characteristics of a variety of reefed and unreefed parachute configurations at Mach 1.80 with an empirical correlation for supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Couch, L. M.

    1975-01-01

    An investigation was conducted at Mach 1.80 in the Langley 4-foot supersonic pressure tunnel to determine the effects of variation in reefing ratio and geometric porosity on the drag and stability characteristics of four basic canopy types deployed in the wake of a cone-cylinder forebody. The basic designs included cross, hemisflo, disk-gap-band, and extended-skirt canopies; however, modular cross and standard flat canopies and a ballute were also investigated. An empirical correlation was determined which provides a fair estimation of the drag coefficients in transonic and supersonic flow for parachutes of specified geometric porosity and reefing ratio.

  7. Geometrical dart infrared polarization signatures

    NASA Astrophysics Data System (ADS)

    Lewis, Gareth D.; Jordan, David L.

    1996-06-01

    The 8 - 12 micrometer polarization signatures of diffuse and specular aluminum geometrical darts were analyzed outdoors using a polarization sensitive thermal imager. Results of the degree and plane of polarization are presented for different thermal imager gain bands and weather conditions during a two week period. The 0 degree, 45 degree, 90 degree and 135 degree polarizer orientations were thermally calibrated and the S1 and S2 Stokes parameters shown as radiometric temperature differences. The effect on the polarization signatures of range is considered for these targets at 100 m and 370 m. A comparison of the degree of polarization to changes in the emission/reflection balance and to variations in the dart's complex refractive index is made.

  8. Studies on vibration characteristics of a pear using finite element method*

    PubMed Central

    Song, Hui-zhi; Wang, Jun; Li, Yong-hui

    2006-01-01

    The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical model of a pear. The vibration characteristics of this type of pear with the correlation of its behavior with geometrical configurations and material characteristics were investigated using numerical modal analysis. The results showed that the eigenfrequency increased with the increasing pear Young’s modulus, while decreased with increasing pear density, and decreased with increasing pear volume. The results of this study provided foundation for further investigations of the physical characteristics of fruits and vegetables by using finite element simulations. PMID:16691644

  9. Parametric design and gridding through relational geometry

    NASA Technical Reports Server (NTRS)

    Letcher, John S., Jr.; Shook, D. Michael

    1995-01-01

    Relational Geometric Synthesis (RGS) is a new logical framework for building up precise definitions of complex geometric models from points, curves, surfaces and solids. RGS achieves unprecedented design flexibility by supporting a rich variety of useful curve and surface entities. During the design process, many qualitative and quantitative relationships between elementary objects may be captured and retained in a data structure equivalent to a directed graph, such that they can be utilized for automatically updating the complete model geometry following changes in the shape or location of an underlying object. Capture of relationships enables many new possibilities for parametric variations and optimization. Examples are given of panelization applications for submarines, sailing yachts, offshore structures, and propellers.

  10. The Role of Geometrically Necessary Dislocations in Cantilever Beam Bending Experiments of Single Crystals

    PubMed Central

    Husser, Edgar; Bargmann, Swantje

    2017-01-01

    The mechanical behavior of single crystalline, micro-sized copper is investigated in the context of cantilever beam bending experiments. Particular focus is on the role of geometrically necessary dislocations (GNDs) during bending-dominated load conditions and their impact on the characteristic bending size effect. Three different sample sizes are considered in this work with main variation in thickness. A gradient extended crystal plasticity model is presented and applied in a three-dimensional finite-element (FE) framework considering slip system-based edge and screw components of the dislocation density vector. The underlying mathematical model contains non-standard evolution equations for GNDs, crystal-specific interaction relations, and higher-order boundary conditions. Moreover, two element formulations are examined and compared with respect to size-independent as well as size-dependent bending behavior. The first formulation is based on a linear interpolation of the displacement and the GND density field together with a full integration scheme whereas the second is based on a mixed interpolation scheme. While the GND density fields are treated equivalently, the displacement field is interpolated quadratically in combination with a reduced integration scheme. Computational results indicate that GND storage in small cantilever beams strongly influences the evolution of statistically stored dislocations (SSDs) and, hence, the distribution of the total dislocation density. As a particular example, the mechanical bending behavior in the case of a physically motivated limitation of GND storage is studied. The resulting impact on the mechanical bending response as well as on the predicted size effect is analyzed. Obtained results are discussed and related to experimental findings from the literature. PMID:28772657

  11. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    NASA Astrophysics Data System (ADS)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  12. Euclid, Fibonacci, Sketchpad.

    ERIC Educational Resources Information Center

    Litchfield, Daniel C.; Goldenheim, David A.

    1997-01-01

    Describes the solution to a geometric problem by two ninth-grade mathematicians using The Geometer's Sketchpad computer software program. The problem was to divide any line segment into a regular partition of any number of parts, a variation on a problem by Euclid. The solution yielded two constructions, one a GLaD construction and the other using…

  13. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1988-01-01

    Research focused on two major areas. The first effort addressed the design and implementation of a technique that allows for the visualization of the real time variation of physical properties. The second effort focused on the design and implementation of an on-line help system with components designed for both authors and users of help information.

  14. Quasivelocities and Optimal Control for underactuated Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Colombo, L.; de Diego, D. Martín

    2010-07-01

    This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.

  15. Quasivelocities and Optimal Control for underactuated Mechanical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colombo, L.; Martin de Diego, D.

    2010-07-28

    This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.

  16. Effects of Geometric Variations on Lift Augmentation of Simple-plenum-chamber Ground-effect Models

    NASA Technical Reports Server (NTRS)

    Davenport, Edwin E.

    1961-01-01

    Considerable interest has been shown during recent years in ground-effect vehicles. Of the various types proposed, the simple-plenum-chamber vehicle has indicated promise because, although the lift augmentation obtainable appears to be less than that of an annular jet, it may be somewhat less complicated structurally. The present investigation was undertaken to study the effects of some geometric variations upon lift augmentation of a simple plenum chamber within ground proximity. The variables included the ratio inlet area to exit area, plenum-chamber depth, and entrance configuration. An optimum plenum-chamber depth appeared to be between 3 and 10 percent of the plenum-chamber diameter with a ratio of inlet diameter to plenum-chamber diameter of 0.15 for the range of plenum-chamber depths investigated. The most important effect of multiple inlets was the elimination of negative lift augmentation, which was experienced with single sharp-edged inlets, at intermediate heights. Installation of a flared inlet and a turning-vane assembly improved lift augmentation of a single-inlet configuration at intermediate heights.

  17. Photometric study and absolute parameters of the short-period eclipsing binary HH Bootis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Bradstreet, D. H.; Demircan, Y.; Gürsoytrak, S. H.

    2015-11-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system HH Bootis from new CCD (BVRI) light curves and published radial velocity data. The photometric data were obtained in 2011 and 2012 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be a W-type W UMa system of a type different from that suggested by Dal and Sipahi (2013). An interesting cyclic period variation in the time intervals between primary and secondary eclipses ("half-period variation") was discovered and analyzed and its possible cause is discussed. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.627M⊙ , M2 = 1.068M⊙ , R1 = 0.782R⊙ and R2 = 0.997R⊙ . New light elements were derived and finally the evolutionary status of the system is discussed.

  18. Improving OCD time to solution using Signal Response Metrology

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  19. Development of a Micro-Fabricated Total-Field Magnetometer

    DTIC Science & Technology

    2011-03-01

    are made with fluxgate technologies. Fluxgates have lower sensitivity than Cs magnetometers , yet they continue to be used in small wands simply...extraction process by providing the sensitivity of a Cs magnetometer with the convenience and low cost of a fluxgate wand. Extremely small and low cost...FINAL REPORT Development of a Micro-Fabricated Total-Field Magnetometer SERDP Project MR-1512 MARCH 2011 Mark Prouty Geometrics, Inc

  20. Geometric Comparisons of Selected Small Topographically Fresh Volcanoes in the Borealis and Elysium Planitia Volcanic Fields, Mars: Implications for Eruptive Styles

    NASA Technical Reports Server (NTRS)

    Taylor, K.; Sakimoto, S. E. H.; Mitchell, D.

    2002-01-01

    MOLA (Mars Orbiter Laser Altimeter) data from small, topographically fresh volcanoes from the Elysium and Borealis regions were gridded and analyzed using GMT (Generic Mapping Tools) programs. Results compare eruptive styles of the two regions, and draw conclusions about the different volcanic regions. Additional information is contained in the original extended abstract.

  1. Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2018-03-01

    The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.

  2. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  3. Hydrodynamics and Heat Transfer in the Case of Combined Flow in a Annular Channel of Small Cross Section

    NASA Astrophysics Data System (ADS)

    Komov, A. T.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Boltenko, É. A.

    2017-01-01

    The present work is a continuation of experimental investigations conducted at the Moscow Power Engineering Institute (MPEI) on heat-transfer intensification. Brief descriptions of the working section and structure of intensifiers are given and their basic geometric parameters are enumerated. New systematized experimental data on the coefficients of hydraulic resistance and heat transfer in the regime of single-phase convection are given in an extended range of regime parameters and geometric characteristics of the intensifiers. Considerable increase in the heat-transfer coefficient as a function of the geometric characteristics of the intensifier has been established experimentally. The values of the relative fin height, at which these are the maxima of heat transfer and hydraulic resistance, have been established. Calculated dependences for the coefficient of hydraulic resistance and heat transfer have been obtained.

  4. Rayleigh's hypothesis and the geometrical optics limit.

    PubMed

    Elfouhaily, Tanos; Hahn, Thomas

    2006-09-22

    The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.

  5. Effect of the nozzle tip’s geometrical shape on electrospray deposition of organic thin films

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2017-04-01

    Electrospray deposition (ESD) is a favorable wet fabrication technique for organic thin films. We investigated the effects of the nozzle tip’s geometrical shape on the spraying properties of an organic solution used for ESD. Five types of cylindrical metal nozzles with zero (flat end) to four protrusions at the tips were prepared for depositing a solution of a small-molecule compound, tris(8-hydroxyquinolinato)aluminum (Alq3) solution. We confirmed that the diameter of the deposited droplets and their size dispersion decreased with an increase in the number of protrusions. The area occupation ratio of small droplets with a diameter smaller than 2 µm increased from 21 to 83% as the number of protrusions was increased from zero to four. The surface roughness root mean square of 60-nm-thick Alq3 films substantially improved from 32.5 to 6.8 nm with increasing number of protrusions.

  6. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    NASA Technical Reports Server (NTRS)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

  7. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  8. Sub-micron elastic property characterization of materials using a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Spicer, James B.

    2001-12-01

    The ability to characterize the sub-surface mechanical properties of a bulk or thin film material at the sub-micron level has applications in the microelectronics and thin film industries. In the microelectronics industry, with the decrease of line widths and the increase of component densities, sub-surface voids have become increasingly detrimental. Any voids along an integrated circuit (IC) line can lead to improper electrical connections between components and can cause failure of the device. In the thin film industry, the detection of impurities is also important. Any impurities can detract from the film's desired optical, electrical, or mechanical properties. Just as important as the detection of voids and impurities, is the measurement of the elastic properties of a material on the nanometer scale. These elastic measurements provide insight into the microstructural properties of the material. We have been investigating a technique that couples the high-resolution surface imaging capabilities of the apertureless near-field scanning optical microscope (ANSOM) with the sub-surface characterization strengths of high-frequency ultrasound. As an ultrasonic wave propagates, the amplitude decreases due to geometrical spreading, attenuation from absorption, and scattering from discontinuities. Measurement of wave speeds and attenuation provides the information needed to quantify the bulk or surface properties of a material. The arrival of an ultrasonic wave at or along the surface of a material is accompanied with a small surface displacement. Conventional methods for the ultrasound detection rely on either a contact transducer or optical technique (interferometric, beam deflection, etc.). However, each of these methods is limited by the spatial resolution dictated by the detection footprint. As the footprint size increases, variations across the ultrasonic wavefront are effectively averaged, masking the presence of any nanometer-scale sub-surface or surface mechanical property variations. The use of an ANSOM for sensing ultrasonic wave arrivals reduces the detection footprint allowing any nanometer scale variations in the microstructure of a material to be detected. In an ANSOM, the ultrasonic displacement is manifested as perturbations on the near-field signal due to the small variations in the tip-sample caused by the wave arrival. Due to the linear dependence of the near-field signal on tip-sample separation, these perturbations can be interpreted using methods identical to those for conventional ultrasonic techniques. In this paper, we report results using both contact transducer (5 MHz) and laser-generated ultrasound.

  9. RESIDENTIAL EXPOSURE TO EXTREMELY LOW FREQUENCY ELECTRIC AND MAGNETIC FIELDS IN THE CITY OF RAMALLAH-PALESTINE.

    PubMed

    Abuasbi, Falastine; Lahham, Adnan; Abdel-Raziq, Issam Rashid

    2018-04-01

    This study was focused on the measurement of residential exposure to power frequency (50-Hz) electric and magnetic fields in the city of Ramallah-Palestine. A group of 32 semi-randomly selected residences distributed amongst the city were under investigations of fields variations. Measurements were performed with the Spectrum Analyzer NF-5035 and were carried out at one meter above ground level in the residence's bedroom or living room under both zero and normal-power conditions. Fields' variations were recorded over 6-min and some times over few hours. Electric fields under normal-power use were relatively low; ~59% of residences experienced mean electric fields <10 V/m. The highest mean electric field of 66.9 V/m was found at residence R27. However, electric field values were log-normally distributed with geometric mean and geometric standard deviation of 9.6 and 3.5 V/m, respectively. Background electric fields measured under zero-power use, were very low; ~80% of residences experienced background electric fields <1 V/m. Under normal-power use, the highest mean magnetic field (0.45 μT) was found at residence R26 where an indoor power substation exists. However, ~81% of residences experienced mean magnetic fields <0.1 μT. Magnetic fields measured inside the 32 residences showed also a log-normal distribution with geometric mean and geometric standard deviation of 0.04 and 3.14 μT, respectively. Under zero-power conditions, ~7% of residences experienced average background magnetic field >0.1 μT. Fields from appliances showed a maximum mean electric field of 67.4 V/m from hair dryer, and maximum mean magnetic field of 13.7 μT from microwave oven. However, no single result surpassed the ICNIRP limits for general public exposures to ELF fields, but still, the interval 0.3-0.4 μT for possible non-thermal health impacts of exposure to ELF magnetic fields, was experienced in 13% of the residences.

  10. Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.

    PubMed

    Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2017-12-01

    Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (<40, 40-60, >60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.

  11. Symmetry analysis of talus bone

    PubMed Central

    Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.

    2014-01-01

    Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391

  12. A Solar-luminosity Model and Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Although the mechanisms of climatic change are not completely understood, the potential causes include changes in the Sun's luminosity. Solar activity in the form of sunspots, flares, proton events, and radiation fluctuations has displayed periodic tendencies. Two types of proxy climatic data that can be related to periodic solar activity are varved geologic formations and freshwater diatom deposits. A model for solar luminosity was developed by using the geometric progression of harmonic cycles that is evident in solar and geophysical data. The model assumes that variation in global energy input is a result of many periods of individual solar-luminosity variations. The 0.1-percent variation of the solar constant measured during the last sunspot cycle provided the basis for determining the amplitude of each luminosity cycle. Model output is a summation of the amplitudes of each cycle of a geometric progression of harmonic sine waves that are referenced to the 11-year average solar cycle. When the last eight cycles in Emiliani's oxygen-18 variations from deep-sea cores were standardized to the average length of glaciations during the Pleistocene (88,000 years), correlation coefficients with the model output ranged from 0.48 to 0.76. In order to calibrate the model to real time, model output was graphically compared to indirect records of glacial advances and retreats during the last 24,000 years and with sea-level rises during the Holocene. Carbon-14 production during the last millenium and elevations of the Great Salt Lake for the last 140 years demonstrate significant correlations with modeled luminosity. Major solar flares during the last 90 years match well with the time-calibrated model.

  13. Detecting taxonomic signal in an under-utilised character system: geometric morphometrics of the forcipular coxae of Scutigeromorpha (Chilopoda)

    PubMed Central

    Gutierrez, Beatriz Lopez; MacLeod, Norman; Edgecombe, Gregory D.

    2011-01-01

    Abstract To date, the forcipules have played almost no role in determining the systematics of scutigeromorph centipedes though in his 1974 review of taxonomic characters Markus Würmli suggested some potentially informative variation might be found in these structures. Geometric morphometric analyses were used to evaluate Würmli’s suggestion, specifically to determine whether the shape of the forcipular coxa contains information useful for diagnosing species. The geometry of the coxae of eight species from the genera Sphendononema, Scutigera, Dendrothereua, Thereuonema, Thereuopoda, Thereuopodina, Allothereua and Parascutigera was characterised using a combination of landmark- and semi-landmark-based sampling methods to summarize group-specific morphological variation. Canonical variates analysis of shape data characterizing the forcipular coxae indicates that these structures differ significantly between taxa at various systematic levels. Models calculated for the canonical variates space facilitate identification of the main shape differences between genera, including overall length/width, curvature of the external coxal margin, and the extent to which the coxofemoral condyle projects laterally. Jackknifed discriminant function analysis demonstrates that forcipular coxal training-set specimens were assigned to correct species in 61% of cases on average, the most accurate assignments being those of Parascutigera (Parascutigera guttata) and Thereuonema (Thereuonema microstoma). The geographically widespread species Thereuopoda longicornis, Sphendononema guildingii, Scutigera coleoptrata, and Dendrothereua linceci exhibit the least diagnostic coxae in our dataset. Thereuopoda longicornis populations sampled from different parts of East and Southeast Asia were significantly discriminated from each other, suggesting that, in this case, extensive synonymy may be obscuring diagnosable inter-species coxal shape differences. PMID:22303095

  14. Neandertal talus bones from El Sidrón site (Asturias, Spain): A 3D geometric morphometrics analysis.

    PubMed

    Rosas, Antonio; Ferrando, Anabel; Bastir, Markus; García-Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; García-Martínez, Daniel; Pastor, Juan Francisco; de la Rasilla, Marco

    2017-10-01

    The El Sidrón tali sample is assessed in an evolutionary framework. We aim to explore the relationship between Neandertal talus morphology and body size/shape. We test the hypothesis 1: talar Neandertal traits are influenced by body size, and the hypothesis 2: shape variables independent of body size correspond to inherited primitive features. We quantify 35 landmarks through 3D geometric morphometrics techniques to describe H. neanderthalensis-H. sapiens shape variation, by Mean Shape Comparisons, Principal Component, Phenetic Clusters, Minimum spanning tree analyses and partial least square and regression of talus shape on body variables. Shape variation correlated to body size is compared to Neandertals-Modern Humans (MH) evolutionary shape variation. The Neandertal sample is compared to early hominins. Neandertal talus presents trochlear hypertrophy, a larger equality of trochlear rims, a shorter neck, a more expanded head, curvature and an anterior location of the medial malleolar facet, an expanded and projected lateral malleolar facet and laterally expanded posterior calcaneal facet compared to MH. The Neandertal talocrural joint morphology is influenced by body size. The other Neandertal talus traits do not co-vary with it or not follow the same co-variation pattern as MH. Besides, the trochlear hypertrophy, the trochlear rims equality and the short neck could be inherited primitive features; the medial malleolar facet morphology could be an inherited primitive feature or a secondarily primitive trait; and the calcaneal posterior facet would be an autapomorphic feature of the Neandertal lineage. © 2017 Wiley Periodicals, Inc.

