David S. Parks; Terrance W. Cundy
1989-01-01
The Angel Fire of September, 1987 caused extensive damage to second growth forest in the south fork drainage of Cow Creek, 55 km northeast of Grant's Pass, Oregon, USA. The fire was characterized by a high-intensity burn over areas of steep topography. The areal distribution of soil hydraulic properties in a small, tributary watershed following high-intensity...
High-intensity sound in air saturated fibrous bulk porous materials
NASA Technical Reports Server (NTRS)
Kuntz, H. L., II
1982-01-01
The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled.
Stress Ratio Effects on Small Fatigue Crack Growth in Ti-6Al-4V (Preprint)
2008-11-01
crack effect is observed in this alloy , consistent with previous observations, where small cracks grew at stress intensity factor ranges below the long...high stress intensity factor ranges, ΔK, on the order of 10 MPa√m or greater. A significant small crack effect is observed in this alloy , consistent...the behavior of small cracks under different stress ratios in Ti-6Al-4V, an alloy commonly used for fan airfoils. The effect of stress ratio on
Breeding bird responses to three silvicultural treatments in the Oregon Coast Range
Chambers, C.L.; McComb, W.C.; Tappeiner, J. C.
1999-01-01
Silvicultural alternatives to clear-cutting have been suggested to promote development, retention, or creation of late-successional features such as large trees, multilayered canopies, snags, and logs. We assessed bird response to three silvicultural alternatives to clear-cutting that retained structural features found in old Douglas-fir (Pseudotsuga menziesii) forests and that imitated natural disturbance regimes more closely than did traditional clear-cutting: (1) small-patch group selection treatment representing a low-intensity disturbance; (2) two-story treatment, representing a moderate to high-intensity disturbance; and (3) modified clear-cut treatment, representing a high-intensity disturbance. We counted diurnal breeding birds 1 yr prior to and 2 yr after harvest to estimate effects of the silvicultural treatments on bird communities compared with uncut controls. The small-patch group selection treatment was most similar in species composition to control stands. The two-story treatment was more similar to the modified clear-cut treatment. Ten bird species remained abundant following the small-patch group selection treatment. They declined in abundance in modified clearcuts and two-story stands. These species included four neotropical migratory species and five species with restricted geographic ranges and habitat associations. Nine species increased in response to moderate and/or high-intensity disturbances. This group included a larger proportion of species that were habitat generalists. Silvicultural treatments imitating low-intensity disturbances were most effective in retaining bird communities associated with mature forest; high-intensity disturbances such as the two-story and modified clear-cut treatments greatly altered bird community composition. Bird responses to the silvicultural treatments that we studied indicate that a variety of stand types is needed to meet needs of all species.
Hoffmann, James J; Reed, Jacob P; Leiting, Keith; Chiang, Chieh-Ying; Stone, Michael H
2014-03-01
Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.
Small-angle x-ray scattering in amorphous silicon: A computational study
NASA Astrophysics Data System (ADS)
Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim
2018-05-01
We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.
Gabbett, Tim J; Abernethy, Bruce; Jenkins, David G
2012-02-01
The purpose of this study was to investigate the effect of changes in field size on the physiological and skill demands of small-sided games in elite junior and senior rugby league players. Sixteen elite senior rugby league players ([mean ± SE] age, 23.6 ± 0.5 years) and 16 elite junior rugby league players ([mean ± SE] age, 17.3 ± 0.3 years) participated in this study. On day 1, 2 teams played an 8-minute small-sided game on a small field (10-m width × 40-m length), whereas the remaining 2 teams played the small-sided game on a larger sized field (40-m width × 70-m length). On day 2, the groups were crossed over. Movement was recorded by a global positioning system unit sampling at 5 Hz. Games were filmed to count the number of possessions and the number and quality of disposals. The games played on a larger field resulted in a greater (p < 0.05) total distance covered, and distances covered in moderate, high, and very-high velocity movement intensities. Senior players covered more distance at moderate, high, and very-high intensities, and less distance at low and very-low intensities during small-sided games than junior players. Although increasing field size had no significant influence (p > 0.05) over the duration of recovery periods for junior players, larger field size significantly reduced (p < 0.05) the amount of short-, moderate-, and long-duration recovery periods in senior players. No significant between-group differences (p > 0.05) were detected for games played on a small or large field for the number or quality of skill involvements. These results suggest that increases in field size serve to increase the physiological demands of small-sided games but have minimal influence over the volume or quality of skill executions in elite rugby league players.
Sze, Sing-Hoi; Parrott, Jonathan J; Tarone, Aaron M
2017-12-06
While the continued development of high-throughput sequencing has facilitated studies of entire transcriptomes in non-model organisms, the incorporation of an increasing amount of RNA-Seq libraries has made de novo transcriptome assembly difficult. Although algorithms that can assemble a large amount of RNA-Seq data are available, they are generally very memory-intensive and can only be used to construct small assemblies. We develop a divide-and-conquer strategy that allows these algorithms to be utilized, by subdividing a large RNA-Seq data set into small libraries. Each individual library is assembled independently by an existing algorithm, and a merging algorithm is developed to combine these assemblies by picking a subset of high quality transcripts to form a large transcriptome. When compared to existing algorithms that return a single assembly directly, this strategy achieves comparable or increased accuracy as memory-efficient algorithms that can be used to process a large amount of RNA-Seq data, and comparable or decreased accuracy as memory-intensive algorithms that can only be used to construct small assemblies. Our divide-and-conquer strategy allows memory-intensive de novo transcriptome assembly algorithms to be utilized to construct large assemblies.
High-Intensity Small-Sided Games versus Repeated Sprint Training in Junior Soccer Players.
Eniseler, Niyazi; Şahan, Çağatay; Özcan, Ilker; Dinler, Kıvanç
2017-12-01
The aim of this study was to compare the effects of high-intensity small-sided games training (SSGT) versus repeated-sprint training (RST) on repeated-sprint ability (RSA), soccer specific endurance performance and short passing ability among junior soccer players. The junior soccer players were recruited from of a professional team (age 16.9 ± 1.1 years). The tests included the repeated-shuttle-sprint ability test (RSSAT), Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1) and Loughborough Soccer Passing Test (LSPT). Nineteen participants were randomly assigned to either the small-sided games training (SSGTG) (n = 10) or repeated-sprint training group (RSTG) (n = 9). Small-sided games or repeated-sprint training were added to the regular training sessions for two days of the regular practice week. The Wilcoxon signed-rank and Mann-Whitney U tests were used to examine differences in groups and training effects. A time x training group effect was found in the improvement of short-passing ability for the smallsided games training group which showed significantly better scores than the repeated-sprint training group (p ≤ 0.05). Both groups showed similar improvements in RSAdecrement (p < 0.05). Only the repeated-sprint training group improved in the Yo-Yo IR1 (p < 0.05). This study clearly shows that high-intensity small-sided games training can be used as an effective training mode to enhance both repeated sprint ability and short-passing ability.
High-Intensity Small-Sided Games versus Repeated Sprint Training in Junior Soccer Players
Şahan, Çağatay; Özcan, Ilker; Dinler, Kıvanç
2017-01-01
Abstract The aim of this study was to compare the effects of high-intensity small-sided games training (SSGT) versus repeated-sprint training (RST) on repeated-sprint ability (RSA), soccer specific endurance performance and short passing ability among junior soccer players. The junior soccer players were recruited from of a professional team (age 16.9 ± 1.1 years). The tests included the repeated-shuttle-sprint ability test (RSSAT), Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1) and Loughborough Soccer Passing Test (LSPT). Nineteen participants were randomly assigned to either the small-sided games training (SSGTG) (n = 10) or repeated-sprint training group (RSTG) (n = 9). Small-sided games or repeated-sprint training were added to the regular training sessions for two days of the regular practice week. The Wilcoxon signed-rank and Mann-Whitney U tests were used to examine differences in groups and training effects. A time x training group effect was found in the improvement of short-passing ability for the smallsided games training group which showed significantly better scores than the repeated-sprint training group (p ≤ 0.05). Both groups showed similar improvements in RSAdecrement (p < 0.05). Only the repeated-sprint training group improved in the Yo-Yo IR1 (p < 0.05). This study clearly shows that high-intensity small-sided games training can be used as an effective training mode to enhance both repeated sprint ability and short-passing ability. PMID:29339990
Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy
2013-07-01
ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Non-thermal high-intensity focused ultrasound for breast cancer therapy 5b. GRANT NUMBER W81XWH-11-1-0341...treatment systems for small animal models. Advanced imaging systems will be required to determine the gross tumor volume, to plan the HIFU treatment, to
A plasma microlens for ultrashort high power lasers
NASA Astrophysics Data System (ADS)
Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.
2009-07-01
We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
Huttunen, J
1995-01-01
Effects of the intensity of electrical median nerve stimulation were previously reported for the subcortical and first cortical somatosensory evoked potentials (SEPs) but not for later cortical waves whose applications in neurology have gained growing interest in recent years. This paper therefore describes the stimulus intensity effects on frontal, central and parietal SEP waveforms up to 90 msec after stimulus. The intensities were 1.5 and 2 times sensory threshold (ST), motor threshold (MT), and 1.5 and 2 times MT. Between 1.5 x ST and MT all SEP components grew in amplitude, except N60 which was essentially saturated already at 1.5 x ST. The growth was most marked for P14 and N20 whereas later potentials changed less, i.e. the slopes of the intensity-amplitude curves progressively flattened with increasing latency of SEP component. Between MT and 2 x MT no significant further alterations occurred in the early cortical potentials up to 30 msec. However, subtle changes occurred in the P40-N60 waveforms and subtraction of responses revealed a small centroparietal P35-N45 difference wave elicited only by high-intensity (2 x MT) stimulation. It is concluded that for practical purposes stimulation slightly above MT yields maximum cortical SEPs. The results are not generally compatible with the proposition that P40 and N60 are conveyed by higher threshold, small-diameter afferent fibers compared with N20. However, the P35-N45 difference wave at 2 x MT indicates that small-diameter afferent components may be embedded in the waveforms obtained at high intensity.
Supporting Positive Behaviour in Alberta Schools: An Intensive Individualized Approach
ERIC Educational Resources Information Center
Souveny, Dwaine
2008-01-01
Drawing on current research and best practices, this third part of the three-part resource, "Supporting Positive Behaviour in Alberta Schools," provides information and strategies for providing intensive, individualized support and instruction for the small percentage of students requiring a high degree of intervention. This system of…
Aziz, Abdul Rashid; Chia, Michael Yong Hwa; Low, Chee Yong; Slater, Gary John; Png, Weileen; Teh, Kong Chuan
2012-10-01
This study examines the effects of Ramadan fasting on performance during an intense exercise session performed at three different times of the day, i.e., 08:00, 18:00, and 21:00 h. The purpose was to determine the optimal time of the day to perform an acute high-intensity interval exercise during the Ramadan fasting month. After familiarization, nine trained athletes performed six 30-s Wingate anaerobic test (WAnT) cycle bouts followed by a time-to-exhaustion (T(exh)) cycle on six separate randomized and counterbalanced occasions. The three time-of-day nonfasting (control, CON) exercise sessions were performed before the Ramadan month, and the three corresponding time-of-day Ramadan fasting (RAM) exercise sessions were performed during the Ramadan month. Note that the 21:00 h session during Ramadan month was conducted in the nonfasted state after the breaking of the day's fast. Total work (TW) completed during the six WAnT bouts was significantly lower during RAM compared to CON for the 08:00 and 18:00 h (p < .017; effect size [d] = .55 [small] and .39 [small], respectively) sessions, but not for the 21:00 h (p = .03, d = .18 [trivial]) session. The T(exh) cycle duration was significantly shorter during RAM than CON in the 18:00 (p < .017, d = .93 [moderate]) session, but not in the 08:00 (p = .03, d = .57 [small]) and 21:00 h (p = .96, d = .02 [trivial]) sessions. In conclusion, Ramadan fasting had a small to moderate, negative impact on quality of performance during an acute high-intensity exercise session, particularly during the period of the daytime fast. The optimal time to conduct an acute high-intensity exercise session during the Ramadan fasting month is in the evening, after the breaking of the day's fast.
Integration of non-Lambertian LED and reflective optical element as efficient street lamp.
Pan, Jui-Wen; Tu, Sheng-Han; Sun, Wen-Shing; Wang, Chih-Ming; Chang, Jenq-Yang
2010-06-21
A cost effective, high throughput, and high yield method for the increase of street lamp potency was proposed in this paper. We integrated the imprinting technology and the reflective optical element to obtain a street lamp with high illumination efficiency and without glare effect. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution in the chip level. The non-Lambertian light source was achieved by using imprinting technique. The compact reflective optical element was added to efficiently suppress the emitting light intensity with small emitting angle for the uniform of illumination intensity and excluded the light with high emitting angle for the prevention of glare. Compared to the conventional street lamp, the novel design has 40% enhancement in illumination intensity, the uniform illumination and the glare effect elimination.
A detailed look at turbulence intensity
USDA-ARS?s Scientific Manuscript database
The effect of turbulence intensity on energy capture by small wind turbines has been a point of debate in the last few years. Claims of 25% de-rating of the power curve for turbines installed at sites with high turbulence are not uncommon. Over the years, many attempts have been made to model the ef...
Alania, M; Lobato, I; Van Aert, S
2018-01-01
In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Thomson scattering in high-intensity chirped laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in; Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se
2015-10-15
We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion ofmore » its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.« less
Moriyama, Shingo; Yoshida, Soichiro; Tanaka, Hajime; Tanaka, Hiroshi; Yokoyama, Minato; Ishioka, Junichiro; Matsuoka, Yoh; Saito, Kazutaka; Kihara, Kazunori; Fujii, Yasuhisa
2018-03-25
To assess the diagnostic ability of a pixel intensity-based analysis in evaluating the magnetic resonance imaging characteristics of small renal masses, especially in differentiating fat-poor angiomyolipoma from renal cell carcinoma. T2-weighted images from 121 solid small renal masses (<4 cm) without visible fat (14 fat-poor angiomyolipomas, 92 clear cell renal cell carcinomas, six chromophobe renal cell carcinomas and nine papillary renal cell carcinomas) were retrospectively evaluated. An intensity ratio curve was plotted using intensity ratios, which were ratios of signal intensities of tumor pixels (each pixel along a linear region of interest drawn across the renal tumor on T2-weighted image) to the signal intensity of a normal renal cortex. The diagnostic ability of the intensity ratio curve analysis was evaluated. The tumors were classified into three types: intensity ratio fat-poor angiomyolipoma (n = 19) with no pseudocapsule, iso-low intensity and no heterogeneity; intensity ratio clear cell renal cell carcinoma (n = 76) with a pseudocapsule, iso-high intensity and heterogeneity; and other type of intensity ratio (n = 26), including tumors that did not fall into the above two categories. The sensitivity/specificity/accuracy of the intensity ratio curve analysis in diagnosing fat-poor angiomyolipoma was 93%/94%/94%, respectively. When the intensity ratio curve analysis was applied only to the tumor with undetermined radiological diagnosis, the sensitivity for diagnosing fat-poor angiomyolipoma compared with subjective reading alone significantly improved (93% vs 50%; P = 0.014). Our novel semiquantitative model for combined assessment of key features of fat-poor angiomyolipoma, including low intensity, homogeneity and absence of a pseudocapsule on T2-weighted image, might make diagnosis of fat-poor angiomyolipoma more accurate. © 2018 The Japanese Urological Association.
Marotta, H; Enrich-Prast, A
2015-11-01
Dredging is a catastrophic disturbance that directly affects key biological processes in aquatic ecosystems, especially in those small and shallow. In the tropics, metabolic responses could still be enhanced by the high temperatures and solar incidence. Here, we assessed changes in the aquatic primary production along a small section of low-flow tropical downstream (Imboassica Stream, Brazil) after dredging. Our results suggested that these ecosystems may show catastrophic shifts between net heterotrophy and autotrophy in waters based on three short-term stages following the dredging: (I) a strongly heterotrophic net primary production -NPP- coupled to an intense respiration -R- likely supported by high resuspended organic sediments and nutrients from the bottom; (II) a strongly autotrophic NPP coupled to an intense gross primary production -GPP- favored by the high nutrient levels and low solar light attenuation from suspended solids or aquatic macrophytes; and (III) a NPP near to the equilibrium coupled to low GPP and R rates following, respectively, the shading by aquatic macrophytes and high particulate sedimentation. In conclusion, changes in aquatic primary production could be an important threshold for controlling drastic shifts in the organic matter cycling and the subsequent silting up of small tropical streams after dredging events.
Intensive agriculture erodes β-diversity at large scales.
Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C
2012-09-01
Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.
Hynynen, Kullervo; Yin, Jianhua
2009-03-01
A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (averaged over the cylinder diameter) over 10 W / cm(2) (a therapeutically relevant intensity) was measured from these elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meath, William J., E-mail: wmeath@uwo.ca
2016-07-15
A model two-level dipolar molecule, and the rotating wave approximation and perturbation theory, are used to investigate the optimization and the laser intensity dependence of the two-photon excitation rate via the direct permanent dipole mechanism. The rate is proportional to the square of the laser intensity I only for small intensities and times when perturbation theory is applicable. An improvement on perturbation theory is provided by a small time RWA result for the rate which is not proportional to I{sup 2}; rather it is proportional to the square of an effective intensity I{sub eff}. For each laser intensity the optimummore » RWA excitation rate as a function of time, for low intensities, is proportional to I, not I{sup 2}, and for high intensities it is proportional to I{sub eff}. For a given two-photon transition the laser-molecule coupling optimizes for an intensity I{sub max} which, for example, leads to a maximum possible excitation rate as a function of time. The validity of the RWA results of this paper, and the importance of including the effects of virtual excited states, are also discussed briefly.« less
A table of intensity increments.
DOT National Transportation Integrated Search
1966-01-01
Small intensity increments can be produced by adding larger intensity increments. A table is presented covering the range of small intensity increments from 0.008682 through 6.020 dB in 60 large intensity increments of 1 dB.
NASA Astrophysics Data System (ADS)
de Winter, W.; van Dam, D. B.; Delbecque, N.; Verdoodt, A.; Ruessink, B. G.; Sterk, G.
2018-04-01
The commonly observed over prediction of aeolian saltation transport on sandy beaches is, at least in part, caused by saltation intermittency. To study small-scale saltation processes, high frequency saltation sensors are required on a high spatial resolution. Therefore, we developed a low-cost Saltation Detection System (SalDecS) with the aim to measure saltation intensity at a frequency of 10 Hz and with a spatial resolution of 0.10 m in wind-normal direction. Linearity and equal sensitivity of the saltation sensors were investigated during wind tunnel and field experiments. Wind tunnel experiments with a set of 7 SalDec sensors revealed that the variability of sensor sensitivity is at maximum 9% during relatively low saltation intensities. During more intense saltation the variability of sensor sensitivity decreases. A sigmoidal fit describes the relation between mass flux and sensor output measured during 5 different wind conditions. This indicates an increasing importance of sensor saturation with increasing mass flux. We developed a theoretical model to simulate and describe the effect of grain size, grain velocity and saltation intensity on sensor saturation. Time-averaged field measurements revealed sensitivity equality for 85 out of a set of 89 horizontally deployed SalDec sensors. On these larger timescales (hours) saltation variability imposed by morphological features, such as sand strips, can be recognized. We conclude that the SalDecS can be used to measure small-scale spatiotemporal variabilities of saltation intensity to investigate saltation characteristics related to wind turbulence.
Jeltsch, Florian; Wurst, Susanne
2015-01-01
Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119
Realistic Modeling of Interaction of Quiet-Sun Magnetic Fields with the Chromosphere
NASA Technical Reports Server (NTRS)
Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2017-01-01
High-resolution observations and 3D MHD simulations reveal intense interaction between the convection zone dynamics and the solar atmosphere on subarcsecond scales. To investigate processes of the dynamical coupling and energy exchange between the subsurface layers and the chromosphere we perform 3D radiative MHD modeling for a computational domain that includes the upper convection zone and the chromosphere, and investigate the structure and dynamics for different intensity of the photospheric magnetic flux. For comparison with observations, the simulation models have been used to calculate synthetic Stokes profiles of various spectral lines. The results show intense energy exchange through small-scale magnetized vortex tubes rooted below the photosphere, which provide extra heating of the chromosphere, initiate shock waves, and small-scale eruptions.
Zhang, Zhaoyan
2015-01-01
Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency. PMID:25698022
Effect of high intensity ultrasound on the mesostructure of hydrated zirconia
NASA Astrophysics Data System (ADS)
Kopitsa, G. P.; Baranchikov, A. E.; Ivanova, O. S.; Yapryntsev, A. D.; Grigoriev, S. V.; Pranzas, P. Klaus; Ivanov, V. K.
2012-02-01
We report structural changes in amorphous hydrated zirconia caused by high intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and X-ray diffraction (XRD). It was established that sonication affects the mesostructure of ZrO2×xH2O gels (i.e. decreases their homogeneity, increases surface fractal dimension and the size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase transition.
Efficient energy absorption of intense ps-laser pulse into nanowire target
NASA Astrophysics Data System (ADS)
Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.
2016-06-01
The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.
The Next Generation of Space Cells for Diverse Environments
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Landis, Geoffrey; Raffaelle, Ryne
2002-01-01
Future science, military and commercial space missions are incredibly diverse. Military and commercial missions range from large arrays of hundreds of kilowatt to small arrays of ten watts in various Earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near-sun missions and planetary exploration including orbiters, landers and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. These mission requirements demand cells for low intensity, low temperature applications, high intensity, high temperature applications, dusty environments and often high radiation environments. This paper discusses mission requirements, the current state of the art of space solar cells, and a variety of both evolving thin-film cells as well as new technologies that may impact the future choice of space solar cells for a specific mission application.
Dilworth, R.H.; Borkowski, C.J.
1961-12-26
A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)
Barbieri, Flavia Laura; Cournil, Amandine; Gardon, Jacques
2009-08-01
Methylmercury exposure in Amazonian communities through fish consumption has been widely documented in Brazil. There is still a lack of data in other Amazonian countries, which is why we conducted this study in the Bolivian Amazon basin. Simple random sampling was used from a small village located in the lower Beni River, where there is intense gold mining and high fish consumption. All participants were interviewed and hair samples were taken to measure total mercury concentrations. The hair mercury geometric mean in the general population was 3.02 microg/g (CI: 2.69-3.37; range: 0.42-15.65). Age and gender were not directly associated with mercury levels. Fish consumption showed a positive relation and so did occupation, especially small-scale gold mining. Hair mercury levels were lower than those found in Brazilian studies, but still higher than in non-exposed populations. It is necessary to assess mercury exposure in the Amazonian regions where data is still lacking, using a standardized indicator.
Volume vs. intensity in the training of competitive swimmers.
Faude, O; Meyer, T; Scharhag, J; Weins, F; Urhausen, A; Kindermann, W
2008-11-01
The present study aimed at comparing a high-volume, low-intensity vs. low-volume, high-intensity swim training. In a randomized cross-over design, 10 competitive swimmers performed two different 4-week training periods, each followed by an identical taper week. One training period was characterized by a high-training volume (HVT) whereas high-intensity training was prevalent during the other program (HIT). Before, after two and four weeks and after the taper week subjects performed psychometric and performance testing: profile of mood states (POMS), incremental swimming test (determination of individual anaerobic threshold, IAT), 100 m and 400 m. A small significant increase in IAT was observed after taper periods compared to pre-training (+ 0.01 m/s; p = 0.01). Maximal 100-m and 400-m times were not significantly affected by training. The POMS subscore of "vigor" decreased slightly after both training periods (p = 0.06). None of the investigated parameters showed a significant interaction between test-time and training type (p > 0.13). Nearly all (83 %) subjects swam personal best times during the 3 months after each training cycle. It is concluded that, for a period of 4 weeks, high-training volumes have no advantage compared to high-intensity training of lower volume.
Ion source and injection line for high intensity medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan
2014-02-15
A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less
US researchers study effectiveness of Fluidized Sand Biofilters
USDA-ARS?s Scientific Manuscript database
Intensive aquaculture facilities generally produce two separate waste flows: 1) a high volume dilute discharge from culture tanks or pump sumps, and 2) a moderately small and solids-concentrated discharge typically backwashed from mechanical filtration units. The high volume dilute flow can appear p...
Chisté, Melanie N; Mody, Karsten; Kunz, Gernot; Gunczy, Johanna; Blüthgen, Nico
2018-02-01
The current biodiversity decline through anthropogenic land-use not only involves local species losses, but also homogenization of communities, with a few generalist species benefitting most from human activities. Most studies assessed community heterogeneity (β-diversity) on larger scales by comparing different sites, but little is known about impacts on β-diversity within each site, which is relevant for understanding variation in the level of α-diversity, the small-scale distribution of species and associated habitat heterogeneity. To obtain our dataset with 36,899 individuals out of 117 different plant- and leafhopper (Auchenorrhyncha) species, we sampled communities of 140 managed grassland sites across Germany by quantitative vacuum suction of five 1 m 2 plots on each site. Sites differed in land-use intensity as characterized by intensity of fertilization, mowing and grazing. Our results demonstrate a significant within-site homogenization of plant- and leafhopper communities with increasing land-use intensity. Correspondingly, density (- 78%) and γ-diversity (- 35%) declined, particularly with fertilization and mowing intensity. More than 34% of plant- and leafhopper species were significant losers and only 6% were winners of high land-use intensity, with abundant and widespread species being less affected. Increasing land-use intensity adversely affected dietary specialists and promoted generalist species. Our study emphasizes considerable, multifaceted effects of land-use intensification on species loss, with a few dominant generalists winning, and an emerging trend towards more homogenized assemblages. By demonstrating homogenization for the first time within sites, our study highlights that anthropogenic influences on biodiversity even occur on small scales.
Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number.
Sheppard, Colin J R; Török, Peter
2003-11-01
Analytic expressions are given for the on-axis intensity predicted by the Rayleigh-Sommerfeld and Kirchhoff diffraction integrals for a scalar optical system of high numerical aperture and finite value of Fresnel number. A definition of the axial optical coordinate is introduced that is valid for finite values of Fresnel number, for high-aperture systems, and for observation points distant from the focus. The focal shift effect is reexamined. For the case when the focal shift is small, explicit expressions are given for the focal shift and the axial peak in intensity.
ERIC Educational Resources Information Center
Cornwall, Jon; Kirkwood, Jodyanne; Clark, Gavin J.; Silvey, Stephen; Appleby, Ruth D.; Wolkenhauer, Svea Mara; Panjabi, Jayashree; Gluyas, Eva; Brain, Chelsea; Abbott, Matthew
2015-01-01
The SEED (Student Enterprise Experience in Dunedin) programme was developed as a four-week, intensive entrepreneurial "boot camp" to provide a small group of participants with a highly experiential business course. Using pre-course and post-course surveys, the authors measured the entrepreneurial ability, knowledge and intentions of the…
Optimizing the selection of small-town wastewater treatment processes
NASA Astrophysics Data System (ADS)
Huang, Jianping; Zhang, Siqi
2018-04-01
Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.
Effect of intense short rainfall events on coastal water quality parameters from remote sensing data
NASA Astrophysics Data System (ADS)
Corbari, Chiara; Lassini, Fabio; Mancini, Marco
2016-07-01
Strong rainfall events, especially during summer, in small river basins cause spills in the sea that often compromise the quality of coastal waters. The goal of this paper is then to study the changes of coastal waters quality as a result of intense rainfall events during the bathing season through the use of remote sensing data. These analyses are performed at the outlets of small watersheds which are not usually affected by high sediment transport as in the case of large basins which are persistently affected by intense solid transport which does not allow retrieving a reliable correlation between rainfall events and water quality parameters. Four small watersheds in different Italian regions on the Mediterranean Sea are selected for this study. The remotely sensed parameters of turbidity, total suspend solids and secchi disk depth, are retrieved from MODIS data. Secchi disk depths are also compared to available ground data during the summer seasons between 2003 and 2006 showing good correlations. Then the spatial and temporal changes of these parameters are analyzed after intense short storm events. Increases of turbidity and total suspend solids are found to be around 35 NTU and 20 mg L-1 respectively depending on the intensity of the rainfall event and on the distance from the shoreline. Moreover the recovery of water quality after the rain event is reached after two or three days.
NASA Astrophysics Data System (ADS)
Bartkowiak, M.; Hofmann, T.; Stüßer, N.
2017-02-01
Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.
Efficient energy absorption of intense ps-laser pulse into nanowire target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habara, H.; Honda, S.; Katayama, M.
The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less
Gammel, George M.; Kugel, Henry W.
1992-10-06
A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.
Johnston, Rich D; Gabbett, Tim J; Jenkins, David G; Speranza, Michael J
2016-04-01
To assess the impact of different repeated-high-intensity-effort (RHIE) bouts on player activity profiles, skill involvements, and neuromuscular fatigue during small-sided games. 22 semiprofessional rugby league players (age 24.0 ± 1.8 y, body mass 95.6 ± 7.4 kg). During 4 testing sessions, they performed RHIE bouts that each differed in the combination of contact and running efforts, followed by a 5-min off-side small-sided game before performing a second bout of RHIE activity and another 5-min small-sided game. Global positioning system microtechnology and video recordings provided information on activity profiles and skill involvements. A countermovement jump and a plyometric push-up assessed changes in lower- and upper-body neuromuscular function after each session. After running-dominant RHIE bouts, players maintained running intensities during both games. In the contact-dominant RHIE bouts, reductions in moderate-speed activity were observed from game 1 to game 2 (ES = -0.71 to -1.06). There was also moderately lower disposal efficiency across both games after contact-dominant RHIE activity compared with running-dominant activity (ES = 0.62-1.02). Greater reductions in lower-body fatigue occurred as RHIE bouts became more running dominant (ES = -0.01 to -1.36), whereas upper-body fatigue increased as RHIE bouts became more contact dominant (ES = -0.07 to -1.55). Physical contact causes reductions in running intensity and the quality of skill involvements during game-based activities. In addition, the neuromuscular fatigue experienced by players is specific to the activities performed.
NASA Astrophysics Data System (ADS)
Cropp, E. L.; Hazenberg, P.; Castro, C. L.; Demaria, E. M.
2017-12-01
In the southwestern US, the summertime North American Monsoon (NAM) provides about 60% of the region's annual precipitation. Recent research using high-resolution atmospheric model simulations and retrospective predictions has shown that since the 1950's, and more specifically in the last few decades, the mean daily precipitation in the southwestern U.S. during the NAM has followed a decreasing trend. Furthermore, days with more extreme precipitation have intensified. The current work focuses the impact of these long-term changes on the observed small-scale spatial variability of intense precipitation. Since limited long-term high-resolution observational data exist to support such climatological-induced spatial changes in precipitation frequency and intensity, the current work utilizes observations from the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. Within this 150 km^2 catchment over 90 rain gauges have been installed since the 1950s, measuring at sub-hourly resolution. We have applied geospatial analyses and the kriging interpolation technique to identify long-term changes in the spatial and temporal correlation and anisotropy of intense precipitation. The observed results will be compared with the previously model simulated results, as well as related to large-scale variations in climate patterns, such as the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).
McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N
2014-01-01
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.
McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.
2014-01-01
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores. PMID:25329902
Jena, Anupam B; Sun, Eric C; Romley, John A
2013-12-24
Studies of whether inpatient mortality in US teaching hospitals rises in July as a result of organizational disruption and relative inexperience of new physicians (July effect) find small and mixed results, perhaps because study populations primarily include low-risk inpatients whose mortality outcomes are unlikely to exhibit a July effect. Using the US Nationwide Inpatient sample, we estimated difference-in-difference models of mortality, percutaneous coronary intervention rates, and bleeding complication rates, for high- and low-risk patients with acute myocardial infarction admitted to 98 teaching-intensive and 1353 non-teaching-intensive hospitals during May and July 2002 to 2008. Among patients in the top quartile of predicted acute myocardial infarction mortality (high risk), adjusted mortality was lower in May than July in teaching-intensive hospitals (18.8% in May, 22.7% in July, P<0.01), but similar in non-teaching-intensive hospitals (22.5% in May, 22.8% in July, P=0.70). Among patients in the lowest three quartiles of predicted acute myocardial infarction mortality (low risk), adjusted mortality was similar in May and July in both teaching-intensive hospitals (2.1% in May, 1.9% in July, P=0.45) and non-teaching-intensive hospitals (2.7% in May, 2.8% in July, P=0.21). Differences in percutaneous coronary intervention and bleeding complication rates could not explain the observed July mortality effect among high risk patients. High-risk acute myocardial infarction patients experience similar mortality in teaching- and non-teaching-intensive hospitals in July, but lower mortality in teaching-intensive hospitals in May. Low-risk patients experience no such July effect in teaching-intensive hospitals.
Jena, Anupam B.; Sun, Eric C.; Romley, John A.
2014-01-01
Background Studies of whether inpatient mortality in U.S. teaching hospitals rises in July as a result of organizational disruption and relative inexperience of new physicians (‘July effect’) find small and mixed results, perhaps because study populations primarily include low-risk inpatients whose mortality outcomes are unlikely to exhibit a July effect. Methods and Results Using the U.S. Nationwide Inpatient sample, we estimated difference-in-difference models of mortality, percutaneous coronary intervention (PCI) rates, and bleeding complication rates, for high and low risk patients with acute myocardial infarction (AMI) admitted to 98 teaching-intensive and 1353 non-teaching-intensive hospitals during May and July 2002 to 2008. Among patients in the top quartile of predicted AMI mortality (high risk), adjusted mortality was lower in May than July in teaching-intensive hospitals (18.8% in May, 22.7% in July, p<0.01), but similar in non-teaching-intensive hospitals (22.5% in May, 22.8% in July, p=0.70). Among patients in the lowest three quartiles of predicted AMI mortality (low risk), adjusted mortality was similar in May and July in both teaching-intensive hospitals (2.1% in May, 1.9% in July, p=0.45) and non-teaching-intensive hospitals (2.7% in May, 2.8% in July, p=0.21). Differences in PCI and bleeding complication rates could not explain the observed July mortality effect among high risk patients. Conclusions High risk AMI patients experience similar mortality in teaching- and non-teaching-intensive hospitals in July, but lower mortality in teaching-intensive hospitals in May. Low risk patients experience no such “July effect” in teaching-intensive hospitals. PMID:24152859
Beam profile measurement on HITU transducers using a thermal intensity sensor technique
NASA Astrophysics Data System (ADS)
Wilkens, V.; Sonntag, S.; Jenderka, K.-V.
2011-02-01
Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.
A Carbohydrate Ingestion Intervention in an Elite Athlete Who Follows a LCHF Diet.
