DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, L.
1998-11-30
The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battocletti, E.C.
1998-02-01
This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)
Geothermal Money Book [Geothermal Outreach and Project Financing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizabeth Battocletti
2004-02-01
Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This ismore » where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.« less
NASA Astrophysics Data System (ADS)
Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias
2010-05-01
Numerous advantages of geothermal energy like its widespread distribution, a base-load power and availability higher than 90%, a small footprint and low carbon emissions, and the growing concerns about climate changes strongly promote the development of geothermal projects. Geothermal energy as a local energy source implies needs on surface to be located close to the geothermal resource. Many European regions dispose of a good geothermal potential but it is mostly not sufficiently developed due to non-technical barriers occurring at the very early stages of the project. The GEOFAR Project carried out within the framework of EU's "Intelligent Energy Europe" (IEE) program, gathers a consortium of European partners from Germany, France, Greece, Spain and Portugal. Launched in September 2008, the aim of this research project is to analyze the mentioned non-technical barriers, focusing most particularly on economic and financial aspects. Based on this analysis GEOFAR aims at developing new financial and administrative schemes to overcome the main financial barriers for deep geothermal projects (for electricity and direct use, without heat pumps). The analysis of the current situation and the future development of geothermal energy in GEOFAR target countries (Germany, France, Greece, Spain, Portugal, Slovakia, Bulgaria and Hungary) was necessary to understand and expose the diverging status of the geothermal sector and the more and less complicated situation for geothermal projects in different Europeans Regions. A deeper analysis of 40 cases studies (operating, planned and failed projects) of deep geothermal projects also contributed to this detailed view. An exhaustive analysis and description of financial mechanisms already existing in different European countries and at European level to support investors completed the research on non-technical barriers. Based on this profound analysis, the GEOFAR project has made an overview of the difficulties met by project planners, developers and politicians when developing a new geothermal project. Each of the analyzed countries is facing a distinct bundle of non-technical barriers. Globally, deep geothermal projects are characterized by high up-front costs and are facing the geological risk of the non discovery of the resources in adequacy to the initial expectations. Moreover, investors are facing directly the competitiveness of fossils energy. The very long pay back period makes it also difficult for them to face the geological risk. GEOFAR will propose new targeting financing and funding schemes, in order to remove the financial barriers hindering the initial stages of geothermal energy projects. GEOFAR also considers a lack of awareness as important barrier hindering the future development of geothermal energy projects. Public opinion is globally positive to geothermal energy, but deep geothermal projects are often suffering from a lack of information leading sometimes to non public acceptance. By underlining the range of possibilities offered by the geothermal energy and the potential and emerging technologies, GEOFAR tends to increase the awareness of geothermal energy in order to boost the development and the investment in new geothermal energy projects. Geothermal energy is expected to contribute significantly to the future European energy sources and the GEOFAR project aims to facilitate it.
Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culp, Elzie Lynn
Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less
NASA Astrophysics Data System (ADS)
Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.
2012-12-01
Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com
Geothermal Project Consulting | Geothermal Technologies | NREL
Geothermal Project Consulting Geothermal Project Consulting When consulting on projects, NREL focuses on identifying specific barriers or challenges that are likely to impact geothermal project , validation, and deployment of geothermal technologies Assess and evaluate geothermal R&D projects
Guidebook to Geothermal Finance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, J. P.; Meurice, J.; Wobus, N.
This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClain, James S.; Dobson, Patrick; Glassley, William
Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.
Environmental Assessment Lakeview Geothermal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treis, Tania
2012-04-30
The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternativesmore » considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.« less
Review of potential EGS sites and possible EGS demonstration scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-09-01
Review of potential sites for Enhanced Geothermal Systems (EGS) and development of reference scenarios for EGS demonstration projects are two sub-tasks included in the FY 1999 EGS Research and Development (R&D) Management Task (DOE Task Order Number DE-AT07-99ID60365, included in the Appendix of this report). These sub-tasks are consistent with the EGS Strategic Plan, which includes milestones relating to EGS site selection (Milestone 4, to be completed in 2004) and development of a cost-shared, pilot-scale demonstration project (Milestone 5, to be completed in 2008). The purpose of the present work is to provide some reference points for discussing what typemore » of EGS projects might be undertaken, where they might be located, and what the associated benefits are likely to be. The review of potential EGS sites is presented in Chapter 2 of this report. It draws upon site-selection criteria (and potential project sites that were identified using those criteria) developed at a mini-workshop held at the April 1998 DOE Geothermal Program Review to discuss EGS R&D issues. The criteria and the sites were the focus of a paper presented at the 4th International Hot Dry Rock Forum in Strasbourg in September 1998 (Sass and Robertson-Tait, 1998). The selection criteria, project sites and possible EGS developments discussed in the workshop and paper are described in more detail herein. Input from geothermal operators is incorporated, and water availability and transmission-line access are emphasized. The reference scenarios for EGS demonstration projects are presented in Chapter 3. Three alternative scenarios are discussed: (1) a stand-alone demonstration plant in an area with no existing geothermal development; (2) a separate generating facility adjacent to an existing geothermal development; and (3) an EGS project that supplies an existing geothermal power plant with additional generating capacity. Furthermore, information potentially useful to DOE in framing solicitations and selecting projects for funding is discussed objectively. Although defined as separate sub-tasks, the EGS site review and reference scenarios are closely related. The incremental approach to EGS development that has recently been adopted could logically be expected to yield proposals for studies that lead up to and include production-enhancement experiments in producing geothermal fields in the very near future. However, the strategic plan clearly calls for the development of a more comprehensive demonstration project that can generate up to perhaps 10 MW (gross). It is anticipated that a series of small-scale experiments will define what realistically may be achieved in the near future, thus setting the stage for a successful pilot demonstration. This report continues the process of presenting information on EGS sites and experiments, and begins the process of defining what a demonstration project might be.« less
The 2008 earthquakes in the Bavarian Molasse Basin - possible relation to deep geothermics?
NASA Astrophysics Data System (ADS)
Kraft, T.; Wassermann, J.; Deichmann, N.; Stange, S.
2009-04-01
We discuss several microearthquakes of magnitude up to Ml=2.3 that occurred in the Bavarian Molasse Basin (ByM), south of Munich, Germany, in February and July 2008. The strongest event was felt by local residents. The Bavarian Earthquake catalog, which dates back to the year 1000, does list a small number of isolated earthquakes in the western part of the ByM as well as a cluster of mining induced earthquakes (Peißenberg 1962-1970, I0(MSK)=5.5). The eastern part of the ByM, including the wider surrounding of Munich, was so far considered aseismic. Due to the spatio-temporal clustering of the microearthquakes in February and July 2008 the University of Munich (LMU) and the Swiss Seismologcical Service installed a temporal network of seismological stations in the south of Munich to investigate the newly arising seismicity. First analysis of the recorded data indicate shallow source depths (~5km) for the July events. This result is supported by the fact that one of these very small earthquakes was felt by local residents. The earthquakes hypocenters are located closely to a number of deep geothermal wells of 3-4.5km depth being either in production or running productivity tests in late 2007 and early 2008. Therefore, the 2008 seimicity might represent a case of induced seimicity related to the injection or withdrawal of water from the hydrothermal aquifer. Due to the lack of high quality recordings of a denser seismic monitoring network in the source area it is not possible to resolve details of the processes behind the 2008 seismicity. Therefore, a definite answer to the question if the earthquakes are related the deep geothermal projects or not can not be given at present. However, a number of recent well-studied cases have proved that earthquakes can also happen in depths much shallower than 5km, and that small changes of the hydrological conditions at depth are sufficient to trigger seismicity. Therefore, a detailed understanding of the causative processes behind the 2008 seismicity in the ByM is of paramount importance to hazard assessment and mitigation associated with similar geothermal projects underway elsewhere. A close cooperation of operators and developers of geothermal projects with earthquake science has proved to be very beneficial in the development of the Hot-Dry-Rock technique and is also highly desirable in developing strategies for the save geothermal use of deep hydrothermal aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, A.G.
The Hawaiian Community Geothermal Technology Program is unique. Under its auspices, heat and other by-products of Hawaii's high-temperature HGP-A geothermal well and power plant are not wasted. Instead, they form the backbone of a direct-heat grant program that reaches into the local community and encourages community members to develop creative uses for geothermal energy. A by-product of this approach is a broadened local base of support for geothermal energy development. With the experimental and precommercial work completed, most of the original grantees are looking for ways to continue their projects on a commercial scale by studying the economics of usingmore » geothermal heat in a full-scale business and researching potential markets. A geothermal mini-park may be built near the research center. In 1988, a second round of projects was funded under the program. The five new projects are: Geothermal Aquaculture Project - an experiment with low-cost propagation of catfish species in geothermally heated tanks with a biofilter; Media Steam Sterilization and Drying - an application of raw geothermal steam to shredded, locally-available materials such as coconut husks, which would be used as certified nursery growing media; Bottom-Heating System Using Geothermal Power for Propagation - a continuation of Leilani Foliage's project from the first round of grants, focusing on new species of ornamental palms; Silica Bronze - the use of geothermal silica as a refractory material in casting bronze artwork; and Electro-deposition of Minerals in Geothermal Brine - the nature and possible utility of minerals deposited from the hot fluid.« less
A proposal to investigate higher enthalpy geothermal systems in the USA
NASA Astrophysics Data System (ADS)
Elders, W. A.
2013-12-01
After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly productive capable of generating >35 MWe from superheated steam at a well-head temperature of ~450°C. Plans for deep drilling to explore for deeper, much higher enthalpy, geothermal resources are already underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan the 'Beyond Brittle Project' (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500oC rocks. However in the USA there is no comparable national program to develop such resources. There is a significant undeveloped potential for developing high-enthalpy geothermal systems in the western USA, Hawaii and Alaska. The purpose of this paper is to encourage the formation of a consortium to systematically explore, assess, and eventually develop such higher-enthalpy geothermal resources. Not only would this help develop large new sources of energy but it would permit scientific studies of pressure-temperature regimes not otherwise available for direct investigation, such as the coupling of magmatic and hydrothermal systems.
Battocletti, Liz
2013-07-09
The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey
Honey Lake Geothermal Project, Lassen County, California
NASA Astrophysics Data System (ADS)
1984-11-01
The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamers, M.D.
One of the key needs in the advancement of geothermal energy is availability of adequate subsurface measurements to aid the reservoir engineer in the development and operation of geothermal wells. Some current projects being sponsored by the U. S. Department of Energy's Division of Geothermal Energy pertaining to the development of improved well logging techniques, tools and components are described. An attempt is made to show how these projects contribute to improvement of geothermal logging technology in forming key elements of the overall program goals.
NASA Technical Reports Server (NTRS)
Kamins, R. M.
1974-01-01
Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.
Subsurface temperatures and geothermal gradients on the North Slope, Alaska
Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.
1989-01-01
Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).
Geothermal FIT Design: International Experience and U.S. Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickerson, W.; Gifford, J.; Grace, R.
2012-08-01
Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi
2014-03-12
This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less
JEDI Geothermal Model | Jobs and Economic Development Impact Models | NREL
Geothermal Model JEDI Geothermal Model The Jobs and Economic Development Impacts (JEDI) Geothermal Model allows users to estimate economic development impacts from geothermal projects and includes
Geothermal down well pumping system
NASA Technical Reports Server (NTRS)
Matthews, H. B.; Mcbee, W. D.
1974-01-01
A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Kraft, Toni; Diehl, Tobias; Wiemer, Stefan
2017-04-01
The St. Gallen deep geothermal project in 2013 was the second geothermal project in Switzerland with the objective of power production after the Enhanced Geothermal System in Basel in 2006. In St. Gallen, the seismic risk was expected to be smaller than in Basel, since the hydrothermal resource was an aquifer at a depth of about 4 km, not expected to require permeability enhancement and associated hydroshearing of the rock. However, after an injectivity test and two acid stimulations, unexpected gas release from an unidentified source forced the operators to inject drilling mud into the well to fight the gas kick. Subsequently, several seismic events were induced, the largest one having a local magnitude of 3.5, which was distinctly felt by the nearby living population. Even though the induced seismicity could not be handled properly, the community still strongly supported the geothermal project. The project was however halted because the target formation was not as permeable as required to deliver sufficient power. Still, controlling induced seismicity during deep geothermal projects is a key factor to successfully operate future geothermal projects. Hence, it is crucial to understand the physical relations of fluid injection, pressure and stress response at reservoir depth as well as associated induced seismicity. To date, these processes are yet not fully understood. In this study, we aim at developing a hydro-mechanical model reproducing the main features of the induced seismic sequence at the St. Gallen geothermal site. Here, we present the conceptual model and preliminary results accounting for hydraulic and mechanical parameters from the geothermal well, geological information from a seismic survey conducted in the St. Gallen region, and actual fluid injection rates from the injectivity tests. In a future step, we are going to use this model to simulate the physical interaction of injected fluid, gas release, hydraulic response of the rock, and induced seismicity during the St. Gallen project. The results will then allow us to more accurately estimate the seismic hazard for future geothermal projects.
The USGS national geothermal resource assessment: An update
Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.
2007-01-01
The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.
Geothermal pilot study final report: creating an international geothermal energy community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.
The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less
Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)
NASA Astrophysics Data System (ADS)
Guo, Qinghai; Wang, Yanxin; Liu, Wei
2007-10-01
The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in fluoride bearing silicate minerals during the geothermal fluid upflow might be the causes for the observed concentration differences.
2012-04-01
certain energy related military construction projects. The Navy used this authority for its geothermal plant at Naval Air Weapons Station China Lake...electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal , municipal solid...thermal; geothermal , including electricity and heat pumps; municipal solid waste; new hydroelectric generation capacity achieved from increased
Technical Feasibility Aspects of the Geothermal Resource Reporting Methodology (GRRM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badgett, Alex; Young, Katherine R; Dobson, Patrick F.
This paper reviews the technical assessment of the Geothermal Research Reporting Methodology (GRRM, http://en.openei.org/wiki/GRRM) being developed for reporting geothermal resources and project progress. The goal of the methodology is to provide the U.S. Department of Energy's Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. The GRRM is designed to provide uniform assessment criteria for geothermal resource grades and developmental phases of geothermal resource exploration and development. This resource grade system provides information on twelve attributes of geothermal resource locations (e.g., temperature, permeability, land access) to indicate potential for geothermal development.more » The GTO plans to use these Protocols to help quantitatively identify the greatest barriers to geothermal development, develop measureable program goals that will have the greatest impact to geothermal deployment, objectively evaluate proposals based (in part) on a project's ability to contribute to program goals, monitor project progress, and report on GTO portfolio performance. The GRRM assesses three areas of geothermal potential: geological, socio-economic, and technical. Previous work and publications have discussed the work done on the geological aspects of this methodology (Young et al. 2015c); this paper details the development of the technical assessment of the GRRM. Technical development attributes considered include: reservoir management, drilling, logistics, and power conversion.« less
Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorie M. Dilley
Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trappedmore » in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.« less
New Zealand geothermal: Wairakei -- 40 years
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.
Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii
Sorey, M.L.; Colvard, E.M.
1994-01-01
In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.
"Assistance to States on Geothermal Energy"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linda Sikkema; Jennifer DeCesaro
2006-07-10
This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines« less
Geothermal Energy | Climate Neutral Research Campuses | NREL
Geothermal Energy Geothermal Energy Research campuses can take advantage of geothermal resources sections that describe how examining geothermal energy may fit into your climate action plans. Campus Options Considerations Sample Project Related Links Campus Geothermal Energy Options Campuses can use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowda, Varun; Hogue, Michael
This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positivemore » economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.« less
Schroeder, Jenna N.
2014-06-10
This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.
Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément
2015-04-01
Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or stimulation operations demonstrates the viability of French industrial deep geothermal projects in the URG was also confirmed by several geothermal projects in Germany that target the similar sediments-basement interface (Landau and Insheim) or the deep Triassic sediments (Bruchsal and Brühl). In France, future geothermal projects are planned in particular in Strasbourg suburb to exploit the permeability of deep-seated fractured sediment-basement interface.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Anna Wall
2014-10-21
This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.
Geothermal probabilistic cost study
NASA Technical Reports Server (NTRS)
Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.
1981-01-01
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.
Philip, South Dakota geothermal district heating systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, J.W.
1997-12-01
The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, S.; Wagstaff, L.W.
1979-06-01
The effects of the Utah geothermal planning project were concentrated on the Utah geothermal legislation, the Roosevelt Hot Springs time phased project plan and the Salt Lake County area development plan. Preliminary findings indicate a potential for heat pump utilization, based on market interest and the existence of suitable groundwater conditions. (MHR)
State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, M. Lee; Richard, Stephen M.
The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use datamore » in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.« less
Adding Impacts and Mitigation Measures to OpenEI's RAPID Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Erin
The Open Energy Information platform hosts the Regulatory and Permitting Information Desktop (RAPID) Toolkit to provide renewable energy permitting information on federal and state regulatory processes. One of the RAPID Toolkit's functions is to help streamline the geothermal permitting processes outlined in the National Environmental Policy Act (NEPA). This is particularly important in the geothermal energy sector since each development phase requires separate land analysis to acquire exploration, well field drilling, and power plant construction permits. Using the Environmental Assessment documents included in RAPID's NEPA Database, the RAPID team identified 37 resource categories that a geothermal project may impact. Examplesmore » include impacts to geology and minerals, nearby endangered species, or water quality standards. To provide federal regulators, project developers, consultants, and the public with typical impacts and mitigation measures for geothermal projects, the RAPID team has provided overview webpages of each of these 37 resource categories with a sidebar query to reference related NEPA documents in the NEPA Database. This project is an expansion of a previous project that analyzed the time to complete NEPA environmental review for various geothermal activities. The NEPA review not only focused on geothermal projects within the Bureau of Land Management and U.S. Forest Service managed lands, but also projects funded by the Department of Energy. Timeline barriers found were: extensive public comments and involvement; content overlap in NEPA documents, and discovery of impacted resources such as endangered species or cultural sites.« less
The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies
NASA Astrophysics Data System (ADS)
Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas
2017-04-01
The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined from an EGS perspective and the conceptual framework for an orebody-EGS has been formulated. Metal extraction from geothermal resources provides added value to the system, which has the potential to increase financial feasibility of geothermal development. This approach can contribute to a Europe-wide growth in industrial applications of geothermal resources in the future. The project also thrives to connect thousands of scientists, engineers, and decision-makers by establishing co-operative links to already running on critical raw materials, geothermal energy and other technology-driven projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.E.; Burgett, J.M.
1993-10-01
Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sectionsmore » of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).« less
Uncertainty analysis of geothermal energy economics
NASA Astrophysics Data System (ADS)
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-01
This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model constructionmore » specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.« less
Middlesex Community College Geothermal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Jessie; Spaziani, Gina
The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.
NASA Technical Reports Server (NTRS)
Rosenberg, L.
1978-01-01
The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.
Prioritizing High-Temperature Geothermal Resources in Utah
Blackett, R.E.; Brill, T.C.; Sowards, G.M.
2002-01-01
The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.
Advanced concepts and solutions for geothermal heating applied in Oradea, Romania
NASA Astrophysics Data System (ADS)
Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.
2017-01-01
Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.
Joe Iovenitti
2013-05-15
The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.
NASA Astrophysics Data System (ADS)
Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.
2016-12-01
Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.
Tongonani geothermal power development, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minson, A.A.C.; Fry, T.J.; Kivell, J.A.
1985-01-01
This paper describes the features, design and construction of a 112 MWe geothermal power project, representing the first stage development of the substantial geothermal resources of the central Philippine region. The project has been undertaken by the Philippine Government. The National Powe Corporation is responsible for generation and distribution facilities and the Philippine National Oil Company Energy Development Corporation is responsible for controlled delivery of steam to the powe station.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... geothermal unit, which is currently providing energy sufficient to power three operating geothermal plants... the Casa Diablo IV Geothermal Development Project, CA AGENCY: Bureau of Land Management, Interior... Statement (EIS)/Environmental Impact Report (EIR) for the proposed Casa Diablo IV Geothermal Development...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... Impact Statement for Geothermal Leasing on the Humboldt-Toiyabe National Forest AGENCY: Forest Service... National Forest System (NFS) lands for geothermal leasing availability. The project area includes NFS lands... available for geothermal leasing, and if so, to identify reasonable and necessary conditions to protect...
Summary: High Temperature Downhole Motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.
2017-10-01
Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at themore » surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron L; Young, Katherine R
Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) themore » creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing categorical exclusions coupled with the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices - could result in deployment of an additional 2,529 MW of geothermal capacity by 2030 and 6,917 MW of geothermal capacity by 2050 - an improvement of 116% when compared to the business as usual scenario. These results suggest that reducing development timelines could be a large driver in the deployment of geothermal resources.« less
Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1976-11-01
The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hotmore » brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.« less
NASA Astrophysics Data System (ADS)
Broadhurst, T.; Mattson, E.
2017-12-01
Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.
Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models
Cuyler, David
2012-07-19
Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.
Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, Dean P.
The purpose of this work was to complete a proof of concept study to apply and validate a novel method developed by Tusaar for the capture and recovery of rare earth elements (known as REEs) and other critical and valuable elements from geothermal waters produced from deep within the earth. Geothermal water provides heat for power production at many geothermal power plants in the western United States. The target elements, the REEs, are vital to modern day electronics, batteries, motors, automobiles and many other consumer favorites and necessities. Currently there are no domestic sources of REEs while domestic and internationalmore » demand for the products they are used in continues to rise. Many of the REEs are considered “strategically” important. A secure supply of REEs in the USA would benefit consumers and the country at large. A new method to recover these REEs from geothermal waters used at existing geothermal power plants around the country is a high priority and would benefit consumers and the USA. The result of this project was the successful development and demonstration of an integrated process for removal and recovery of the REEs from synthetic geothermal brines on a small laboratory scale. The work included preparation of model geothermal brines to test, selection of the most effective proprietary sorbent media to capture the REEs and testing of the media under a variety of potential operating conditions. Geothermal brines are generally very high in salt content and contain a wide range of elements and anions associated with the rock layers from which they are produced. Processing the geothermal water is difficult because it is corrosive and the dissolved minerals in the water precipitate easily once the temperature and pressure change. No commercial technologies have been shown to be effective or robust enough under these geothermal brine conditions to be commercially viable for removal of REEs. Technologies including ion exchange, traditional sorptive media and membrane concentration are too expensive, difficult or impossible to regenerate and easily rendered ineffective under these working conditions. The work completed during this project has demonstrated that a selective media that is robust and durable under the conditions associated with geothermal brines is possible. The initial economic analysis indicates that the process would not be financially viable at current market prices for REEs. The world market price for REEs has been turbulent over the past several years and are currently near historical lows. Historical trends and market forces suggest that the world price is stabilizing and will rise. At the same time, further development has the potential to reduce the costs associated with the technology. This work opened the door to the idea that a large scale process for removal and recovery of REEs from geothermal brines is possible. Upward price pressures coupled with technology improvements suggest that this process has the opportunity to be commercially successful at a point in the future.« less
The drama of Puna: For and against the Hawai'i geothermal project
NASA Astrophysics Data System (ADS)
Keyser, William Henry
The geothermal project was conceived in the context of the international oil business and the economic growth of Hawai'i. From the point of view of the State, the geothermal project is necessary because imported petroleum provides Hawai'i with 911/2 percent of its total energy. That petroleum consists of 140,000 b/d of crude (1990) and it comes from Alaska, Indonesia and a few other suppliers. However, the Alaskan North Slope is beginning to run dry and the Southeast Asian suppliers of crude will be exporting less petroleum as time goes on. Increasingly, Hawai'i will become dependent on "unstable Middle Eastern" suppliers of crude. From this worry about the Middle East, the State seeks indigenous energy to reduce its dependence on petroleum and to support economic growth. Hence, the geothermal project was born after the 1973 oil embargo. The major source of geothermal energy is the Kilauea Volcano on the Big Island. Kilauea is characterized by the Kilauea caldera and a crack in the Island which extends easterly from the caldera to Cape Kumukahi in Puna and southwest to Pahala in Ka'u. The eastern part of the crack is approximately 55 kilometers long and 5 kilometers wide. The geothermal plants will sit on this crack. While the State has promoted the geothermal project with the argument of reducing "dependence" on imported petroleum, it hardly mentions its goal of economic growth. The opponents have resisted the project on the grounds of protecting Pele and Hawaiian gathering rights, protecting the rain forest, and stopping the pollution in the geothermal steam. What the opponents do not mention is their support for economic growth. The opposition to the project suggests a new environmental politics is forming in Hawai'i. Is this true? The dissertation will show that the participants in this drama are involved in a strange dance where each side avoids any recognition of their fundamental agreement on economic growth. Hence the creation of a new environmental politics which accounts for the danger inherent in economic growth, the eventual depletion of petroleum and the West's imperative to conquer nature is very problematic.
Comprehensive Cross-Training among STEM Disciplines in Geothermal Energy
NASA Astrophysics Data System (ADS)
Nunn, J. A.; Dutrow, B. L.
2012-12-01
One of the foremost areas of sustainability is society's need for energy. The US uses more energy per capita than any other country in the world with most of this energy coming from fossil fuels. With its link to climate change coupled with declining resources, renewable alternatives are being pursued. Given the high demand for energy, it is not a question of if these alternatives will be utilized but when and where. One of the "greenest" of the green technologies is geothermal energy. It is a renewable resource with a small environmental footprint. To educate advanced undergraduate and graduate students from across STEM disciplines in geothermal energy, a series of three distinct but linked and related courses are being developed and taught. Courses are focused on one of the STEM disciplines to provide students with essential discipline-specific knowledge and taught by different faculty members in the departments of geology, petroleum engineering and mathematics. These courses provide the foundation necessary for interdisciplinary research projects. The first course on Geologic Properties and Processes of Geothermal Energy was developed and taught in 2012. The class had an enrollment of 27 students including: 5 undergraduates and 4 graduate students in Geology, 12 undergraduates and two graduate students in Petroleum Engineering, and 4 non-matriculated undergraduate students. The course began with the essentials of heat and mass transfer, a common deficiency for all students, then progressed to the geologic materials of these systems: minerals, rocks and fluids. To provide students with first hand experience, two short research projects were embedded into the course. The first project involved analyses of cuttings from a well-studied geothermal system (Salton Sea, CA). Students were in teams consisting of both engineers and geologists. The first assignment was to identify minerals in the cuttings. They were then provided with XRD patterns for their cuttings to more precisely identify the mineralogy of the cuttings. Based on this data with depth, they were asked to predict an approximate temperature range and calculate various fluid parameters for these conditions. The second research project was completed individually, each student covered aspects of heat transport and geologic materials on a specific geothermal field of their choice, created a poster, and gave a brief oral presentation of the poster similar to what is done at scientific meetings. This not only helped students develop communication skills it also provide the class and the instructors information on the breath and diversity of geothermal projects already underway throughout the world and helped to improve critical thinking skills. Continued integration of our research and graduate training programs in Geology and Geophysics, Petroleum Engineering, and Mathematics will occur in 2012-2013. The Petroleum Engineering course will be offered in the fall semester of 2012 and the Mathematics class in the spring semester of 2013. Providing this three semester sequence of courses across the STEM disciplines promotes comprehensive cross-training among disciplines and provides a template for future directions of teaching sustainability across the disciplines.
RiverHeath: Neighborhood Loop Geothermal Exchange System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geall, Mark
2016-07-11
The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boren, K.L.; Johnson, K.R.
1978-11-01
Thirty units of a planned 205 geothermally heated hydroponic greenhouses are producing European cucumbers and tropic tomatoes near Wendel, California. The planned utilization of the geothermal resource in this project, hydroponics, in general, and the Honey Lake system is described. (MHR)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... proposed wind energy projects in eagle habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
China starts tapping rich geothermal resources
NASA Astrophysics Data System (ADS)
Guang, D.
1980-09-01
Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunnerson, Jon; Pardy, James J.
This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected backmore » into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.« less
Mushroom growing project at the Los Humeros, Mexico geothermal field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangel, M.E.R.
1998-12-01
There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. Themore » mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron L; Young, Katherine R
Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources.more » We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply making more resources available for development does not increase deployment; however, impacts to deployment could increase when coupled with other improvements (e.g., permitting, market and/or technology improvements).« less
Enhanced Geothermal Systems in Urban Areas - Lessons Learned from the 2006 Basel ML3.4 Earthquake
NASA Astrophysics Data System (ADS)
Kraft, T.; Mai, P. M.; Wiemer, S.; Deichmann, N.; Ripperger, J.; Kästli, P.; Bachmann, C. E.; Fäh, D.; Woessner, J.; Giardini, D.
2009-12-01
We report on a recent deep-heat mining experiment carried out in 2006/2007 in the city of Basel (Switzerland). This pilot project was designed to produce renewable geothermal energy using the Enhanced Geothermal System (EGS) methodology. For developing the geothermal reservoir, a deep borehole was brought down to 5 km depth. Then, in December 2006, the deep-heat-mining project entered the first critical phase when the water injections started for generating micro-fracturing of the rock. These fractures increase the permeability of the host rock, needed for efficient heat exchange between the rock and the cold water; however, these fracture are also source of micro-seismicity - small earthquakes that are continuously recorded and monitored by dedicated local seismic networks. In this stimulation phase, the seismic activity increased rapidly above the usual background seismicity, and culminated in a widely felt ML 3.4 earthquake, which caused some damage in the city of Basel. Due to the higher-than-expected seismic activity, and the reaction of the population, the media, and the politicians, the experiment was stalled only 6 days after the stimulations began. Although the injected water was allowed to escape immediately after the mainshock and pressure at the wellhead dropped rapidly, the seismic activity declined only slowly, with three ML > 3 events occurring one to two months later. Although the EGS technology has been applied and studied at various sites since the 1970s, the physical processes and parameters that control injection-induced seismicity - in terms of earthquake rate, size distribution and maximum magnitude - are still poorly understood. Consequently, the seismic hazard and risk associated with the creation and operation of EGS are difficult to estimate. The very well monitored Basel seismic sequence provides an excellent opportunity to advance the understanding of the physics of EGS. The Swiss Seismological Service (SED) is investigating the Basel dataset in the framework of the multidisciplinary research project GEOTHERM (www.geotherm.ethz.ch) Left) Seismic network in Basel, Switzerland. An epicenter map of the fluid injection-induced seismicity recorded by the seismic network, indicating high event densities in hot colors, is shown in the inset. Right) Fluid injection-induced seismicity recorded by the seismic network.
Moya, Diego; Paredes, Juan; Kaparaju, Prasad
2018-01-01
RETScreen presents a proven focused methodology on pre-feasibility studies. Although this tool has been used to carry out a number of pre-feasibility studies of solar, wind, and hydropower projects; that is not the case for geothermal developments. This method paper proposes a systematic methodology to cover all the necessary inputs of the RETScreen-International Geothermal Project Model. As case study, geothermal power plant developments in the Ecuadorian context were analysed by RETScreen-International Geothermal Project Model. Three different scenarios were considered for analyses. Scenario I and II considered incentives of 132.1 USD/MWh for electricity generation and grants of 3 million USD. Scenario III considered the geothermal project with an electricity export price of 49.3 USD/MWh. Scenario III was further divided into IIIA and IIIB case studies. Scenario IIIA considered a 3 million USD grant while Scenario IIIB considered an income of 8.9 USD/MWh for selling heat in direct applications. Modelling results showed that binary power cycle was the most suitable geothermal technology to produce electricity along with aquaculture and greenhouse heating for direct use applications in all scenarios. Financial analyses showed that the debt payment would be 5.36 million USD/year under in Scenario I and III. The correspindig values for Scenario II was 7.06 million USD/year. Net Present Value was positive for all studied scenarios except for Scenario IIIA. Overall, Scenario II was identified as the most feasible project due to positive NPV with short payback period. Scenario IIIB could become financially attractive by selling heat for direct applications. The total initial investment for a 22 MW geothermal power plant was 114.3 million USD (at 2017 costs). Economic analysis showed an annual savings of 24.3 million USD by avoiding fossil fuel electricity generation. More than 184,000 tCO 2 eq. could be avoided annually.