  15. Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2014-03-01

    Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  16. The role of wing geometric morphometrics in the identification of sandflies within the subgenus Lutzomyia.

    PubMed

    Giordani, B F; Andrade, A J; Galati, E A B; Gurgel-Gonçalves, R

    2017-12-01

    The Lutzomyia subgenus (Diptera: Psychodidae) includes sibling species with morphologically indistinguishable females. The aims of this study were to analyse variations in the size and shape of wings of species within the Lutzomyia subgenus and to assess whether these analyses might be useful in their identification. Wings (n = 733) of 18 species deposited in Brazilian collections were analysed by geometric morphometrics, using other genera and subgenera as outgroups. Shape variation was summarized in multivariate analyses and differences in wing size among species were tested by analysis of variance. The results showed significant variation in the sizes and shapes of wings of different Lutzomyia species. Two clusters within the Lutzomyia subgenus were distinguished in analyses of both males and females. In Cluster 1 (Lutzomyia ischnacantha, Lutzomyia cavernicola, Lutzomyia almerioi, Lutzomyia forattinii, Lutzomyia renei and Lutzomyia battistinii), scores for correct reclassification were high (females, kappa = 0.91; males, kappa = 0.90), whereas in Cluster 2 (Lutzomyia alencari, Lutzomyia ischyracantha, Lutzomyia cruzi, Lutzomyia longipalpis, Lutzomyia gaminarai and Lutzomyia lichyi), scores for correct reclassification were low (females, kappa = 0.42; males, kappa = 0.48). Wing geometry was useful in the identification of some species of the Lutzomyia subgenus, but did not allow the identification of sibling species such as L. longipalpis and L. cruzi. © 2017 The Royal Entomological Society.

  17. Time-varying sodium absorption in the Type Ia supernova 2013gh

    DOE PAGES

    Ferretti, Raphael; Amanullah, R.; Goobar, A.; ...

    2016-07-18

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all ofmore » which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods. In this paper, we have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results. Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 10 19 cm from the explosion. Conclusions. Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. Finally, the nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances.« less

  18. Geometric comparison of popular mixture-model distances.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Scott A.

    2010-09-01

    Statistical Latent Dirichlet Analysis produces mixture model data that are geometrically equivalent to points lying on a regular simplex in moderate to high dimensions. Numerous other statistical models and techniques also produce data in this geometric category, even though the meaning of the axes and coordinate values differs significantly. A distance function is used to further analyze these points, for example to cluster them. Several different distance functions are popular amongst statisticians; which distance function is chosen is usually driven by the historical preference of the application domain, information-theoretic considerations, or by the desirability of the clustering results. Relatively littlemore » consideration is usually given to how distance functions geometrically transform data, or the distances algebraic properties. Here we take a look at these issues, in the hope of providing complementary insight and inspiring further geometric thought. Several popular distances, {chi}{sup 2}, Jensen - Shannon divergence, and the square of the Hellinger distance, are shown to be nearly equivalent; in terms of functional forms after transformations, factorizations, and series expansions; and in terms of the shape and proximity of constant-value contours. This is somewhat surprising given that their original functional forms look quite different. Cosine similarity is the square of the Euclidean distance, and a similar geometric relationship is shown with Hellinger and another cosine. We suggest a geodesic variation of Hellinger. The square-root projection that arises in Hellinger distance is briefly compared to standard normalization for Euclidean distance. We include detailed derivations of some ratio and difference bounds for illustrative purposes. We provide some constructions that nearly achieve the worst-case ratios, relevant for contours.« less

  19. Rotatable non-circular forebody flow controller

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A. (Inventor)

    1991-01-01

    The invention is a rotatable, non-circular forebody flow controller. The apparatus comprises a small geometric device located at a nose of a forebody of an aircraft and a non-circular cross-sectional area that extends toward the apex of the aircraft. The device is symmetrical about a reference plane and preferably attaches to an axle which in turn attaches to a rotating motor. The motor rotates the device about an axis of rotation. Preferably, a control unit connected to an aircraft flight control computer signals to the rotating motor the proper rotational positioning of the geometric device.

  20. Geometric Hitting Set for Segments of Few Orientations

    DOE PAGES

    Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...

    2016-01-13

    Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

  1. Geometrical Theory of Spherical Harmonics for Geosciences

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen

    2010-05-01

    Spherical harmonics play a central role in the modelling of spatial and temporal processes in the system Earth. The gravity field of the Earth and its temporal variations, sea surface topography, geomagnetic field, ionosphere etc., are just a few examples where spherical harmonics are used to represent processes in the system Earth. We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, e.g. up to degree and order 106 and beyond. The algorithm is based on the trigonometric reduction of Legendre polynomials and the geometric rotation in hyperspace. It is shown that Legendre polynomials can be computed using trigonometric series by pre-computing amplitudes and translation terms for all angular arguments. It is shown that they can be treated as vectors in the Hilbert hyperspace leading to unitary hermitian rotation matrices with geometric properties. Thus, rotation of spherical harmonics about e.g. a polar or an equatorial axis can be represented in the similar way. This novel method allows stable calculation of spherical harmonics up to an arbitrary degree and order, i.e. up to degree and order 106 and beyond.

  2. How effective are geometric morphometric techniques for assessing functional shape variation? An example from the great ape temporomandibular joint.

    PubMed

    Terhune, Claire E

    2013-08-01

    Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three-dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one-way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable. Copyright © 2013 Wiley Periodicals, Inc.

  3. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; McDowell, David L.

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less

  4. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    DOE PAGES

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-09-16

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less

  5. Geometric Series: A New Solution to the Dog Problem

    ERIC Educational Resources Information Center

    Dion, Peter; Ho, Anthony

    2013-01-01

    This article describes what is often referred to as the dog, beetle, mice, ant, or turtle problem. Solutions to this problem exist, some being variations of each other, which involve mathematics of a wide range of complexity. Herein, the authors describe the intuitive solution and the calculus solution and then offer a completely new solution…

  6. The Shape of a Sausage: A Challenging Problem in the Calculus of Variations

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2010-01-01

    Many familiar household objects (such as sausages) involve the maximization of a volume under geometric constraints. A flexible but inextensible membrane bounds a volume which is to be filled to capacity. In the case of the sausage, a full analytic solution is here provided. Other related but more difficult problems seem to demand approximate…

  7. A comparative study of advanced shock-capturing schemes applied to Burgers' equation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Przekwas, A. J.

    1990-01-01

    Several variations of the TVD scheme, ENO scheme, FCT scheme, and geometrical schemes, such as MUSCL and PPM, are considered. A comparative study of these schemes as applied to the Burgers' equation is presented. The objective is to assess their performance for problems involving formation and propagation of shocks, shock collisions, and expansion of discontinuities.

  8. Second order nonlinear equations of motion for spinning highly flexible line-elements. [for spacecraft solar sail

    NASA Technical Reports Server (NTRS)

    Salama, M.; Trubert, M.

    1979-01-01

    A formulation is given for the second order nonlinear equations of motion for spinning line-elements having little or no intrinsic structural stiffness. Such elements have been employed in recent studies of structural concepts for future large space structures such as the Heliogyro solar sailer. The derivation is based on Hamilton's variational principle and includes the effect of initial geometric imperfections (axial, curvature, and twist) on the line-element dynamics. For comparison with previous work, the nonlinear equations are reduced to a linearized form frequently found in the literature. The comparison has revealed several new spin-stiffening terms that have not been previously identified and/or retained. They combine geometric imperfections, rotary inertia, Coriolis, and gyroscopic terms.

  9. Analysis of high-aspect-ratio jet-flap wings of arbitrary geometry

    NASA Technical Reports Server (NTRS)

    Lissaman, P. B. S.

    1973-01-01

    An analytical technique to compute the performance of an arbitrary jet-flapped wing is developed. The solution technique is based on the method of Maskell and Spence in which the well-known lifting-line approach is coupled with an auxiliary equation providing the extra function needed in jet-flap theory. The present method is generalized to handle straight, uncambered wings of arbitrary planform, twist, and blowing (including unsymmetrical cases). An analytical procedure is developed for continuous variations in the above geometric data with special functions to exactly treat discontinuities in any of the geometric and blowing data. A rational theory for the effect of finite wing thickness is introduced as well as simplified concepts of effective aspect ratio for rapid estimation of performance.

  10. Dynamics of Geometrically Nonlinear Elastic Nonthin Anisotropic Shells of Variable Thickness

    NASA Astrophysics Data System (ADS)

    Marchuk, M. V.; Tuchapskii, R. I.

    2017-11-01

    A theory of dynamic elastic geometrically nonlinear deformation of nonthin anisotropic shells with variable thickness is constructed. Shells are assumed asymmetric about the reference surface. Functions are expanded into Legendre series. The basic equations are written in a coordinate system aligned with the lines of curvature of the reference surface. The equations of motion and appropriate boundary conditions are obtained using the Hamilton-Ostrogradsky variational principle. The change in metric across the thickness is taken into account. The theory assumes that the refinement process is regular and allows deriving equations including products of terms of Legendre series of unknown functions of arbitrary order. The behavior of a square metallic plate acted upon by a pressure pulse distributed over its face is studied.

  11. Multispectral Resource Sampler (MRS): Proof of concept. Study on bidirectional reflectance. A simulation analysis of bidirectional reflectance properties and their effects on scene radiance. Implications for the MRS

    NASA Technical Reports Server (NTRS)

    Smith, J. A.

    1980-01-01

    A study was performed to evaluate the geometrical implication of a Multispectral Resource Sampler; a pointable sensor. Several vegetative targets representative of natural and agricultural canopies were considered in two wavelength bands. All combinations of Sun and view angles between 5 and 85 degrees zenith for a range of azimuths were simulated to examine geometrical dependance arising from seasonal as well as latitudinal variation. The effects of three different atmospheres corresponding to clear, medium and heavy haze conditions are included. An extensive model data base was generated to provide investigators with means for possible further study of atmospheric correction procedures and sensor design questions.

  12. Analysis of aircraft tires via semianalytic finite elements

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.; Tanner, John A.

    1990-01-01

    A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell.

  13. Modern morphometry: new perspectives in physical anthropology.

    PubMed

    Mantini, Simone; Ripani, Maurizio

    2009-06-01

    In the past one hundred years physical anthropology has recourse to more and more efficient methods, which provide several new information regarding, human evolution and biology. Apart from the molecular approach, the introduction of new computed assisted techniques gave rise to a new concept of morphometry. Computed tomography and 3D-imaging, allowed providing anatomical description of the external and inner structures exceeding the problems encountered with the traditional morphometric methods. Furthermore, the support of geometric morphometrics, allowed creating geometric models to investigate morphological variation in terms of evolution, ontogeny and variability. The integration of these new tools gave rise to the virtual anthropology and to a new image of the anthropologist in which anatomical, biological, mathematical statistical and data processing information are fused in a multidisciplinary approach.

  14. Geometric constrained variational calculus. III: The second variation (Part II)

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Luria, Gianvittorio; Pagani, Enrico

    2016-03-01

    The problem of minimality for constrained variational calculus is analyzed within the class of piecewise differentiable extremaloids. A fully covariant representation of the second variation of the action functional based on a family of local gauge transformations of the original Lagrangian is proposed. The necessity of pursuing a local adaptation process, rather than the global one described in [1] is seen to depend on the value of certain scalar attributes of the extremaloid, here called the corners’ strengths. On this basis, both the necessary and the sufficient conditions for minimality are worked out. In the discussion, a crucial role is played by an analysis of the prolongability of the Jacobi fields across the corners. Eventually, in the appendix, an alternative approach to the concept of strength of a corner, more closely related to Pontryagin’s maximum principle, is presented.

  15. More than a simple lipophilic contact: a detailed thermodynamic analysis of nonbasic residues in the s1 pocket of thrombin.

    PubMed

    Baum, Bernhard; Mohamed, Menshawy; Zayed, Mohamed; Gerlach, Christof; Heine, Andreas; Hangauer, David; Klebe, Gerhard

    2009-07-03

    The field of medicinal chemistry aims to design and optimize small molecule leads into drug candidates that may positively interfere with pathological disease situations in humans or combat the growth of infective pathogens. From the plethora of crystal structures of protein-inhibitor complexes we have learned how molecules recognize each other geometrically, but we still have rather superficial understanding of why they bind to each other. This contribution surveys a series of 26 thrombin inhibitors with small systematic structural differences to elucidate the rationale for their widely deviating binding affinity from 185 microM to 4 nM as recorded by enzyme kinetic measurements. Five well-resolved (resolution 2.30 - 1.47 A) crystal structures of thrombin-inhibitor complexes and an apo-structure of the uncomplexed enzyme (1.50 A) are correlated with thermodynamic data recorded by isothermal titration calorimetry with 12 selected inhibitors from the series. Taking solubility data into account, the variation in physicochemical properties allows conclusions to be reached about the relative importance of the enthalpic binding features as well as to estimate the importance of the parameters more difficult to capture, such as residual ligand entropy and desolvation properties. The collected data reveal a comprehensive picture of the thermodynamic signature that explains the so far poorly understood attractive force experienced by m-chloro-benzylamides to thrombin.

  16. Aircraft-type dependency of contrail evolution

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.; Görsch, N.

    2014-12-01

    The impact of aircraft type on contrail evolution is assessed using a large eddy simulation model with Lagrangian ice microphysics. Six different aircraft ranging from the small regional airliner Bombardier CRJ to the largest aircraft Airbus A380 are taken into account. Differences in wake vortex properties and fuel flow lead to considerable variations in the early contrail geometric depth and ice crystal number. Larger aircraft produce contrails with more ice crystals (assuming that the number of initially generated ice crystals per kilogram fuel is constant). These initial differences are reduced in the first minutes, as the ice crystal loss during the vortex phase is stronger for larger aircraft. In supersaturated air, contrails of large aircraft are much deeper after 5 min than those of small aircraft. A parameterization for the final vertical displacement of the wake vortex system is provided, depending only on the initial vortex circulation and stratification. Cloud resolving simulations are used to examine whether the aircraft-induced initial differences have a long-lasting mark. These simulations suggest that the synoptic scenario controls the contrail cirrus evolution qualitatively. However, quantitative differences between the contrail cirrus properties of the various aircraft remain over the total simulation period of 6 h. The total extinctions of A380-produced contrails are about 1.5 to 2.5 times higher than those from contrails of a Bombardier CRJ.

  17. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)

    PubMed Central

    Jermoumi, M.; Korideck, H.; Bhagwat, M.; Zygmanski, P.; Makrigiogos, G.M.; Berbeco, R.I.; Cormack, R.C.; Ngwa, W.

    2016-01-01

    Purpose To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). Methods and materials A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Results Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. Conclusions The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. PMID:25964129

  18. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP).

    PubMed

    Jermoumi, M; Korideck, H; Bhagwat, M; Zygmanski, P; Makrigiogos, G M; Berbeco, R I; Cormack, R C; Ngwa, W

    2015-07-01

    To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm(3)) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Aeroelastic coupling of geometrically nonlinear structures and linear unsteady aerodynamics: Two formulations

    NASA Astrophysics Data System (ADS)

    Demasi, L.; Livne, E.

    2009-07-01

    Two different time domain formulations of integrating commonly used frequency-domain unsteady aerodynamic models based on a modal approach with full order finite element models for structures with geometric nonlinearities are presented. Both approaches are tailored to flight vehicle configurations where geometric stiffness effects are important but where deformations are moderate, flow is attached, and linear unsteady aerodynamic modeling is adequate, such as low aspect ratio wings or joined-wing and strut-braced wings at small to moderate angles of attack. Results obtained using the two approaches are compared using both planar and non-planar wing configurations. Sub-critical and post-flutter speeds are considered. It is demonstrated that the two methods lead to the same steady solution for the sub-critical case after the transients subside. It is also shown that the two methods predict the amplitude and frequency of limit cycle oscillation (when present) with the same accuracy.

  20. Electronic and geometric properties of ETS-10: QM/MM studies of cluster models.

    PubMed

    Zimmerman, Anne Marie; Doren, Douglas J; Lobo, Raul F

    2006-05-11

    Hybrid DFT/MM methods have been used to investigate the electronic and geometric properties of the microporous titanosilicate ETS-10. A comparison of finite length and periodic models demonstrates that band gap energies for ETS-10 can be well represented with relatively small cluster models. Optimization of finite clusters leads to different local geometries for bulk and end sites, where the local bulk TiO6 geometry is in good agreement with recent experimental results. Geometry optimizations reveal that any asymmetry within the axial O-Ti-O chain is negligible. The band gap in the optimized model corresponds to a O(2p) --> Tibulk(3d) transition. The results suggest that the three Ti atom, single chain, symmetric, finite cluster is an effective model for the geometric and electronic properties of bulk and end TiO6 groups in ETS-10.

  1. Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Farkašovský, Pavol

    2018-05-01

    The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.

  2. External and internal geometry of European adults.

    PubMed

    Bertrand, Samuel; Skalli, Wafa; Delacherie, Laurent; Bonneau, Dominique; Kalifa, Gabriel; Mitton, David

    2006-12-15

    The primary objective of the study was to bring a deeper knowledge of the human anthropometry, investigating the external and internal body geometry of small women, mid-sized men and tall men. Sixty-four healthy European adults were recruited. External measurements were performed using classical anthropometric instruments. Internal measurements of the trunk bones were performed using a stereo-radiographic 3D reconstruction technique. Besides the original procedure presented in this paper for performing in vivo geometrical data acquisition on numerous volunteers, this study provides an extensive description of both external and internal (trunk skeleton) human body geometry for three morphotypes. Moreover, this study proposes a global external and internal geometrical description of 5th female 50th male and 95th male percentile subjects. This study resulted in a unique geometrical database enabling improvement for numerical models of the human body for crash test simulation and offering numerous possibilities in the anthropometry field.

  3. Bayesian comparison of protein structures using partial Procrustes distance.

    PubMed

    Ejlali, Nasim; Faghihi, Mohammad Reza; Sadeghi, Mehdi

    2017-09-26

    An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.