Webster, Christopher C; Swart, Jeroen; Noakes, Timothy D; Smith, James A
2017-12-18
This case study documents the performance of an elite-level, exceptionally well fat-adapted endurance athlete, as he reintroduced carbohydrate ingestion during high-intensity training. He had followed a strict low-carbohydrate high-fat (LCHF) diet for 2 years during which he ate approximately 80 g of carbohydrate per day and trained and raced while ingesting only water. While following this diet, he earned numerous podium finishes in triathlons of various distances. However, he approached us to test whether carbohydrate supplementation during exercise would further increase his high-intensity performance without affecting his fat-adaptation. This 7-week n=1 investigation included a 4-week habitual LCHF diet phase (LCHF) during which he drank only water during training and performance trials, and a 3-week habitual diet plus carbohydrate ingestion phase (LCHF+CHO), during which he followed his usual LCHF diet but ingested 60 g/h carbohydrate during 8 high-intensity training sessions and performance trials. After each phase, rates of fat oxidation and 30 s sprint, 4 min sprint, 20 km time trial (TT), and 100 km TT performances were measured. Compared to LCHF, 20 km TT time improved by 2.8 % after LCHF+CHO, which would be a large difference in competition. There was no change in 30 s sprint power; a small improvement in 4 min sprint power (1.6 %); and a small reduction in 100 km TT time (1.1%). We conclude that carbohydrate ingestion during exercise was likely beneficial for this fat-adapted athlete during high-intensity endurance-type exercise (4-30 min) but likely did not benefit his short sprint or prolonged endurance performance.
Optical pumping in a whispering mode optical waveguide
Kurnit, Norman A.
1984-01-01
A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.
USDA-ARS?s Scientific Manuscript database
Atorvastatin and rosuvastatin at maximal doses are both highly effective in lowering low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels. Rosuvastatin has been shown to be more effective than atorvastatin in lowering LDL-C, small dense LDL-C and in raising high-density lipoprote...
Hodson, Nicholas A; Dunne, Stephen M; Pankhurst, Caroline L
2005-04-01
Dental curing lights are vulnerable to contamination with oral fluids during routine intra-oral use. This controlled study aimed to evaluate whether or not disposable transparent barriers placed over the light-guide tip would affect light output intensity or the subsequent depth of cure of a composite restoration. The impact on light intensity emitted from high-, medium- and low-output light-cure units in the presence of two commercially available disposable infection-control barriers was evaluated against a no-barrier control. Power density measurements from the three intensity light-cure units were recorded with a radiometer, then converted to a digital image using an intra-oral camera and values determined using a commercial computer program. For each curing unit, the measurements were repeated on ten separate occasions with each barrier and the control. Depth of cure was evaluated using a scrape test in a natural tooth model. At each level of light output, the two disposable barriers produced a significant reduction in the mean power density readings compared to the no-barrier control (P<0.005). The cure sleeve inhibited light output to a greater extent than either the cling film or the control (P<0.005). Only composite restorations light-activated by the high level unit demonstrated a small but significant decrease in the depth of cure compared to the control (P<0.05). Placing disposable barriers over the light-guide tip reduced the light intensity from all three curing lights. There was no impact on depth of cure except for the high-output light, where a small decrease in cure depth was noted but this was not considered clinically significant. Disposable barriers can be recommended for use with light-cure lights.
Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.
2016-10-01
Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.
Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C
2015-01-01
Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h).
Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E
2017-10-26
Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.
Intense beams at the micron level for the Next Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1991-08-01
High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.
Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed
Petty, J.T.; Lamothe, P.J.; Mazik, P.M.
2005-01-01
We quantified the watershed-scale spatial population dynamics of brook trout Salvelinus fontinalis in the Second Fork, a third-order tributary of Shavers Fork in eastern West Virginia. We used visual surveys, electrofishing, and mark-recapture techniques to quantify brook trout spawning intensity, population density, size structure, and demographic rates (apparent survival and immigration) throughout the watershed. Our analyses produced the following results. Spawning by brook trout was concentrated in streams with small basin areas (i.e., segments draining less than 3 km2), relatively high alkalinity (>10 mg CaCO3/L), and high amounts of instream cover. The spatial distribution of juvenile and small-adult brook trout within the watershed was relatively stable and was significantly correlated with spawning intensity. However, no such relationship was observed for large adults, which exhibited highly variable distribution patterns related to seasonally important habitat features, including instream cover, stream depth and width, and riparian canopy cover. Brook trout survival and immigration rates varied seasonally, spatially, and among size-classes. Differential survival and immigration tended to concentrate juveniles and small adults in small, alkaline streams, whereas dispersal tended to redistribute large adults at the watershed scale. Our results suggest that spatial and temporal variations in spawning, survival, and movement interact to determine the distribution, abundance, and size structure of brook trout populations at a watershed scale. These results underscore the importance of small tributaries for the persistence of brook trout in this watershed and the need to consider watershed-scale processes when designing management plans for Appalachian brook trout populations. ?? Copyright by the American Fisheries Society 2005.
Lundin-Olsson, Lillemor; Skelton, Dawn A.; Lundman, Berit; Rosendahl, Erik
2017-01-01
The objective of the study was to describe the views and experiences of participation in a high-intensity functional exercise (HIFE) program among older people with dementia in nursing homes. The study design was a qualitative interview study with 21 participants (15 women), aged 74–96, and with a Mini-Mental State Examination score of 10–23 at study start. The HIFE-program comprises exercises performed in functional weight-bearing positions and including movements used in everyday tasks. The exercise was individually designed, supervised in small groups in the nursing homes and performed during four months. Interviews were performed directly after exercise sessions and field notes about the sessions were recorded. Qualitative content analysis was used for analyses. The analysis revealed four themes: Exercise is challenging but achievable; Exercise gives pleasure and strength; Exercise evokes body memories; and Togetherness gives comfort, joy, and encouragement. The intense and tailored exercise, adapted to each participant, was perceived as challenging but achievable, and gave pleasure and improvements in mental and bodily strength. Memories of previous physical activities aroused and participants rediscovered bodily capabilities. Importance of individualized and supervised exercise in small groups was emphasized and created feelings of encouragement, safety, and coherence. The findings from the interviews reinforces the positive meaning of intense exercise to older people with moderate to severe dementia in nursing homes. The participants were able to safely adhere to and understand the necessity of the exercise. Providers of exercise should consider the aspects valued by participants, e.g. supervision, individualization, small groups, encouragement, and that exercise involved joy and rediscovery of body competencies. PMID:29149198
Lindelöf, Nina; Lundin-Olsson, Lillemor; Skelton, Dawn A; Lundman, Berit; Rosendahl, Erik
2017-01-01
The objective of the study was to describe the views and experiences of participation in a high-intensity functional exercise (HIFE) program among older people with dementia in nursing homes. The study design was a qualitative interview study with 21 participants (15 women), aged 74-96, and with a Mini-Mental State Examination score of 10-23 at study start. The HIFE-program comprises exercises performed in functional weight-bearing positions and including movements used in everyday tasks. The exercise was individually designed, supervised in small groups in the nursing homes and performed during four months. Interviews were performed directly after exercise sessions and field notes about the sessions were recorded. Qualitative content analysis was used for analyses. The analysis revealed four themes: Exercise is challenging but achievable; Exercise gives pleasure and strength; Exercise evokes body memories; and Togetherness gives comfort, joy, and encouragement. The intense and tailored exercise, adapted to each participant, was perceived as challenging but achievable, and gave pleasure and improvements in mental and bodily strength. Memories of previous physical activities aroused and participants rediscovered bodily capabilities. Importance of individualized and supervised exercise in small groups was emphasized and created feelings of encouragement, safety, and coherence. The findings from the interviews reinforces the positive meaning of intense exercise to older people with moderate to severe dementia in nursing homes. The participants were able to safely adhere to and understand the necessity of the exercise. Providers of exercise should consider the aspects valued by participants, e.g. supervision, individualization, small groups, encouragement, and that exercise involved joy and rediscovery of body competencies.
NASA Astrophysics Data System (ADS)
Frolov, V. L.; Bolotin, I. A.; Komrakov, G. P.; Pershin, A. V.; Vertogradov, G. G.; Vertogradov, V. G.; Vertogradova, E. G.; Kunitsyn, V. E.; Padokhin, A. M.; Kurbatov, G. A.; Akchurin, A. D.; Zykov, E. Yu.
2014-11-01
We consider the properties of the artificial ionospheric irregularities excited in the ionospheric F 2 region modified by high-power high-frequency X-mode radio waves. It is shown that small-scale (decameter) irregularities are not generated in the midlatitude ionosphere. The intensity of irregularities with the scales l ⊥ ≈50 m to 3 km is severalfold weaker compared with the case where the irregularities are excited by high-power O-mode radio waves. The intensity of the larger-scale irregularities is even stronger attenuated. It is found that the generation of large-scale ( l ⊥ ≈5-10 km) artificial ionospheric irregularities is enhanced at the edge of the directivity pattern of a beam of high-power radio waves.
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank
2017-12-01
Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.
Novel all-optical logic gate using an add/drop filter and intensity switch.
Threepak, T; Mitatha, S; Yupapin, P P
2011-12-01
A novel design of all-optical logic device is proposed. An all-optical logic device system composes of an optical intensity switch and add/drop filter. The intensity switch is formed to switch signal by using the relationship between refraction angle and signal intensity. In operation, two input signals are coupled into one with some coupling loss and attenuation, in which the combination of add/drop with intensity switch produces the optical logic gate. The advantage is that the proposed device can operate the high speed logic function. Moreover, it uses low power consumption. Furthermore, by using the extremely small component, this design can be put into a single chip. Finally, we have successfully produced the all-optical logic gate that can generate the accurate AND and NOT operation results.
Synaptic dynamics regulation in response to high frequency stimulation in neuronal networks
NASA Astrophysics Data System (ADS)
Su, Fei; Wang, Jiang; Li, Huiyan; Wei, Xile; Yu, Haitao; Deng, Bin
2018-02-01
High frequency stimulation (HFS) has confirmed its ability in modulating the pathological neural activities. However its detailed mechanism is unclear. This study aims to explore the effects of HFS on neuronal networks dynamics. First, the two-neuron FitzHugh-Nagumo (FHN) networks with static coupling strength and the small-world FHN networks with spike-time-dependent plasticity (STDP) modulated synaptic coupling strength are constructed. Then, the multi-scale method is used to transform the network models into equivalent averaged models, where the HFS intensity is modeled as the ratio between stimulation amplitude and frequency. Results show that in static two-neuron networks, there is still synaptic current projected to the postsynaptic neuron even if the presynaptic neuron is blocked by the HFS. In the small-world networks, the effects of the STDP adjusting rate parameter on the inactivation ratio and synchrony degree increase with the increase of HFS intensity. However, only when the HFS intensity becomes very large can the STDP time window parameter affect the inactivation ratio and synchrony index. Both simulation and numerical analysis demonstrate that the effects of HFS on neuronal network dynamics are realized through the adjustment of synaptic variable and conductance.
Raman scattering in a whispering mode optical waveguide
Kurnit, Norman A.
1982-01-01
A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
Optical pumping in a whispering-mode optical waveguide
Kurnit, N.A.
1981-08-11
A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
Tropical cyclone fullness: A new concept for interpreting storm intensity
NASA Astrophysics Data System (ADS)
Guo, Xi; Tan, Zhe-Min
2017-05-01
Intensity and size are two crucial factors in determining the destructiveness of a tropical cyclone (TC), but little is known about the relationship between them because of a lack of observations. TC fullness, a new concept, is proposed to quantitatively measure the storm wind structure, which is defined as the ratio of the extent of the outer-core wind skirt to the outer-core size of the TC. TC intensity is more strongly correlated with fullness than with other measures comprising just a single size parameter. A scale is introduced to classify TCs into four categories based on TC fullness (FS1 to FS4). Regardless of the specific inner-core and outer-core size, the FS4 fullness structure is necessary for an intense TC's development, while category FS1 and FS2 TCs are generally weak. Most major TCs achieve FS4 fullness structure earlier and more frequently than nonmajor TCs. Rapidly increasing fullness favors the intensification of TC.
Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph; ...
2017-03-07
The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph
The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less
Allen, Andrew J; Zhang, Fan; Kline, R Joseph; Guthrie, William F; Ilavsky, Jan
2017-04-01
The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008-0.25 Å -1 , together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.
Distribution of temperature elevation caused by moving high-intensity focused ultrasound transducer
NASA Astrophysics Data System (ADS)
Kim, Jungsoon; Jung, Jihee; Kim, Moojoon; Ha, Kanglyeol; Lee, Eunghwa; Lee, Ilkwon
2015-07-01
Ultrasonic thermal treatment for dermatology has been developed using a small high-intensity focused ultrasound (HIFU) transducer. The transducer moves horizontally at a constant while it emits focused ultrasound because the treatment needs a high-temperature area in skin tissue over a wide range of depths. In this paper, a tissue-mimicking phantom made of carrageenan and a thermochromic film were adopted to examine the temperature distribution in the phantom noninvasively when the focused ultrasound was irradiated from the moving transducer. The dependence of the high-temperature area on the irradiated acoustic energy and on the movement interval of the HIFU was analyzed experimentally. The results will be useful in ensuring safety and estimating the remedial value of the treatment.
Ultrasonic Processing of Materials
NASA Astrophysics Data System (ADS)
Han, Qingyou
2015-08-01
Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.
Hydrologic response for a high-elevation storm in the South Dakota Black Hills
Bunkers, Matthew J.; Smith, Melissa; Driscoll, Daniel G.; Hoogestraat, Galen K.
2015-01-01
A group of thunderstorms produced >4 in of rain during four periods of progressively more intense rainfall across a small part of a relatively high-elevation area of the northern Black Hills on 5 August 2014. The resulting hydrologic response was noteworthy in two very small headwater drainage basins, where the measured peak flows are by far the largest—relative to drainage area—ever documented for the high-elevation Limestone Plateau area. However, peak flows attenuated quickly in a downstream direction owing to the storms tracking perpendicular to the drainage direction, moderately dry antecedent conditions, and progressive widening of the valley bottoms.
Genome-wide identification of the mechanism of action (MoA) of small-molecule compounds characterizing their targets, effectors, and activity modulators represents a highly relevant yet elusive goal, with critical implications for assessment of compound efficacy and toxicity. Current approaches are labor intensive and mostly limited to elucidating high-affinity binding target proteins.
[Impacts of Ochotona pallasi disturbance on alpine grassland community characteristics].
Zhao, Guo-qin; Li, Guang-yong; Ma, Wen-hu; Zhao, Dian-zhi; Li, Xiao-yan
2013-08-01
Plateau pika is the main fossorial mammal in the alpine grassland in Qinghai Lake Watershed of Northwest China. Based on the field investigation data from 18 alpine grassland quadrats in the Watershed, and by using redundancy analysis (RDA) and the surface fitting offered by 'R-Vegan' , the disturbance intensity of plateau pika (Ochotona pallasi) was classified as four levels. In order to explore the impacts of plateau pika disturbance on the alpine grassland ecosystem and its grazing quality, the community characteristics under different disturbance intensities by plateau pika were analyzed, and a conceptual model about the alpine grassland community succession was proposed. The results showed that with the increase of the disturbance intensity, the dominant species changed from Juncus roemerianus to Poa pratensis and Laux maritima. When the disturbance was small, the community had high quantitative values of coverage, aboveground biomass, biodiversity, and species richness, but the proportion of weeds was also high. When the disturbance was large, the quantitative values were the lowest, while the proportion of weeds was the highest. When the disturbance was moderate, the community had relatively high quantitative values, and the proportion of grasses and sedges was the highest. It was concluded that the community' s characteristic values under low plateau pika disturbance intensity were high but the grazing quality was low, while high disturbance intensity resulted in the grassland degradation. Therefore, the disturbance intensity in the threshold could maintain the stability of alpine grassland ecosystem and improve its grazing quality.
Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution
NASA Technical Reports Server (NTRS)
Kil, Hyosub; Heelis, R. A.
1998-01-01
We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.
Existing decontamination procedures are time-consuming, labor-intensive, and produce low-yielding results, and they have a high risk of personnel exposure and equipment damage. Foster-Miller, Inc., has teamed with Lawrence Livermore National Laboratory and other reagent suppl...
A two-dimensional approach to relationship conflict: meta-analytic findings.
Woodin, Erica M
2011-06-01
This meta-analysis of 64 studies (5,071 couples) used a metacoding system to categorize observed couple conflict behaviors into categories differing in terms of valence (positive to negative) and intensity (high to low) and resulting in five behavioral categories: hostility, distress, withdrawal, problem solving, and intimacy. Aggregate effect sizes indicated that women were somewhat more likely to display hostility, distress, and intimacy during conflict, whereas men were somewhat more likely to display withdrawal and problem solving. Gender differences were of a small magnitude. For both men and women, hostility was robustly associated with lower relationship satisfaction (medium effect), distress and withdrawal were somewhat associated (small effect), and intimacy and problem solving were both closely associated with relationship satisfaction (medium effect). Effect sizes were moderated in several cases by study characteristics including year of publication, developmental period of the sample, recruitment design, duration of observed conflict, method used to induce conflict, and type of coding system used. Findings from this meta-analysis suggest that high-intensity conflict behaviors of both a positive and negative nature are important correlates of relationship satisfaction and underscore the relatively small gender differences in many conflict behaviors. 2011 APA, all rights reserved
Myers, Matthew R; Giridhar, Dushyanth
2011-06-01
In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations. © 2011 Acoustical Society of America
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Cherezov, Vadim; Hanson, Michael A.; Griffith, Mark T.; Hilgart, Mark C.; Sanishvili, Ruslan; Nagarajan, Venugopalan; Stepanov, Sergey; Fischetti, Robert F.; Kuhn, Peter; Stevens, Raymond C.
2009-01-01
Crystallization of human membrane proteins in lipidic cubic phase often results in very small but highly ordered crystals. Advent of the sub-10 µm minibeam at the APS GM/CA CAT has enabled the collection of high quality diffraction data from such microcrystals. Herein we describe the challenges and solutions related to growing, manipulating and collecting data from optically invisible microcrystals embedded in an opaque frozen in meso material. Of critical importance is the use of the intense and small synchrotron beam to raster through and locate the crystal sample in an efficient and reliable manner. The resulting diffraction patterns have a significant reduction in background, with strong intensity and improvement in diffraction resolution compared with larger beam sizes. Three high-resolution structures of human G protein-coupled receptors serve as evidence of the utility of these techniques that will likely be useful for future structural determination efforts. We anticipate that further innovations of the technologies applied to microcrystallography will enable the solving of structures of ever more challenging targets. PMID:19535414
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
NASA Astrophysics Data System (ADS)
Chu, Hsu-hsin; Wang, Jyhpyng
2018-05-01
Nonlinear optics in the extreme-ultraviolet (EUV) has been limited by lack of transparent media and small conversion efficiency. To overcome this problem we explore the advantage of using multiply charged ion plasmas as the interacting media between EUV and intense near-infrared (NIR) pulses. Such media are transparent to EUV and can withstand intense NIR driving pulses without damage. We calculate the third-order nonlinear polarizabilities of Ar2 + and Ar3 + ions for EUV and NIR four-wave mixing by using the well-proven Cowan code and find that the EUV-to-EUV conversion efficiency as high as 26% can be expected for practical experimental configurations using multi-terawatt NIR lasers. Such a high efficiency is possible because the driving pulse intensity can be scaled up to several orders of magnitude higher than in conventional nonlinear media, and the group-velocity and phase mismatch are insignificant at the experimental plasma densities. This effective scheme of wave mixing can be utilized for ultrafast EUV waveform measurement and control as well as wavelength conversion.
NASA Astrophysics Data System (ADS)
Ginzburg, V. N.; Kochetkov, A. A.; Potemkin, A. K.; Khazanov, E. A.
2018-04-01
It has been experimentally confirmed that self-cleaning of a laser beam from spatial noise during propagation in free space makes it possible to suppress efficiently the self-focusing instability without applying spatial filters. Measurements of the instability increment by two independent methods have demonstrated quantitative agreement with theory and high efficiency of small-scale self-focusing suppression. This opens new possibilities for using optical elements operating in transmission (frequency doublers, phase plates, beam splitters, polarisers, etc.) in beams with intensities on the order of a few TW cm‑2.
Sensitive Small Area Photometer
ERIC Educational Resources Information Center
Levenson, M. D.
1970-01-01
Describes a simple photometer capable of measuring small light intensities over small areas. The inexpensive, easy-to- construct instrument is intended for use in a student laboratory to measure the light intensities in a diffraction experiment from single or multiple slits. Typical experimental results are presented along with the theoretical…
ERIC Educational Resources Information Center
Goldberger, Susan; Santos, Janet
2009-01-01
Texas is a national leader in creating early college high schools, an innovative small school model that blends secondary and postsecondary education with intensive supports to increase college readiness and success for underachieving students. The state has 29 early college schools, with more opening in the 2008-2009 academic year, thanks largely…
R.M. Sachs; C.B. Low
1983-01-01
Initial high density (17,200 trees ha-1, 6961 trees a-1) plantations of Eucalyptus grandis yielded up to 22 oven dry tons (ODT) ha-l yr-I (10 ta-1 yr-1) on an approximate 6 month rotation. Border effects could not be eliminated from the small sized plots used...
Qiu, Xi-Zhen; Zhang, Fang-Hui
2013-01-01
The high-power white LED was prepared based on the high thermal conductivity aluminum, blue chips and YAG phosphor. By studying the spectral of different junction temperature, we found that the radiation spectrum of white LED has a minimum at 485 nm. The radiation intensity at this wavelength and the junction temperature show a good linear relationship. The LED junction temperature was measured based on the formula of relative spectral intensity and junction temperature. The result measured by radiation intensity method was compared with the forward voltage method and spectral method. The experiment results reveal that the junction temperature measured by this method was no more than 2 degrees C compared with the forward voltage method. It maintains the accuracy of the forward voltage method and overcomes the small spectral shift of spectral method, which brings the shortcoming on the results. It also had the advantages of practical, efficient and intuitive, noncontact measurement, and non-destruction to the lamp structure.
NASA Astrophysics Data System (ADS)
Wang, Youwen; Dai, Zhiping; Ling, Xiaohui; Chen, Liezun; Lu, Shizhuan; You, Kaiming
2016-11-01
In high-power laser system such as Petawatt lasers, the laser beam can be intense enough to result in saturation of nonlinear refraction index of medium. Based on the standard linearization method of small-scale self-focusing and the split-step Fourier numerical calculation method, we present analytical and simulative investigations on the hot-image formation in cascaded saturable nonlinear medium slabs, to disclose the effect of nonlinearity saturation on the distribution and intensity of hot images. The analytical and simulative results are found in good agreement. It is shown that, saturable nonlinearity does not change the distribution of hot images, while may greatly affect the intensity of hot images, i.e., for a given saturation light intensity, with the intensity of the incident laser beam, the intensity of hot images firstly increases monotonously and eventually reaches a saturation; for the incident laser beam of a given intensity, with the saturation light intensity lowering, the intensity of hot images decreases rapidly, even resulting in a few hot images too weak to be visible.
Musaev, Kh N; Almatov, K T; Rakhimov, M M; Akhmedov, R
1981-01-01
Oxidative phosphorylation in mitochondria of small intestinal mucosa was studied after repeated overheating of rats. The hyperthermia affected the respiratory chains of mitochondrial membranes, facilitating the penetration of ADP, succinate, alpha-ketoglutarate and NADH across the membranes. Under these conditions thermostability of the respiratory chain multienzyme system was decreased and the rate of exogenous cytochrome c incorporation into mitochondrial membranes was altered. In the mitochondrial membranes from small intestinal mucosa there was noted development of latent impairments, the reversibility of which depended on the intensity and duration of hyperthermia.
MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JONES,K.W.; FENG,H.
2000-12-01
High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possiblemore » chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.« less
11-kW direct diode laser system with homogenized 55 × 20 mm2 Top-Hat intensity distribution
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Noeske, Axel; Kindervater, Tobias; Wessollek, Armin; Brand, Thomas; Biesenbach, Jens
2007-02-01
In comparison with other laser systems diode lasers are characterized by a unique overall efficiency, a small footprint and high reliability. However, one major drawback of direct diode laser systems is the inhomogeneous intensity distribution in the far field. Furthermore the output power of current commercially available systems is limited to about 6 kW. We report on a diode laser system with 11 kW output power at a single wavelength of 940 nm aiming for customer specific large area treatment. To the best of our knowledge this is the highest output power reported so far for a direct diode laser system. In addition to the high output power the intensity distribution of the laser beam is homogenized in both axes leading to a 55 x 20 mm2 Top-Hat intensity profile at a working distance of 400 mm. Homogeneity of the intensity distribution is better than 90%. The intensity in the focal plane is 1 kW/cm2. We will present a detailed characterization of the laser system, including measurements of power, power stability and intensity distribution of the homogenized laser beam. In addition we will compare the experimental data with the results of non-sequential raytracing simulations.
Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G
2016-08-01
Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.
Iacono, Antonio Dello; Eliakim, Alon; Meckel, Yoav
2015-03-01
The present study was designed to compare the effects of high-intensity intermittent training (HIIT) and small-sided games (SSGs) training on fitness variables of elite handball players. Eighteen highly trained players (mean age ± SD: 25.6 ± 0.5 years) were assigned to either HIIT or SSGs group training protocols twice per week for 8 weeks. The HIIT consisted of 12-24 × 15 seconds of high-intensity runs interspersed by 15 seconds of recovery. The SSGs training consisted of 3 against 3 small-sided handball games. Both training methods were matched for exercise duration and recovery at each training session. Before and after 8-week training, the following fitness variables were assessed-speed: 10- and 20-m sprint time, agility: handball agility specific test (HAST), upper arm strength: 1 repetition maximum (1RM) bench press test, lower limb power: counter-movement jump tests with (CMJarm) and without (CMJ) arm movement, and aerobic fitness (yo-yo intermittent recovery test level 1 [YYIRTL1]). Significant improvement was found in the YYIRTL1 (23.3 and 26.3%, respectively), 10-m sprint (2.3 and 4.1%, respectively) and 20-m sprint (2.1 and 4%, respectively), HAST (1.1 and 2.2%, respectively), 1RM bench press (6.8 and 12.3%, respectively), CMJ (7.4 and 10.8%, respectively), and CMJarm (6.4 and 8.9%, respectively) following training in both groups (p ≤ 0.05 for all). There was a significantly greater improvement in 10- and 20-m sprint, HAST, 1RM, CMJ, and CMJarm following the SSGs training compared with the HIIT (p ≤ 0.05 for all). These results indicated that both HIIT and SSGs are effective training methods for fitness development among elite adult handball players. However, SSGs training may be considered as the preferred training regimen for improving handball-specific fitness variables during the in-season period.
Mosquera, Giovanny M; Celleri, Rolando; Lazo, Patricio X; Vache, Kellie B; Perakis, Steven; Crespo, Patricio
2016-01-01
Few high-elevation tropical catchments worldwide are gauged and even fewer are studied using combined hydrometric and isotopic data. Consequently, we lack information needed to understand processes governing rainfall-runoff dynamics and to predict their influence on downstream ecosystem functioning. To address this need, we present a combination of hydrometric and water stable isotopic observations in the wet Andean páramo ecosystem of the Zhurucay Ecohydrological Observatory (7.53 km2). The catchment is located in the Andes of south Ecuador between 3400 and 3900 m a.s.l. Water samples for stable isotopic analysis were collected during 2 years (May 2011 – May 2013), while rainfall and runoff measurements were continuously recorded since late 2010. The isotopic data reveal that Andosol soils predominantly situated on hillslopes drain laterally to Histosols (Andean páramo wetlands) mainly located at the valley bottom. Histosols, in turn, feed water to creeks and small rivers throughout the year, establishing hydrologic connectivity between wetlands and the drainage network. Runoff is primarily comprised of pre-event water stored in the Histosols, which is replenished by rainfall that infiltrates through the Andosols. Contributions from the mineral horizon and the top of the fractured bedrock are small and only seem to influence discharge in small catchments during low flow generation (non-exceedance flows < Q35). Variations in source contributions are controlled by antecedent soil moisture, rainfall intensity, and duration of rainy periods. Saturated hydraulic conductivity of the soils, higher than the year-round low precipitation intensity, indicates that Hortonian overland flow rarely occurs during high intensity precipitation events. Deep groundwater contributions to discharge seem to be minimal. These results suggest that, in this high-elevation tropical ecosystem: 1) subsurface flow is a dominant hydrological process and 2) (Histosols) wetlands are the major source of stream runoff. Our study highlights that detailed isotopic characterization during short time periods provides valuable information about ecohydrological processes in regions where very few basins are gauged.
Varley, Matthew C; Jaspers, Arne; Helsen, Werner F; Malone, James J
2017-09-01
Sprints and accelerations are popular performance indicators in applied sport. The methods used to define these efforts using athlete-tracking technology could affect the number of efforts reported. This study aimed to determine the influence of different techniques and settings for detecting high-intensity efforts using global positioning system (GPS) data. Velocity and acceleration data from a professional soccer match were recorded via 10-Hz GPS. Velocity data were filtered using either a median or an exponential filter. Acceleration data were derived from velocity data over a 0.2-s time interval (with and without an exponential filter applied) and a 0.3-second time interval. High-speed-running (≥4.17 m/s 2 ), sprint (≥7.00 m/s 2 ), and acceleration (≥2.78 m/s 2 ) efforts were then identified using minimum-effort durations (0.1-0.9 s) to assess differences in the total number of efforts reported. Different velocity-filtering methods resulted in small to moderate differences (effect size [ES] 0.28-1.09) in the number of high-speed-running and sprint efforts detected when minimum duration was <0.5 s and small to very large differences (ES -5.69 to 0.26) in the number of accelerations when minimum duration was <0.7 s. There was an exponential decline in the number of all efforts as minimum duration increased, regardless of filtering method, with the largest declines in acceleration efforts. Filtering techniques and minimum durations substantially affect the number of high-speed-running, sprint, and acceleration efforts detected with GPS. Changes to how high-intensity efforts are defined affect reported data. Therefore, consistency in data processing is advised.
Saftic, Dijana; Ban, Zeljka; Matic, Josipa; Tumir, Lidija-Marija; Piantanida, Ivo
2018-05-07
Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class are nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder - nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara
2013-01-01
Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269
Small-sided games in team sports training: a brief review.
Halouani, Jamel; Chtourou, Hamdi; Gabbett, Tim; Chaouachi, Anis; Chamari, Karim
2014-12-01
Small-sided games (SSGs) incorporating skills, sport-specific movements, at intensities sufficient to promote aerobic adaptations, are being increasingly implemented in professional team sport environments. Small-sided games are often employed by coaches based on the premise that the greatest training benefits occur when training simulates the specific movement patterns and physiological demands of the sport. At present, there is relatively little information regarding how SSG can best be used to improve physical capacities and technical and tactical skills in team sports. It is possible that with some modifications (e.g., number of players, pitch size, coach encouragement, and wrestling), such games may be physiologically beneficial for athletes with relatively high initial aerobic fitness levels. For instance, it has been shown that 3-a-side soccer SSG resulted in higher intensity (i.e., greater overall distance, less jogging and walking, higher heart rate, and more tackling, dribbling, goal attempts, and passes) than 5-a-side SSG. Likewise, when player numbers were kept constant, a larger playing area increased the intensity of the SSG with a smaller playing area having the opposite effect. It has also been demonstrated that energy expenditure was similar between badminton and volleyball courts, but lower than that obtained in a basketball court. Moreover, it has been demonstrated in rugby that wrestling can increase the physical demands of SSG. Consistent coach encouragement can also increase training intensity, although most rule changes have trivial or no effect on exercise intensity. Further research is required to examine the optimal periodization strategies of SSG training for the long-term development of physiological capacity, technical skill, and tactical proficiency, while also minimizing the associated risk of injuries.
Intense transient electric field sensor based on the electro-optic effect of LiNbO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing, E-mail: yangqing@cqu.edu.cn; Sun, Shangpeng; Han, Rui
2015-10-15
Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz–10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulsesmore » and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.« less
Intense transient electric field sensor based on the electro-optic effect of LiNbO3
NASA Astrophysics Data System (ADS)
Yang, Qing; Sun, Shangpeng; Han, Rui; Sima, Wenxia; Liu, Tong
2015-10-01
Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz-10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulses and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.
Technical Achievements in Communist China’s Electrical Equipment Industry
1960-09-15
products has also been , developed, including long rod type insulating porcelains and a new series of line porcelains . In 1958, oil sockets for 330...is now aimed at the creation of high intensity, high insulating , and small-size high-tension porcelain products. During the past 10 years, our...of lead-covered oil-immersed paper- insulated cables of 55 kilovolts and less, rubber-sheathed cables of 6,000 volts and less, and aluminum core
Tang, Ada; Eng, Janice J; Krassioukov, Andrei V; Tsang, Teresa S M; Liu-Ambrose, Teresa
2016-11-11
To determine the effects of high versus low-intensity exercise on cognitive function following stroke. Secondary analysis from a randomized controlled trial with blinded assessors. 50-80 years old, living in the community, > 1 year post-stroke. Participants were randomized into a high-intensity Aerobic Exercise or low-intensity non-aerobic Balance/Flexibility program. Both programs were 6 months long, with 3 60-min sessions/week. Verbal item and working memory, selective attention and conflict resolution, set shifting were assessed before and after the program. Forty-seven participants completed the study (22/25 in Aerobic Exercise group, 25/25 in Balance/Flexibility group). There was an improvement in verbal item memory in both groups (time effect p = 0.04), and no between-group differences in improvement in the other outcomes (p > 0.27). There was no association between pre-exercise cognitive function and post-exercise improvement. In contrast to a small body of previous research suggesting positive benefits of exercise on cognition post-stroke, the current study found that 6 months of high or low intensity exercise was not effective in improving cognitive function, specifically executive functions. Further research in this area is warranted to establish the effectiveness of post-stroke exercise programs on cognition, and examine the mechanisms that underlie these changes.
NASA Astrophysics Data System (ADS)
Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu
2013-04-01
Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.
Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S
2018-03-12
Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.
Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge
NASA Astrophysics Data System (ADS)
Sato, T.; Oda, K.; Tsutsumi, N.
2018-06-01
Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.
Modulation transfer function measurement technique for small-pixel detectors
NASA Technical Reports Server (NTRS)
Marchywka, Mike; Socker, Dennis G.
1992-01-01
A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.