Elements de conception d'un systeme geothermique hybride par optimisation financiere
NASA Astrophysics Data System (ADS)
Henault, Benjamin
The choice of design parameters for a hybrid geothermal system is usually based on current practices or questionable assumptions. In fact, the main purpose of a hybrid geothermal system is to maximize the energy savings associated with heating and cooling requirements while minimizing the costs of operation and installation. This thesis presents a strategy to maximize the net present value of a hybrid geothermal system. This objective is expressed by a series of equations that lead to a global objective function. Iteratively, the algorithm converges to an optimal solution by using an optimization method: the conjugate gradient combined with a combinatorial method. The objective function presented in this paper makes use of a simulation algorithm for predicting the fluid temperature of a hybrid geothermal system on an hourly basis. Thus, the optimization method selects six variables iteratively, continuous and integer type, affecting project costs and energy savings. These variables are the limit temperature at the entry of the heat pump (geothermal side), the number of heat pumps, the number of geothermal wells and the distance in X and Y between the geothermal wells. Generally, these variables have a direct impact on the cost of the installation, on the entering water temperature at the heat pumps, the cost of equipment, the thermal interference between boreholes, the total capacity of geothermal system, on system performance, etc. On the other hand, the arrangement of geothermal wells is variable and is often irregular depending on the number of selected boreholes by the algorithm. Removal or addition of one or more borehole is guided by a predefined order dicted by the designer. This feature of irregular arrangement represents an innovation in the field and is necessary for the operation of this algorithm. Indeed, this ensures continuity between the number of boreholes allowing the use of the conjugate gradient method. The proposed method provides as outputs the net present value of the optimal solution, the position of the vertical boreholes, the number of installed heat pumps, the limits of entering water temperature at the heat pumps and energy consumption of the hybrid geothermal system. To demonstrate the added value of this design method, two case studies are analyzed, for a commercial building and a residential. The two studies allow to conclude that: the net present value of hybrid geothermal systems can be significantly improved by the choice of right specifications; the economic value of a geothermal project is strongly influenced by the number of heat pumps and the number of geothermal wells or the temperature limit in heating mode; the choice of design parameters should always be driven by an objective function and not by the designer; peak demand charges favor hybrid geothermal systems with a higher capacity. Then, in order to validate the operation, this new design method is compared to the standard sizing method which is commonly used. By designing the hybrid geothermal system according to standard sizing method and to meet 70% of peak heating, the net present value over 20 years for the residential project is negative, at -61,500 while it is 43,700 for commercial hybrid geothermal system. Using the new design method presented in this thesis, the net present values of projects are respectively 162,000 and 179,000. The use of this algorithm is beneficial because it significantly increases the net present value of projects. The research presented in this thesis allows to optimize the financial performance of hybrid geothermal systems. The proposed method will allow industry stakeholders to increase the profitability of their projects associated with low temperature geothermal energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Wendy
The University of Nevada, Reno (UNR) conducts research and outreach activities that will lead to increased utilization of geothermal resources in the western US. The Great Basin Center for Geothermal Energy (GBCGE) is working in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western US. Task 1 involves conducting geoscience and engineering research and developing technology to improve the assessment, exploration, and stimulation of geothermal resources. Subtask projects were selected based on peer review of proposals submitted to the GBCGE from Nevada System of High Education (NSHE)more » institutions for short project development and seed awards intended to develop background and establish viability of approaches for future activities. Task 2 includes project management and organization of workshops periodically requested by DOE and others to satisfy other mission goals of the GBCGE and the DOE geothermal program. GBCGE supports interaction with national and international geothermal organizations, with brochures, presentations, and materials describing GBCGE accomplishments and current research. We continue to maintain and develop an internet-based information system that makes geothermal data and information available to industry, government, and academic stakeholders for exploration and development of geothermal resources. This award also partially supported post-doctoral scholar Drew Siler and research scientist Betsy Littlefield Pace whose effort is included under developing future research projects. Task 2 also focuses on education and outreach through a competitive graduate fellowship program. The budget is for two-year stipends for three graduate students to work collaboratively with GBCGE faculty on Master’s or PhD degrees in geoscience and engineering fields. This grant supported three MS students in full for two years toward the degree and contributed bridge money for four other students to finish their degrees. In total, eight graduate degrees were supported by this grant, either through the faculty seed grants or the fellowship program.« less
Electric Power Generation from Low to Intermediate Temperature Resourcces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, William; Mann, Michael; Salehfar, Hossein
The UND-CLR Binary Geothermal Power Plant was a collaborative effort of the U.S. Department of Energy (DOE), Continental Resources, Inc. (CRL), Slope Electric Cooperative (SEC), Access Energy, LLC (AE), Basin Electric Cooperative (BEC), Olson Construction, the North Dakota Industrial Commission Renewable Energy Council (NDIC-REC), the North Dakota Department of Commerce Centers of Excellence Program (NDDC-COE), and the University of North Dakota (UND). The primary objective of project was to demonstrate/test the technical and economic feasibility of generating electricity from non-conventional, low-temperature (90 ºC to 150 °C) geothermal resources using binary technology. CLR provided the access to 98 ºC water flowingmore » at 51 l s-1 at the Davis Water Injection Plan in Bowman County, ND. Funding for the project was from DOE –GTO, NDIC-REC, NDD-COE, and BEC. Logistics, on-site construction, and power grid access were facilitated by Slope Electric Cooperative and Olson Construction. Access Energy supplied prototype organic Rankine Cycle engines for the project. The potential power output from this project is 250 kW at a cost of $3,400 per kW. A key factor in the economics of this project is a significant advance in binary power technology by Access Energy, LLC. Other commercially available ORC engines have efficiencies 8 to 10 percent and produce 50 to 250 kW per unit. The AE ORC units are designed to generate 125 kW with efficiencies up to 14 percent and they can be installed in arrays of tens of units to produce several MW of power where geothermal waters are available. This demonstration project is small but the potential for large-scale development in deeper, hotter formations is promising. The UND team’s analysis of the entire Williston Basin using data on porosity, formation thicknesses, and fluid temperatures reveals that 4.0 x 1019 Joules of energy is available and that 1.36 x 109 MWh of power could be produced using ORC binary power plants. Much of the infrastructure necessary to develop extensive geothermal power in the Williston Basin exists as abandoned oil and gas wells. Re-completing wells for water production could provide local power throughout the basin thus reducing power loss through transmission over long distances. Water production in normal oil and gas operations is relatively low by design, but it could be one to two orders of magnitude greater in wells completed and pumped for water production. A promising method for geothermal power production recognized in this project is drilling horizontal open-hole wells in the permeable carbonate aquifers. Horizontal drilling in the aquifers increases borehole exposure to the resource and consequently increases the capacity for fluid production by up to an order of magnitude.« less
The Marysville, Montana Geothermal Project
NASA Technical Reports Server (NTRS)
Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.
1974-01-01
Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.
Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)
NASA Astrophysics Data System (ADS)
Lacy, R. G.; Nelson, T. T.
1982-12-01
The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.
Pumpernickel Valley Geothermal Project Thermal Gradient Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z. Adam Szybinski
2006-01-01
The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for the hot spring area only, was presented by GeothermEx Inc. (2004), which projected that power generation capacities for the Pumpernickel Valley site are 10 MW-30yrs minimum (probablility of >90%), and most likely 13 MW-30yrs.« less
Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber
NASA Astrophysics Data System (ADS)
Tsuchiya, N.
2017-12-01
We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductorymore » and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.« less
Make-up wells drilling cost in financial model for a geothermal project
NASA Astrophysics Data System (ADS)
Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun
2017-12-01
After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Wendt; Greg Mines
2014-09-01
Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less
Geothermally Coupled Well-Based Compressed Air Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.
2015-12-20
Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less
DOE-GTO Low Temperture Projects Evaluation and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
2017-05-01
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
Pyramid Lake Renewable Energy Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Jackson
2008-03-14
The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Stanley; Wagstaff, Lyle W.
1979-01-01
The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states,more » conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.« less
Geothermal energy: opportunities for California commerce. Phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longyear, A.B.
1981-12-01
The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight directmore » use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.« less
Geothermal energy - Ready for use
NASA Astrophysics Data System (ADS)
Miskell, J. T.
1980-11-01
The use of geothermal energy in the United States for heating applications is discussed. The three major forms of geothermal energy, hydrothermal, pertrothermal and geopressured, are briefly reviewed, with attention given to the types of energy available from each. Federally supported projects demonstrating the use of geothermal hot water to heat homes in Boise, Idaho, and hot dry rocks in Fenton Hill, New Mexico to produce electricity are presented. Data available from existing geothermal energy applications are presented which show that geothermal is cost competitive with conventional energy sources using existing technology, and government economic incentives to the producers and users of geothermal energy are indicated. Finally, advanced equipment currently under development for the generation of electricity from geothermal resources at reduced costs is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, A.; Young, K. R.
2014-09-01
The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental reviews for geothermal exploration drilling activities and/or legislative representatives are the responsible parties to discuss the merits and implementation of new or revised CXs for geothermal development.« less
Geothermal Development and the Use of Categorical Exclusions (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, A.; Young, K. R.
2014-09-01
The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental reviews for geothermal exploration drilling activities and/or legislative representatives are the responsible parties to discuss the merits and implementation of new or revised CXs for geothermal development.« less
Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiswanger, Jr, Robert C
2010-05-20
The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.« less
Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiswanger, Robert C.
The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrick, Dale E
A small community in Northern California is attempting to use a local geothermal resource to generate electrical power and cascade residual energy to an existing geothermal district heating system, greenhouse, and future fish farm and subsequent reinjection into the geothermal aquifer, creating a net-zero energy community, not including transportation.
NASA Astrophysics Data System (ADS)
Megies, T.; Kraft, T.; Wassermann, J. M.
2015-12-01
Geothermal power plants in Southern Germany are operated hydrothermally and at low injection pressures in a seismically inactive region considered very low seismic hazard. For that reason, permit authorities initially enforced no monitoring requirements on the operating companies. After a series of events perceived by local residents, a scientific monitoring survey was conducted over several years, revealing several hundred induced earthquakes at one project site.We summarize results from monitoring at this site, including absolute locations in a local 3D velocity model, relocations using double-difference and master-event methods and focal mechanism determinations that show a clear association with fault structures in the reservoir which extend down into the underlying crystalline basement. To better constrain the shear wave velocity models that have a strong influence on hypocentral depth estimates, several different approaches to estimate layered vp/vs models are employed.Results from these studies have prompted permit authorities to start imposing minimal monitoring requirements. Since in some cases these geothermal projects are only separated by a few kilometers, we investigate the capabilities of an optimized network combining the monitoring resources of six neighboring well doublets in a joint network. Optimization is taking into account the -- on this local scale, urban environment -- highly heterogeneous background noise conditions and the feasibility of potential monitoring sites, removing non-viable sites before the optimization procedure. First results from the actual network realization show good detection capabilities for small microearthquakes despite the minimum instrumentational effort, demonstrating the benefits of good coordination of monitoring efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, B.A.
1980-01-01
A district heating system for the Pagosa Springs central business district is in the planning stage. A detailed analysis of the project is presented. It comprises area and site specific studies and describes in detail the recent, current, anticipated, and postulated geothermal development activities. (MHR)
National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudill, Christy
Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, C L; Bearden, Mark D; Horner, Jacob A
Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less
National Geothermal Data System: an Exemplar of Open Access to Data
NASA Astrophysics Data System (ADS)
Allison, M. L.; Richard, S. M.; Blackman, H.; Anderson, A.
2013-12-01
The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production. With information from all of the Department of Energy's sponsored development and research projects and geologic data from all 50 states, this free, interactive tool is opening new exploration opportunities and shortening project development by making data easily discoverable and accessible. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Companion projects run by Boise State University, Southern Methodist University, and USGS are adding millions of additional data records. The National Renewable Energy Laboratory is managing the Geothermal Data Repository which will serve as a system node and clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational system sustainable after the original implementation will require four core elements: continued serving of data and applications by providers; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges currently under consideration.
NASA Astrophysics Data System (ADS)
Kozdrój, Wiesław; Kłonowski, Maciej; Mydłowski, Adam; Ziółkowska-Kozdrój, Małgorzata; Badura, Janusz; Przybylski, Bogusław; Russ, Dorota; Zawistowski, Karol; Domańska, Urszula; Karamański, Paweł; Krentz, Ottomar; Hofmann, Karina; Riedel, Peter; Reinhardt, Silke; Bretschneider, Mario
2014-05-01
TransGeoTherm is a common project of the Polish Geological Institute - National Research Institute Lower Silesian Branch (Lead Partner) and the Saxon State Agency for Environment, Agriculture and Geology, co-financed by the European Union (EU) under the framework of the Operational Programme for Transboundary Co-operation Poland-Saxony 2007-2013. It started in October 2012 and will last until June 2014. The main goal of the project is to introduce and establish the use of low temperature geothermal energy as a low emission energy source in the Saxon-Polish transboundary project area. The numerous geological, hydrogeological and geothermal data have been gathered, analysed, combined and interpreted with respect to 3D numerical modelling and subsequently processed with use of the GOCAD software. The resulting geological model covers the transboundary project area exceeding 1.000 km2 and comprises around 70 units up to the depth of about 200 metres (locally deeper) below the terrain. The division of the above units has been based on their litho-stratigraphy as well as geological, hydrogeological and geothermal settings. The model includes two lignite deposits: Berzdorf deposit in Saxony-mined out and already recultivated and Radomierzyce deposit in Poland - documented but still not excavated. At the end of the modelling procedure the raster data sets of the top, bottom and thickness of every unit will be deduced from the 3D geological model with a gridsize of 25 by 25 metres. Based on the geothermal properties of the rocks and their groundwater content a specific value of geothermal conductivity will be allocated to each layer of every borehole. Thereafter for every section of a borehole, belonging to a certain unit of the 3D geological model, a weighted mean value will be calculated. Next the horizontal distribution of these values within every unit will be interpolated. This step / procedure has to be done for all units. As a result of further calculations a series of maps showing the geothermal conditions for the selected depths of 40, 70, 100 and 130 metres below the terrain will be elaborated and made available via the Internet. The prospective final users of the project results will be the local and regional authorities, inhabitants, engineers, etc. The project will provide information and data which are important for local and regional planning and development - on the one hand the maps will provide information on possibilities using locations for low temperature geothermal heating and cooling, while on the other hand they are needed to setup and dimension the geothermal installations in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revil, Andre
2015-12-31
The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.
Bridging worlds/charting new courses
NASA Astrophysics Data System (ADS)
This report describes the work being done within Sandia's renewable energy program. This work touches on four major disciplines. (1) Photovoltaics. The goal of this project is to develop costeffective, reliable energy system technologies for energy supplies worldwide produced by U.S. industry. It encompasses cell research and development, collector development, technology evaluation, systems engineering, domestic and international applications, and design assistance. (2) Solar Thermal. This project endeavors to develop and increase acceptance of solar thermal electric and industrial technologies as cost-competitive candidates for power generation and to promote their commercialization. Its' major activities are with dish/Stirling systems, the Solar Two power tower, design assistance to industry and users, technology development and research activities. (3) Wind. The wind project impacts domestic and international markets with commercially feasible systems for utility-scale and other applications of wind energy. The project conducts applied research in aerodynamics, structural dynamics, fatigue, materials and controls, and engineering systems, and develops cooperative work with industry. (4) Geothermal. This project is developing technology to increase proven geothermal reserves and is assisting industry in expanding geothermal power on-line. Development work is in stemhole drilling, drilling techniques, instrumentation for geothermal wells, acoustic telemetry, and drilling exploratory wells.
The Main Problems in the Development of Geothermal Energy Industry in China
NASA Astrophysics Data System (ADS)
Yan, Jiahong; Wang, Shejiao; Li, Feng
2017-04-01
As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.
2016 Geothermal Technologies Office Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report highlights project successes and continued efforts in all of our program areas – EGS, Hydrothermal, Low-Temperature, and Systems Analysis – which are flanked by useful tools and resources and links to more information. Such highlights include FORGE and EGS successes, projects reducing geothermal costs and risks, and advancements in technology research and development.
Multidisciplinary research of geothermal modeling
NASA Astrophysics Data System (ADS)
-Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.
2010-05-01
KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of application on geothermal systems. The history of this multidisciplinary research of geothermal modeling performed by German universities is shown in this paper. Outstanding geothermal research programs of German universities and state aided organizations (BGR, LBEG, GGA) are pointed out. Actual geothermal modeling programs based on the Finite-Element-Method or the Finite-Differences-Method as well as analytical programs are introduced. National and international geothermal projects supported by German universities and state aided organizations are described. Examples of supervised shallow and deep geothermal systems are given. Actually the Technical University Darmstadt is performing a research program supported by a national organization, the Ministry of Economics and Technology (BMWi). Main aim of this research program titled experimental investigation for the verification of a Finite-Element-Multiphase-Model is to analyze the subsoil as a three-phases-model with separated consideration of conduction, convection and advection and their subsequent interaction. The latest developments of numerical projects as well as the actual state of the before mentioned research program are pointed out in the paper. REFERENCES Quick, H., Arslan, U., Meißner, S., Michael, J. 2007. Deep foundations and geothermal energy - a multi-purpose solution, IFHS: 8. International conference on multi-purpose high-rise towers and tall buildings, Abu Dhabi, 2007 Arslan, U. and Huber, H. 2008. Application of geothermal energy. University of Istanbul, Yapistanbul No. 3 / 2008, Turkey, 2008 Quick, Q., Michael, J., Arslan, U., Huber, H. 2010. History of International Geothermal Power Plants and Geothermal Projects in Germany, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Arslan, U., Huber, H. 2010. Education of Geothermal Sciences in Germany as part of an application orientated research, Proceedings European Civil Engineering Education and Training (EUCEET III) Special Volume, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... wind and geothermal energy projects from aplomado falcon habitat and avoidance of wind and geothermal..., including renewable energy siting, outdoor recreation management, special status species habitat, proposals... geothermal leasing; management as VRM Class II; and limitation of vehicle use to designated routes. Brokeoff...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... leases being developed are already part of a geothermal unit, which is currently producing energy... Proposed Casa Diablo IV Geothermal Development Project, Mammoth Lakes, Mono County, CA AGENCY: Bureau of... Report (EIR) to consider approval of the development of a proposed 33-megawatt (MW) geothermal power...
Materials selection guidelines for geothermal energy utilization systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F. II; Conover, M.F.
1981-01-01
This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harto, C. B.; Schroeder, J. N.; Horner, R. M.
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability ofmore » geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.« less
Schroeder, Jenna N.
2014-12-16
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.
Microearthquakes in the ahuachapan geothermal field, el salvador, central america.
Ward, P L; Jacob, K H
1971-07-23
Microearthquakes occur on a steeply dipping plane interpreted here as the fault that allows hot water to circulate to the surface in the geothermal region. These small earthquakes are common in many geothermal areas and may occur because of the physical or chemical effects of fluids and fluid pressure.
Federal Geothermal Research Program Update, FY 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renner, Joel Lawrence
2001-08-01
The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less
Federal Geothermal Research Program Update Fiscal Year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renner, J.L.
2001-08-15
The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.
This paper reviews a methodology being developed for reporting geothermal resources and project progress. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. This framework will allow the GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress and the public. Standards and reporting codes used in other countries and energy sectors provide guidance to develop the relevant geothermal methodology, but industry feedback andmore » our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by the GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for evaluating and reporting on GTO funding according to resource grade (geological, technical and socio-economic) and project progress. This methodology would allow GTO to target funding, measure impact by monitoring the progression of projects, or assess geological potential of targeted areas for development.« less
Colorado State Capitol Geothermal project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepherd, Lance
Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.
NASA Astrophysics Data System (ADS)
Shortall, Ruth; Uihlein, Andreas
2017-04-01
Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300 programme should lead to better planning and faster introduction of low carbon technologies in the future. Content of the presentation The presentation will introduce the geothermal projects that have been awarded funding (see Annex), including their state-of-play. Insights and knowledge gained from the projects that have entered into operation will be shown and discussed. Furthermore, the presentation will provide an overview of the NER 300 programme.
2015 Annual Report - Geothermal Technologies Office
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-04-01
Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, J.D.; Reynolds, M.; Ritchotte, G.
1994-10-01
This report presents data on the distribution and status of forest bird species found within the vicinity of proposed geothermal resource development on the Island of Hawaii. Potential impacts of the proposed development on the native bird populations found in the project are are addressed.
Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students
ERIC Educational Resources Information Center
Dugdale, Pam
2014-01-01
There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…
Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugerwa, Michael
2015-11-18
Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).
Analysis of Low-Temperature Utilization of Geothermal Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian
Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speer, Bethany; Young, Kate
This paper looks at financing barriers to geothermal resource exploration in the United States (U.S.) for electricity generation projects and analyzes why the market is not developing as quickly as foreign geothermal markets or as quickly as other renewable energy technologies in the U.S. Research opportunities and approaches to understanding these discrepancies are discussed, particularly whether government policies and programs are spurring development activities. Further analysis to understand policies, programmatic cost efficiencies, potential project revenues, and other economic impacts are recommended together with the preliminary conclusions.
Nevada Renewable Energy Training Project: Geothermal Power Plant Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jim, Nichols
2014-04-29
The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less
Subsurface temperatures and geothermal gradients on the north slope of Alaska
Collett, T.S.; Bird, K.J.; Magoon, L.B.
1993-01-01
On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.
Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.
1997-04-01
This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less
Status of geothermal direct use in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bujakowski, W.
1997-12-31
Geothermal Energy uses the natural heat of the Earth. It is a local energy source, competitive, renewable and acceptable from the ecological and social points of view, which is used either for the electricity production, or for direct application such as a district heating. A great number of operating geothermal installations are found in Europe. European Community energy programs foresee in the coming years a great reduction of conventional fuel consumption, due to the risks that dependency on imported fuels implies and to the future environmental problems, which a mass exploitation of these fuels can lead to. Thus, EC energymore » policy is aimed at a drastic reduction of oil consumption and at diversification of primary energy sources. This paper will present the results from the exploration and evaluation of geothermal water resources in Poland. Herewith, a short description of performed projects, examples of designed geothermal water utilization, some economical, sociological, ecological and political aspects of present out and future projects will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, K.M.
1983-07-01
The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development tomore » local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.« less
Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doris, E.; Kreycik, C.; Young, K.
Geothermal electricity production capacity has grown over time because of multiple factors, including its renewable, baseload, and domestic attributes; volatile and high prices for competing technologies; and policy intervention. Overarching federal policies, namely the Public Utilities Regulatory Policies Act (PURPA), provided certainty to project investors in the 1980s, leading to a boom in geothermal development. In addition to market expansion through PURPA, research and development policies provided an investment of public dollars toward developing technologies and reducing costs over time to increase the market competitiveness of geothermal electricity. Together, these efforts are cited as the primary policy drivers for themore » currently installed capacity. Informing policy decisions depends on the combined impacts of policies at the federal and state level on geothermal development. Identifying high-impact suites of policies for different contexts, and the government levels best equipped to implement them, would provide a wealth of information to both policy makers and project developers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Wendy
The Great Basin Center for Geothermal Energy (GBCGE or the Center) was established at the University of Nevada, Reno (UNR) in May 2000 to promote research and utilization of geothermal resources. The Center received funding through this grant to promote increased geothermal development in the Great Basin, with most of the funding used for peerreviewed research. Funding to the Center and work under the contract were initiated in March 2002, with supplemental funding in subsequent years. The Center monitored the research projects that were competitively awarded in a series of proposal calls between 2002 and 2007. Peer-reviewed research promoted identificationmore » and utilization of geothermal resources in Nevada. Projects used geology, geochemistry, geophysics, remote sensing, and the synthesis of multi-disciplinary information to produce new models of geothermal systems in the Western U.S. and worldwide. Funds were also used to support graduate student research and training. Part of the grant was used to support public outreach activities, including webpages, online maps and data resources, and informational workshops for stakeholders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevron Energy Solutions; Matt Rush; Scott Shulda
Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology ismore » viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator Pres. John Boyd of CNCC met this challenge by showing clear leadership in setting common goals and resolving conflicts early in the program.« less
Eastgate Geothermal Borehole Project: Predicting Fracture Geometry at Depth
NASA Astrophysics Data System (ADS)
Beattie, Stewart; Shipton, Zoe K.; Johnson, Gareth; Younger, Paul L.
2013-04-01
In 2004 an exploratory borehole at the Eastgate Geothermal Project encountered part of a vein system within the Weardale granite. At 995m depth brine was at a temperature of around 46°C. The geothermal source is likely related to the Slitt vein system that cuts through c.270m of carboniferous sedimentary strata overlying the Weardale granite pluton. The economic success of the Eastgate geothermal project is dependent on exploiting this vein system in an otherwise low permeability and low geothermal gradient setting. The Slitt vein system has been extensively mined. Mining records show the attitude of the vein through the sedimentary strata, however, the trajectory and magnitude of the vein within the pluton itself is unknown. Using mine records, geological maps and published literature, models of the vein system up to the depth of the pluton were created. To extend this model into the pluton itself requires some knowledge regarding the geometry and evolution of the pluton and subsequently properties of vein systems and other fracture populations at depth. The properties of fracture and vein populations within the granite will depend on forming processes including; cooling and contraction of the pluton, deformation of host rocks during pluton emplacement, and post emplacement deformation. Using published literature and gravity data a 3D model of the geometry of the pluton was constructed. Shape analysis of the pluton allows an estimation of the orientation of fractures within the pluton. Further modelling of the structural evolution of the pluton will enable kinematic or geomechanical strain associated with the structural evolution to be captured and subsequently used as a proxy for modelling both intensity and orientation of fracturing within the pluton. The successful prediction of areas of high fracture intensity and thus increased permeability is critical to the development of potential geothermal resources in low geothermal gradient and low permeability settings. This is also important in EGS settings where stimulation will often re-activate existing fracture networks. The development at the Eastgate Geothermal Borehole project provides an opportunity to model fracture and vein populations within an intrusive body and validate those model predictions with production data from the site.
National Geothermal Data System (USA): an Exemplar of Open Access to Data
NASA Astrophysics Data System (ADS)
Allison, M. Lee; Richard, Stephen; Blackman, Harold; Anderson, Arlene; Patten, Kim
2014-05-01
The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in April, 2014 will provide open access to millions of data records, sharing -relevant geoscience and longer term to land use data to propel geothermal development and production. NGDS serves information from all of the U.S. Department of Energy's sponsored development and research projects and geologic data from all 50 states, using free and open source software. This interactive online system is opening new exploration opportunities and potentially shortening project development by making data easily discoverable, accessible, and interoperable. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 6 million records online, including 1.72 million well headers (oil and gas, water, geothermal), 670,000 well logs, and 497,000 borehole temperatures and is growing rapidly. There are over 312 interoperable Web services and another 106 WMS (Web Map Services) registered in the system as of January, 2014. Companion projects run by Southern Methodist University and U.S. Geological Survey (USGS) are adding millions of additional data records. The DOE Geothermal Data Repository, currently hosted on OpenEI, is a system node and clearinghouse for data from hundreds of U.S. DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS complies with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with support from the US Department of Energy, Geothermal Technologies Office. To keep this system operational after the original implementation will require four core elements: continued serving of data and applications by providers; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges currently under consideration.
A comparison of economic evaluation models as applied to geothermal energy technology
NASA Technical Reports Server (NTRS)
Ziman, G. M.; Rosenberg, L. S.
1983-01-01
Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritchett, John W.
2015-04-15
There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying onmore » natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.« less
Value of Information Evaluation using Field Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainor-Guitton, W.
2015-06-15
Value of information (VOI) provides the ability to identify and prioritize useful information gathering for a geothermal prospect, either hydrothermal or for enhanced geothermal systems. Useful information provides a value greater than the cost of the information; wasteful information costs more than the expected value of the information. In this project we applied and refined VOI methodologies on selected geothermal prospects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark
Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project ismore » economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.« less
NASA Astrophysics Data System (ADS)
Uihlein, Andreas; Salto Saura, Lourdes; Sigfusson, Bergur; Lichtenvort, Kerstin; Gagliardi, Filippo
2015-04-01
Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded to 39 projects through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around 70 mEUR funding to 3 geothermal projects in Hungary, Croatia and France (see Annex). The Hungarian geothermal project awarded funding under the first call will enter into operation at the end of 2015 and the rest are expected to start in 2016 (HR) and in 2018 (FR), respectively. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300 programme should lead to better planning and faster introduction of low carbon technologies in the future. Content of the presentation The presentation will introduce the geothermal projects that have been awarded funding, including their state-of-play. Insights and knowledge gained from the projects that have entered into operation will be shown and discussed. Furthermore, the presentation will provide an overview of the NER 300 programme.
Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, S.; Young, K. R.
Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a givenmore » location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach was determined to be less subjective, since it requires less subjectivity in the input values.« less
The NSF/RANN FY 1975 program for geothermal resources research and technology
NASA Technical Reports Server (NTRS)
Kruger, P.
1974-01-01
The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.
NASA Astrophysics Data System (ADS)
Sipio, Eloisa Di; Bertermann, David
2018-04-01
In engineering, agricultural and meteorological project design, sediment thermal properties are highly important parameters, and thermal conductivity plays a fundamental role when dimensioning ground heat exchangers, especially in very shallow geothermal systems. Herein, the first 2 m of depth from surface is of critical importance. However, the heat transfer determination in unconsolidated material is difficult to estimate, as it depends on several factors, including particle size, bulk density, water content, mineralogy composition and ground temperature. The performance of a very shallow geothermal system, as a horizontal collector or heat basket, is strongly correlated to the type of sediment at disposal and rapidly decreases in the case of dry-unsaturated conditions. The available experimental data are often scattered, incomplete and do not fully support thermo-active ground structure modeling. The ITER project, funded by the European Union, contributes to a better knowledge of the relationship between thermal conductivity and water content, required for understanding the very shallow geothermal systems behaviour in saturated and unsaturated conditions. So as to enhance the performance of horizontal geothermal heat exchangers, thermally enhanced backfilling material were tested in the laboratory, and an overview of physical-thermal properties variations under several moisture and load conditions for different mixtures of natural material was here presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Carlon R.; Nash, Gregory D.; Sorkhabi, Rasoul
This report summarizes the activities and key findings of the project team occurring during Phase 1 (August 2014-October 2015) of the Tularosa Basin Geothermal Play Fairway Analysis Project. The Tularosa Basin Play Fairway Analysis (PFA) project tested two distinct geothermal exploration methodologies covering the entire basin within South Central New Mexico and Far West Texas. Throughout the initial phase of the project, the underexplored basin proved to be a challenging, yet ideal test bed to evaluate effectiveness of the team’s data collection techniques as well as the effectiveness of our innovative PFA. Phase 1 of the effort employed a low-cost,more » pragmatic approach using two methods to identify potential geothermal plays within the study area and then compared and contrasted the results of each method to rank and evaluate potential plays. Both methods appear to be very effective and highly transferable to other areas.« less
Kenya geothermal private power project: A prefeasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-10-01
Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmissionmore » distance.« less
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
Residential heating costs: A comparison of geothermal solar and conventional resources
NASA Astrophysics Data System (ADS)
Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.
1980-08-01
The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.
Challenges in Implementing a Multi-Partnership Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, Will; Mann, Michael; Salehfar, Hossein
The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellheadmore » is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancini, T.R.; Chaturvedi, L.N.; Gebhard, T.G.
A demonstration project to heat the Senior Citizens Center at Truth or Consequences, New Mexico with geothermal waters is described. There were three phases to the project: Phase I - design and permitting; Phase II - installation of the heating system and well drilling; and Phase III - operation of the system. All three phases went well and there was only one major problem encountered. This was that the well which was drilled to serve as the geothermal source was dry. This could not have been anticipated and there was, as a contingency plan, the option of using an existingmore » sump in the Teen Center adjacent to the Senior Citizens Center as the geothermal source. The system was made operational in August of 1981 and has virtually supplied all of the heat to the Senior Citizens Center during this winter.« less
Honduras geothermal development: Regulations and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Winchester, W.W.
1994-09-01
The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx ofmore » private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.« less
NASA Astrophysics Data System (ADS)
1982-04-01
The feasibility of a geothermal heating system at the Ojo Caliente Mineral Springs Co. was investigated. The geothermal energy will be used to preheat hot water for the laundry facilities and to heat the water for a two pipe fan coil heating system in the hotel. Present annual heating fuel costs of $11,218 for propane will be replaced by electricity to operate fans and pump at an annual cost of $2547, resulting in a net savings of $8671. Installation costs include $10,100 for a well system, $1400 for a laundry system, and $41,100 for a heating system. With the addition of a 10% design fee the total installation cost is $57,860. Ignoring escalating propane fuel prices, tax credits for energy conservation equipment, and potential funding from the State of New Mexico for a geothermal demonstration project, the simple economic payback period for this project is 6.7 years.
Sass, John H.; Walters, Mark A.
1999-01-01
The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.
Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Daniel; Mines, Greg; Turchi, Craig
There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less
Pueblo of Jemez Geothermal Feasibility Study Fianl Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.A. Kelley; N. Rogers; S. Sandberg
2005-03-31
This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Maderamore » Limestone, the most likely host for a major geothermal reservoir.« less
Development and testing of a Mudjet-augmented PDC bit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Alan; Chahine, Georges; Raymond, David Wayne
2006-01-01
This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.
Geothermal switch heater installation, testing and monitoring : phases 1 & 2.
DOT National Transportation Integrated Search
2016-07-01
Transportation Technology Center, Inc. (TTCI), Norfolk Southern (NS), and John A. Volpe National Transportation Systems Center (Volpe) completed Phases 1 and 2 of a project on a working prototype geothermal switch heating system designed to test the ...
Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations
2016-04-04
sustainable energy included renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, tidal...energy, including bioftiel and other alternative sources (wind. solar, and geothermal ).27 The SECNAV made security and independence the two energy...Navy’s China Lake geothermal power plant in California is DOD’s largest renewable energy project supplying nearly half of DOD’s renewable energy
NASA Astrophysics Data System (ADS)
Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia
2017-04-01
One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. Geothermics, 52, 98-111, doi: 10.1016/j.geothermics.2013.09.008. Acknowledgements: This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and by the Ministry of Science and Higher Education of Poland under project no. 500-10-27.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas, J.; Menjoz, A.; Martin, J.C.
1987-01-20
A feature of French geothermal engineering is the development of industrial projects in normal gradient, non-convective areas. The economic feasibility of exploiting wells producing between 150 and 350 m{sup 3}/h at temperatures from 55° to 85° from depths of 1,500 to 2,000 meters, in sedimentary basins with normal gradient, for direct heat production has been proved by 50 plants providing heating for over 500,000 people during the last few years. This opens new possibilities for geothermal energy development the world over, in particular for areas where heat consumption is higher than 2,500 Tons oil equivalent (Toe)/year over several square kilometers.more » The recent and rapid development of geothermal projects in France, in particular in the Paris Basin has provided much more information on the characteristics of the Jurassic Dogger, which is the unit tapped by geothermal doublets (one production and one injection well). Detailed study of the Dogger reservoir in the Paris Basin is one of the main objectives of the IMRG research and development program drawn up in 1983. The preliminary results presented here are oriented towards (1) improved knowledge of the potential geothermal resources, and (2) analysis of optimum development conditions. 1 tab., 7 refs., 9 figs.« less
Kimama Well - Borehole Geophysics Database
Shervais, John
2011-07-04
The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta
Shervais, John
2011-01-16
The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabo, David G.
The demonstration nature of the Baca Geothermal Project and the contractual arrangements between Public Service Company of New Me (PNM) and Union Geothermal Company of New Mexico (Union) with the Department of Energy mandate on environmental monitoring effort previously not seen for an energy development of this size. One of the most often stated goals of the Baca Project is to demonstrate the acceptability and viability of geothermal energy in an environmentally responsible manner. If this statement is to be followed, then a program would have to be developed which would (1) identify all the environmental baseline parameters, (2) monitormore » them during construction and operation, and (3) alleviate any possible negative impacts. The situation of the Baca project in the Jemez Mountains of north-central New Mexico offers a challenging vehicle with which to demonstrate the acceptability of geothermal energy. A few of the reasons for this are: these mountains are one of the most heavily used recreational resource areas in the state, numerous prehistoric people utilized the canyons and have left considerable archeological resources, the mountains are home for a number of individuals who prefer their serenity to the hustle and bustle of urban dwelling, and finally, the mountains are considered sacred by a number of local Indian tribes, a few of which use the mountaintop as religious sites.« less
NASA Astrophysics Data System (ADS)
Lautze, N. C.; Ito, G.; Thomas, D. M.; Hinz, N.; Frazer, L. N.; Waller, D.
2015-12-01
Hawaii offers the opportunity to gain knowledge and develop geothermal energy on the only oceanic hotspot in the U.S. As a remote island state, Hawaii is more dependent on imported fossil fuel than any other state in the U.S., and energy prices are 3 to 4 times higher than the national average. The only proven resource, located on Hawaii Island's active Kilauea volcano, is a region of high geologic risk; other regions of probable resource exist but lack adequate assessment. The last comprehensive statewide geothermal assessment occurred in 1983 and found a potential resource on all islands (Hawaii Institute of Geophysics, 1983). Phase 1 of a Department of Energy funded project to assess the probability of geothermal resource potential statewide in Hawaii was recently completed. The execution of this project was divided into three main tasks: (1) compile all historical and current data for Hawaii that is relevant to geothermal resources into a single Geographic Information System (GIS) project; (2) analyze and rank these datasets in terms of their relevance to the three primary properties of a viable geothermal resource: heat (H), fluid (F), and permeability (P); and (3) develop and apply a Bayesian statistical method to incorporate the ranks and produce probability models that map out Hawaii's geothermal resource potential. Here, we summarize the project methodology and present maps that highlight both high prospect areas as well as areas that lack enough data to make an adequate assessment. We suggest a path for future exploration activities in Hawaii, and discuss how this method of analysis can be adapted to other regions and other types of resources. The figure below shows multiple layers of GIS data for Hawaii Island. Color shades indicate crustal density anomalies produced from inversions of gravity (Flinders et al. 2013). Superimposed on this are mapped calderas, rift zones, volcanic cones, and faults (following Sherrod et al., 2007). These features were used to identify probable locations of intrusive rock (heat) and permeability.
Crafting regulations in emerging geothermal countries: The Peru example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, A.J.
1996-12-31
Conventional wisdom holds that no prudent investor or lender will ante up a penny of investment money in a geothermal project unless and until there is a geothermal resources law in place. Since every law depends on a regulatory regime to make the law work in actual practice, implemented regulations are equally important conditions precedent for geothermal development. In recognition of the importance of assisting geothermal regulatory development in the emerging geothermal countries of Latin America, during the 1995 to 1996 timeframe, the Geothermal Energy Association has acted in an advisory capacity to the Ministry of Energy and Mines ofmore » Peru, in the drafting of geothermal regulations for Peru. These regulations are designed to promote developmental investment in the geothermal resources of Peru, while simultaneously establishing reasonable standards for the protection of the people and the environment of the country. While these regulations are specific to Peru, they may well serve as a model for other countries of Latin America. Thus, the lessons learned in crafting the Peru regulatory regime may have applicability in other countries in which the geothermal industry is now working or may work in the future.« less
Advantage of incorporating geothermal energy into power-station cycles
NASA Astrophysics Data System (ADS)
White, A. A. L.
1980-06-01
The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.
Federal Geothermal Research Program Update - Fiscal Year 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Laney
2005-03-01
The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less
Federal Geothermal Research Program Update Fiscal Year 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-03-01
The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less
DEEPEGS and the IDDP, Focus on Reykjanes Demonstration
NASA Astrophysics Data System (ADS)
Ómar Friðleifsson, Guðmundur; Bogason, Sigurður G.; Ingólfsson, Hjalti P.; Vergnes, Pierre; Thorbjörnsson, Ingólfur Ö.; Peter-Borie, Mariane; Kohl, Tohmas; Gaucher, Emmanuel; Edelmann, Thomas; Bertani, Ruggero; Sæther, Sturla; Pálsson, Bjarni
2016-04-01
The DEEPEGS project is a demonstration project, supported by the European Commission, Horizon 2020. The goal is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. It is a four years project coordinated by HS Orka, Iceland, in cooperation with partners from Iceland, France, Germany, Italy, and Norway. The project will be testing stimulation technologies for EGS in deep wells in different geological settings, and intends to deliver new innovative solutions and models for wider deployments of EGS reservoirs with sufficient permeability to delivering significant amounts of geothermal power across Europe. The project will demonstrate advanced technologies in three types of geothermal reservoirs, (i) in high enthalpy resource beneath existing hydrothermal field at Reykjanes (volcanic environment with a saline fluid) with temperature up to 550°C and (ii) two very deep hydrothermal reservoirs in southern France with temperatures up to 220°C. The focus of the talk at EGU 2016 will be on the Icelandic part of the DEEPEGS project and its connection to the IDDP project in Iceland, and to the ICDP. The deep well at Reykjanes, identified as well IDDP-2, is expected to be completed in 2016. A 2.5 km deep production well will be refurbished and deepened to 5 km by HS Orka, Statoil and IDDP. After drilling the well it will be extensively tested for injectivity, and connection to the overlying conventional hydrothermal field, and subsequently flow tested for fluid chemistry and production properties. The DEEPEGS consortium is industry driven with five energy companies that will implement the project's goal through cross-fertilisation and sharing of knowledge. The companies are all highly experienced in energy production, and three of them are already delivering power to national grids from geothermal resources.
National Geothermal Data System State Contributions by Data Type (Appendix A1-b)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Diane
Multipaged spreadsheet listing an inventory of data submissions to the State contributions to the National Geothermal Data System project by services, by state, by metadata compilations, metadata, and map count, including a summary of information.
Impact of enhanced geothermal systems on US energy supply in the twenty-first century.
Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria
2007-04-15
Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.
Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada.
1980-05-01
magneto- telluric studies. LINEAMENT ANALYSIS As part of the initial phase of the Fallon Exploration Project, a composite lineament analysis of the region...Nevada. United States Geological Survey Bulletin 750, 1924, pp. 79-86. Hoover, D. B., R. M. Senterfit, and Bruce Radtke. Telluric Profile Loca- tion...Map and Telluric Data for the Salt Wells Known Geothermal Resource Area, Nevada. United States Geological Survey Open File Report 77-66F, 1977. Horton
Reservoir management cost-cutting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulati, M.S.
This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachman, Gary
The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.
Hybridizing a Geothermal Plant with Solar and Thermal Energy Storage to Enhance Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTigue, Joshua Dominic P; Zhu, Guangdong; Turchi, Craig S
The objective of this project is to identify cost-effective thermal storage systems for a geothermal/solar hybrid system in order to increase the plant dispatchability. Furthermore, an optimal quantity of thermal storage will also be determined to achieve the best economics of a geothermal/solar hybrid plant. NREL is working with Hyperlight Energy and Coso Operating Company to develop techno-economic models of such a system.
Design and Implementation of Geothermal Energy Systems at West Chester University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, James
West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energymore » Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less
Geothermal Loan Guaranty Program and its impact on geothermal exploration and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasr, L.H.
1978-05-01
The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in themore » study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.« less
Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majer, Ernie; Nelson, James; Robertson-Tait, Ann
2012-01-01
This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects.
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less
Environmental impact assessment for alternative-energy power plants in México.
González-Avila, María E; Beltrán-Morales, Luis Felipe; Braker, Elizabeth; Ortega-Rubio, Alfredo
2006-07-01
Ten Environmental Impact Assessment Reports (EIAR) were reviewed for projects involving alternative power plants in Mexico developed during the last twelve years. Our analysis focused on the methods used to assess the impacts produced by hydroelectric and geothermal power projects. These methods used to assess impacts in EIARs ranged from the most simple, descriptive criteria, to quantitative models. These methods are not concordant with the level of the EIAR required by the environmental authority or even, with the kind of project developed. It is concluded that there is no correlation between the tools used to assess impacts and the assigned type of the EIAR. Because the methods to assess impacts produced by these power projects have not changed during 2000 years, we propose a quantitative method, based on ecological criteria and tools, to assess the impacts produced by hydroelectric and geothermal plants, according to the specific characteristics of the project. The proposed method is supported by environmental norms, and can assist environmental authorities in assigning the correct level and tools to be applied to hydroelectric and geothermal projects. The proposed method can be adapted to other production activities in Mexico and to other countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The New Zealand Geothermal Workshop took place on 29th-31st October 1979 at the University of Auckland. Over 100 participants were present (a list is included in this volume) with 6 overseas visitors, bring the number of countries represented (including the Institute's Fellows) to 14. Forty papers were presented over the three days of the meeting, together with 23 poster papers presented by the students of the Institute. This second Proceedings volume has been prepared as a supplement to the volume of conference papers distributed at the meeting, and was produced subsequent to the Workshop. The fist section of this volumemore » includes additional papers presented at the meeting but not then available in printed form. The second part is a summary of the year's activities of the Geothermal Institute also presented in part at the meeting. These activities included some significant research contributions and original field investigations. Each fellow at the Institute was required as part of the course, to conduct an investigation and prepare a report which was presented at the Geothermal Workshop in a poster session. Abstracts of these project reports are included in this volume and five of the projects are reproduced in greater detail. Also included are outlines of the two original class projects conducted by the students and staff of the Institute, one a pre-feasibility study of the Ngawha Geothermal Field and the other an investigation of the Miranda Springs system. Finally, the lecture curriculum of the year's diploma course is presented in outline, together with the final examination papers. The two volumes of this document therefore include, as much as is possible within the restricted space, an overview of the Geothermal Institute's contribution to the development of geothermal energy together with a technical tribute to the many people involved in this very successful first year.« less
Laboratory Simulation of the Geothermal Heating Effects on Ocean Overturning Circulation
NASA Astrophysics Data System (ADS)
Xia, K. Q.; Wang, F.; Huang, S. D.; Zhou, S. Q.
2016-12-01
A large-scale circulation subject to an additional heat flux from the bottom is investigated laboratorially, motivated by understanding the geothermal heating effects on ocean circulation. Despite its idealization, our experiment suggests that the leading order effect of geothermal heating is to significantly enhance the abyssal overturning, which is in agreement with the findings in ocean circulation models. Our results also suggest that geothermal heating could not influence the poleward heat transport due to the strong stratification in the thermocline. It is revealed that the ratio of geothermal-flux-induced turbulent dissipation to the dissipation due to other energies is the key determining the dynamical importance of geothermal heating. This quantity explains why the impact of geothermal heating is sensitive to the deep stratification and the diapycnal mixing, in addition to the amount of geothermal flux. Moreover, this dissipation ratio may be used to understand results from different studies in a consistent way. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK1430115 and by the CUHK Research Committee through a Direct Grant (Project No. 3132740).
Geothermal development plan: Cochise/Santa Cruz Counties
NASA Astrophysics Data System (ADS)
White, D. H.; Goldstone, L. A.
1982-08-01
The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.
Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.
2008-01-01
The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.
Teresa E. Jordan
2015-11-15
This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria or ‘risks’: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS). This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain “item description” documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in the thermal interpolations. Some file descriptions make reference to various 'memos'. These are contained within the final report submitted October 16, 2015. Each zipped file in the submission contains an 'about' document describing the full Thermal Quality Analysis content available, along with key sources, authors, citation, use guidelines, and assumptions, with the specific file(s) contained within the .zip file highlighted.
NASA Astrophysics Data System (ADS)
Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang
2017-04-01
In recent years, the development of geothermal plants in Germany has increased significantly due to a favorable political setting and resulting financial incentives. However, most projects are developed by local communities or private investors, which cannot afford a project to fail. To cover the risk of total loss if the geothermal well should not provide the energy output necessary for an economically viable project, investors try to procure insurances for this worst case scenario. In order to issue such insurances, the insurance companies insist on so called probability-of-success studies (POS studies), in which the geological risk for not achieving the necessary temperatures and/or flow rates for an economically successful project is quantified. Quantifying the probability of reaching a minimum temperature, which has to be defined by the project investors, is relatively straight forward as subsurface temperatures in Germany are comparatively well known due tens of thousands of hydrocarbon wells. Moreover, for the German Molasse Basin a method to characterize the hydraulic potential of a site based on pump test analysis has been developed and refined in recent years. However, to quantify the probability of reaching a given flow rate with a given drawdown is much more challenging in areas where pump test data are generally not available (e.g. the North German Basin). Therefore, a new method based on log and core derived porosity and permeability data was developed to quantify the geological risk of reaching a determined flow rate in such areas. We present both methods for POS studies and show how subsurface data such as pump tests or log and core measurements can be used to predict the chances of a potential geothermal project from a geological point of view.
Schroeder, Jenna N.
2013-08-31
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Tonya; Maddi, Phillip
2012-08-01
The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less
Geothermal development in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizagaque, R.F.; Tolentino, B.S.
1982-06-01
The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985,more » additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevenell, Lisa; Coolbaugh, Mark; Hinz, Nick
This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production.more » To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.« less
The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring
Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.
2004-01-01
The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, S.; Young, K.
Geothermal exploration projects have a significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Two of the largest challenges for increased geothermal deployment are 1) understanding when and how to proceed in an exploration program, and 2) when to walk away from a site. Current methodologies for exploration decision-making are formulatedby subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location,more » including go/no-go decision points to help developers and investors decide when to give up on alocation. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of aparticular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basicgeothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This secondapproach was determined to be less subjective, since numerical inputs come from the collected data. And it helps to facilitate communication between project managers and exploration geologists in making objective go/no-go decisions throughout the different project phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racine, W.C.; Larson, T.C.; Stewart, C.A.
1981-06-01
A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. Themore » environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.
2008-01-22
The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less
NASA Astrophysics Data System (ADS)
Hahne, Barbara; Thomas, Rüdiger
2014-05-01
In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the fracture zone. The assumed elastic rock properties can be evaluated by FD modeling. Geoelectric and electromagnetic investigations of the fracture zone were carried out to investigate their potential to give hints on minerals, brines or hydrothermal fluids within the fracture zone. Measurements of the Spectral Induced Polarization show that anisotropy of phase angles may not be neglected, because otherwise data may be misinterpreted and structural models become unnecessarily complicated. A crucial aspect for the performance of a Geothermal plant is the mineral contents of the formation water. Scalings and corrosion can severely disturb the operation and the properties of the reservoir. Therefore, North German formation waters were analysed and categorized and a thermodynamic database was developed. It allows hydrogeochemical modeling of geothermally used waters and of hydrogeochemically and technically induced processes under North German conditions. Hydromechanical modeling showed that differences of elastic rock properties between neighboring layers does not strongly influence propagation paths of fractures, whereas they significantly influence fracture aperture. On the other hand, differences of mechanical rock properties significantly influence propagation paths of fractures. Existing fractures are also affected by the induced fracture - after stimulation, they propagate further in the direction of maximum shear stress. Furthermore, rock deformation during the production phase depends strongly on the contrast of hydraulic conductivity between highly permeable fracture core and low permeable rock matrix. The projects within gebo-Geosystem are well interconnected. Both the focus area "Geosystem" as well as the whole collaborative research program "gebo" offer different approaches that lead to an improvement of geothermal exploration and exploitation as well as a better understanding of the processes within geothermal reservoirs. Acknowledgement: The gebo project is funded by the "Niedersächsisches Ministerium für Wissenschaft und Kultur" and the industry partner Baker Hughes, Celle, Germany.
Proceedings of the Conference on Research for the Development of Geothermal Energy Resources
NASA Technical Reports Server (NTRS)
1974-01-01
The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.
Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon
John Akerley
2011-10-12
This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.
Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Alan D.
2014-07-24
This report describes work toward a supercritical CO 2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO 2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO 2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).
Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010
Jaffe, Todd
2012-01-01
Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.
The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.
NASA Astrophysics Data System (ADS)
Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh
2015-04-01
The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare earth elements (REEs) were also measured in this study. The results normalized by North America Shale REEs (NASC) show a flat pattern and a distinct europium positive anomaly. It possibly indicates a chemical interaction between meteoric water and sedimentary rock, which excludes the possibility of an igneous source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, B. Mack; Pruess, Karsten; Lippmann, Marcelo J.
2010-09-01
This report, the third in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.
Publications - GMC 383 | Alaska Division of Geological & Geophysical
Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information DGGS GMC 383 Publication Details Title: Makushin Geothermal Project ST-1R, A-1, D-2 Core 2009 re -sampling and analysis: Analytical results for anomalous precious and base metals associated with geothermal
postdoctoral researcher working on geothermal energy and CSP projects. His interests include heat and mass geothermal energy systems modeling, reservoir simulation, and economic analysis, as well as on the design and transfer, energy conversion and storage systems, reservoir modeling, and direct-use applications of thermal
Publications - GMC 366 | Alaska Division of Geological & Geophysical
Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information DGGS GMC 366 Publication Details Title: Makushin Geothermal Project ST-1R Core 2009 re-sampling and analysis: Analytical results for anomalous precious and base metals associated with geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mines, Gregory L.
2010-09-01
This report, the last in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in energy conversion and to make generation of electricity from geothermal resources more cost-competitive.
Thermoelectric Materials Development for Low Temperature Geothermal Power Generation
Tim Hansen
2016-01-29
Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, J.W.; Mezga, L.J.; Reed, A.W.
1981-08-01
The objectives of the Helical Screw Expander (HSE) Generator Program are (1) to accelerate the development of geothermal resources by introducing this advanced conversion technology, (2) to provide operating experience to prospective users of the equipment, and (3) to collect data on the performance and reliability of the equipment under various geothermal resource conditions. The participants hope to achieve these goals by testing a small-scale, transportable HSE generator at existing geothermal test facilities that produce fluids of different salinity, temperature and pressure conditions. This Environmental Evaluation has been prepared, using available information, to analyze the environmental consequences of testing themore » HSE generator. Its purpose is to support a decision on the need for a complete environmental review of the HSE program under the terms of Executive Order 121 14, ''Environmental Effects Abroad of Major federal Actions''. This Executive Order requires review of projects which involve the release of potentially toxic effluents that are strictly regulated in the United States, or which may have significant environmental effects on the global commons, on natural or ecological resources of international significance, or on the environment of non-participating countries. The final guidelines implementing the provisions of the Executive Order for DOE have been published. This evaluation deals with testing to be conducted at Cesano, Italy by the designated contractor of the Italian government, the Ente Narionale per l'Energia Ellectrica (ENEL), and at Broadlands, New Zealand by the Ministry of Works and Development of New Zealand. Testing at Cerro Prieto, Mexico has already been completed by the Comision Federal de Electricidad and is not evaluated in this report.« less
Geothermal Induced Seismicity National Environmental Policy Act Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron L; Cook, Jeffrey J; Beckers, Koenraad J
In 2016, the U.S. Bureau of Land Management (BLM) contracted with the National Renewable Energy Laboratory (NREL) to assist the BLM in developing and building upon tools to better understand and evaluate induced seismicity caused by geothermal projects. This review of NEPA documents for four geothermal injection or EGS projects reveals the variety of approaches to analyzing and mitigating induced seismicity. With the exception of the Geysers, where induced seismicity has been observed and monitored for an extended period of time due to large volumes of water being piped in to recharge the hydrothermal reservoir, induced seismicity caused by geothermalmore » projects is a relative new area of study. As this review highlights, determining the level of mitigation required for induced seismic events has varied based on project location, when the review took place, whether the project utilized the International Energy Agency or DOE IS protocols, and the federal agency conducting the review. While the NEPA reviews were relatively consistent for seismic monitoring and historical evaluation of seismic events near the project location, the requirements for public outreach and mitigation for induced seismic events once stimulation has begun varied considerably between the four projects. Not all of the projects were required to notify specific community groups or local government entities before beginning the project, and only one of the reviews specifically stated the project proponent would hold meetings with the public to answer questions or address concerns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Anna
With recent trends toward intermittent renewable energy sources in the U.S., the geothermal industry in its current form faces a crossroad: adapt, disrupt, or be left behind. Strategic planning with scenario analysis offers a framework to characterize plausible views of the future given current trends - as well as disruptions to the status quo. To inform strategic planning in the Department of Energy's (DOE) Geothermal Technology Office (GTO), the Geothermal Vision Study is tasked with offering data-driven pathways for future geothermal development. Scenario analysis is a commonly used tool in private industry corporate strategic planning as a way to prioritizemore » and manage large investments in light of uncertainty and risk. Since much of the uncertainty and risk in a geothermal project is believed to occur within early stage exploration and drilling, this paper focuses on the levers (technical and financial) within the exploration process that can be pulled to affect change. Given these potential changes, this work first qualitatively explores potential shifts to the geothermal industry. Future work within the Geothermal Vision Study will incorporate these qualitative scenarios quantitatively, in competition with other renewable and conventional energy industries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellinger, M.; Allen, E.
A unique public/private partnership of local, state, federal, and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quote} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function, and environmental impacts, its implementation has required:more » (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation, and financing of the project; and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.« less
Geothermal Gradients in Oregon, 1985-1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackwell, D.D.
1995-01-01
This data set is comprised of three groups of temperature-depth data. All the sites are located in southeastern Oregon. The first is a set of 7 wells logged during 1993 in south central Oregon in the Basin and Range province. All these wells, with the exception of the Blue Mountain Oil well, are water wells. These wells were part of a geothermal reconnaissance of this area. The Blue Mountain oil well of this set has been described by Sass et al. (1971) as well. Gannet in the vicinity of the Vale, Oregon (Bowen and Blackwell, 1972; Blackwell et al., 1978)more » geothermal system in Malheur County. These wells were logged in 1986 during a study of the area described by Gannett (1988). There are 17 wells (plus one relog) in this data set. All these wells are in a small area just east of the town of Vale in Malheur County. The second set of data consists of a group of wells that were logged by Marshall The third set of data represents the results of an exploration project in the general area of the Lake Owyhee thermal area in Malheur County. This data set is comprised of 16 wells. This data set was collected by Hunt Energy Corporation and made available though the efforts of Roger Bowers. A small scale map of the locations of the wells is shown in Figure 1. The well location and some pertinent information about the wells is shown in Table 1. The detailed lists of temperature-depth data and plots for each well, either individually or with a group, follow the list of references cited.« less
NASA Astrophysics Data System (ADS)
Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.
2015-12-01
Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk factors at favorable sites enables an evaluation of project feasibility across sites based on tradeoffs in the risk factors. Uncertainties in each risk factor can also be considered to determine if the tradeoffs in risk factors between sites are meaningful.
Design and Implementation of Geothermal Energy Systems at West Chester University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuprak, Greg
West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Departmentmore » of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less
Klamath Falls downtown development geothermal sidewalk snowmelt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.
1995-10-01
The Klamuth Falls, Oregon, downtown has seen a period of decline over the past 20 years as businesses have moved to new suburban shopping centers. Downtown business owners and the Klamuth Falls Downtown Redevelopment Agency are working to reverse that trend with a Downtown Streetscape Project intended to make the downtown a more pleasant place to work and do business. The visible elements of the project include new crosswalks with brick pavers, wheelchair ramps at sidewalk corners, new concrete sidewalks with a consistent decorative grid pattern, sidewalk planters for trees and flowers, and antique-style park benches and lighting fixtures. Amore » less visible, but equally valuable feature of the project is the plastic tubing installed under the sidewalks, wheelchair ramps and crosswalks, designed to keep them snow and ice free in the winter. A unique feature of the snowmelt system is the use of geothermal heated water on the return side of the Klamath Falls Geothermal District Heating System, made possible by the recent expansion of the district heating system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakeley, J.S.; Sprecher, S.W.; Lichvar, R.
1994-02-25
In October 1993, the authors sampled soils, vegetation, and hydrology at eight sites representing a range of substrates, elevations, soil types, and plant community types within rainforest habitats on the Island of Hawaii. Their purpose was to determine whether any of these habitats were wetlands according to the 1987 Corps of Engineers Wetlands Delineation Manual. None of the rainforest habitats they sampled was wetland in its entirety. However, communities established on pahoehoe lava flows contained scattered wetlands in depressions and folds in the lava, where water could accumulate. Therefore, large construction projects, such as that associated with proposed geothermal energymore » development in the area, have the potential to impact a significant number and/or area of wetlands. To estimate those impacts more accurately, they present a supplementary scope of work and cost estimate for additional sampling in the proposed geothermal project area.« less
Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott A. Wood
2002-01-28
The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fieldsmore » of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.« less
Federal policy documentation and geothermal water consumption: Policy gaps and needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, J. N.; Harto, C. B.; Clark, C. E.
With U.S. geothermal power production expected to more than triple by 2040, and the majority of this growth expected to occur in arid and water-constrained areas, it is imperative that decision-makers understand the potential long-term limitations to and tradeoffs of geothermal development due to water availability. To this end, water consumption data, including documentation triggered by the National Environmental Policy Act (NEPA) of 1969, production and injection data, and water permit data, were collected from state and federal environmental policy sources in an effort to determine water consumption across the lifecycle of geothermal power plants. Values extracted from these sourcesmore » were analyzed to estimate water usage during well drilling; to identify sourcing of water for well drilling, well stimulation, and plant operations; and to estimate operational water usage at the plant level. Nevada data were also compared on a facility-by-facility basis with other publicly available water consumption data, to create a complete picture of water usage and consumption at these facilities. This analysis represents a unique method of capturing project-level water data for geothermal projects; however, a lack of statutory and legal requirements for such data and data quality result in significant data gaps, which are also explored« less
Ancillary Service Revenue Potential for Geothermal Generators in California FY15 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmunds, T; Sotorrio, P
2015-04-16
Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less
Ancillary Service Revenue Potential for Geothermal Generators in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmunds, T.; Sotorrio, P.
2015-01-02
Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Donna
This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed withinmore » the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.« less
Energy Return On Investment of Engineered Geothermal Systems Data
Mansure, Chip
2012-01-01
The project provides an updated Energy Return on Investment (EROI) for Enhanced Geothermal Systems (EGS). Results incorporate Argonne National Laboratory's Life Cycle Assessment and base case assumptions consistent with other projects in the Analysis subprogram. EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.
Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.
2013-05-01
A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracermore » and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.« less
2013 Geothermal Technologies Office Peer Review Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geothermal Technologies Office
Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as wellmore » as attendees.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lianjie; Chen, Ting; Tan, Sirui
Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less
Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang
2018-02-01
The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by placing wells at locations with higher rock stiffness. Compared with the reference case with coal burning for heating purposes, the yearly emission reduction capacity can reach 1 × 10 7 kg by switching to the direct utilization of geothermal energy in Daming field.
Geothermal development plan: Yuma County
NASA Astrophysics Data System (ADS)
White, D. H.; Goldstone, L. A.
1982-08-01
The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.
Fallon, Nevada FORGE Fluid Geochemistry
Blankenship, Doug; Ayling, Bridget
2018-03-13
Fluid geochemistry analysis for wells supporting the Fallon FORGE project. Samples were collected from geothermal wells using standard geothermal water sampling techniques, including filtration and acidification of the cation sample to pH < 2 prior to geochemical analysis. Analyses after 2005 were done in reputable commercial laboratories that follow standard protocols for aqueous chemistry analysis.
NASA Astrophysics Data System (ADS)
Engen, I. A.
1981-11-01
This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.
Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR
NASA Astrophysics Data System (ADS)
Tanaka, Akiko
2008-11-01
SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.
Progress and challenges associated with digitizing and serving up Hawaii's geothermal data
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Lautze, N. C.; Abdullah, M.
2012-12-01
This presentation will report on the status of our effort to digitize and serve up Hawaii's geothermal information, an undertaking that commenced in 2011 and will continue through at least 2013. This work is part of national project that is funded by the Department of Energy and managed by the Arizona State Geology Survey (AZGS). The data submitted to AZGS is being entered into the National Geothermal Data System (see http://www.stategeothermaldata.org/overview). We are also planning to host the information locally. Main facets of this project are to: - digitize and generate metadata for non-published geothermal documents relevant to the State of Hawaii - digitize ~100 years of paper records relevant to well permitting and water resources development and serve up information on the ~4500 water wells in the state - digitize, organize, and serve up information on research and geothermal exploratory drilling conducted from the 1980s to the present. - work with AZGS and OneGeology to contribute a geologic map for Hawaii that integrates geologic and geothermal resource data. By December 2012, we anticipate that the majority of the digitization will be complete, the geologic map will be approved, and that over 1000 documents will be hosted online through the University of Hawaii's library system (in the "Geothermal Collection" within the "Scholar Space" repository, see http://scholarspace.manoa.hawaii.edu/handle/10125/21320). Developing a 'user-friendly' web interface for the water well and drilling data will be a main task in the coming year. Challenges we have faced and anticipate include: 1) ensuring that no personally identifiable information (e.g. SSN, private telephone numbers, bank or credit account) is contained in the geothermal documents and well files; 2) Homeland Security regulations regarding release of information on critical infrastructure related to municipal water supply systems; 3) maintenance of the well database as future well data are developed with the state's expanding inventory of wells to meet private and public needs. Feedback is welcome.
Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.
The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less
NASA Astrophysics Data System (ADS)
Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier
2017-04-01
Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network (DFN) and 3D elements to simulate groundwater flow in the 3D regional fault network and in sedimentary deposits, respectively. Firstly, the geometry of the 3D fracture network and its hydraulic connections with 3D elements (sedimentary cover) is built in accordance with the tectonic history and based on geological and geophysical evidences. Secondly, data from previous studies and site-specific geological knowledge provide information on the fault zones family sets and on respective hydraulic properties. Then, from the simulated 3D groundwater flow model and based on a particle tracking methodology, groundwater flow paths are constructed. The regional groundwater flow paths results are extracted and analysed to delineate preferential zones to explore at finer scale and so to define the potential positions of the exploration wells. This work is conducted in the framework of the IMAGE project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553), which aims to develop new methods for better siting of exploitation wells.