  4. Smart mug to measure hand's geometrical mechanical impedance.

    PubMed

    Hondori, Hossein Mousavi; Tech, Ang Wei

    2011-01-01

    A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems.

  5. Metatarsal Shape and Foot Type: A Geometric Morphometric Analysis.

    PubMed

    Telfer, Scott; Kindig, Matthew W; Sangeorzan, Bruce J; Ledoux, William R

    2017-03-01

    Planus and cavus foot types have been associated with an increased risk of pain and disability. Improving our understanding of the geometric differences between bones in different foot types may provide insights into injury risk profiles and have implications for the design of musculoskeletal and finite-element models. In this study, we performed a geometric morphometric analysis on the geometry of metatarsal bones from 65 feet, segmented from computed tomography (CT) scans. These were categorized into four foot types: pes cavus, neutrally aligned, asymptomatic pes planus, and symptomatic pes planus. Generalized procrustes analysis (GPA) followed by permutation tests was used to determine significant shape differences associated with foot type and sex, and principal component analysis was used to find the modes of variation for each metatarsal. Significant shape differences were found between foot types for all the metatarsals (p < 0.01), most notably in the case of the second metatarsal which showed significant pairwise differences across all the foot types. Analysis of the principal components of variation showed pes cavus bones to have reduced cross-sectional areas in the sagittal and frontal planes. The first (p = 0.02) and fourth metatarsals (p = 0.003) were found to have significant sex-based differences, with first metatarsals from females shown to have reduced width, and fourth metatarsals from females shown to have reduced frontal and sagittal plane cross-sectional areas. Overall, these findings suggest that metatarsal bones have distinct morphological characteristics that are associated with foot type and sex, with implications for our understanding of anatomy and numerical modeling of the foot.

  6. Cross-sectional area of human trunk paraspinal muscles before and after posterior lumbar surgery using magnetic resonance imaging.

    PubMed

    Ghiasi, Mohammad S; Arjmand, Navid; Shirazi-Adl, Aboulfazl; Farahmand, Farzam; Hashemi, Hassan; Bagheri, Sahar; Valizadeh, Mahsa

    2016-03-01

    Iatrogenic injuries to paraspinal muscles during the posterior lumbar surgery (PLS) cause a reduction in their cross-sectional areas (CSAs) and contractile densities over time post-surgery. This study aims to quantify such alterations. Pre- and postoperative CSAs (~6 months interval) of all paraspinal muscles were measured in six patients undergoing PLS using a 3-T magnetic resonance (MR) scanner to quantify the alterations in geometrical and tissue effective contractile (non-fatty) CSAs of these muscles at all lumbar levels. To examine the presence of any confounding effects on recorded changes within ~7-month period, measurements were also carried out on ten healthy volunteers. In the healthy population, an important (~22%) portion of CSA of the erector spinae (ES) was noncontractile at the lower lumbar levels. Negligible variations over time in both the total geometrical (<1.7% in average) and contractile (<1.2%) CSAs of muscles were observed in the healthy group (i.e., no confounding effect). Following PLS, significant reductions were observed in the geometrical CSA of only multifidus (MF) muscle by ~14 and 11% as well as in its contractile CSA by ~26 and 14% at the L5-S1 and L4-L5 levels, respectively. The total CSA of ES at lower lumbar levels shows substantial noncontractile contents in both healthy and patient populations. Biomechanical models of the spine should hence account for the noncontractile contents using only the effective contractile muscle CSAs. Postoperative variations in CSAs of paraspinal muscles may have profound effects on patterns of muscle activities, spinal loading, and stability.

  7. Wess-Zumino consistency condition for entanglement entropy.

    PubMed

    Banerjee, Shamik

    2012-07-06

    In this Letter, we consider the variation of the entanglement entropy of a region as the shape of the entangling surface is changed. We show that the variation satisfies a Wess-Zumino-like integrability condition in field theories which can be consistently coupled to gravity. In this case, the "anomaly" is localized on the entangling surface. The solution of the integrability condition should give all the nontrivial finite local terms which can appear in the variation of the entanglement entropy. The answers depend on the intrinsic and extrinsic geometry of the entangling surface, but the form does not depend on the details of the field theory. The coefficients, which multiply the purely geometric contributions, will depend on the particular details of the field theory.

  8. Mapping of ligand-binding cavities in proteins.

    PubMed

    Andersson, C David; Chen, Brian Y; Linusson, Anna

    2010-05-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.

  9. Mapping of Ligand-Binding Cavities in Proteins

    PubMed Central

    Andersson, C. David; Chen, Brian Y.; Linusson, Anna

    2010-01-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterise and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity and charge). This approach can provide valuable information on the similarities, and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterisation and mapping of “orphan structures”, selection of protein structures for docking studies in structure-based design and identification of proteins for selectivity screens in drug design programs. PMID:20034113

  10. Finite size and geometrical non-linear effects during crack pinning by heterogeneities: An analytical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent

    2016-04-01

    Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.

  11. Adsorption of small hydrocarbon radicals on single walled carbon nanotubes of finite length

    NASA Astrophysics Data System (ADS)

    Wu, Jianhua; Hagelberg, Frank

    2010-04-01

    Adsorption of the hydrocarbon radicals CH, CH2 , and CH3 on finite single walled carbon nanotubes (SWNTs) of the (10,0) type is investigated by density-functional theory (DFT). Two classes of finite SWNTs are considered: truncated SWNTs, where admission is made for geometric reconstruction of the tube ends, and those capped with fullerene hemispheres. Both prototypes are characterized by ground states with nonvanishing magnetic moments, where antiferromagnetic coordination between nds is preferred over the ferromagnetic alternative. The focus of this study is on the influence exerted by the adsorbates on the magnetic structure of the system as a whole, as well as the relative impact of both, confinement due to the finite lengths of the considered SWNTs and their magnetic structure on the preferred positions of hydrocarbon adsorbates. In particular, it is shown that the confinement outweighs the magnetic effect in defining the adsorption energy variations among nonequivalent sites of attachment. The SWNT spin-density distributions turn out to affect the nature of the bonding between finite SWNT substrates and hydrocarbon radical adsorbates.

  12. The potential influence of morphology on the evolutionary divergence of an acoustic signal

    PubMed Central

    Pitchers, W. R.; Klingenberg, C.P.; Tregenza, Tom; Hunt, J.; Dworkin, I.

    2014-01-01

    The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterise the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. PMID:25223712

  13. Testing the Proterozoic GAD Hypothesis with Reconstructed Tomography Dynamo Models

    NASA Astrophysics Data System (ADS)

    Panzik, J. E.; Driscoll, P. E.; Rudolph, M. L.

    2014-12-01

    Pre-Mesozoic continental reconstructions and paleoclimatic inferences from paleomagnetism rely critically upon the assumption of a time-averaged geocentric axial dipole (GAD) magnetic field. Though the geomagnetic field of the past 5 myr has been extensively studied and small geometric variations are being refined (e.g., Johnson et al., 2008, GGG 9), the pre-Mesozoic geomagnetic field geometry remains unresolved and is suggested to have large, non-dipolar contributions (e.g. Kent and Smethurst, 1998, EPSL 160, 391-402). We address the paleo-morphology by looking at inclination versus paleolatitude histograms derived from numerical geodynamo simulations with spatially variable CMB heat flux, similar to the method used by Bloxham (2000, Nature 405, 63-65). We will be using homogeneous heat flux simulations as a standard and compare the results to those of a present day tomography and a reconstracted 200 Ma tomography CMB heat flux. By comparing the relative contribution of non-dipolar components to the dipole field, we find that strong CMB heat flux heterogeneity is necessary to create the large non-dipolar contributions inferred for the paleomagnetic field.

  14. Secondary instabilities modulate cortical complexity in the mammalian brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-10-01

    Disclosing the origin of convolutions in the mammalian brain remains a scientific challenge. Primary folds form before we are born: they are static, well defined and highly preserved across individuals. Secondary folds occur and disappear throughout our entire lifetime: they are dynamic, irregular and highly variable among individuals. While extensive research has improved our understanding of primary folding in the mammalian brain, secondary folding remains understudied and poorly understood. Here, we show that secondary instabilities can explain the increasing complexity of our brain surface as we age. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we explore the critical conditions for secondary instabilities. We show that with continuing growth, our brain surface continues to bifurcate into increasingly complex morphologies. Our results suggest that even small geometric variations can have a significant impact on surface morphogenesis. Secondary bifurcations, and with them morphological changes during childhood and adolescence, are closely associated with the formation and loss of neuronal connections. Understanding the correlation between neuronal connectivity, cortical thickness, surface morphology and ultimately behaviour, could have important implications on the diagnostics, classification and treatment of neurological disorders.

  15. Electronic structure, stability and magnetic properties of small M1-4(M = Fe, Co, Ni) clusters encapsulated inside a (BN)48 cage

    NASA Astrophysics Data System (ADS)

    Liang, Wenjuan; Jia, Jianfeng; Lv, Jin; Wu, Haishun

    2015-02-01

    The geometrical structure and magnetic properties of M1-4(M = Fe, Co and Ni) clusters within a (BN)48 cage were calculated at the BPW91/LanL2DZ level. The small M1-4 clusters generally prefer an off-centered position near the hexagonal rings in the (BN)48 cages. The (BN)48 cages can increase the stability of these small magnetic clusters while protecting the magnetic nature of M and M2 clusters.

  16. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico

    PubMed Central

    Maga, A. Murat; Navarro, Nicolas; Cunningham, Michael L.; Cox, Timothy C.

    2015-01-01

    We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest. PMID:25859222

  17. A Dislocation Model of Seismic Wave Attenuation and Micro-creep in the Earth: Harold Jeffreys and the Rheology of the Solid Earth

    NASA Astrophysics Data System (ADS)

    Karato, S.

    A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q ωα is shown to require a distribution function of P(L) L-m with m=4-2α The activation energy of Q-1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q-1 strongly suggests that the Q-1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of 108 m-2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of 10-6, thus even a small strain ( 10-6-10-4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep, causing viscous behavior.

  18. Attacks, applications, and evaluation of known watermarking algorithms with Checkmark

    NASA Astrophysics Data System (ADS)

    Meerwald, Peter; Pereira, Shelby

    2002-04-01

    The Checkmark benchmarking tool was introduced to provide a framework for application-oriented evaluation of watermarking schemes. In this article we introduce new attacks and applications into the existing Checkmark framework. In addition to describing new attacks and applications, we also compare the performance of some well-known watermarking algorithms (proposed by Bruyndonckx,Cox, Fridrich, Dugad, Kim, Wang, Xia, Xie, Zhu and Pereira) with respect to the Checkmark benchmark. In particular, we consider the non-geometric application which contains tests that do not change the geometry of image. This attack constraint is artificial, but yet important for research purposes since a number of algorithms may be interesting, but would score poorly with respect to specific applications simply because geometric compensation has not been incorporated. We note, however, that with the help of image registration, even research algorithms that do not have counter-measures against geometric distortion -- such as a template or reference watermark -- can be evaluated. In the first version of the Checkmark benchmarking program, application-oriented evaluation was introduced, along with many new attacks not already considered in the literature. A second goal of this paper is to introduce new attacks and new applications into the Checkmark framework. In particular, we introduce the following new applications: video frame watermarking, medical imaging and watermarking of logos. Video frame watermarking includes low compression attacks and distortions which warp the edges of the video as well as general projective transformations which may result from someone filming the screen at a cinema. With respect to medical imaging, only small distortions are considered and furthermore it is essential that no distortions are present at embedding. Finally for logos, we consider images of small sizes and particularly compression, scaling, aspect ratio and other small distortions. The challenge of watermarking logos is essentially that of watermarking a small and typically simple image. With respect to new attacks, we consider: subsampling followed by interpolation, dithering and thresholding which both yield a binary image.

  19. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE PAGES

    Short, Mark; Jackson, Scott I.

    2015-01-23

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  20. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Mark; Jackson, Scott I.

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  1. Kinoform optics applied to X-ray photon correlation spectroscopy.

    PubMed

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  2. Investigating the sources of variability in the dynamic response of built-up structures through a linear analytical model

    NASA Astrophysics Data System (ADS)

    Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Fisher, Stephen A.

    2017-01-01

    It is well established that the dynamic response of a number of nominally identical built-up structures are often different and the variability increases with increasing complexity of the structure. Furthermore, the effects of the different parameters, for example the variation in joint locations or the range of the Young's modulus, on the dynamic response of the system are not the same. In this paper, the effects of different material and geometric parameters on the variability of a vibration transfer function are compared using an analytical model of a simple linear built-up structure that consist of two plates connected by a single mount. Similar results can be obtained if multiple mounts are used. The scope of this paper is limited to a low and medium frequency range where usually deterministic models are used for vibrational analysis. The effect of the mount position and also the global variation in the properties of the plate, such as modulus of elasticity or thickness, is higher on the variability of vibration transfer function than the effect of the mount properties. It is shown that the vibration transfer function between the plates is independent of the mount property if a stiff enough mount with a small mass is implemented. For a soft mount, there is a direct relationship between the mount impedance and the variation in the vibration transfer function. Furthermore, there are a range of mount stiffnesses between these two extreme cases at which the vibration transfer function is more sensitive to changes in the stiffness of the mount than when compared to a soft mount. It is found that the effect of variation in the mount damping and the mount mass on the variability is negligible. Similarly, the effect of the plate damping on the variability is not significant.

  3. Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry

    PubMed Central

    Doube, Michael; Conroy, Alexis Wiktorowicz; Christiansen, Per; Hutchinson, John R.; Shefelbine, Sandra

    2009-01-01

    Background Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry. Method/Principal Findings Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. Conclusions/Significance Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals. PMID:19270749

  4. Minimum cost of transport in Asian elephants: do we really need a bigger elephant?

    PubMed

    Langman, Vaughan A; Rowe, Michael F; Roberts, Thomas J; Langman, Nathanial V; Taylor, Charles R

    2012-05-01

    Body mass is the primary determinant of an animal's energy requirements. At their optimum walking speed, large animals have lower mass-specific energy requirements for locomotion than small ones. In animals ranging in size from 0.8 g (roach) to 260 kg (zebu steer), the minimum cost of transport (COT(min)) decreases with increasing body size roughly as COT(min)∝body mass (M(b))(-0.316±0.023) (95% CI). Typically, the variation of COT(min) with body mass is weaker at the intraspecific level as a result of physiological and geometric similarity within closely related species. The interspecific relationship estimates that an adult elephant, with twice the body mass of a mid-sized elephant, should be able to move its body approximately 23% cheaper than the smaller elephant. We sought to determine whether adult Asian and sub-adult African elephants follow a single quasi-intraspecific relationship, and extend the interspecific relationship between COT(min) and body mass to 12-fold larger animals. Physiological and possibly geometric similarity between adult Asian elephants and sub-adult African elephants caused body mass to have a no effect on COT(min) (COT(min)∝M(b)(0.007±0.455)). The COT(min) in elephants occurred at walking speeds between 1.3 and ∼1.5 m s(-1), and at Froude numbers between 0.10 and 0.24. The addition of adult Asian elephants to the interspecific relationship resulted in COT(min)∝M (-0.277±0.046)(b). The quasi-intraspecific relationship between body mass and COT(min) among elephants caused the interspecific relationship to underestimate COT(min) in larger elephants.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemer, Matthew; Quey, Romain; Dawson, Paul

    Discussed is a computational study of the influence of the microstructure’s geometric morphology on the yield strength and ductility of Ti-6Al-4V. Uniaxial tension tests were conducted on physical specimens to determine the macroscopic yield strength and ductility of two microstructural variations (mill annealed and β annealed) to establish comparisons of macroscopic properties. A multi-experimental approach was utilized to gather two dimensional and three dimensional data, which were used to inform the construction of representative β annealed polycrystals. A highly parallelized crystal plasticity finite element framework was employed to model the deformation response of the generated polycrystals subjected to uniaxial tension.more » To gauge the macroscopic response’s sensitivity to the morphology of the geometry, the key geometrical features - namely the number of high temperature β phase grains, α phase colonies, and size of remnant secondary β phase lamellae - were altered systematically in a suite of simulations. Both single phase and dual phase aggregates were studied. Presented are the calculated yield strengths and ductilities, and the resulting trends as functions of geometric parameters are examined in light of the heterogeneity in deformation at the crystal scale.« less

  6. Influence of optimized leading-edge deflection and geometric anhedral on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration. [langley 7 by 10 foot tunnel

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Huffman, J. K.

    1979-01-01

    An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories.

  7. Geometric decompositions of collective motion

    NASA Astrophysics Data System (ADS)

    Mischiati, Matteo; Krishnaprasad, P. S.

    2017-04-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.

  8. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: II. Sex, age, side differences.

    PubMed

    Ruff, C B; Hayes, W C

    1983-03-01

    Intra-populational variation in cross-sectional geometric properties of the femur and tibia are investigated in the Pecos Pueblo skeletal sample. Sex differences in geometric parameters suggest that male lower limb bones are more adapted for A-P bending, females for M-L bending. Proposed explanations for this finding include sexual dimorphism in pelvic structure and culturally prescribed sex-related activities at Pecos. With aging, both males and females undergo endosteal resorption and cortical thinning, greater among females. Both sexes also demonstrate an increase with age in subperiosteal area and second moments of area, supporting results reported in some studies of modern population samples. Sex and site-specific remodeling of the femur and tibia with aging also occur. These localized remodeling changes appear to selectively conserve more compact cortical bone in areas of high mechanical stress. Side differences in cross-sectional geometric properties indicate that left lower limb bones are generally larger than right lower limb bones, with asymmetry greater among females. In particular, left femora and tibiae are relatively stronger in A-P bending, again more so in females.

  9. Geometric decompositions of collective motion

    PubMed Central

    Krishnaprasad, P. S.

    2017-01-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes—including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots. PMID:28484319

  10. On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Putkaradze, Vakhtang

    2015-08-01

    We derive a fully three-dimensional, geometrically exact theory for flexible tubes conveying fluid. The theory also incorporates the change of the cross section available to the fluid motion during the dynamics. Our approach is based on the symmetry-reduced, exact geometric description for elastic rods, coupled with the fluid transport and subject to the volume conservation constraint for the fluid. We first derive the equations of motion directly, by using an Euler-Poincaré variational principle. We then justify this derivation with a more general theory elucidating the interesting mathematical concepts appearing in this problem, such as partial left (elastic) and right (fluid) invariance of the system, with the added holonomic constraint (volume). We analyze the fully nonlinear behavior of the model when the axis of the tube remains straight. We then proceed to the linear stability analysis and show that our theory introduces important corrections to previously derived results, both in the consistency at all wavelength and in the effects arising from the dynamical change of the cross section. Finally, we derive and analyze several analytical, fully nonlinear solutions of traveling wave type in two dimensions.