NASA Astrophysics Data System (ADS)
Goto, Kota; Takagi, Ryo; Miyashita, Takuya; Jimbo, Hayato; Yoshizawa, Shin; Umemura, Shin-ichiro
2015-07-01
High-intensity focused ultrasound (HIFU) is a noninvasive treatment for tumors such as cancer. In this method, ultrasound is generated outside the body and focused to the target tissue. Therefore, physical and mental stresses on the patient are minimal. A drawback of the HIFU treatment is a long treatment time for a large tumor due to the small therapeutic volume by a single exposure. Enhancing the heating effect of ultrasound by cavitation bubbles may solve this problem. However, this is rather difficult because cavitation clouds tend to be formed backward from the focal point while ultrasonic intensity for heating is centered at the focal point. In this study, the focal points of the trigger pulses to generate cavitation were offset forward from those of the heating ultrasound to match the cavitation clouds with the heating patterns. Results suggest that the controlled offset of focal points makes the thermal coagulation more predictable.
Zabala-Travers, Silvina; Choi, Mina; Cheng, Wei-Chung
2015-01-01
Purpose: Even though the use of color in the interpretation of medical images has increased significantly in recent years, the ad hoc manner in which color is handled and the lack of standard approaches have been associated with suboptimal and inconsistent diagnostic decisions with a negative impact on patient treatment and prognosis. The purpose of this study is to determine if the choice of color scale and display device hardware affects the visual assessment of patterns that have the characteristics of functional medical images. Methods: Perfusion magnetic resonance imaging (MRI) was the basis for designing and performing experiments. Synthetic images resembling brain dynamic-contrast enhanced MRI consisting of scaled mixtures of white, lumpy, and clustered backgrounds were used to assess the performance of a rainbow (“jet”), a heated black-body (“hot”), and a gray (“gray”) color scale with display devices of different quality on the detection of small changes in color intensity. The authors used a two-alternative, forced-choice design where readers were presented with 600 pairs of images. Each pair consisted of two images of the same pattern flipped along the vertical axis with a small difference in intensity. Readers were asked to select the image with the highest intensity. Three differences in intensity were tested on four display devices: a medical-grade three-million-pixel display, a consumer-grade monitor, a tablet device, and a phone. Results: The estimates of percent correct show that jet outperformed hot and gray in the high and low range of the color scales for all devices with a maximum difference in performance of 18% (confidence intervals: 6%, 30%). Performance with hot was different for high and low intensity, comparable to jet for the high range, and worse than gray for lower intensity values. Similar performance was seen between devices using jet and hot, while gray performance was better for handheld devices. Time of performance was shorter with jet. Conclusions: Our findings demonstrate that the choice of color scale and display hardware affects the visual comparative analysis of pseudocolor images. Follow-up studies in clinical settings are being considered to confirm the results with patient images. PMID:26127048
Lyashevska, Olga; Brus, Dick J; van der Meer, Jaap
2016-01-01
The objective of the study was to provide a general procedure for mapping species abundance when data are zero-inflated and spatially correlated counts. The bivalve species Macoma balthica was observed on a 500×500 m grid in the Dutch part of the Wadden Sea. In total, 66% of the 3451 counts were zeros. A zero-inflated Poisson mixture model was used to relate counts to environmental covariates. Two models were considered, one with relatively fewer covariates (model "small") than the other (model "large"). The models contained two processes: a Bernoulli (species prevalence) and a Poisson (species intensity, when the Bernoulli process predicts presence). The model was used to make predictions for sites where only environmental data are available. Predicted prevalences and intensities show that the model "small" predicts lower mean prevalence and higher mean intensity, than the model "large". Yet, the product of prevalence and intensity, which might be called the unconditional intensity, is very similar. Cross-validation showed that the model "small" performed slightly better, but the difference was small. The proposed methodology might be generally applicable, but is computer intensive.
Studying Cosmic Evolution with 21 cm Intensity Mapping
NASA Astrophysics Data System (ADS)
Anderson, Christopher
This thesis describes early work in the developing field of 21-cm intensity mapping. The 21-cm line is a radio transition due to the hyperfine splitting of the ground state of neutral hydrogen (HI). Intensity mapping utilizes the aggregate redshifted 21-cm emission to map the three-dimensional distribution of HI on large scales. In principle, the 21-cm line can be utilized to map most of the volume of the observable Universe. But the signal is small, and dedicated instruments will be required to reach a high signal-to-noise ratio. Large spectrally smooth astrophysical foregrounds, which dwarf the 21-cm signal, present a significant challenge to the data analysis. I derive the fundamental physics of the 21-cm line and the size of the expected cosmological signal. I also provide an overview of the desired characteristics of a dedicated 21-cm instrument, and I list some instruments that are coming on-line in the next few years. I then describe the data analysis techniques and results for 21-cm intensity maps that were made with two existing radio telescopes, the Green Bank telescope (GBT) and the Parkes telescope. Both observations have detected the 21-cm HI signal by cross-correlating the 21-cm intensity maps with overlapping optical galaxy surveys. The GBT maps have been used to constrain the neutral hydrogen density at a mean redshift (z) of 0.8. The Parkes maps, at a mean redshift of 0.08, probe smaller scales. The Parkes 21-cm intensity maps reveal a lack of small-scale clustering when they are cross-correlated with 2dF optical galaxy maps. This lack of small-scale clustering is partially due to a scale-dependent and galaxy-color-dependent HI-galaxy cross- correlation coefficient. Lastly, I provide an overview of planned future analyses with the Parkes maps, with a proposed multi-beam receiver for the Green Bank telescope, and with simulations of systematic effects on foregrounds.
The life cycle of infrared ultra-short high intensity laser pulses in air
NASA Astrophysics Data System (ADS)
Ma, Cunliang; Lin, Wenbin
2015-08-01
The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.
NASA Astrophysics Data System (ADS)
Accary, J.-B.; Teboul, V.
2013-07-01
We investigate the effect of the isomerization rate f on the microscopic mechanisms at the origin of the massive mass transport found in glass-formers doped with isomerizing azobenzene molecules that result in surface relief gratings formation. To this end we simulate the isomerization of dispersed probe molecules embedded into a molecular host glass-former. The host diffusion coefficient first increases linearly with f and then saturates. The saturated value of the diffusion coefficient and of the viscosity does not depend on f but increases with temperature while the linear response for these transport coefficients depends only slightly on the temperature. We interpret this saturation as arising from the appearance of increasingly soft regions around the probes for high isomerization rates, a result in qualitative agreement with experiments. These two different physical behaviors, linear response and saturation, are reminiscent of the two different unexplained mass transport mechanisms observed for small or large light intensities (for small intensities the molecules move towards the dark regions while for large intensities they move towards the illuminated regions).
Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram
2005-01-01
Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.
NASA Astrophysics Data System (ADS)
Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao
2018-02-01
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.
A new low-turbulence wind tunnel for animal and small vehicle flight experiments
NASA Astrophysics Data System (ADS)
Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David
2017-03-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.
NASA Astrophysics Data System (ADS)
Olurin, Oluwaseun Tolutope
2017-12-01
Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.
Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; ...
2016-04-22
Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shapemore » when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. Lastly, the results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.« less
Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering
NASA Astrophysics Data System (ADS)
Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh-Gans-Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster-cluster agglomerates (BCCAs) and ballistic particle-cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.
LIGHT SCATTERING BY FRACTAL DUST AGGREGATES. I. ANGULAR DEPENDENCE OF SCATTERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T -matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porousmore » dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.« less
Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.
1997-01-01
Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance. Ordination identified three site groups and three community types. Site groups consisted of (1) small streams of the Cascades and Eastern Cascades ecoregions, (2) small streams of the Columbia Basin ecoregions, and (3) large rivers of the Cascades and Columbia Basin ecoregions. The small streams of the Columbia Basin could be further subdivided into two groups--one where agricultural intensity was low and one where agricultural intensity was moderate to high. Dividing the basin into these three groups removed much of the influence of elevation and facilitated the analysis of land-use effects. Community types identified by ordination were (1) high elevation, cold-water communities associated with low agricultural intensity; (2) lower elevation, warm-water communities associated with low agricultural intensity, and (3) lower elevation, warm-water communities associated with moderate to high agricultural intensity. Multimetric community condition indices indicated that sites in the Cascades and Eastern Cascades site group were largely unimpaired. In contrast, all but two sites in the Columbia Basin site group were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor responsible for this impairment, and all impaired sites were characterized by multiple indicators of impairment. Three sites (Granger Drain, Moxee Drain, and Spring Creek) had high levels of impairment. Sites in the large-river site group were moderately to severely impaired downstream from the city of Yakima. High levels of impairment at large-river sites corresponded with high levels of pesticides in fish tissues and the occurrence of external anomalies. The response exhibited by invertebrates and algae to a gradient of agricultural intensity suggested a threshold response for sites in the Columbia Basin site group. Community condition declined precipitously at agricultural intensities above 50 (non-pesticide agricultural intensity index) and showed little respon
Perspectives on high-intensity interval exercise for health promotion in children and adolescents
Bond, Bert; Weston, Kathryn L; Williams, Craig A; Barker, Alan R
2017-01-01
Physical activity lowers future cardiovascular disease (CVD) risk; however, few children and adolescents achieve the recommended minimum amount of daily activity. Accordingly, there is virtue in identifying the efficacy of small volumes of high-intensity exercise for health benefits in children and adolescents for the primary prevention of CVD risk. The purpose of this narrative review is to provide a novel overview of the available literature concerning high-intensity interval-exercise (HIIE) interventions in children and adolescents. Specifically, the following areas are addressed: 1) outlining the health benefits observed following a single bout of HIIE, 2) reviewing the role of HIIE training in the management of pediatric obesity, and 3) discussing the effectiveness of school-based HIIE training. In total, 39 HIIE intervention studies were included in this review. Based upon the available data, a single bout of high-intensity exercise provides a potent stimulus for favorable, acute changes across a range of cardiometabolic outcomes that are often superior to a comparative bout of moderate-intensity exercise (14 studies reviewed). HIIE also promotes improvements in cardiorespiratory fitness and cardiometabolic health status in overweight and obese children and adolescents (10 studies reviewed) and when delivered in the school setting (15 studies reviewed). We thus conclude that high-intensity exercise is a feasible and potent method of improving a range of cardiometabolic outcomes in children and adolescents. However, further work is needed to optimize the delivery of HIIE interventions in terms of participant enjoyment and acceptability, to include a wider range of health outcomes, and to control for important confounding variables (eg, changes in diet and habitual physical activity). Finally, research into the application of HIIE training interventions to children and adolescents of different ages, sexes, pubertal status, and sociocultural backgrounds is required. PMID:29225481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doschek, G. A.; Warren, H. P.; Feldman, U.
2015-07-20
In determining the element abundance of argon (a high first ionization potential; FIP element) relative to calcium (a low FIP element) in flares, unexpectedly high intensities of two Ar xiv lines (194.40, 187.96 Å) relative to a Ca xiv line (193.87 Å) intensity were found in small (a few arcseconds) regions near sunspots in flare spectra recorded by the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. In the most extreme case the Ar xiv line intensity relative to the Ca xiv intensity was 7 times the value expected from the photospheric abundance ratio, which is about 30 times the abundancemore » of argon relative to calcium in active regions, i.e., the measured Ar/Ca abundance ratio is about 10 instead of 0.37 as in active regions. The Ar xiv and Ca xiv lines are formed near 3.4 MK and have very similar contribution functions. This is the first observation of the inverse FIP effect in the Sun. Other regions show increases of 2–3 over photospheric abundances, or just photospheric abundances. This phenomenon appears to occur rarely and only over small areas of flares away from the regions containing multi-million degree plasma, but more work is needed to quantify the occurrences and their locations. In the bright hot regions of flares the Ar/Ca abundance ratio is coronal, i.e., the same as in active regions. In this Letter we show three examples of the inverse FIP effect.« less
Higham, Dean G; Pyne, David B; Anson, Judith M; Hopkins, Will G; Eddy, Anthony
2016-05-01
The specificity of contemporary training practices of international rugby sevens players is unknown. We quantified the positional group-specific activity profiles and physiological demands of on-field training activities and compared these with match demands. Twenty-two international matches and 63 rugby-specific training drills were monitored in 25 backs and 17 forwards from a national squad of male rugby sevens players over a 21-month period. Drills were classified into 3 categories: low-intensity skill refining (n = 23 drills, 560 observations), moderate- to high-intensity skill refining (n = 28 drills, 600 observations), and game simulation (n = 12 drills, 365 observations). Movement patterns (via Global Positioning System devices) and physiological load (via heart rate monitors) were recorded for all activities, and the differences between training and matches were quantified using magnitude-based inferential statistics. Distance covered in total and at ≥3.5 m·s, maximal velocity, and frequency of accelerations and decelerations were lower for forwards during competition compared with those for backs by a small but practically important magnitude. No clear positional group differences were observed for physiological load during matches. Training demands exceeded match demands only for frequency of decelerations of forwards during moderate- to high-intensity skill-refining drills and only by a small amount. Accelerations and distance covered at ≥6 m·s were closer to match values for forwards than for backs during all training activities, but training drills consistently fell below the demands of international competition. Coaches could therefore improve physical and physiological specificity by increasing the movement demands and intensity of training drills.
NASA Astrophysics Data System (ADS)
Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald
2016-12-01
Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.
Quadratic soliton self-reflection at a quadratically nonlinear interface
NASA Astrophysics Data System (ADS)
Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai
2003-11-01
The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.
Fitness consequences of spousal relatedness in 46 small-scale societies.
Bailey, Drew H; Hill, Kim R; Walker, Robert S
2014-05-01
Social norms that regulate reproductive and marital decisions generate impressive cross-cultural variation in the prevalence of kin marriages. In some societies, marriages among kin are the norm and this inbreeding creates intensive kinship networks concentrated within communities. In others, especially forager societies, most marriages are between more genealogically and geographically distant individuals, which generates a larger number of kin and affines of lesser relatedness in more extensive kinship networks spread out over multiple communities. Here, we investigate the fitness consequence of kin marriages across a sample of 46 small-scale societies (12,439 marriages). Results show that some non-forager societies (including horticulturalists, agriculturalists and pastoralists), but not foragers, have intensive kinship societies where fitness outcomes (measured as the number of surviving children in genealogies) peak at commonly high levels of spousal relatedness. By contrast, the extensive kinship systems of foragers have worse fitness outcomes at high levels of spousal relatedness. Overall, societies with greater levels of inbreeding showed a more positive relationship between fitness and spousal relatedness. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
High intensity multi beam design of SANS instrument for Dhruva reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K.; Désert, S.
A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies ofmore » agglomerates larger than few tens of nm.« less
Biomedical application of MALDI mass spectrometry for small-molecule analysis.
van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M
2011-01-01
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, Brett D., E-mail: bdkeenan@ku.edu; Medvedev, Mikhail V.
2015-11-15
Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., “sub-Larmor scales.” Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate themore » feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.« less
Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.
2013-01-01
Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.
Puhan, M; Schunemann, H; Frey, M; Scharplatz, M; Bachmann, L
2005-01-01
Background: Physical exercise is an important component of respiratory rehabilitation because it reverses skeletal muscle dysfunction, a clinically important manifestation of COPD associated with reduced health-related quality of life (HRQL) and survival. However, there is controversy regarding the components of the optimal exercise protocol. A study was undertaken to systematically evaluate and summarise randomised controlled trials (RCTs) comparing different exercise protocols for COPD patients. Methods: Six electronic databases, congress proceedings and bibliographies of included studies were searched without imposing language restrictions. Two reviewers independently screened all records and extracted data on study samples, interventions and methodological characteristics of included studies. Results: The methodological quality of the 15 included RCTs was low to moderate. Strength exercise led to larger improvements of HRQL than endurance exercise (weighted mean difference for Chronic Respiratory Questionnaire 0.27, 95% CI 0.02 to 0.52). Interval exercise seems to be of similar effectiveness as continuous exercise, but there are few data on clinically relevant outcomes. One small RCT which included patients with mild COPD compared the effect of high and low intensity exercise (at 80% and 40% of the maximum exercise capacity, respectively) and found larger physiological training effects from high intensity exercise. Conclusions: Strength exercise should be routinely incorporated in respiratory rehabilitation. There is insufficient evidence to recommend high intensity exercise for COPD patients and investigators should conduct larger high quality trials to evaluate exercise intensities in patients with moderate to severe COPD. PMID:15860711
Boggero, Ian A; Geiger, Paul J; Segerstrom, Suzanne C; Carlson, Charles R
2015-01-01
BACKGROUND/STUDY CONTEXT: Chronic pain is associated with increased interference in daily functioning that becomes more pronounced as pain intensity increases. Based on previous research showing that older adults maintain well-being in the face of pain as well as or better than their younger counterparts, the current study examined the interaction of age and pain intensity on interference in a sample of chronic orofacial pain patients. Data were obtained from the records of 508 chronic orofacial pain patients being seen for an initial evaluation from 2008 to 2012. Collected data included age (range: 18-78) and self-reported measures of pain intensity and pain interference. Bivariate correlations and regression models were used to assess for statistical interactions. Regression analyses revealed that pain intensity positively predicted pain interference (R(2) = .35, B = 10.40, SE = 0.62, t(507) = 16.70, p < .001). A significant interaction supported the primary hypothesis that aging was associated with reduced interference at high levels of pain intensity (ΔR(2) = .01, B = -1.31, SE = 0.63, t(505) = -2.90, p = .04). At high levels of pain intensity, interference decreased with age, although the age by pain intensity interaction effect was small. This evidence converges with aging theories, including socioemotional selectivity theory, which posits that as people age, they become more motivated to maximize positive emotions and minimize negative ones. The results highlight the importance of studying the mechanisms older adults use to successfully cope with pain.
An Evaluation of Psychophysical Models of Auditory Change Perception
Micheyl, Christophe; Kaernbach, Christian; Demany, Laurent
2009-01-01
In many psychophysical experiments, the participant's task is to detect small changes along a given stimulus dimension, or to identify the direction (e.g., upward vs. downward) of such changes. The results of these experiments are traditionally analyzed using a constant-variance Gaussian (CVG) model or a high-threshold (HT) model. Here, the authors demonstrate that for changes along three basic sound dimensions (frequency, intensity, and amplitude-modulation rate), such models cannot account for the observed relationship between detection thresholds and direction-identification thresholds. It is shown that two alternative models can account for this relationship. One of them is based on the idea of sensory “quanta”; the other assumes that small changes are detected on the basis of Poisson processes with low means. The predictions of these two models are then compared against receiver operating characteristics (ROCs) for the detection of changes in sound intensity. It is concluded that human listeners' perception of small and unidimensional acoustic changes is better described by a discrete-state Poisson model than by the more commonly used CVG model or by the less favored HT and quantum models. PMID:18954215
Heart-rate variability and training-intensity distribution in elite rowers.
Plews, Daniel J; Laursen, Paul B; Kilding, Andrew E; Buchheit, Martin
2014-11-01
Elite endurance athletes may train in a polarized fashion, such that their training-intensity distribution preserves autonomic balance. However, field data supporting this are limited. The authors examined the relationship between heart-rate variability and training-intensity distribution in 9 elite rowers during the 26-wk build-up to the 2012 Olympic Games (2 won gold and 2 won bronze medals). Weekly averaged log-transformed square root of the mean sum of the squared differences between R-R intervals (Ln rMSSD) was examined, with respect to changes in total training time (TTT) and training time below the first lactate threshold (
Terrestrial black holes as sources of super-high energy radiation
NASA Astrophysics Data System (ADS)
Trofimenko, A. P.; Gurin, V. S.
1993-04-01
The study proposes small black holes which can be located in the earth's interior as sources of superhigh energy radiation; their origin is not constrained to the big bang. The intensity and spectrum of massless and massive particle radiation due to the Hawking effect for black holes with masses of 10 exp 8 to 10 exp 16 are estimated. The possibility of their detection according to a number of features (high particle energies, thermal energetic spectrum, transientness or an explicit trend to intensity and energy increase, and some expressed direction of emission associated with source localization) is explored. The rates of the radiation of massless particles with spin-1/2 and with spin-1 are illustrated in graphic form.
Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Lashkov, V. A.; Valiev, R. Z.; Bondarenko, A. S.
2016-09-01
This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.
A small cable tunnel inspection robot design
NASA Astrophysics Data System (ADS)
Zhou, Xiaolong; Guo, Xiaoxue; Huang, Jiangcheng; Xiao, Jie
2017-04-01
Modern city mainly rely on internal electricity cable tunnel, this can reduce the influence of high voltage over-head lines of urban city appearance and function. In order to reduce the dangers of cable tunnel artificial inspection and high labor intensity, we design a small caterpillar chassis in combination with two degrees of freedom robot with two degrees of freedom camera pan and tilt, used in the cable tunnel inspection work. Caterpillar chassis adopts simple return roller, damping structure. Mechanical arm with three parallel shafts, finish the up and down and rotated action. Two degrees of freedom camera pan and tilt are used to monitor cable tunnel with 360 °no dead angle. It looks simple, practical and efficient.
DEFORESTATION AND LANDSLIDES IN YUNNAN, CHINA.
Wieczorek, Gerald F.; Wu, Jishan; Li, Tianchi
1987-01-01
Landslides historically have caused severe erosion problems in the Xiao River drainage region of northeastern Yunnan Province, China, that hence resulted in serious economic and social consequences. Owing to monsoonal storms of high rainfall intensity, the erosion potential is high in this mountainous, seismically active region. Landslides transported large quantities of materials into the ravines. During intense storms, high runoff from the deforested areas has mobilized this material into debris flows. Where these flows emerged onto flatter slopes in the lower parts of the watersheds, the channels were too small to hold them, so farmland and villages were inundated. Debris flows in this region during June-August 1985 killed 12 people, damaged roads and the main rail line to Kunming, the capital of Yunnan Province, inundated farmland, and overflowed debris-retention structures. To mitigate these severe erosion problems, several different methods have been used.
Observations of O VI Emission from the Diffuse Interstellar Medium
NASA Technical Reports Server (NTRS)
Shelton, R. L.; Kruk, J. W.; Murphy, E. M.; Andersson, B. G.; Blair, W. P.; Dixon, W. V.; Edelstein, J.; Fullerton, A. W.; Gry, C.; Howk, J. C.;
2001-01-01
We report the first Far Ultraviolet Spectroscopic Explorer (FUSE) measurements of diffuse O(VI) (lambda lambda 1032,1038) emission from the general diffuse interstellar medium outside of supernova remnants or superbubbles. We observed a 30 arcsec x 30 arcsec region of the sky centered at l = 315.0 deg and b = -41.3 deg. From the observed intensities (2930 +/- 290 (random) +/- 410 (systematic) and 1790 +/- 260 (random) +/- 250 (systematic) photons/sq cm/s/sr in the 1032 and 1038 angstrom emission lines, respectively), derived equations, and assumptions about the source location, we calculate the intrinsic intensity, electron density, thermal pressure, and emitting depth. The intensities are too large for the emission to originate solely in the Local Bubble. Thus, we conclude that the Galactic thick disk and lower halo also contribute. High velocity clouds are ruled out because there are none near the pointing direction. The calculated emitting depth is small, indicating that the O(VI)-bearing gas fills a small volume. The observations can also be used to estimate the cooling rate of the hot interstellar medium and constrain models. The data also yield the first intensity measurement of the C(II) 3s 2S(1/2) to 2p 2P(3/2) emission line at 1037 angstrom and place upper limits on the intensities of ultraviolet line emission from C(I), C(III), Si(II), S(III), S(IV), S(VI), and Fe(III).
Raw data normalization for a multi source inverse geometry CT system
Baek, Jongduk; De Man, Bruno; Harrison, Daniel; Pelc, Norbert J.
2015-01-01
A multi-source inverse-geometry CT (MS-IGCT) system consists of a small 2D detector array and multiple x-ray sources. During data acquisition, each source is activated sequentially, and may have random source intensity fluctuations relative to their respective nominal intensity. While a conventional 3rd generation CT system uses a reference channel to monitor the source intensity fluctuation, the MS-IGCT system source illuminates a small portion of the entire field-of-view (FOV). Therefore, it is difficult for all sources to illuminate the reference channel and the projection data computed by standard normalization using flat field data of each source contains error and can cause significant artifacts. In this work, we present a raw data normalization algorithm to reduce the image artifacts caused by source intensity fluctuation. The proposed method was tested using computer simulations with a uniform water phantom and a Shepp-Logan phantom, and experimental data of an ice-filled PMMA phantom and a rabbit. The effect on image resolution and robustness of the noise were tested using MTF and standard deviation of the reconstructed noise image. With the intensity fluctuation and no correction, reconstructed images from simulation and experimental data show high frequency artifacts and ring artifacts which are removed effectively using the proposed method. It is also observed that the proposed method does not degrade the image resolution and is very robust to the presence of noise. PMID:25837090
Weak linkage between the heaviest rainfall and tallest storms.
Hamada, Atsushi; Takayabu, Yukari N; Liu, Chuntao; Zipser, Edward J
2015-02-24
Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.
NASA Astrophysics Data System (ADS)
Rambaldi, Marcello; Filimonov, Vladimir; Lillo, Fabrizio
2018-03-01
Given a stationary point process, an intensity burst is defined as a short time period during which the number of counts is larger than the typical count rate. It might signal a local nonstationarity or the presence of an external perturbation to the system. In this paper we propose a procedure for the detection of intensity bursts within the Hawkes process framework. By using a model selection scheme we show that our procedure can be used to detect intensity bursts when both their occurrence time and their total number is unknown. Moreover, the initial time of the burst can be determined with a precision given by the typical interevent time. We apply our methodology to the midprice change in foreign exchange (FX) markets showing that these bursts are frequent and that only a relatively small fraction is associated with news arrival. We show lead-lag relations in intensity burst occurrence across different FX rates and we discuss their relation with price jumps.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.
2017-12-01
For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.
Shutterless ion mobility spectrometer with fast pulsed electron source
NASA Astrophysics Data System (ADS)
Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.
2017-02-01
Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.
[Features of organization of nutrition for young athletes].
Korosteleva, M M; Nikitiuk, D B; Volkova, L Iu
2013-01-01
Organization of nutrition for young athletes implied a regime, which includes the distribution of meals throughout the day, the multiplicity of power an nutrients that must be strictly consistent with the mode of the training process. Athletes' requirements in energy and nutrients vary considerably depending on the sport discipline and the amount of intense of physical activity. In the Institute of Nutrition of Russian Academy of Medical Sciences the recommended average daily sets of products, which are based on daily energy expenditure of young athletes, depending on the duration and intensity of physical activity in diverse kinds sports has been developed, these kits provide young athletes the necessary nutrients and micronutrients. In precompetitive period athletes must be given high physical activity and the diet should be mainly protein and fat-containing, with a high level of fiber. The training process should be intense for three days, then the athlete is advised to transfer to the carbohydrate-rich diet that is combined with a significant reduction in the intensity of trainings--glycogen super compensation. During competition period meal should be well digestible and low-volume. It must contain proteins of high biological values and carbohydrates in the required quantity. During this period the inclusion of new dishes and products in the menu for athletes is not desirable. During marathon the main aim is to recover the energy, water, mineral resources, and to maintain normal blood glucose concentrations. This is achieved in the following ways: carbohydrate intake with a relatively small amount of liquid, high product content of vitamins and minerals that helps to maintain the water-salt metabolism at the appropriate level, taking food in liquid form, in small portions. In the recovery period adequate nutrition should achieve the following objectives: to restore the acid-base and fluid and electrolyte balance, eliminate the effect of metabolic products (urea, lactic acid, ammonia, etc) associated with high physical activity; restore carbohydrate stores, provide plastic exchange, synthesis processes. The article also contains the basic sanitary and epidemiological requirements for the catering departments, selection of products and sports doctors.
Big Ideas behind Daily 5 and CAFE
ERIC Educational Resources Information Center
Boushey, Gail; Moser, Joan
2012-01-01
The Daily 5 and CAFE were born out of The Sister's research and observations of instructional mentors, their intense desire to be able to deliver highly intentional, focused instruction to small groups and individuals while the rest of the class was engaged in truly authentic reading and writing, and their understanding that a one size fits all…
Using Self-Assessments to Detect Workshop Success: Do They Work?
ERIC Educational Resources Information Center
D'Eon, Marcel; Sadownik, Leslie; Harrison, Alexandra; Nation, Jill
2008-01-01
An accepted gold standard for measuring change in participant behavior is third-party observation. This method is highly resource intensive, and many small-scale evaluations may not be in a position to use this approach. This study was designed to assess the validity and reliably of aggregated group self-assessments as one way to measure workshop…
Murmur intensity in small-breed dogs with myxomatous mitral valve disease reflects disease severity.
Ljungvall, I; Rishniw, M; Porciello, F; Ferasin, L; Ohad, D G
2014-11-01
To determine whether murmur intensity in small-breed dogs with myxomatous mitral valve disease reflects clinical and echocardiographic disease severity. Retrospective multi-investigator study. Records of adult dogs Ä20 kg with myxomatous mitral valve disease were examined. Murmur intensity and location were recorded and compared with echocardiographic variables and functional disease status. Murmur intensities in consecutive categories were compared for prevalences of congestive heart failure, pulmonary hypertension and cardiac remodelling. 578 dogs [107 with "soft" (30 Grade I/VI and 77 II/VI), 161 with "moderate" (Grade III/VI), 160 with "loud" (Grade IV/VI) and 150 with "thrilling" (Grade V/VI or VI/VI) murmurs] were studied. No dogs with soft murmurs had congestive heart failure, and 90% had no remodelling. However, 56% of dogs with "moderate", 29% of dogs with "loud" and 8% of dogs with "thrilling" murmurs and subclinical myxomatous mitral valve disease also had no remodelling. Probability of a dog having congestive heart failure or pulmonary hypertension increased with increasing murmur intensity. A 4-level murmur grading scheme separated clinically meaningful outcomes in small-breed dogs with myxomatous mitral valve disease. Soft murmurs in small-breed dogs are strongly indicative of subclinical heart disease. Thrilling murmurs are associated with more severe disease. Other murmurs are less informative on an individual basis. © 2014 British Small Animal Veterinary Association.
Gossypiboma Mimicking Gastrointestinal Stromal Tumor Causing Intestinal Obstruction: A Case Report
Kawamura, Yurika; Ogasawara, Naotaka; Yamamoto, Sayuri; Sasaki, Makoto; Kawamura, Naohiko; Izawa, Shinya; Kobayashi, Yuji; Kamei, Seiji; Miyachi, Masahiko; Kasugai, Kunio
2012-01-01
A 41-year-old woman was admitted to our hospital with abdominal pain that developed about 1 year after a Cesarean section. Pelvic computed tomography (CT) revealed diffuse dilation of the small intestine with fluid shadows and a pelvic tumor 55 mm in diameter. The density of the tumor, which was not enhanced by intravenous contrast medium, was diffuse and similar to that of muscular tissue, whereas the density of a capsule surrounding the mass was relatively high. T1- and T2-weighted pelvic magnetic resonance imaging (MRI) of the tumor revealed the same diffuse low-intensity signals as muscular tissue, and diffuse high-intensity signals, respectively. The CT and MRI findings were consistent with those of a gastrointestinal stromal tumor (GIST) causing ileus of the small intestine. As inserting an ileus tube did not improve her symptoms, the patient was scheduled for tumor resection. The operative findings revealed a hard, solid tumor adhering to the surrounding small intestine. The macroscopic findings revealed that the tumor consisted of layers of stratified gauze surrounded by a thick granulomatous wall. The gossypiboma was considered to have originated from gauze that had been left behind after the Cesarean section. If a patient has a history of surgery, the possibility of gossypiboma should be considered when CT or MRI findings indicate features of GIST. PMID:22679410
Knowledge training and the change of fertilizer use intensity: Evidence from wheat farmers in China.
Pan, Dan; Kong, Fanbin; Zhang, Ning; Ying, Ruiyao
2017-07-15
High fertilizer use intensity is a serious issue throughout China, with adverse environmental and economic impacts. The lack of knowledge of Chinese farmers has been found to be the primary constraint. Using a propensity score matching (PSM) method to create a credible counterfactual analysis, this study examines the causal effects of two kinds of knowledge training approaches, traditional one-time training and in-field guidance, on the change of fertilizer use intensity of wheat farmers in China. The estimated results provide evidence that the traditional one-time training approach has a small effect on fertilizer use intensity reduction (only a 4% average), while the in-field guidance has a larger effect on fertilizer use intensity reduction (a 17% average). Moreover, we also found knowledge training has heterogeneous treatment effects. The reduction in fertilizer use intensity is larger for the farmers who are male and middle aged, have acquired a middle level of education, receive a lower share of off-farm income, collect a lower income, and operate a larger farm. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration
NASA Astrophysics Data System (ADS)
Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-09-01
In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays.
Rudenko, A; Inhester, L; Hanasaki, K; Li, X; Robatjazi, S J; Erk, B; Boll, R; Toyota, K; Hao, Y; Vendrell, O; Bomme, C; Savelyev, E; Rudek, B; Foucar, L; Southworth, S H; Lehmann, C S; Kraessig, B; Marchenko, T; Simon, M; Ueda, K; Ferguson, K R; Bucher, M; Gorkhover, T; Carron, S; Alonso-Mori, R; Koglin, J E; Correa, J; Williams, G J; Boutet, S; Young, L; Bostedt, C; Son, S-K; Santra, R; Rolles, D
2017-06-01
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays
Rudenko, A.; Inhester, L.; Hanasaki, K.; ...
2017-05-31
We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Fnally, our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.« less
Convection index as a tool for trend analysis of intense summer storms in Switzerland
NASA Astrophysics Data System (ADS)
Gaal, Ladislav; Molnar, Peter; Szolgay, Jan
2013-04-01
Convective summer thunderstorms are generally responsible for the most devastating floods in urban and small natural catchments. In this study we focus on the identification of the nature and magnitude of changes in the properties of intense summer storms of convective character in Switzerland in the last three decades. The study is based on precipitation records from the SwissMetNet (MeteoSwiss) network at 63 stations that cover altitudes ranging from 200 up to 3300 m a.s.l. over the period 1981-2012 (32 years). Additionally, the same stations also measure the number of lightning strikes within a range of 30 km from each station. In an accompanying contribution we describe the method how intensive summer storms can be reliably selected out of all storms in long and high resolution precipitation time series. On the basis of the statistical distributions and dependence among key storm characteristics at the event scale (total rainfall depth R, storm duration D, and peak intensity I) and using high resolution lightning data as a surrogate we defined a threshold intensity I* that differentiates between the events accompanied with lightning with an acceptably small probability of misclassification. This allowed us to identify intense summer events with convective character as those where I > I* regardless of their duration or total rainfall depth. The current study makes use of the threshold intensity I* for the definition of a seasonal convection index at each station (Llasat, 2001). This index gives us a measure of 'convectiveness', i.e. the total precipitation depth coming from convective storms relative to the total precipitation depth of all summer storms. We computed the convection index at all 63 stations and analyzed the series for trends. We found that the seasonal convection index increases at most of the stations in Switzerland and in approximately 20% of the cases this increase is statistically significant. This is likely a consequence of the fact that the number of summer storms exceeding the threshold I* also shows an increasing tendency with a similar percentage of statistically significant changes. Although our analysis indicates an increasing tendency in the intensity and frequency of summer storms with convective character in Switzerland, it is not yet clear whether these can be traced to causal factors such as atmospheric warming, etc. This remains an open research question.