Selective Recovery of Critical Materials from Geothermal Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayes, Richard T.; Halstenberg, Phillip W.; Moyer, Bruce A.
This project, funded by the DOE Small Business Voucher program, assisted the partner with the development of ion-imprinted adsorbents for the selective extraction of rare earth elements (REE) from geothermal brines. This effort seeks to utilize a currently untapped resource thus diversifying the U. S. REE market. The initial stage of the program focused on the adsorbent developed by partner and optimization of the adsorbent. The adsorbent was based upon an ion imprinted ligand that was copolymerized with a crosslinker to generate the REE selectivity. During this task, the adsorbents were irradiated via electron beam at the NEO Beam Electronmore » Beam Crosslinking Facility (Mercury Plastics, Middlefield, OH) to induce further crosslinking. The irradiation crosslinked adsorbents exhibited no difference in the Fourier transform infrared spectroscopic (FTIR) analysis suggesting inefficiency in the crosslinking. In the later stage of the effort, a new method was proposed and studied at ORNL involving a new partnership between the partner and a commercial polymer vender. This resulted in a new material being developed which allows the partner to utilize a commercial support and integrate the synthesis into a production-ready product stream. This will enhance the route to commercialization for the partner resulting in a quicker market penetration for the product. The new adsorbent exhibits selectivity for REE over transition metals commonly found within geothermal brines. Further optimization is required for enhanced selectivity, capacity, and intra-lanthanide separations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene
In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less
The Geothermal Data Repository: Five Years of Open Geothermal Data, Benefits to the Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene
In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less
Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Cherkose, Biruk Abera; Mizunaga, Hideki
2018-03-01
Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.
NASA Technical Reports Server (NTRS)
Orren, L. H.; Ziman, G. M.; Jones, S. C.
1981-01-01
A financial accounting model that incorporates physical and institutional uncertainties was developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.
Geotheral heating facilities of United Church of Christ (Congregational Church)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
Based on the assumptions made in this study, a geothermal system for the Congregational Church is not economically feasible at this time. A retrofit of the church for geothermal would result in a capital cost of $37,600 including the geothermal well. When this figure is considered in conjunction with the $1892 first-year savings (present fuel cost minus geothermal system O and M cost) and inflation over a 20-year period, a simple payback of 12 years results. In addition, an internal rate of return figure of 8.7 percent was generated. This indicates that the project would have to be financed atmore » less than 9 percent to be economically feasible over a 20-year period.« less
James Faulds
2015-10-28
This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.
Williams, C.F.
2002-01-01
Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.
Upstream H/sub 2/S removal from geothermal steam. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
The purpose of this project was to evaluate a new heat exchanger process as a method for removing hydrogen sulfide (H/sub 2/S) gas from geothermal steam upstream of a power plant turbine. The process utilizes a heat exchanger to condense geothermal steam so that noncondensable gases (including H/sub 2/S) can be removed in the form of a concentrated vent stream. Ultimate disposal of the removed H/sub 2/S gas may then be accomplished by use of other processes such as the commercially available Stretford process. The clean condensate is reevaporated on the other side of the heat exchanger using the heatmore » removed from the condensing geothermal steam. The necessary heat transfer is induced by maintaining a slight pressure difference, and consequently a slight temperature difference, between the two sides of the heat exchanger. Evaluation of this condensing and reboiling process was performed primarily through the testing of a small-scale 14 m/sup 2/ (150 ft/sup 2/) vertical tube evaporator heat exchanger at The Geysers Power Plant in northern California. The field test results demonstrated H/sub 2/S removal rates consistently better than 90 percent, with an average removal rate of 94 percent. In addition, the removal rate for all noncondensable gases is about 98 percent. Heat transfer rates were high enough to indicate acceptable economics for application of the process on a commercial scale. The report also includes an evaluation of the cost and performance of various configurations of the system, and presents design and cost estimates for a 2.5 MWe and a 55 MWe unit.« less
NASA Astrophysics Data System (ADS)
Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.
2017-12-01
Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).
Towards a Geocognition of Geothermal Energy: an Evolving Research Partnership in South West England
NASA Astrophysics Data System (ADS)
Gibson, H.; Stewart, I. S.; Ledingham, P.
2017-12-01
The development and deployment of novel geological technologies in industry often raise anxiety in the public sphere. New technologies are intrinsically unfamiliar, not only to the public, but also to other technical specialists in the field. This can focus conflict and uncertainty around issues that may not actually be problematic, or obscure other issues that may actually warrant closer inspection. An example of an emergent geo-technology that has received little attention in the public or general technical spheres is the introduction of Enhanced Geothermal Power in the UK. In early 2018, a project testing the viability of deep geothermal heat and power will begin in Cornwall, England, and is likely to face contested issues of public perception that have confronted other novel geological technologies, such as Carbon Capture and Storage and hydraulic fracturing. To address concerns about how the UK public will conceptualise this new technology, the Cornish deep geothermal project has developed an innovative partnership between the industry partner operating the test drilling site and a geoscience cognition research partner. That research partner integrates geoscience, cognitive psychology and media communication specialists in a three-year project that will track evolving public perceptions of and community attitudes to geothermal energy; from initial community engagements to the drilling operations and, ultimately, to the operation of the facility. Key in this study will be an exploration of how the industrial partnership impacts and affects the research process as the site testing proceeds, but also how the research process can engage with issues of communication between the industrial partner and the public. Overall, the interdisciplinary research aims to better understand how public/industry partnerships develop and evolve over the lifetime of an active geo-energy project and thereby help inform and improve community-centred geo-communication around novel energy technologies in the future.
Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems
NASA Astrophysics Data System (ADS)
Kenedi, C. L.; Leary, P.; Malin, P.
2013-12-01
Geothermal system in situ flow systematics derived from detailed examination of grain-scale structures, fabrics, mineral alteration, and pore connectivity may be extremely misleading if/when extrapolated to reservoir-scale flow structure. In oil/gas field clastic reservoir operations, it is standard to assume that small scale studies of flow fabric - notably the Kozeny-Carman and Archie's Law treatments at the grain-scale and well-log/well-bore sampling of formations/reservoirs at the cm-m scale - are adequate to define the reservoir-scale flow properties. In the case of clastic reservoirs, however, a wide range of reservoir-scale data wholly discredits this extrapolation: Well-log data show that grain-scale fracture density fluctuation power scales inversely with spatial frequency k, S(k) ~ 1/k^β, 1.0 < β < 1.2, 1cycle/km < k < 1cycle/cm; the scaling is a ';universal' feature of well-logs (neutron porosity, sonic velocity, chemical abundance, mass density, resistivity, in many forms of clastic rock and instances of shale bodies, for both horizontal and vertical wells). Grain-scale fracture density correlates with in situ porosity; spatial fluctuations of porosity φ in well-core correlate with spatial fluctuations in the logarithm of well-core permeability, δφ ~ δlog(κ) with typical correlation coefficient ~ 85%; a similar relation is observed in consolidating sediments/clays, indicating a generic coupling between fluid pressure and solid deformation at pore sites. In situ macroscopic flow systems are lognormally distributed according to κ ~ κ0 exp(α(φ-φ0)), α >>1 an empirical parameter for degree of in situ fracture connectivity; the lognormal distribution applies to well-productivities in US oil fields and NZ geothermal fields, ';frack productivity' in oil/gas shale body reservoirs, ore grade distributions, and trace element abundances. Although presently available evidence for these properties in geothermal reservoirs is limited, there are indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad
The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowder, T.; Hubbell, R.; Mendelsohn, M.
This report is a review of geothermal project financial terms as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The data were collected over seven analysis periods from the fourth quarter (Q4) of 2009 to the second half (2H) of 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolo, Daniel
The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour andmore » collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.« less
Exploration geothermal gradient drilling, Platanares, Honduras, Central America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.
1988-01-01
This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less
NASA Astrophysics Data System (ADS)
Trumpy, Eugenio; Manzella, Adele
2017-02-01
The Italian National Geothermal Database (BDNG), is the largest collection of Italian Geothermal data and was set up in the 1980s. It has since been updated both in terms of content and management tools: information on deep wells and thermal springs (with temperature > 30 °C) are currently organized and stored in a PostgreSQL relational database management system, which guarantees high performance, data security and easy access through different client applications. The BDNG is the core of the Geothopica web site, whose webGIS tool allows different types of user to access geothermal data, to visualize multiple types of datasets, and to perform integrated analyses. The webGIS tool has been recently improved by two specially designed, programmed and implemented visualization tools to display data on well lithology and underground temperatures. This paper describes the contents of the database and its software and data update, as well as the webGIS tool including the new tools for data lithology and temperature visualization. The geoinformation organized in the database and accessible through Geothopica is of use not only for geothermal purposes, but also for any kind of georesource and CO2 storage project requiring the organization of, and access to, deep underground data. Geothopica also supports project developers, researchers, and decision makers in the assessment, management and sustainable deployment of georesources.
The GEOTREF program, a new approach for geothermal investigation
NASA Astrophysics Data System (ADS)
Gérard, Frédéric; Viard, Simon; Garcia, Michel
2017-04-01
The GEOTREF is an R&D program supported by the ADEME, French environmental agency and by the «Investissement d'Avenir », a French government program to found innovative projects. The GEOTREF program aims to develop an integrated analysis of high temperature geothermal reservoir in volcanic context. It is a collaborative program between nine research laboratories and two industrial partners. This program is supported for four years and funds 12 PhDs and 5 post-doctoral grants in various fields: geology, petrography, petrophysics, geophysics, geochemistry, reservoir modelling. The first three years are dedicated to the exploration phases that will lead to the drilling implantation. The project has two main objectives. 1.- Developing innovative and interactive methods and workflows leading to develop prospection and exploration in per volcanic geothermal target. This objective implicates: Optimization of the targeting to mitigate financial risks Adapting oil and gas exploration methods to geothermal energy, especially in peri-volcanic context. 2.- Applying this concept to different prospects in the Caribbean and South America The first target zone is located in Guadeloupe, an island of the active arc of the subduction zone where the Atlantic plate subducts under the Caribbean one. The GEOTREF prospect zone is on the Basse Terre Island in its south part closed to the Soufriere volcano, the active volcanic system. On the same island a geothermal field is exploited in Bouillante, just northward from the GEOTREF targeting area.
generation Focus on CSP, and projects in Wind, Geothermal and Hydropower Business Development e.g. customer interaction, solution of key Customer problems, scope development of projects and helping the
Helical screw expander evaluation project
NASA Technical Reports Server (NTRS)
Mckay, R.
1982-01-01
A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Michał
2017-11-01
The basic source of information for determining the temperature distribution in the rock mass and thus the potential for thermal energy contained in geothermal water conversion to electricity, are: temperature measurements in stable geothermic conditions, temperature measurements in unstable conditions, measurements of maximum temperatures at the bottom of the well. Incorrect temperature estimation can lead to errors during thermodynamic parameters calculation and consequently economic viability of the project. The analysis was performed for the geothermal water temperature range of 86-100°C, for dry working fluid R245fa. As a result of the calculations, the data indicate an increase in geothermal power as the geothermal water temperature increases. At 86°C, the potential power is 817.48 kW, increases to 912.20 kW at 88°C and consequently to 1 493.34 kW at 100°C. These results are not surprising, but show a scale of error in assessing the potential that can result improper interpretation of the rock mass and geothermal waters temperature.
Iovenitti, Joe
2014-01-02
The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.
COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems
NASA Astrophysics Data System (ADS)
Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii
2014-05-01
Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the field by Gudmundsson & Arnorsson [3] and by Icelandic partners of the COTHERM project suggests that the concept of partial equilibrium with instantaneous precipitation of secondary minerals is not sufficient to satisfactorily describe the experimental data. Considering kinetic controls also for secondary minerals appears as indispensable to properly describe the geothermal system evolution using a reactive transport modelling approach [4]. [1] Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U., 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. http://gems.web.psi.ch. [2] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. U.S.Geological Survey, Menlo Park, CA, pp. 1-64. [3] Gudmundsson B.T., Arnorsson S., 2005. Secondary mineral-fluid equilibria in the Krafla and Namafjall geothermal systems, Iceland. Applied Geochememistry 20, 1607-1625. [4] Kosakowski, G., & Watanabe, N., 2013. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2013.11.008
Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter Eugene
2013-04-15
This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field's main producers, and the chemical stimulation of target well 27-15.« less
Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter Eugene
This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field's main producers, and the chemical stimulation of target well 27-15.« less
Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisano, Albert P.
2013-04-26
This project utilizes Silicon Carbide (SiC) materials platform to fabricate advanced sensors to be used as high-temperature downhole instrumentation for the DOE’s Geothermal Technologies Program on Enhanced Geothermal Systems. The scope of the proposed research is to 1) develop a SiC pressure sensor that can operate in harsh supercritical conditions, 2) develop a SiC temperature sensor that can operate in harsh supercritical conditions, 3) develop a bonding process for adhering SiC sensor die to well casing couplers, and 4) perform experimental exposure testing of sensor materials and the sensor devices.
NASA Astrophysics Data System (ADS)
Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.
2011-12-01
The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks of the Chocolate Mountains. The tomographic model shows that the shallow metasedimentary basement as well as the geothermal and volcanic activity seem to be bounded by the sharp western and eastern margins of the Brawley Seismic Zone. At this location, strongly fractured crust allows both hydrothermal and magmatic fluids to rise to the surface in the most rapidly extending portion of the rift basin.
The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.
2007-12-01
The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.
Geothermal Exploration in Hot Springs, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toby McIntosh, Jackola Engineering
2012-09-26
The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacialmore » Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Teresa E.; Richards, Maria C.; Horowitz, Franklin G.
Geothermal energy is an attractive sustainable energy source. Yet project developers need confirmation of the resource base to warrant their time and financial resources. The Geothermal Play Fairway Analysis of the Appalachian Basin evaluated risk metrics that communicate the favorability of potential low-temperature geothermal energy resources in reservoirs more than 1000 m below the surface. This analysis is focused on the direct use of the heat, rather than on electricity production. Four risk factors of concern for direct-use geothermal plays in the Appalachian Basin portions of New York, Pennsylvania, and West Virginia are examined individually, and then in combination: 1)more » thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization opportunities. Uncertainty in the risk estimation is quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project may be applied in other sedimentary basins as a foundation for low temperature (50-150 °C), direct use geothermal resource, risk, and uncertainty assessment. Three methods with which to combine the four risk factors were used. Among these, the averaging of the individual risk factors indicates the most favorable counties within the study area are the West Virginia counties of Monongalia, Harrison, Lewis (dubbed the Morgantown–Clarksburg play fairway), Putnam, and Kanawha (Charleston play fairway), the New York counties of Chemung and Steuben plus adjacent Bradford county in Pennsylvania (Corning–Ithaca play fairway), and the Pennsylvania counties of Mercer, Crawford, Erie, and Warren, and adjacent Chautauqua county in New York (together, the Meadville–Jamestown play fairway). These higher priority regions are surrounded by broader medium priority zones. Also worthy of additional exploration is a broad region near Pittsburgh Pennsylvania, for which the available geological data are insufficient to fully analyze the geological risks but yet the population is high. First, to assess the spatial variation in the depth to which one would need to drill to obtain geothermal temperatures that are useful to a future project, the project used bottom-hole temperature data from Appalachian Basin oil and gas exploration. These bottom hole temperature data are abundant but of low quality. Second, the project examined the potential for sufficient water flow rates through rocks to harvest heat from a geothermal well field, considering only natural reservoirs. This analysis provides a very incomplete picture of spatial variability of natural reservoirs because the oil and gas reservoir data lack key properties and are spatially biased toward those locations with profitable amounts of hydrocarbons in the rock pore spaces. Third, in light of the fact that earthquake activity has been induced in several states by subsurface work related to the oil and gas industry, this project examined the potential for similar activity in the Appalachian Basin. Acknowledging that data for such a task are insufficient, we utilized what was available: records of seismic activity, regional estimates of the orientations of stress in the rocks, and locations and orientations of zones of lateral change in rock properties at depths down to several kilometers below Earth’s surface. With these data, we created a first approximation of spatially variable risks for induced earthquakes. Because no data existed with which to test the reliability of these methods, the results have a high degree of uncertainty. Fourth, we examined the spatial variability of the above-the-ground factors that contribute to the economical viability of projects to tap low-temperature geothermal resources for direct-use. We worked principally with population density as a regionally known variable that would impact the cost of district heating. The resulting maps omit the costs of producing the hot water from the ground, because the below-ground costs are directly coupled to the thermal resource risk factor and natural reservoir risk factor – later analyses of those costs will be needed. The result of the district heating analysis is highly skewed: few census locations yielded a low estimated surface cost. The team also identified more than 165 prospects for high value direct-use geothermal energy opportunities such as industrial sites, university campuses, and federal facilities, among others. At the closure of this regional analysis, the most significant technical uncertainties are 1) reservoir distribution and capacities; 2) validity of thermal resource maps, and 3) the holistic estimation of Levelized Cost of Heat for favorable geological situations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Joseph
2017-04-20
Mapping permeability distributions in geothermal reservoirs is essential for reducing the cost of geothermal development. To avoid the cost and sampling bias of measuring permeability directly through drilling, we require remote methods of imaging permeability such as geophysics. Electrical resistivity (or its inverse, conductivity) is one of the most sensitive geophysical properties known to reflect long range fluid interconnection and thus the likelihood of permeability. Perhaps the most widely applied geophysical methods for imaging subsurface resistivity is magnetotellurics (MT) due to its relatively great penetration depths. A primary goal of this project is to confirm through ground truthing at existingmore » geothermal systems that MT resistivity structure interpreted integratively is capable of revealing permeable fluid pathways into geothermal systems.« less
Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Augustine, C.; Goldberg, M.
2012-09-01
The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide alsomore » provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.« less
Shervais, John
2012-01-11
The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta
Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.
1970-01-01
New techniques, involving interpretation of panchromatic, ektachrome and ektachrome infrared aerographic photogaphs and thermographic infrared imagery recording emission from the earth's surface in middle and far infrared wavelengths (3-5??m and 8-14??m), are being introduced in geothermal investigations in Mexico to identify outstanding structural and geologic features in a rapid and economical manner. The object of this work is to evaluate the new airborne infrared techniques and equipment as a complement to the data obtained from panchromatic aerial photography. This project is part of the Mexican remote sensing program of natural resources carried out under the auspices of the Comision Nacional del Espacio Exterior and in which the Research Institute (Instituto de Investigaciones de la Industria Electrica) is actively participating. The present study was made cooperatively with the U.S. National Aeronautics and Space Administration and the U.S. Geological Survey. The Los Negritos-Ixtlan de los Hervores geothermal fields are located east of Lake Chapala at the intersection of the Sierra Madre occidental and the west-central segment of the neovolcanic axis of Mexico. The two principal zones of hydrothermal activity occur in a tectonic trench filled with lake sediments of the Quaternary intercalated with Quaternary and Holocene volcanic rocks and characterized by an intricate system of block-fault tectonics, part of the Chapala-Acambay tectonic system, along which there has been volcanic activity in modern time. Surface manifestations of geothermal activity consist of relatively high heat flow and hot springs, small geysers and small steam vents aligned along an E-W axis at Ixtlan, possibly at the intersection of major fault trends and mud volcanoes and hot pools aligned NE-SW at Los Negritos. More than 20 exit points of thermal waters are shown on infrared imagery to be aligned along an extension of the Ixtlan fault between Ixtlan and El Salitre. A narrow zone of hydrothermal alteration and deposition at the surface is identifiable on the infrared imagery of this area, closey related spatially to a resistivity low at depth. Extinct geothermal areas near El Salitre, Ixtlan, and farther west at San Gregorio are clearly delineated on both infrared images and infrared ektachrome photographs. Predawn infrared images also show high-angle fault zones suggesting the dominance of block tectonics in much of the area. Special image enhancement techniques applied to the original magnetic tape records will be required for more precise identification of warm ground zones and for a qualitative or semiquantitative estimate of ground radiance associated with anomalously high convective heat flow. ?? 1971.
World Geothermal Congress WGC-2015
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2016-08-01
This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.
NASA Astrophysics Data System (ADS)
Ferron, B.; Bouruet Aubertot, P.; Cuypers, Y.; Schroeder, K.; Borghini, M.
2017-08-01
The dissipation rate of turbulent kinetic energy
Identification of geothermal system using 2D audio magnetotelluric method in Telomoyo volcanic area
NASA Astrophysics Data System (ADS)
Romadlon, Arriqo'Fauqi; Niasari, Sintia Windhi
2017-07-01
Geothermal area of Candi Umbul Telomoyo is one of geothermal fields in Indonesia. This geothermal field is located in the Grabag district, Magelang, Central Java. This geothermal field was formed in a volcanic quarter. The main aim in this study is to identify geothermal system at Telomoyo volcanic area through synthetic model analysis. There are surface manifestations such as warm springs and altered rocks. Results of geochemistry study showed reservoir's temperature was 230°C. The Warm spring in Candi Umbul was the outflow zone of the Telomoyo geothermal system. The Telomoyo geothermal system was indicated chloride-bicarbonate type of warm spring. In addition, the results of geological mapping indicate that the dominant fault structure has southwest-northeast orientation. The fault was caused by the volcanic activity of mount Telomoyo. In this research conducted data analysis from synthetics model. It aims to estimate the response of magnetotelluric methods in various models of geothermal systems. In this study, we assumed three models of geothermal system in Candi Umbul-Telomoyo area. From the data analysis it was known that the model 1 and model 2 can be distinguished if the measurements were conducted in a frequency range of 0.01 Hz to 1000 Hz. In response of tipper (Hz) had a small value on all models at all measurement points, so the tipper cannot distinguish between model 1, model 2 and model 3. From this analysis was known that TM mode is more sensitive than TE mode at the resistivity and phase responses.
The concept of geothermal exploration in west Java based on geophysical data
NASA Astrophysics Data System (ADS)
Gaffar, Eddy Z.
2018-02-01
Indonesia has the largest geothermal prospects in the world and most of them are concentrated in Java and Sumatera. The ones on Sumatra island are generally controlled by Sumatra Fault, either the main fault or the second and the third order fault. Geothermal in Java is still influenced by the subduction of oceanic plates from the south of Java island that forms the southern mountains extending from West Java to East Java. From a geophysical point of view, there is still no clue or concept that accelerates the process of geothermal exploration. The concept is that geothermal is located around the volcano (referred to the volcano as a host) and around the fault (fault as a host). There is another method from remote sensing analysis that often shows circular feature. In a study conducted by LIPI, we proposed a new concept for geothermal exploration which is from gravity analysis using Bouguer anomaly data from Java Island, which also show circular feature. The feature is supposed to be an "ancient crater" or a hidden caldera. Therefore, with this hypothesis, LIPI Geophysics team will try to prove whether this symptom can help accelerate the process of geothermal exploration on the island of West Java. Geophysical methods might simplify the exploration of geothermal prospect in West Java. Around the small circular feature, there are some large geothermal prospect areas such as Guntur, Kamojang, Drajat, Papandayan, Karaha Bodas, Patuha. The concept proposed by our team will try be applied to explore geothermal in Java Island for future work.
Silver Peak Innovative Exploration Project (Ram Power Inc.)
Miller, Clay
2010-01-01
Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.
Geothermal alteration of basaltic core from the Snake River Plain, Idaho
NASA Astrophysics Data System (ADS)
Sant, Christopher J.
The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, J.K; Minerbi, L.; Kanahele, P.
This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparingmore » Puna and southeast Maui; and Pele beliefs, customs, and practices.« less
Geothermal energy: opportunities for California commerce. Phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories weremore » found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.« less
A consortium of three brings real geothermal power for California's Imperial valley -- at last
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1983-04-01
Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication ofmore » the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.« less
Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia
NASA Astrophysics Data System (ADS)
Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.
2014-05-01
Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is superior to the common seismic explosive source techniques, both with respect to production rate as well as resolution and data quality. Source signal frequencies of 20-80 Hz are most efficient for the attempted depth penetration, even though influenced by the dry subsurface conditions during the experiment. Depth penetration ranges between 0.5-1 km. Based on these new experimental data, processing workflows can be tested the first time for adapted imaging strategies. This will not only allow to focus on larger exploration depths covering the geothermal reservoir at the Wayang Windu power plant site itself, but also opens the possibility to transfer the lessons learned to other sites.
Human Health Science Building Geothermal Heat Pump Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leidel, James
2014-12-22
The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 verticalmore » borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.« less
COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems
NASA Astrophysics Data System (ADS)
Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart
2014-05-01
In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving three components: (1) A literature study to find relevant, existing theoretical models, (2) laboratory determinations to confirm their validity for Icelandic rocks of interest and (3) a field campaign to obtain in-situ, shallow rock properties from seismic and resistivity tomography surveys over a fossilized and exhumed geothermal system. Theoretical models describing physical behavior for rocks with strong inhomogeneities, complex pore structure and complicated fluid-rock interaction mechanisms are often poorly constrained and require the knowledge about a wide range of parameters that are difficult to quantify. Therefore we calibrate the theoretical models by laboratory measurements on samples of rocks, forming magmatic geothermal reservoirs. Since the samples used in the laboratory are limited in size, and laboratory equipment operates at much higher frequency than the instruments used in the field, the results need to be up-scaled from the laboratory scale to field scale. This is not a simple process and entails many uncertainties.
Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2
NASA Astrophysics Data System (ADS)
Kuo, C. W.; Song, S. R.
2014-12-01
A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and injection rates, heat source, fractures, and all the relevant parameters are performed to evaluate their effects on temperature distribution of reservoir for 30 years. Through these sensitivity studies, we can design the better geothermal system in I-Lan area and reduce the risk of exploitation.
NASA Astrophysics Data System (ADS)
Neumann, K.; Dowling, C.; Florea, L.; Dunn, M.; Samuelson, A. C.; Lowe, J.
2013-12-01
Ball State University (BSU), located within the city of Muncie, Indiana, began installing the nation's largest ground-source geothermal project in 2009. Currently, BSU is burning over 20,000 tons of coal annually to satisfy heating and cooling demands of the school and is one of the largest emitters of CO2, SO2 and mercury in the city of Muncie and surrounding Delaware County. The elimination of coal burning will reduce aerial pollution by an estimated 1400 tons of SO2 and 4 pounds of mercury annually, once the system is fully operational. Currently, the groundsource geothermal system is being installed in Phases. Phase 1 includes 1803 400-ft deep geothermal boreholes that were drilled in a 15x15 ft grid in two large fields (North and South) in the northern part of campus. Two geothermal exchange loops were installed in each borehole to add or remove heat from the ground. BSU students and faculty collected hydrogeologic and temperature data from a series of groundwater monitoring wells, beginning Summer 2010. The installation of the second phase in the southern part of campus has commenced.. Despite the rise in community-scale ground-source geothermal energy systems, there is very little empirical information on their effects upon the groundwater environment, or, vice versa, of the effects of the groundwater flow pattern on the geothermal field. Previous studies have triggered concern over the impact of large-scale geothermal systems where increases in groundwater temperatures were documented. We will demonstrate how, since BSU initiated Phase 1 in late November 2011 with cold-water circulation (adding heat to the ground), the temperature increased over 10 degrees Celsius in the center of the South Field, with temperatures rising in other surrounding monitoring wells depending on groundwater movement and their distance from the edge of the geothermal boreholes. The temperature increases are distinctively different in the upper highly hydraulically conductive aquifers (Quaternary till) and the underlying poorly conductive formations (Ordovician and Silurian limestone and shale). Maintaining a temperature differential between the exchange loops and the geologic substrate and/or groundwater is crucial to the long term efficiency of the system, and continued monitoring both of the hydrology and engineering aspects of the project will be necessary.
High Temperature Perforating System for Geothermal Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, Moises E.
The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Daniel F.
2015-11-30
The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less
The 125 MW Upper Mahiao geothermal power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forte, N.
1996-12-31
The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by amore » subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.« less
NGDS User Centered Design Meeting the Needs of the Geothermal Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Suzanne; Zheng, Sam; Patten, Kim
2013-10-15
In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineer- ing the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been research based, highly collabora- tive, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.
OM300 Direction Drilling Module
MacGugan, Doug
2013-08-22
OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process
NGDS USER CENTERED DESIGN MEETING THE NEEDS OF THE GEOTHERMAL COMMUNITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Suzanne; Zheng, Sam Xianjun; Patten, Kim
In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineering the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been researched based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumitramihardja, A.; Robert, D.; Ibrahim, K.
1986-07-01
Indonesia is one of the largest developing countries in southeast Asia; therefore, energy demand tends to increase continuously. Fortunately, large amounts of energy resource potentials are available, among which is energy from geothermal resources. Some of these energy resources comprise exportable commodities such as oil, natural gas, and coal; others are for domestic consumption such as hydrothermal and geothermal energy. During the next several years the Indonesian government intends to accelerate development of nonexportable energies used to generate electrical power in order to save exportable energies that can bring foreign currencies. Therefore, geothermal has become a priority goal. Moreover, thismore » type of energy is of particular interest because Indonesia has a large geothermal energy potential related to the Circum-Pacific volcanic belts. These geothermal manifestations are spread throughout almost the entire archipelago, except the island of Kalimantan. Geothermal exploration in Indonesia began in 1929 when some shallow wells were drilled in Kamojang, West Java. Actual exploration for geothermal energy to generate electricity commenced in 1972. Preliminary reconnaissance surveys were made by the Volcanological Survey of Indonesia. In 1982, the state oil company, Pertamina, was placed in charge of exploration and development activities for geothermal energy in different fields, either by its own activities or in the form of joint-operation contracts with foreign companies. In addition, the state electrical company, PLN, is responsible for installing a power plant to generate and distribute electricity. Presently, several projects are at different stages of maturity. Some fields are in an exploration stage, and others are already developed.« less
Desert Peak East Enhanced Geothermal Systems (EGS) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemach, Ezra; Drakos, Peter; Spielman, Paul
2013-09-30
This manuscript is a draft to replaced with a final version at a later date TBD. A summary of activities pertaining to the Desert Peak EGS project including the planning and resulting stimulation activities.
Shervais, John
2011-06-16
The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta
Mountain Home Well - Borehole Geophysics Database
Shervais, John
2012-11-11
The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta
Kimberly Well - Borehole Geophysics Database
Shervais, John
2011-07-04
The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta
Small-scale Geothermal Power Plants Using Hot Spring Water
NASA Astrophysics Data System (ADS)
Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.
2013-12-01
The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)
Geysers advanced direct contact condenser research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, J.; Bahning, T.; Bharathan, D.
1997-12-31
The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less
NASA Astrophysics Data System (ADS)
Brehme, Maren; Bauer, Klaus; Nukman, Mochamad; Regenspurg, Simona
2017-04-01
Understanding geochemical processes is an important part of geothermal exploration to get information about the source and evolution of geothermal fluids. However, in most cases knowledge of fluid properties is based on few parameters determined in samples from the shallow subsurface. This study presents a new approach that allows to conclude from the combination of a variety of these data on processes occurring at depth in a geothermal reservoir. The neural network clustering technique called "self-organizing maps" (SOMs) successfully distinguished two different geothermal settings based on a hydrochemical database and disclosed the source, evolution and flow pathways of geothermal fluids. Scatter plots, as shown in this study, are appropriate presentations of element concentrations and the chemical interaction of water and rock at depth. One geological setting presented here is marked by fault dominated fluid pathways and minor influence of volcanic affected fluids with high concentrations of HCO3, Ca and Sr. The second is a magmatically dominated setting showing strong alteration features in volcanic rocks and accommodates acidic fluids with high SO4 and Si concentrations. Former studies, i.e., Giggenbach (1988), suggested Cl, HCO3 and SO4 to be generally the most important elements for understanding hydrochemical processes in geothermal reservoirs. Their relation has been widely used to classify different water types in geothermal fields. However, this study showed that non-standard elements are at least of same importance to reveal different fluid types in geothermal systems. Therefore, this study is an extended water classification approach using SOM for element correlations. SOM have been proven to be a successful method for analyzing even relatively small hydrochemical datasets in geothermal applications.
Alum Innovative Exploration Project (Ram Power Inc.)