  11. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  12. Mechanical oscillatory behavior of a C60 fullerene tunneling through open carbon nanocones

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.

    2017-07-01

    This paper deals with the mechanical oscillatory behavior of a C60 fullerene inside open carbon nanocones (CNCs). The fullerene molecule is assumed to enter the nanocone through its small end or wide end. Following our previously published study, semi-analytical expressions for the evaluation of vdW interactions are presented which facilitate obtaining a formula for oscillation frequency. The equation of motion is numerically solved to attain the time histories of separation distance and velocity of the fullerene molecule. Based on the conservation of the mechanical energy law, a new semi-analytical formula is also derived to accurately evaluate the oscillation frequency of the system. With respect to the present formulation, a detailed parametric study is conducted to gain an insight into the effects of both geometrical parameters (small-end radius, wide-end radius and vertex angle of nanocone) and initial conditions (initial separation distance and initial velocity) on the oscillatory behavior of C60 fullerene-open CNC oscillators. For given geometrical parameters and initial conditions, it is shown that higher oscillation frequencies can be achieved when the fullerene molecule enters the open nanocone through its small end.

  13. The effect of axial ligand on the oxidation of syringyl alcohol by Co(salen) adducts

    Treesearch

    Thomas Elder; Joseph Bozell; Diana Cedeno

    2013-01-01

    Experimental work on the oxidation of the lignin model, syringyl alcohol, using oxygen and a Co(salen) catalyst has revealed variations in yield with different imidazole-based axial ligands. A reasonable linear relationship was found between product yield and pKa of the axial ligand. The current work, using density functional calculations, examined geometric,...

  14. A geometric morphometric analysis of hominin upper premolars. Shape variation and morphological integration.

    PubMed

    Gómez-Robles, Aida; Martinón-Torres, María; Bermúdez de Castro, José María; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2011-12-01

    This paper continues the series of articles initiated in 2006 that analyse hominin dental crown morphology by means of geometric morphometric techniques. The detailed study of both upper premolar occlusal morphologies in a comprehensive sample of hominin fossils, including those coming from the Gran Dolina-TD6 and Sima de los Huesos sites from Atapuerca, Spain, complement previous works on lower first and second premolars and upper first molars. A morphological gradient consisting of the change from asymmetric to symmetric upper premolars and a marked reduction of the lingual cusp in recent Homo species has been observed in both premolars. Although percentages of correct classification based on upper premolar morphologies are not very high, significant morphological differences between Neanderthals (and European middle Pleistocene fossils) and modern humans have been identified, especially in upper second premolars. The study of morphological integration between premolar morphologies reveals significant correlations that are weaker between upper premolars than between lower ones and significant correlations between antagonists. These results have important implications for understanding the genetic and functional factors underlying dental phenotypic variation and covariation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. HpQTL: a geometric morphometric platform to compute the genetic architecture of heterophylly.

    PubMed

    Sun, Lidan; Wang, Jing; Zhu, Xuli; Jiang, Libo; Gosik, Kirk; Sang, Mengmeng; Sun, Fengsuo; Cheng, Tangren; Zhang, Qixiang; Wu, Rongling

    2017-02-15

    Heterophylly, i.e. morphological changes in leaves along the axis of an individual plant, is regarded as a strategy used by plants to cope with environmental change. However, little is known of the extent to which heterophylly is controlled by genes and how each underlying gene exerts its effect on heterophyllous variation. We described a geometric morphometric model that can quantify heterophylly in plants and further constructed an R-based computing platform by integrating this model into a genetic mapping and association setting. The platform, named HpQTL, allows specific quantitative trait loci mediating heterophyllous variation to be mapped throughout the genome. The statistical properties of HpQTL were examined and validated via computer simulation. Its biological relevance was demonstrated by results from a real data analysis of heterophylly in a wood plant, mei (Prunus mume). HpQTL provides a powerful tool to analyze heterophylly and its underlying genetic architecture in a quantitative manner. It also contributes a new approach for genome-wide association studies aimed to dissect the programmed regulation of plant development and evolution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Pinpointing the base of the AGN jets through general relativistic X-ray reverberation studies

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.

    2015-03-01

    Many theoretical models of Active Galactic Nuclei (AGN) predict that the X-ray corona, lying above the black hole, constitutes the base of the X-ray jet. Thus, by studying the exact geometry of the close black hole environment, we can pinpoint the launching site of the jet. Detection of negative X-ray reverberation time delays (i.e. soft band X-ray variations lagging behind the corresponding hard band X-ray variations) can yield significant information about the geometrical properties of the AGN, such as the location of the X-ray source, as well as the physical properties of the the black hole, such as its mass and spin. In the frame-work of the lamp-post geometry, I present the first systematic X-ray time-lag modelling results of an ensemble of 12 AGN, using a fully general relativistic (GR) ray tracing approach for the estimation of the systems' response functions. By combing these state-of-the art GR response models with statistically innovative fitting routines, I derive the geometrical layout of the close BH environment for each source, unveiling the position of the AGN jet-base.

  17. Genetic and Morphological Differentiation of the Semiterrestrial Crab Armases angustipes (Brachyura: Sesarmidae) along the Brazilian Coast.

    PubMed

    Marochi, Murilo Zanetti; Masunari, Setuko; Schubart, Christoph D

    2017-02-01

    The genetic and morphometric population structures of the semiterrestrial crab Armases angustipes from along the Brazilian coast were examined. The influence of the Central South Equatorial Current on larval dispersal of A. angustipes also was evaluated. Six populations were sampled from estuarine areas in São Luis do Maranhão, Maranhão; Natal, Rio Grande do Norte; Maceió, Alagoas; Ilhéus, Bahia; Aracruz, Espírito Santo; and Guaratuba, Paraná. Patterns of genetic differentiation were assessed using DNA sequence data corresponding to parts of the mitochondrial cytochrome c oxidase subunit 1. Geometric morphometric techniques were used to evaluate morphological variation in shape and size of the carapace and right cheliped propodus. Our results revealed low genetic variability and lack of phylogeographic structure; geometric morphometrics showed statistically significant morphological differentiation and geographic structuring. Our data indicate the absence of possible barriers to gene flow for this mobile species, and no clear correlation of morphological or genetic variation with ocean currents and/or geographic distance. Our results also suggest that historical geological and climatological events and/or possible bottleneck effects influenced the current low genetic variability among the populations of A. angustipes.

  18. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342

  19. The nature of geometric frustration in the Kob-Andersen mixture

    NASA Astrophysics Data System (ADS)

    Crowther, Peter; Turci, Francesco; Royall, C. Patrick

    2015-07-01

    Geometric frustration is an approach to the glass transition based upon the consideration of locally favoured structures (LFS), which are geometric motifs which minimise the local free energy. Geometric frustration proposes that a transition to a crystalline state is frustrated because these LFS do not tile space. However, this concept is based on icosahedra which are not always the LFS for a given system. The LFS of the popular Kob-Andersen (KA) model glassformer are the bicapped square antiprism, which does tile space. Such a LFS-crystal is indeed realised in the Al2Cu structure, which is predicted to be a low energy state for the KA model with a 2:1 composition. We, therefore, hypothesise that upon changing the composition in the KA model towards 2:1, geometric frustration may be progressively relieved, leading to larger and larger domains of LFS which would ultimately correspond to the Al2Cu crystal. Remarkably, rather than an increase, upon changing composition we find a small decrease in the LFS population, and the system remains impervious to nucleation of LFS crystals. We suggest that this may be related to the composition of the LFS, as only a limited subset is compatible with the crystal. We further demonstrate that the Al2Cu crystal will grow from a seed in the KA model with 2:1 composition and identify the melting temperature to be 0.447(2).

  20. Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.

    PubMed

    Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan

    2013-02-01

    A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.

  1. Geometrical influence of a deposited particle on the performance of bridged carbon nanotube-based mass detectors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A.

    2017-10-01

    A nonlocal continuum-based model is derived to simulate the dynamic behavior of bridged carbon nanotube-based nano-scale mass detectors. The carbon nanotube (CNT) is modeled as an elastic Euler-Bernoulli beam considering von-Kármán type geometric nonlinearity. In order to achieve better accuracy in characterization of the CNTs, the geometrical properties of an attached nano-scale particle are introduced into the model by its moment of inertia with respect to the central axis of the beam. The inter-atomic long-range interactions within the structure of the CNT are incorporated into the model using Eringen's nonlocal elastic field theory. In this model, the mass can be deposited along an arbitrary length of the CNT. After deriving the full nonlinear equations of motion, the natural frequencies and corresponding mode shapes are extracted based on a linear eigenvalue problem analysis. The results show that the geometry of the attached particle has a significant impact on the dynamic behavior of the CNT-based mechanical resonator, especially, for those with small aspect ratios. The developed model and analysis are beneficial for nano-scale mass identification when a CNT-based mechanical resonator is utilized as a small-scale bio-mass sensor and the deposited particles are those, such as proteins, enzymes, cancer cells, DNA and other nano-scale biological objects with different and complex shapes.

  2. Nanoelectrode array for electrochemical analysis

    DOEpatents

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  3. Laser-induced stimulated Raman scattering in the forward direction of a droplet - Comparison of Mie theory with geometrical optics

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Jarzembski, Maurice A.

    1991-01-01

    This paper uses Mie theory to treat electromagnetic scattering and to evaluate field enhancement in the forward direction of a small droplet irradiated by a high-energy beam and compares the results of calculations with the field-enhancement evaluation obtained via geometrical optics treatment. Results of this comparison suggest that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support laser-induced Raman scattering. The results are supported by experimental observations of the interaction of a 120-micron-diam water droplet with a high-energy Nd:YAG laser beam.

  4. AutoCAD-To-GIFTS Translator Program

    NASA Technical Reports Server (NTRS)

    Jones, Andrew

    1989-01-01

    AutoCAD-to-GIFTS translator program, ACTOG, developed to facilitate quick generation of small finite-element models using CASA/GIFTS finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Geometric entities recognized by ACTOG include points, lines, arcs, solids, three-dimensional lines, and three-dimensional faces. From this information, ACTOG creates GIFTS SRC file, which then reads into GIFTS preprocessor BULKM or modified and reads into EDITM to create finite-element model. SRC file used as is or edited for any number of uses. Written in Microsoft Quick-Basic (Version 2.0).

  5. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2014-05-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  6. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    NASA Technical Reports Server (NTRS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  7. A three-dimensional geometric morphometrics view of the cranial shape variation and population history in the New World.

    PubMed

    Galland, Manon; Friess, Martin

    2016-09-10

    Craniofacial variation in past and present Amerindians has been attributed to the effect of multiple founder events, or to one major migration followed by in situ differentiation and possibly recurrent contacts among Circum-Arctic groups. Our study aims to: (i) detect morphological differences that may indicate several migrations; (ii) test for the presence of genetic isolation; and (iii) test the correlation between shape data and competing settlement hypotheses by taking into account geography, chronology, climate effects, the presence of genetic isolation and recurrent gene flow. We analyzed a large sample of three-dimensional (3D) cranial surface scans (803 specimens) including past and modern groups from America and Australasia. Shape variation was investigated using geometric morphometrics. Differential external gene flow was evaluated by applying genetic concepts to morphometric data (Relethford-Blangero approach). Settlement hypotheses were tested using a matrix correlation approach (Mantel tests). Our results highlight the strong dichotomy between Circum-Arctic and continental Amerindians as well as the impact of climate adaptation, and possibly recurrent gene flow in the Circum-Arctic area. There is also evidence for the impact of genetic isolation on phenetic variation in Baja California. Several settlement hypotheses are correlated with our data. The three approaches used in this study highlight the importance of local processes especially in Baja California, and caution against the use of overly simplistic models when searching for the number of migration events. The results stress the complexity of the settlement of the Americas as well as the mosaic nature of the processes involved in this process. Am. J. Hum. Biol. 28:646-661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.

    PubMed

    Kaminsky, Jan; Rodt, Thomas; Gharabaghi, Alireza; Forster, Jan; Brand, Gerd; Samii, Madjid

    2005-06-01

    The FE-modeling of complex anatomical structures is not solved satisfyingly so far. Voxel-based as opposed to contour-based algorithms allow an automated mesh generation based on the image data. Nonetheless their geometric precision is limited. We developed an automated mesh-generator that combines the advantages of voxel-based generation with improved representation of the geometry by displacement of nodes on the object-surface. Models of an artificial 3D-pipe-section and a skullbase were generated with different mesh-densities using the newly developed geometric, unsmoothed and smoothed voxel generators. Compared to the analytic calculation of the 3D-pipe-section model the normalized RMS error of the surface stress was 0.173-0.647 for the unsmoothed voxel models, 0.111-0.616 for the smoothed voxel models with small volume error and 0.126-0.273 for the geometric models. The highest element-energy error as a criterion for the mesh quality was 2.61x10(-2) N mm, 2.46x10(-2) N mm and 1.81x10(-2) N mm for unsmoothed, smoothed and geometric voxel models, respectively. The geometric model of the 3D-skullbase resulted in the lowest element-energy error and volume error. This algorithm also allowed the best representation of anatomical details. The presented geometric mesh-generator is universally applicable and allows an automated and accurate modeling by combining the advantages of the voxel-technique and of improved surface-modeling.

  9. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steenbergen, K. G., E-mail: kgsteen@gmail.com; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement formore » a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.« less

  10. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  11. Two worlds collide: image analysis methods for quantifying structural variation in cluster molecular dynamics.

    PubMed

    Steenbergen, K G; Gaston, N

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  12. 3D geometric split-merge segmentation of brain MRI datasets.

    PubMed

    Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis

    2014-05-01

    In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Developing students' functional thinking in algebra through different visualisations of a growing pattern's structure

    NASA Astrophysics Data System (ADS)

    Wilkie, Karina J.; Clarke, Doug M.

    2016-06-01

    Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their representation descriptively, graphically and symbolically. Ten teachers and their classes were involved in a sequence of tasks involving growing patterns and geometric structures over 1 year. This article focuses on two aspects of the study: visualising the structure of a geometric pattern in different ways and using this to generalise the functional relationship between two quantifiable aspects (variables). It was found that in an initial assessment task ( n = 222), students' initial visualisations could be categorised according to different types and some of these were more likely to lead either to recursive or explicit generalisation. In a later task, a small number of students demonstrated the ability to find more than one way to visualise the same geometric structure and thus represent their explicit generalisations as different but equivalent symbolic equations (using pronumerals). Implications for the teaching of functional thinking in middle-school algebra are discussed.

  14. Multiscale unfolding of real networks by geometric renormalization

    NASA Astrophysics Data System (ADS)

    García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles

    2018-06-01

    Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.

  15. Timoshenko-Type Theory in the Stability Analysis of Corrugated Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Semenyuk, N. P.; Neskhodovskaya, N. A.

    2002-06-01

    A technique is proposed for stability analysis of longitudinally corrugated shells under axial compression. The technique employs the equations of the Timoshenko-type nonlinear theory of shells. The geometrical parameters of shells are specified on discrete set of points and are approximated by segments of Fourier series. Infinite systems of homogeneous algebraic equations are derived from a variational equation written in displacements to determine the critical loads and buckling modes. Specific types of corrugated isotropic metal and fiberglass shells are considered. The calculated results are compared with those obtained within the framework of the classical theory of shells. It is shown that the Timoshenko-type theory extends significantly the possibility of exact allowance for the geometrical parameters and material properties of corrugated shells compared with Kirchhoff-Love theory.

  16. Atmospheric effects in multispectral remote sensor data

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1975-01-01

    The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.

  17. Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Embleton, Tony F. W.; Daigle, Gilles A.

    1991-01-01

    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.

  18. The aerodynamics of bodies in a rarefied ionized gas with applications to spacecraft environmental dynamics

    NASA Technical Reports Server (NTRS)

    Stone, N. H.

    1981-01-01

    The objectives are to provide a parametric description of the electrostatic interaction of a mesosonic, collisionless plasma with conducting bodies on the order of 1 to 10 Debye lengths in size, and to extend this description to the satellite-ionospheric interaction, where possible. Experimental findings include: the wake of the geometrically complex body appears to be a linear superposition of the wakes of its simple geometric components; and vector ion flux measurements show converging ion streams at the wake axis and direct evidence of ion streams deflected from the wake axis by the positive space charge potential associated with the axial ion peak. The extension to the satellite-ionospheric interaction utilizes qualitative scaling and indicates that similar, but smaller amplitude, wake structures may be expected for small or highly charged bodies. However, for large bodies at small potentials, the structure may be diffused by the thermal ion motion and the dispersion resulting for space charge potentials.

  19. Efficient system modeling for a small animal PET scanner with tapered DOI detectors.

    PubMed

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-21

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  20. Some considerations about the use of different sensors, in coordinate measuring of the small parts

    NASA Astrophysics Data System (ADS)

    Drăgan, L.

    2017-05-01

    The paper presents some particular aspects associated with measuring of the small-size parts with high precision, manufactured by injection procedures. The coordinate measuring machine (CMM) are very used in process of measuring parts with different shapes, dimensions and materials of the most varied. It is studied by experiments, the influence of hygroscopicity on the geometrical properties of polyamide parts, using different types of measuring sensors. We selected a few pieces- cover type, with precision features dimensions and shape tolerances. To measure them was used some sensors which is equipped CMM ScopeCheck S 400 and equipment for dehumidifying. Starting from the need for high precision measurement of geometric characteristics of the parts obtained by injection of plastic, it has been found that the hygroscopicity has a significant influence. To achieve the purpose were used three types of measuring sensors under different conditions of keeping after manufacture. It was observed that the influence of humidity is significantly reduced if the parts are kept in exikator or vacuum dryer.

  1. Thickness and resistivity variations over the upper surface of the human skull.

    PubMed

    Law, S K

    1993-01-01

    A study of skull thickness and resistivity variations over the upper surface was made for an adult human skull. Physical measurements of thickness and qualitative analysis of photographs and CT scans of the skull were performed to determine internal and external features of the skull. Resistivity measurements were made using the four-electrode method and ranged from 1360 to 21400 Ohm-cm with an overall mean of 7560 +/- 4130 Ohm-cm. The presence of sutures was found to decrease resistivity substantially. The absence of cancellous bone was found to increase resistivity, particularly for samples from the temporal bone. An inverse relationship between skull thickness and resistivity was determined for trilayer bone (n = 12, p < 0.001). The results suggest that the skull cannot be considered a uniform layer and that local resistivity variations should be incorporated into realistic geometric and resistive head models to improve resolution in EEG. Influences of these variations on head models, methods for determining these variations, and incorporation into realistic head models, are discussed.

  2. Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-darkening Directly from Model Stellar Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; McNeil, Joseph T.