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudenko, A.; Inhester, L.; Hanasaki, K.
We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Fnally, our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.« less
Klatte, Tobias; Kroeger, Nils; Zimmermann, Uwe; Burchardt, Martin; Belldegrun, Arie S; Pantuck, Allan J
2014-06-01
Currently, most of renal tumors are small, low grade, with a slow growth rate, a low metastatic potential, and with up to 30 % of these tumors being benign on the final pathology. Moreover, they are often diagnosed in elderly patients with preexisting medical comorbidities in whom the underlying medical conditions may pose a greater risk of death than the small renal mass. Concerns regarding overdiagnosis and overtreatment of patients with indolent small renal tumors have led to an increasing interest in minimally invasive, ablative as an alternative to extirpative interventions for selected patients. To provide an overview about the state of the art in radiofrequency ablation (RFA), high-intensity focused ultrasound, and cryoablation in the clinical management of renal cell carcinoma. A PubMed wide the literature search of was conducted. International consensus panels recommend ablative techniques in patients who are unfit for surgery, who are not considered candidates for or elect against elective surveillance, and who have small renal masses. The most often used techniques are cryoablation and RFA. These ablative techniques offer potentially curative outcomes while conferring several advantages over extirpative surgery, including improved patient procedural tolerance, faster recovery, preservation of renal function, and reduction in the risk of intraoperative and postsurgical complications. While it is likely that outcomes associated with ablative modalities will improve with further advances in technology, their application will expand to more elective indications as longer-term efficacy data become available. Ablative techniques pose a valid treatment option in selected patients.
NASA Astrophysics Data System (ADS)
Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya
2016-05-01
Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.
Stevens, Tom Gerardus Antonia; De Ruiter, Cornelis Johannes; Beek, Peter Jan; Savelsbergh, Geert Jozef Peter
2016-01-01
In order to determine whether small-sided game (SSG) locomotor performance can serve as a fitness indicator, we (1) compared 6-a-side (6v6) SSG-intensity of players varying in fitness and skill, (2) examined the relationship of the 6v6-SSG and Yo-Yo IR2 and (3) assessed the reliability of the 6v6-SSG. Thirty-three professional senior, 30 professional youth, 62 amateur and 16 professional woman football players performed 4 × 7 min 6v6-SSGs recorded by a Local Position Measurement system. A substantial subgroup (N = 113) also performed the Yo-Yo IR2. Forty-seven amateur players performed two or three 6v6-SSGs. No differences in 6v6-SSG time-motion variables were found between professional senior and professional youth players. Amateurs showed lower values than professional seniors on almost all time-motion variables (ES = 0.59-1.19). Women displayed lower high-intensity time-motion variables than all other subgroups. Total distance run during 6v6-SSG was only moderately related to Yo-Yo IR2 distance (r = 0.45), but estimated metabolic power, high speed (>14.4 km · h(-1)), high acceleration (>2 m · s(-2)), high power (>20 W · kg(-1)) and very high (35 W · kg(-1)) power showed higher correlations (r = 0.59-0.70) with Yo-Yo IR2 distance. Intraclass correlation coefficient values were higher for total distance (0.84) than other time-motion variables (0.74‒0.78). Although total distance and metabolic power during 6v6-SSG showed good reproducibility (coefficient of variation (CV) < 5%), CV was higher (8-14%) for all high-intensity time-motion variables. It was therefore concluded that standardised SSG locomotor performance cannot serve used as a valid and reliable fitness indicator for individual players.
Light-intensity and high-intensity interval training improve cardiometabolic health in rats.
Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S
2016-09-01
Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p < 0.01) and slower cardiac conduction (p = 0.04) compared with the CTL group. LIT and HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p < 0.05). LIT had significant improvements in insulin sensitivity and cardiac conduction compared with the CTL and SED groups whilst HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p < 0.05). LIT and HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.
Determination of boundaries between ranges of high and low gradient of beam profile.
Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr
2016-01-01
This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.
Miyagawa, Takuya; Fujie, Toshinori; Ferdinandus; Vo Doan, Tat Thang; Sato, Hirotaka; Takeoka, Shinji
2016-12-14
In this paper, a microthermograph, temperature mapping with high spatial resolution, was established using luminescent molecules embedded ultrathin polymeric films (nanosheets), and demonstrated in a living small animal to map out and visualize temperature shift due to animal's muscular activity. Herein, we report super flexible and self-adhesive (no need of glue) nanothermosensor consisting of stacked two different polymeric nanosheets with thermosensitive (Eu-tris (dinaphthoylmethane)-bis-trioctylphosphine oxide: EuDT) and insensitive (Rhodamine 800) dyes being embedded. Such stacked nanosheets allow for the ratiometric thermometry, with which the undesired luminescence intensity shift due to focal drift or animal's z-axis displacement is eliminated and the desired intensity shift solely due to the temperature shift of the sample (living muscle) can be acquired. With the stacked luminescent nanosheets, we achieved the first-ever demonstration of video filming of chronologically changing temperature-shift distribution from the rest state to the active state of the muscles in the living animal. The polymer nanosheet engineering and in vivo microthermography presented in the paper are promising technologies to microscopically explore the heat production and heat transfer in living cells, tissues, and organisms with high spatial resolution beyond what existing thermometric technologies such as infrared thermography have ever achieved.
Influence of Number of Contact Efforts on Running Performance During Game-Based Activities.
Johnston, Rich D; Gabbett, Tim J; Jenkins, David G
2015-09-01
To determine the influence the number of contact efforts during a single bout has on running intensity during game-based activities and assess relationships between physical qualities and distances covered in each game. Eighteen semiprofessional rugby league players (age 23.6 ± 2.8 y) competed in 3 off-side small-sided games (2 × 10-min halves) with a contact bout performed every 2 min. The rules of each game were identical except for the number of contact efforts performed in each bout. Players performed 1, 2, or 3 × 5-s wrestles in the single-, double-, and triple-contact game, respectively. The movement demands (including distance covered and intensity of exercise) in each game were monitored using global positioning system units. Bench-press and back-squat 1-repetition maximum and the 30-15 Intermittent Fitness Test (30-15IFT) assessed muscle strength and high-intensity-running ability, respectively. There was little change in distance covered during the single-contact game (ES = -0.16 to -0.61), whereas there were larger reductions in the double- (ES = -0.52 to -0.81) and triple-contact (ES = -0.50 to -1.15) games. Significant relationships (P < .05) were observed between 30-15IFT and high-speed running during the single- (r = .72) and double- (r = .75), but not triple-contact (r = .20) game. There is little change in running intensity when only single contacts are performed each bout; however, when multiple contacts are performed, greater reductions in running intensity result. In addition, high-intensity-running ability is only associated with running performance when contact demands are low.
NASA Technical Reports Server (NTRS)
Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.
1998-01-01
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.
A new low-turbulence wind tunnel for animal and small vehicle flight experiments
Watts, Anthony; Nagle, Tony; Lentink, David
2017-01-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s−1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s−1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow. PMID:28405384
Boggero, Ian A.; Geiger, Paul J.; Segerstrom, Suzanne C.; Carlson, Charles R.
2015-01-01
Background/Study Context Chronic pain is associated with increased interference in daily functioning that becomes more pronounced as pain intensity increases. Based on previous research showing that older adults maintain well-being in the face of pain as well as or better than their younger counterparts, the current study examined the interaction of age and pain intensity on interference in a sample of chronic orofacial pain patients. Methods Data were obtained from the records of 508 chronic orofacial pain patients being seen for an initial evaluation from 2008 to 2012. Collected data included age (range: 18–78) and self-reported measures of pain intensity and pain interference. Bivariate correlations and regression models were used to assess for statistical interactions. Results Regression analyses revealed that pain intensity positively predicted pain interference (R2 = .35, B = 10.40, SE = 0.62, t(507) = 16.70, p < .001). A significant interaction supported the primary hypothesis that aging was associated with reduced interference at high levels of pain intensity (ΔR2 = .01, B = −1.31, SE = 0.63, t(505) = −2.90, p = .04). Conclusion At high levels of pain intensity, interference decreased with age, although the age by pain intensity interaction effect was small. This evidence converges with aging theories, including socioemotional selectivity theory, which posits that as people age, they become more motivated to maximize positive emotions and minimize negative ones. The results highlight the importance of studying the mechanisms older adults use to successfully cope with pain. PMID:26214102
The efficacy and safety of high-intensity focused ultrasound ablation of benign thyroid nodules.
Lang, Brian H; Wu, Arnold L H
2018-04-01
High-intensity focused ultrasound (HIFU) is a promising form of thermal ablation of benign thyroid nodules, but evidence supporting its use is scarce. The present review evaluated the efficacy and safety of single-session HIFU treatment of benign thyroid nodules. As reported in the literature, the extent of nodule shrinkage following treatment ranged from 48.8% to 68.8%. Like other forms of ablation, the shrinkage rate was greatest in the first 3-6 months, and the best responders were patients with small (≤10 mL) nodules. Complications were uncommon, but temporary vocal cord palsy occurred in 3%-4% of patients, and was related to the distance between the HIFU beam and the recurrent laryngeal nerve. Despite being safe and efficacious, a larger-scale prospective trial is required.
Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.
2009-01-01
Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433
Chadeka, Evans Asena; Nagi, Sachiyo; Sunahara, Toshihiko; Cheruiyot, Ngetich Benard; Bahati, Felix; Ozeki, Yuriko; Inoue, Manabu; Osada-Oka, Mayuko; Okabe, Mayuko; Hirayama, Yukio; Changoma, Mwatasa; Adachi, Keishi; Mwende, Faith; Kikuchi, Mihoko; Nakamura, Risa; Kalenda, Yombo Dan Justin; Kaneko, Satoshi; Hirayama, Kenji; Shimada, Masaaki; Ichinose, Yoshio; Njenga, Sammy M.; Matsumoto, Sohkichi
2017-01-01
Background Large-scale schistosomiasis control programs are implemented in regions with diverse social and economic environments. A key epidemiological feature of schistosomiasis is its small-scale heterogeneity. Locally profiling disease dynamics including risk factors associated with its transmission is essential for designing appropriate control programs. To determine spatial distribution of schistosomiasis and its drivers, we examined schoolchildren in Kwale, Kenya. Methodology/Principal findings We conducted a cross-sectional study of 368 schoolchildren from six primary schools. Soil-transmitted helminths and Schistosoma mansoni eggs in stool were evaluated by the Kato-Katz method. We measured the intensity of Schistosoma haematobium infection by urine filtration. The geometrical mean intensity of S. haematobium was 3.1 eggs/10 ml urine (school range, 1.4–9.2). The hookworm geometric mean intensity was 3.2 eggs/g feces (school range, 0–17.4). Heterogeneity in the intensity of S. haematobium and hookworm infections was evident in the study area. To identify factors associated with the intensity of helminth infections, we utilized negative binomial generalized linear mixed models. The intensity of S. haematobium infection was associated with religion and socioeconomic status (SES), while that of hookworm infection was related to SES, sex, distance to river and history of anthelmintic treatment. Conclusions/Significance Both S. haematobium and hookworm infections showed micro-geographical heterogeneities in this Kwale community. To confirm and explain our observation of high S. haematobium risk among Muslims, further extensive investigations are necessary. The observed small scale clustering of the S. haematobium and hookworm infections might imply less uniform strategies even at finer scale for efficient utilization of limited resources. PMID:28863133
Deng, Ouping; Zhang, Shirong; Deng, Liangji; Zhang, Chunlong; Fei, Jianbo
2018-03-01
Understanding of the spatial and temporal variation of the flux of atmospheric nitrogen (N) deposition is essential for assessment of its impact on ecosystems. However, little attention has been paid to the variability of N deposition across urban-intensive agricultural-rural transects. A continuous 2-year observational study (from January 2015 to December 2016) was conducted to determine wet N deposition across the urban-intensive agricultural-rural transect of a small urban area in southwest China. Significantly spatial and temporal variations were found in the research area. Along the urban-intensive agricultural-rural transect, the TN and NH 4 + -N deposition first increased and then decreased, and the NO 3 - -N and dissolved organic N (DON) deposition decreased continuously. Wet N deposition was mainly affected by the districts of agro-facilities, roads and build up lands. Wet NH 4 + -N deposition had non-seasonal emission sources including industrial emissions and urban excretory wastes in urban districts and seasonal emission sources such as fertilizer and manure volatilization in the other districts. However, wet NO 3 - -N deposition had seasonal emission sources such as industrial emissions and fireworks in urban district and non-seasonal emission sources such as transportation in the other districts. Deposition of DON was likely to have had similar sources to NO 3 - -N deposition in rural district, and high-temperature-dependent sources in urban and intensive agricultural districts. Considering the annual wet TN deposition in the intensive agricultural district was about 11.1% of the annual N fertilizer input, N fertilizer rates of crops should be reduced in this region to avoid the excessive application, and the risk of N emissions to the environment.
Simulation of the small-scale magnetism in main-sequence stellar atmospheres
NASA Astrophysics Data System (ADS)
Salhab, R. G.; Steiner, O.; Berdyugina, S. V.; Freytag, B.; Rajaguru, S. P.; Steffen, M.
2018-06-01
Context. Observations of the Sun tell us that its granular and subgranular small-scale magnetism has significant consequences for global quantities such as the total solar irradiance or convective blueshift of spectral lines. Aims: In this paper, properties of the small-scale magnetism of four cool stellar atmospheres, including the Sun, are investigated, and in particular its effects on the radiative intensity and flux. Methods: We carried out three-dimensional radiation magnetohydrodynamic simulations with the CO5BOLD code in two different settings: with and without a magnetic field. These are thought to represent states of high and low small-scale magnetic activity of a stellar magnetic cycle. Results: We find that the presence of small-scale magnetism increases the bolometric intensity and flux in all investigated models. The surplus in radiative flux of the magnetic over the magnetic field-free atmosphere increases with increasing effective temperature, Teff, from 0.47% for spectral type K8V to 1.05% for the solar model, but decreases for higher effective temperatures than solar. The degree of evacuation of the magnetic flux concentrations monotonically increases with Teff as does their depression of the visible optical surface, that is the Wilson depression. Nevertheless, the strength of the field concentrations on this surface stays remarkably unchanged at ≈1560 G throughout the considered range of spectral types. With respect to the surrounding gas pressure, the field strength is close to (thermal) equipartition for the Sun and spectral type F5V but is clearly sub-equipartition for K2V and more so for K8V. The magnetic flux concentrations appear most conspicuous for model K2V owing to their high brightness contrast. Conclusions: For mean magnetic flux densities of approximately 50 G, we expect the small-scale magnetism of stars in the spectral range from F5V to K8V to produce a positive contribution to their bolometric luminosity. The modulation seems to be most effective for early G-type stars.
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1978-01-01
A close-coupled canard-wing configuration was tested in the Langely high-speed 7 by 10 foot tunnel at a Mach number of 0.30 to determine the effect of changing wing camber on the trimmed lift capability. Trimmed lift coefficients of near 2.0 were attained; however, the data indicated that the highest buffet-free trimmed lift coefficient attainable was approximately 1.30. The buffet used in this investigation were qualitative in nature and gave no indication of buffet intensity. Thus, the trimmed lift coefficient of near 2.0 might be attainable if the buffet intensity was not too high. The data showed that there was approximately a 10 percent variation in drag coefficient, for different model configurations, at a given trimmed lift coefficient. Large increases in wing lift had only small effects on canard lift.
High-intensity focused ultrasound in the treatment of breast tumours.
Peek, Mirjam C L; Wu, Feng
2018-01-01
High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.
Enhanced proton acceleration by intense laser interaction with an inverse cone target
NASA Astrophysics Data System (ADS)
Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima
2016-08-01
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.
Enhanced proton acceleration by intense laser interaction with an inverse cone target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface inducemore » a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.« less
NASA Astrophysics Data System (ADS)
Cressault, Yann; Teulet, Philippe; Zissis, Georges
2016-07-01
The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.
Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II
NASA Astrophysics Data System (ADS)
Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan
2018-05-01
The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.
High-intensity cycle interval training improves cycling and running performance in triathletes.
Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A
2014-01-01
Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.
Texture analysis of high-resolution FLAIR images for TLE
NASA Astrophysics Data System (ADS)
Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost
2005-04-01
This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.
NASA Astrophysics Data System (ADS)
Zhu, Jie; Zhu, Kaicheng; Tang, Huiqin; Xia, Hui
2017-10-01
Propagation properties of astigmatic sinh-Gaussian beams (ShGBs) with small beam width in turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, analytical formulae for the average intensity and the effective beam size of an astigmatic ShGB are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of an astigmatic ShGB propagating in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of atmospheric turbulence on the propagation properties of astigmatic ShGBs are also discussed in detail. In particular, for sufficiently small beam width and sinh-part parameter as well as suitable astigmatism, we show that the average intensity pattern converts into a perfect dark-hollow profile from initial two-petal pattern when ShGBs with astigmatic aberration propagate through atmospheric turbulence.
Darren A. Miller; Ronald E. Thill; M. Anthony Melchiors; T. Bently Wigley; Philip A. Tappe
2004-01-01
Streamside management zones (SMZs), composed primarily of hardwoods in the southeastern United States, provide habitat diversity within intensively managed pine (Pinus spp.) plantations. However, effects of SMZ width and adjacent plantation structure on riparian wildlife communities are poorly understood. Therefore, during 1990-1995, we examined small mammal...
Quantifying Neuromuscular Fatigue Induced by an Intense Training Session in Rugby Sevens.
Marrier, Bruno; Le Meur, Yann; Robineau, Julien; Lacome, Mathieu; Couderc, Anthony; Hausswirth, Christophe; Piscione, Julien; Morin, Jean-Benoît
2017-02-01
To compare the sensitivity of a sprint vs a countermovement-jump (CMJ) test after an intense training session in international rugby sevens players, as well as analyze the effects of fatigue on sprint acceleration. Thirteen international rugby sevens players completed two 30-m sprints and a set of 4 repetitions of CMJ before and after a highly demanding rugby sevens training session. Change in CMJ height was unclear (-3.6%; ±90% confidence limits 11.9%. Chances of a true positive/trivial/negative change: 24/10/66%), while a very likely small increase in 30-m sprint time was observed (1.0%; ±0.7%, 96/3/1%). A very likely small decrease in the maximum horizontal theoretical velocity (V 0 ) (-2.4; ±1.8%, 1/4/95%) was observed. A very large correlation (r = -.79 ± .23) between the variations of V 0 and 30-m-sprint performance was also observed. Changes in 30-m sprint time were negatively and very largely correlated with the distance covered above the maximal aerobic speed (r = -.71 ± .32). The CMJ test appears to be less sensitive than the sprint test, which casts doubts on the usefulness of a vertical-jump test in sports such as rugby that mainly involve horizontal motions. The decline in sprint performance relates more to a decrease in velocity than in force capability and is correlated with the distance covered at high intensity.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
Stress intensity and crack displacement for small edge cracks
NASA Technical Reports Server (NTRS)
Orange, Thomas W.
1988-01-01
The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.
Pawar, Shashikant S; Arakeri, Jaywant H
2016-08-01
Frequency spectra obtained from the measurements of light intensity and angle of arrival (AOA) of parallel laser light propagating through the axially homogeneous, axisymmetric buoyancy-driven turbulent flow at high Rayleigh numbers in a long (length-to-diameter ratio of about 10) vertical tube are reported. The flow is driven by an unstable density difference created across the tube ends using brine and fresh water. The highest Rayleigh number is about 8×109. The aim of the present work is to find whether the conventional Obukhov-Corrsin scaling or Bolgiano-Obukhov (BO) scaling is obtained for the intensity and AOA spectra in the case of light propagation in a buoyancy-driven turbulent medium. Theoretical relations for the frequency spectra of log amplitude and AOA fluctuations developed for homogeneous isotropic turbulent media are modified for the buoyancy-driven flow in the present case to obtain the asymptotic scalings for the high and low frequency ranges. For low frequencies, the spectra of intensity and vertical AOA fluctuations obtained from measurements follow BO scaling, while scaling for the spectra of horizontal AOA fluctuations shows a small departure from BO scaling.
Dampier, Carlton D.; Wager, Carrie G.; Harrison, Ryan; Hsu, Lewis L.; Minniti, Caterina P.; Smith, Wally R.
2012-01-01
Clinical trials of sickle cell disease (SCD) pain treatment usually observe only small decrements in pain intensity during the course of hospitalization. Sub-optimal analgesic management and inadequate pain assessment methods are possible explanations for these findings. In a search for better methods for assessing inpatient SCD pain in adults, we examined several pain intensity and interference measures in both arms of a randomized controlled trial comparing two different opioid PCA therapies. Based upon longitudinal analysis of pain episodes, we found that scores from daily average Visual Analogue Scales (VAS) and several other measures, especially the Brief Pain Inventory (BPI), were sensitive to change in daily improvements in pain intensity associated with resolution of vaso-occlusive pain. In this preliminary trial, the low demand, high basal infusion (LDHI) strategy demonstrated faster, larger improvements in various measures of pain than the high demand, low basal infusion (HDLI) strategy for opioid PCA dosing, however, verification in larger studies is required. The measures and statistical approaches used in this analysis may facilitate design, reduce sample size, and improve analyses of treatment response in future SCD clinical trials of vaso-occlusive episodes. PMID:22886853
Polarized internal target apparatus
Holt, Roy J.
1986-01-01
A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.
Opportunities for making wood products from small diameter trees in Colorado
Dennis L. Lynch; Kurt H. Mackes
2002-01-01
Colorado's forests are at risk to forest health problems and catastrophic fire. Forest areas at high risk to catastrophic fire, commonly referred to as Red Zones, contain 2.4 million acres in the Colorado Front Range and 6.3 million acres Statewide. The increasing frequency, size, and intensity of recent forest fires have prompted large appropriations of Federal...
Adam Wolf; Kanat Akshalov; Nicanor Saliendra; Douglas A. Johnson; Emilio A. Laca
2006-01-01
Canopy fluxes of CO2 and energy can be modeled with high fidelity using a small number of environmental variables and ecosystem parameters. Although these ecosystem parameters are critically important for modeling canopy fluxes, they typically are not measured with the same intensity as ecosystem fluxes. We developed an algorithm to estimate leaf...
Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri
2017-07-21
This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.
Haidrani, Layla
2017-03-22
When and why did you develop an interest in research? My first nursing job was as a staff nurse in an oncology intensive care unit and a bone marrow transplant unit taking care of patients who were participating in high intensity clinical trials. During my master's degree, I worked as a research assistant for two faculty members whose research was making an impact at state and national levels, and I was able to lead a small research project of my own. During my doctoral and post-doctoral studies, my research interests continued to grow. I find great meaning and purpose in identifying and solving difficult problems through research.
Girod, Marion; Shi, Yunzhou; Cheng, Ji-Xin; Cooks, R. Graham
2010-01-01
Desorption electrospray ionization (DESI) mass spectrometry is used in an imaging mode to interrogate the lipid profiles of 15 µm thin tissues cross sections of injured rat spinal cord and normal healthy tissue. Increased relative intensities of fatty acids, diacylglycerols and lysolipids (between +120% and +240%) as well as a small decrease in intensities of lipids (−30%) were visualized in the lesion epi-center and adjacent areas after spinal cord injury. This indicates the hydrolysis of lipids during the demyelination process due to activation of phospholipase A2 enzyme. In addition, signals corresponding to oxidative degradation products, such as prostaglandin and hydroxyeicosatetraenoic acid, exhibited increased signal intensity by a factor of two in the negative ion mode in lesions relative to the normal healthy tissue. Analysis of malondialdehyde, a product of lipid peroxidation and marker of oxidative stress, was accomplished in the ambient environment using reactive DESI mass spectrometry imaging. This was achieved by electrospraying reagent solution containing dinitrophenylhydrazine as high velocity charged droplets onto the tissue section. The hydrazine reacts selectively and rapidly with the carbonyl groups of malondialdehyde and signal intensity of twice the intensity was detected in the lesions compared to healthy spinal cord. With a small amount of tissue sample, DESI-MS imaging provides information on the composition and distribution of specific compounds (limited by the occurrence of isomeric lipids with very similar fragmentation patterns) in lesions after spinal cord injury in comparison with normal healthy tissue allowing identification of the extent of the lesion and its repair. PMID:21142140
NASA Astrophysics Data System (ADS)
Best, James P.; Zechner, Johannes; Wheeler, Jeffrey M.; Schoeppner, Rachel; Morstein, Marcus; Michler, Johann
2016-12-01
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.
NASA Astrophysics Data System (ADS)
Lebeaupin Brossier, Cindy; Arsouze, Thomas; Béranger, Karine; Bouin, Marie-Noëlle; Bresson, Emilie; Ducrocq, Véronique; Giordani, Hervé; Nuret, Mathieu; Rainaud, Romain; Taupier-Letage, Isabelle
2014-12-01
The western Mediterranean Sea is a source of heat and humidity for the atmospheric low-levels in autumn. Large exchanges take place at the air-sea interface, especially during intense meteorological events, such as heavy precipitation and/or strong winds. The Ocean Mixed Layer (OML), which is quite thin at this time of year (∼ 20 m-depth), evolves rapidly under such intense fluxes. This study investigates the ocean responses under intense meteorological events that occurred during HyMeX SOP1 (5 September-6 November 2012). The OML conditions and tendencies are derived from a high-resolution ocean simulation using the sub-regional eddy-resolving NEMO-WMED36 model (1/36°-resolution), driven at the surface by hourly air-sea fluxes from the AROME-WMED forecasts (2.5 km-resolution). The high space-time resolution of the atmospheric forcing allows the highly variable surface fluxes, which induce rapid changes in the OML, to be well represented and linked to small-scale atmospheric processes. First, the simulation results are compared to ocean profiles from several platforms obtained during the campaign. Then, this study focuses on the short-term OML evolution during three events. In particular, we examine the OML cooling and mixing under strong wind events, potentially associated with upwelling, as well as the surface freshening under heavy precipitation events, producing low-salinity lenses. Tendencies demonstrate the major role of the surface forcing in the temperature and/or salinity anomaly formation. At the same time, mixing [restratification] rapidly occurs. As expected, the sign of this tendency term is very dependent on the local vertical stratification which varies at fine scale in the Mediterranean. It also controls [disables] the vertical propagation. In the Alboran Sea, the strong dynamics redistribute the OML anomalies, sometimes up to 7 days after their formation. Elsewhere, despite local amplitude modulations due to internal wave excitation by strong winds, the integrated effect of the horizontal advection is almost null on the anomalies' spread and decay. Finally, diffusion has a small contribution.
NASA Astrophysics Data System (ADS)
Compant La Fontaine, A.
2018-04-01
During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce the X-ray emission to lower the radiation level for instance in a safety radiological goal.
2014-01-01
Ovarian cystadenocarcinoma is characterized by marked heterogeneity and may be composed of an admixture of histologic growth patterns, including acinar, papillary and solid. In the present study, a case of isolated small intestine metastasis of ovarian papillary cystadenocarcinoma was reported. A 7-year-old female mixed-breed dog presented with a mass in the left upper quadrant with progressive enlargement of the abdomen, periodic bloody discharge from the vulva and incontinence. The tumor was histologically characterized by the presence of cysts and proliferation of papillae, both lined by single- or multi-layered pleomorphic epithelial cells. Furthermore, the mass was composed by intense cellular and nuclear pleomorphism and numerous mitotic figures. These findings indicate a tumor of high-grade malignancy with infiterative tumor cells resembling the papillary ovarian tumor in the serosal surface of the small intestine along with an intact serosa. Immunohistochemically, tumor was positive for CK7 and negative immunoreactivity for CK20. The histopathologic features coupled with the CK7 immunoreactivity led to a diagnosis of high grade ovarian papillary cystadenocarcinoma. To the best of our knowledge, this is the first case of small intestine serousal surface metastasis from ovarian papillary cystadenocarcinoma. PMID:24636424
PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Daren; Xie Zongxia; Hu Qinghua
The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less
NASA Technical Reports Server (NTRS)
Knupp, Kevin; Geerts, Bart; Goodman, Steven J.
1997-01-01
The precipitation output was highly variable due to the transient nature of the intense convective elements. This result is attributed to the high Richardson number (175) of the environment, which is much higher than that of the typical MCS environment. The development of the stratiform precipitation was accomplished locally (in situ), and not be advection of from the convective region. In situ charging of the stratiform region is also supported by the observations.
Improving the imaging of calcifications in CT by histogram-based selective deblurring
NASA Astrophysics Data System (ADS)
Rollano-Hijarrubia, Empar; van der Meer, Frits; van der Lugt, Add; Weinans, Harrie; Vrooman, Henry; Vossepoel, Albert; Stokking, Rik
2005-04-01
Imaging of small high-density structures, such as calcifications, with computed tomography (CT) is limited by the spatial resolution of the system. Blur causes small calcifications to be imaged with lower contrast and overestimated volume, thereby hampering the analysis of vessels. The aim of this work is to reduce the blur of calcifications by applying three-dimensional (3D) deconvolution. Unfortunately, the high-frequency amplification of the deconvolution produces edge-related ring artifacts and enhances noise and original artifacts, which degrades the imaging of low-density structures. A method, referred to as Histogram-based Selective Deblurring (HiSD), was implemented to avoid these negative effects. HiSD uses the histogram information to generate a restored image in which the low-intensity voxel information of the observed image is combined with the high-intensity voxel information of the deconvolved image. To evaluate HiSD we scanned four in-vitro atherosclerotic plaques of carotid arteries with a multislice spiral CT and with a microfocus CT (μCT), used as reference. Restored images were generated from the observed images, and qualitatively and quantitatively compared with their corresponding μCT images. Transverse views and maximum-intensity projections of restored images show the decrease of blur of the calcifications in 3D. Measurements of the areas of 27 calcifications and total volumes of calcification of 4 plaques show that the overestimation of calcification was smaller for restored images (mean-error: 90% for area; 92% for volume) than for observed images (143%; 213%, respectively). The qualitative and quantitative analyses show that the imaging of calcifications in CT can be improved considerably by applying HiSD.
NASA Astrophysics Data System (ADS)
Sylwester, Barbara; Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Phillips, Kenneth
Very high sensitivity of SphinX soft X-ray spectrophotometer aboard Coronas-Photon allows to observe spectra of small X-ray brightenings(microflares), many of them with maximum intensities well below the GOES or RHESSI sensitivity thresholds. Hundreds of such small flare-like events have been observed in the period between March and November 2009 with energy resolution better than 0.5 keV. The spectra have been measured in the energy range extending above 1 keV. In this study we investigate the time variability of basic plasma parameters: temperature T and emission measure EM for a number of these weak flare-like events and discuss respective evolutionary patterns on the EM-T diagnostic diagrams. For some of these events, unusual behavior is observed, different from this characteristic for a "normal" flares of higher maximum intensities. Physical scenarios providing possible explanation of such unusual evolutionary patterns will be discussed.
Enhancement of fine-scale mixing for fuel-rich plume combustion
NASA Astrophysics Data System (ADS)
Schadow, K. C.; Gutmark, E.; Parr, T. P.; Parr, D. M.; Wilson, K. J.; Ferrell, G. B.
1987-01-01
The effect of enhancing small-scale turbulent structures on the combustion intensity and flame stability was studied in nonreacting and reacting flows. Hot-wire anemometry was used to map the mean and turbulent flow fields of the nonreacting flows. Reacting flows were studied in a free flame and in a ducted gas-generator fuel-rich plume using Planar Laser Induced Fluorescence, a rake of thermocouples and high speed photography. A modified circular nozzle having several backward facing steps upstream of its exit was used to introduce numerous inflection points in the initial mean velocity profiles, thus producing multiple corresponding sources of small-scale turbulence generators. Cold flow tests showed turbulence increases of up to six times the initial turbulence level relative to a circular nozzle. The ensuing result was that the flame of this nozzle was more intense with a homogeneous heat release. The fuel-rich plume was stable even in supersonic speeds, and secondary ignition was obtained under conditions that prevented sustained afterburning using the circular nozzle.
Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang
2013-01-01
Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm(2) order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials.
Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang
2013-01-01
Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm2 order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials. PMID:23903825
Shin, E J; Seong, B S; Choi, Y; Lee, J K
2011-01-01
Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.
Effectiveness of an intensive multidisciplinary headache treatment program.
Gunreben-Stempfle, Birgit; Griessinger, Norbert; Lang, Eberhard; Muehlhans, Barbara; Sittl, Reinhard; Ulrich, Kathrin
2009-07-01
To investigate if the effectiveness of a 96-hour multidisciplinary headache treatment program exceeds the effectiveness of a 20-hour program and primary care. When dealing with chronic back pain, low-intensity multidisciplinary treatment yields no significantly better results than standard care and monodisciplinary therapy; however, high-intensity treatment does. For multidisciplinary headache treatment, such comparisons are not yet available. In a previous study undertaken by our Pain Center, the outcome of a minimal multidisciplinary intervention model (20-hour) did not exceed primary care. Forty-two patients suffering from frequent headaches (20 +/- 9 headache days/month; range: 8-30) were treated and evaluated in a 96-hour group program. The results were compared with the outcomes of the previous study. Subjects who had undergone either the 20-hour multidisciplinary program or the primary care were used as historical control groups. A significant reduction in migraine days (P < .001), tension-type headache days (P < .001), frequency of migraine attacks (P = .004), and depression score (P < .001) was seen at the follow-up after 22 (+/-2) weeks. Comparing the intensive multidisciplinary program with primary care, repeated measures ANOVAs revealed significant time x group interactions for migraine days (P = .020), tension-type headache days (P = .016), and frequency of migraine attacks (P = .016). In comparison with the 20-hour multidisciplinary program, the 96-hour program showed significantly better effects only in the reduction of migraine days (P = .037) and depression score (P = .003). The responder-rates (> or =50% improvement) in the 96-hour program were significantly higher than in the 20-hour program (migraine days, P = .008; tension-type headache days, P = .044) and primary care (migraine days, P = .007; tension-type headache days, P = .003; tension-type headache intensity, P = .037). The effect sizes were small to medium in the 96-hour program. Particularly with the reduction of migraine symptomatology, the 96-hour program performed better than the 20-hour program, which produced only negligible or small effects. Intensive multidisciplinary headache treatment is highly effective for patients with chronic headaches. Furthermore, migraine symptomatology responds especially well to this intensive treatment program, whereas effects on tension-type headaches were realized by both multidisciplinary programs. Randomized controlled trials and subgroup analysis are needed to find out if these results can be replicated and which patient characteristics allow for sufficient improvements for headache sufferers even with less complex treatment.