Miller, Clay
2010-01-01
Data generated from the Alum Innovative Exploration Project, one of several promising geothermal properties located in the middle to upper Miocene (~11-5 Ma, or million years BP) Silver Peak-Lone Mountain metamorphic core complex (SPCC) of the Walker Lane structural belt in Esmeralda County, west-central Nevada. The geothermal system at Alum is wholly concealed; its upper reaches discovered in the late 1970s during a regional thermal-gradient drilling campaign. The prospect boasts several shallow thermal-gradient (TG) boreholes with TG >75oC/km (and as high as 440oC/km) over 200-m intervals in the depth range 0-600 m. Possibly boiling water encountered at 239 m depth in one of these boreholes returned chemical- geothermometry values in the range 150-230oC. GeothermEx (2008) has estimated the electrical- generation capacity of the current Alum leasehold at 33 megawatts for 20 years; and the corresponding value for the broader thermal anomaly extending beyond the property at 73 megawatts for the same duration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiann-Cherng; Raymond, David W.; Prasad, Somuri V.
Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.« less
Advanced Percussive Drilling Technology for Geothermal Exploration and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiann; Raymond, David; Prasad, Somuri
Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.« less
NASA Astrophysics Data System (ADS)
Sass, Ingo; Heldmann, Claus-Dieter; Schäffer, Rafael
2016-06-01
Karst aquifers may on one hand improve the efficiency of geothermal systems due to increased permeabilities, but on the other hand, high groundwater velocities can reduce the efficiency of the underground heat storage capacity. The marble karst aquifer of the Hochstegen formation was explored and developed for the first time as an intermediate-depth geothermal energy storage system at Finkenberg, Tux valley (Tyrol, Austria). Geological field studies and a spring monitoring program for the project revealed characteristic hydro-chemical signatures related to the catchments in specific tectonic units depending on their lithology. Observations showed that the catchment area of the Hochstegen formation karst aquifer extends up to 2650 m a.s.l. southwest of Finkenberg. In the boreholes, karstification was detected to 400 m below surface (Sass et al., 2016). A monitoring program involving seven springs downgradient of the boreholes has shown that the geothermal project has had no long-term impact on groundwater quality.
76 FR 44000 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
..., NV, Salt Wells Energy Projects, Proposal for Three Separate Geothermal Energy and Transmission...-328-4200. EIS No. 20110233, Draft EIS, BLM, WY, Chokecherry and Sierra Madre Wind Energy Project, Proposes to Construct and Operate a Wind Energy Project, South of Rawlins, Carbon County, WY, Comment...
NASA Astrophysics Data System (ADS)
Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.
2011-12-01
The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician-Mississippian section contains mainly high-conductivity carbonate. The Upper Mississippian, by contrast, includes complexly interstratified carbonate and siliciclastic rock types with variable thermal conductivity. The Gulf Coast basin of southwest Alabama contains numerous wells penetrating a Mesozoic stratigraphic section that is between 12,000 and 22,000 ft thick. Most wells reach total depth in Jurassic carbonate and sandstone or in Upper Cretaceous sandstone, and the deepest wells have BHTs greater than 400°F. Temperature readings are available at multiple depths for numerous wells, due to multiple log runs. These wells are particularly valuable owing to the availability of data from formations that are not reservoirs. Geothermal gradient is affected by geopressure, which is typically present below 10,000 ft. Gradient is further affected by a thick evaporite section, which can include more than 3,000 ft of salt in the Jurassic section. Thermal data from these wells are invaluable for characterizing petroleum systems and for identifying zones of warm water that can be used as geothermal energy sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shonder, John A; Hughes, Patrick
2006-01-01
Energy savings performance contracts (ESPCs) are a method of financing energy conservation projects using the energy cost savings generated by the conservation measures themselves. Ideally, reduced energy costs are visible as reduced utility bills, but in fact this is not always the case. On large military bases, for example, a single electric meter typically covers hundreds of individual buildings. Savings from an ESPC involving only a small number of these buildings will have little effect on the overall utility bill. In fact, changes in mission, occupancy, and energy prices could cause substantial increases in utility bills. For this reason, other,more » more practical, methods have been developed to measure and verify savings in ESPC projects. Nevertheless, increasing utility bills--when ESPCs are expected to be reducing them--are problematic and can lead some observers to question whether savings are actually being achieved. In this paper, the authors use utility bill analysis to determine energy, demand, and cost savings from an ESPC project that installed geothermal heat pumps in the family housing areas of the military base at Fort Polk, Louisiana. The savings estimates for the first year after the retrofits were found to be in substantial agreement with previous estimates that were based on submetered data. However, the utility bills also show that electrical use tended to increase as time went on. Since other data show that the energy use in family housing has remained about the same over the period, the authors conclude that the savings from the ESPC have persisted, and increases in electrical use must be due to loads unassociated with family housing. This shows that under certain circumstances, and with the proper analysis, utility bills can be used to estimate savings from ESPC projects. However, these circumstances are rare and over time the comparison may be invalidated by increases in energy use in areas unaffected by the ESPC.« less
Maps, Models and Data from Southeastern Great Basin PFA, Phase II Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Greg
This submission includes composite risk segment models in raster format for permeability, heat of the earth, and MT, as well as the final PFA model of geothermal exploration risk in Southwestern Utah, USA. Additionally, this submission has data regarding hydrothermally altered areas, and opal sinter deposits in the study area. All of this information lends to the understanding and exploration for hidden geothermal systems in the area.
Geothermal development in southwest Idaho: the socioeconomic data base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, S.G.; Russell, B.F.
This report inventories, analyzes, and appraises the exiting socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.
Geothermal development in southwest Idaho: the socioeconomic data base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer,S.G.; Russell, B.F.
This report inventories, analyzes, and appraises the existing socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.
Electric power generation using geothermal brine resources for a proof of concept facility
NASA Technical Reports Server (NTRS)
Hankin, J. W.
1974-01-01
An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. Onge, Melinda
The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated basedmore » on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.« less
EEC focuses new energy budget on solar and conservation R and D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-17
Solar energy, followed by conservation and geothermal energy, will have top priority for the European Economic Community's (ECC) $142 million energy research budget through 1983. Proposals for the cost-shared projects, of which EEC will pay half, are being accepted by eligible companies and research organizations. Committees for each technology advise the European Commission on which proposals to accept and suggest an appropriate funding level. The EEC also funds demonstrations of promising research to determine economic feasibility. Major emphasis will be placed during the present four-year budget for solar research on photovoltaics. Other projects include a European solar-insolation atlas and solar-heatingmore » manual, advanced batteries, and energy storage systems. Geothermal projects will focus on resource mapping, exploratory drilling, hydrogen production, and energy forecasting. (DCK)« less
The Geothermal Potential, Current and Opportunity in Taiwan
NASA Astrophysics Data System (ADS)
Song, Sheng-Rong
2016-04-01
Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base-load electricity and offers an opportunity for a country with naturally free-resource and less dependence on fossil fuel. However, development of geothermal energy has been stopped for more than 30 years, and currently no working geothermal power plant existed in Taiwan. To jump-start the geothermal exploitation rather than solely rely on knowledge, we also need to introduce the techniques from outside of this country.
NASA Astrophysics Data System (ADS)
Vienken, Thomas; Dietrich, Peter
2013-04-01
The increasing use of shallow geothermal energy, especially the rising numbers of geothermal ground source heat pumps that are installed to nowadays heat entire residential neighborhoods and the increasing use of ground water to cool residential buildings, as well as industrial facilities have led to an increasing need to assess possible effects of the use of shallow geothermal energy and to model subsurface heat transport. Potential effects include depletion of groundwater quality with resulting reduction of ground water ecosystem services. Heat and mass transport by groundwater dispersion and convection may lead to a carryover of effects into groundwater dependent ecosystems. These effects are often not directly accessible. Therefore, conflicting interests between geothermal energy use and groundwater protection as well as conflicting use between geothermal energy users are expected to arise especially in densely populated urban areas where the highest demand for the use of shallow geothermal energy is located but exploitation of shallow geothermal energy is limited and, at the same time, groundwater vulnerability is at its highest. Until now, only limited information about the potential effects of the intensive use of ground source heat pumps are available. Analyses conducted in the course of regulatory permission procedures consider only single applications and often rely on models that are solely parameterized based on standard literature values (e.g. thermal conductivity, porosity, and hydraulic conductivity). In addition, heat transport by groundwater dynamics is not considered. Due to the costs of conventionally applied geothermal in-situ tests (e.g. Geothermal Response Test - GRT) these can often only be applied at larger project scale. In this regard, our study will showcase the necessity for the development of novel geothermal monitoring and exploration concepts and tools based on a case story of a thermal intensively used residential neighborhood. We will show that the development of new monitoring and exploration techniques is the prerequisite for the sustainable thermal use of the shallow subsurface in the framework of a geothermal resource management.
High Temperature 300°C Directional Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John
2015-07-31
Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang
2012-12-13
There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayle, Phillip A., Jr.
The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean,more » renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.« less
Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Herbert; Vecchiarelli, Alessandra
2014-05-01
GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reportedmore » in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.« less
Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China
NASA Astrophysics Data System (ADS)
Lin, W.; Gan, H.
2017-12-01
Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.
The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach
NASA Astrophysics Data System (ADS)
Horowitz, F. G.; O'Bryan, L.
2010-12-01
The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.
Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical
NASA Astrophysics Data System (ADS)
Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.
2017-12-01
The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.
Deep geothermal resources in the Yangbajing Field, Tibet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Ping; Jin Jian; Duo Ji
1997-12-31
Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenne, S.; Young, K. R.; Thorsteinsson, H.
The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (allmore » available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).« less
Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wannamaker, Philip E.
The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less
San Diego Gas and Electric Company Imperial Valley geothermal activities
NASA Technical Reports Server (NTRS)
Hinrichs, T. C.
1974-01-01
San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chua, S.E.; Abito, G.F.
A 1-MWt multi-crop drying facility using low-enthalpy waste geothermal heat is installed within the vicinity of the Southern Negros Geothermal Project (January, 1994). The plant is envisioned to demonstrate the direct use of geothermal resources for agro-industrial purposes and at the same time, provide major benefits by raising the quality of the agro-industrial products to meet higher standards. The development and design of the heat exchangers that supply the heat and the dryer used in the facility is presented. The process flow and the dryer parameters in the drying of coconut meat and other crops have been determined. The initialmore » design of the dryers target the dehydration of coconut meat and other crops using boxes and trays.« less
Brady's Geothermal Field Nodal Seismometer Active Source Data Sample
Kurt Feigl
2016-03-25
This data is in sac format and includes recordings of two active source events from 238 three-component nodal seismometers deployed at Bradys Hot Springs geothermal field as part of the PoroTomo project. The source was a viberoseis truck operating in P-wave vibrational mode and generating a swept-frequency signal. The files are 33 seconds long starting 4 seconds before each sweep was initiated. There is some overlap in the file times.
2014 Annual Report, Geothermal Technologies Office
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2015-03-01
In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renew, Jay; Hansen, Tim
Southern Research Institute (Southern) teamed with partners Novus Energy Technologies (Novus), Carus Corporation (Carus), and Applied Membrane Technology, Inc. (AMT) to develop an innovative Geothermal ThermoElectric Generation (G-TEG) system specially designed to both generate electricity and extract high-value lithium (Li) from low-temperature geothermal brines. The process combined five modular technologies including – silica removal, nanofiltration (NF), membrane distillation (MD), Mn-oxide sorbent for Li recovery, and TEG. This project provides a proof of concept for each of these technologies. The first step in the process is silica precipitation through metal addition and pH adjustment to prevent downstream scaling in membrane processes.more » Next, the geothermal brine is concentrated with the first of a two stage MD system. The first stage MD system is made of a high-temperature material to withstand geothermal brine temperatures up to 150C.° The first stage MD is integrated with a G-TEG module for simultaneous energy generation. The release of energy from the MD permeate drives heat transfer across the TE module, producing electricity. The first stage MD concentrate is then treated utilizing an NF system to remove Ca 2+ and Mg 2+. The NF concentrate will be disposed in the well by reinjection. The NF permeate undergoes concentration in a second stage of MD (polymeric material) to further concentrate Li in the NF permeate and enhance the efficiency of the downstream Li recovery process utilizing a Mn-oxide sorbent. Permeate from both the stages of the MD can be beneficially utilized as the permeates will contain less contaminants than the feed water. The concentrated geothermal brines are then contacted with the Mn-oxide sorbent. After Li from the geothermal brine is adsorbed on the sorbent, HCl is then utilized to regenerate the sorbent and recover the Li. The research and development project showed that the Si removal goal (>80%) could be achieved by increasing the pH of the brine and adding Fe 3+ under several scenarios. The NF was also successful in achieving significant Ca 2+ and Mg 2+ removal (~80%) while retaining most Li in the permeate for high strength brines. MD experiments showed that geothermal brines could be significantly concentrated with little fouling due to pre-treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Lee; Chickering, Cathy; Anderson, Arlene
2013-09-23
Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, themore » invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts (agencies, foundations, pri- vate sector), membership, fees for services (consulting, training, customization, ‘app’ development), repository services (data, services, apps, models, documents, multimedia), advertisements, fees for premier services or applications, subscriptions to value added services, licenses, contributions and donations, endow- ments, and sponsorships.« less
Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric
2015-01-01
The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinemer, V.
Alaska's diverse systems for electric power include only 4% by private utilities. Large distances and small markets make transmission impractical for the most part. Rates are variable, although the state average is low. Energy sources, except nuclear, are abundant: half the US coal reserves are in Alaska. In addition, it has geothermal, tidal, biomass, solar, wind, and hydroelectric power. Energy construction and study programs are centered in the Alaska Power Authority and include using waste heat from village diesel generators. Hydro potential is good, but access, distances, and environmental effects must be considered. The Terror Lake, Tyee Lake, Swan Lake,more » and Susitna projects are described and transmission construction, including the 345-kW Railbelt intertie, is discussed. 1 figure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin; Boardman, Richard; McKellar, Michael
This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Signe K.; Kelkar, Sharad M.; Brown, Don W.
The Geothermal Technologies Office Code Comparison Study (GTO-CCS) was established by the U.S. Department of Energy to facilitate collaboration among members of the geothermal modeling community and to evaluate and improve upon the ability of existing codes to simulate thermal, hydrological, mechanical, and chemical processes associated with complex enhanced geothermal systems (EGS). The first stage of the project, which has been completed, involved comparing simulations for seven benchmark problems that were primarily designed using well-prescribed, simplified data sets. In the second stage, the participating teams are tackling two challenge problems based on the EGS research conducted in hot dry rockmore » (HDR) at Fenton Hill, near Los Alamos, New Mexico. The Fenton Hill project, conducted by Los Alamos National Laboratory (LANL) from 1970 to 1995, was the world’s first HDR demonstration project. One of the criteria for selecting this experiment as the basis for the challenge problems was the amount and availability of data for generating model inputs. The Fenton Hill HDR system consisted of two reservoirs – an earlier Phase I reservoir tested from 1974 to 1981 and a deeper Phase II reservoir tested from 1980 to 1995. Detailed accounts of both phases of the HDR project have been presented in a number of books and reports, including a recently published summary of the lessons learned and a final report with a chronological description of the Fenton Hill project, prepared by LANL. Project documents and records have been archived and made public through the National Geothermal Data System (NGDS). Some of the data acquired from Phase II are available in electronic format readable on modern computers. These include the microseismic data from some of the important experiments (e.g. the massive hydraulic fracturing test conducted in 1983) and the injection/production wellhead data from the circulation tests conducted between 1992-1995. However, much of the data collected during the project, while publicly available, currently only exist in the form of tables or graphs within scanned documents. Therefore, in support of the GTO-CCS, the data needed for developing simulation inputs are being compiled and converted to platform independent, open readable formats so that all participating teams will have access to the same electronic data set. In some cases this requires conversion using optical character recognition, digitizing existing images, and generating the appropriate metadata from project documents. The GTO-Velo knowledge management framework, developed by Pacific Northwest National Laboratory (PNNL), was used for the benchmark problem stage of the comparison study and will also be used as the data repository for the challenge problem data sets. It is staggering and impractical to convert all published data for the Fenton Hill site, so the focus is on data that supports simulations for the three topical areas defined by the study for the challenge problems: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Conversion of these data provide value not only to GTO-CCS participants, but also to members of the geothermal community at large who may be interested in revisiting the Fenton Hill experiment in the future.« less
1976-01-01
The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are presented which will allow the Service to provide input to the federal leasing process. As an impact information source by which to judge the appropriateness of a specific activity at a specific site, a discussion of activities-impacts is provided on a phase by phase basis. Mitigation and possible enhancement techniques are also presented so that the impacts of the development can be dealt with and the fish and wildlife situation improved. The Service can achieve its objective only if biological input is made throughout the entire process of geothermal development, from exploration to testing to full field operation. A discussion of geothermal leasing procedures emphasizes the timing and nature of Service participation in current interagency lease processing, and there is a provision for the utilization of new knowledge, techniques, and responses as experience is accumulated.
El Paso County Geothermal Project at Fort Bliss. Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lear, Jon; Bennett, Carlon; Lear, Dan
The El Paso County Geothermal Project at Fort Bliss was an effort to determine the scale and scope of geothermal resources previously identified on Fort Bliss’ McGregor Range in southern Otero County, New Mexico. The project was funded with a $5,000,000 grant to El Paso County from the U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act of 2009 and a $4,812,500 match provided by private sector partners. The project was administered through the DOE Golden Field Office to awardee El Paso County. The primary subcontractor to El Paso County and project Principal Investigator -more » Ruby Mountain Inc. (RMI) of Salt Lake City, Utah - assembled the project team consisting of Evergreen Clean Energy Management (ECEM) of Provo, Utah, and the Energy & Geoscience Institute at the University of Utah (EGI) in Salt Lake City, UT to complete the final phases of the project. The project formally began in May of 2010 and consisted of two preliminary phases of data collection and evaluation which culminated in the identification of a drilling site for a Resource Confirmation Well on McGregor Range. Well RMI 56-5 was drilled May and June 2013 to a depth of 3,030 ft. below ground level. A string of slotted 7 inch casing was set in 8.75 inch hole on bottom fill at 3,017 ft. to complete the well. The well was drilled using a technique called flooded reverse circulation, which is most common in mineral exploration. This technique produced an exceptionally large and complete cuttings record. An exciting development at the conclusion of drilling was the suspected discovery of a formation that has proven to be of exceptionally high permeability in three desalinization wells six miles to the south. Following drilling and preliminary testing and analysis, the project team has determined that the McGregor Range thermal anomaly is large and can probably support development in the tens of megawatts.« less
Microearthquake Studies at the Salton Sea Geothermal Field
Templeton, Dennise
2013-10-01
The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.
The snake geothermal drilling project. Innovative approaches to geothermal exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, John W.; Evans, James P.; Liberty, Lee M.
2014-02-21
The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less
Geothermal Technologies Office 2012 Peer Review Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2013-04-01
On May 7-10, 2012, the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office conducted its annual program peer review in Westminster, CO. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the office and is a forum for feedback and recommendations on future office planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the office and to assess progress made against stated objectives. Project scoring results, expert reviewer comments, andmore » key findings and recommendations are included in this report.« less
Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.E.; Burgett, J.; Bruegmann, M.
1995-04-01
The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transectmore » lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.« less
NASA Astrophysics Data System (ADS)
Vasterling, Margarete; Wegler, Ulrich; Bruestle, Andrea; Becker, Jan
2016-04-01
Real time information on the locations and magnitudes of induced earthquakes is essential for response plans based on the magnitude frequency distribution. We developed and tested a real time cross-correlation detector focusing on induced microseismicity in deep geothermal reservoirs. The incoming seismological data are cross-correlated in real time with a set of known master events. We use the envelopes of the seismograms rather than the seismograms themselves to account for small changes in the source locations or in the focal mechanisms. Two different detection conditions are implemented: After first passing a single trace correlation condition, secondly a network correlation is calculated taking the amplitude information of the seismic network into account. The magnitude is estimated by using the respective ratio of the maximum amplitudes of the master event and the detected event. The detector is implemented as a real time tool and put into practice as a SeisComp3 module, an established open source software for seismological real time data handling and analysis. We validated the reliability and robustness of the detector by an offline playback test using four month of data from monitoring the power plant in Insheim (Upper Rhine Graben, SW Germany). Subsequently, in October 2013 the detector was installed as real time monitoring system within the project "MAGS2 - Microseismic Activity of Geothermal Systems". Master events from the two neighboring geothermal power plants in Insheim and Landau and two nearby quarries are defined. After detection, manual phase determination and event location are performed at the local seismological survey of the Geological Survey and Mining Authority of Rhineland-Palatinate. Until November 2015 the detector identified 454 events out of which 95% were assigned correctly to the respective source. 5% were misdetections caused by local tectonic events. To evaluate the completeness of the automatically obtained catalogue, it is compared to the event catalogue of the Seismological Service of Southwestern Germany and to the events reported by the company tasked with seismic monitoring of the Insheim power plant. Events missed by the cross-correlation detector are generally very small. They are registered at too few stations to meet the detection criteria. Most of these small events were not locatable. The automatic catalogue has a magnitude of completeness around 0.0 and is significantly more detailed than the catalogue from standard processing of the Seismological Service of Southwestern Germany for this region. For events in the magnitude range of the master event the magnitude estimated from the amplitude ratio reproduces the local magnitude well. For weaker events there tends to be a small offset. Altogether, the developed real time cross correlation detector provides robust detections with reliable association of the events to the respective sources and valid magnitude estimates. Thus, it provides input parameters for the mitigation of seismic hazard by using response plans in real time.
Environmental Assessment -- Hydrothermal Geothermal Subprogram
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-06-01
This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applicationsmore » such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. Construction-related impacts would be relatively minor. Construction of the facility will require the distance of about 1.7 ha (4.1 acres). No further disturbance is anticipated, unless it becomes necessary to replace the seepage pond with an injection well, because the production well is in service and adjacent roads and transmission lines are adequate. Disruption of competing land uses will be minimal, and loss of wildlife habitat will be acceptable. Noise should not significantly affect wildlife and local residents; the most noise activities (well drilling and flow testing) have been completed. Water use during construction will not be large, and impacts on competing uses are unlikely. Socio-economic impacts will be small because the project will not employ a large number of local residents and few construction workers will need to find local housing.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... (ROW) application from Sierra Pacific Power Company (SPPC), for proposed geothermal energy projects... Environmental Impact Statement for the Salt Wells Energy Projects, Churchill County, NV AGENCY: Bureau of Land... Environmental Impact Statement (EIS) for the Salt Wells Energy Projects and by this notice is announcing its...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capuano, L.E. Jr.
This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardage, Bob
2013-07-01
This 3-year project was terminated at the end of Year 1 because the DOE Geothermal project-evaluation committee decided one Milestone was not met and also concluded that our technology would not be successful. The Review Panel recommended a ?no-go? decision be implemented by DOE. The Principal Investigator and his research team disagreed with the conclusions reached by the DOE evaluation committee and wrote a scientifically based rebuttal to the erroneous claims made by the evaluators. We were not told if our arguments were presented to the people who evaluated our work and made the ?no-go? decision. Whatever the case regardingmore » the information we supplied in rebuttal, we received an official letter from Laura Merrick, Contracting Officer at the Golden Field Office, dated June 11, 2013 in which we were informed that project funding would cease and instructed us to prepare a final report before September 5, 2013. In spite of the rebuttal arguments we presented to DOE, this official letter repeated the conclusions of the Review Panel that we had already proven to be incorrect. This is the final report that we are expected to deliver. The theme of this report will be another rebuttal of the technical deficiencies claimed by the DOE Geothermal Review Panel about the value and accomplishments of the work we did in Phase 1 of the project. The material in this report will present images made from direct-S modes produced by vertical-force sources using the software and research findings we developed in Phase 1 that the DOE Review Panel said would not be successful. We made these images in great haste when we were informed that DOE Geothermal rejected our rebuttal arguments and still regarded our technical work to be substandard. We thought it was more important to respond quickly rather than to take additional time to create better quality images than what we present in this Final Report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, K.; Woodside, D.; Bruegmann, M.
1994-08-01
A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds,more » resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.« less
Washington Geothermal Play Fairway Analysis Data From Potential Field Studies
Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William
2017-12-20
A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.
NASA Astrophysics Data System (ADS)
Moore, R. B.; Delaney, P. T.; Kauahikaua, J. P.
This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa's northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu'ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.
NASA Astrophysics Data System (ADS)
Di Sipio, Eloisa; Bertermann, David
2017-04-01
Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehler, Michael
The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less
Hotspot: the Snake River Geothermal Drilling Project--initial report
Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.
2012-01-01
The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.
Investigations of Very High Enthalpy Geothermal Resources in Iceland.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.
2012-12-01
The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.
CDGP, the data center for deep geothermal data from Alsace
NASA Astrophysics Data System (ADS)
Schaming, Marc; Grunberg, Marc; Jahn, Markus; Schmittbuhl, Jean; Cuenot, Nicolas; Genter, Albert; Dalmais, Eléonore
2016-04-01
CDGP (Centre de données de géothermie profonde, deep geothermal data center, http://cdgp.u-strasbg.fr) is set by the LabEX G-EAU-THERMIE PROFONDE to archive the high quality data collected in the Upper Rhine Graben geothermal sites and to distribute them to the scientific community for R&D activities, taking IPR (Intellectual Property Rights) into account. Collected datasets cover the whole life of geothermal projects, from exploration to drilling, stimulation, circulation and production. They originate from the Soultz-sous-Forêts pilot plant but also include more recent projects like the ECOGI project at Rittershoffen, Alsace, France. They are historically separated in two rather independent categories: geophysical datasets mostly related to the industrial management of the geothermal reservoir and seismological data from the seismic monitoring both during stimulations and circulations. Geophysical datasets are mainly up to now from the Soultz-sous-Forêts project that were stored on office's shelves and old digital media. Some inventories have been done recently, and a first step of the integration of these reservoir data into a PostgreSQL/postGIS database (ISO 19107 compatible) has been performed. The database links depths, temperatures, pressures, flows, for periods (times) and locations (geometries). Other geophysical data are still stored in structured directories as a data bank and need to be included in the database. Seismological datasets are of two kinds: seismological waveforms and seismicity bulletins; the former are stored in a standardized way both in format (miniSEED) and in files and directories structures (SDS) following international standard of the seismological community (FDSN), and the latter in a database following the open standard QuakeML. CDGP uses a cataloging application (GeoNetwork) to manage the metadata resources. It provides metadata editing and search functions as well as a web map viewer. The metadata editor supports ISO19115/119/110 standards used for spatial resources. A step forward will be to add specific metadata records as defined by the Open Geospatial Consortium to provide geophysical / geologic / reservoir information: Observations and Measurements (O&M) to describe the acquisition of information from a primary source, and SensorML to describe the sensors. Seismological metadata, which describe all the instrumental response, use the dateless SEED standard. Access to data will be handled in an additional step using geOrchestra spatial data infrastructure (SDI). Direct access will be granted after registration and validation using the single sign-on authentication system. Access to the data will also be granted via EPOS-IP Anthropogenic Hazards project. Access to episodes (time-correlated collections of geophysical, technological and other relevant geo-data over a geothermal area) and application of analysis (time- and technology-dependent probabilistic seismic hazard analysis, multi-hazard and multi-risk assessment) are services accessible via a portal and will require AAAI (Authentication, Authorization, Accounting and Identification).
Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Van Dyke; Leen Weijers; Ann Robertson-Tait
Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less
NASA Astrophysics Data System (ADS)
Matthews, H. B.
The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
1999-02-22
The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determinedmore » that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).« less
Optimization of geothermal well trajectory in order to minimize borehole failure
NASA Astrophysics Data System (ADS)
Dahrabou, A.; Valley, B.; Ladner, F.; Guinot, F.; Meier, P.
2017-12-01
In projects based on Enhanced Geothermal System (EGS) principle, deep boreholes are drilled to low permeability rock masses. As part of the completion operations, the permeability of existing fractures in the rock mass is enhanced by injecting large volumes of water. These stimulation treatments aim at achieving enough water circulation for heat extraction at commercial rates which makes the stimulation operations critical to the project success. The accurate placement of the stimulation treatments requires well completion with effective zonal isolation, and wellbore stability is a prerequisite to all zonal isolation techniques, be it packer sealing or cement placement. In this project, a workflow allowing a fast decision-making process for selecting an optimal well trajectory for EGS projects is developed. In fact, the well is first drilled vertically then based on logging data which are costly (100 KCHF/day), the direction in which the strongly deviated borehole section will be drilled needs to be determined in order to optimize borehole stability and to intersect the highest number of fractures that are oriented favorably for stimulation. The workflow applies to crystalline rock and includes an uncertainty and risk assessment framework. An initial sensitivity study was performed to identify the most influential parameters on borehole stability. The main challenge in these analyses is that the strength and stress profiles are unknown independently. Calibration of a geomechanical model on the observed borehole failure has been performed using data from the Basel Geothermal well BS-1. In a first approximation, a purely elastic-static analytical solution in combination with a purely cohesive failure criterion were used as it provides the most consistent prediction across failure indicators. A systematic analysis of the uncertainty on all parameters was performed to assess the reliability of the optimal trajectory selection. To each drilling scenario, failure probability and the associated risks, are computed stochastically. In addition, model uncertainty is assessed by confronting various failure modelling approaches to the available failure data from the Basel Project. Together, these results form the basis of an integrated workflow optimizing geothermal (EGS) well trajectory.
Use of Low-Temperature Geothermal Energy for Desalination in the Western United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig S.; Akar, Sertac; Cath, Tzahi
2015-11-01
This joint project between the National Renewable Energy Laboratory and the Colorado School of Mines has examined the potential of using low-temperature geothermal resources for desalination. The temperature range in question is not well suited for electricity generation, but can be used for direct heating. Accordingly, the best integration approaches use thermal desalination technologies such as multi-effect distillation (MED) or membrane distillation (MD), rather than electric-driven technologies such as reverse osmosis (RO). The examination of different desalination technologies led to the selection of MD for pairing with geothermal energy. MD operates at near-ambient pressure and temperatures less than 100°C withmore » hydrophobic membranes. The technology is modular like RO, but the equipment costs are lower. The thermal energy demands of MD are higher than MED, but this is offset by an ability to run at lower temperatures and a low capital cost. Consequently, a geothermal-MD system could offer a low capital cost and, if paired with low-cost geothermal energy, a low operating cost. The target product water cost is $1.0 to $1.5 per cubic meter depending on system capacity and the cost of thermal energy.« less
NANA Geothermal Assessment Program Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay Hermanson
2010-06-22
In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in themore » Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.« less
Geothermal Exploration Cost and Time
Jenne, Scott
2013-02-13
The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
...), for proposed geothermal energy projects covering a combined area of approximately 24,152 acres in the... Environmental Impact Statement for the Salt Wells Energy Projects, Churchill County, NV AGENCY: Bureau of Land... Environmental Impact Statement (EIS) for the Salt Wells Energy Projects and by this notice is announcing the...
Center stage in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meade, W.
1993-03-01
At present, early 5,000 MW of private power capacity is operating or under development in the Philippines. Projects include oil- and coal-fired, geothermal, and hydroelectric projects under a variety of financing and ownership arrangements. If all projects and solicitations come to fruition, more than 80% of new capacity added through the year 2000 will be privately owned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, M.; Ritchotte, G.; Viggiano, A.
1994-08-01
In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediatelymore » adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.« less
Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander
NASA Astrophysics Data System (ADS)
Demuth, O. J.
1984-06-01
The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.
Geothermal heating in the Panama Basin and its impact on water mass transformation
NASA Astrophysics Data System (ADS)
Banyte, D.; Morales Maqueda, M. A.; Hobbs, R. W.; Megann, A.; Smeed, D.
2017-12-01
Geothermal heating is a driving force of abyssal water transformation. To quantify its impact at the basin scale, a hydrographic survey of the Panama Basin was carried out in 2014-2015 as part of the international project OSCAR (Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge). The study shows that about half of the water entering the basin, which is connected to the Pacific Ocean only through the a narrow passage part of the Ecuador Trench, is converted to lighter water within just 200 km downstream of the passage. Of the resulting water, a staggering 90% is transformed by geothermal heating inside the basin, welling up into the ocean interior from a bottom boundary layer (BBL) that can be up to 1000 m thick. The geothermal forcing leaves an imprint in temperature-salinity properties hundreds of meters above the thick BBL. We present a conceptual model of the abyssal water transformation in the basin that incorporates these processes.