    The transit method, employed by Microvariability and Oscillation of Stars ( MOST ), Kepler , and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, starspots, and other phenomena at the level of a few hundred parts per million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients thatmore » are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary-transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIVs) using the plane-parallel Atlas and spherically symmetric SAtlas codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws leads to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50–100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small, they are systematic, and they appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.« less

  3. Effects of the temperature and pressure on the electronic and optical properties of an exciton in GaAs/Ga1-xAlxAs quantum ring

    NASA Astrophysics Data System (ADS)

    El-Bakkari, K.; Sali, A.; Iqraoun, E.; Rezzouk, A.; Es-Sbai, N.; Ouazzani Jamil, M.

    2018-06-01

    Using a variational approach, we have calculated the binding energies (E1s,2sb) and interband emission energy (Eph) of an exciton confined in GaAs / Ga1 - x Alx As quantum rings (QRs) structures under effects of the temperature and pressure, in the effective mass approximation. We have taken into consideration the difference in the effective masses of the charge carriers in two materials, well and barrier. The results that we have obtained show clearly that E1s,2sb and Eph are influenced by the structure geometries of QR (height H, radial thickness Δ R and potential barrier), the temperature and pressure. Indeed, with a smaller geometric parameter, E1s,2sb and Eph become higher due to the improvement in confinement of the charge carriers. We have also observed that for a given value of the temperature, the pressure leads to an increasing of the E1s,2sb and Eph , and the latter quantities are decreasing with temperature. In addition, these variations of the E1s,2sb and Eph under the external perturbations are more remarkable in small H for fixed Δ R , and for larger Δ R for a given value of the H, because for the choice of a finite height of the barrier in the z direction and an infinite confinement in ρ direction.

  4. Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie

    2016-03-01

    In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Allometry and apparent paradoxes in human limb proportions: Implications for scaling factors.

    PubMed

    Auerbach, Benjamin M; Sylvester, Adam D

    2011-03-01

    It has been consistently demonstrated that human proximal limb elements exhibit negative allometry, while distal elements scale with positive allometry. Such scaling implies that longer limbs will have higher intralimb indices, a phenomenon not borne out by empirical analyses. This, therefore, creates a paradox within the limb allometry literature. This study shows that these apparently conflicting results are the product of two separate phenomena. First, the use of the geometric mean of limb elements produces allometry coefficients that are not independent, and that when using ordinary least squares regression must yield an average slope of one. This phenomenon argues against using the geometric mean as a size variable when examining limb allometry. While the employment of relevant dimensions independent of those under analysis to calculate the geometric mean--as suggested by Coleman (Am J Phys Anthropol 135 (2008) 404-415)--may be a partial method for resolving the problem, an empirically determined, independent and biologically relevant size variable is advocated. If stature is used instead of the geometric mean as an independent size variable, all major limb elements scale with positive allometry. Second, while limb allometry coefficients do indicate differential allometry in limb elements, and thus should lead to some intralimb index allometry, this pattern appears to be attenuated by other sources of limb element length variation. Copyright © 2010 Wiley-Liss, Inc.

  6. [Medical image segmentation based on the minimum variation snake model].

    PubMed

    Zhou, Changxiong; Yu, Shenglin

    2007-02-01

    It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.

  7. Conservation laws for waves on a string from isometries and conformal isometries of the Minkowski metric

    NASA Astrophysics Data System (ADS)

    Miller, Brandon; Menon, Balraj

    Noether's theorems describe the interplay between variational symmetries (symmetries of the action functional) and local conservation laws admitted by a physical system. In Lagrangian field theories defined on a differentiable manifold  endowed with a metric g, the variational symmetries are intimately tied to the isometries of the metric g. We highlight this connection by relating the variational symmetries of waves on a string to the isometries and conformal isometries of the Minkowski metric. The associated local conservation laws and conserved quantities for this physical system are determined and their physical significance discussed. The geometric nature of these conservation laws are further elucidated by discussing their Poisson bracket formulation in the Hamiltonian framework. This work was partially supported by the UCA Robert Noyce Scholars Program.

  8. Small arms ammunition

    DOEpatents

    Huerta, Joseph

    1992-01-01

    An elongate projectile for small arms use has a single unitary mass with a hollow nose cavity defined by a sharp rigid cutting edge adapted to make initial contact with the target surface and cut therethrough. The projectile then enters the target mass in an unstable flight mode. The projectile base is substantially solid such that the nose cavity, while relatively deep, does not extend entirely through the base and the projectile center of gravity is aft of its geometric center.

  9. Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundancy

    DTIC Science & Technology

    2011-09-30

    the Rayleigh-to-geometric scattering transition is within the frequency band of the WHOI broadband system (e.g., copepods ), and either larger fluid...that numerical abundance of zooplankton was dominated by small copepods that were relatively evenly distributed throughout the water-column...indication in either the MONESS or the VPR that the acoustic scattering layer was correlated to an increased abundance of zooplankton. Small copepods

  10. Analysis of Gaspra lightcurves using Galileo shape and photometric models

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Veverka, J.; Thomas, P. C.; Helfenstein, P.; Belton, M. J. S.

    1995-01-01

    Galileo-based models for the shape of 951 Gaspra and the global-average photometric behavior of its surface have been used to model a representative subset of the asteroid's telescopic lightcurves. Fitting the synthetic lightcurves to the observed timing of lightcurve extrema, and knowing the orientation of Gaspra's axes at the time of the Galileo flyby, leads to a sidereal rotation period for the asteroid of 7.042024 +/- 0.000020 hr, a slight change from the period reported by Magnusson et al. (1992). Initially, the shapes, amplitudes, and absolute photometry of the synthetic and observed lightcurves agree with each other to within 0.05-0.1 mag. Small modifications to the Gaspra shape model on sides of the asteroid poorly imaged by Galileo (changes of 700 m or less in the southern hemisphere at longitudes 90 deg-270 deg W) reduce the typical discrepancies to approximately 0.05 mag in lightcurve shape and less than 0.03 mag in absolute photometry. The result demonstrates that Earth-based lightcurves can be used to refine the shape of a spacecraft-imaged irregular object in areas that are poorly constrained by the spacecraft observations. The consistency and phase-angle dependence of the Galileo-based model for Gaspra photometry, supports the accuracy of the absolute calibration of the Galileo SSI camera, and confirms the Earth-based determination of the V-filter geometric albedo of the asteroid (0.22 +/- 0.03; Tholen et al., submitted for publication). Remaining discrepancies between the synthetic and observed lightcurves show no indication of systematic latitudinal variations in albedo and also cannot be explained entirely by isolated albedo spots. These discrepancies are most likely caused by (1) small, remaining, hard-to-constrain errors in the Gaspra shape model and/or (2) moderate variations in macroscopic roughness across the asteroid's surface, in particular making longitudes 130 deg to 300 deg W moderately rougher than the opposite hemisphere.

  11. Computerized tomography with total variation and with shearlets

    NASA Astrophysics Data System (ADS)

    Garduño, Edgar; Herman, Gabor T.

    2017-04-01

    To reduce the x-ray dose in computerized tomography (CT), many constrained optimization approaches have been proposed aiming at minimizing a regularizing function that measures a lack of consistency with some prior knowledge about the object that is being imaged, subject to a (predetermined) level of consistency with the detected attenuation of x-rays. One commonly investigated regularizing function is total variation (TV), while other publications advocate the use of some type of multiscale geometric transform in the definition of the regularizing function, a particular recent choice for this is the shearlet transform. Proponents of the shearlet transform in the regularizing function claim that the reconstructions so obtained are better than those produced using TV for texture preservation (but may be worse for noise reduction). In this paper we report results related to this claim. In our reported experiments using simulated CT data collection of the head, reconstructions whose shearlet transform has a small ℓ 1-norm are not more efficacious than reconstructions that have a small TV value. Our experiments for making such comparisons use the recently-developed superiorization methodology for both regularizing functions. Superiorization is an automated procedure for turning an iterative algorithm for producing images that satisfy a primary criterion (such as consistency with the observed measurements) into its superiorized version that will produce results that, according to the primary criterion are as good as those produced by the original algorithm, but in addition are superior to them according to a secondary (regularizing) criterion. The method presented for superiorization involving the ℓ 1-norm of the shearlet transform is novel and is quite general: It can be used for any regularizing function that is defined as the ℓ 1-norm of a transform specified by the application of a matrix. Because in the previous literature the split Bregman algorithm is used for similar purposes, a section is included comparing the results of the superiorization algorithm with the split Bregman algorithm.

  12. Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh

    2014-03-01

    Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.

  13. Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhuge, W. L.; Peng, J.; Liu, S. J.; Zhang, Y. J.

    2013-12-01

    In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (WR and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β6, the exit tip radius R6t and hub radius R6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency ηts, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency ηts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value of τ is at 0.5 to 0.6.

  14. Tracking Small Artists

    NASA Astrophysics Data System (ADS)

    Russell, James C.; Klette, Reinhard; Chen, Chia-Yen

    Tracks of small animals are important in environmental surveillance, where pattern recognition algorithms allow species identification of the individuals creating tracks. These individuals can also be seen as artists, presented in their natural environments with a canvas upon which they can make prints. We present tracks of small mammals and reptiles which have been collected for identification purposes, and re-interpret them from an esthetic point of view. We re-classify these tracks not by their geometric qualities as pattern recognition algorithms would, but through interpreting the 'artist', their brush strokes and intensity. We describe the algorithms used to enhance and present the work of the 'artists'.

  15. Determination of low-Z elements in individual environmental particles using windowless EPMA.

    PubMed

    Ro, C U; Osán, J; Van Grieken, R

    1999-04-15

    The determination of low-Z elements such as carbon, nitrogen, and oxygen in atmospheric aerosol particles is of interest in studying environmental pollution. Conventional electron probe microanalysis technique has a limitation for the determination of the low-Z elements, mainly because the Be window in an energy-dispersive X-ray (EDX) detector hinders the detection of characteristic X-rays from light elements. The feasibility of low-Z element determination in individual particles using a windowless EDX detector is investigated. To develop a method capable of identifying chemical species of individual particles, both the matrix and the geometric effects of particles have to be evaluated. X-rays of low-Z elements generated by an electron beam are so soft that important matrix effects, mostly due to X-ray absorption, exist even within particles in the micrometer size range. Also, the observed radiation, especially that of light elements, experiences different extents of absorption, depending on the shape and size of the particles. Monte Carlo calculation is applied to explain the variation of observed X-ray intensities according to the geometric and chemical compositional variation of individual particles, at different primary electron beam energies. A comparison is carried out between simulated and experimental data, collected for standard individual particles with chemical compositions as generally observed in marine and continental aerosols. Despite the many fundamental problematic analytical factors involved in the observation of X-rays from low-Z elements, the Monte Carlo calculation proves to be quite reliable to evaluate those matrix and geometric effects. Practical aspects of the Monte Carlo calculation for the determination of light elements in individual particles are also considered.

  16. Effect of stratification and geometrical spreading on sonic boom rise time

    NASA Technical Reports Server (NTRS)

    Cleveland, Robin O.; Hamilton, Mark F.; Blackstock, David T.

    1994-01-01

    The purpose of our investigation is to determine the effect of unsteadiness (not associated with turbulence) on rise time. The unsteadiness considered here is due to (1) geometrical spreading, (2) stratification, which includes variation in density, temperature, and relative humidity, and (3) N shaped waveform. A very general Burgers equation, which includes all these effects, is the propagation model for our study. The equation is solved by a new computational algorithm in which all the calculations are done in the time domain. The present paper is a progress report in which some of the factors contributing to unsteadiness are studied, namely geometrical spreading and variation in relative humidity. The work of Pierce and Kang, which motivated our study, is first reviewed. We proceed with a discussion of the Burgers equation model and the algorithm for solving the equation. Some comparison tests to establish the validity of the algorithm are presented. The algorithm is then used to determine the distance required for a steady-state shock, on encountering an abrupt change in relative humidity, to reach a new steady state based on the new humidity. It is found that the transition distance for plane shocks of amplitude 70 Pa is about 4 km when the change in relative humidity is 10 percent. Shocks of amplitude 140 Pa require less distance. The effect of spherical and cylindrical spreading is also considered. We demonstrate that a spreading shock wave never reaches steady state and that its rise time will be less than the equivalent steady state shock. Finally we show that an N wave has a slightly shorter rise time than a step shock of the same amplitude.

  17. A theoretical study of radar return and radiometric emission from the sea

    NASA Technical Reports Server (NTRS)

    Peake, W. H.

    1972-01-01

    The applicability of the various electromagnetic models of scattering from the ocean are reviewed. These models include the small perturbation method, the geometric optics solution, the composite model, and the exact integral equation solution. The restrictions on the electromagnetic models are discussed.

  18. Scaling Laws and the Water Strider.

    ERIC Educational Resources Information Center

    Huetink, Linda

    1996-01-01

    Presents activities designed to build an understanding of why the physical characteristics of small animals such as the water strider, water spider, and the basilisk make it possible for the animals to use the surface tension of water to their advantage. Discusses the concept of geometrical scaling. (JRH)

  19. Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly ( Gonepteryx rhamni, Pieridae, Lepidoptera)

    NASA Astrophysics Data System (ADS)

    Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel

    2014-12-01

    The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.

  20. Developing Confidence Limits For Reliability Of Software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1991-01-01

    Technique developed for estimating reliability of software by use of Moranda geometric de-eutrophication model. Pivotal method enables straightforward construction of exact bounds with associated degree of statistical confidence about reliability of software. Confidence limits thus derived provide precise means of assessing quality of software. Limits take into account number of bugs found while testing and effects of sampling variation associated with random order of discovering bugs.

  1. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knybel, Lukas; VŠB-Technical University of Ostrava, Ostrava; Cvek, Jakub, E-mail: Jakub.cvek@fno.cz

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, andmore » sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact with mediastinal structures, although adhesion to parietal pleura did not necessarily reduce tumor motion amplitudes. The most variable lung tumors were metastatic lesions in women.« less

  2. The effect of small variations in profile of airfoils

    NASA Technical Reports Server (NTRS)

    Ward, Kenneth E

    1931-01-01

    This report deals with the effect of small variations in ordinates specified by different laboratories for the airfoil section. This study was made in connection with a more general investigation of the effect of small irregularities of the airfoil surface on the aerodynamic characteristics of an airfoil. These tests show that small changes in airfoil contours, resulting from variations in the specified ordinates, have a sufficiently large effect upon the airfoil characteristics to justify the taking of great care in the specification of ordinates for the construction of models.

  3. The fractal-multifractal method and temporal resolution: Application to precipitation and streamflow

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Puente, C. E.; Sivakumar, B.

    2017-12-01

    In the past, we have established that the deterministic fractal-multifractal (FM) method is a promising geometric tool to analyze hydro-climatic variables, such as precipitation, river flow, and temperature. In this study, we address the issue of temporal resolution to advance the suitability and usefulness of the FM approach in hydro-climate. Specifically, we elucidate the evolution of FM geometric parameters as computed at different time scales ranging from a day to a month (30-day) in increments of a day. For this purpose, both rainfall and river discharge records at Sacramento, California gathered over a year are encoded at different time scales. The analysis reveals that: (a) the FM approach yields faithful encodings of both kinds of data sets at the resolutions considered with reasonably small errors; and (b) the "best" FM parameters ultimately converge when the resolution is increased, thus allowing visualizing both hydrologic attributes. By addressing the scalability of the geometric patterns, these results further advance the suitability of the FM approach.

  4. Classical and sequential limit analysis revisited

    NASA Astrophysics Data System (ADS)

    Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi

    2018-04-01

    Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.

  5. A general framework to learn surrogate relevance criterion for atlas based image segmentation

    NASA Astrophysics Data System (ADS)

    Zhao, Tingting; Ruan, Dan

    2016-09-01

    Multi-atlas based image segmentation sees great opportunities in the big data era but also faces unprecedented challenges in identifying positive contributors from extensive heterogeneous data. To assess data relevance, image similarity criteria based on various image features widely serve as surrogates for the inaccessible geometric agreement criteria. This paper proposes a general framework to learn image based surrogate relevance criteria to better mimic the behaviors of segmentation based oracle geometric relevance. The validity of its general rationale is verified in the specific context of fusion set selection for image segmentation. More specifically, we first present a unified formulation for surrogate relevance criteria and model the neighborhood relationship among atlases based on the oracle relevance knowledge. Surrogates are then trained to be small for geometrically relevant neighbors and large for irrelevant remotes to the given targets. The proposed surrogate learning framework is verified in corpus callosum segmentation. The learned surrogates demonstrate superiority in inferring the underlying oracle value and selecting relevant fusion set, compared to benchmark surrogates.

  6. Quantum electric-dipole liquid on a triangular lattice.

    PubMed

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-02-04

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  7. Systematics for checking geometric errors in CNC lathes

    NASA Astrophysics Data System (ADS)

    Araújo, R. P.; Rolim, T. L.

    2015-10-01

    Non-idealities presented in machine tools compromise directly both the geometry and the dimensions of machined parts, generating distortions in the project. Given the competitive scenario among different companies, it is necessary to have knowledge of the geometric behavior of these machines in order to be able to establish their processing capability, avoiding waste of time and materials as well as satisfying customer requirements. But despite the fact that geometric tests are important and necessary to clarify the use of the machine correctly, therefore preventing future damage, most users do not apply such tests on their machines for lack of knowledge or lack of proper motivation, basically due to two factors: long period of time and high costs of testing. This work proposes a systematics for checking straightness and perpendicularity errors in CNC lathes demanding little time and cost with high metrological reliability, to be used on factory floors of small and medium-size businesses to ensure the quality of its products and make them competitive.

  8. Control of morphology and formation of highly geometrically confined magnetic skyrmions

    PubMed Central

    Jin, Chiming; Li, Zi-An; Kovács, András; Caron, Jan; Zheng, Fengshan; Rybakov, Filipp N.; Kiselev, Nikolai S.; Du, Haifeng; Blügel, Stefan; Tian, Mingliang; Zhang, Yuheng; Farle, Michael; Dunin-Borkowski, Rafal E

    2017-01-01

    The ability to controllably manipulate magnetic skyrmions, small magnetic whirls with particle-like properties, in nanostructured elements is a prerequisite for incorporating them into spintronic devices. Here, we use state-of-the-art electron holographic imaging to directly visualize the morphology and nucleation of magnetic skyrmions in a wedge-shaped FeGe nanostripe that has a width in the range of 45–150 nm. We find that geometrically-confined skyrmions are able to adopt a wide range of sizes and ellipticities in a nanostripe that are absent in both thin films and bulk materials and can be created from a helical magnetic state with a distorted edge twist in a simple and efficient manner. We perform a theoretical analysis based on a three-dimensional general model of isotropic chiral magnets to confirm our experimental results. The flexibility and ease of formation of geometrically confined magnetic skyrmions may help to optimize the design of skyrmion-based memory devices. PMID:28580935

  9. Determination of the thickness of the embedding phase in 0D nanocomposites

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, D.; Sánchez-López, J. C.