Verification of intensity modulated profiles using a pixel segmented liquid-filled linear array.
Pardo, J; Roselló, J V; Sánchez-Doblado, F; Gómez, F
2006-06-07
A liquid isooctane (C8H18) filled ionization chamber linear array developed for radiotherapy quality assurance, consisting of 128 pixels (each of them with a 1.7 mm pitch), has been used to acquire profiles of several intensity modulated fields. The results were compared with film measurements using the gamma test. The comparisons show a very good matching, even in high gradient dose regions. The volume-averaging effect of the pixels is negligible and the spatial resolution is enough to verify these regions. However, some mismatches between the detectors have been found in regions where low-energy scattered photons significantly contribute to the total dose. These differences are not very important (in fact, the measurements of both detectors are in agreement using the gamma test with tolerances of 3% and 3 mm in most of those regions), and may be associated with the film energy dependence. In addition, the linear array repeatability (0.27% one standard deviation) is much better than the film one ( approximately 3%). The good repeatability, small pixel size and high spatial resolution make the detector ideal for the real time profile verification of high gradient beam profiles like those present in intensity modulated radiation therapy and radiosurgery.
Swann, Don E.; Bucci, Melanie; Kuenzi, Amy J.; Alberti, Barbara N.; Schwalbe, Cecil R.; Halvorson, William L.; van Riper, Charles; Schwalbe, Cecil R.
2010-01-01
Long-term monitoring in national parks is essential to meet National Park Service and other important public goals. Terrestrial mammals are often proposed for monitoring because large mammals are of interest to visitors and small mammals are important as prey. However, traditional monitoring strategies for mammals are often too expensive and complex to sustain for long periods, particularly in small parks. To evaluate potential strategies for long-term monitoring in small parks, we conducted an intensive one-year inventory of terrestrial mammals at Coronado National Memorial, located in Arizona on the U.S.-Mexico international border, then continued less-intensive monitoring at the site for 7 additional years. During 1996-2003 we confirmed 44 species of terrestrial mammals. Most species (40) were detected in the intensive first year of the study, but we continued to detect new species in later years. Mark-recapture data on small mammals indicated large inter-annual fluctuations in population size, but no significant trend over the 7-year period. Issues associated with the international border affected monitoring efforts and increased sampling costs. Our study confirms that sustained annual monitoring of mammals is probably not feasible in small park units like Coronado. However, comparisons of our data with past studies provide insight into important changes in the mammal community since the 1970s, including an increase in abundance and diversity of grassland rodents. Our results suggest that intensive inventories every 10-20 years may be a valuable and cost-effective approach for detecting long-term trends in terrestrial mammal communities in small natural areas.
Wang, Xiaolong; Zhao, Wei; Li, Lin; You, Jian; Ni, Biao
2018-01-01
Four small oval populations and five large intensive populations of Rhododendron aureum growing at the alpine in Changbai Mountain (China) were studied in two types of habitat (in the tundra and in Betula ermanii forest). Identification and delimitation of genets were inferred from excavation in small populations and from amplified fragment length polymorphism (AFLP) markers by the standardized sampling design in large populations. Clonal architecture and clonal diversity were then estimated. For the four small populations, they were monoclonal, the spacer length (18.6 ± 5.6 in tundra, 29.7 ± 9.7 in Betula ermanii forest, P < 0.05) was shorter and branching intensity (136.7 ± 32.9 in tundra, 43.4 ± 12.3 in Betula ermanii forest, P < 0.05) was higher in the tundra than that in Betula ermanii forest. For the five large populations, they were composed of multiple genets with high level of clonal diversity (Simpson’s index D = 0.84, clonal richness R = 0.25, Fager's evenness E = 0.85); the spatial distribution of genets showed that the clonal growth strategy of R. aureum exhibits both guerilla and phalanx. Our results indicate that the clonal plasticity of R. aureum could enhance exploitation of resource heterogeneity and in turn greatly contribute to maintenance or improvement of fitness and the high clonal diversity of R. aureum increase the evolutionary rates to adapt the harsh alpine environment in Changbai Mountain. PMID:29746526
Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior.
Huang, Y Y; Beal, C M; Cai, W W; Ruoff, R S; Terentjev, E M
2010-04-01
Preliminary feasibility studies were performed using Stokes Raman scattering for compositional analysis of algae. Two algal species, Chlorella sorokiniana (UTEX #1230) and Neochloris oleoabundans (UTEX #1185), were chosen for this study. Both species were considered to be candidates for biofuel production. Raman signals due to storage lipids (specifically triglycerides) were clearly identified in the nitrogen-starved C. sorokiniana and N. oleoabundans, but not in their healthy counterparts. On the other hand, signals resulting from the carotenoids were found to be present in all of the samples. Composition mapping was conducted in which Raman spectra were acquired from a dense sequence of locations over a small region of interest. The spectra obtained for the mapping images were filtered for the wavelengths of characteristic peaks that correspond to components of interest (i.e., triglyceride or carotenoid). The locations of the components of interest could be identified by the high intensity areas in the composition maps. Finally, the time evolution of fluorescence background was observed while acquiring Raman signals from the algae. The time dependence of fluorescence background is characterized by a general power law decay interrupted by sudden high intensity fluorescence events. The decreasing trend is likely a result of photo-bleaching of cell pigments due to prolonged intense laser exposure, while the sudden high intensity fluorescence events are not understood. (c) 2009 Wiley Periodicals, Inc.
Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation
NASA Astrophysics Data System (ADS)
van den Berg, Lodewijk; Proctor, Alan E.; Pohl, Ken R.; Bolozdynya, Alex; De Vito, Raymond
2002-10-01
The design of instrumentation for remote sensing presents special requirements in the areas of power consumption, long-term stability, and compactness. At the same time, the high sensitivity and resolution of the devices needs to be preserved. This paper will describe several instruments suitable for remote sensing developed under the sponsorship of the Defense Threat Reduction Agency (DTRA). The first is a system consisting of a mechanical cryocooler coupled with a high-purity germanium (HPGe) detector. The system is portable and can be operated for extended periods of time at remote locations without servicing. The second is a hand-held radiation intensity meter with high sensitivity that can operate for several months on two small batteries. Intensity signals above a set limit can be transmitted to a central monitoring station by cable or radio transmission. The third is a small module incorporating one or more high resolution mercuric iodide detectors and front end electronics. This unit can be operated using standard electronic systems, or it can be connected to a separately designed, pocket-size module that can provide power to any detector system and can process detector signals. It incorporates a shaping amplifier, a multichannel analyzer, and gated integrator electronics to process the slow signal pulses generated by room temperature solid state detectors. The fourth is a high pressure xenon (HPXe) ionization chamber filled with very pure xenon gas at high pressure, so that the efficiency and spectral resolution are increased above the normally available gas-filled tubes. The performance of these systems will be described and discussed.
Intensive sex partying amongst gay men in Sydney.
Hurley, Michael; Prestage, Garrett
2009-08-01
Intensive sex partying is a framework developed to analyse specific frequent behaviours amongst a small minority of gay men in Sydney, Australia. The behaviours included a higher frequency of dance party attendance, more frequent sex, more anal sex, multiple sex partners, more unprotected anal intercourse with casual partners and more frequent drug taking. These occur at a contextual intersection between a sub-group of sexually adventurous gay men and 'party boys'. The men appear to be involved in both high-risk, adventurous sex practices and a specific form of partying distinguishable from dance partying and 'clubbing'. Sex partying occurs on multiple sites (domestic spaces; within dance parties; sex parties; sex-on-premises venues) and appears to be geared to the maximisation of sexual pleasure. Intensive sex partying describes this coincidence of factors and locates them in relation to the multiple pleasures offered by sex partying. It emphasises the importance of 'intensity' in order to understand better the relations between sex, drug use, pleasure, care and risk in some gay men's lives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: mortezahabibi@aut.ac.ir; Sharifi, R.; Amrollahi, R.
2013-12-15
The variation of the X-ray intensity has been investigated with the Pyrex and quartz insulators surface contamination in a 4-kJ plasma focus device with argon gas at 11.5-kV charging voltage. Elemental analysis (EDAX) showed that the Cu evaporated from the electrode material and was deposited on the sleeve surface improves the breakdown conditions. A small level of sleeve contamination by copper is found to be essential for good focusing action and high HXR intensity. The SEM imaging showed the grain-type structure of Cu formed on the surface and it changed the surface property. Resistance measurements of original and coated Pyrexmore » surface proved that the copper deposition on the sleeve surface will reduce its resistance as compared to the almost infinitely large resistance of the uncontaminated sleeve. As the contamination is surpassed to some critical level, the HXR intensity from the device is deteriorated.« less
Design of High Quality Chemical XOR Gates with Noise Reduction.
Wood, Mackenna L; Domanskyi, Sergii; Privman, Vladimir
2017-07-05
We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solar Energetic Particle Spectra
NASA Astrophysics Data System (ADS)
Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.
2017-12-01
We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliaga, José I., E-mail: aliaga@uji.es; Alonso, Pedro; Badía, José M.
We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousandsmore » degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.« less
Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry
NASA Astrophysics Data System (ADS)
Chaimayo, Wanaruk; Miller, Benjamin L.
2014-03-01
Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.
Quan, Li Na; Zhao, Yongbiao; García de Arquer, F Pelayo; Sabatini, Randy; Walters, Grant; Voznyy, Oleksandr; Comin, Riccardo; Li, Yiying; Fan, James Z; Tan, Hairen; Pan, Jun; Yuan, Mingjian; Bakr, Osman M; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H
2017-06-14
Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm 2 , yielding a ratio of quantum yield to excitation intensity of 0.3 cm 2 /mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m 2 .
Howard L. Gary
1975-01-01
The east flank of the Continental Divide consists largely of open timber stands and grasslands. Soils erode easily after abuse. Precipitation ranges from 15 to 20 inches, about two-thirds from high-intensity storms from April to September. Guidelines are provided for maintaining satisfactorv watershed conditions. The 3- to 5-inch water yields are comparatively small in...
Polarized internal target apparatus
Holt, R.J.
1984-10-10
A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.
Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin
2015-03-24
A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.
Small white matter lesion detection in cerebral small vessel disease
NASA Astrophysics Data System (ADS)
Ghafoorian, Mohsen; Karssemeijer, Nico; van Uden, Inge; de Leeuw, Frank E.; Heskes, Tom; Marchiori, Elena; Platel, Bram
2015-03-01
Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including multiple sclerosis, Alzheimer's disease and vascular dementia. Volumetric measurements such as the "total lesion load", have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions they need to be annotated, which is a complex and time-consuming task. Existing (semi) automatic methods have been aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions. In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features for accurate location description, a number of second order derivative features as well as multi-scale annular filter for blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.
Multiplexed high resolution soft x-ray RIXS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Y.-D.; Voronov, D.; Warwick, T.
2016-07-27
High-resolution Resonance Inelastic X-ray Scattering (RIXS) is a technique that allows us to probe the electronic excitations of complex materials with unprecedented precision. However, the RIXS process has a low cross section, compounded by the fact that the optical spectrometers used to analyze the scattered photons can only collect a small solid angle and overall have a small efficiency. Here we present a method to significantly increase the throughput of RIXS systems, by energy multiplexing, so that a complete RIXS map of scattered intensity versus photon energy in and photon energy out can be recorded simultaneously{sup 1}. This parallel acquisitionmore » scheme should provide a gain in throughput of over 100.. A system based on this principle, QERLIN, is under construction at the Advanced Light Source (ALS).« less
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe. PMID:26372356
Macreadie, Peter I; York, Paul H; Sherman, Craig DH
2014-01-01
Resilience is the ability of an ecosystem to recover from disturbance without loss of essential function. Seagrass ecosystems are key marine and estuarine habitats that are under threat from a variety of natural and anthropogenic disturbances. The ability of these ecosystems to recovery from disturbance will to a large extent depend on the internsity and scale of the disturbance, and the relative importance of sexual versus asexual reproduction within populations. Here, we investigated the resilience of Zostera muelleri seagrass (Syn. Zostera capricorni) to small-scale disturbances at four locations in Lake Macquarie – Australia's largest coastal lake – and monitored recovery over a 65-week period. Resilience of Z. muelleri varied significantly with disturbance intensity; Z. muelleri recovered rapidly (within 2 weeks) from low-intensity disturbance (shoot loss), and rates of recovery appeared related to initial shoot length. Recovery via rhizome encroachment (asexual regeneration) from high-intensity disturbance (loss of entire plant) varied among locations, ranging from 18-35 weeks, whereas the ability to recover was apparently lost (at least within the time frame of this study) when recovery depended on sexual regeneration, suggesting that seeds do not provide a mechanism of recovery against intense small-scale disturbances. The lack of sexual recruits into disturbed sites is surprising as our initial surveys of genotypic diversity (using nine polymorphic microsatellite loci) at these location indicate that populations are maintained by a mix of sexual and asexual reproduction (genotypic diversity [R] varied from 0.24 to 0.44), and populations consisted of a mosaic of genotypes with on average 3.6 unique multilocus genotypes per 300 mm diameter plot. We therefore conclude that Z. muelleri populations within Lake Macquarie rely on clonal growth to recover from small-scale disturbances and that ongoing sexual recruitment by seeds into established seagrass beds (as opposed to bare areas arising from disturbance) must be the mechanism responsible for maintaining the observed mixed genetic composition of Z. muelleri seagrass meadows. PMID:24634729
Caribbean small-island tourism styles and sustainable strategies
NASA Astrophysics Data System (ADS)
de Albuquerque, Klaus; McElroy, Jerome L.
1992-09-01
This article focuses on developing a sustainable tourism in small Caribbean islands, defined here as those that have populations of fewer than 500,000. Such islands share a very fragile ecology and a high dependence on tourism. They differ in their degree of tourist penetration and visitor density and the related degree of environmental degradation. To explain the link between tourism intensity and ecological vulnerability, the so-called “destination life-cycle model” is presented. This suggests that islands pass through three primary stages of tourist development low-density exploration, rapid growth and consolidation, and high-density maturation involving the substitution of man-made for natural attractions. A broad empirical test of the model is performed through a quantitative examination of the tourism characteristics and visitor densities of a cross section of 23 small Caribbean islands. The three basic stages or tourism styles are identified: low-impact emerging areas, high-density mass-market mature destinations, and rapidly growing intermediate islands in between. Some broad strategies consistent with the systems framework for a sustainable tourism with moderate densitites are briefly explored.
Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu
2012-11-19
Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.
Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A
2013-01-01
Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.
Is Survival Better at Hospitals With Higher “End-of-Life” Treatment Intensity?
Barnato, Amber E.; Chang, Chung-Chou H.; Farrell, Max H.; Lave, Judith R.; Roberts, Mark S.; Angus, Derek C.
2013-01-01
Background Concern regarding wide variations in spending and intensive care unit use for patients at the end of life hinges on the assumption that such treatment offers little or no survival benefit. Objective To explore the relationship between hospital “end-of-life” (EOL) treatment intensity and postadmission survival. Research Design Retrospective cohort analysis of Pennsylvania Health Care Cost Containment Council discharge data April 2001 to March 2005 linked to vital statistics data through September 2005 using hospital-level correlation, admission-level marginal structural logistic regression, and pooled logistic regression to approximate a Cox survival model. Subjects A total of 1,021,909 patients ≥65 years old, incurring 2,216,815 admissions in 169 Pennsylvania acute care hospitals. Measures EOL treatment intensity (a summed index of standardized intensive care unit and life-sustaining treatment use among patients with a high predicted probability of dying [PPD] at admission) and 30- and 180-day postadmission mortality. Results There was a nonlinear negative relationship between hospital EOL treatment intensity and 30-day mortality among all admissions, although patients with higher PPD derived the greatest benefit. Compared with admission at an average intensity hospital, admission to a hospital 1 standard deviation below versus 1 standard deviation above average intensity resulted in an adjusted odds ratio of mortality for admissions at low PPD of 1.06 (1.04–1.08) versus 0.97 (0.96–0.99); average PPD: 1.06 (1.04–1.09) versus 0.97 (0.96–0.99); and high PPD: 1.09 (1.07–1.11) versus 0.97 (0.95– 0.99), respectively. By 180 days, the benefits to intensity attenuated (low PPD: 1.03 [1.01–1.04] vs. 1.00 [0.98–1.01]; average PPD: 1.03 [1.02–1.05] vs. 1.00 [0.98–1.01]; and high PPD: 1.06 [1.04–1.09] vs. 1.00 [0.98–1.02]), respectively. Conclusions Admission to higher EOL treatment intensity hospitals is associated with small gains in postadmission survival. The marginal returns to intensity diminish for admission to hospitals above average EOL treatment intensity and wane with time. PMID:20057328
Sasu, Alciona; Herman, Hildegard; Mariasiu, Teodora; Rosu, Marcel; Balta, Cornel; Anghel, Nicoleta; Miutescu, Eftimie; Cotoraci, Coralia; Hermenean, Anca
2015-10-01
Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the protective effects of silymarin on epirubicin-induced mucosal barrier injury in CD-1 mice. Immunohistochemical activity of both pro-apoptotic Bax and anti-apoptotic Bcl-2 markers, together with p53, cyt-P450 expression and DNA damage analysis on stomach, small intestine and colon were evaluated. Our results indicated stronger expression for cyt P450 in all analyzed gastrointestinal tissues of Epi group, which demonstrate intense drug detoxification. Bax immunopositivity was intense in the absorptive enterocytes and lamina connective cells of the small intestine, surface epithelial cells of the stomach and also in the colonic epithelium and lamina concomitant with a decreased Bcl-2 expression in all analyzed tissues. Epirubicin-induced gastrointestinal damage was verified by a goblet cell count and morphology analysis on histopathological sections stained for mucins. In all analyzed tissues, Bax immunopositivity has been withdrawn by highest dose of silymarin concomitant with reversal of Bcl-2 intensity at a level comparable with control. p53 expression was found in all analyzed tissues and decreased by high dose of silymarin. Also, DNA internucleosomal fragmentation was observed in the Epi groups for all analyzed tissues was almost suppressed at 100 mg/kg Sy co-treatment. Histological aspect and goblet cell count were restored at a highest dose of Sy for both small and large intestine. In conclusion, our findings suggest that silymarin may prevent cellular damage of epirubicin-induced toxicity and was effective in reducing the severity indicators of gastrointestinal mucositis in mice.
Flood of September 12-13, 1982 in Gibson, Carroll, and Madison Counties, western Tennessee
Robbins, Clarence H.; Gamble, Charles R.; Bingham, Roy H.
1986-01-01
Intense rainfall on September 12-13, 1982, caused severe local flooding along many streams in Gibson County in western Tennessee. The rainfall resulted from remnants of Hurricane Chris combining with a cool front moving across the western half of the State. A maximum 1-hr rainfall intensity of 3.3 in was recorded at Humboldt. Peak discharge exceeded the 100-yr flood on many small streams. The floods caused three deaths and about 15.3 million dollars damage to crops, roads and bridges, businesses, and residential areas. Long-time residents of Gibson County reported that stream stages have not been as high since at least 1922. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.
2009-04-10
A random noise-induced beam degradation that can affect intense beam transport over long propagation distances has been experimentally studied by making use of the transverse beam dynamics equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. For the present studies, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions, and increases the transverse emittance almost linearly with the duration of themore » noise.« less
OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R. B.; Taylor, B. D.; Einaudi, G.
The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scalesmore » that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastami, Tahereh Rohani; Entezari, Mohammad H., E-mail: moh_entezari@yahoo.com
2013-09-01
Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM).more » The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.« less
Distinguishing between debris flows and floods from field evidence in small watersheds
Pierson, Thomas C.
2005-01-01
Post-flood indirect measurement techniques to back-calculate flood magnitude are not valid for debris flows, which commonly occur in small steep watersheds during intense rainstorms. This is because debris flows can move much faster than floods in steep channel reaches and much slower than floods in low-gradient reaches. In addition, debris-flow deposition may drastically alter channel geometry in reaches where slope-area surveys are applied. Because high-discharge flows are seldom witnessed and automated samplers are commonly plugged or destroyed, determination of flow type often must be made on the basis of field evidence preserved at the site.
NASA Astrophysics Data System (ADS)
Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Markkanen, J.; Martikainen, J.; Väisänen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.
2017-09-01
We present the results obtained with our newly developed 3D scatterometer - a setup for precise multi-angular measurements of light scattered by mm- to µm-sized samples held in place by sound. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques. We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples which facilitates research on highly valuable planetary materials, such as samples returned from space missions or rare meteorites.
Morariu, Sorin; Mederle, Narcisa; Badea, Corina; Dărăbuş, Gheorghe; Ferrari, Nicola; Genchi, Claudio
2016-06-15
Forty seven working horses from Romania were post-mortem examined for small strongyles (Cyathostominae) infections. All horses were found infected. The overall cyathostomins intensity ranged from 390 to 13,010 and horses were infected by 8-24 species. The intensity was higher in ventral colon (1531) and dorsal colon (824), the lowest in the caecum (524). Twenty four species were identified. Cyathostomum catinatum, Cylicocyclus insigne, and C. Nassatus had 100% of prevalence. Over 50% of horses were infected by Coronocyclus coronatus, Cylicostephanus calicatus, C. goldi, and C. longibursatus. Other prevalent species (34%-45%) were Cyathostomum tetracanthum, Cylicostephanus minutus and Gyalocephalus capitatus. Coronocyclus labiatus, Parapoteriostomum mettami, Poteriostomum imparidentatum and P. ratzii had the lowest prevalence. Most species showed high organ preference with a niche breadth value between 1 and 1.96 while only 7 species (Coronocyclus labiatus, Cyathostomum tetracanthum, C. brevicapsulatus, Cylicocyclus elongatus, C. insigne, C. leptostomum and C. radiatus) showed a more generalist selection. The niche breadth of 10 species was significantly (p<0.05) influenced by itself intensity (Coronocyclus labratus, Cyathostomum pateratum, C. tetracanthum, Cylicocyclus elongatus, C. radiatus, C. ultrajectinus, C. leptostomum, Cylicodontophorus euproctus, Poteriostomum imparidentatum, P. ratzii). The niche breadth of Cylicocyclus nassatus was positively (p<0.05) influenced by the summed intensity of the other species while that of Cylicocyclus elongatus was negatively (p<0.05) influenced by the intensity of the other species. The cluster analysis of the Cyathostominae community composition showed a major cluster composed by the three dominant species, followed by a cluster composed by Coronocyclus coronatus, while all the other species presented a tree like structure. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Heinemann, K.
1985-01-01
The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.
A large array of high-performance artificial stars using airship-supported small mirrors
NASA Astrophysics Data System (ADS)
Content, Robert; Foxwell, Mark; Murray, Graham J.
2004-10-01
We propose a practical system that can provide a large number of high performance artificial stars, of the order of a few hundred, using an array of small mirrors on an airship supported platform illuminated from the ground by a laser. Our concept offers several advantages over other guide star schemes: Airborne mirror arrays can furnish tip-tilt information; they also permit a considerable reduction in the total ground-laser power required; high intensity guide stars with very small angular image size are possible; and finally they offer very low scattered parasite laser light. More basic & simpler launch-laser & AO technologies can therefore be employed, with potentially huge cost savings, with potentially significant improvement in the quality of the AO correction. The general platform scheme and suitable lift technologies are also discussed. A novel concept for achieving precise positioning is presented whereby the platform & the lifting vehicle are linked by a tether, the platform having a degree of independent control. Our proposal would employ as the lift vehicle an autonomous high altitude airship of the type currently under widespread development in the commercial sector, for use as hubs for telecommunication networks, mobile telephone relay stations, etc.
Homogeneous Aerosol Freezing in the Tops of High-Altitude Tropical Cumulonimbus Clouds
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Ackerman, A. S.
2006-01-01
Numerical simulations of deep, intense continental tropical convection indicate that when the cloud tops extend more than a few kilometers above the liquid water homogeneous freezing level, ice nucleation due to freezing of entrained aqueous sulfate aerosols generates large concentrations of small crystals (diameters less than approx. equal to 20 micrometers). The small crystals produced by aerosol freezing have the largest impact on cloud-top ice concentration for convective clouds with strong updrafts but relatively low aerosol concentrations. An implication of this result is that cloud-top ice concentrations in high anvil cirrus can be controlled primarily by updraft speeds in the tops of convective plumes and to a lesser extent by aerosol concentrations in the uppermost troposphere. While larger crystals precipitate out and sublimate in subsaturated air below, the population of small crystals can persist in the saturated uppermost troposphere for many hours, thereby prolonging the lifetime of remnants from anvil cirrus in the tropical tropopause layer.
A self-trained classification technique for producing 30 m percent-water maps from Landsat data
Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei
2010-01-01
Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.
Family Portrait of Pluto Moons
2015-10-23
This composite image shows a sliver of Pluto large moon, Charon, and all four of Pluto small moons, as resolved by the Long Range Reconnaissance Imager (LORRI) on the New Horizons spacecraft. All the moons are displayed with a common intensity stretch and spatial scale (see scale bar). Charon is by far the largest of Pluto's moons, with a diameter of 751 miles (1,212 kilometers). Nix and Hydra have comparable sizes, approximately 25 miles (40 kilometers) across in their longest dimension above. Kerberos and Styx are much smaller and have comparable sizes, roughly 6-7 miles (10-12 kilometers) across in their longest dimension. All four small moons have highly elongated shapes, a characteristic thought to be typical of small bodies in the Kuiper Belt. http://photojournal.jpl.nasa.gov/catalog/PIA20033
NASA Astrophysics Data System (ADS)
Sidle, Roy C.; Ziegler, Alan D.
2017-01-01
The interception and smoothing effect of forest canopies on pulses of incident rainfall and its delivery to the soil has been suggested as a factor in moderating peak pore water pressure in soil mantles, thus reducing the risk of shallow landslides. Here we provide 3 years of rainfall and throughfall data in a tropical secondary dipterocarp forest characterized by few large trees in northern Thailand, along with selected soil moisture dynamics, to address this issue. Throughfall was an estimated 88 % of rainfall, varying from 86 to 90 % in individual years. Data from 167 events demonstrate that canopy interception was only weakly associated (via a nonlinear relationship) with total event rainfall, but not significantly correlated with duration, mean intensity, or antecedent 2-day precipitation (API2). Mean interception during small events (≤ 35 mm) was 17 % (n = 135 events) compared with only 7 % for large events (> 35 mm; n = 32). Examining small temporal intervals within the largest and highest intensity events that would potentially trigger landslides revealed complex patterns of interception. The tropical forest canopy had little smoothing effect on incident rainfall during the largest events. During events with high peak intensities, high wind speeds, and/or moderate-to-high pre-event wetting, measured throughfall was occasionally higher than rainfall during large event peaks, demonstrating limited buffering. However, in events with little wetting and low-to-moderate wind speed, early event rainfall peaks were buffered by the canopy. As rainfall continued during most large events, there was little difference between rainfall and throughfall depths. A comparison of both rainfall and throughfall depths to conservative mean intensity-duration thresholds for landslide initiation revealed that throughfall exceeded the threshold in 75 % of the events in which rainfall exceeded the threshold for both wet and dry conditions. Throughfall intensity for the 11 largest events (rainfall = 65-116 mm) plotted near or above the intensity-duration threshold for landslide initiation during wet conditions; 5 of the events were near or above the threshold for dry conditions. Soil moisture responses during large events were heavily and progressively buffered at depths of 1 to 2 m, indicating that the timescale of any short-term smoothing of peak rainfall inputs (i.e., ≤ 1 h) has little influence on peak pore water pressure at depths where landslides would initiate in this area. Given these findings, we conclude that canopy interception would have little effect on mitigating shallow landslide initiation during the types of monsoon rainfall conditions in this and similar tropical secondary forest sites.
Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods
NASA Astrophysics Data System (ADS)
Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming
2016-11-01
For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.
Two Exceptions in the Large SEP Events of Solar Cycles 23 and 24
NASA Technical Reports Server (NTRS)
Thakur, N.; Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.
2016-01-01
We discuss our findings from a survey of all large solar energetic particle (SEP) events of Solar Cycles 23 and 24, i.e. the SEP events where the intensity of greater than 10 megaelectronvolts protons observed by GOES (Geostationary Operational Environmental Satellite) was greater than 10 proton flux units. In our previous work (Gopalswamy et al. in Geophys.Res.Lett. 41, 2673, 2014) we suggested that ground level enhancements (GLEs) in Cycles 23 and 24 also produce an intensity increase in the GOES greater than 700 megaelectronvolts proton channel. Our survey, now extended to include all large SEP events of Cycle 23, confirms this to be true for all but two events: i) the GLE of 6 May 1998 (GLE57) for which GOES did not observe enhancement in greater than 700 megaelectronvolts protons intensities and ii) a high-energy SEP event of 8 November 2000, for which GOES observed greater than 700 megaelectronvolts protons but no GLE was recorded. Here we discuss these two exceptions. We compare GLE57 with other small GLEs, and the 8 November 2000 SEP event with those that showed similar intensity increases in the GOES greater than 700 megaelectronvolts protons but produced GLEs. We find that, because GOES greater than 700 megaelectronvolts proton intensity enhancements are typically small for small GLEs, they are difficult to discern near solar minima due to higher background. Our results also support that GLEs are generally observed when shocks of the associated coronal mass ejections (CMEs) form at heights 1.2-1.93 solar radii [R (sub solar)] and when the solar particle release occurs between 2-6 solar radii [R (sub solar)]. Our secondary findings support the view that the nose region of the CME-shock may be accelerating the first-arriving GLE particles and the observation of a GLE is also dependent on the latitudinal connectivity of the observer to the CME-shock nose. We conclude that the GOES greater than 700 megaelectronvolts proton channel can be used as an indicator of GLEs excluding some rare exceptions, such as those discussed here.
Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.
Lin, Po-Cheng; I, Lin
2016-02-01
We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, D.; Kintzer, F.C.
1977-11-01
The correlation between ground motion and building damage was investigated for the San Fernando earthquake of 1971. A series of iso-intensity maps was compiled to summarize the ground motion in terms of the Blume Engineering Intensity Scale (EIS). This involved the analysis of ground motion records from 62 stations in the Los Angeles area. Damage information for low-rise buildings was obtained in the form of records of loans granted by the Small Business Administration to repair earthquake damage. High-rise damage evaluations were based on direct inquiry and building inspection. Damage factors (ratio of damage repair cost to building value) weremore » calculated and summarized on contour maps. A statistical study was then undertaken to determine relationships between ground motion and damage factor. Several parameters for ground motion were considered and evaluated by means of correlation coefficients.« less
Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding
NASA Astrophysics Data System (ADS)
Lin, Po-Cheng; I, Lin
2016-02-01
We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.
Flying Focus: Spatiotemporal Control of the Laser Beam Intensity
NASA Astrophysics Data System (ADS)
Froula, D. H.; Turnbull, D.; Kessler, T. J.; Haberberger, D.; Bahk, S.-W.; Begishev, I. A.; Boni, R.; Bucht, S.; Davies, A.; Katz, J.; Sefkow, A. B.; Shaw, J. L.
2017-10-01
A ``flying focus'' is presented: this advanced focusing scheme provides unprecedented spatiotemporal control over the laser focal volume. A chromatic focusing system combined with chirped laser pulses enabled the speed of a small-diameter laser focus to propagate over nearly 100 × its Rayleigh length. Furthermore, the flying focus decouples the speed at which the peak intensity propagates from the group velocity of the laser pulse, allowing the laser focus to co- or counter-propagate along its axis at any velocity. Experiments have demonstrated a nearly constant intensity over 4.5 mm while the velocity of the focus ranged from subluminal (0.01 c) to superluminal (15 c) . These properties could provide the opportunity to overcome current fundamental limitations in laser-plasma amplifiers, laser-wakefield accelerators, photon accelerators, ion accelerators, and high-order frequency conversion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Li, Yan-Long; Ma, Jun; Zhang, Wei; Liu, Yan-Jun
2009-10-01
This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.
Zhang, Weidong; Li, Guoping; Xu, Letian; Zhuo, Yue; Wan, Wenming; Yan, Ni; He, Gang
2018-05-21
The introduction of main group elements into conjugated scaffolds is emerging as a key route to novel optoelectronic materials. Herein, an efficient and versatile way to synthesize polymerizable 9,10-azaboraphenanthrene ( BNP )-containing monomers by aromaticity-driven ring expansion reactions between highly antiaromatic borafluorene and azides is reported, and the corresponding conjugated small molecules and polymers are developed as well. The BNP -containing small molecules and conjugated polymers showed good air/moisture stability and notable fluorescence properties. Addition of fluoride ions to the BNP -based small molecules and polymers induced a rapid change in the emission color from blue to green/yellow, respectively, accompanied by strong intensity changes. The conjugated polymers showed better ratiometric sensing performance than small molecules due to the exciton migration along the conjugated chains. Further experiments showed that the sensing process is fully reversible. The films prepared by solution-deposition of BNP -based compounds in the presence of polycaprolactone also showed good ratiometric sensing for fluoride ions.
Blood flow regulation and oxygen uptake during high-intensity forearm exercise.
Nyberg, S K; Berg, O K; Helgerud, J; Wang, E
2017-04-01
The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite utilizing only a fraction of cardiac output, blood flow reached a plateau at 80% of maximal work rate and regulated peak oxygen uptake. Furthermore, the results revealed that muscle contractions dictated bulk oxygen delivery and yielded three times higher peak blood flow in the relaxation phase compared with mean values. Copyright © 2017 the American Physiological Society.
The Lixiscope: a Pocket-size X-ray Imaging System
NASA Technical Reports Server (NTRS)
Yin, L. I.; Seltzer, S. M.
1978-01-01
A Low Intensity X ray Imaging device with the acronym LIXISCOPE is described. The Lixiscope has a small format and is powered only by a 2.7V battery. The high inherent gain of the Lixiscope permits the use of radioactive sources in lieu of X-ray machines in some fluoroscopic applications. In this mode of operation the complete X ray imaging system is truly portable and pocket-sized.
Evaluation of nuclear-reactor-produced iodine-123
NASA Technical Reports Server (NTRS)
Blue, J. W.; Sodd, V. J.