Well Monitoring System For EGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Normann, Randy; Glowka, Dave; Normann, Charles
This grant is a collection of projects designed to move aircraft high temperature electronics technology into the geothermal industry. Randy Normann is the lead. He licensed the HT83SNL00 chip from Sandia National Labs. This chip enables aircraft developed electronics for work within a geothermal well logging tool. However, additional elements are needed to achieve commercially successful logging tools. These elements are offered by a strong list of industrial partners on this grant as: Electrochemical Systems Inc. for HT Rechargeable Batteries, Frequency Management Systems for 300C digital clock, Sandia National Labs for experts in high temperature solder, Honeywell Solid-State Electronics Centermore » for reprogrammable high temperature memory. During the course of this project MagiQ Technologies for high temperature fiber optics.« less
Using GeoRePORT to report socio-economic potential for geothermal development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Katherine R.; Levine, Aaron
The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT, http://en.openei.org/wiki/GeoRePORT) was developed for reporting resource grades and project readiness levels, providing the U.S. Department of Energy a consistent and comprehensible means of evaluating projects. The tool helps funding organizations (1) quantitatively identify barriers, (2) develop measureable goals, (3) objectively evaluate proposals, including contribution to goals, (4) monitor progress, and (5) report portfolio performance. GeoRePORT assesses three categories: geological, technical, and socio-economic. Here, we describe GeoRePORT, then focus on the socio-economic assessment and its applications for assessing deployment potential in the U.S. Socio-economic attributes include land access, permitting, transmission, and market.
The Lawrence Berkeley Laboratory geothermal program in northern Nevada
NASA Technical Reports Server (NTRS)
Mirk, K. F.; Wollenberg, H. A.
1974-01-01
The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.
NASA Technical Reports Server (NTRS)
Bayliss, B. P.
1974-01-01
Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.
Ahuachapan geothermal project: a technical and economic assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomster, C.H.; DiPippo; Kuwada, J.T.
Theeconomic and technical factors involved in using geothermal energy at Ahuachapan are examined. The experience at Ahuachapan is evaluated in relation to conditions prevailing in El Salvador and to conditions in the U.S. technical characteristics considered are: geological characteristics, well programs and gathering system, well productivity and geofluid characteristics, and energy conversion systems. Economic factors considered for El Salvador are: construction costs; environmental control costs; operating experience and costs; financing; taxes, subsidies, or incentives; marketing; and electrical system characteristics. (MHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
The Application for Certification for the construction of a 55 MW geothermal power plant and related facilities in Lake County was approved subject to terms identified in the Final Decision. The following are covered: findings on compliance with statutory site-certification requirements; final environmental impact report; procedural steps; evidentiary bases; need, environmental resources; public health and safety; plant and site safety and reliability; socioeconomic, land use, and cultural concerns, and transmission tap line. (MHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.
This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectorsmore » provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.« less
Performance of deep geothermal energy systems
NASA Astrophysics Data System (ADS)
Manikonda, Nikhil
Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.
Numerical and experimental design of coaxial shallow geothermal energy systems
NASA Astrophysics Data System (ADS)
Raghavan, Niranjan
Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial geothermal piping systems. Based on the simulations and experiments, the effect of parameters on the overall operating costs is studied. Finally, with the results obtained, the economics and return on investment behind coaxial geothermal energy systems are discussed. Government policies on renewable energy are explained, highlighting the energy incentives associated with geothermal energy in the United States. The findings of this research provides a platform for further shallow geothermal energy system studies with an immense potential to revolutionize the energy industry in the future.
Assessment of the geothermal potential of fault zones in Germany by numerical modelling
NASA Astrophysics Data System (ADS)
Kuder, Jörg
2017-04-01
Fault zones with significantly better permeabilities than host rocks can act as natural migration paths for ascending fluids that are able to transport thermal energy from deep geological formations. Under these circumstances, fault zones are interesting for geothermal utilization especially those in at least 7 km depth (Jung et al. 2002, Paschen et al. 2003). One objective of the joint project "The role of deep rooting fault zones for geothermal energy utilization" supported by the Federal Ministry for Economic Affairs and Energy was the evaluation of the geothermal potential of fault zones in Germany by means of numerical modelling with COMSOL. To achieve this goal a method was developed to estimate the potential of regional generalized fault zones in a simple but yet sophisticated way. The main problem for the development of a numerical model is the lack of geological and hydrological data. To address this problem the geothermal potential of a cube with 1 km side length including a 20 meter broad, 1000 m high and 1000 m long fault zone was calculated as a unified model with changing parameter sets. The properties of the surrounding host rock and the fault zone are assumed homogenous. The numerical models were calculated with a broad variety of fluid flow, rock and fluid property parameters for the depths of 3000-4000 m, 4000-5000 m, 5000-6000 m and 6000-7000 m. The fluid parameters are depending on temperature, salt load and initial pressure. The porosity and permeability values are provided by the database of the geothermal information system (GeotIS). The results are summarized in a table of values of geothermal energy modelled with different parameter sets and depths. The geothermal potential of fault zones in Germany was then calculated on the basis of this table and information of the geothermal atlas of Germany (2016).
NASA Astrophysics Data System (ADS)
Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj
2010-05-01
A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the Pitzer-EUNIQUAC benchmark applied to relevant aqueous solutions at elevated temperature, pressure and ionic strength will be presented.
NASA Astrophysics Data System (ADS)
Bréthaut, D.; Parriaux, A.; Tacher, L.
2009-04-01
Implantation and use of shallow geothermal systems may have environmental impacts. Traditionally, risks are divided into 2 categories: direct and indirect. Direct risks are linked with the leakage of the circulating fluid (usually water with anti-freeze) of ground source heat pumps into the underground which may be a source of contamination. Indirect risks are linked with the borehole itself and the operation of the systems which can modify the groundwater flow, change groundwater temperature and chemistry, create bypasses from the surfaces to the aquifers or between two aquifers. Groundwater source heat pumps (GWSHP) may provoke indirect risks, while ground source heat pumps (GSHP) may provoke both direct and indirect risks. To minimize those environmental risks, the implantation of shallow geothermal systems must be regulated. In 2007, more than 7000 GSHP have been installed in Switzerland, which represents 1.5 Mio drilled meters. In the canton of Vaud, each shallow geothermal project has to be approved by the Department of the Environment. Approximately 1500 demands have been treated during 2007, about 15 times more than in 1990. Mapping shallow geothermal systems implantation restrictions due to environmental constrains permits: 1) to optimize the management and planning of the systems, 2) to minimize their impact on groundwater resources and 3) to facilitate administrative procedures for treating implantation demands. Such maps are called admissibility maps. Here, a methodology to elaborate them is presented and tested. Interactions between shallow geothermal energy and groundwater resources have been investigated. Admissibility criteria are proposed and structured into a flow chart which provides a decision making tool for shallow geothermal systems implantation. This approach has been applied to three areas of West Switzerland ranging from 2 to 6 km2. For each area, a geological investigation has been realized and complementary territorial information (e.g. map of contaminated areas) was gathered in order to produce the admissibility maps. For one area, a more detailed study has been performed and a complete 3D geological model has been constructed using an in-house modelling software called GeoShape. The model was then imported into a geographical information system which has been used to realize the admissibility map. Resulting maps were judged to be consistent and satisfying. In a second part of the project, this method will be applied at a larger scale. An admissibility map of the canton of Vaud (3200 km2) will be created. Considering the fast growth of the number of implanted GSHP and GWSHP throughout the world, it is clear that admissibility maps will play a major role in developing shallow geothermal energy as an environmentally friendly and sustainable resource.
NASA Astrophysics Data System (ADS)
Farina, F.; Dini, A.; Ovtcharova, M.; Davies, J.; Bouvier, A. S.; Baumgartner, L. P.; Caricchi, L.; Schaltegger, U.
2017-12-01
Late Miocene to recent post-collisional extension in Tuscany (Italy) led to the emplacement of shallow-level granitic plutons and to the eruption of small rhyolitic bodies. The intrusion of peraluminous two-mica and tourmaline-bearing granites triggered the formation of the steam-dominated Larderello-Travale geothermal system. In this study, zircon crystals from granite samples obtained from drill holes at 3.0-4.5 km depth were investigated by combining in-situ oxygen isotopes analysis and high-precision CA-ID-TIMS U-Pb age determinations to gain insight into the nature of the magmatic heat source fuelling the geothermal field. Magmatic zircon crystals display δ18O values ranging from 8.6 to 13.5‰ and crystals from individual samples exhibit inter- and intra-grain oxygen isotope variability exceeding 3‰. The geochronological data indicates the existence of three magmatic pulses with ages between 3.637 ± 0.008 and 1.671 ± 0.004 Ma. More importantly, zircon crystals from individual samples exhibit an age spread as large as 200-400 ky. This age dispersion, which is more than one order of magnitude greater than the uncertainty on a single date, suggest that most of the zircon did not crystallize at the emplacement level, but within isolated and isotopically distinct magma batches before large-scale homogenization in a magmatic reservoir at depth. The rate of assembly and final volume of this reservoir is estimated using the distribution of precise U-Pb zircon dates following the approach of Caricchi et al. (2014). Thermal modelling indicates that the heat flow at the surface in the geothermal field cannot be sustained by the inferred reservoir or by heat advection from the mantle. Our data suggest the existence of a younger shallow-level intrusion, whose occurrence also accounts for the existence of confined magmatic fluids at the top of the Larderello-Travale intrusion. We conclude that a multi-disciplinary approach, integrating high-precision zircon dating, in-situ oxygen isotopes and thermal modelling can be used to resolve the thermal structure of the crust in active geothermal systems. Ref: Caricchi et al., (2014). Nature, 511, 457-461. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701494.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkelens, Conrad
1994-03-01
This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. A total of 51 archaeological sites encompassing 233 surface features were documented. A GPS receiver was used to accurately and precisely plot locations for each of the documented sites. Analysis of the locational information suggests that archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay andmore » Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Moanakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. A total of twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bone from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area. A small test unit was excavated at one habitation site. Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.« less
NASA Astrophysics Data System (ADS)
Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke
2017-04-01
Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish Basin and predicted temperatures were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological reservoir formations (Frederikshavn, Haldager Sand, Gassum and Bunter Sandstone/Skagerrak formations) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. In the future, geothermal energy is likely to be a key component in Denmark's supply of energy and integrated into the district heating infrastructures. A new 3-year project (GEOTHERM) under the Innovation Fund Denmark will focus on addressing and removing remaining geological, technical and commercial obstacles. The presented 3D geothermal model will be an important component in more precise assessments of the geothermal resource, production capacity and thermal lifecycle.
Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry, Rachel; Young, Katherine
Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less
NASA Astrophysics Data System (ADS)
Vidal, J.; Genter, A.; Schmittbuhl, J.; Baujard, C.
2016-12-01
In the Upper Rhine Graben, several deep geothermal projects, such as at Soultz-sous-Forêts (France) or Basel (Switzerland), were based on the Enhanced Geothermal System technology. The principle underlying this technology consists of increasing the low initial natural hydraulic performance of pre-existing natural fractures in the geothermal granitic reservoir via hydraulic and/or chemical stimulations. Hydraulic stimulation consists of injection of a large amount of water at a high flow rate to promote hydroshearing of pre-existing fractures. At Soultz-sous-Forêts and Basel, the maximum wellhead pressures were 16 MPa and 30 MPa respectively which induced larger magnitude seismic events of 2.9 and 3.4 respectively. Those specific induced seismicity events were felt by local population. At Rittershoffen (France), the geothermal well GRT-1 was drilled in 2012 down to a depth of 2.6 km and penetrates fractured sandstones and granite. The reservoir temperature reaches more than 160°C but the production flowrate was too low for an industrial project economically viable. Thus, the well was subjected to Thermal, Chemical and Hydraulic stimulations, which improved the injectivity index five-fold. During the hydraulic operation, a moderate volume of water was injected from the wellhead with a low pressure of 3 MPa. Approximately 300 microseismic events were detected during the hydraulic stimulations. Due to the low wellhead pressure during injection, no events were felt by nearby residents. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation acoustic image logs. This comparison revealed minor modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement. The most important permeability enhancement was observed on the originally permeable fault zone affecting the top of the granitic basement. In the Upper Rhine Graben, several deep geothermal projects, such as at Soultz-sous-Forêts (France) or Basel (Switzerland), were based on the Enhanced Geothermal System technology. The principle underlying this technology consists of increasing the low initial natural hydraulic performance of pre-existing natural fractures in the geothermal granitic reservoir via hydraulic and/or chemical stimulations. Hydraulic stimulation consists of injection of a large amount of water at a high flow rate to promote hydroshearing of pre-existing fractures. At Soultz-sous-Forêts and Basel, the maximum wellhead pressures were 16 MPa and 30 MPa respectively which induced larger magnitude seismic events of 2.9 and 3.4 respectively. Those specific induced seismicity events were felt by local population. At Rittershoffen (France), the geothermal well GRT-1 was drilled in 2012 down to a depth of 2.6 km and penetrates fractured sandstones and granite. The reservoir temperature reaches more than 160°C but the production flowrate was too low for an industrial project economically viable. Thus, the well was subjected to Thermal, Chemical and Hydraulic stimulations, which improved the injectivity index five-fold. During the hydraulic operation, a moderate volume of water was injected from the wellhead with a low pressure of 3 MPa. Approximately 300 microseismic events were detected during the hydraulic stimulations. Due to the low wellhead pressure during injection, no events were felt by nearby residents. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation acoustic image logs. This comparison revealed minor modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement. The most important permeability enhancement was observed on the originally permeable fault zone affecting the top of the granitic basement.
Iovenitti, Joe
2014-01-02
The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submitted in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature (However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, R.C.
The National Conference of State Legislatures' Geothermal Policy Project concentrated its efforts in two areas: (1) state activities and (2) development of project materials. Six states were to participate in the project during its first year: Delaware, Hawaii, New Mexico, Oregon, Utah and Virginia. The project pamphlet, a final draft of the Issue Paper and the review of state statutes and regulations were completed. Project activities are also discussed in the following areas: publicity, liaison activities, professional papers, and conferences.
NASA Astrophysics Data System (ADS)
Birhanu, Yelebe; Wilks, Matthew; Biggs, Juliet; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias
2018-05-01
Seasonal variations in the seismicity of volcanic and geothermal reservoirs are usually attributed to the hydrological cycle. Here, we focus on the Aluto-Langano geothermal system, Ethiopia, where the climate is monsoonal and there is abundant shallow seismicity. We deployed temporary networks of seismometers and GPS receivers to understand the drivers of unrest. First, we show that a statistically significant peak in seismicity occurred 2-3 months after the main rainy season, with a second, smaller peak of variable timing. Seasonal seismicity is commonly attributed to variations in either surface loading or reservoir pore pressure. As loading will cause subsidence and overpressure will cause uplift, comparing seismicity rates with continuous GPS, enables us to distinguish between mechanisms. At Aluto, the major peak in seismicity is coincident with the high stand of nearby lakes and maximum subsidence, indicating that it is driven by surface loading. The magnitude of loading is insufficient to trigger widespread crustal seismicity but the geothermal reservoir at Aluto is likely sensitive to small perturbations in the stress field. Thus we demonstrate that monsoonal loading can produce seismicity in geothermal reservoirs, and the likelihood of both triggered and induced seismicity varies seasonally.
Discriminating Characteristics of Tectonic and Human-Induced Seismicity
NASA Astrophysics Data System (ADS)
Zaliapin, I. V.; Ben-Zion, Y.
2015-12-01
We analyze statistical features of background and clustered subpopulations of earthquakes in different regions in an effort to distinguish between human-induced and natural seismicity. Analysis of "end-member" areas known to be dominated by human-induced earthquakes (the Geyser geothermal field in northern California and TauTona gold mine in South Africa) and regular tectonic activity (the San Jacinto fault zone in southern California and Coso region excluding the Coso geothermal field in eastern central California) reveals several distinguishing characteristics. Induced seismicity is shown to have (i) higher rate of background events (both absolute and relative to the total rate), (ii) faster temporal offspring decay, (iii) higher intensity of repeating events, (iv) larger proportion of small clusters, and (v) larger spatial separation between parent and offspring, compared to regular tectonic activity. These differences also successfully discriminate seismicity within the Coso and Salton Sea geothermal fields in California before and after the expansion of geothermal production during the 1980s.
The Geysers Geothermal Field Update1990/2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brophy, P.; Lippmann, M.; Dobson, P.F.
2010-10-01
In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, butmore » not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across all technical fields, as related to The Geysers steam-dominated geothermal system. The Geysers has seen many fundamental changes between 1990-2010 and yet the geothermal resource seems still to be robust to the extent that, long after its anticipated life span, we are seeing new geothermal projects being developed on the north and west peripheries of the field. It is hoped that this report provides a focused data source particularly for those just starting their geothermal careers, as well as those who have been involved in the interesting and challenging field of geothermal energy for many years. Despite many hurdles The Geysers has continued to generate electrical power for 50 years and its sustainability has exceeded many early researchers expectations. It also seems probable that, with the new projects described above, generation will continue for many years to come. The success of The Geysers is due to the technical skills and the financial acumen of many people, not only over the period covered by this report (1990-2010), but since the first kilowatt of power was generated in 1960. This Special Report celebrates those 50 years of geothermal development at The Geysers and attempts to document the activities that have brought success to the project so that a permanent record can be maintained. It is strongly hoped and believed that a publication similar to this one will be necessary in another 20 years to document further activities in the field.« less
The feasibility of applying geopressured-geothermal resources to direct uses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunis, B.C.; Negus-de Wys, J.; Plum, M.M.
1991-09-01
This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods rangingmore » from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.« less
The feasibility of applying geopressured-geothermal resources to direct uses
NASA Astrophysics Data System (ADS)
Lunis, Ben C.; Dewys, Jane Negus; Plum, Martin M.; Lienau, Paul J.; Spencer, F. J.; Nitschke, George F.
1991-09-01
This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combinations of direct uses received economic evaluation that resulted in 15 percent discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation; thus power utilities have been selling power for less than two cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.
Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report Fallon, NV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Douglas A.; Akerley, John; Blake, Kelly
The Department of Energy (DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is to be a dedicated site where the subsurface scientific and engineering community can develop, test, and improve technologies and techniques for the creation of cost-effective and sustainable enhanced geothermal systems (EGS) in a controlled, ideal environment. The establishment of FORGE will facilitate development of an understanding of the key mechanisms controlling a successful EGS. Execution of FORGE is occurring in three phases with five distinct sub-phases (1, 2A, 2B, 2C, and 3). This report focuses on Phase 1 activities. During Phase 1, critical technical and logisticalmore » tasks necessary to demonstrate the viability of the Fallon FORGE Project site were completed and the commitment and capability of the Fallon FORGE team to execute FORGE was demonstrated. As part of Phase 1, the Fallon FORGE Team provided an assessment of available relevant data and integrated these geologic and geophysical data to develop a conceptual 3-D geologic model of the proposed test location. Additionally, the team prepared relevant operational plans for full FORGE implementation, provided relevant site data to the science and engineering community, engaged in outreach and communications with interested stakeholders, and performed a review of the environmental and permitting activities needed to allow FORGE to progress through Phase 3. The results of these activities are provided as Appendices to this report. The Fallon FORGE Team is diverse, with deep roots in geothermal science and engineering. The institutions and key personnel that comprise the Fallon FORGE Team provide a breadth of geoscience and geoengineering capabilities, a strong and productive history in geothermal research and applications, and the capability and experience to manage projects with the complexity anticipated for FORGE. Fallon FORGE Team members include the U.S. Navy, Ormat Nevada Inc., Sandia National Laboratories (SNL), Lawrence Berkeley National Laboratory (LBNL), the United States Geological Survey (USGS), the University of Nevada, Reno (UNR), GeothermEx/Schlumberger (GeothelinEx), and Itasca Consulting Group (Itasca). The site owners (through direct land ownership or via applicable permits)—the U.S. Navy and Ormat Nevada Inc.—are deeply committed to expanding the development of geothermal resources and are fully supportive of FORGE operations taking place on their lands.« less
Deep Water Cooling | Climate Neutral Research Campuses | NREL
the Cornell website. Additional examples of research campus geothermal cooling projects include Deep Water Cooling Deep Water Cooling Research campuses that are located near a deep lake or deep plan for your research campus. Considerations Sample Project Related Links Deep water cooling involves
Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988
NASA Astrophysics Data System (ADS)
1989-02-01
Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danko, George L
To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period,more » with one patent application originated prior to the start of the project. The “Multiphase Physical Transport Modeling Method and Modeling System” (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The “Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, M.T.K.; Burtchard, G.C.
This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone,more » Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.« less
The EGS Collab Project: Stimulation Investigations for Geothermal Modeling Analysis and Validation
NASA Astrophysics Data System (ADS)
Blankenship, D.; Kneafsey, T. J.
2017-12-01
The US DOE's EGS Collab project team is establishing a suite of intermediate-scale ( 10-20 m) field test beds for coupled stimulation and interwell flow tests. The multiple national laboratory and university team is designing the tests to compare measured data to models to improve measurement and modeling toolsets available for use in field sites and investigations such as DOE's Frontier Observatory for Research in Geothermal Energy (FORGE) Project. Our tests will be well-controlled, in situexperiments focused on rock fracture behavior, seismicity, and permeability enhancement. Pre- and post-test modeling will allow for model prediction and validation. High-quality, high-resolution geophysical and other fracture characterization data will be collected, analyzed, and compared with models and field observations to further elucidate the basic relationships between stress, induced seismicity, and permeability enhancement. Coring through the stimulated zone after tests will provide fracture characteristics that can be compared to monitoring data and model predictions. We will also observe and quantify other key governing parameters that impact permeability, and attempt to understand how these parameters might change throughout the development and operation of an Enhanced Geothermal System (EGS) project with the goal of enabling commercial viability of EGS. The Collab team will perform three major experiments over the three-year project duration. Experiment 1, intended to investigate hydraulic fracturing, will be performed in the Sanford Underground Research Facility (SURF) at 4,850 feet depth and will build on kISMET Project findings. Experiment 2 will be designed to investigate hydroshearing. Experiment 3 will investigate changes in fracturing strategies and will be further specified as the project proceeds. The tests will provide quantitative insights into the nature of stimulation (e.g., hydraulic fracturing, hydroshearing, mixed-mode fracturing, thermal fracturing) in crystalline rock under reservoir-like stress conditions and generate high-quality, high-resolution, diverse data sets to be simulated allowing model validation. Monitoring techniques will also be evaluated under controlled conditions identifying technologies appropriate for deeper full-scale EGS sites.
NASA Astrophysics Data System (ADS)
Bottig, Magdalena; Rupprecht, Doris; Hoyer, Stefan
2017-04-01
Within the EU-funded Alpine Space project GRETA (Near-surface Geothermal Resources in the Territory of the Alpine space), a potential assessment for the use of near-surface geothermal energy is being performed. The focus region for Austria is represented by the two communities Leogang and Saalbach-Hinterglemm where settlements are located in altitudes of about 800 - 1.000 m. In these communities, as well as in large parts of the alpine space region in Austria, winter sports tourism is an important economic factor. The demand for heating and domestic hot water in this region of about 6.000 inhabitants rises significantly in the winter months due to around 2 million guest nights per year. This makes clear why the focus is on touristic infrastructure like alpine huts or hotels. It is a high-altitude area with a large number of remote houses, thus district-heating is not ubiquitous - thus, near-surface geothermal energy can be a useful solution for a self-sufficient energy supply. The objective of detailed investigation within the project is, to which extent the elevation, the gradient and the orientation of the hillside influence the geothermal usability of the shallow underground. To predict temperatures in depths of up to 100 m and therefore make statements on the geothermal usability of a certain piece of land, it is necessary to attain a precise ground-temperature map which reflects the upper model boundary. As there are no ground temperature measurement stations within the region, the GBA has installed four monitoring stations. Two are located in the valley, at altitudes of about 800 m, and two in higher altitudes of about 1.200 m, one on a south- and one on a north-slope. Using a software invented by the University of Soil Sciences in Vienna a ground-temperature map will be calculated. The calculation is based on climatic data considering parameters like soil composition. Measured values from the installed monitoring stations will help to validate or to calibrate those calculated ground-temperatures.
National Geothermal Data System: State Geological Survey Contributions to Date
NASA Astrophysics Data System (ADS)
Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.
2012-12-01
In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a variety of visualization software. Web services are ideal for the NGDS data for a number of reasons including that they preserve data ownership in that they are read only and new services can be deployed to meet new requirements without modifying existing applications.
Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilley, Lorie M.
2015-04-13
The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded bymore » fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO 2-rich and contain low concentrations of light gases (i.e. H 2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to create fluid models for the system. The hope is that the methodologies developed will allow bulk fluid inclusion gas analysis to be a useful tool for estimating relative temperatures, identifying the sources and origins of the geothermal fluids, and developing conceptual models that can be used to help target areas of enhanced permeability.« less
Richard Zehner
2012-02-01
These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Use Limitation: These shapefiles were constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.
Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain)
NASA Astrophysics Data System (ADS)
Iglesias, M.; Rodriguez, J.; Franco, D.
2012-10-01
In November 2009 was signed an agreement between Galicia's Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP) technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps) by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW). These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP's, EER's, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands), etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production. Note to the reader: The article number has been corrected on web pages on November 22, 2013.
Using a new Geothermal Well Field as a Field Laboratory to Facilitate Comprehensive Knowledge
NASA Astrophysics Data System (ADS)
Neumann, K.; Dowling, C. B.
2011-12-01
In Fall 2010, the faculty of the Department of Geological Sciences at Ball State University (BSU) took advantage of several recently drilled monitoring wells within BSU's newly constructed ground-source geothermal well field, currently the largest in the U.S., to create an undergraduate field laboratory for hydrogeological experiments. Using the Investigative Case-Based Learning approach, upper-level undergraduate students developed research projects that would assist BSU's Facilities in evaluating and maintaining the geothermal fields. The students designed original hypotheses and explored how to test them with the available equipment within one semester. They focused on observing and measuring the potential impact of the geothermal well field on groundwater temperature and flow direction using two shallow monitoring wells in gravel (~30 ft) and eight deeper monitoring wells in limestone (~70 ft). The results will be used for comparisons when the geothermal plant goes online in Fall 2011. Undergraduate and graduate students will perform experiments throughout this initial period and continue even after the geothermal field is activated. Through the use of different assessment tools, including peer evaluation, instructors' assessment and an assessment of understanding, we determined that twenty-five percent of the class gained full comprehensive understanding. These students were able to design new experiments by assessing their semester data, integrating their knowledge from previous classes, and synthesizing new hypotheses. The majority of the class was able to further expand their understanding of the scientific process, but not to the extent as the top students.
NASA Astrophysics Data System (ADS)
Hill, F. K.; Vonbriesen, R.
1980-12-01
The feasibility of space heating and cooling 200 multifamily on-base housing units using nonreversible heat pumps and ground water from 1000 ft. depth was studied. The 200 housing units are a part of the 1452 main base multifamily housing complex which is heated from a high temperature and pressure water line. The main system will be converted from natural gas to coal in 1984. Relative cost, amortization periods, and fossil fuel projections are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.
1993-01-28
Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, T HSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H 2-H 2S (HSH) gas equilibria reactions. A correction is made for H 2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H 2S after steam loss.
Occidental Geothermal, Inc. , Oxy geothermal power plant No. 1. Final environmental impact report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The project-specific environmental analysis covers the following: geology, soils, water resources, biology, air quality, noise, waste management, health, safety, transportation, energy and material resources, cultural resources, socioeconomics, public services, land use, and aesthetics. Other topics covered are: the cumulative envionmental analysis; unavoidable significant adverse environmental effects; irreversible environmental changes and irretrievable commitments of energy and materials; the relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity; growth-inducing impacts; and alternatives to the proposed action. (MHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurationsmore » and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.« less
NASA Astrophysics Data System (ADS)
Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.
2014-12-01
Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairbank, Brian D.
2015-03-27
Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award bemore » transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.« less
> Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)
NASA Astrophysics Data System (ADS)
Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.
2012-04-01
The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground engineering, ore genesis and assessment of geothermal potential. After a general scientific workshop supported by ICDP in 2010, the hydrogeological aspects of deep drilling were the topic of a separate workshop last year; orogen dynamics will provide a focus at EGU; and geothermics research will be addressed at a workshop in Autumn 2012. The geothermics workshop will be announced on the ICDP homepage. Partial funding for the drilling has been achieved through national sources and ICDP. Additional funding (c. 500000€) is being sought to allow drilling to commence in 2013. Scientific and financial partners, both from academia and industry, are welcome to the project. The presentation will review the current status of the COSC project and the research leading up to the site selection for COSC 1.
NASA Astrophysics Data System (ADS)
Bertermann, David; Müller, Johannes; Galgaro, Antonio; Cultrera, Matteo; Bernardi, Adriana; Di Sipio, Eloisa
2016-04-01
The success and widespread diffusion of new sustainable technologies are always strictly related to their affordability. Nowadays the energy price fluctuations and the economic crisis are jeopardizing the development and diffusion of renewable technologies and sources. With the aim of both reduce the overall costs of shallow geothermal systems and improve their installation safety, an European project has took place recently, under the Horizon 2020 EU Framework Programme for Research and Innovation. The acronym of this project is Cheap-GSHPs, meaning "cheap and efficient application of reliable ground source heat exchangers and pumps"; the CHEAP-GSHPs project involves 17 partners among 9 European countries such Belgium, France, Germany, Greece, Ireland, Italy, Romania, Spain, Switzerland. In order to achieve the planned targets, an holistic approach is adopted, where all involved elements that take part of shallow geothermal activities are here integrated. In order to reduce the drilling specific costs and for a solid planning basis the INSPIRE-conformal ESDAC data set PAR-MAT-DOM ("parent material dominant") was analysed and reinterpreted regarding the opportunities for cost reductions. Different ESDAC classification codes were analysed lithologically and sedimentologically in order to receive the most suitable drilling technique within different formations. Together with drilling companies this geological data set was translated into a geotechnical map which allows drilling companies the usage of the most efficient drilling within a certain type of underground. The scale of the created map is 1: 100,000 for all over Europe. This leads to cost reductions for the final consumers. Further there will be the definition of different heat conductivity classes based on the reinterpreted PAR-MAT-DOM data set which will provide underground information. These values will be reached by sampling data all over Europe and literature data. The samples will be measured by several different laboratory instruments in variable states of saturation. Literature data are then also compared to the resulting laboratory measurements. All in all this new data set will provide the development of more efficient cost planning tools. It provides detailed underground information on an European-wide level and the dimensioning of a spatial geothermal installation can be optimised. In order to provide a new drilling cost estimation, a new parameter called "drillability" is here suggested; the drillability is based on the drilling time for different type of rocks/sediments. The results are cost reductions which makes geothermal energy solution more attractive for end consumers especially on residential levels.
Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System
NASA Astrophysics Data System (ADS)
He, Xiaoning
Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. DI13-3-000] Roberto Sella... 7, 2012. d. Applicant: Roberto Sella. e. Name of Project: Hydro-electric and Geothermal Alternative Energy System at Paper Hill Farm (Paper Hill Farm). f. Location: The proposed Paper Hill Farm project...
Su, Jiann
2016-05-23
Drilling results from the microhole project at the Sandia High Operating Temperature test facility. The project is seeking to help reduce the cost of exploration and monitoring of geothermal wells and formations by drilling smaller holes. The tests were part of a control algorithm development to optimize the weight-on-bit (WOB) used during drilling with a percussive hammer.
Geothermal direct heat use: Market potential/penetration analysis for Federal Region 9
NASA Technical Reports Server (NTRS)
Powell, W. (Editor); Tang, K. (Editor)
1980-01-01
A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region 9). An analysis was made of each state to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Findings of the study include the following: (1) Potentially economical hydrothermal resources exist in all four states of the Region: however, the resource data base is largely incomplete, particularly for low to moderate temperature resources. (2) In terms of beneficial heat, the total hydrothermal resource identified so far for the four states is on the order of 43 Quads, including an estimated 34 Quads of high temperature resources which are suitable for direct as well as electrical applications. (3) In California, Hawaii, and Nevada, the industrial market sector has somewhat greater potential for penetration than the residential/commercial sector. In Arizona, however, the situation is reversed, due to the collocation of two major metropolitan areas (Phoenix and Tucson) with potential geothermal resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, M.; Ritchotte, G.; Dwyer, J.