    2017-11-01

    0D nanocomposites formed by small nanoparticles embedded in a second phase are very interesting systems which may show properties that are beyond those observed in the original constituents alone. One of the main parameters to understand the behavior of such nanocomposites is the determination of the separation between two adjacent nanoparticles, in other words, the thickness of the embedding phase. However, its experimental measurement is extremely complicated. Therefore, its evaluation is performed by an indirect approach using geometrical models. The ones typically used represent the nanoparticles by cubes or spheres. In this paper the used geometrical models are revised, and additional geometrical models based in other parallelohedra (hexagonal prism, rhombic and elongated dodecahedron and truncated octahedron) are presented. Additionally, a hybrid model that shows a transition between the spherical and tessellated models is proposed. Finally, the different approaches are tested on a set of titanium carbide/amorphous carbon (TiC/a-C) nanocomposite films to estimate the thickness of the a-C phase and explain the observed hardness properties.

  10. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    PubMed

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  11. The Pluto System in the Post-New Horizons Era: Opposition Effects, Rotations, and Orbital Stability

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne

    2017-08-01

    Following the New Horizons flyby in 2015, we propose a two-cycle program to observe Pluto and its five moons in the post-encounter era, building on the rich legacy of observations obtained during and prior to the historic flyby. At opposition in Cycles 25-26, the Pluto system is visible at the smallest solar phase angle in 87 years. The system will be at true opposition when it crosses the line of nodes in July 2018, and as seen from Pluto, Earth will transit the solar disk. Such rare planetary alignments enable the characterization of small-scale surface texture and porosity as well as the direct measurement of the geometric albedo, rather than an estimation of its value from photometric models. Any variation among the regolith properties of Pluto's moons will test the long-standing hypothesis that ejecta exchange between the moons has altered their surfaces. We will also follow up on the surprising result from New Horizons and HST that the small moons are spinning rapidly and with high obliquities. Styx, Nix, and Hydra show hints of being in strong spin-orbit couplings with Charon, but confirmation requires the additional precision in measurements of their spin rates and polar precession rates proposed here. In addition, we will obtain new astrometry of the small moons, making it possible to determine their masses and bulk densities with much higher precision. Results from this program will enhance the scientific return from the New Horizons mission, providing images complementary to those obtained by the spacecraft on approach and achieving science objectives that cannot be met by either HST or New Horizons alone.

  12. NEMA NU 4-2008 Performance Measurements of Two Commercial Small-Animal PET Scanners: ClearPET and rPET-1

    NASA Astrophysics Data System (ADS)

    Canadas, Mario; Embid, Miguel; Lage, Eduardo; Desco, Manuel; Vaquero, Juan José; Perez, José Manuel

    2011-02-01

    In this work, we compare two commercial positron emission tomography (PET) scanners installed at CIEMAT (Madrid, Spain): the ClearPET and the rPET-1. These systems have significant geometrical differences, such as the axial field of view (110 mm on ClearPET versus 45.6 mm on rPET-1), the configuration of the detectors (whole ring on ClearPET versus one pair of planar blocks on rPET-1) and the use of an axial shift between ClearPET detector modules. We used an assessment procedure that fulfilled the recommendations of the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard. The methodology includes studies of spatial resolution, sensitivity, scatter fraction, count losses and image quality. Our experiments showed a central spatial resolution of 1.5 mm (transaxial), 3.2 mm (axial) for the ClearPET and 1.5 mm (transaxial), 1.6 mm (axial) for the rPET-1, with a small variation across the transverse axis on both scanners ( 1 mm). The absolute sensitivity at the centre of the field of view was 4.7% for the ClearPET and 1.0% for the rPET-1. The peak noise equivalent counting rate for the mouse-sized phantom was 73.4 kcps reached at 0.51 MBq/mL on the ClearPET and 29.2 kcps at 1.35 MBq/mL on the rPET-1. The recovery coefficients measured using the image quality phantom ranged from 0.11 to 0.89 on the ClearPET and from 0.14 to 0.81 on the rPET-1. The overall performance shows that both the ClearPET and the rPET-1 systems are very suitable for preclinical research and imaging of small animals.

  13. Exploring Geometric Sequences

    ERIC Educational Resources Information Center

    Reiser, Elana

    2016-01-01

    In this brief article Elana Reiser describes her favorite lesson that combines popular culture with mathematics in a way that motivates student thinking and participation. Exploring open-ended problems, students may feel uneasy at first, but working in small groups often leads them to experiment with a variety of solutions. Reiser explains that…

  14. Young children's use of features to reorient is more than just associative: further evidence against a modular view of spatial processing.

    PubMed

    Newcombe, Nora S; Ratliff, Kristin R; Shallcross, Wendy L; Twyman, Alexandra D

    2010-01-01

    Proponents of a geometric module have argued that instances of young children's use of features as well as geometry to reorient can be explained by a two-stage process. In this model, only the first stage is a true reorientation, accomplished by using geometric information alone; features are considered in a second stage using association (Lee, Shusterman & Spelke, 2006). This account is contradicted by the data from two experiments. Experiment 1a sets the stage for Experiment 1b by showing that young children use geometric information to reorient in a complex geometric figure without a single principal axis of symmetry (an octagon). In such a figure, there are two sets of geometrically congruent corners, with four corners in each set. The addition of a colored wall leads to the existence of three geometrically congruent but, crucially, all unmarked corners; using the colored wall to distinguish among them could not be done associatively. In Experiment 1b, both 3- and 5-year-old children showed true non-associative reorientation using features by performing at above-chance levels on all-white trials. Experiment 2 used a paradigm without distinctive geometry, modeled on Lee et al. (2006), involving an equilateral triangle of hiding places located within a circular enclosure, but with a large stable feature rather than a small moveable one. Four-year-olds (the age group studied by Lee et al.) used features at above-chance levels. Thus, features can be used to reorient, in a way not dependent on association, in contradiction to the two-stage version of the modular view.

  15. Analytical and numerical modeling of an axisymmetrical electrostatic transducer with interior geometrical discontinuity.

    PubMed

    Honzík, Petr; Podkovskiy, Alexey; Durand, Stéphane; Joly, Nicolas; Bruneau, Michel

    2013-11-01

    The main purpose of the paper is to contribute at presenting an analytical and a numerical modeling which would be relevant for interpreting the couplings between a circular membrane, a peripheral cavity having the same external radius as the membrane, and a thin air gap (with a geometrical discontinuity between them), and then to characterize small scale electrostatic receivers and to propose procedures that could be suitable for fitting adjustable parameters to achieve optimal behavior in terms of sensitivity and bandwidth expected. Therefore, comparison between these theoretical methods and characterization of several shapes is dealt with, which show that the models would be appropriate to address the design of such transducers.

  16. Thermodynamic geometry for a non-extensive ideal gas

    NASA Astrophysics Data System (ADS)

    López, J. L.; Obregón, O.; Torres-Arenas, J.

    2018-05-01

    A generalized entropy arising in the context of superstatistics is applied to an ideal gas. The curvature scalar associated to the thermodynamic space generated by this modified entropy is calculated using two formalisms of the geometric approach to thermodynamics. By means of the curvature/interaction hypothesis of the geometric approach to thermodynamic geometry it is found that as a consequence of considering a generalized statistics, an effective interaction arises but the interaction is not enough to generate a phase transition. This generalized entropy seems to be relevant in confinement or in systems with not so many degrees of freedom, so it could be interesting to use such entropies to characterize the thermodynamics of small systems.

  17. Impact of opening of the Central America Seaway on climate in a coupled atmosphere-ocean-sea-ice model

    NASA Astrophysics Data System (ADS)

    Barrier, N.; Ferreira, D.; Marshall, J.

    2012-04-01

    We investigate the climatic impact of opening the Central America Seaway (CAS) in a coupled atmosphere-ocean-sea-ice model. A highly idealized land distribution is employed in which two meridional barriers extend from the North Pole in to the southern hemisphere, thus dividing the ocean in to a large basin, a small basin and a circumpolar flow around the South Pole. Such a configuration captures the essential zonal and inter-hemispheric asymmetries of the current climate. These simple geometrical constraints are sufficient to localize the deep-reaching meridional overturning circulation (MOC) to the northern extremity of the small basin. Given this reference experiment, we open up an analogue of the Central America Seaway on the western margin of the small basin north of the equator. Both deep and shallow passageways are considered. We find that although a major reorganization of ocean circulation occurs, along with significant local water-mass changes, global heat and freshwater meridional transports are largely unchanged, as are temperatures over the North Pole. In particular we do not observe a weakening of the MOC in the small basin, with salinity exchange between the large basin playing only a minor role. The simplicity of the geometrical configuration used in our experiments enables us to tease apart exactly what is going on. Experiments in which the salinity and temperature states of the small and large basins are interchanged, for example, show that our solutions are robust, with deep convection returning to the small basin after 800 years or so. Our experiments suggest to us that the closing of the CAS alone is not sufficient to lead to the onset of northern hemisphere glaciations 2 Ma years or so ago.

  18. Understanding and mitigating the challenge of bioaerosol emissions from urban community composting

    NASA Astrophysics Data System (ADS)

    Pankhurst, L. J.; Akeel, U.; Hewson, C.; Maduka, I.; Pham, P.; Saragossi, J.; Taylor, J.; Lai, K. M.

    2011-01-01

    Within the UK, local and regional government drives to reduce the quantity of waste being sent to landfill have led to an increase in small-scale composting schemes, instigated by local councils and not-for-profit organisations. The composting process relies upon the proliferation of microorganisms, leading to their emission into the ambient environment. In this investigative study, total bacteria and Aspergillus fumigatus emitted from a small-scale composting facility in central London were measured in different spatial and temporal dimensions. Bioaerosols did not disperse in concentrations significantly higher than those measured at 'background' locations, where maximum geometric mean was 55 × 10 2 Colony Forming Units (CFU) per m -3. Concentrations on-site and at the nearest potential receptor were comparable to those found at commercial facilities, reaching 25 × 10 4 and 29 × 10 3 CFU m -3 for total bacteria and A. fumigatus respectively. The room housing the facility was contaminated by moulds; likely to result from high relative humidity of the air (consistently above 80% during this study), building material, and the generation of organic dust. The complex diurnal meteorological variations of urban environments are likely to influence bioaerosol dispersal, and consequent exposure risk for sensitive receptors. Site planning tools including Geographical Information Systems (GIS) mapping with buffer zones around schools and hospitals, and use of computerised models for the design of rooms housing urban composting facilities are proposed as methods for reducing the risk of occupational and off-site receptor exposure.

  19. The statistical analysis of energy release in small-scale coronal structures

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey

    We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.

  20. Positioning accuracy for lung stereotactic body radiotherapy patients determined by on-treatment cone-beam CT imaging

    PubMed Central

    Richmond, N D; Pilling, K E; Peedell, C; Shakespeare, D; Walker, C P

    2012-01-01

    Stereotactic body radiotherapy for early stage non-small cell lung cancer is an emerging treatment option in the UK. Since relatively few high-dose ablative fractions are delivered to a small target volume, the consequences of a geometric miss are potentially severe. This paper presents the results of treatment delivery set-up data collected using Elekta Synergy (Elekta, Crawley, UK) cone-beam CT imaging for 17 patients immobilised using the Bodyfix system (Medical Intelligence, Schwabmuenchen, Germany). Images were acquired on the linear accelerator at initial patient treatment set-up, following any position correction adjustments, and post-treatment. These were matched to the localisation CT scan using the Elekta XVI software. In total, 71 fractions were analysed for patient set-up errors. The mean vector error at initial set-up was calculated as 5.3±2.7 mm, which was significantly reduced to 1.4±0.7 mm following image guided correction. Post-treatment the corresponding value was 2.1±1.2 mm. The use of the Bodyfix abdominal compression plate on 5 patients to reduce the range of tumour excursion during respiration produced mean longitudinal set-up corrections of −4.4±4.5 mm compared with −0.7±2.6 mm without compression for the remaining 12 patients. The use of abdominal compression led to a greater variation in set-up errors and a shift in the mean value. PMID:22665927

  1. Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Froyland, Gary

    2015-10-01

    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation.

  2. Time-varying sodium absorption in the Type Ia supernova 2013gh

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Amanullah, R.; Goobar, A.; Johansson, J.; Vreeswijk, P. M.; Butler, R. P.; Cao, Y.; Cenko, S. B.; Doran, G.; Filippenko, A. V.; Freeland, E.; Hosseinzadeh, G.; Howell, D. A.; Lundqvist, P.; Mattila, S.; Nordin, J.; Nugent, P. E.; Petrushevska, T.; Valenti, S.; Vogt, S.; Wozniak, P.

    2016-07-01

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims: To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods: We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results: Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 1019 cm from the explosion. Conclusions: Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A40

  3. Homo floresiensis Contextualized: A Geometric Morphometric Comparative Analysis of Fossil and Pathological Human Samples

    PubMed Central

    Baab, Karen L.; McNulty, Kieran P.; Harvati, Katerina

    2013-01-01

    The origin of hominins found on the remote Indonesian island of Flores remains highly contentious. These specimens may represent a new hominin species, Homo floresiensis, descended from a local population of Homo erectus or from an earlier (pre-H. erectus) migration of a small-bodied and small-brained hominin out of Africa. Alternatively, some workers suggest that some or all of the specimens recovered from Liang Bua are pathological members of a small-bodied modern human population. Pathological conditions proposed to explain their documented anatomical features include microcephaly, myxoedematous endemic hypothyroidism (“cretinism”) and Laron syndrome (primary growth hormone insensitivity). This study evaluates evolutionary and pathological hypotheses through comparative analysis of cranial morphology. Geometric morphometric analyses of landmark data show that the sole Flores cranium (LB1) is clearly distinct from healthy modern humans and from those exhibiting hypothyroidism and Laron syndrome. Modern human microcephalic specimens converge, to some extent, on crania of extinct species of Homo. However in the features that distinguish these two groups, LB1 consistently groups with fossil hominins and is most similar to H. erectus. Our study provides further support for recognizing the Flores hominins as a distinct species, H. floresiensis, whose affinities lie with archaic Homo. PMID:23874886

  4. Populating a Library of Reusable H-Boms Assessment of a Feasible Image Based Modeling Workflow

    NASA Astrophysics Data System (ADS)

    Santagati, C.; Lo Turco, M.; D'Agostino, G.

    2017-08-01

    The paper shows the intermediate results of a research activity aimed at populating a library of reusable Historical Building Object Models (H-BOMs) by testing a full digital workflow that takes advantages from using Structure from Motion (SfM) models and is centered on the geometrical/stylistic/materic analysis of the architectural element (portal, window, altar). The aim is to find common (invariant) and uncommon (variant) features in terms of identification of architectural parts and their relationships, geometrical rules, dimensions and proportions, construction materials and measure units, in order to model archetypal shapes from which it is possible to derive all the style variations. At this regard, a set of 14th - 16th century gothic portals of the catalan-aragonese architecture in Etnean area of Eastern Sicily has been studied and used to assess the feasibility of the identified workflow. This approach tries to answer the increasingly demand for guidelines and standards in the field of Cultural Heritage Conservation to create and manage semantic-aware 3D models able to include all the information (both geometrical and alphanumerical ones) concerning historical buildings and able to be reused in several projects.

  5. Preprocessing: Geocoding of AVIRIS data using navigation, engineering, DEM, and radar tracking system data

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Larson, Steven A.; Hansen, Earl G.; Itten, Klaus I.

    1993-01-01

    Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.

  6. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    NASA Technical Reports Server (NTRS)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  7. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  8. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.

    PubMed

    Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai

    2017-05-25

    We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.

  9. Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections

    NASA Technical Reports Server (NTRS)

    Cha, Gene; Schultz, Marc R.

    2013-01-01

    Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.

  10. Apparent relationship between solar-sector boundaries and 300-mb vorticity: Possible explanation in terms of upward propagation of planetary-scale waves

    NASA Technical Reports Server (NTRS)

    Deland, R. J.

    1974-01-01

    The selection process for sector structure boundary crossings used in vorticity correlation studies is examined and the possible influence of ascending planetary scale waves is assessed. It is proposed that some of the observed correlations between geomagnetic and meteorological variations may be due to meteorological effects on the geometric variables, rather than due to common solar origin.

  11. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  12. Interferometric constraints on quantum geometrical shear noise correlations

    DOE PAGES

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.; ...

    2017-07-20

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches formore » faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.« less

  13. The steady inhomogeneous rapid granular shear flow of nearly elastic spheres

    NASA Astrophysics Data System (ADS)

    Chou, Chuen-Shii

    2000-11-01

    The steady inhomogeneous rapid granular shear flows of identical, smooth, nearly elastic spheres were considered, which interact with a flat wall to which identical, evenly spaced half-spheres have been attached. The boundary-value problem for the steady inhomogeneous shear flows, which are maintained by the relative motion of parallel bumpy boundaries, was solved by employing the constitutive relations of Jenkins and Richman (Arch. Rational Mech. Anal. 87 (1985) 355) and the boundary conditions of Richman (Acta. Mech. 75 (1988) 227) in the balance equations for mean fields of mass density of flow, velocity, and the granular temperature. How the resulting profiles of velocity, solid fraction, and granular temperature were affected by changes in the geometrical configuration of the boundary and the coefficient of restitution was demonstrated. Additionally, predicting how the slip velocity would vary with the geometrical configuration of the boundary, the coefficient of restitution, the flow depth and the average solid fraction within the flow was under taken. Special emphasis was placed on the manner in which the shear and normal stresses vary with boundary characteristics and the coefficient of restitution, primarily because the stresses are the quantities most easily measured by the experimentalist. Variations in slip velocity were observed to be partially responsible for the corresponding variations in the stresses.

  14. On actions for (entangling) surfaces and DCFTs

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Tarrío, Javier

    2018-04-01

    The dynamics of surfaces and interfaces describe many physical systems, including fluid membranes, entanglement entropy and the coupling of defects to quantum field theories. Based on the formulation of submanifold calculus developed by Carter, we introduce a new variational principle for (entangling) surfaces. This principle captures all diffeomorphism constraints on surface/interface actions and their associated spacetime stress tensor. The different couplings to the geometric tensors appearing in the surface action are interpreted in terms of response coefficients within elasticity theory. An example of a surface action with edges at the two-derivative level is studied, including both the parity-even and parity-odd sectors. Its conformally invariant counterpart restricts the type of conformal anomalies that can appear in two-dimensional submanifolds with boundaries. Analogously to hydrodynamics, it is shown that classification methods can be used to constrain the stress tensor of (entangling) surfaces at a given order in derivatives. This analysis reveals a purely geometric parity-odd contribution to the Young modulus of a thin elastic membrane. Extending this novel variational principle to BCFTs and DCFTs in curved spacetimes allows to obtain the Ward identities for diffeomorphism and Weyl transformations. In this context, we provide a formal derivation of the contact terms in the stress tensor and of the displacement operator for a broad class of actions.