1976-01-01
Iodine-123 has such great potential for nuclear medicine that all possible production methods should be considered. In this report, an experimental study related to I-123 production at a high-intensity fast-flux reactor using the reaction Xe-124(n,2n)Xe-123 is considered. The conclusion is that I-123 could be made in small quantities and the cost would be higher than the cyclotron methods presently used.
Evidence-based advances in transfusion practice in neonatal intensive care units.
Christensen, Robert D; Carroll, Patrick D; Josephson, Cassandra D
2014-01-01
Transfusions to neonates convey both benefits and risks, and evidence is needed to guide wise use. Such evidence is accumulating, but more information is needed to generate sound evidence-based practices. We sought to analyze published information on nine aspects of transfusion practice in neonatal intensive care units. We assigned 'categories of evidence' and 'recommendations' using the format of the United States Preventive Services Task Force of the Agency for Healthcare Research and Quality. The nine practices studied were: (1) delayed clamping or milking of the umbilical cord at preterm delivery - recommended, high/substantial A; (2) drawing the initial blood tests from cord/placental blood from very low birth weight (VLBW, <1,500 g) infants at delivery - recommended, moderate/moderate B; (3) limiting phlebotomy losses of VLBW infants - recommended, moderate/substantial B; (4) selected use of erythropoiesis-stimulating agents to prevent transfusions - recommended, moderate/moderate-moderate/small B, C; (5) using platelet mass, rather than platelet count, in platelet transfusion decisions - recommended, moderate/small C; (6) permitting the platelet count to fall to <20,000/µl in 'stable' neonates before transfusing platelets - recommended, low/small I; (8) permitting the platelet count to fall to <50,000/µl in 'unstable' neonates before transfusing platelets - recommended, moderate/small C, and (9) not performing routine coagulation test screening on every VLBW infant - recommended, moderate/small C. We view these recommendations as dynamic, to be revised as additional evidence becomes available. We predict this list will expand as new studies provide more information to guide best transfusion practices. © 2014 S. Karger AG, Basel.
Cheung, Tan To; Fan, Sheung Tat; Chu, Ferdinand S K; Jenkins, Caroline R; Chok, Kenneth S H; Tsang, Simon H Y; Dai, Wing Chiu; Chan, Albert C Y; Chan, See Ching; Yau, Thomas C C; Poon, Ronnie T P; Lo, Chung Mau
2013-08-01
High-intensity focused ultrasound (HIFU) ablation is a non-invasive treatment for hepatocellular carcinoma (HCC). At present, data on the treatment's long-term outcome are limited. This study analysed the survival outcome of HIFU ablation for HCCs smaller than 3 cm. Forty-seven patients with HCCs smaller than 3 cm received HIFU treatment between October 2006 and September 2010. Fifty-nine patients who received percutaneous radiofrequency ablation (RFA) were selected for comparison. The two groups of patients were compared in terms of pre-operative variables and survival. More patients in the HIFU group patients had Child-Pugh B cirrhosis (34% versus 8.5%; P = 0.001). The 1- and 3-year overall survival rates of patients whose tumours were completely ablated in the HIFU group compared with the RFA group were 97.4% versus 94.6% and 81.2% versus 79.8%, respectively (P = 0.530). The corresponding 1- and 3-year disease-free survival rates were 63.6% versus 62.4% and 25.9% versus 34.1% (P = 0.683). HIFU ablation is a safe and effective method for small HCCs. It can achieve survival outcomes comparable to those of percutaneous RFA and thus serves as a good alternative ablation treatment for patients with cirrhosis. © 2012 International Hepato-Pancreato-Biliary Association.
Whyte, Enda F; Richter, Chris; O'connor, Siobhan; Moran, Kieran A
2018-04-01
We investigated the effects of high intensity, intermittent exercise (HIIP) and anticipation on trunk, pelvic and lower limb biomechanics during a crossover cutting manoeuvre. Twenty-eight male, varsity athletes performed crossover cutting manoeuvres in anticipated and unanticipated conditions pre- and post-HIIP. Kinematic and kinetic variables were captured using a motion analysis system. Statistical parametric mapping (repeated-measures ANOVA) was used to identify differences in biomechanical patterns. Results demonstrated that both unanticipation and fatigue (HIIP) altered the biomechanics of the crossover cutting manoeuvre, whereas no interactions effects were observed. Unanticipation resulted in less trunk and pelvic side flexion in the direction of cut (d = 0.70 - 0.79). This led to increased hip abductor and external rotator moments and increased knee extensor and valgus moments with small effects (d = 0.24-0.42), potentially increasing ACL strain. The HIIP resulted in trivial to small effects only with a decrease in internal knee rotator and extensor moment and decreased knee power absorption (d = 0.35), reducing potential ACL strain. The effect of trunk and hip control exercises in unanticipated conditions on the crossover cutting manoeuvre should be investigated with a view to refining ACL injury prevention programmes.
Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter
2018-02-14
Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).
2018-05-24
Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer
Ramos, Joyce S; Dalleck, Lance C; Ramos, Maximiano V; Borrani, Fabio; Roberts, Llion; Gomersall, Sjaan; Beetham, Kassia S; Dias, Katrin A; Keating, Shelley E; Fassett, Robert G; Sharman, James E; Coombes, Jeff S
2016-10-01
Decreased aortic reservoir function leads to a rise in aortic reservoir pressure that is an independent predictor of cardiovascular events. Although there is evidence that high-intensity interval training (HIIT) would be useful to improve aortic reservoir pressure, the optimal dose of high-intensity exercise to improve aortic reservoir function has yet to be investigated. Therefore, this study compared the effect of different volumes of HIIT and moderate-intensity continuous training (MICT) on aortic reservoir pressure in participants with the metabolic syndrome (MetS). Fifty individuals with MetS were randomized into one of the following 16-week training programs: MICT [n = 17, 30 min at 60-70% peak heart rate (HRpeak), five times/week]; 4 × 4-min high-intensity interval training (4HIIT) (n = 15, 4 × 4 min bouts at 85-95% HRpeak, interspersed with 3 min of active recovery at 50-70% HRpeak, three times/week); and 1 × 4-min high-intensity interval training (1HIIT) (n = 18, 1 × 4 min bout at 85-95% HRpeak, three times/week). Aortic reservoir pressure was calculated from radial applanation tonometry. Although not statistically significant, there was a trend for a small-to-medium group × time interaction effect on aortic reservoir pressure, indicating a positive adaptation following 1HIIT compared with 4HIIT and MICT [F (2,46) = 2.9, P = 0.07, η = 0.06]. This is supported by our within-group analysis wherein only 1HIIT significantly decreased aortic reservoir pressure from pre to postintervention (pre-post: 1HIIT 33 ± 16 to 31 ± 13, P = 0.03; MICT 29 ± 9-28 ± 8, P = 0.78; 4HIIT 28 ± 10-30 ± 9 mmHg, P = 0.10). Three sessions of 4 min of high-intensity exercise per week (12 min/week) was sufficient to improve aortic reservoir pressure, and thus may be a time-efficient exercise modality for reducing cardiovascular risk in individuals with MetS.
New model for high-power electromagnetic field instability in transparent media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruzdev, V.E.; Libenson, M.N.
A model of high-power field instability is developed to describe local abrupt increasing of electromagnetic field intensity in transparent dielectric. Small local enhancement of the field amplitude is initiated by low-absorbing spherical inclusion which size is less than radiation wavelength. Exceeding threshold of optical bistability results in abrupt increasing of field amplitude in the defect that also leads to local increasing of field amplitude in the host material in the vicinity of the inclusion. Bearing in mind nonlinear dependence of refractive index of the host material on light intensity we develop a model to describe spreading of initial defect upmore » to size appropriate for the first resonant field mode to be formed. Increasing of refraction index due to nonlinear light-matter interaction and existence of high-Q eigenmodes of dielectric sphere can both cause positive feedback`s and result in field instability in the medium. Estimates are obtained of the threshold value of incident-field amplitude.« less
High intensity portable fluorescent light
NASA Technical Reports Server (NTRS)
Kendall, F. B.
1972-01-01
Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.
NASA Astrophysics Data System (ADS)
Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji
2013-11-01
The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.
Adjustable long duration high-intensity point light source
NASA Astrophysics Data System (ADS)
Krehl, P.; Hagelweide, J. B.
1981-06-01
A new long duration high-intensity point light source with adjustable light duration and a small light spot locally stable in time has been developed. The principle involved is a stationary high-temperature plasma flow inside a partly constrained capillary of a coaxial spark gap which is viewed end on through a terminating Plexiglas window. The point light spark gap is operated via a resistor by an artificial transmission line. Using two exchangeable inductance sets in the line, two ranges of photoduration 10-130 μs and 100-600 μs can be covered. For a light spot size of 1.5 mm diameter the corresponding peak light output amounts to 5×106 and 1.6×106 candelas, respectively. Within these ranges the duration is controlled by an ignitron crowbar to extinguish the plasma. The adjustable photoduration is very useful for the application of continuous writing rotating mirror cameras, thus preventing multiple exposures. The essentially uniform exposure within the visible spectral range makes the new light source suitable for color cinematography.
Sound produced by an oscillating arc in a high-pressure gas
NASA Astrophysics Data System (ADS)
Popov, Fedor K.; Shneider, Mikhail N.
2017-08-01
We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Little, S. A.; Peacock, C. L., Jr.
1983-01-01
Various configurations of back surface reflector silicon solar cells including small (2 x 2) cm and large (approx. 6 x 6) cm cells with conventional and wraparound contacts were subjected to 1 MeV electron irradiation and characterized under both Earth orbital and deep space conditions of temperatures and illuminations. Current-Voltage (I-V) data were generated from +65 C to -150 C and at incident illuminations from 135.3 mW/sq cm to 5.4 mW/sq cm for these cells. Degradation in cell performance which is manifested only under deep space conditions is emphasized. In addition, the effect of particle irradiation on the high temperature and high intensity and low temperature and low intensity performance of the cells is described. The cells with wraparound contacts were found to have lower efficiencies at Earth orbital conditions than the cells with conventional contacts.
Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons
NASA Astrophysics Data System (ADS)
Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming
2017-09-01
Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.
Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O
2008-05-01
A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.
Motor recovery after stroke: a systematic review.
Langhorne, Peter; Coupar, Fiona; Pollock, Alex
2009-08-01
Loss of functional movement is a common consequence of stroke for which a wide range of interventions has been developed. In this Review, we aimed to provide an overview of the available evidence on interventions for motor recovery after stroke through the evaluation of systematic reviews, supplemented by recent randomised controlled trials. Most trials were small and had some design limitations. Improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Improvements in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Physical fitness training, high-intensity therapy (usually physiotherapy), and repetitive task training improved walking speed. Although the existing evidence is limited by poor trial designs, some treatments do show promise for improving motor recovery, particularly those that have focused on high-intensity and repetitive task-specific practice.
Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model
NASA Astrophysics Data System (ADS)
Jo, Janggun; Yang, Xinmai
2016-11-01
The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.
Han, Qiang; Yu, Xing Xiu; Wang, Wei; Xu, Miao Miao; Ren, Rui; Zhang, Jia Peng
2017-04-18
Taking Hujiashan small watershed as the study area, based on the classified result of Landsat TM/ETM images of 2005, 2010 and 2015, combined with long-term field observation data, and used the export coefficient model, our study explored the effect of small watershed management project on temporal and spatial variation of total nitrogen (TN) load of non-point source pollution under the support of GIS technology. The results indicated that, due to the implementation of slope modification project, the area of cultivated land was significantly increased, while forest and bareland were decreased. The load of non-point source TN increased from 63208 kg in 2005 to 72778 kg in 2010, but reduced to 46876 kg in 2015. The contribution rate from residential areas was higher, the average contribution rate of the three periods was 53.5%, but it showed a decreasing trend year by year. The contribution rate of land use types was 45%, which showed an increasing trend year by year. The contribution rate of livestock was always low. From the spatial distribution, TN loading intensity was changed obviously after the terracing project. High load intensity zone was mainly concentrated on the slope of 5°-15° before terracing project. Nevertheless, high load intensity zone was concentrated on the slope of 15°-35° after terracing project, and 5°-8° had become a low load strength area. The TN load intensity changed little with time on the slope of 0°-8°, and it increased first and then decreased on the slope above 8°. With the treatment of sewage, garbage and livestock manure in rural areas, the output of nitrogen in the living and livestock breeding were significantly reduced. Due to the implementation of the project, the cultivated land area increased by 31%.
Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke
2018-04-25
The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.
NASA Astrophysics Data System (ADS)
Wang, Zhi Biao; Wu, Junru; Fang, Liao Qiong; Wang, Hua; Li, Fa Qi; Tian, Yun Bo; Gong, Xiao Bo; Zhang, Hong; Zhang, Lian; Feng, Ruo
2012-10-01
High intensity focused ultrasound (HIFU) has become a new noninvasive surgical modality in medicine. A portion of tissue seated inside a patient's body may experience coagulative necrosis after a few seconds of insonification by high intensity focused ultrasound (US) generated by an extracorporeal focusing US transducer. The region of tissue affected by coagulative necrosis (CN) usually has an ellipsoidal shape when the thermal effect due to US absorption plays the dominant role. Its long and short axes are parallel and perpendicular to the US propagation direction respectively. It was shown by ex vivo experiments that the dimension of the short and long axes of the tissue which experiences CN can be as small as 50 μm and 250 μm respectively after one second exposure of US pulse (the spatial and pulse average acoustic power is on the order of tens of Watts and the local acoustic spatial and temporal pulse averaged intensity is on the order of 3 × 104 W/cm2) generated by a 1.6 MHz HIFU transducer of 12 cm diameter and 11 cm geometric focal length (f-number = 0.92). The numbers of cells which suffered CN were estimated to be on the order of 40. This result suggests that HIFU is able to interact with tens of cells at/near its focal zone while keeping the neighboring cells minimally affected, and thus the targeted cell surgery may be achievable.
Rabasa, Cristina; Muñoz-Abellán, Cristina; Daviu, Núria; Nadal, Roser; Armario, Antonio
2011-05-03
Factors involved in adaptation to repeated stress are not well-characterized. For instance, acute footshock (FS) of high intensity appears to be less severe than immobilization (IMO) in light of the speed of post-stress recovery of the hypothalamic-pituitary-adrenal (HPA) axis and other physiological variables. However, repeated exposure to IMO consistently resulted in reduction of the HPA response to the same stressor (adaptation), whereas failure to adapt has been usually reported after FS. Thus, in the present work we directly compared the activation of HPA axis and other physiological changes in response to both acute and repeated exposure to IMO and two intensities of FS (medium and high) in adult male rats. Control rats were exposed to the FS boxes but they did not receive shocks. Daily repeated exposure to IMO resulted in significant adaptation of the overall ACTH and corticosterone responses to the stressor. Such a reduction was also observed with repeated exposure to FS boxes and FS-medium, whereas repeated exposure to FS-high only resulted in a small reduction of the corticosterone response during the post-stress period. This suggests that some properties of FS-high make adaptation to it difficult. Interestingly, overall changes in food intake and body weight gain throughout the week of exposure to the stressors reveal a greater impact of IMO than FS-high, indicating that factors other than the intensity of a stressor, at least when evaluated in function of the above physiological variables, can influence HPA adaptation. Since FS exposure is likely to cause more pain than IMO, activation of nociceptive signals above a certain level may negatively affect HPA adaptation to repeated stressors. Copyright © 2011 Elsevier Inc. All rights reserved.
A framework for small infrared target real-time visual enhancement
NASA Astrophysics Data System (ADS)
Sun, Xiaoliang; Long, Gucan; Shang, Yang; Liu, Xiaolin
2015-03-01
This paper proposes a framework for small infrared target real-time visual enhancement. The framework is consisted of three parts: energy accumulation for small infrared target enhancement, noise suppression and weighted fusion. Dynamic programming based track-before-detection algorithm is adopted in the energy accumulation to detect the target accurately and enhance the target's intensity notably. In the noise suppression, the target region is weighted by a Gaussian mask according to the target's Gaussian shape. In order to fuse the processed target region and unprocessed background smoothly, the intensity in the target region is treated as weight in the fusion. Experiments on real small infrared target images indicate that the framework proposed in this paper can enhances the small infrared target markedly and improves the image's visual quality notably. The proposed framework outperforms tradition algorithms in enhancing the small infrared target, especially for image in which the target is hardly visible.
A Probability Model of Decompression Sickness at 4.3 Psia after Exercise Prebreathe
NASA Technical Reports Server (NTRS)
Conkin, Johnny; Gernhardt, Michael L.; Powell, Michael R.; Pollock, Neal
2004-01-01
Exercise PB can reduce the risk of decompression sickness on ascent to 4.3 psia when performed at the proper intensity and duration. Data are from seven tests. PB times ranged from 90 to 150 min. High intensity, short duration dual-cycle ergometry was done during the PB. This was done alone, or combined with intermittent low intensity exercise or periods of rest for the remaining PB. Nonambulating men and women performed light exercise from a semi-recumbent position at 4.3 psia for four hrs. The Research Model with age tested the probability that DCS increases with advancing age. The NASA Model with gender hypothesized that the probability of DCS increases if gender is female. Accounting for exercise and rest during PB with a variable half-time compartment for computed tissue N2 pressure advances our probability modeling of hypobaric DCS. Both models show that a small increase in exercise intensity during PB reduces the risk of DCS, and a larger increase in exercise intensity dramatically reduces risk. These models support the hypothesis that aerobic fitness is an important consideration for the risk of hypobaric DCS when exercise is performed during the PB.
Rilov, Gil; Schiel, David R
2011-01-01
Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure.
Garten, Charles T
2006-12-01
A model-based analysis of the effect of prescribed burning and forest thinning or clear-cutting on stand recovery and sustainability was conducted at Fort Benning, GA, in the southeastern USA. Two experiments were performed with the model. In the first experiment, forest recovery from degraded soils was predicted for 100 years with or without prescribed burning. In the second experiment simulations began with 100 years of predicted stand growth, then forest sustainability was predicted for an additional 100 years under different combinations of prescribed burning and forest harvesting. Three levels of fire intensity (low, medium, and high), that corresponded to 17%, 33%, and 50% consumption of the forest floor C stock by fire, were evaluated at 1-, 2-, and 3-year fire return intervals. Relative to the control (no fire), prescribed burning with a 2- or 3-year return interval caused only a small reduction in predicted steady state soil C stocks (< or =25%) and had no effect on steady state tree wood biomass, regardless of fire intensity. Annual high intensity burns did adversely impact forest recovery and sustainability (after harvesting) on less sandy soils, but not on more sandy soils that had greater N availability. Higher intensity and frequency of ground fires increased the chance that tree biomass would not return to pre-harvest levels. Soil N limitation was indicated as the cause of unsustainable forests when prescribed burns were too frequent or too intense to permit stand recovery.
Controlling orientational order in block copolymers using low-intensity magnetic fields
Choo, Youngwoo; Kawabata, Kohsuke; Kaufman, Gilad; Feng, Xunda; Di, Xiaojun; Rokhlenko, Yekaterina; Mahajan, Lalit H.; Ndaya, Dennis; Kasi, Rajeswari M.
2017-01-01
The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP’s anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.5 T) that are accessible using permanent magnets, in contrast to the high fields (>4 T) and superconducting magnets required to date. Low-intensity field alignment is enabled by the addition of labile mesogens that coassemble with the system’s nematic and smectic A mesophases. The alignment saturation field strength and alignment kinetics have pronounced dependences on the free mesogen concentration. Highly aligned states with orientation distribution coefficients close to unity were obtained at fields as small as 0.2 T. This remarkable field response originates in an enhancement of alignment kinetics due to a reduction in viscosity, and increased magnetostatic energy due to increases in grain size, in the presence of labile mesogens. These developments provide routes for controlling structural order in BCPs, including the possibility of producing nontrivial textures and patterns of alignment by locally screening fields using magnetic nanoparticles. PMID:29078379
Extracurricular participation and academic outcomes: testing the over-scheduling hypothesis.
Fredricks, Jennifer A
2012-03-01
There is a growing concern that some youth are overscheduled in extracurricular activities, and that this increasing involvement has negative consequences for youth functioning. This article used data from the Educational Longitudinal Study (ELS: 2002), a nationally representative and ethnically diverse longitudinal sample of American high school students, to evaluate this hypothesis (N = 13,130; 50.4% female). On average, 10th graders participated in between 2 and 3 extracurricular activities, for an average of 5 h per week. Only a small percentage of 10th graders reported participating in extracurricular activities at high levels. Moreover, a large percentage of the sample reported no involvement in school-based extracurricular contexts in the after-school hours. Controlling for some demographic factors, prior achievement, and school size, the breadth (i.e., number of extracurricular activities) and the intensity (i.e., time in extracurricular activities) of participation at 10th grade were positively associated with math achievement test scores, grades, and educational expectations at 12th grade. Breadth and intensity of participation at 10th grade also predicted educational status at 2 years post high school. In addition, the non-linear function was significant. At higher breadth and intensity, the academic adjustment of youth declined. Implications of the findings for the over-scheduling hypothesis are discussed.
Gillen, Jenna B; Gibala, Martin J
2014-03-01
Growing research suggests that high-intensity interval training (HIIT) is a time-efficient exercise strategy to improve cardiorespiratory and metabolic health. "All out" HIIT models such as Wingate-type exercise are particularly effective, but this type of training may not be safe, tolerable or practical for many individuals. Recent studies, however, have revealed the potential for other models of HIIT, which may be more feasible but are still time-efficient, to stimulate adaptations similar to more demanding low-volume HIIT models and high-volume endurance-type training. As little as 3 HIIT sessions per week, involving ≤10 min of intense exercise within a time commitment of ≤30 min per session, including warm-up, recovery between intervals and cool down, has been shown to improve aerobic capacity, skeletal muscle oxidative capacity, exercise tolerance and markers of disease risk after only a few weeks in both healthy individuals and people with cardiometabolic disorders. Additional research is warranted, as studies conducted have been relatively short-term, with a limited number of measurements performed on small groups of subjects. However, given that "lack of time" remains one of the most commonly cited barriers to regular exercise participation, low-volume HIIT is a time-efficient exercise strategy that warrants consideration by health practitioners and fitness professionals.
NASA Astrophysics Data System (ADS)
Deiml, Michael; Kaufmann, Martin
2017-04-01
Coupling processes initiated by gravity waves in the middle atmosphere have increasing importance for the modeling of the climate system and represent one of the larger uncertainties in this field. To support new modeling efforts spatially resolved measurements of wave fields are very beneficial. This contribution proposes a new small satellite mission based on a three unit CubeSat form factor to observe the Oxygen Atmospheric Band emission around 762 nm for temperature derivation in a limb sounding configuration to characterize gravity waves. The satellite instrument resolves individual rotational lines whose intensities follow a Boltzmann law allowing for the derivation of temperature from the relative structure of these lines. The employed Spatial Heterodyne Spectrometer is characterized by its high throughput at a small form factor, allowing to perform scientific remote sensing measurements within a small satellite during day and night. The spectrometer consists of a thermally stabilized solid block and has no moving parts, which increases its reliability in orbit while allowing high precision measurements within a small volume. The instrument is verified in its precursor mission, the Atmospheric Heterodyne Interferometer Test (AtmoHIT), within the REXUS/BEXUS ballistic rocket flight campaign. The description of the flight campaign and the results thereof conclude this contribution.
Lake warming favours small-sized planktonic diatom species
Winder, Monika; Reuter, John E.; Schladow, S. Geoffrey
2008-01-01
Diatoms contribute to a substantial portion of primary production in the oceans and many lakes. Owing to their relatively heavy cell walls and high nutrient requirements, planktonic diatoms are expected to decrease with climate warming because of reduced nutrient redistribution and increasing sinking velocities. Using a historical dataset, this study shows that diatoms were able to maintain their biovolume with increasing stratification in Lake Tahoe over the last decades; however, the diatom community structure changed. Increased stratification and reduced nitrogen to phosphorus ratios selected for small-celled diatoms, particularly within the Cyclotella genus. An empirical model showed that a shift in phytoplankton species composition and cell size was consistent within different depth strata, indicating that altered nutrient concentrations were not responsible for the change. The increase in small-celled species was sufficient to decrease the average diatom size and thus sinking velocity, which strongly influences energy transfer through the food web and carbon cycling. Our results show that within the diverse group of diatoms, small-sized species with a high surface area to volume ratio were able to adapt to a decrease in mixing intensity, supporting the hypotheses that abiotic drivers affect the size structure of planktonic communities and that warmer climate favours small-sized diatom cells. PMID:18812287
An Analysis of the Environments of Intense Convective Systems in West Africa in 2003
NASA Technical Reports Server (NTRS)
Nicholls, Stephen D.; Mohr, Karen I.
2010-01-01
We investigated the local- and regional-scale thermodynamical and dynamical environments associated with intense convective systems in West Africa during 2003. We identified convective system cases from TRMM microwave imagery, classifying each case by the system minimum 85-GHz brightness temperature and by the estimated elapsed time of propagation from high terrain. The speed of the mid-level jet, the magnitude of the low-level shear, and the surface equivalent potential temperature (theta(sub e)) were greater for the intense cases compared to the non-intense cases, although the differences between the means tended to be small, less than 3K for surface theta(sub e). Hypothesis testing of a series of commonly used intensity prediction metrics resulted in significant results only for low-level metrics such as convective available potential energy and not for any of the mid- or upper-level metrics such as 700-hPa theta(sub e). None of the environmental variables or intensity metrics by themselves or in combination appeared to be reliable direct predictors of intensity. In the regional scale analysis, the majority of intense convective systems occurred in the surface baroclinic zone where surface theta(sub e) exceeded 344 K and the 700-hPa zonal wind speeds were less than -6/ms. Fewer intense cases compared to non-intense cases were associated with African easterly wave troughs. Fewer than 25% of our cases occurred in environments with detectable Saharan dust loads, and the results for intense and non-intense cases were similar. Our results for the regional analysis were consistent with the seasonal movement of the WAM and the intertropical front, regional differences in topography, and AEW energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Youwen; Kitamura, Kenji; Takekawa, Shunji
2005-04-01
The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less
Radar imaging using electromagnetic wave carrying orbital angular momentum
NASA Astrophysics Data System (ADS)
Yuan, Tiezhu; Cheng, Yongqiang; Wang, Hongqiang; Qin, Yuliang; Fan, Bo
2017-03-01
The concept of radar imaging based on orbital angular momentum (OAM) modulation, which has the ability of azimuthal resolution without relative motion, has recently been proposed. We investigate this imaging technique further in greater detail. We first analyze the principle of the technique, accounting for its resolving ability physically. The phase and intensity distributions of the OAM-carrying fields produced by phased uniform circular array antenna, which have significant effects on the imaging results, are investigated. The imaging model shows that the received signal has the form of inverse discrete Fourier transform with the use of OAM and frequency diversities. The two-dimensional Fourier transform is employed to reconstruct the target images in the case of large and small elevation angles. Due to the peculiar phase and intensity characteristics, the small elevation is more suitable for practical application than the large one. The minimum elevation angle is then obtained given the array parameters. The imaging capability is analyzed by means of the point spread function. All results are verified through numerical simulations. The proposed staring imaging technique can achieve extremely high azimuthal resolution with the use of plentiful OAM modes.
Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.
Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B
2013-09-01
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
The growth of small corrosion fatigue cracks in alloy 2024
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1993-01-01
The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.
Neutron Time-of-Flight Diffractometer HIPPO at LANSCE
NASA Astrophysics Data System (ADS)
Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf
2004-03-01
The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.
Brazing copper to dispersion-strengthened copper
NASA Astrophysics Data System (ADS)
Ryding, David G.; Allen, Douglas; Lee, Richard H.
1996-11-01
The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.
Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films
NASA Astrophysics Data System (ADS)
Deshpande, N. G.; Gudage, Y. G.; Ghosh, A.; Vyas, J. C.; Singh, F.; Tripathi, A.; Sharma, Ramphal
2008-02-01
We have examined the effect of swift heavy ions using 100 MeV Au8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 × 10-4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.
Investigation on the innovative impact hydroforming technology
NASA Astrophysics Data System (ADS)
Lihui, Lang; Shaohua, Wang; Chunlei, Yang
2013-05-01
Hydroforming has a rapid development recently which has good forming quality and less cost. However, it still cannot meet the requirements of forming complex parts with small features just like convex tables, or bars which are widely employed in automotive and aircraft industries. The impact hydroforming technology means the most features are formed by hydroforming and the small features are rapidly reshaped by high intensity impact energy in a very short time after the traditional hydroforming. The impact pressure rises to the peak in 10ms which belongs to dynamic loading. In this paper, impact hydroforming process is proposed. The generation and transmission of impact hydroforming energy and impact shock wave were studied and simulated. The deformation process of the metal disks under the dynamic impact loading condition presented impact hydroforming is an effective technology to form complex parts with small features.
Flow formed by spanwise gaps between roughness elements
NASA Technical Reports Server (NTRS)
Logan, E.; Lin, S. H.; Islam, O.
1985-01-01
Measurements of the three mean velocity components and the three Reynolds shear stresses were made in the region downstream of gaps between wall-mounted roughness elements of square cross section and high aspect ratio in a thick turbulent boundary layer. The effect of small and large gaps was studied in a wind tunnel at a Reynolds number of 3600, based on obstacle height and free-stream velocity. The small gap produces retardation of the gap flow as with a two-dimensional roughness element, but a definite interaction between gap and wake flows is observed. The interaction is more intense for the large gap than for the small. Both gaps generate a secondary crossflow which moves fluid away from the centerline in the wall region and toward the centerline in the outer (y greater than 1.5H) region.
A comparison of small tractors for thinning central hardwoods
N. Huyler; C.B. LeDoux
1991-01-01
Young-growth hardwood forests in the central hardwood region will require intensive management if they are to help meet the Nation's increasing demand for wood. Such management generally will require entries into the stands when the trees are small. Many small-scale machines are available for harvesting small wood. Time and motion studies were conducted on small-...
Center for the Integration of Optical Computing
1993-10-15
medium-high-speed two- beam coupling that could be used in systems as an all- optical interconnect. The basis of our studies was the fact that operating at...to investigate near-band edge photorefractivity for optical interconnects, at least when used at small beam ratio or in phase conjugate resonators. I...field pattern a mess. Their poor beam quality makes laser diode arrays ill suited for many applications, such as launching intense light into single
Chemical Reactions in Turbulent Mixing Flows. Revision.
1983-08-02
jet diameter F2 fluorine H2 hydrogen HF hydrogen fluoride I(y) instantaneous fluorescence intensity distribution L-s flame length measured from...virtual origin -.4 of turbulent region (L-s). flame length at high Reynolds number LIF laser induced fluorescence N2 nitrogen PI product thickness (defined...mixing is attained as a function of the equivallence ratio. For small values of the equivalence ratio f, the flame length - defined here as the
1994-03-31
fluorescence intensity with temperature , which allows the fuel cn ce to be found directly from the acetaldehyde fluorescence. An alternative means of measuring... oxidizer . The measured quantities are used to form 17 a conserved scalar from which the mixtur fraction is determined in an iterative process. We have...turbulent nonpemIixed acetaklehyde flame. Acetaldehyde (CH3CHO) was chosen for its relatively high fluorescence yield and small variation of
NASA Astrophysics Data System (ADS)
Doering, Kristin; Ehlert, Claudia; Grasse, Patricia; Crosta, Xavier; Fleury, Sophie; Frank, Martin; Schneider, Ralph
2016-03-01
In this study we combine for the first time silicon (Si) isotope compositions of small mixed diatom species (δ30SibSiO2) and of large handpicked mono-generic (i.e. genus = Coscinodiscus) diatom samples (δ30SiCoscino) with diatom assemblages extracted from marine sediments in the Peruvian upwelling region in order to constrain present and past silicate utilisation. The extension of a previous core-top data set from the Peruvian shelf demonstrates that δ30SiCoscino values record near-complete Si utilisation, as these are similar to the isotopic composition of the subsurface source waters feeding the upwelling. In contrast, the δ30SibSiO2 of small mixed diatom species increase southward along the shelf as well as towards the shore. We attribute highest δ30SibSiO2 values partly to transient iron limitation but primarily to the gradual increase of Si isotope fractionation within the seasonal diatom succession, which are mainly recorded by small diatom species during intense bloom events. In contrast, lower δ30SibSiO2 values are related to initial Si isotope utilisation during periods of weak upwelling, when low Si(OH)4 concentrations do not permit intense blooms and small diatom species record substantially lower δ30Si signatures. As such, we propose that the intensity of the upwelling can be deduced from the offset between δ30SibSiO2 and δ30SiCoscino (Δ30Sicoscino-bSiO2), which is low for strong upwelling conditions and high for prevailing weak upwelling. We apply the information extracted from surface sediments to generate a record of the present-day main upwelling region covering the past 17,700 years and find that this location has also been characterized by a persistent offset (Δ30Sicoscino-bSiO2). By comparison with the diatom assemblages we show that the coastal upwelling system changed markedly between weak and strong upwelling conditions. In addition, our model calculations to quantify species-specific Si isotope fractionation effects based on the diatom assemblages indicate an overall minor influence that cannot explain the high amplitude in the measured δ30SibSiO2 record.
Correction of complex nonlinear signal response from a pixel array detector
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till
2015-01-01
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics. PMID:25931072
Shock Acceleration of Solar Energetic Protons: The First 10 Minutes
NASA Technical Reports Server (NTRS)
Ng, Chee K.; Reames, Donald V.
2008-01-01
Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.
Correction of complex nonlinear signal response from a pixel array detector.
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till
2015-05-01
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.
NASA Astrophysics Data System (ADS)
Azmi, Asrul Izam; Raju, Raju; Peng, Gang-Ding
2012-02-01
This paper reports an application of phase shifted fiber Bragg grating (PS-FBG) intensity-type acoustic sensor in a continuous and in-situ failure testing of an E-glass/vinylester top hat stiffener (THS). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in an effective acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.
Spitzer, Alan R
2010-03-01
Because neonatal medicine is such an expensive contributor to health care in the United States--with a small population of infants accounting for very high health care costs--there has been a fair amount of attention given to this group of patients. An idea that has received increasing attention in this discussion is pay for performance. This article discusses the concept of pay for performance, examines what potential benefits and risks exist in this model, and investigates how it might achieve the desired goals if implemented in a thoughtful way. Copyright 2010 Elsevier Inc. All rights reserved.
Geritalk: communication skills training for geriatric and palliative medicine fellows.