1994-08-01
In 1993 the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct wildlife surveys relative to identifying potential impacts of geothermal resource development on the native biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the endangered Hawaiian hoary bat (Hawaiian bat), or opeapea (Lasiurus cinereus semotus), within the proposed Hawaii geothermal subzones. Potential effects of geothermal development on Hawaiian bat populations are also discussed. Surveys were conducted to determine the distribution and abundance of batsmore » throughout the District of Puna. Baseline information was collected to evaluate the status of bats within the study area and to identify important foraging habitats. Little specific data exists in the published literature on the population status and potential limiting factors affecting the Hawaiian bat. A USFWS recovery plan does not exist for this endangered species.« less
Barry, P.H.; Hilton, David R.; Tryon, M.D.; Brown, K.M.; Kulongoski, J.T.
2009-01-01
[1] We present details of a newly designed syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH). The device is composed of a commercially available syringe pump connected to coils of Cu tubing, which interface the syringe and the groundwater or geothermal wellhead. Through test deployments at geothermal wells in Iceland and California, we show that well fluids are drawn smoothly, accurately, and continuously into the Cu tubing and can be time-stamped through user-determined operating parameters. In the laboratory, the tubing is sectioned to reveal helium (He) characteristics of the fluids at times and for durations of interest. The device is capable of prolonged deployments, up to 6 months or more, with minimal maintenance. It can be used to produce detailed time series records of He, or any other geochemical parameter, in groundwaters and geothermal fluids. SPARTAH has application in monitoring projects assessing the relationship between external transient events (e.g., earthquakes) and geochemical signals in aqueous fluids. ?? 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Kraml, Michael; Jodocy, Marco; Aeschbach, Werner; Kreuter, Horst
2017-04-01
Since viable geothermal systems in extensional settings are sparse compared to those situated in subduction zone environments, a specifically adapted exploration methodology of the former is currently not fully established. Standardized exploration methods applicable to geothermal systems related to subduction zones do not always deliver reliable or even deliver misleading results (e.g. Ochmann et al. 2010). The identification of promising prospects at the beginning of surface exploration studies is saving time and money of the project developer and investor. Noble gas isotope analyses can provide a low-budget tool for assessing the quality of the prospect in a very early exploration phase. Case studies of high- and low-temperature prospects situated in the East African Rift System and the Upper Rhine Graben, Germany will be presented and compared to other extensional areas like the Basin and Range Province, U.S.A. (Kraml et al. 2016a,b). Noble gas isotopes are also a versatile tool for monitoring of geothermal reservoirs during the production/exploitation phase. References Kraml, M., Jodocy, M., Reinecker, J., Leible, D., Freundt, F., Al Najem, S., Schmidt, G., Aeschbach, W., and Isenbeck-Schroeter, M. (2016a): TRACE: Detection of Permeable Deep-Reaching Fault Zone Sections in the Upper Rhine Graben, Germany, During Low-Budget Isotope-Geochemical Surface Exploration. Proceedings European Geothermal Congress 2016, Strasbourg, France, 19-24 Sept 2016 Kraml, M., Kaudse, T., Aeschbach, W. and Tanzanian Exploration Team (2016b): The search for volcanic heat sources in Tanzania: A helium isotope perspective. Proceedings 6th African Rift Geothermal Conference, Addis Ababa, Ethiopia, 2nd-4th November 2016 Ochmann, N., Kraml, M., Lindenfeld, M., Yakovlev, A., Rümpker, G., Babirye, P. (2010): Microearthquake Survey at the Buranga Geothermal Prospect (Western Uganda). Proceedings World Geothermal Congress, 25-29 April 2010, Bali, Indonesia (paper number 1126)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Renner
2007-08-01
Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followedmore » by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th« less
NASA Astrophysics Data System (ADS)
Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.
2013-12-01
The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto Nazionale di Geofisica e Vulcanologia (I.N.G.V.) is conducting since May, 2012. The GAPSS experiment consists of a large aperture seismic array composed by 20 temporary and 2 permanent broad-band seismic stations. Besides the characterization of the seismic release of the geothermal field, our purpose is to investigate in depth the geothermal field applying cost-effective passive seismic techniques, such as local earthquake tomography, attenuation tomography, shear wave splitting analysis and surface-wave dispersion from noise correlation analysis.
4D inversion of time-lapse magnetotelluric data sets for monitoring geothermal reservoir
NASA Astrophysics Data System (ADS)
Nam, Myung Jin; Song, Yoonho; Jang, Hannuree; Kim, Bitnarae
2017-06-01
The productivity of a geothermal reservoir, which is a function of the pore-space and fluid-flow path of the reservoir, varies since the properties of the reservoir changes with geothermal reservoir production. Because the variation in the reservoir properties causes changes in electrical resistivity, time-lapse (TL) three-dimensional (3D) magnetotelluric (MT) methods can be applied to monitor the productivity variation of a geothermal reservoir thanks to not only its sensitivity to the electrical resistivity but also its deep depth of survey penetration. For an accurate interpretation of TL MT-data sets, a four-dimensional (4D) MT inversion algorithm has been developed to simultaneously invert all vintage data considering time-coupling between vintages. However, the changes in electrical resistivity of deep geothermal reservoirs are usually small generating minimum variation in TL MT responses. Maximizing the sensitivity of inversion to the changes in resistivity is critical in the success of 4D MT inversion. Thus, we further developed a focused 4D MT inversion method by considering not only the location of a reservoir but also the distribution of newly-generated fractures during the production. For the evaluation of the 4D MT algorithm, we tested our 4D inversion algorithms using synthetic TL MT-data sets.
Sedimentary Geothermal Feasibility Study: October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad; Zerpa, Luis
The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less
Geothermal materials development
NASA Astrophysics Data System (ADS)
Kukacka, L. E.
1991-12-01
Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY-91, utility company sponsored 'full cost' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY-91, the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO2-resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.
NASA Astrophysics Data System (ADS)
Cardiff, M. A.; Feigl, K. L.; Zeng, X.; Lord, N. E.; Lancelle, C.; Parker, L.; Reinisch, E. C.; Lim, D.; Ali, S. T.; Fratta, D.; Thurber, C. H.; Wang, H. F.; Robertson, M.; Lopeman, J.; Kreemer, C.; Morency, C.; Davatzes, N. C.; Team, P.; Coleman, T.; Miller, D. E.
2016-12-01
In the geothermal field at Brady Hot Springs, Nevada, highly permeable conduits along faults appear to channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells. Subsidence occurs over an elliptical area that is 4 km by 1.5 km. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in units with depth less than 600 m. (S. Tabrez Ali et al., Geothermics, 2016). Characterizing such structures in terms of their rock mechanical properties is essential to successful operations of Enhanced Geothermal Systems (EGS). The goal of the PoroTomo project is to assess an integrated technology for characterizing and monitoring changes in the rock mechanical properties of an EGS reservoir in three dimensions with a spatial resolution better than 50 meters. The targeted rock mechanical properties include: saturation, porosity, Young's modulus, Poisson's ratio, and density, all of which are "critically important" characteristics of a viable EGS reservoir. In March 2016, we deployed the integrated technology in a 1500-by-500-by-400-meter volume at Brady. The 15-day deployment included 4 distinct time intervals with intentional manipulations of the pumping rates in injection and production wells. The data set includes: active seismic sources, fiber-optic cables for Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) arranged vertically in a borehole to 400 m depth and horizontally in a trench 8700 m in length and 0.5 m in depth; 244 seismometers on the surface, 3 pressure sensors in observation wells, continuous geodetic measurements at 3 GPS stations, and 7 InSAR acquisitions. To account for the mechanical behavior of both the rock and the fluids, we are developing numerical models for the 3-D distribution of the material properties. The PoroTomo project is funded by a grant from the U.S. Department of Energy.
The Pawsey Supercomputer geothermal cooling project
NASA Astrophysics Data System (ADS)
Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.
2010-12-01
The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air-conditioning systems from the direct use of geothermal power from Hot Sedimentary Aquifer (HSA) systems. HSA systems underlie many of the world's population centers, and thus have the potential to offset a significant fraction of the world's consumption of electrical power for air-conditioning.
Numerical modeling of regional stress distributions for geothermal exploration
NASA Astrophysics Data System (ADS)
Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold
2017-04-01
Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault zones family sets and their priority rule. In the second step, the physical model must be established, including constitutive equations for the rock mass and the fault zones, initial state and boundary conditions. At such large scales, physical laws and parameters are difficult to assess and must be constrained by sensitivity analysis. In the last step of the study, the results can be interpreted to highlight areas where the mechanical conditions favor the presence of a geothermal resource. The DEM enables accounting for the strong stress redistributions inherent to highly-segmented geometries, and to the dilational opening of fault zones under shearing. A 130x150 square-kilometers region within the Upper Rhine Graben is used as a case-study to illustrate the building and interpretation of a regional stress model.
MOUNT SHASTA WILDERNESS STUDY AREA, CALIFORNIA.
Christiansen, Robert L.; Tuchek, Ernest T.
1984-01-01
The Mount Shasta Wilderness lies wholly on the slopes and summit area of Mount Shasta and consists almost entirely of the products of geologically young volcanism. Small deposits of volcanic cinders and pumice are present. The volcanic system of Mount Shasta is judged to have probable resource potential for geothermal energy but that potential is least within the wilderness study area boundaries. Because any geothermal energy resource beneath the volcano would lie at considerable depths, exploration or development would be most likely at lower altitudes on the gentler slopes outside the study area.
Doug Blankenship
2011-05-04
This data includes the locations of the MT data collected in and around the Coso Geothermal field that covered the West Flank area. These are the data that the 3D MT models were created from that were discussed in Phase 1 of the West Flank FORGE project. The projected coordinate system is NAD 1927 State Plane California IV FIPS 0404 and the Projection is Lambert Conformal Conic. Units are in feet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellinger, M.; Allen, E.
A unique public/private partnership of local, state, federal and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quotes} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of the The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function and environmental impacts, its implementation hasmore » required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation and financing of the project, and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.« less
A New Analytic-Adaptive Model for EGS Assessment, Development and Management Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danko, George L
To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period,more » with one patent application originated prior to the start of the project. The “Multiphase Physical Transport Modeling Method and Modeling System” (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The “Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.« less
Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects
NASA Astrophysics Data System (ADS)
Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer
2013-04-01
In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized location problem. Optimization for additional criteria (e.g., focal mechanism determination or installation costs) can be included. We consider a 3D seismic velocity model, an European ambient seismic noise model derived from high-resolution land-use data, and existing seismic stations in the vicinity of the geotechnical site. Additionally, we account for the attenuation of the seismic signal with travel time and ambient seismic noise with depth to be able to correctly deal with borehole station networks. Using this algorithm we are able to find the optimal geometry and size of the seismic monitoring network that meets the predefined application-oriented performance criteria. This talk will focus on optimal network geometries for deep geothermal projects of the EGS and hydrothermal type, and discuss the requirements for basic seismic surveillance and high-resolution reservoir monitoring and characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Signe K.; Purohit, Sumit; Boyd, Lauren W.
The Geothermal Technologies Office Code Comparison Study (GTO-CCS) aims to support the DOE Geothermal Technologies Office in organizing and executing a model comparison activity. This project is directed at testing, diagnosing differences, and demonstrating modeling capabilities of a worldwide collection of numerical simulators for evaluating geothermal technologies. Teams of researchers are collaborating in this code comparison effort, and it is important to be able to share results in a forum where technical discussions can easily take place without requiring teams to travel to a common location. Pacific Northwest National Laboratory has developed an open-source, flexible framework called Velo that providesmore » a knowledge management infrastructure and tools to support modeling and simulation for a variety of types of projects in a number of scientific domains. GTO-Velo is a customized version of the Velo Framework that is being used as the collaborative tool in support of the GTO-CCS project. Velo is designed around a novel integration of a collaborative Web-based environment and a scalable enterprise Content Management System (CMS). The underlying framework provides a flexible and unstructured data storage system that allows for easy upload of files that can be in any format. Data files are organized in hierarchical folders and each folder and each file has a corresponding wiki page for metadata. The user interacts with Velo through a web browser based wiki technology, providing the benefit of familiarity and ease of use. High-level folders have been defined in GTO-Velo for the benchmark problem descriptions, descriptions of simulator/code capabilities, a project notebook, and folders for participating teams. Each team has a subfolder with write access limited only to the team members, where they can upload their simulation results. The GTO-CCS participants are charged with defining the benchmark problems for the study, and as each GTO-CCS Benchmark problem is defined, the problem creator can provide a description using a template on the metadata page corresponding to the benchmark problem folder. Project documents, references and videos of the weekly online meetings are shared via GTO-Velo. A results comparison tool allows users to plot their uploaded simulation results on the fly, along with those of other teams, to facilitate weekly discussions of the benchmark problem results being generated by the teams. GTO-Velo is an invaluable tool providing the project coordinators and team members with a framework for collaboration among geographically dispersed organizations.« less
NASA Astrophysics Data System (ADS)
Makhloufi, Yasin; Rusillon, Elme; Brentini, Maud; Clerc, Nicolas; Meyer, Michel; Samankassou, Elias
2017-04-01
Diagenesis of carbonate rocks is known to affect the petrophysical properties (porosity, permeability) of the host rock. Assessing the diagenetic history of the rock is thus essential when evaluating any reservoir exploitation project. The Canton of Geneva (Switzerland) is currently exploring the opportunities for geothermal energy exploitation in the Great Geneva Basin (GGB) sub-surface. In this context, a structural analysis of the basin (Clerc et al., 2016) associated with reservoir appraisal (Brentini et al., 2017) and rock-typing of reservoir bodies of potential interest were conducted (Rusillon et al., 2017). Other geothermal exploitation projects elsewhere (e.g. Bavaria, south Germany, Paris Basin, France) showed that dolomitized carbonate rocks have good reservoir properties and are suitable for geothermal energy production. The objectives of this work are to (1) describe and characterize the dolomitized bodies in the GGB and especially their diagenetic history and (2) quantify the reservoir properties of those bodies (porosity, permeability). Currently, our study focuses on the Upper Jurassic sedimentary bodies of the GGB. Field and well data show that the dolomitization is not ubiquitous in the GGB. Results from the petrographical analyses of the Kimmeridgian cores (Humilly-2) and of field analogues (Jura, Saleve and Vuache mountains) display complex diagenetic histories, dependent of the study sites. The paragenesis exhibits several stages of interparticular calcite cementation as well as different stages of dolomitization and/or dedolomitization. Those processes seem to follow constrained path of fluid migrations through burial, faulting or exhumation during the basin's history. These complex diagenetic histories affected the petrophysical and microstructural properties via porogenesis (conservation of initial porosity, moldic porosity) and/or poronecrosis events. The best reservoir properties appear to be recorded in patch reef and peri-reefal depositional environments in association with porous dolomitized intervals (Rusilloon et al., 2017). The work presented here will help to constrain and quantify reservoir heterogeneities in a complex reservoir and to provide insights into porosity and permeability distribution that will ultimately help in reservoir modeling, a crucial step for further possible exploitation. Brentini et al. 2017: Geothermal prospection in the Greater Geneva Basin: integration of geological data in the new Information System. Abstract, EGU General Assembly 2017, Vienna, Austria. Clerc et al. 2016: Structural Modeling of the Geneva Basin for Geothermal Ressource Assessment. Abstract, 14th Swiss Geoscience Meeting, Geneva, Switzerland. Rusillon et al., 2017: Geothermal prospection in the Greater Geneva Basin (Switzerland and France): structural and reservoir quality assessment. Abstract, EGU General Assembly 2017, Vienna, Austria.
Llenos, Andrea L.; Michael, Andrew J.
2016-01-01
The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.
Microseismic monitoring during Hydraulic stimulation in Pohang (Korea) for EGS pilot project
NASA Astrophysics Data System (ADS)
Kim, M.; Yoon, B.; Lee, C.; Park, K. G.; Yoon, W. S.; Song, Y.; Lee, T. J.
2017-12-01
Since the geothermal anomaly in the Pohang area has been reported in 1960s, various geological and geophysical surveys have been conducted by Korea Institute of Geoscience and Mineral Resources (KIGAM) including gravity, seismic, airborne magnetic and magneto-telluric surveys. Based on these explorations, the Enhanced Geothermal System (EGS) pilot project has been carried out in Pohang since the end of 2010. One vertical well (PX-2, MD 4,348 m) and one deviated well (PX-1, MD 4,362 m) have been drilled in granite rock for the EGS. Microseismic (MS) monitoring is the best way to understand how the fracture grows during the hydraulic stimulation. KIGAM has set up 9 shallow borehole stations (100-130 m), 4 surface stations and two borehole geophones (1,350 and 1,550 m deep) within 5 km radius from injection well for the MS monitoring during hydraulic stimulation. The first hydraulic stimulation started on January 29th to February 20th, 2016 at PX-2 and the second stimulation was conducted in PX-1 from December 15th, 2016 to January 11th, 2017. Several hundreds of MS events occurred during stimulation and the biggest event was ML 2.3 during the shut in period of the second stimulation. Based on the results of the MS monitoring, a soft stimulation is scheduled at PX-1 in cooperation with one of the European Horizon2020 project, DESTRESS (Demonstration of soft stimulation treatments of geothermal reservoirs). We will present the MS monitoring system in Pohang and the data of the stimulation with the MS monitoring results. We believe that the data from Pohang will improve the understanding of seismic behavior due to hydraulic stimulation in crystalline rocks and also will contribute to success of the Pohang EGS project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Cuprak
West Chester University is launching a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution is in the process of designing and implementing this project to build well fields, a pumping station and install connecting piping to provide the geothermal heat/cooling source for campus buildings. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologiesmore » that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply. For this grant, WCU will extend piping for its geo-exchange system. The work involves excavation of a trench approximately 8 feet wide and 10-12 feet deep located about 30 feet north of the curb along the north side of West Rosedale for a distance of approximately 1,300 feet. The trench will then turn north for the remaining distance (60 feet) to connect into the mechanical room in the basement of the Francis Harvey Green Library. This project will include crossing South Church Street near its intersection with West Rosedale, which will involve coordination with the Borough of West Chester. After installation of the piping, the trench will be backfilled and the surface restored to grass as it is now. Because the trench will run along a heavily-used portion of the campus, it will be accomplished in sections to minimize disruption to the campus as much as possible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio
The Northwest Geysers Enhanced Geothermal System (EGS) demonstration project aims to create an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (280–400 °C) Zone (HTZ) located under the conventional (240 °C) geothermal steam reservoir at The Geysers geothermal field in California. Here we report that , the results of coupled thermal, hydraulic, and mechanical (THM) analyses made using a model developed as part of the pre-stimulation phase of the EGS demonstration project is presented. The model simulations were conducted in order to investigate injection strategies and the resulting effects of cold-watermore » injection upon the EGS system; in particular to predict the extent of the stimulation zone for a given injection schedule. The actual injection began on October 6, 2011, and in this paper a comparison of pre-stimulation model predictions with micro-earthquake (MEQ) monitoring data over the first few months of a one-year injection program is presented. The results show that, by using a calibrated THM model based on historic injection and MEQ data at a nearby well, the predicted extent of the stimulation zone (defined as a zone of high MEQ density around the injection well) compares well with observed seismicity. The modeling indicates that the MEQ events are related to shear reactivation of preexisting fractures, which is triggered by the combined effects of injection-induced cooling around the injection well and small changes in steam pressure as far as half a kilometer away from the injection well. Pressure-monitoring data at adjacent wells and satellite-based ground-surface deformation data were also used to validate and further calibrate reservoir-scale hydraulic and mechanical model properties. The pressure signature monitored from the start of the injection was particularly useful for a precise back-calculation of reservoir porosity. Ultimately, the first few months of reservoir pressure and surface deformation data were useful for estimating the reservoir-rock permeability and elastic modulus. Finally, although the extent of the calculated stimulation zone matches the field observations over the first few months of injection, the observed surface deformations and MEQ evolution showed more heterogeneous behavior as a result of more complex geology, including minor faults and fracture zones that are important for consideration in the analysis of energy production and the long-term evolution of the EGS system.« less
Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; ...
2013-10-17
The Northwest Geysers Enhanced Geothermal System (EGS) demonstration project aims to create an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (280–400 °C) Zone (HTZ) located under the conventional (240 °C) geothermal steam reservoir at The Geysers geothermal field in California. Here we report that , the results of coupled thermal, hydraulic, and mechanical (THM) analyses made using a model developed as part of the pre-stimulation phase of the EGS demonstration project is presented. The model simulations were conducted in order to investigate injection strategies and the resulting effects of cold-watermore » injection upon the EGS system; in particular to predict the extent of the stimulation zone for a given injection schedule. The actual injection began on October 6, 2011, and in this paper a comparison of pre-stimulation model predictions with micro-earthquake (MEQ) monitoring data over the first few months of a one-year injection program is presented. The results show that, by using a calibrated THM model based on historic injection and MEQ data at a nearby well, the predicted extent of the stimulation zone (defined as a zone of high MEQ density around the injection well) compares well with observed seismicity. The modeling indicates that the MEQ events are related to shear reactivation of preexisting fractures, which is triggered by the combined effects of injection-induced cooling around the injection well and small changes in steam pressure as far as half a kilometer away from the injection well. Pressure-monitoring data at adjacent wells and satellite-based ground-surface deformation data were also used to validate and further calibrate reservoir-scale hydraulic and mechanical model properties. The pressure signature monitored from the start of the injection was particularly useful for a precise back-calculation of reservoir porosity. Ultimately, the first few months of reservoir pressure and surface deformation data were useful for estimating the reservoir-rock permeability and elastic modulus. Finally, although the extent of the calculated stimulation zone matches the field observations over the first few months of injection, the observed surface deformations and MEQ evolution showed more heterogeneous behavior as a result of more complex geology, including minor faults and fracture zones that are important for consideration in the analysis of energy production and the long-term evolution of the EGS system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Bob; Laughlin, Darren
Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' withinmore » drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLing, Travis; McCurry, Mike; Cannon, Cody
Dr. David Blackwell has had a profound influence on geo-thermal exploration and R&D in Idaho. Forty years have elapsed since the first Southern Methodist University (SMU) temperature logging truck rolled onto the high desert in Southern Idaho, yet even after so much time has elapsed, most recent and ongoing geothermal R&D can trace its roots to the foundational temperature studies led by Dr. Blackwell. We believe that the best way to honor any scientist is to see their work carried forward by others. As this paper demonstrates, it has been an easy task to find a host of Idaho researchersmore » and students eager to contribute to this tribute paper. We organize this paper by ongoing or recent projects that continue to benefit left to Idaho by Dr. David Blackwell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillesheim, M.; Mosey, G.
2013-11-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power systemmore » at the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allis, R.G.
1989-06-16
There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital formore » planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.« less
The EGS Data Collaboration Platform: Enabling Scientific Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weers, Jonathan D; Johnston, Henry; Huggins, Jay V
Collaboration in the digital age has been stifled in recent years. Reasonable responses to legitimate security concerns have created a virtual landscape of silos and fortified castles incapable of sharing information efficiently. This trend is unfortunately opposed to the geothermal scientific community's migration toward larger, more collaborative projects. To facilitate efficient sharing of information between team members from multiple national labs, universities, and private organizations, the 'EGS Collab' team has developed a universally accessible, secure data collaboration platform and has fully integrated it with the U.S. Department of Energy's (DOE) Geothermal Data Repository (GDR) and the National Geothermal Data Systemmore » (NGDS). This paper will explore some of the challenges of collaboration in the modern digital age, highlight strategies for active data management, and discuss the integration of the EGS Collab data management platform with the GDR to enable scientific discovery through the timely dissemination of information.« less
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
The helical screw expander evaluation project. [for geothermal wells
NASA Technical Reports Server (NTRS)
Mckay, R. A.
1977-01-01
A positive-displacement helical-screw expander of the Lysholm type has been adapted for geothermal service and successfully demonstrated in a 50 kW prototype power system. Evaluation of the expander by tests of a new model in a 1 MW power system under wellhead conditions in selected liquid-dominated geothermal fields is proposed. The objectives are to determine the performance characteristics of the expander and power system over a broad range of operating conditions and also to examine the concept of wellhead power plants. Throttling and fractionation of the fluids from the test wells is planned to simulate a wide range of wellhead pressures and steam fractions. Variation in the expander exhaust pressure is also planned. The investigation will include expander efficiency, corrosion, erosion, scale formation and control, and endurance testing. Interaction studies with the wells and an electric grid are also proposed.
Mortality of populations residing in geothermal areas of Tuscany during the period 2003-2012.
Bustaffa, Elisa; Minichilli, Fabrizio; Nuvolone, Daniela; Voller, Fabio; Cipriani, Francesco; Bianchi, Fabrizio
2017-01-01
The limited scientific knowledge on the relationship between exposure and health effects in relation to geothermal activity motivated an epidemiologic investigation of Tuscan geothermal area. This study aims at describing mortality of populations living in Tuscan municipalities in the period 2003-2012. Sixteen municipalities were included in the study area: eight in the northern and eight in the southern area. Mortality data come from the Regional Mortality Registry of Tuscany. Fifty-four causes of death, considered of interest for population health status or consistent with "Project SENTIERI" criteria, are analyzed. Results show a worse mortality profile in the southern area, especially in males, for whom excesses of all cancers and some causes of cancer emerge, while in the northern area an excess of cerebrovascular diseases among females merits attention. Further and more appropriate studies are needed to clarify the etiology of some diseases and to better assess a potential cause-effect relationship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastouret, Alan; Gooijer, Frans; Overton, Bob
High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fibermore » cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High-temperature insulated wire conductors Prysmian Group has developed a geothermal fiber optic cable (GFOC) solution which incorporates novel glass chemistry for optical fibers to operate at the required bandwidths in high temperature/high pressure hydrogen rich environments with fiber protection, high temperature insulated conductors and protective cladding for cable components. The cable solution has been tested in a geothermal installation for 10 months. The electrical insulation and optical fibers have been validated through laboratory testing to ensure successful operation for greater than 5 years at 300°C, with the possibility of higher temperatures depending on the particular well environment. With the 300°C optical fiber and electrical insulation developments completed and validated in laboratory tests the greatest challenge to a complete 300°C cable solution was protecting the optical fibers in the cable. Optical fibers are typically incased in a protective tube where the tube is filled with a gel. The gel serves as mechanical protection, prevent moisture ingress, and can include hydrogen scavenging materials. A suitable gel for use at 300°C could not be identified and an industrialized alternative was not fully attained. Despite the problems encountered and the lower long-term operating temperature of the cable solution, the project showed success in developing a complete cable solution for a large portion of the geothermal wells in operation today. Further work to obtain the higher long-term temperature goal of the project can be achieved based on the knowledge gained in the current project. This project is significant for many reasons including the new materials science, manufacturing technology, energy independence, and jobs created and will create.« less
Archuleta County CO Lineaments
Richard E. Zehner
2012-01-01
This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature.
76 FR 45554 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
.... 20110231, Final EIS, BLM, NV, Salt Wells Energy Projects, Proposal for Three Separate Geothermal Energy and.... EIS No. 20110241, Draft EIS, NNSA, NV, Site-Wide EIS--Continued Operation of the Department of Energy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmissionmore » distance.« less
Materials for geothermal production
NASA Astrophysics Data System (ADS)
Kukacka, L. E.
Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY-91, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO2 resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued, and considerable success was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-31
The GRIPS (Geothermal Resources Impact Projection Study) Commission was established by a Joint Powers Agreement between the California Counties of Lake, Mendocino, Napa, and Sonoma. The objectives of GRIPS are primarily to develop and use a cooperative environmental data collection and use system including natural, social, and economic considerations to facilitate their independent decisions and those of State and Federal agencies related to the environmental effects of geothermal development. This GRIPS Plan was prepared from a wide range of studies, workshops, and staff analyses. The plan is presented in four parts: summary and introduction; environmental data status report; planned programs;more » and budget. (MHR)« less
California energy flow in 1989
NASA Astrophysics Data System (ADS)
Borg, I. Y.; Briggs, C. K.
1991-02-01
California's energy use showed a modest increase (2.2 percent) in 1989 over 1988 which was in keeping with the steady increase in population that the state has experienced annually during the decade. All end-use sectors (residential, commercial, industrial, transportation, etc.) contributed to the growth. The larger demand was met by increased imports of all major fuels. Only electrical imports remained close to 1988 levels, in part due to increased output from Diablo Canyon nuclear plant whose performance exceeded expectations. California's per capita energy consumption has traditionally been below the national average due to the relatively benign climate associated with its centers of population. The largest single use for energy in the state was for transportation, which overtook industrial usage in the 60's. Use of highway fuels continued to grow and reached all time highs in 1989. Highway congestion, a major problem and concern in the state, is anticipated to grow as the number of licensed drivers increases; in 1989 the increase was 3.4 percent. Output from the The Geysers Geothermal fields, the largest in the world, continued to falter as the steam output fell. Nonetheless new resources at the Coso Geothermal Resource Area and at the Wendel Geothermal field came on line during the year, and other geothermal areas were under active development. Novel sources of renewable energy (solar, wind, etc.) grew; however, collectively they made only a small contribution to the overall energy supply. Cogenerated electricity sold to the utilities by small power producers inexplicably fell in 1989 although estimates of the total capacity available rose. Energy flow diagrams illustrate energy sources and energy consumption.
DeAngelo, Jacob; Shervais, John W.; Glen, Jonathan; Nielson, Dennis L.; Garg, Sabodh; Dobson, Patrick; Gasperikova, Erika; Sonnenthal, Eric; Visser, Charles; Liberty, Lee M.; Siler, Drew; Evans, James P.; Santellanes, Sean
2016-01-01
Play fairway analysis in geothermal exploration derives from a systematic methodology originally developed within the petroleum industry and is based on a geologic and hydrologic framework of identified geothermal systems. We are tailoring this methodology to study the geothermal resource potential of the Snake River Plain and surrounding region. This project has contributed to the success of this approach by cataloging the critical elements controlling exploitable hydrothermal systems, establishing risk matrices that evaluate these elements in terms of both probability of success and level of knowledge, and building automated tools to process results. ArcGIS was used to compile a range of different data types, which we refer to as ‘elements’ (e.g., faults, vents, heatflow…), with distinct characteristics and confidence values. Raw data for each element were transformed into data layers with a common format. Because different data types have different uncertainties, each evidence layer had an accompanying confidence layer, which reflects spatial variations in these uncertainties. Risk maps represent the product of evidence and confidence layers, and are the basic building blocks used to construct Common Risk Segment (CRS) maps for heat, permeability, and seal. CRS maps quantify the variable risk associated with each of these critical components. In a final step, the three CRS maps were combined into a Composite Common Risk Segment (CCRS) map for analysis that reveals favorable areas for geothermal exploration. Python scripts were developed to automate data processing and to enhance the flexibility of the data analysis. Python scripting provided the structure that makes a custom workflow possible. Nearly every tool available in the ArcGIS ArcToolbox can be executed using commands in the Python programming language. This enabled the construction of a group of tools that could automate most of the processing for the project. Currently, our tools are repeatable, scalable, modifiable, and transferrable, allowing us to automate the task of data analysis and the production of CRS and CCRS maps. Our ultimate goal is to produce a toolkit that can be imported into ArcGIS and applied to any geothermal play type, with fully tunable parameters that will allow for the production of multiple versions of the CRS and CCRS maps in order to better test for sensitivity and to validate results.
NASA Astrophysics Data System (ADS)
Anibas, Christian; Kukral, Janik; Touhidul Mustafa, Syed Md; Huysmans, Marijke
2017-04-01
Urban areas have a great potential for shallow geothermal systems. Their energy demand is high, but currently they have only a limited potential to cover their own energy demand. The transition towards a low-carbon energy regime offers alternative sources of energy an increasing potential. Urban areas however pose special challenges for the successful exploitation of shallow geothermal energy. High building densities limit the available space for drillings and underground investigations. Urban heat island effects and underground structures influence the thermal field, groundwater pollution and competing water uses limit the available subsurface. To tackle these challenges in the Brussels Capital Region, Belgium two projects 'BruGeo' and the recently finished 'Prospective Research of Brussels project 2015-PRFB-228' address the investigation in urban geothermal systems. They aim to identify the key factors of the underground with respect to Aquifer Thermal Energy Storage (ATES) installations like thermal properties, aquifer thicknesses, groundwater flow velocities and their heterogeneity. Combined numerical groundwater and heat transport models are applied for the assessment of both open and closed loop shallow geothermal systems. The Brussels Capital Region comprises of the Belgian Capital, the City of Brussels and 18 other municipalities covering 161 km2 with almost 1.2 million inhabitants. Beside the high population density the Brussels Capital Region has a pronounced topography and a relative complex geology. This is both a challenge and an opportunity for the exploitation of shallow geothermal energy. The most important shallow hydrogeological formation in the Brussels-Capital Region are the Brussels Sands with the Brussels Sands Aquifer. Scenarios where developed using criteria for the hydrogeological feasibility of ATES installations such as saturated aquifer thickness, groundwater flow velocity and the groundwater head below surface. The Brussels Sands Formation is covering almost 8000 ha, roughly the half of the Brussels Capital Region. In an optimistic scenario (i.e. all criteria show acceptable or favorable conditions) around 80% of the 8000 ha is suitable for ATES. This is an indication for the considerable potential for ATES installations in the Brussels Capital Region. Results of the research will lead to quantitative spatial output about the potential of shallow geothermal energy use in the Region.