  15. Mixing of Multiple Jets with a Confined Subsonic Crossflow. Part 2; Opposed Rows of Orifices in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Liscinsky, D. S.; Bain, D. B.

    1999-01-01

    This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio > 1 and the ratio of orifices-area-to-mainstream- cross-sectional-area up to 0.5, respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.

  16. Mixing of Multiple Jets With a Confined Subsonic Crossflow. Part 2; Opposed Rows of Orifices in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Liscinsky, David S.; Bain, Daniel B.

    1997-01-01

    This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the offices investigated were often very large (jet-to-mainstream mass-flow ratio greater than 1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5 respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.

  17. Image segmentation with a novel regularized composite shape prior based on surrogate study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulatedmore » in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.« less

  18. Influence of Different Geometric Representations of the Volume Conductor on Nerve Activation during Electrical Stimulation

    PubMed Central

    Gómez-Tames, José; González, José; Yu, Wenwei

    2014-01-01

    Volume conductor models with different geometric representations, such as the parallel layer model (PM), the cylindrical layer model (CM), or the anatomically based model (AM), have been employed during the implementation of bioelectrical models for electrical stimulation (FES). Evaluating their strengths and limitations to predict nerve activation is fundamental to achieve a good trade-off between accuracy and computation time. However, there are no studies aimed at clarifying the following questions. (1) Does the nerve activation differ between CM and PM? (2) How well do CM and PM approximate an AM? (3) What is the effect of the presence of blood vessels and nerve trunk on nerve activation prediction? Therefore, in this study, we addressed these questions by comparing nerve activation between CM, PM, and AM models by FES. The activation threshold was used to evaluate the models under different configurations of superficial electrodes (size and distance), nerve depths, and stimulation sites. Additionally, the influences of the sciatic nerve, femoral artery, and femoral vein were inspected for a human thigh. The results showed that the CM and PM had a high error rate, but the variation of the activation threshold followed the same tendency for electrode size and interelectrode distance variation as AM. PMID:25276222

  19. Using Geometry-Based Metrics as Part of Fitness-for-Purpose Evaluations of 3D City Models

    NASA Astrophysics Data System (ADS)

    Wong, K.; Ellul, C.

    2016-10-01

    Three-dimensional geospatial information is being increasingly used in a range of tasks beyond visualisation. 3D datasets, however, are often being produced without exact specifications and at mixed levels of geometric complexity. This leads to variations within the models' geometric and semantic complexity as well as the degree of deviation from the corresponding real world objects. Existing descriptors and measures of 3D data such as CityGML's level of detail are perhaps only partially sufficient in communicating data quality and fitness-for-purpose. This study investigates whether alternative, automated, geometry-based metrics describing the variation of complexity within 3D datasets could provide additional relevant information as part of a process of fitness-for-purpose evaluation. The metrics include: mean vertex/edge/face counts per building; vertex/face ratio; minimum 2D footprint area and; minimum feature length. Each metric was tested on six 3D city models from international locations. The results show that geometry-based metrics can provide additional information on 3D city models as part of fitness-for-purpose evaluations. The metrics, while they cannot be used in isolation, may provide a complement to enhance existing data descriptors if backed up with local knowledge, where possible.

  20. Interferometric constraints on quantum geometrical shear noise correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches formore » faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.« less

  1. Probabilistic Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Strack, William C.; Nagpal, Vinod K.

    2010-01-01

    PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.

  2. Edge effects and geometric constraints: a landscape-level empirical test.

    PubMed

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this incorporation is necessary to properly interpret edge effects in landscapes. It also suggests that geometric constraints alone are unlikely to explain the variability in edge responses of a same species among different areas, highlighting the need to incorporate other ecological factors into explanatory models of edge effects. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  3. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina-Lopez, F.; Briand, D.; Rooij, N. F. de

    2013-11-07

    Interdigitated electrodes are common structures in the fields of microelectronics and MEMS. Recent developments in flexible electronics compel an understanding of such structures under bending constraints. In this work, the behavior of interdigitated micro-electrodes when subjected to circular bending has been theoretically and experimentally studied through changes in capacitance. An analytical model has been developed to calculate the expected variation in capacitance of such structures while undergoing outward and inward bending along the direction perpendicular to the electrodes. The model combines conformal mapping techniques to account for the electric field redistribution and fundamental aspects of solid mechanics in order tomore » define the geometrical deformation of the electrodes while bending. To experimentally verify our theoretical predictions, several interdigitated electrode structures with different geometries were fabricated on polymeric substrates by means of photolithography. The samples, placed in a customized bending setup, were bent to controlled radii of curvature while measuring their capacitance. A maximum variation in capacitance of less than 3% was observed at a minimum radius of curvature of 2.5 mm for all the devices tested with very thin electrodes whereas changes of up to 7% were found on stiffer, plated electrodes. Larger or smaller variations would be possible, in theory, by adjusting the geometry of the device. This work establishes a useful predictive tool for the design and evaluation of truly flexible/bendable electronics consisting of interdigitated structures, allowing one to tune the bending influence on the capacitance value through geometrical design.« less

  4. The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology.

    PubMed

    Colman, Kerri L; Dobbe, Johannes G G; Stull, Kyra E; Ruijter, Jan M; Oostra, Roelof-Jan; van Rijn, Rick R; van der Merwe, Alie E; de Boer, Hans H; Streekstra, Geert J

    2017-07-01

    Almost all European countries lack contemporary skeletal collections for the development and validation of forensic anthropological methods. Furthermore, legal, ethical and practical considerations hinder the development of skeletal collections. A virtual skeletal database derived from clinical computed tomography (CT) scans provides a potential solution. However, clinical CT scans are typically generated with varying settings. This study investigates the effects of image segmentation and varying imaging conditions on the precision of virtual modelled pelves. An adult human cadaver was scanned using varying imaging conditions, such as scanner type and standard patient scanning protocol, slice thickness and exposure level. The pelvis was segmented from the various CT images resulting in virtually modelled pelves. The precision of the virtual modelling was determined per polygon mesh point. The fraction of mesh points resulting in point-to-point distance variations of 2 mm or less (95% confidence interval (CI)) was reported. Colour mapping was used to visualise modelling variability. At almost all (>97%) locations across the pelvis, the point-to-point distance variation is less than 2 mm (CI = 95%). In >91% of the locations, the point-to-point distance variation was less than 1 mm (CI = 95%). This indicates that the geometric variability of the virtual pelvis as a result of segmentation and imaging conditions rarely exceeds the generally accepted linear error of 2 mm. Colour mapping shows that areas with large variability are predominantly joint surfaces. Therefore, results indicate that segmented bone elements from patient-derived CT scans are a sufficiently precise source for creating a virtual skeletal database.

  5. Genetic and Morphological Variation of the Forkbeard, Phycis phycis (Pisces, Phycidae): Evidence of Panmixia and Recent Population Expansion along Its Distribution Area

    PubMed Central

    Rodrigues, Ana Sofia B.; Sequeira, Vera; Neves, Ana; Paiva, Rafaela Barros

    2016-01-01

    The knowledge of population structure of a species is essential to effectively assess and manage fisheries. In the present study, genetics, by mitochondrial DNA cytochrome b sequence analysis, and body geometric morphometrics were used to evaluate the existence of distinct populations of the forkbeard (Phycis phycis), an important commercial species in several European countries, especially Portugal and Spain. For geometric morphometric analysis, specimens were collected in the Northeast Atlantic Ocean—Azores, Madeira and mainland Portugal, and for genetic analysis, these samples were complemented with samples collected in the Mediterranean Sea—Spain, Italy and Croatia, in order to cover the entire distribution area of the species. Body shape of the forkbeard from the Northeast Atlantic was found to be highly variable. This variation was probably associated with different environmental factors between the study areas. Despite morphological variation, a low genetic differentiation between samples from different areas was found, most likely due to gene flow that occurred in the past or with the demographic history of the species. Moreover, the presence of unique haplotypes in the Northeast Atlantic and in the Mediterranean suggests that recent gene flow between populations from these areas should be limited. Altogether, a high haplotype diversity, a low nucleotide diversity, a “star-like” network and the results of the mismatch distribution, indicate a possible signature of recent population expansions, which probably started during the end of the Last Glacial Maximum and led to the colonization of the Northeast Atlantic and the Mediterranean. PMID:27941988

  6. Three-dimensional geometric morphometric analysis of talar morphology in extant gorilla taxa from highland and lowland habitats.

    PubMed

    Knigge, Ryan P; Tocheri, Matthew W; Orr, Caley M; Mcnulty, Kieran P

    2015-01-01

    Western gorillas (Gorilla gorilla) are known to climb significantly more often than eastern gorillas (Gorilla beringei), a behavioral distinction attributable to major differences in their respective habitats (i.e., highland vs. lowland). Genetic evidence suggests that the lineages leading to these taxa began diverging from one another between approximately 1 and 3 million years ago. Thus, gorillas offer a special opportunity to examine the degree to which morphology of recently diverged taxa may be "fine-tuned" to differing ecological requirements. Using three-dimensional (3D) geometric morphometrics, we compared talar morphology in a sample of 87 specimens including western (lowland), mountain (highland), and grauer gorillas (lowland and highland populations). Talar shape was captured with a series of landmarks and semilandmarks superimposed by generalized Procrustes analysis. A between-group principal components analysis of overall talar shape separates gorillas by ecological habitat and by taxon. An analysis of only the trochlea and lateral malleolar facet identifies subtle variations in trochlear shape between western lowland and lowland grauer gorillas, potentially indicative of convergent evolution of arboreal adaptations in the talus. Lastly, talar shape scales differently with centroid size for highland and lowland gorillas, suggesting that ankle morphology may track body-size mediated variation in arboreal behaviors differently depending on ecological setting. Several of the observed shape differences are linked biomechanically to the facilitation of climbing in lowland gorillas and to stability and load-bearing on terrestrial substrates in the highland taxa, providing an important comparative model for studying morphological variation in groups known only from fossils (e.g., early hominins). © 2014 Wiley Periodicals, Inc.

  7. Small-scale density variations in the lunar crust revealed by GRAIL

    NASA Astrophysics Data System (ADS)

    Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W.; Milbury, C.; Kiefer, W. S.; Soderblom, J. M.; Zuber, M. T.

    2017-07-01

    Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that ∼98% of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2% of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10‧s of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by ± 10% over scales ranging from centimeters to 100‧s of kilometers.

  8. Small-Scale Density Variations in the Lunar Crust Revealed by GRAIL

    NASA Technical Reports Server (NTRS)

    Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W., III; Milbury, C.; hide

    2017-01-01

    Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that approximately 98 percent of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2 percent of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10's of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by plus or minus 10 percent over scales ranging from centimeters to 100’s of kilometers.

  9. SOME ENGINEERING PROPERTIES OF SHELLED AND KERNEL TEA (Camellia sinensis) SEEDS.

    PubMed

    Altuntas, Ebubekir; Yildiz, Merve

    2017-01-01

    Camellia sinensis is the source of tea leaves and it is an economic crop now grown around the World. Tea seed oil has been used for cooking in China and other Asian countries for more than a thousand years. Tea is the most widely consumed beverages after water in the world. It is mainly produced in Asia, central Africa, and exported throughout the World. Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture force of shelled and kernel tea ( Camellia sinensis ) seeds were determined in this study. This research was carried out for shelled and kernel tea seeds. The shelled tea seeds used in this study were obtained from East-Black Sea Tea Cooperative Institution in Rize city of Turkey. Shelled and kernel tea seeds were characterized as large and small sizes. The average geometric mean diameter and seed mass of the shelled tea seeds were 15.8 mm, 10.7 mm (large size); 1.47 g, 0.49 g (small size); while the average geometric mean diameter and seed mass of the kernel tea seeds were 11.8 mm, 8 mm for large size; 0.97 g, 0.31 g for small size, respectively. The sphericity, surface area and volume values were found to be higher in a larger size than small size for the shelled and kernel tea samples. The shelled tea seed's colour intensity (Chroma) were found between 59.31 and 64.22 for large size, while the kernel tea seed's chroma values were found between 56.04 68.34 for large size, respectively. The rupture force values of kernel tea seeds were higher than shelled tea seeds for the large size along X axis; whereas, the rupture force values of along X axis were higher than Y axis for large size of shelled tea seeds. The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces. Some engineering properties, such as geometric mean diameter, sphericity, volume, bulk and true densities, the coefficient of friction, L*, a*, b* colour characteristics and rupture force of shelled and kernel tea ( Camellia sinensis ) seeds will serve to design the equipment used in postharvest treatments.

  10. TU-F-CAMPUS-T-04: Variations in Nominally Identical Small Fields From Photon Jaw Reproducibility and Associated Effects On Small Field Dosimetric Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B R; McEwen, M R

    2015-06-15

    Purpose: To investigate uncertainties in small field output factors and detector specific correction factors from variations in field size for nominally identical fields using measurements and Monte Carlo simulations. Methods: Repeated measurements of small field output factors are made with the Exradin W1 (plastic scintillation detector) and the PTW microDiamond (synthetic diamond detector) in beams from the Elekta Precise linear accelerator. We investigate corrections for a 0.6x0.6 cm{sup 2} nominal field size shaped with secondary photon jaws at 100 cm source to surface distance (SSD). Measurements of small field profiles are made in a water phantom at 10 cm depthmore » using both detectors and are subsequently used for accurate detector positioning. Supplementary Monte Carlo simulations with EGSnrc are used to calculate the absorbed dose to the detector and absorbed dose to water under the same conditions when varying field size. The jaws in the BEAMnrc model of the accelerator are varied by a reasonable amount to investigate the same situation without the influence of measurements uncertainties (such as detector positioning or variation in beam output). Results: For both detectors, small field output factor measurements differ by up to 11 % when repeated measurements are made in nominally identical 0.6x0.6 cm{sup 2} fields. Variations in the FWHM of measured profiles are consistent with field size variations reported by the accelerator. Monte Carlo simulations of the dose to detector vary by up to 16 % under worst case variations in field size. These variations are also present in calculations of absorbed dose to water. However, calculated detector specific correction factors are within 1 % when varying field size because of cancellation of effects. Conclusion: Clinical physicists should be aware of potentially significant uncertainties in measured output factors required for dosimetry of small fields due to field size variations for nominally identical fields.« less

  11. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    PubMed

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  12. Evaluation of portable CT scanners for otologic image-guided surgery

    PubMed Central

    Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F

    2011-01-01

    Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768

  13. On geometric distance determination to the Cepheid RS Puppis from its light echoes

    NASA Astrophysics Data System (ADS)

    Bond, H. E.; Sparks, W. B.

    2009-02-01

    Context: The luminous Galactic Cepheid RS Puppis is unique in being surrounded by a dust nebula illuminated by the variable light of the Cepheid. In a recent paper in this journal, Kervella et al. (2008) report a very precise geometric distance to RS Pup, based on measured phase lags of the light variations of individual knots in the reflection nebula. Aims: In this commentary, we examine the validity of the distance measurement, as well as the reality of the spatial structure of the nebula determined by Feast (2008) based upon the phase lags of the knots. Methods: Kervella et al. assumed that the illuminated dust knots lie, on average, in the plane of the sky (otherwise it is not possible to derive a geometric distance from direct imaging of light echoes). We consider the biasing introduced by the high efficiency of forward scattering. Results: We conclude that most of the knots are in fact likely to lie in front of the plane of the sky, thus invalidating the Kervella et al. result. We also show that the flat equatorial disk structure determined by Feast is unlikely; instead, the morphology of the nebula is more probably bipolar, with a significant tilt of its axis with respect to the plane of the sky. Conclusions: Although the Kervella et al. distance result is invalidated, we show that high-resolution polarimetric imaging has the potential to yield a valid geometric distance to this important Cepheid.

  14. Geometric dependence of the parasitic components and thermal properties of HEMTs

    NASA Astrophysics Data System (ADS)

    Vun, Peter V.; Parker, Anthony E.; Mahon, Simon J.; Fattorini, Anthony

    2007-12-01

    For integrated circuit design up to 50GHz and beyond accurate models of the transistor access structures and intrinsic structures are necessary for prediction of circuit performance. The circuit design process relies on optimising transistor geometry parameters such as unit gate width, number of gates, number of vias and gate-to-gate spacing. So the relationship between electrical and thermal parasitic components in transistor access structures, and transistor geometry is important to understand when developing models for transistors of differing geometries. Current approaches to describing the geometric dependence of models are limited to empirical methods which only describe a finite set of geometries and only include unit gate width and number of gates as variables. A better understanding of the geometric dependence is seen as a way to provide scalable models that remain accurate for continuous variation of all geometric parameters. Understanding the distribution of parasitic elements between the manifold, the terminal fingers, and the reference plane discontinuities is an issue identified as important in this regard. Examination of dc characteristics and thermal images indicates that gate-to-gate thermal coupling and increased thermal conductance at the gate ends, affects the device total thermal conductance. Consequently, a distributed thermal model is proposed which accounts for these effects. This work is seen as a starting point for developing comprehensive scalable models that will allow RF circuit designers to optimise circuit performance parameters such as total die area, maximum output power, power-added-efficiency (PAE) and channel temperature/lifetime.

  15. Trunk density profile estimates from dual X-ray absorptiometry.

    PubMed

    Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A

    2008-01-01

    Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.

  16. Fabrication of mirror templates in silica with micron-sized radii of curvature

    NASA Astrophysics Data System (ADS)

    Najer, Daniel; Renggli, Martina; Riedel, Daniel; Starosielec, Sebastian; Warburton, Richard J.

    2017-01-01

    We present the fabrication of exceptionally small-radius concave microoptics on fused silica substrates using CO2 laser ablation and subsequent reactive ion etching. The protocol yields on-axis near-Gaussian depressions with a radius of curvature ≲5 μm at shallow depth and low surface roughness of 2 Å. This geometry is appealing for cavity quantum electrodynamics where small mode volumes and low scattering losses are desired. We study the optical performance of the structures within a tunable Fabry-Pérot type microcavity and demonstrate near-coating-limited loss rates ( F = 25 000 ) and small focal lengths consistent with their geometrical dimensions.

  17. Soil-Moisture Retention Curves, Capillary Pressure Curves, and Mercury Porosimetry: A Theoretical and Computational Investigation of the Determination of the Geometric Properties of the Pore Space

    NASA Astrophysics Data System (ADS)

    Strand, T. E.; Wang, H. F.