Apacheta, a new geothermal prospect in Northern Chile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urzua, Luis; Powell, Tom; Cumming, William B.
2002-05-24
The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regionalmore » water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Signorelli, Riccardo; Cooley, John
2015-10-14
FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements inmore » rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated in the oil and gas context. Without batteries, geothermal MWD is left without a downhole power source. Some very high temperature turbines exist but provide unsteady, intermittent power and no power when the flow is off. In high loss formations common to geothermal exploration, it will be auspicious to support air drilling in which case there is no flow to power a turbine at all. In the best case, rechargeable energy storage will help to buffer unsteady power from non-battery power sources and in the worst case it will be needed to store energy from highly intermittent sources to provide a continuously operable power source to the tool.« less
Mountain home known geothermal resource area: an environmental analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, S.G.; Russell, B.F.
1979-09-01
The Mountain Home KGRA encompasses an area of 3853 hectares (ha) at the foot of the Mount Bennett Hills in Elmore County, Idaho. The site is associated with an arid climate and high winds that generate an acute dust problem. The KGRA lies adjacent to the northwest-southeast trending fault zone that reflects the northern boundary of the western Snake River Plain graben. Data indicate that a careful analysis of the subsidence potential is needed prior to extensive geothermal development. Surface water resources are confined to several small creeks. Lands are utilized for irrigated farmlands and rangeland for livestock. There aremore » no apparent soil limitations to geothermal development. Sage grouse and mule deer are the major species of concern. The potential of locating significant heritage resources other than the Oregon Trail or the bathhouse debris appears to be relatively slight.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorpette, G.
This paper reports that in a forest on the island of Hawaii, legal and regulatory activity has postponed the start-up of a small new power plant and imperilled the design and construction of several facilities like it. The same old story Hardly. The power plants at stake are not nuclear or coal- or even oil-fired, but geothermal, widely considered one of the more environmentally benign ways of generating electricity. In a further twist, the opposition is coming not only from the usual citizens; and environmental groups, but also from worshippers of a native good and, it has been alleged, growersmore » of marijuana, a lucrative local crop. The clash occurs just as geothermal power sources have finally proven commercially viable, experts say, adding that technological advances and industry trends in the United States and elsewhere seem to factor great expansion in its use.« less
77 FR 59968 - Notice of Public Meeting: Northeast California Resource Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... geothermal energy development proposals in the Medicine Lake Highlands, and an update on management decisions..., a status report on the proposed Horse Lake wind energy project, a status report on the BLM's sage...
43 CFR 3212.23 - How will the production incentive apply to a qualified expansion project?
Code of Federal Regulations, 2011 CFR
2011-10-01
... (3000) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy Policy Act Royalty Rate Conversions § 3212.23 How will the production incentive apply to a...
NASA Astrophysics Data System (ADS)
Hickman, S. H.; Davatzes, N. C.; Zemach, E.; Chabora, E.; Lutz, S.; Rose, P.; Majer, E. L.; Robertson-Tait, A.
2013-12-01
Creation of an Enhanced Geothermal System (EGS) in hot but low-permeability rocks involves hydraulic stimulation of fracture permeability to develop a complex heat exchange system with low hydraulic impedance. An integrated study of stress, fractures and rock mechanical properties was conducted to develop the geomechanical framework for a multi-stage EGS stimulation in Desert Peak well 27-15, located at the low-permeability margins of an active geothermal field. The stimulation targeted silicified tuffs and metamorphosed mudstones at depths of 0.9 to 1.8 km and temperatures ~180 to 210° C. Drilling-induced tensile fractures in image logs from well 27-15 show that the least horizontal principal stress (Shmin) is consistent with normal faulting on ESE- and WNW-dipping fractures mapped at the surface and seen in the image logs. A hydraulic fracturing stress measurement indicates that the magnitude of Shmin at ~0.93 km depth is 0.61 of the calculated vertical stress. Coulomb failure calculations using these stresses together with measurements of friction and permeability on core predict that dilatant shear failure should be induced on pre-existing conjugate normal faults once pore pressures are increased ~2.5 MPa or more above ambient values, generating a zone of enhanced permeability elongated in the direction toward active geothermal wells ~0.5 km to the SSW. Hydraulic stimulation of well 27-15 began in September 2010 by injecting water into the open-hole interval between the casing shoe at 0.9 km depth and a temporary cement plug at 1.1 km. Stimulation was monitored by combined surface and down-hole seismic monitoring, inter-well tracer testing and periodic pressure-temperature-flowmeter logging. An initial stage of low-pressure (shear) stimulation was conducted for ~100 days at a series of pressure steps
Electric Power Generation from Low to Intermediate Temperature Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, William D.
This project was designed to test the concept on the Eland-Lodgepole Field near Dickinson, North Dakota in the Williston Basin. The field is in secondary-recovery water-flood and consists of 12 producing oil wells, 5 water injection wells and one disposal well. Water production at the site averages approximately 320 gallons per minute (20.2 l s-1) and the temperature is 100 ⁰C. Engineers at Ormat estimated power production potential with the existing resource to be approximately 350 kWh. Unfortunately, ownership of the field was transferred from Encore, Inc., to Denbury, Inc., within the first week of the project. After two yearsmore » of discussion and planning, Denbury decided not to pursue this project due to complications with the site location and its proximity to Patterson Lake. Attempts to find other partners operating in the Williston Basin were unsuccessful. Consequently, we were unable to pursue the primary objective of the project. However, during negations with Denbury and subsequent time spent contacting other potential partners, we focused on objectives 2 and 3 and developed a clear understanding of the potential for co-produced production in the Williston Basin and the best practices for developing similar projects. At least nine water bearing formations with temperatures greater than 90 ⁰C extend over areas of several 10s of km2. The total energy contained in the rock volume of those geothermal aquifers is 283.6 EJ (1 EJ = 1018 J). The total energy contained in the water volume, determined from porosities which range from 2 percent to 8 percent, is 6.8 EJ. The aquifers grouped by 10 ⁰C temperature bins (Table 1) include one or more formations due to the bowl-shape structure of the basin. Table 1. Summary of energy available in geothermal aquifers in the Williston Basin Analysis of overall fluid production from active wells, units, fields and formations in North Dakota showed that few sites co-produce sufficient fluid for significant power production with ORC technology. Average co-produced water for 10,480 wells is 3.2 gallons per minute (gpm). Even excluding the tight formations, Bakken and Three Forks, average co-produced water for the remaining 3,337 is only 5 gpm. The output of the highest producing well is 184 gpm and the average of the top 100 wells is 52 gpm. Due to the depth of the oil producing formations in the Williston Basin, typically 3 km or greater, pumps are operated slowly to prevent watering out thus total fluid production is purposefully maintained at low volumes. There remain potential possibilities for development of geothermal fluids in the Williston Basin. Unitized fields in which water production from several tens of wells is collected at a single site are good possibilities for development. Water production in the unitized fields is greater than 1000 gpm is several areas. A similar possibility occurs where infill-drilling between Bakken and Three Forks horizontal wells has created areas where large volumes of geothermal fluids are available on multi-well pads and in unitized fields. Although the Bakken produces small amounts of water, the water/oil ration is typically less than 1, the oil and water mix produced at the well head can be sent through the heat exchanger on an ORC. It is estimated that several tens of MWh of power could be generated by a distributed system of ORC engines in the areas of high-density drilling in the Bakken Formation. Finally, horizontal drilling in water bearing formations is the other possibility. Several secondary recovery water-flood projects in the basin are producing water above 100 ⁰C at rates of 300 gpm to 850 gpm. Those systems also could produce several tens of MWh of power with ORC technology. Objective 3 of the project was highly successful. The program has produced 5 PhDs, 7 MS, and 3 BS students with theses in geothermal energy. The team has involved 7 faculty in 4 different engineering and science disciplines, ChE, EE, GE, and Geol. The team has produced 26 peer-reviewed papers and 62 presentations at professional meetings. Faculty involved in the program developed five graduate level courses covering different elements in heat flow and geothermal energy that are now offered in the Harold Hamm School of Geology and Geological Engineering. Lessons learned – Keys to developing a successful project;1. Determine target formations; a. Data from oil and gas operators, state oil and gas regulatory agencies, and state geological surveys help to identify producing formations and their properties; 2. Determine the quantity of energy available in the target formations; a. A complete thermal analysis of the basin or region yields the most useful information; b. Critical data include: BHT, heat flow, stratigraphy, lithology, lithological properties, and thermal conductivity, subsurface structure; 3. Determine fluid production potential; a. State oil and gas regulatory agencies, and state geological surveys have data on oil, gas and water production. State Water Commission/Agencies have data on water quality, aquifers, and regulations; b. Consider single horizontal wells, multiple conventional wells, and unitized fields; 4. Calculate energy production capacity of each formation based on different well combination and power plant scenarios. This is a broad overview rather than a site specific analysis; 5. Research and understand the local electrical power industry. Obtain the PPA before committing to the project; 6. Work with the high-level personnel in the oil company partner. Obtain an MOU that addresses all issues in the project including what to expect if the company goes out of business, is bought out, changes management, etc; and 7. Be prepared for project delays.« less
SPI Conformance Gel Applications in Geothermal Zonal Isolation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Lyle
Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mudmore » losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability for use in geothermal.« less
NASA Astrophysics Data System (ADS)
Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.
2017-12-01
In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid flow and the defining fluid pathways in the Licancura geothermal field. This work is a contribution to the FONDAP-CONICYT 15090013 Project. E.C. thanks CONICYT for her Ph.D. grant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, John W.; Glen, Jonathan M.; Liberty, Lee M.
The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. Themore » success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.« less
Snake River Plain Play Fairway Analysis - Phase 1 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, John W.; Glen, Jonathan M.; Liberty, Lee M.
2015-09-02
The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. Themore » success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-02-01
The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpmmore » flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy Policy Act Royalty Rate Conversions § 3212.21 What criteria establish...
Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.
2017-12-01
The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.
Geothermal exploration of Kos Island, Greece: Magnetotelluric and microseismicity studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagios, E.; Tzanis, A.; Delibasis, N.
1994-06-01
This paper reports the results of magnetotelluric (MT) and microseismicity studies, conducted as part of a multi-disciplinary project to explore the geothermal potential of the island of Kos, Greece. The MT survey, comprising 18 soundings, was carried out in the bandwidth 128 Hz-40 s, in order to determine the deep conductivity structure in the geothermally prospective western part of the island, Rigorous dimensionality analysis has indicated that the geoelectric structure could adequately be approximated with 1-D interpretation tools. Two significant and seemingly communicating conductive zones of potential geothermal interest were found within the first 2 km. The first is extensivemore » and shallow, detected at depths of 400--600 m; the second is deeper (1,000--1,300 m), but of considerably smaller lateral dimensions. A very deep relative conductor (< 25 [Omega]m) was also detected at depths of 7--10 km, which is thought to comprise part of an old magma chamber with brine-saturated rocks. The microseismicity studies revealed the partial or total attenuation of shear waves in many microearthquake records. The analysis of these observations determined the vertical and lateral extent of that attenuation zone, the greatest part of which is located underneath the marine area between western Kos and Nissyros island to the south, extending approximately from near the surface to about 1.5 km depth. The nature of this zone is discussed in terms of fluid concentration due to the geothermal system of the area.« less
Geothermal exploration in the Virunga Prospect, Northern Rwanda
NASA Astrophysics Data System (ADS)
Jolie, E.
2009-04-01
German technical cooperation has taken the initiative to support partner countries in geothermal energy use. Therefore the Federal Institute for Geosciences and Natural Resources (BGR) on behalf of the Federal Ministry for Economic Cooperation and Development (BMZ) is carrying out the technical cooperation programme GEOTHERM. As an example of the ongoing project activities, preliminary results of studies carried out in the Virunga geothermal prospect in Northern Rwanda will be presented. The study area is located along the Western branch of the East African Rift System. Weak geothermal surface manifestations, e.g. hot springs and bubbling pools, indicate an existing hydrothermal system. Previous studies did not determine location, distribution, quality and quantity of the heat source. Consequently the aim of this study is to detect and assess the heat source with a multi method approach. Remote sensing techniques, geochemical analyses and geophysical measurements have been applied to make a first serious attempt. More detailed geophysical investigations and gas measurements are planned to start in spring 2009. Aerial photographs and satellite images were used for a high-resolution structural analysis to determine major fault zones, which are dominating the flow paths of hydrothermal fluids. In the frame of a regional geophysical survey (Magnetotellurics and Transient Electromagnetics) a zone of low resistivity values could be detected SW of the Karisimbi stratovolcano, which is corresponding with the results of the geochemical analyses. Assumptions are made that a magmatic body may exist in a depth of 5 km below surface.
Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows
NASA Astrophysics Data System (ADS)
Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James
2016-04-01
In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all regions with positive prospectivity inside subcrops and discharge areas was 1.83 (standard deviation = 0.75), whereas this mean prospectivity for known geothermal sites was 3.07 (standard deviation = 0.90). These results suggest that our prospectivity analysis using our integrated framework and the hydrogeologic windows concept is useful for identifying known and potential geothermal resources. The prospectivity approach also substantially reduces the number of known geothermal resources per km2 (from 0.004 at prospectivity > 0 to 0.016 at prospectivity > 3), suggesting that limiting an exploration area to regions with high prospectivity scores could reduce exploration costs. Comparing this method to more simplistic methods revealed that this method consistently had a higher density of resources in the top quintile for prospectivity. Using our prospectivity map, we identified nine sites for further data collection and analysis: Rincon, Lordsburg, Mud Springs, Gillis Hot Well, Goodsight, Cliff-Riverside, Rio Salado/Lucero, and the Northern Little Florida Mountains.
Modeling thermal stress propagation during hydraulic stimulation of geothermal wells
NASA Astrophysics Data System (ADS)
Jansen, Gunnar; Miller, Stephen A.
2017-04-01
A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir. Combined with a analytical formulation for the injection temperatures in the open hole section of a geothermal well, the stress changes induced during the injection period of reservoir development can be studied.
Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.
Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less
Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation
Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.; ...
2017-08-18
Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less
NASA Astrophysics Data System (ADS)
Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun
2010-05-01
Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal water that the measurement of the permeability should be performed through a very careful process in order to guarantee a reliable simulation. As the fracture spacing became narrower, overall thermal distribution appeared to be similar to that from EPM model. This suggests that EPM model, which is easy to design and takes less time, can be replaced for the densely fractured medium. Change in fracture aperture within the range of that of actual rocks did not cause a remarkable difference in temperature distribution, which means that measuring accuracy of the actual aperture value in rocks is relatively less important. This demonstrates that the distribution and the structure of fracture system make a great contribution to the whole simulation for fluid and heat flow mechanisms in geologic medium, and thus require an intensive geologic investigation for the fractures including strike and dip information, permeability and connecting relation. In addition, the simulation results show that the heterogeneous model can include the description for the significant fracture flow and it can be a practical tool for a site-specific simulation for EGS sites. This preliminary simulation was useful to estimate the scale of the geothermal reservoir and the energy potential in Seokmodo and it can be further expanded to a long-term simulation to predict the evolution of the geothermal reservoir under the potential EGS operations. Acknowledgement: This study was financially supported by KIGAM, KETEP and BK21.
Seismicity and source spectra analysis in Salton Sea Geothermal Field
NASA Astrophysics Data System (ADS)
Cheng, Y.; Chen, X.
2016-12-01
The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid circulation, the fracture network, and tectonic faulting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, R.T.; Coe, B.A.; Dick, J.D.
1981-01-01
Four state-owned building complexes ahve been evaluated within the city of Durango: The State Fish Hatchery, Fort Lewis College, new State Highway Department Building near the Bodo Industrial Park, and the National Guard Building. Three of the state facilities in Durango are evaluated for geothermal systems on thea ssumption of taking geothermal water from a trunk-line originating at the area northof Durango: State Fish Hatchery, Fort Lewis College and new State Highway Department Building. The National Guard Building is evaluated on the basis of a water-to-air heat pump, with warm water derived from a hypothetical shallow aquifer immediately below themore » building site. Two geothermal options were separately evaluated for Fort Lewis College: a central heat exchanger system for delivery of 145/sup 0/F heating water to the campus buildings and a central heat pump system for boosting the heating water to 200/sup 0/F prior to delivery to the buildings; both systems require the installation of a distribution piping network for the entire campus area. Retrofit engineering for the State Fish Hatchery provides for the installation of a small scale central distribution piping system to the several buildings, a central heat excanger coupled to the geothermal trunk line, and the use of various fan coil and unit heaters for space heating. An option is provided for discharge-mixing the geothermal water into the fish ponds and runs in order to raise the hatchery water temperature a couple degrees for increasing fish production and yield. The heating system for the new State Highway Department Building is redesigned to replace the natural-gas-fired forced-air furnaces with a heat exchanger, hot water fan coils and unit heaters.« less
NASA Astrophysics Data System (ADS)
Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.
2013-12-01
Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.
H2S Injection and Sequestration into Basalt - The SulFix Project
NASA Astrophysics Data System (ADS)
Gudbrandsson, S.; Moola, P.; Stefansson, A.
2014-12-01
Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting step is the availability of iron released from the dissolving rock. The rapid precipitation of secondary phases in the column suggests the possibility of decreased porosity in the vicinity of the injection well.
NASA Astrophysics Data System (ADS)
Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico
2018-02-01
In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.
2010-09-01
Mineral resources include metals, industrial minerals (e.g., aggregate, sand and gravel), oil and gas, and geothermal resources that would be of value...the elderberry shrub ( Sambucus sp.), is not present within the project action area. The proposed project is not likely to adversely affect the bald...impairing essential behavioral patterns, including breeding, feeding, or sheltering. Harass is defined by the Service as an action that creates the
Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longyear, A.B.
1980-06-01
The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methanemore » (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, M.; Ritchotte, G.; Viggiano, A.
1994-08-01
In 1993, the US Fish and Wildlife Service (USFWS) entered an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of proposed geothermal development on the biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the distribution, habitat use, and density of the Hawaiian hawk or `Io (Buteo solitarius). Data were collected by the USFWS to assess the potential impacts of geothermal development on `Io populations on the island of Hawaii. These impacts include degradation of potential nestingmore » habitat and increased disturbance due to construction and operation activities. Data from these surveys were analyzed as part of an island wide population assessment conducted by the Western Foundation of Vertebrate Zoology at the request of the USFWS.« less
Philippines Country Analysis Brief
2014-01-01
The Philippines is a net energy importer in spite of low consumption levels relative to its Southeast Asian neighbors. The country produces small volumes of oil, natural gas, and coal. Geothermal, hydropower, and other renewable sources constitute a significant share of electricity generation.
78 FR 77343 - Small Business Size Standards: Utilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davlin, Thomas
The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot printmore » and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru March 2014, with the detention facility occupied for the final seven months, the well field supply water temperatures to the heat pumps dropped to a minimum of 39°F and reached a maximum temperature of 68 °F while providing 15,819 MMBtu of cooling energy and 27,467 MMBtu of heating energy. During this period the peak recorded system cooling load was 610 tons and the peak heating load was 8.4 MMBtu. The DEC is currently evaluating the most beneficial electric rate for plant operations. Total project cost of $16.9 million was approximately $3.2 million less than the estimate provided in the grant application. The reduction in project costs were primarily due to favorable construction material prices as well as strong competition in the local construction contractor market. The DEC plant reached the substantial completion milestone in December 2011 and began providing thermal service to the detention facility in January 2012 when the building’s HVAC system was ready to accept heating service. The plant reached commercial operating status on August 1, 2012. However, due to construction delays, the detention facility was not occupied until September of 2013. The detention facility construction delays also impacted the installation and commissioning of the project’s dedicated domestic hot water heat pump. Final coordination with the detention facility’s building management system vendor to establish network links for the exchange of date is currently being completed. This will allow the development of control sequences for the optimal operation of the domestic hot water system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davey, J.V.
1977-03-01
Results of a study of private and public institutions' responses to the proposed use of geothermal energy in the form of direct heat are summarized. This heat energy would be used as an alternate or supportive source for their process or other heat requirements. The summary includes information from over 75 personal contacts with firms in several categories. No attempt is made to reference specific data to any particular company. Although not necessarily confidential, some financial information concerning energy costs to profits was considered sensitive and is respected as such. The companies contacted are in the following categories: food processing--canning,more » drying, dehydration; chemicals; paper/wood-pulp processing; food machinery; horticulture; and dairy. The area covered in the study was from Seattle, Washington, to San Diego, California, during mid-1976. Industry's response varied from mild interest, as with corporations that had little or no knowledge of geothermal energy (and regard it as a new unproven science), to enthusiasm from corporations that employ their own energy departments. The study clearly indicated the need for a basic educational/promotional program and an operating demonstration project (industrial park) to prove economic feasibility and instill confidence in the potential of geothermal energy.« less
NASA Astrophysics Data System (ADS)
Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.
2011-12-01
The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.
ERIC Educational Resources Information Center
Meyers, Paul A.; Witt, Frank C.
Presented is an analysis of alternatives available to the United States in dealing with energy problems. Options explained and evaluated include coal, solar, hydroelectric, nuclear, geothermal, wind, biomass, and energy conservation. The booklet is part of Project APEC (America's Possible Energy Choices), a nationally validated Title IVc project…
New Energy Villages in Taiwan and China
NASA Astrophysics Data System (ADS)
Lee, C. S.; Wang, S. C.
2015-12-01
Taiwan locates in the active tectonic subdution and collision belts, therefore, the geothermal gradient is very high and have found 128 sites of high geothermal areas; 20% of them have the temperature between 75 - 200 degree C in which they can be directly used for the electricity generation; 50% of them are in 50 - 74 degree C and the rest 30% are below 50 degree C. These areas need the deep drillings to get into higher temperature for power energy. The first 20% high temperature areas are mostly located in the coastal or mountain regions. The government is interesting to develop these areas as the "New Energy Villages" so that they can not only become self-energy sufficient sites, but also to protect themself from being the loss of electricity and water during the typhoon and earthquake hazards. The multiple usages of hot water (such as the first power generation and then the hot spring utilization) have its merits. China, in the other hand, is not within the present-day active tectonic zone. However, the recent Sino Probe Experiments (Deep Exploration in China) have mapped the Cetaceous plate boundaries in the coast of China. The heat is still possibly migrating to near the surface through the existing structures. For example, the Feng Shun Geothermal Power Station in north of Guangzhou, Guangdong Province, used the 96 degree C hot water from a well of 800 m producing a small amount of 300 KW power since 1984. The Guangdong Province is located in the edge of Mesozoic South China Plate. Further in land, the Huang Mountain, one of the world heritage sites, is located at the boundary of another Mesozoic Yangtze River Plate. There is not a geothermal power plant; however, a number of hot springs are in a booming tour business at the foot hill of the mountain. The electricity has to come from a long way of net working. If China develops the local, small, but sufficient power plants by using the modern geothermal exploration and drilling techniques. The "New Energy Villages" will be benefit to the energy and environment need.
NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-01-01
NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.
NASA Technical Reports Server (NTRS)
Delascuevas, R. N.; Desagredo, D. F. L.; Miralles, D. J. M.; Araujo, D. P. H.; Perlado, D. J. P.; Parrilla, D. G.; Picon, D. J. L.; Labrandero, D. J. L. (Principal Investigator)
1980-01-01
Although no significant results were achieved during the report period, research continues. A sample of imagery showing thermal inertia and temperature differences over the northeastern United States and Europe was received. The project coordinator attended a TELLUS Project meeting in Ispra, Italy at which general guidelines for the future were established and the quality of the data received was discussed.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Chen, M.; Lu, C.; Sun, Y.; Hao, Y.; Elliot, T. R.; Celia, M. A.; Bielicki, J. M.
2012-12-01
The challenges of mitigating climate change and generating sustainable renewable energy are inseparable and can be addressed by synergistic integration of geothermal energy production with secure geologic CO2 storage (GCS). Pressure buildup can be a limiting factor for GCS and geothermal reservoir operations, due to a number of concerns, including the potential for CO2 leakage and induced seismicity, while pressure depletion can limit geothermal energy recovery. Water-use demands can also be a limiting factor for GCS and geothermal operations, particularly where water resources are already scarce. Economic optimization of geothermal-GCS involves trade-offs of various benefits and risks, along with their associated costs: (1) heat extraction per ton of delivered CO2, (2) permanent CO2 storage, (3) energy recovery per unit well (and working-fluid recirculation) costs, and (4) economic lifetime of a project. We analyze a hybrid, multi-stage approach using both formation brine and injected CO2 as working fluids to attempt to optimize the benefits of sustainable energy production and permanent CO2 storage, while conserving water resources and minimizing environmental risks. We consider a range of well-field patterns and operational schemes. Initially, the fluid production is entirely brine. After CO2 breakthrough, the fraction of CO2 in production, which is called the CO2 "cut", increases with time. Thus, brine is the predominant working fluid for early time, with the contribution of CO2 to heat extraction increasing with CO2 cut (and time). We find that smaller well spacing between CO2 injectors and producers favors earlier CO2 breakthrough and a more rapid rise in CO2 cut, which increases the contribution of recirculated CO2, thereby improving the heat extraction per ton of delivered CO2. On the other hand, larger well spacing increases permanent CO2 storage, energy production per unit well cost, while reducing the thermal drawdown rate, which extends the economic lifetime of a project. For the range of cases considered, we were never able to eliminate the co-production of brine; thus, brine management is likely to be important for reservoir operations, whether or not brine is considered as a candidate working fluid. Future work will address site-specific reservoir conditions and infrastructure factors, such as proximity to potential CO2 sources. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The Newberry Deep Drilling Project (NDDP)
NASA Astrophysics Data System (ADS)
Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.
2017-12-01
We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.
BeTemper: thermal characterisation of the Belgian subsoil for shallow geothermal applications
NASA Astrophysics Data System (ADS)
Petitclerc, Estelle; Dusar, Michiel; Declercq, Pierre-Yves; Vanbrabant, Yves
2015-04-01
The current energy transition towards Renewable Energy Sources (RES) is mainly driven in Belgium by intermittent sources such as wind turbines and photovoltaic panels. Other sources are however available, such as biomass and geothermal resources. The latter can take various forms among which Ground Source Heat Pumps (GSHP). This Geothermal RES could be an important supply for the heating/cooling market, which represents 48% of the energy consumption in Belgium. The interest in using the ground as a source or storage device for thermal energy has grown considerably in the last few years and the market is expected to grow significantly by 2020 (Petitclerc, 2013). However, research in the thermal characteristics of the soil and subsoil is lagging behind the industrial technological development. Sizing errors of installations increasing the budget are therefore frequent and promising projects are abandoned. BeTemper was launched in 2014 for a period of 2 years. It aims to assess the shallow geothermal potential in Belgium through analysis of rock thermal properties from the surface to a depth of 150 m, which covers the standard depth for a vertical loop system currently installed in Belgium (75% of the GSHP market). The project focuses on laboratory thermal properties analyses (thermal conductivity (λ in W/m.K) and diffusivity (m²/s)) of about 400 rock samples corresponding to 30 different lithologies. Influences of water content, of porosity, of mineralogical composition and of mineralogical texture on these thermal parameters are studied. Thermal parameters measurements are performed with the high-resolution Thermal Conductivity Scanning method (Popov 1999, 2012) for both saturated and dry conditions. The mineralogical and petrological analyses are conducted thanks to different analytical equipments of the mineralogical and petrological laboratory at the RBINS-GSB. The proportion of the different mineralogical phases of samples are evaluated with the Panalytical X-ray Diffraction equipment, while the EDS (Energy-Dispersive X-ray Spectroscopy) and EBSD (Electron BackScattered Diffraction) modules is applied in order to evaluate the chemical and micro-textural content. Special attention is given to lithologies having a variable λ values to assess the influence of porosity and/or minor mineralogical phases on the heat transfer. The sample selection is conducted in order to be representative of the various lithologies composing the Belgian subsoil, taking into account their mineralogical composition, petrological texture along with their degree of alteration. A special emphasis is given to densely populated areas (eg. Sambre & Meuse valleys and large cities of Flanders). with the highest geothermal demands. Petitclerc, E., Dusar, M., Declercq, P-Y., Hoes, H., Laenen, B., Dagrain,F., Vanbrabant, Y., 2013. Overview and perspectives on shallow geothermal energy in Belgium. Proceedings SG6-12, EGC2013, Pisa, June 2013. Popov, Y., Bayuk, I., Parshin, A., Miklashevskiy, D., Novikov, S., Chekhonin, E., 2012. New methods and instruments for determination of reservoir thermal properties. Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30 - February 1, 2012. SGP-TR-194. Popov, Y., Pribnow, D.F.C., Sass, J.H, Williams, C., Burkhardt, H., 1999. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28, pp 253-276.
Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue'e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang
2017-01-01
Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO 4-x S x 2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.
Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue’e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang
2017-01-01
Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments. PMID:28769902
NASA Astrophysics Data System (ADS)
Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin
2015-04-01
Artificial-fracture design, and fracture characterization during or following stimulation treatment is a central aspect of many EGS ('enhanced' or 'engineered' geothermal system) projects. During the creation or stimulation of an EGS, the injection of fluids, followed by flowback and production stages offers the opportunity for conducting various tracer tests in a single-well (SW) configuration, and given the typical operational and time limitations associated with such tests, along with the need to assess treatment success in real time, investigators mostly favour using short-time tracer-test data, rather than awaiting long-term 'tailings' of tracer signals. Late-time tracer signals from SW injection-flowback and production tests have mainly been used for the purpose of multiple-fracture inflow profiling in multi-layer reservoirs [1]. However, the potential of using SW short-term tracer signals for fracture characterization [2, 3] remained little explored as yet. Dealing with short-term flowback signals, we face a certain degree of parameter interplay, leading to ambiguity in fracture parameter inversion from the measured signal of a single tracer. This ambiguity can, to a certain extent, be overcome by - combining different sources of information (lithostratigraphy, and hydraulic monitoring) in order to constrain the variation range of hydrogeologic parameters (matrix and fracture permeability and porosity, fracture size), - using different types of tracers, such as conservative tracer pairs with contrasting diffusivity, or tracers pairs with contrasting sorptivity onto target surfaces. Fracture height is likely to be constrained by lithostratigraphy, while fracture length is supposed to be determinable from hydraulic monitoring (pressure recordings); the flowback rate can be assumed as a known (measurable) quantity during individual-fracture flowback. This leaves us with one or two unknown parameters to be determined from tracer signals: - the transport-effective aperture, in a water fracture (WF), or - fracture thickness and porosity, for a gel-proppant fracture (GPF). We find that parameter determination from SW early signals can significantly be improved by concomitantly using a number of solute tracers with different transport and retardation behaviour. We considered tracers of different sorptivity to proppant coatings, and to matrix rock surfaces, for GPF, as well as contrasting-diffusivity or -sorptivity tracers, for WF. An advantage of this SW approach is that it requires only small chaser volumes (few times the fracture volume), not relying on advective penetration into the rock matrix. Thus, selected tracer species are to be injected during the very last stage of the fracturing process, when fracture sizes and thus target parameters are supposed to attain more or less stable values. We illustrate the application of these tracer test design principles using hydro- and lithostratigraphy data from the Geothermal Research Platform at Groß Schönebeck [4], targeting a multi-layer reservoir (sedimentary and crystalline formations in 4-5 km depth) in the NE-German Sedimentary Basin. Acknowledgments: This work benefited from long-term support from Baker Hughes (Celle) and from the Lower-Saxonian Science and Culture Ministry (MWK Niedersachsen) within the applied research project gebo (Geothermal Energy and High-Performance Drilling, 2009-2014). The first author gratefully acknowledges continued financial support from the DAAD (German Academic Exchange Service) to pursuing Ph. D. work. References: [1] http://www.sciencedirect.com/science/article/pii/S1876610214017391 [2] http://www.geothermal-energy.org/cpdb/record_detail.php?id=7215 [3] http://www.geothermal-energy.org/cpdb/record_detail.php?id=19034 [4] http://www.gfz-potsdam.de/en/scientific-services/laboratories/gross-schoenebeck/
NASA Astrophysics Data System (ADS)
Maryanto, Sukir
2017-11-01
Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.