    2003-12-01

    Immiscible displacement protocols have long been used to infer the geometric properties of the void space in granular porous media. The three most commonly used experimental techniques are the measurement of soil-moisture retention curves and relative permeability-capillary pressure-saturation relations, as well as mercury intrusion porosimetry experiments. A coupled theoretical and computational investigation was performed that provides insight into the limitations associated with each technique and quantifies the relationship between experimental observations and the geometric properties of the void space. It is demonstrated that the inference of the pore space geometry from both mercury porosimetry experiments and measurements of capillary pressure curves is influenced by trapping/mobilization phenomena and subject to scaling behavior. In addition, both techniques also assume that the capillary pressure at a location on the meniscus can be approximated by a pressure difference across a region or sample. For example, when performing capillary pressure measurements, the capillary pressure, taken to be the difference between the injected fluid pressure at the inlet and the defending fluid pressure at the outlet, is increased in a series of small steps and the fluid saturation is measured each time the system reaches steady. Regions of defending fluid that become entrapped by the invading fluid can be subsequently mobilized at higher flow rates (capillary pressures), contributing to a scale-dependence of the capillary pressure-saturation curve that complicates the determination of the properties of the pore space. This scale-dependence is particularly problematic for measurements performed at the core scale. Mercury porosimetry experiments are subject to similar limitations. Trapped regions of defending fluid are also present during the measurement of soil-moisture retention curves, but the effects of scaling behavior on the evaluation of the pore space properties from the immiscible displacement structure are much simpler to account for due to the control of mobilization phenomena. Some mobilization may occur due to film flow, but this can be limited by keeping time scales relatively small or exploited at longer time scales in order to quantify the rate of film flow. Computer simulations of gradient-stabilized drainage and imbibition to the (respective) equilibrium positions were performed using a pore-scale modified invasion percolation (MIP) model in order to quantify the relationship between the saturation profile and the geometric properties of the void space. These simulations are similar to the experimental measurement of soil-moisture retention curves. Results show that the equilibrium height and the width of the equilibrium fringe depend on two length scale distributions, one controlling the imbibition equilibrium structure and the other controlling the drainage structure. The equilibrium height is related to the mean value of the appropriate distribution as described by Jurin's law, and the width of the equilibrium fringe scales as a function of a combined parameter, the Bond number, Bo, divided by the coefficient of variation (cov). Simulations also demonstrate that the apparent radius distribution obtained from saturation profiles using direct inversion by Jurin's law is a subset of the actual distribution in the porous medium. The relationship between the apparent and actual radius distributions is quantified in terms of the combined parameter, Bo/cov, and the mean coordination number of the porous medium.

  18. Measurement of the timing behaviour of off-the-shelf cameras

    NASA Astrophysics Data System (ADS)

    Schatz, Volker

    2017-04-01

    This paper presents a measurement method suitable for investigating the timing properties of cameras. A single light source illuminates the camera detector starting with a varying defined delay after the camera trigger. Pixels from the recorded camera frames are summed up and normalised, and the resulting function is indicative of the overlap between illumination and exposure. This allows one to infer the trigger delay and the exposure time with sub-microsecond accuracy. The method is therefore of interest when off-the-shelf cameras are used in reactive systems or synchronised with other cameras. It can supplement radiometric and geometric calibration methods for cameras in scientific use. A closer look at the measurement results reveals deviations from the ideal camera behaviour of constant sensitivity limited to the exposure interval. One of the industrial cameras investigated retains a small sensitivity long after the end of the nominal exposure interval. All three investigated cameras show non-linear variations of sensitivity at O≤ft({{10}-3}\\right) to O≤ft({{10}-2}\\right) during exposure. Due to its sign, the latter effect cannot be described by a sensitivity function depending on the time after triggering, but represents non-linear pixel characteristics.

  19. Surface area-volume ratios in insects.

    PubMed

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  20. What causes the trends in Geocenter motion estimates?

    NASA Astrophysics Data System (ADS)

    Rietbroek, Roelof; Schrama, Ernst

    2015-04-01

    Over time, the geometrical center of figure of the Earth (CF) and the center of mass of the Earth system (CM) exhibit small changes. This phenomena, generally referred to as 'geocenter motion', is mainly caused by present-day and past surface loading and (visco)-elastic deformation processes occurring near the surface of the Earth. It is now well known that the computation of surface loading variations from the GRACE product requires the application of geocenter corrections, and not doing so introduce significant errors in estimates of, for example, melt-rates of the cryosphere. But, to understand observed geocenter motion more closely, one can also ask how much the different surface loading phenomena contribute to it. In this study, we compare different estimates of the geocenter motion, and discuss the underlying causes, with a special focus on trends. Using a 'fingerprint' inversion approach, where predefined patterns are fitted to GRACE and altimetry data, we can now consistently break down the geocenter estimates into different contributions. We find that the present day melting in Antarctica and Greenland shift the CM-CF offset with 0.1 mm/yr and -0.3 mm/yr in the Z-direction respectively, while GIA additionally contributes with roughly -0.3 mm/yr.

  1. Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Soleimani, Ahmad; Naei, Mohammad Hasan; Mashhadi, Mahmoud Mosavi

    In this paper, the first order shear deformation theory (FSDT) is used to investigate the postbuckling behavior of orthotropic single-layered graphene sheet (SLGS) under in-plane loadings. Nonlocal elasticity theory and von-Karman nonlinear model in combination with the isogeometric analysis (IGA) have been applied to study the postbuckling characteristics of SLGSs. In contrast to the classical model, the nonlocal continuum model developed in this work considers the size-effects on the postbuckling characteristics of SLGSs. FSDT takes into account effects of shear deformations through-the-thickness of plate. Geometric imperfection which is defined as a very small transverse displacement of the mid-plane is applied on undeformed nanoplate to create initial deviation in graphene sheet from being perfectly flat. Nonlinear governing equations of motion for SLGS are derived from the principle of virtual work and a variational formulation. At the end, the results are presented as the postbuckling equilibrium paths of SLGS. The influence of various parameters such as edge length, nonlocal parameter, compression ratio, boundary conditions and aspect ratio on the postbuckling path is investigated. The results of this work show the high accuracy of nonlocal FSDT-based analysis for postbuckling behavior of graphene sheets.

  2. Shape similarities and differences in the skulls of scavenging raptors.

    PubMed

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  3. Light Phenomena from the Nothing

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2004-11-01

    The most recent results of scientific investigations on anomalous light phenomena, which were carried out in Hessdalen, Norway, are described and discussed. The data acquired so far show that the phenomenon is a plasma form triggered by piezoelectricity and maintained by electrochemical effects that become effective when a plasma concentration interacts with an atmosphere rich of water vapor and aerosols. It is also shown that the electrochemical mechanism able to permit an efficient confinement of the plasma can explain some peculiar kinematic and structural characteristics too, being the light phenomenon formed by clusters of small light balls, which are occasionally ejected from the core. The mechanism, with which amplitude time-variations of pulsating light phenomena occur, is also described. It is finally shown how, however, some peculiar aspects of the phenomenon, in particular the occurrence of some transiently geometric shapes, cannot be explained using a geophysical standard model. One hypothesis concerning quantum fluctuations of the zero point energy, including a possible interaction with a form of "electromagnetic intelligence", is discussed as a possible speculation, which is ventured in order to suggest to all physical scientists working in this field to carry out a more in-depth study of the light phenomenon in its entirety.

  4. The changing phases of extrasolar planet CoRoT-1b.

    PubMed

    Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon

    2009-05-28

    Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.

  5. DYCAST: A finite element program for the crash analysis of structures

    NASA Technical Reports Server (NTRS)

    Pifko, A. B.; Winter, R.; Ogilvie, P.

    1987-01-01

    DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors.

  6. GOCI image enhancement using an MTF compensation technique for coastal water applications.

    PubMed

    Oh, Eunsong; Choi, Jong-Kuk

    2014-11-03

    The Geostationary Ocean Color Imager (GOCI) is the first optical sensor in geostationary orbit for monitoring the ocean environment around the Korean Peninsula. This paper discusses on-orbit modulation transfer function (MTF) estimation with the pulse-source method and its compensation results for the GOCI. Additionally, by analyzing the relationship between the MTF compensation effect and the accuracy of the secondary ocean product, we confirmed the optimal MTF compensation parameter for enhancing image quality without variation in the accuracy. In this study, MTF assessment was performed using a natural target because the GOCI system has a spatial resolution of 500 m. For MTF compensation with the Wiener filter, we fitted a point spread function with a Gaussian curve controlled by a standard deviation value (σ). After a parametric analysis for finding the optimal degradation model, the σ value of 0.4 was determined to be an optimal indicator. Finally, the MTF value was enhanced from 0.1645 to 0.2152 without degradation of the accuracy of the ocean color product. Enhanced GOCI images by MTF compensation are expected to recognize small-scale ocean products in coastal areas with sharpened geometric performance.

  7. Characterization of an In-Beam PET Prototype for Proton Therapy With Different Target Compositions

    NASA Astrophysics Data System (ADS)

    Attanasi, Francesca; Belcari, Nicola; Moehrs, Sascha; Rosso, Valeria; Vecchio, Sara; Cirrone, G. A. Pablo; Cuttone, Giacomo; Lojacono, Piero; Romano, Francesco; Lanconelli, Nico; Del Guerra, Alberto

    2010-06-01

    At the University of Pisa, the DoPET (Dosimetry with a Positron Emission Tomograph) project has focused on the development and characterization of an ad hoc, scalable, dual-head PET prototype for in-beam treatment planning verification of the proton therapy. In this paper we report the first results obtained with our current prototype, consisting of two opposing lutetium yttrium orthosilicate (LYSO) detectors, each one covering an area of 4.5 × 4.5 cm2. We measured the β+-activation induced by 62 MeV proton beams at Catana facility (LNS, Catania, Italy) in several plastic phantoms. Experiments were performed to evaluate the possibility to extract accurate phantom geometrical information from the reconstructed PET images. The PET prototype proved its capability of locating small air cavities in homogeneous PMMA phantoms with a submillimetric accuracy and of distinguishing materials with different 16O and 12C content by back mapping phantom geometry through the separation of the isotope contributions. This could be very useful in the clinical practice as a tool to highlight anatomical or physiological organ variations among different treatment sessions and to discriminate different tissue types, thus providing feedbacks for the accuracy of dose deposition.

  8. The Needs of Students with Intersex Variations

    ERIC Educational Resources Information Center

    Jones, Tiffany

    2016-01-01

    To date, people with intersex variations have been mainly studied via small-scale clinical research, with only a small amount of reflective commentary contributed by sociocultural scholars. This paper reports on findings from a 2015 online Australian survey of 272 people with intersex variations, which aimed to redress the gap in research on this…

  9. Optimization study for high speed radial turbine with special reference to design variables

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Tabakoff, W.

    1977-01-01

    Numerical results of a theoretical investigation are presented to provide information about the effect of variation of the different design and operating parameters on radial inflow turbine performance. The effects of variations in the mass flow rate, rotor tip Mach number, inlet flow angles, number of rotor blades and hub to shroud radius ratio, on the internal fluid dynamics of turbine rotors, was investigated. A procedure to estimate the flow deviation angles at the turbine exit is also presented and used to examine the influence of the operating conditions and the rotor geometrical configuration on these deviations. The significance of the results obtained is discussed with respect to improved turbine performance.

  10. Time-dependent variational approach in terms of squeezed coherent states: Implication to semi-classical approximation

    NASA Technical Reports Server (NTRS)

    Tsue, Yasuhiko

    1994-01-01

    A general framework for time-dependent variational approach in terms of squeezed coherent states is constructed with the aim of describing quantal systems by means of classical mechanics including higher order quantal effects with the aid of canonicity conditions developed in the time-dependent Hartree-Fock theory. The Maslov phase occurring in a semi-classical quantization rule is investigated in this framework. In the limit of a semi-classical approximation in this approach, it is definitely shown that the Maslov phase has a geometric nature analogous to the Berry phase. It is also indicated that this squeezed coherent state approach is a possible way to go beyond the usual WKB approximation.

  11. Study of dosimetric variation due to interfraction organ movement in High Dose Rate Interstital (MUPIT) brachytherapy for gynecologic malignancies

    NASA Astrophysics Data System (ADS)

    Velmurugan, Thanigaimalai; Sukumar, Prabakar; Krishnappan, Chokkalingam; Boopathy, Raghavendiran

    2010-01-01

    Ten patients with cancer of uterine cervix who underwent interstitial brachytherapy using MUPIT templates were CT scanned (CT1) using which bladder, rectum and CTV were delineated. The treatment plan PCT1 was generated and optimized geometrically on the volume. CT scan (CT2) was repeated before the second fraction of the treatment CTV and critical organs were delineated. The plan (PCT2) was created by reproducing the Plan PCT1 in the CT2 images and compared with PCT1. Bladder, Rectum and CTV percentage volume variation ranges from +28.6% to -34.3%, 38.4% to -14.9% and 8.5% to -15.2% respectively. Maximum dose variation in bladder was +17.1%, in rectum was up to +410% and in CTV was -13.0%. The dose to these structures varies independently with no strong correlation with the volume variation. Hence it is suggested that repeat CT and re-planning is mandatory before second fraction execution.

  12. Evaluation of scattered light distributions of cw-transillumination for functional diagnostic of rheumatic disorders in interphalangeal joints

    NASA Astrophysics Data System (ADS)

    Prapavat, Viravuth; Schuetz, Rijk; Runge, Wolfram; Beuthan, Juergen; Mueller, Gerhard J.

    1995-12-01

    This paper presents in-vitro-studies using the scattered intensity distribution obtained by cw- transillumination to examine the condition of rheumatic disorders of interphalangeal joints. Inflammation of joints, due to rheumatic diseases, leads to changes in the synovial membrane, synovia composition and content, and anatomic geometrical variations. Measurements have shown that these rheumatic induced inflammation processes result in a variation in optical properties of joint systems. With a scanning system the interphalangeal joint is transilluminated with diode lasers (670 nm, 905 nm) perpendicular to the joint cavity. The detection of the entire distribution of the transmitted radiation intensity was performed with a CCD camera. As a function of the structure and optical properties of the transilluminated volume we achieved distributions of scattered radiation which show characteristic variations in intensity and shape. Using signal and image processing procedures we evaluated the measured scattered distributions regarding their information weight, shape and scale features. Mathematical methods were used to find classification criteria to determine variations of the joint condition.

  13. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  14. Intraspecific ecomorphological variation: linear and geometric morphometrics reveal habitat-related patterns within Podarcis bocagei wall lizards.

    PubMed

    Kaliontzopoulou, Antigoni; Carretero, M A; Llorente, G A

    2010-06-01

    Morphological variation in relation to habitat is known to occur in several lizard groups. Comparative studies have linked morphology and habitat use, showing that locomotion is the principal mediator of this evolutionary relationship. Here, we investigate intraspecific ecomorphological variation in Podarcis bocagei by examining three habitat types, representing a variety between saxicolous and ground-dwelling habits. Our results indicate variation in absolute and relative limb length, but patterns are only partially concordant to biomechanical predictions. Whereas the femur and hind foot are longer in ground-dwelling lizards, confirming previous observations, the tibia and hind limb are relatively shorter, contradicting expectations. Additionally, head shape varies substantially between habitats, in line with a hypothesis of mechanical restrictions related to microhabitat and refuge use. Finally, we detect male-specific variation between habitats in total body size and head size, providing evidence for interactions between natural and sexual selection. Although performance and behaviour studies are necessary to definitely confirm the functional and evolutionary significance of the observed patterns, our study indicates that ecomorphological adaptations can arise in a very short evolutionary time in this group of lizards.

  15. UNCERTAINTY AND SENSITIVITY ANALYSIS OF RUNOFF AND SEDIMENT YIELD IN A SMALL AGRICULTURAL WATERSHED WITH KINEROS2

    EPA Science Inventory

    Using the Monte Carlo (MC) method, this paper derives arithmetic and geometric means and associated variances of the net capillary drive parameter, G, that appears in the Parlange infiltration model, as a function of soil texture and antecedent soil moisture content. App...

  16. Molecular Docking of Enzyme Inhibitors: A Computational Tool for Structure-Based Drug Design

    ERIC Educational Resources Information Center

    Rudnitskaya, Aleksandra; Torok, Bela; Torok, Marianna

    2010-01-01

    Molecular docking is a frequently used method in structure-based rational drug design. It is used for evaluating the complex formation of small ligands with large biomolecules, predicting the strength of the bonding forces and finding the best geometrical arrangements. The major goal of this advanced undergraduate biochemistry laboratory exercise…

  17. Preserving with Prisms: Producing Nets

    ERIC Educational Resources Information Center

    Prummer, Kathy E.; Amador, Julie M.; Wallin, Abraham J.

    2016-01-01

    Two mathematics teachers in a small rural school decided to create a task that would engage seventh graders. The goal of the real-world activity was to help students develop geometric and spatial reasoning and to support their understanding of volume of rectangular prisms. The impetus for the task came from the teachers' desire to engage students…

  18. Why Size Counts: Children's Spatial Reorientation in Large and Small Enclosures

    ERIC Educational Resources Information Center

    Learmonth, Amy E.; Newcombe, Nora S.; Sheridan, Natalie; Jones, Meredith

    2008-01-01

    When mobile organisms are spatially disoriented, for instance by rapid repetitive movement, they must re-establish orientation. Past research has shown that the geometry of enclosing spaces is consistently used for reorientation by a wide variety of species, but that non-geometric features are not always used. Based on these findings, some…

  19. A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.

    PubMed

    Huang, Shiping; Wu, Zhifeng; Misra, Anil

    2017-12-11

    Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.

  20. RNICO: a new simple geometric index for assessing the impact of urban development pattern on peak flows in urban catchments

    NASA Astrophysics Data System (ADS)

    Kasaee Roodsari, B.; Chandler, D. G.

    2016-12-01

    Urban sprawl is widespread across the world and the associated hydrologic impacts are increasing in peri-urban catchments due to increased area of impervious. There is a strong agreement on the positive correlation between the fractional impervious area and peak flows in urban catchments. Nevertheless, the effect of land development pattern on peak flows is not well investigated. In this study, a new simple geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri-urban catchments to runoff peak flows. Results of applying RNICO to 20 sub-catchments in New York State showed a strong positive correlation (R2>0.97) between RNICO and runoff peak flows for small peri-urban catchments (A< 42 km2) indicating higher flood risk of downstream urbanization. For large catchments (A> 42 km2), no correlation was indicated between RNICO and peak flows. We highlight the necessity of a greater discharge monitoring network at small peri-urban catchments to support local urban flood forecast.

Top