Kelley, Amy S; Back, Anthony L; Arnold, Robert M; Goldberg, Gabrielle R; Lim, Betty B; Litrivis, Evgenia; Smith, Cardinale B; O'Neill, Lynn B
2012-02-01
Expert communication is essential to high-quality care for older patients with serious illness. Although the importance of communication skills is widely recognized, formal curricula for teaching communication skills to geriatric and palliative medicine fellows is often inadequate or unavailable. The current study drew upon the educational principles and format of an evidence-based, interactive teaching method to develop an intensive communication skills training course designed specifically to address the common communication challenges that geriatric and palliative medicine fellows face. The 2-day retreat, held away from the hospital environment, included large-group overview presentations, small-group communication skills practice, and development of future skills practice commitment. Faculty received in-depth training in small-group facilitation techniques before the course. Geriatric and palliative medicine fellows were recruited to participate in the course and 100% (n = 18) enrolled. Overall satisfaction with the course was very high (mean 4.8 on a 5-point scale). After the course, fellows reported an increase in self-assessed preparedness for specific communication challenges (mean increase 1.4 on 5-point scale, P < .001). Two months after the course, fellows reported a high level of sustained skills practice (mean 4.3 on 5-point scale). In sum, the intensive communication skills program, customized for the specific needs of geriatric and palliative medicine fellows, improved fellows' self-assessed preparedness for challenging communication tasks and provided a model for ongoing deliberate practice of communication skills. © 2012, Copyright the Authors Journal compilation © 2011, The American Geriatrics Society.
Geritalk: Communication Skills Training for Geriatrics and Palliative Medicine Fellows
Kelley, Amy S.; Back, Anthony L.; Arnold, Robert M.; Goldberg, Gabrielle R.; Lim, Betty B.; Litrivis, Evgenia; Smith, Cardinale B.; O’Neill, Lynn B.
2011-01-01
Expert communication is essential to high quality care for older patients with serious illness. While the importance of communication skills is widely recognized, formal curricula for teaching communication skills to geriatrics and palliative medicine fellows is often inadequate or unavailable. We drew upon the educational principles and format of an evidence-based, interactive teaching method, to develop an intensive communication skills training course designed specifically to address the common communication challenges faced by geriatrics and palliative medicine fellows. The 2-day retreat, held away from the hospital environment, included large-group overview presentations, small-group communication skills practice, and development of future skills practice commitment. Faculty received in-depth training in small-group facilitation techniques prior to the course. Geriatrics and palliative medicine fellows were recruited to participate in the course and 100% (n=18) enrolled. Overall satisfaction with the course was very high (mean 4.8 on 5-point scale). Compared to before the course, fellows reported an increase in self-assessed preparedness for specific communication challenges (mean increase 1.4 on 5-point scale, p<0.01). Two months after the course, fellows reported a high level of sustained skills practice (mean 4.3 on 5-point scale). In sum, the intensive communication skills program, tailored to the specific needs of geriatrics and palliative medicine fellows, improved fellows’ self-assessed preparedness for challenging communication tasks and provided a model for ongoing deliberate practice of communication skills. PMID:22211768
Dauskardt, R H; Ritchie, R O; Takemoto, J K; Brendzel, A M
1994-07-01
A fracture-mechanics based study has performed to characterize the fracture toughness and rates of cyclic fatigue-crack growth of incipient flaws in prosthetic heart-valve components made of pyrolytic carbon-coated graphite. Such data are required to predict the safe structural lifetime of mechanical heart-valve prostheses using damage-tolerant analysis. Unlike previous studies where fatigue-crack propagation data were obtained using through-thickness, long cracks (approximately 2-20 mm long), growing in conventional (e.g., compact-tension) samples, experiments were performed on physically small cracks (approximately 100-600 microns long), initiated on the surface of the pyrolytic-carbon coating to simulate reality. Small-crack toughness results were found to agree closely with those measured conventionally with long cracks. However, similar to well-known observations in metal fatigue, it was found that based on the usual computations of the applied (far-field) driving force in terms of the maximum stress intensity, Kmax, small fatigue cracks grew at rates that exceeded those of long cracks at the same applied stress intensity, and displayed a negative dependency on Kmax; moreover, they grew at applied stress intensities less than the fatigue threshold value, below which long cracks are presumed dormant. To resolve this apparent discrepancy, it is shown that long and small crack results can be normalized, provided growth rates are characterized in terms of the total (near-tip) stress intensity (incorporating, for example, the effect of residual stress); with this achieved, in principle, either form of data can be used for life prediction of implant devices. Inspection of the long and small crack results reveals extensive scatter inherent in both forms of growth-rate data for the pyrolytic-carbon material.
Thermal convection of liquid metal in a long inclined cylinder
NASA Astrophysics Data System (ADS)
Teimurazov, Andrei; Frick, Peter
2017-11-01
The turbulent convection of low-Prandtl-number fluids (Pr=0.0083 ) in a long cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle β , 0 ≤β ≤π /2 with step π /20 , is studied numerically by solving the Oberbeck-Boussinesq equations with the large-eddy-simulation approach for small-scale turbulence. The cylinder length is L =5 D , where D is the diameter. The Rayleigh number, determined by the cylinder diameter, is of the order of 5 ×106 . We show that the structure of the flow strongly depends on the inclination angle. A stable large-scale circulation (LSC) slightly disturbed by small-scale turbulence exists in the horizontal cylinder. The deviation from a horizontal position provides strong amplification of both LSC and small-scale turbulence. The energy of turbulent pulsations increases monotonically with decreasing inclination angle β , matching the energy of the LSC at β ≈π /5 . The intensity of the LSC has a wide, almost flat, maximum for an inclined cylinder and slumps approaching the vertical position, in which the LSC vanishes. The dependence of the Nusselt number on the inclination angle has a maximum at β ≈7 π /20 and generally follows the dependence of the intensity of LSC on the inclination. This indicates that the total heat transport is highly determined by LSC. We examine the applicability of idealized thermal boundary conditions (BCs) for modeling a real experiment with liquid sodium flows. Therefore, the simulations are done with two types of temperature BCs: fixed face temperature and fixed heat flux. The intensity of the LSC is slightly higher in the latter case and leads to a corresponding increase of the Nusselt number and enhancement of temperature pulsations.
Lactosylated casein phosphopeptides as specific indicators of heated milks.
Pinto, Gabriella; Caira, Simonetta; Cuollo, Marina; Fierro, Olga; Nicolai, Maria Adalgisa; Chianese, Lina; Addeo, Francesco
2012-02-01
Casein phosphopeptides (CPP) were identified in small amounts in milks heated at various intensities by using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. CPP selectively concentrated on hydroxyapatite (HA) were regenerated using phosphoric acid mixed in the matrix. Unphosphorylated peptides not retained by HA were removed by buffer washing. This procedure enhanced the MALDI signals of CPP that are ordinarily suppressed by the co-occurrence of unphosphorylated peptides. CPP, belonging to the β-casein (CN) family, i.e., (f1-29) 4P, (f1-28) 4P, and (f1-27) 4P, and the α(s2)-CN family, i.e., (f1-21) 4P and (f1-24) 4P, were observed in liquid and powder milk. The lactosylated counterparts were specific to intensely heated milks, but absent in raw and thermized/pasteurized milk. Most CPP with C-terminal lysines probably arose from the activity of plasmin; an enzyme most active in casein hydrolysis. A CPP analogue was used as the internal standard. The raw milk signature peptide β-CN (f1-28) 4P constituted ~4.3% of the total β-CN. Small amounts of lactosylated peptides, which varied with heat treatment intensity, were detected in the milk samples. The limit of detection of ultra-high-temperature milk adjunction in raw or pasteurized milk was ~10%.
Probing the Quiet Solar Atmosphere from the Photosphere to the Corona
NASA Astrophysics Data System (ADS)
Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas
2018-04-01
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.
Chen, Ruimin; Paeng, Dong-Guk; Lam, Kwok Ho; Zhou, Qifa; Shung, K Kirk; Matsuoka, Naoki; Humayun, Mark S
2013-01-01
Ultrasound (US) is known to enhance thrombolysis when thrombolytic agents and/or microbubbles are injected into the targeted vessels. In this research, high-intensity US (1 MHz, 7 W/cm 2 , 30 % duty cycle) was applied in vivo to the ear marginal vein of three rabbits which was occluded by either laser photothrombosis or thrombin, right after the injection of 0.3~0.6 cc of microbubbles (13 × 10 8 bubbles/ml of concentration) through the other ear vein without using any thrombolytic agent. To determine the effect of the sonothrombolysis, the blood flow velocity near the occlusion site in the vein was measured by a custom-made 40-MHz US needle transducer and its corresponding Doppler US system. The Doppler spectra show that the blood flow velocity recovered from total occlusion after three 10-minute high-intensity US treatments. Fluorescein angiography was employed to confirm the opening of the vessel occlusion. A control study of three rabbits with only the microbubble injection showed no recovery on the occlusion in 3 hours. The results show that the sonothrombolysis in the rabbit ear marginal vein can be achieved with microbubbles only. The results of cavitation measurements indicate that the mechanism of sonothrombolysis is probably due to the cavitation induced by the microbubbles. Without the need of applying any thrombolytic agent, high-intensity US has high potential for therapies targeting on small blood vessels.
Turning Ocean Mixing Upside Down
NASA Astrophysics Data System (ADS)
Ferrari, Raffaele; Mashayek, Ali; Campin, Jean-Michael; McDougall, Trevor; Nikurashin, Maxim
2015-11-01
It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that small-scale mixing is more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. It is shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and an equally large upwelling, driven by the reduced small-scale mixing along the ocean boundaries. Thus whether abyssal waters upwell or sink in the net cannot be inferred simply from the vertical profile of mixing intensity, but depends also on the ocean hypsometry, i.e. the shape of the bottom topography. The implications of this result for our understanding of the abyssal ocean circulation will be presented with a combination of numerical models and observations.
Design optimization of ultra-precise elliptical mirrors for hard x-ray nanofocusing at Nanoscopium
NASA Astrophysics Data System (ADS)
Kewish, Cameron M.; Polack, François; Signorato, Riccardo; Somogyi, Andrea
2013-09-01
The design and implementation of a pair of 100 mm-long grazing-incidence total-reflection mirrors for the hard X-ray beamline Nanoscopium at Synchrotron Soleil is presented. A vertically and horizontally nanofocusing mirror pair, oriented in Kirkpatrick-Baez geometry, has been designed and fabricated with the aim of creating a diffraction-limited high-intensity 5 - 20 keV beam with a focal spot size as small as 50 nm. We describe the design considerations, including wave-optical calculations of figures-of-merit that are relevant for spectromicroscopy, such as the focal spot size, depth of field and integrated intensity. The mechanical positioning tolerance in the pitch angle that is required to avoid introducing high-intensity features in the neighborhood of the focal spot is demonstrated with simulations to be of the order of microradians, becoming tighter for shorter focal lengths and therefore directly affecting all nanoprobe mirror systems. Metrology results for the completed mirrors are presented, showing that better than 1.5 °A-rms figure error has been achieved over the full mirror lengths with respect to the designed elliptical surfaces, with less than 60 nrad-rms slope errors.
Fish, Kenneth N; Sweet, Robert A; Deo, Anthony J; Lewis, David A
2008-11-13
A number of human brain diseases have been associated with disturbances in the structure and function of cortical synapses. Answering fundamental questions about the synaptic machinery in these disease states requires the ability to image and quantify small synaptic structures in tissue sections and to evaluate protein levels at these major sites of function. We developed a new automated segmentation imaging method specifically to answer such fundamental questions. The method takes advantage of advances in spinning disk confocal microscopy, and combines information from multiple iterations of a fluorescence intensity/morphological segmentation protocol to construct three-dimensional object masks of immunoreactive (IR) puncta. This new methodology is unique in that high- and low-fluorescing IR puncta are equally masked, allowing for quantification of the number of fluorescently-labeled puncta in tissue sections. In addition, the shape of the final object masks highly represents their corresponding original data. Thus, the object masks can be used to extract information about the IR puncta (e.g., average fluorescence intensity of proteins of interest). Importantly, the segmentation method presented can be easily adapted for use with most existing microscopy analysis packages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z
2015-06-15
Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less
Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.
2014-09-01
The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)<110> with the (0001) plane nearly parallel to the rolled sheet surface and <110> directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)<100> in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (100) and pyramidal planes (101) exhibited a 30 deg + ( n - 1) × 60 deg rotation ( n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.
Vavlukis, Marija; Kedev, Sasko
2018-01-01
Diabetic dyslipidemia has specifics that differ from dyslipidemia in patients without diabetes, which contributes to accelerated atherosclerosis equally as dysglycemia. The aim of this study was to deduce the interdependence of diabetic dyslipidemia and cardiovascular diseases (CVD), therapeutic strategies and the risk of diabetes development with statin therapy. We conducted a literature review of English articles through PubMed, PubMed Central and Cochrane, on the role of diabetic dyslipidemia in atherosclerosis, the antilipemic treatment with statins, and the role of statin therapy in newly developed diabetes, by using key words: atherosclerosis, diabetes mellitus, diabetic dyslipidemia, CVD, statins, nicotinic acid, fibrates, PCSK9 inhibitors. hyperglycemia and dyslipidemia cannot be treated separately in patients with diabetes. It seems that dyslipidemia plays one of the key roles in the development of atherosclerosis. High levels of TG, decreased levels of HDL-C and increased levels of small dense LDL- C particles in the systemic circulation are the most specific attributes of diabetic dyslipidemia, all of which originate from an inflated flux of free fatty acids occurring due to the preceding resistance to insulin, and exacerbated by elevated levels of inflammatory adipokines. Statins are a fundamental treatment for diabetic dyslipidemia, both for dyslipidemia and for CVD prevention. The use of statin treatment with high intensity is endorsed for all diabetes-and-CVD patients, while a moderate - intensity treatment can be applied to patients with diabetes, having additional risk factors for CVD. Statins alone are thought to possess a small, although of statistical significance, risk of incident diabetes, outweighed by their benefits. As important as hyperglycemia and glycoregulation are in CVD development in patients with diabetes, diabetic dyslipidemia plays an even more important role. Statins remain the cornerstone of antilipemic treatment in diabetic dyslipidemia, and their protective effects in CVD progression overcome the risk of statin- associated incident diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Michael, Scott; Graham, Kenneth S; Davis, Glen M
2017-01-01
Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the "reactivity hypothesis" suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. "Modality" has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key determining factor. Concurrent monitoring of HRV and STI may be a valuable non-invasive approach to investigate autonomic stress reactivity; however, this integrative approach has not yet been applied with regards to exercise stressors.
Michael, Scott; Graham, Kenneth S.; Davis, Glen M.
2017-01-01
Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the “reactivity hypothesis” suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. “Modality” has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key determining factor. Concurrent monitoring of HRV and STI may be a valuable non-invasive approach to investigate autonomic stress reactivity; however, this integrative approach has not yet been applied with regards to exercise stressors. PMID:28611675
Le Menach, Arnaud; Takala, Shannon; McKenzie, F Ellis; Perisse, Andre; Harris, Anthony; Flahault, Antoine; Smith, David L
2007-01-25
Insecticide Treated Nets (ITNs) are an important tool for malaria control. ITNs are effective because they work on several parts of the mosquito feeding cycle, including both adult killing and repelling effects. Using an elaborated description of the classic feeding cycle model, simple formulas have been derived to describe how ITNs change mosquito behaviour and the intensity of malaria transmission, as summarized by vectorial capacity and EIR. The predicted changes are illustrated as a function of the frequency of ITN use for four different vector populations using parameter estimates from the literature. The model demonstrates that ITNs simultaneously reduce mosquitoes' lifespans, lengthen the feeding cycle, and by discouraging human biting divert more bites onto non-human hosts. ITNs can substantially reduce vectorial capacity through small changes to all of these quantities. The total reductions in vectorial capacity differ, moreover, depending on baseline behavior in the absence of ITNs. Reductions in lifespan and vectorial capacity are strongest for vector species with high baseline survival. Anthropophilic and zoophilic species are affected differently by ITNs; the feeding cycle is lengthened more for anthrophilic species, and the proportion of bites that are diverted onto non-human hosts is higher for zoophilic species. This model suggests that the efficacy of ITNs should be measured as a total reduction in transmission intensity, and that the quantitative effects will differ by species and by transmission intensity. At very high rates of ITN use, ITNs can generate large reductions in transmission intensity that could provide very large reductions in transmission intensity, and effective malaria control in some areas, especially when used in combination with other control measures. At high EIR, ITNs will probably not substantially reduce the parasite rate, but when transmission intensity is low, reductions in vectorial capacity combine with reductions in the parasite rate to generate very large reductions in EIR.
Mayo, E; Ortiz, J; Martínez-Carrasco, C; Garijo, M M; Espeso, G; Hervías, S; Ruiz de Ybáñez, M R
2013-09-01
The gastrointestinal helminth fauna of 24 Barbary sheep or Aoudad (Ammotragus lervia sahariensis) maintained in the Parque de Rescate de la Fauna Sahariana (PRFS, CSIC, Almeria, Spain) was analyzed. Most animals (87.5 %) were parasitized, and multiple infections were highly present. The following species were identified: Camelostrongylus mentulatus, Teladorsagia circumcincta, Marshallagia marshalli, Ostertagia ostertagi, O. leptospicularis, O. lyrata, Haemonchus contortus, Teladorsagia trifurcata, Trichostrongylus vitrinus, T. colubriformis, T. probolorus, T. capricola, Nematodirus spathiger, N. abnormalis, N. filicollis, N. helvetianus, Trichuris spp. and Skrjabinema ovis. Teladorsagia circumcincta was the most prevalent nematode in abomasum (52.6 %) followed by C. mentulatus (50 %). However, this latter nematode had the greater mean intensity and abundance. In the small intestine, T. colubriformis and T. vitrinus had the highest prevalence (36.4 %); the last one showed also the greater mean intensity and abundance. It should be emphasized the presence of Skrjabinema ovis (prevalence 39.1 %) in the large intestine, showing the greater mean abundance and intensity, although with a low values. Camelostrongylus mentulatus could be the most primitive nematode of the family trichostrongylidae recovered in this study; attending to its high prevalence, mean abundance and mean intensity, the possible specificity between this parasite and the Aoudad is discussed.
Toyota, Naoyuki; Nakamura, Yuko; Hieda, Masashi; Akiyama, Naoko; Terada, Hiroaki; Matsuura, Noriaki; Nishiki, Masayo; Kono, Hirotaka; Kohno, Hiroshi; Irei, Toshimitsu; Yoshikawa, Yukinobu; Kuraoka, Kazuya; Taniyama, Kiyomi; Awai, Kazuo
2013-09-01
The purpose of this study was to evaluate the diagnostic capability of gadoxetate disodium (Gd-EOB)-MRI for the detection of hepatocellular carcinoma (HCC) compared with multidetector CT (MDCT). Fifty patients with 57 surgically proven HCCs who underwent Gd-EOB-MRI and MDCT from March 2008 to June 2011 were evaluated. Two observers evaluated MR and CT on a lesion-by-lesion basis. We analyzed sensitivity by grading on a 5-point scale, the degree of arterial enhancement and the differences in histological grades in the diffusion-weighted images (DWI). The results showed that the sensitivity of Gd-EOB-MRI was higher than that of MDCT especially for HCCs that were 1 cm in diameter or smaller. The hepatobiliary phase was useful for the detecting of small HCC. We had few cases in which it was difficult to judge HCC in the arterial enhancement between MRI and MDCT. In the diffusion-weighted image, well differentiated HCC tended to show a low signal intensity, and poorly differentiated HCC tended to show a high signal intensity. In moderately differentiated HCC's, the mean diameter of the high signal intensity group was larger than that of the low signal intensity group (24.5 mm vs. 15.8 mm). In conclusion, Gd-EOB-MRI tended to show higher sensitivity compared to MDCT in the detection of HCC.
NASA Astrophysics Data System (ADS)
Van Noten, K.; Lecocq, T.; Camelbeeck, T.
2013-12-01
Between 2008 and 2010, the Royal Observatory of Belgium received numerous ';Did You Feel It'-reports related to a 2-year lasting earthquake swarm at Court-Saint-Etienne, a small town in a hilly area 20 km SE of Brussels, Belgium. These small-magnitude events (-0.7 ≤ ML ≤ 3.2, n = c. 300 events) were recorded both by the permanent seismometer network in Belgium and by a locally installed temporary seismic network deployed in the epicentral area. Relocation of the hypocenters revealed that the seismic swarm can be related to the reactivation of a NW-SE strike-slip fault at 3 to 6 km depth in the basement rocks of the Lower Palaeozoic London-Brabant Massif. This sequence caused a lot of emotion in the region because more than 60 events were felt by the local population. Given the small magnitudes of the seismic swarm, most events were more often heard than felt by the respondents, which is indicative of a local high-frequency earthquake source. At places where the bedrock is at the surface or where it is covered by thin alluvial sediments (<10 m), such as in incised river valleys and on hill slopes, reported macroseismic intensities are higher than those on hill tops where respondents live on a thicker Quaternary and Cenozoic sedimentary cover (> 30 m). In those river valleys that have a considerable alluvial sedimentary cover, macroseismic intensities are again lower. To explain this variation in macroseismic intensity we present a macroseismic analysis of all DYFI-reports related to the 2008-2010 seismic swarm and a pervasive H/V spectral ratio (HVSR) analysis of ambient noise measurements to model the thickness of sediments covering the London-Brabant Massif. The HVSR method is a very powerful tool to map the basement morphology, particularly in regions of unknown subsurface structure. By calculating the soil's fundamental frequency above boreholes, we calibrated the power-law relationship between the fundamental frequency, shear wave velocity and the thickness of sediments. This relationship is useful for places where the sediment thickness is unknown and where the fundamental frequency can be calculated by H/V spectral ratio analysis of ambient noise. In a subsequent research step macroseismic intensity of the different felt events is compared to sediment thickness in order to investigate if the people's perception of earthquake strong ground motions relates to the local sediment column above bedrock. We discovered that the decrease in macroseismic intensity of the felt/heard events on the hill tops can be explained by the absorption of high frequency seismic energy due the thickness of the local sediment column. Our results illustrate that it is fundamental to study regional soil properties to understand the effects of earthquake strong ground motions in an intraplate tectonic setting.
Can We Draw General Conclusions from Interval Training Studies?
Viana, Ricardo Borges; de Lira, Claudio Andre Barbosa; Naves, João Pedro Araújo; Coswig, Victor Silveira; Del Vecchio, Fabrício Boscolo; Ramirez-Campillo, Rodrigo; Vieira, Carlos Alexandre; Gentil, Paulo
2018-04-19
Interval training (IT) has been used for many decades with the purpose of increasing performance and promoting health benefits while demanding a relatively small amount of time. IT can be defined as intermittent periods of intense exercise separated by periods of recovery and has been divided into high-intensity interval training (HIIT), sprint interval training (SIT), and repeated sprint training (RST). IT use has resulted in the publication of many studies and many of them with conflicting results and positions. The aim of this article was to move forward and understand the studies' protocols in order to draw accurate conclusions, as well as to avoid previous mistakes and effectively reproduce previous protocols. When analyzing the literature, we found many inconsistencies, such as the controversial concept of 'supramaximal' effort, a misunderstanding with regard to the term 'high intensity,' and the use of different strategies to control intensity. The adequate definition and interpretation of training intensity seems to be vital, since the results of IT are largely dependent on it. These observations are only a few examples of the complexity involved in IT prescription, and are discussed to illustrate some problems with the current literature regarding IT. Therefore, it is our opinion that it is not possible to draw general conclusions about IT without considering all variables used in IT prescription, such as exercise modality, intensity, effort and rest times, and participants' characteristics. In order to help guide researchers and health professionals in their practices it is important that experimental studies report their methods in as much detail as possible and future reviews and meta-analyses should critically discuss the articles included in the light of their methods to avoid inappropriate generalizations.
Illumination Modulation for Improved Propagation-Based Phase Imaging
NASA Astrophysics Data System (ADS)
Chakraborty, Tonmoy
Propagation-based phase imaging enables the quantitative reconstruction of a light beam's phase from measurements of its intensity. Because the intensity depends on the time-averaged square of the field the relationship between intensity and phase is, in general, nonlinear. The transport of intensity equation (TIE), is a linear equation relating phase and propagated intensity that arises from restricting the propagation distance to be small. However, the TIE limits the spatial frequencies that can be reliably reconstructed to those below some cutoff, which limits the accuracy of reconstruction of fine features in phase. On the other hand, the low frequency components suffer from poor signal to noise ratio (SNR) unless the propagation distance is sufficiently large, which leads to low frequency artifacts that obscure the reconstruction. In this research, I will consider the use of incoherent primary sources of illumination, in a Kohler illumination setup, to enhance the low-frequency performance of the TIE. The necessary steps required to design and build a table-top imaging setup which is capable of capturing intensity at any defocused position while modulating the source will be explained. In addition, it will be shown how by employing such illumination, the steps required for computationally recovering the phase, i.e. Fourier transforms and frequency-domain filtering, may be performed in the optical system. While these methods can address the low-frequency performance of the TIE, they do not extend its high-frequency cutoff. To avoid this cutoff, for objects with slowly varying phase, the contrast transfer function (CTF) model, an alternative to the TIE, can be used to recover phase. By allowing the combination of longer propagation distances and incoherent sources, it will be shown how CTF can improve performance at both high and low frequencies.
Cosmic Ray Measurements Inside Mir With Sileye-2
NASA Astrophysics Data System (ADS)
Casolino, M.; Sileye-2 Team
smallIntensity of the coronal green line (small = 5303cm) is considered as an impor- tant parameter to characterize the changes of diffusion coefficient of galactic cosmic rays versus the solar activity. A contribution of the coronal green line intensity in GCR diffusion coefficient is taken into account using its real distribution on the whole disk of the Sun averaging for three days. An assumption is made that the observed changes of the intensity of the coronal green line on the Sun's surface is taken away to the in- terplanetary space with the average solar wind velocity, U = 400 km/s. Thus, to cover the modulation region of the size of the 100 AU there is necessary data of the coronal green line intensity of the one-year duration. Alternating the coefficient of proportion- ality between the intensity of coronal green line and the diffusion coefficient of GCR the appropriate correspondence between the observation of GCR intensity sensitive to neutron monitors and solution of the Parker's transport equation have been found. The best correspondence between the observation of GCR intensity and solution of the Parker's transport equation has been found when the role of the coronal green line intensity in diffusion coefficient of GCR is gradually diminished versus the distance from the Sun.
NASA Astrophysics Data System (ADS)
Murphy, Sheila F.; Writer, Jeffrey H.; Blaine McCleskey, R.; Martin, Deborah A.
2015-08-01
Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h-1. These storms, which typically occur several times each year in July-September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10-156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.
Murphy, Sheila F.; Writer, Jeffrey H.; McCleskey, R. Blaine; Martin, Deborah A.
2015-01-01
Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h−1. These storms, which typically occur several times each year in July–September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10–156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.
Menezes, Kênia Kiefer Parreiras De; Nascimento, Lucas Rodrigues; Polese, Janaine Cunha; Ada, Louise; Teixeira-Salmela, Luci Fuscaldi
Respiratory muscle training has shown to increase strength of the respiratory muscles following a stroke. However, low duration and/or intensity of training may be responsible for the small effect size seen and/or absence of carry-over effects to an activity, e.g., walking. Therefore, an investigation of the effects of long-duration, high-intensity respiratory muscle training is warranted. This proposed protocol for a randomized clinical trial will examine the efficacy of high-intensity respiratory muscle training to increase strength and improve activity following a stroke. This study will be a two-arm, prospectively registered, randomized controlled trial, with blinded assessors. Thirty-eight individuals who have suffered a stroke will participate. The experimental group will undertake a 40-min of respiratory muscle training program, seven days/week, for eight weeks in their homes. Training loads will be increased weekly. The control group will undertake a sham respiratory muscle training program with equivalent duration and scheduling of training. The primary outcome will be the strength of the inspiratory muscles, measured as maximal inspiratory pressure. Secondary outcomes will include expiratory muscle strength, inspiratory muscle endurance, dyspnea, respiratory complications, and walking capacity. Outcomes will be collected by a researcher blinded to group allocation at baseline (Week 0), after intervention (Week 8), and one month beyond intervention (Week 12). High-intensity respiratory muscle training may have the potential to optimize the strength of the respiratory muscles following a stroke. If benefits are carried over to activity, the findings may have broader implications, since walking capacity has been shown to predict physical activity and community participation on this population. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses
Cipryan, Lukas; Plews, Daniel J.; Ferretti, Alessandro; Maffetone, Phil B.; Laursen, Paul B.
2018-01-01
The purpose of the study was to examine the effects of altering from habitual mixed Western-based (HD) to a very low-carbohydrate high-fat (VLCHF) diet over a 4-week timecourse on performance and physiological responses during high-intensity interval training (HIIT). Eighteen moderately trained males (age 23.8 ± 2.1 years) consuming their HD (48 ± 13% carbohydrate, 17 ± 3% protein, 35 ± 9% fat) were assigned to 2 groups. One group was asked to remain on their HD, while the other was asked to switch to a non-standardized VLCHF diet (8 ± 3% carbohydrate, 29 ± 15% protein, 63 ± 13% fat) for 4 weeks. Participants performed graded exercise tests (GXT) before and after the experiment, and an HIIT session (5x3min, work/rest 2:1, passive recovery, total time 34min) before, and after 2 and 4 weeks. Heart rate (HR), oxygen uptake (V̇O2), respiratory exchange ratio (RER), maximal fat oxidation rates (Fatmax) and blood lactate were measured. Total time to exhaustion (TTE) and maximal V̇O2 (V̇O2max) in the GXT increased in both groups, but between-group changes were trivial (ES ± 90% CI: -0.1 ± 0.3) and small (0.57 ± 0.5), respectively. Between-group difference in Fatmax change (VLCHF: 0.8 ± 0.3 to 1.1 ± 0.2 g/min; HD: 0.7 ± 0.2 to 0.8 ± 0.2 g/min) was large (1.2±0.9), revealing greater increases in the VLCHF versus HD group. Between-group comparisons of mean changes in V̇O2 and HR during the HIIT sessions were trivial to small, whereas mean RER decreased more in the VLCHF group (-1.5 ± 0.1). Lactate changes between groups were unclear. Adoption of a VLCHF diet over 4 weeks increased Fatmax and did not adversely affect TTE during the GXT or cardiorespiratory responses to HIIT compared with the HD. Key points A group of participants that changed from habitual mixed western-based to VLCHF diet over 4 weeks substantially increased rates of fat oxidation shown during a graded exercise test and high-intensity interval training (HIIT) session. Performance and cardiorespiratory responses during a graded exercise test and HIIT were not impaired after consuming a VLCHF diet relative to a group consuming their mixed western-based diet. A four-week adaptation period to a VLCHF diet preserved high-intensity exercise performance. PMID:29769827
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...
2018-02-21
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.
Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu
2017-03-21
We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.
[Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].
Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming
2009-08-01
The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.
Lack of small-scale clustering in 21-cm intensity maps crossed with 2dF galaxy densities at z ~ 0.08
NASA Astrophysics Data System (ADS)
Anderson, Christopher; Luciw, Nicholas; Li, Yi-Chao; Kuo, Cheng-Yu; Yadav, Jaswant; Masui, Kiyoshi; Chang, Tzu-Ching; Chen, Xuelei; Oppermann, Niels; Pen, Ue-Li; Timbie, Peter T.
2017-06-01
I report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057
Using aerial photography to estimate wood suitable for charcoal in managed oak forests
NASA Astrophysics Data System (ADS)
Ramírez-Mejía, D.; Gómez-Tagle, A.; Ghilardi, A.
2018-02-01
Mexican oak forests (genus Quercus) are frequently used for traditional charcoal production. Appropriate management programs are needed to ensure their long-term use, while conserving the biodiversity and ecosystem services, and associated benefits. A key variable needed to design these programs is the spatial distribution of standing woody biomass. A state-of-the-art methodology using small format aerial photographs was developed to estimate the total aboveground biomass (AGB) and aboveground woody biomass suitable for charcoal making (WSC) in intensively managed oak forests. We used tree crown area (CAap) measurements from very high-resolution (30 cm) orthorectified small format digital aerial photographs as the predictive variable. The CAap accuracy was validated using field measurements of the crown area (CAf). Allometric relationships between: (a) CAap versus AGB, and (b) CAap versus WSC had a high significance level (R 2 > 0.91, p < 0.0001). This approach shows that it is possible to obtain sound biomass estimates as a function of the crown area derived from digital small format aerial photographs.
Tofts, P S; Silver, N C; Barker, G J; Gass, A
2005-07-01
There are currently four problems in characterising small nonuniform lesions or other objects in Magnetic Resonance images where partial volume effects are significant. Object size is over- or under-estimated; boundaries are often not reproducible; mean object value cannot be measured; and fuzzy borders cannot be accommodated. A new measure, Object Strength, is proposed. This is the sum of all abnormal intensities, above a uniform background value. For a uniform object, this is simply the product of the increase in intensity and the size of the object. Biologically, this could be at least as relevant as existing measures of size or mean intensity. We hypothesise that Object Strength will perform better than traditional area measurements in characterising small objects. In a pilot study, the reproducibility of object strength measurements was investigated using MR images of small multiple sclerosis (MS) lesions. In addition, accuracy was investigated using artificial lesions of known volume (0.3-6.2 ml) and realistic appearance. Reproducibility approached that of area measurements (in 33/90 lesion reports the difference between repeats was less than for area measurements). Total lesion volume was accurate to 0.2%. In conclusion, Object Strength has potential for improved characterisation of small lesions and objects in imaging and possibly spectroscopy.
Brito, João; Krustrup, Peter; Rebelo, António
2012-08-01
This study aimed to analyze the influence of the playing surface on movement pattern, physical loading, perceived exertion, and fatigue development during small-sided recreational soccer games. Time-motion, heart rate, blood lactate, and perceived exertion were measured for 16 recreational players aged 22 (range: 19-35) yrs. During 5-a-side soccer games on 3 different field surfaces: sand, artificial turf, and asphalt. Jump and sprint tests were performed prior to and after each game. Total distance covered was higher on asphalt and turf than on sand (3.89±0.04 and 3.73±0.12 vs. 2.59±0.21 km; p<.01), and the number of high-intensity runs was higher on asphalt than on turf (55±3 vs. 43±3; p<.05), but not sand (46±6). Mean heart rate (means±SEM, 160±3 vs. 171±1 b.p.m.) and time>90% HR(max) (20.8±5.1% vs. 44.1±5.0%) were lower (p<.05) on asphalt than on turf, with intermediate values for sand. Blood lactate was lower on asphalt than on sand (2.8±0.3 vs. 4.7±0.6 mmolL(-1); p<.05). Perceived exertion was lower on asphalt than on turf and sand (VAS 0-100: 52±3 vs. 72±3 and 72±3; p<.01). After the game, squat and countermovement jump performances were lower (4.9-8.1%, and 1.9-6.4%, respectively; p<.001) for all field surfaces, but no changes were observed in 5- and 30-m sprint performance. Small-sided recreational soccer games elicit high heart rates, multiple intense actions, and decreased jump performance for all the investigated playing surfaces, suggesting that multiple fitness and health benefits can be achieved through soccer on sand, artificial turf and asphalt. Nonetheless, locomotor activities, heart rate, blood lactate levels, and perceived exertion differ between surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.
Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery
2014-09-01
Left Image: small domed solar sensor on the left-most arm of the meteorology tree collects shortwave (visible) surface solar intensity time series...2012). The replacement of MYI by FYI in the region also enhances this positive feedback loop. Hudson et al. (2013) suggest that the increase in the...larger meltponds being identified as open water, it is valid based on Hudson et al. (2013), were they found larger meltponds share similar albedo
A Semiconductor Microlaser for Intracavity Flow Cytometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil, O.; Copeland, G.C.; Dunne, J.L.
1999-01-20
Semiconductor microlasers are attractive components for micro-analysis systems because of their ability to emit coherent intense light from a small aperture. By using a surface-emitting semiconductor geometry, we were able to incorporate fluid flow inside a laser microcavity for the first time. This confers significant advantages for high throughput screening of cells, particulates and fluid analytes in a sensitive microdevice. In this paper we discuss the intracavity microfluidics and present preliminary results with flowing blood and brain cells.
2018-01-24
Acute Leukemia; Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Diffuse Large B-Cell Lymphoma; Follicular Lymphoma; Graft Versus Host Disease; Hodgkin Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Plasma Cell Myeloma; Refractory Plasma Cell Myeloma; Secondary Myelodysplastic Syndrome
Dosimetric evaluation of a Monte Carlo IMRT treatment planning system incorporating the MIMiC
NASA Astrophysics Data System (ADS)
Rassiah-Szegedi, P.; Fuss, M.; Sheikh-Bagheri, D.; Szegedi, M.; Stathakis, S.; Lancaster, J.; Papanikolaou, N.; Salter, B.
2007-12-01
The high dose per fraction delivered to lung lesions in stereotactic body radiation therapy (SBRT) demands high dose calculation and delivery accuracy. The inhomogeneous density in the thoracic region along with the small fields used typically in intensity-modulated radiation therapy (IMRT) treatments poses a challenge in the accuracy of dose calculation. In this study we dosimetrically evaluated a pre-release version of a Monte Carlo planning system (PEREGRINE 1.6b, NOMOS Corp., Cranberry Township, PA), which incorporates the modeling of serial tomotherapy IMRT treatments with the binary multileaf intensity modulating collimator (MIMiC). The aim of this study is to show the validation process of PEREGRINE 1.6b since it was used as a benchmark to investigate the accuracy of doses calculated by a finite size pencil beam (FSPB) algorithm for lung lesions treated on the SBRT dose regime via serial tomotherapy in our previous study. Doses calculated by PEREGRINE were compared against measurements in homogeneous and inhomogeneous materials carried out on a Varian 600C with a 6 MV photon beam. Phantom studies simulating various sized lesions were also carried out to explain some of the large dose discrepancies seen in the dose calculations with small lesions. Doses calculated by PEREGRINE agreed to within 2% in water and up to 3% for measurements in an inhomogeneous phantom containing lung, bone and unit density tissue.
The Role of Small-Scale Processes in Solar Active Region Decay
NASA Astrophysics Data System (ADS)
Meyer, Karen; Mackay, Duncan
2017-08-01
Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.
Effect of a delta tab on fine scale mixing in a turbulent two-stream shear layer
NASA Technical Reports Server (NTRS)
Foss, J. K.; Zaman, K. B. M. Q.
1996-01-01
The fine scale mixing produced by a delta tab in a shear layer has been studied experimentally. The tab was placed at the trailing edge of a splitter plate which produced a turbulent two-stream mixing layer. The tab apex tilted downstream and into the high speed stream. Hot-wire measurements in the 3-D space behind the tab detailed the three velocity components as well as the small scale population distributions. These small scale eddies, which represent the peak in the dissipation spectrum, were identified and counted using the Peak-Valley-Counting technique. It was found that the small scale populations were greater in the shear region behind the tab, with the greatest increase occurring where the shear layer underwent a sharp turn. This location was near, but not coincident, with the core of the streamwise vortex, and away from the region exhibiting maximum turbulence intensity. Moreover, the tab increased the most probably frequency and strain rate of the small scales. It made the small scales smaller and more energetic.
Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration
Wong, Paul; Markey, M.; Rapp, C. M.; Darrow, R. M.; Ziesel, A.
2017-01-01
Purpose Light-induced photoreceptor cell degeneration and disease progression in age-related macular degeneration (AMD) involve oxidative stress and visual cell loss, which can be prevented, or slowed, by antioxidants. Our goal was to test the protective efficacy of a traditional Age-related Eye Disease Study antioxidant formulation (AREDS) and AREDS combined with non-traditional antioxidants in a preclinical animal model of photooxidative retinal damage. Methods Male Sprague-Dawley rats were reared in a low-intensity (20 lux) or high-intensity (200 lux) cyclic light environment for 6 weeks. Some animals received a daily dietary supplement consisting of a small cracker infused with an AREDS antioxidant mineral mixture, AREDS antioxidants minus zinc, or zinc oxide alone. Other rats received AREDS combined with a detergent extract of the common herb rosemary, AREDS plus carnosic acid, zinc oxide plus rosemary, or rosemary alone. Antioxidant efficacy was determined by measuring retinal DNA levels 2 weeks after 6 h of intense exposure to white light (9,000 lux). Western blotting was used to determine visual cell opsin and arrestin levels following intense light treatment. Rhodopsin regeneration was determined after 1 h of exposure to light. Gene array analysis was used to determine changes in the expression of retinal genes resulting from light rearing environment or from antioxidant supplementation. Results Chronic high-intensity cyclic light rearing resulted in lower levels of rod and cone opsins, retinal S-antigen (S-ag), and medium wavelength cone arrestin (mCAR) than found for rats maintained in low cyclic light. However, as determined by retinal DNA, and by residual opsin and arrestin levels, 2 weeks after acute photooxidative damage, visual cell loss was greater in rats reared in low cyclic light. Retinal damage decreased with AREDS plus rosemary, or with zinc oxide plus rosemary whereas AREDS alone and zinc oxide alone (at their daily recommended levels) were both ineffective. One week of supplemental AREDS plus carnosic acid resulted in higher levels of rod and cone cell proteins, and higher levels of retinal DNA than for AREDS alone. Rhodopsin regeneration was unaffected by the rosemary treatment. Retinal gene array analysis showed reduced expression of medium- wavelength opsin 1 and arrestin C in the high-light reared rats versus the low-light rats. The transition of rats from low cyclic light to a high cyclic light environment resulted in the differential expression of 280 gene markers, enriched for genes related to inflammation, apoptosis, cytokine, innate immune response, and receptors. Rosemary, zinc oxide plus rosemary, and AREDS plus rosemary suppressed 131, 241, and 266 of these genes (respectively) in high-light versus low-light animals and induced a small subset of changes in gene expression that were independent of light rearing conditions. Conclusions Long-term environmental light intensity is a major determinant of retinal gene and protein expression, and of visual cell survival following acute photooxidative insult. Rats preconditioned by high-light rearing exhibit lower levels of cone opsin mRNA and protein, and lower mCAR protein, than low-light reared animals, but greater retention of retinal DNA and proteins following photooxidative damage. Rosemary enhanced the protective efficacy of AREDS and led to the greatest effect on the retinal genome in animals reared in high environmental light. Chronic administration of rosemary antioxidants may be a useful adjunct to the therapeutic benefit of AREDS in slowing disease progression in AMD. PMID:29062223
Tencer, John; Carlberg, Kevin; Larsen, Marvin; ...
2017-06-17
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
NASA Astrophysics Data System (ADS)
Gaeris, Andres Claudio
The Stimulated Brillouin Scattering (SBS) instability is studied in moderately short scale-length plasmas. The backscattered and specularly reflected light resulting from the interaction of a pair of high power picosecond duration laser pulses with solid Silicon, Gold and Parylene-N (CH) strip targets was spectrally resolved. The first, weaker laser pulse forms a short scale-length plasma while the second delayed one interacts with the isothermally expanded, underdense region of the plasma. The pulses are generated by the Table Top Terawatt (TTT) laser operating at 1054 nm (infrared) with intensities up to 5.10 16 W/cm2. Single laser pulses only show Lambertian scattering on the target critical surface. Pairs of pulses with high intensity in the second pulse show an additional backscattered, highly blueshifted feature, associated with SBS. Increasing this second pulse intensity even more leads to the appearance of a third feature, even more blueshifted than the second, resulting from the Brillouin sidescattering of the laser pulse reflected on the critical surface. The SBS threshold intensities and enhanced reflectivities for P-polarized light are determined for different plasma density scale-lengths. These measurements agree with the convective thresholds predicted by the SBS theory of Liu, Rosenbluth, and White using plasma profiles simulated by the LILAC code. The spectral position of the Brillouin back- and sidescattered features are determined. The SBS and Doppler shifts are much too small to explain the observed blueshifts. The refractive index shift is of the right magnitude, although more detailed verification is required in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tencer, John; Carlberg, Kevin; Larsen, Marvin
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
Ramos, Joyce S; Dalleck, Lance C; Tjonna, Arnt Erik; Beetham, Kassia S; Coombes, Jeff S
2015-05-01
Vascular dysfunction is a precursor to the atherosclerotic cascade, significantly increasing susceptibility to cardiovascular events such as myocardial infarction or stroke. Previous studies have revealed a strong relationship between vascular function and cardiorespiratory fitness (CRF). Thus, since high-intensity interval training (HIIT) is a potent method of improving CRF, several small randomized trials have investigated the impact on vascular function of HIIT relative to moderate-intensity continuous training (MICT). The aim of this study was to systematically review the evidence and quantify the impact on vascular function of HIIT compared with MICT. Three electronic databases (PubMed, Embase, and MEDLINE) were searched (until May 2014) for randomized trials comparing the effect of at least 2 weeks of HIIT and MICT on vascular function. HIIT protocols involved predominantly aerobic exercise at a high intensity, interspersed with active or passive recovery periods. We performed a meta-analysis to compare the mean difference in the change in vascular function assessed via brachial artery flow-mediated dilation (FMD) from baseline to post-intervention between HIIT and MICT. The impact of HIIT versus MICT on CRF, traditional cardiovascular disease (CVD) risk factors, and biomarkers associated with vascular function (oxidative stress, inflammation, and insulin resistance) was also reviewed across included studies. Seven randomized trials, including 182 patients, met the eligibility criteria and were included in the meta-analysis. A commonly used HIIT prescription was four intervals of 4 min (4 × 4 HIIT) at 85-95% of maximum or peak heart rate (HRmax/peak), interspersed with 3 min of active recovery at 60-70% HRmax/peak, three times per week for 12-16 weeks. Brachial artery FMD improved by 4.31 and 2.15% following HIIT and MICT, respectively. This resulted in a significant (p < 0.05) mean difference of 2.26%. HIIT also had a greater tendency than MICT to induce positive effects on secondary outcome measures, including CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. HIIT is more effective at improving brachial artery vascular function than MICT, perhaps due to its tendency to positively influence CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. However, the variability in the secondary outcome measures, coupled with the small sample sizes in these studies, limits this finding. Nonetheless, this review suggests that 4 × 4 HIIT, three times per week for at least 12 weeks, is a powerful form of exercise to enhance vascular function.
Neutron Polarization Analysis for Biphasic Solvent Extraction Systems
Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; ...
2016-06-16
Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO 3) 4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/R g, where R g is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis frommore » SANS data when R g is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less
NASA Astrophysics Data System (ADS)
Wittman, David M.; Benson, Bryant
2018-06-01
Weak lensing analyses use the image---the intensity field---of a distant galaxy to infer gravitational effects on that line of sight. What if we analyze the velocity field instead? We show that lensing imprints much more information onto a highly ordered velocity field, such as that of a rotating disk galaxy, than onto an intensity field. This is because shuffling intensity pixels yields a post-lensed image quite similar to an unlensed galaxy with a different orientation, a problem known as "shape noise." We show that velocity field analysis can eliminate shape noise and yield much more precise lensing constraints. Furthermore, convergence as well as shear can be constrained using the same target, and there is no need to assume the weak lensing limit of small convergence. We present Fisher matrix forecasts of the precision achievable with this method. Velocity field observations are expensive, so we derive guidelines for choosing suitable targets by exploring how precision varies with source parameters such as inclination angle and redshift. Finally, we present simulations that support our Fisher matrix forecasts.
Hydrogen enhanced crack growth in 18 Ni maraging steels
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Wei, R. P.
1976-01-01
The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high-purity hydrogen are examined using the crack-tip stress intensity factor K as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly defined K-independent stage (Stage II). Crack growth rates in an 18 Ni (grade 250) maraging steel are examined for temperatures from -6 to +100 C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 plus or minus 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparent Kth (stress intensity level below which no observable crack growth occurs) and the crack growth behavior. Comparison of results on '250' and '300' grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior.
Landscape simplification filters species traits and drives biotic homogenization
Gámez-Virués, Sagrario; Perović, David J.; Gossner, Martin M.; Börschig, Carmen; Blüthgen, Nico; de Jong, Heike; Simons, Nadja K.; Klein, Alexandra-Maria; Krauss, Jochen; Maier, Gwen; Scherber, Christoph; Steckel, Juliane; Rothenwöhrer, Christoph; Steffan-Dewenter, Ingolf; Weiner, Christiane N.; Weisser, Wolfgang; Werner, Michael; Tscharntke, Teja; Westphal, Catrin
2015-01-01
Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high. PMID:26485325
Numerical study of phase conjugation in stimulated Brillouin scattering from an optical waveguide
NASA Astrophysics Data System (ADS)
Lehmberg, R. H.
1983-05-01
Stimulated Brillouin scattering (SBS) in a multimode optical waveguide is examined, and the parameters that affect the wavefront conjugation fidelity are studied. The nonlinear propagation code is briefly described and the calculated quantities are defined. The parameter study in the low reflectivity limit is described, and the effects of pump depletion are considered. The waveguide produced significantly higher fidelities than the focused configuration, in agreement with several experimental studies. The light scattered back through the phase aberrator exhibited a farfield intenstiy profile closely matching that of the incident beam; however, the nearfield intensity exhibited large and rapid spatial inhomogeneities across the entire aberrator, even for conjugation fidelities as high as 98 percent. In the absence of pump depletion, the fidelity increased with average pump intensity for amplitude gains up to around e to the 10th and then decreased slowly and monotonically with higher intensity. For all cases, pump depletion significantly enhanced the fidelity of the wavefront conjugation by inhibiting the small-scale pulling effect.
Coherent Multiple Light Scattering in Ultracold Atomic Rb
NASA Astrophysics Data System (ADS)
Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2003-05-01
Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.
NASA Astrophysics Data System (ADS)
Lange, Rense
2015-02-01
An extension of concurrent validity is proposed that uses qualitative data for the purpose of validating quantitative measures. The approach relies on Latent Semantic Analysis (LSA) which places verbal (written) statements in a high dimensional semantic space. Using data from a medical / psychiatric domain as a case study - Near Death Experiences, or NDE - we established concurrent validity by connecting NDErs qualitative (written) experiential accounts with their locations on a Rasch scalable measure of NDE intensity. Concurrent validity received strong empirical support since the variance in the Rasch measures could be predicted reliably from the coordinates of their accounts in the LSA derived semantic space (R2 = 0.33). These coordinates also predicted NDErs age with considerable precision (R2 = 0.25). Both estimates are probably artificially low due to the small available data samples (n = 588). It appears that Rasch scalability of NDE intensity is a prerequisite for these findings, as each intensity level is associated (at least probabilistically) with a well- defined pattern of item endorsements.
NASA Astrophysics Data System (ADS)
Skok, Gregor; Žagar, Nedjeljka; Honzak, Luka; Žabkar, Rahela; Rakovec, Jože; Ceglar, Andrej
2016-01-01
The study presents a precipitation intercomparison based on two satellite-derived datasets (TRMM 3B42, CMORPH), four raingauge-based datasets (GPCC, E-OBS, Willmott & Matsuura, CRU), ERA Interim reanalysis (ERAInt), and a single climate simulation using the WRF model. The comparison was performed for a domain encompassing parts of Europe and the North Atlantic over the 11-year period of 2000-2010. The four raingauge-based datasets are similar to the TRMM dataset with biases over Europe ranging from -7 % to +4 %. The spread among the raingauge-based datasets is relatively small over most of Europe, although areas with greater uncertainty (more than 30 %) exist, especially near the Alps and other mountainous regions. There are distinct differences between the datasets over the European land area and the Atlantic Ocean in comparison to the TRMM dataset. ERAInt has a small dry bias over the land; the WRF simulation has a large wet bias (+30 %), whereas CMORPH is characterized by a large and spatially consistent dry bias (-21 %). Over the ocean, both ERAInt and CMORPH have a small wet bias (+8 %) while the wet bias in WRF is significantly larger (+47 %). ERAInt has the highest frequency of low-intensity precipitation while the frequency of high-intensity precipitation is the lowest due to its lower native resolution. Both satellite-derived datasets have more low-intensity precipitation over the ocean than over the land, while the frequency of higher-intensity precipitation is similar or larger over the land. This result is likely related to orography, which triggers more intense convective precipitation, while the Atlantic Ocean is characterized by more homogenous large-scale precipitation systems which are associated with larger areas of lower intensity precipitation. However, this is not observed in ERAInt and WRF, indicating the insufficient representation of convective processes in the models. Finally, the Fraction Skill Score confirmed that both models perform better over the Atlantic Ocean with ERAInt outperforming the WRF at low thresholds and WRF outperforming ERAInt at higher thresholds. The diurnal cycle is simulated better in the WRF simulation than in ERAInt, although WRF could not reproduce well the amplitude of the diurnal cycle. While the evaluation of the WRF model confirms earlier findings related to the model's wet bias over European land, the applied satellite-derived precipitation datasets revealed differences between the land and ocean areas along with uncertainties in the observation datasets.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
NASA Astrophysics Data System (ADS)
Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter
2018-04-01
A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
Yan, Yong; Qian, Shuo; Garrison, Ben; ...
2018-04-15
In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less
The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems
NASA Technical Reports Server (NTRS)
Varnavas, Kosta; Sims, William Herbert; Casas, Joseph
2015-01-01
This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging SmallSat and CubeSat industry and to provide advances for NASA as described in the TAO5 Communication and Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A typical implementation of the SDR is to use a processor and write software to implement all the functions of filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, error correcting and other algorithms is too much for modern processors to get efficient use of the available bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining low power. These methods will implement digital radios with significant data rates in the X and Ka bands. Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in a 1/2 U sized telemetry system. Additionally, modern FPGAs have embedded processing systems, such as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR technologies.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yong; Qian, Shuo; Garrison, Ben
In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less
Decreasing photobleaching by silver island films: application to muscle⋆
Muthu, P.; Gryczynski, I.; Gryczynski, Z.; Talent, J.; Akopova, I.; Jain, K.; Borejdo, J.
2007-01-01
Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule—typically of the order of attoliters (10−18 L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high. This calls for a large illuminating light flux, which in turn leads to rapid photobleaching of the fluorophores that are labeling the proteins. To decrease photobleaching, we measured fluorescence from a sample placed on coverslips coated with silver island films (SIF). SIF reduce photobleaching because they enhance fluorescence brightness and significantly decrease fluorescence lifetime. Increase in the brightness effectively decreases photobleaching because illumination can be attenuated to obtain the same fluorescence intensity. Decrease of lifetime decreases photobleaching because short lifetime minimizes the probability of oxygen attack while the fluorophore is in the excited state. The decrease of photobleaching was demonstrated in skeletal muscle. Myofibrils were labeled lightly with rhodamine–phalloidin, placed on coverslips coated with SIF, illuminated by total internal reflection, and observed through a confocal aperture. We show that SIF causes the intensity of phalloidin fluorescence to increase 4- to 5- fold and its fluorescence lifetime to decrease on average 23-fold. As a consequence, the rate of photobleaching of four or five molecules of actin of a myofibril on Olympus coverslips coated with SIF decreased at least 30-fold in comparison with photobleaching on an uncoated coverslip. Significant decrease of photobleaching makes the measurement of signal from a single cross-bridge of contracting muscle feasible. PMID:17531183
Pamela J. Edwards; Karl W.J. Williard; James N. Kochenderfer
2004-01-01
Five methods for estimating maximum daily and annual nitrate (NO3) and suspended sediment loads using periodic sampling of varying intensities were compared to actual loads calculated from intensive stormflow and baseflow sampling from small, forested watersheds in north central West Virginia to determine if the less intensive sampling methods were accurate and could...
Video enhancement workbench: an operational real-time video image processing system
NASA Astrophysics Data System (ADS)
Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.
1993-01-01
Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence J.
We examine the role of periodic sinusoidal free-stream disturbances on the inner law law-of-the-wall (log-law) for turbulent boundary layers. This model serves a surrogate for the interaction of flight vehicles with atmospheric disturbances. The approximate skin friction expression that is derived suggests that free-stream disturbances can cause enhancement of the mean skin friction. Considering the influence of grid generated free stream turbulence in the laminar sublayer/log law region (small scale/high frequency) the model recovers the well-known shear layer enhancement suggesting an overall validity for the approach. The effect on the wall shear associated with the lower frequency due to themore » passage of the vehicle through large (vehicle scale) atmospheric disturbances is likely small i.e. on the order 1% increase for turbulence intensities on the order of 2%. The increase in wall pressure fluctuation which is directly proportional to the wall shear stress is correspondingly small.« less
Rilov, Gil; Schiel, David R.
2011-01-01
Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure. PMID:21887351
Corizzo, C C; Baker, M C; Henkelmann, G C
2000-09-01
To describe patient outcomes (e.g., pain intensity and relief, satisfaction, expectations) and analgesic practices of healthcare providers for inpatients and outpatients in community hospital settings. Descriptive, correlational, and random sampling. Three community-based institutions in southeast Louisiana. 114 inpatients and outpatients with cancer-related or acute postoperative pain. Inpatients (n = 68) mostly were women and younger than 60 years of age. Outpatients (n = 46) mostly were men and older than 60 years of age. Both groups were predominantly well-educated and Caucasian. Subjects completed a modified version of the American Pain Society's Patient Satisfaction Survey. Researchers completed a chart audit tool reviewing analgesic prescriptive and administrative practices. Weak to moderately strong correlations existed for the relationships between the satisfaction variables and the pain intensity, pain relief, and expectation variables for all subjects. Satisfaction with current pain intensity was correlated most strongly with pain intensity and relief scores. Higher pain intensity and relief were related to lower satisfaction with current pain intensity. Regardless of setting or pain type, subjects experienced significant amounts of pain during a 24-hour period. Patient expectations for experiencing high levels of pain were realized, but expectations for significant pain relief were not. Institutional pain management programs that approach pain from a multidimensional perspective need to be developed. Continued education for healthcare professionals and patients is a vital part of this process.
Nicole L. Constantine; Tyler A. Campbell; William M. Baughman; Timothy B. Harrington; Brian R. Chapman; Karl V. Miller
2005-01-01
We characterized small mammal communities in three loblolly pine (Pinus taeda) stands in the Lower Coastal Plain of South Carolina during June 1998-Aug. 2000 to investigate influence of corridor edges on small mammal distribution. We live-trapped small mammals in three regenerating stands following clearcutting. Harvested stands were bisected by...
Ramirez-Campillo, Rodrigo; Diaz, Daniela; Martinez-Salazar, Cristian; Valdés-Badilla, Pablo; Delgado-Floody, Pedro; Méndez-Rebolledo, Guillermo; Cañas-Jamet, Rodrigo; Cristi-Montero, Carlos; García-Hermoso, Antonio; Celis-Morales, Carlos; Moran, Jason; Buford, Thomas W; Rodriguez-Mañas, Leocadio; Alonso-Martinez, Alicia M; Izquierdo, Mikel
2016-01-01
Objective This study aimed to compare the effects of two frequencies of high-speed resistance training (HSRT) on physical performance and quality of life of older women. Methods A total of 24 older women participated in a 12-week HSRT program composed of either two or three sessions/week (equated for volume and intensity). Women were randomized into three arms: a control group (CG, n=8), a resistance training group performing two sessions/week (RT2, n=8), and a resistance training group performing three sessions/week (RT3, n=8). The training program for both experimental groups included exercises that required high-speed concentric muscle actions. Results No baseline differences were observed among groups. Compared with the CG, both training groups showed similar small to moderate improvements (P<0.05) in muscle strength, power, functional performance, balance, and quality of life. Conclusion These results suggest that equated for volume and intensity, two and three training sessions/week of HSRT are equally effective for improving physical performance and quality of life of older women. PMID:28008239
Akbas, Hatice Zehra; Aydin, Zeki; Yilmaz, Onur; Turgut, Selvin
2017-01-01
The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε ' , ε″) and AC conductivity (σ') of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO 3 ceramics without carbonate impurities with a small dielectric loss. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Wei, Hong
2000-01-01
The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. The principle of the laser power propulsion is that when high-powered laser is focused at a small area near the surface of a thruster, the intense energy causes the electrical breakdown of the working fluid (e.g. air) and forming high speed plasma (known as the inverse Bremsstrahlung, IB, effect). The intense heat and high pressure created in the plasma consequently causes the surrounding to heat up and expand until the thrust producing shock waves are formed. This complex process of gas ionization, increase in radiation absorption and the forming of plasma and shock waves will be investigated in the development of the present numerical model. In the first phase of this study, laser light focusing, radiation absorption and shock wave propagation over the entire pulsed cycle are modeled. The model geometry and test conditions of known benchmark experiments such as those in Myrabo's experiment will be employed in the numerical model validation simulations. The calculated performance data will be compared to the test data.
Ramirez-Campillo, Rodrigo; Diaz, Daniela; Martinez-Salazar, Cristian; Valdés-Badilla, Pablo; Delgado-Floody, Pedro; Méndez-Rebolledo, Guillermo; Cañas-Jamet, Rodrigo; Cristi-Montero, Carlos; García-Hermoso, Antonio; Celis-Morales, Carlos; Moran, Jason; Buford, Thomas W; Rodriguez-Mañas, Leocadio; Alonso-Martinez, Alicia M; Izquierdo, Mikel
2016-01-01
This study aimed to compare the effects of two frequencies of high-speed resistance training (HSRT) on physical performance and quality of life of older women. A total of 24 older women participated in a 12-week HSRT program composed of either two or three sessions/week (equated for volume and intensity). Women were randomized into three arms: a control group (CG, n=8), a resistance training group performing two sessions/week (RT2, n=8), and a resistance training group performing three sessions/week (RT3, n=8). The training program for both experimental groups included exercises that required high-speed concentric muscle actions. No baseline differences were observed among groups. Compared with the CG, both training groups showed similar small to moderate improvements ( P <0.05) in muscle strength, power, functional performance, balance, and quality of life. These results suggest that equated for volume and intensity, two and three training sessions/week of HSRT are equally effective for improving physical performance and quality of life of older women.
NASA Astrophysics Data System (ADS)
Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier
2016-02-01
Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.
Köklü, Yusuf; Alemdaroğlu, Utku; Cihan, Hamit; Wong, Del P
2017-11-01
To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La - ) were determined at the end of each SSG. The SBD format elicited significantly lower %HR max responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La - and RPE responses than SBD and CON in all formats (P < .05). These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.
Seeley, John R; Manitsas, Tara; Gau, Jeff M
2017-09-01
The majority of older adults experiencing depression and/or anxiety do not receive adequate treatment due to limited access to evidence-based practices. Low intensity cognitive-behavioral intervention has been established as an evidence-based practice with the potential to increase the reach to older adults. The purpose of the current study is to evaluate the feasibility, acceptability, and potential efficacy of a low intensity, peer-supported, cognitive-behavioral intervention for mild to moderate depression and/or anxiety delivered by a local intergovernmental agency serving older adults. Sixty-two older adults (81% female) between 55 and 96 years of age were randomly assigned to either a peer-facilitated cognitive-behavioral bibliotherapy condition (n = 31) or a wait-list control condition (n = 31). The 10-week feasibility trial data indicated that (1) a majority of the participants were highly engaged in the intervention with an average number of 7.3 peer sessions attended and 2.1 workbooks completed, (2) the participants were quite satisfied with the peer mentoring sessions and moderately satisfied with the workbooks, and (3) there were clinically meaningful reductions in depressive symptoms for those assigned to the treatment condition compared to those that were wait-listed (d = .43), though the effect was non-significant (p = .099) due to the small sample size. The evidence for the impact on reducing anxiety symptoms was more equivocal with a non-significant, small effect size favoring the treatment condition. The pilot study provided preliminary evidence for the feasibility, acceptability, and potential efficacy of the peer-facilitated low intensity cognitive-behavioral therapy intervention approach.
Acute alerting effects of light: A systematic literature review.
Souman, Jan L; Tinga, Angelica M; Te Pas, Susan F; van Ee, Raymond; Vlaskamp, Björn N S
2018-01-30
Periodic, well timed exposure to light is important for our health and wellbeing. Light, in particular in the blue part of the spectrum, is thought to affect alertness both indirectly, by modifying circadian rhythms, and directly, giving rise to acute effects. We performed a systematic review of empirical studies on direct, acute effects of light on alertness to evaluate the reliability of these effects. In total, we identified 68 studies in which either light intensity, spectral distribution, or both were manipulated, and evaluated the effects on behavioral measures of alertness, either subjectively or measured in reaction time performance tasks. The results show that increasing the intensity of polychromatic white light has been found to increase subjective ratings of alertness in a majority of studies, though a substantial proportion of studies failed to find significant effects, possibly due to small sample sizes or high baseline light intensities. The effect of the color temperature of white light on subjective alertness is less clear. Some studies found increased alertness with higher color temperatures, but other studies reported no detrimental effects of filtering out the short wavelengths from the spectrum. Similarly, studies that used monochromatic light exposure showed no systematic pattern for the effects of blue light compared to longer wavelengths. Far fewer studies investigated the effects of light intensity or spectrum on alertness as measured with reaction time tasks and of those, very few reported significant effects. In general, the small sample sizes used in studies on acute alerting effects of light make it difficult to draw definitive conclusions and better powered studies are needed, especially studies that allow for the construction of dose-response curves. Copyright © 2017 Elsevier B.V. All rights reserved.
Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter
2016-01-01
The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296
Correction of complex nonlinear signal response from a pixel array detector
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; ...
2015-04-22
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less
Nonlinear modulation of the HI power spectrum on ultra-large scales. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeh, Obinna; Maartens, Roy; Santos, Mario, E-mail: umeobinna@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: mgrsantos@uwc.ac.za
2016-03-01
Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolutionmore » bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.« less
Calman, Lynn; Beaver, Kinta; Hind, Daniel; Lorigan, Paul; Roberts, Chris; Lloyd-Jones, Myfanwy
2011-12-01
The burden of lung cancer is high for patients and carers. Care after treatment may have the potential to impact on this. We reviewed the published literature on follow-up strategies intended to improve survival and quality of life. We systematically reviewed studies comparing follow-up regimes in lung cancer. Primary outcomes were overall survival (comparing more intensive versus less intensive follow-up) and survival comparing symptomatic with asymptomatic recurrence. Quality of life was identified as a secondary outcome measure. Hazard ratios (HRs) and 95% confidence intervals from eligible studies were synthesized. Nine studies that examined the role of more intensive follow-up for patients with lung cancer were included (eight observational studies and one randomized controlled trial). The studies of curative resection included patients with non-small cell lung cancer Stages I to III disease, and studies of palliative treatment follow-up included limited and extensive stage patients with small cell lung cancer. A total of 1669 patients were included in the studies. Follow-up programs were heterogeneous and multifaceted. A nonsignificant trend for intensive follow-up to improve survival was identified, for the curative intent treatment subgroup (HR: 0.83; 95% confidence interval: 0.66-1.05). Asymptomatic recurrence was associated with increased survival, which was statistically significant HR: 0.61 (0.50-0.74) (p < 0.01); quality of life was only assessed in one study. This meta-analysis must be interpreted with caution due to the potential for bias in the included studies: observed benefit may be due to systematic differences in outcomes rather than intervention effects. Some benefit was noted from intensive follow-up strategies. More robust data, in the form of randomized controlled trials, are needed to confirm these findings as the review is based primarily on observational studies. Future research should also include patient-centered outcomes to investigate the impact of follow-up regimes on living with lung cancer and psychosocial well-being.
McElwain, Elizabeth F.; Bohnert, Hans J.; Thomas, John C.
1992-01-01
In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C3-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte. ImagesFigure 1Figure 2 PMID:16668999
Assessment of intrinsic small signal parameters of submicron SiC MESFETs
NASA Astrophysics Data System (ADS)
Riaz, Mohammad; Ahmed, Muhammad Mansoor; Rafique, Umair; Ahmed, Umer Farooq
2018-01-01
In this paper, a technique has been developed to estimate intrinsic small signal parameters of submicron SiC MESFETs, designed for high power microwave applications. In the developed technique, small signal parameters are extracted by involving drain-to-source current, Ids instead of Schottky barrier depletion layer expression. It has been demonstrated that in SiC MESFETs, the depletion layer gets modified due to intense transverse electric field and/or self-heating effects, which are conventionally not taken into account. Thus, assessment of AC small signal parameters by employing depletion layer expression loses its accuracy for devices meant for high power applications. A set of expressions for AC small signal elements has been developed using Ids and its dependence on device biasing has been discussed. The validity of the proposed technique has been demonstrated using experimental data. Dr. Ahmed research interests are in Microelectronics, Microwave and RF Engineering and he has supervised numerous MS and PhD research projects. He authored over 100 research papers in the field of microelectronics. Dr. Ahmed is a fellow of the Institution of Engineering and Technology (IET), UK.; a Chartered Engineer (CEng) from the UK Engineering Council and holds the title of European Engineer (Eur Ing) from the European Federation of National Engineering Association (FEANI), Brussels. He is a life member of PEC (Pak); EDS & MTTS (USA).
Oh, Seong Hwan; Joo, Chang Hwa
2018-04-01
The aims of this study were to examine the differences in technical aspects and physical demands between small-size games (SSG; 8 vs. 8) and regular-size games (RSG; 11 vs. 11) in young Korean soccer players. Seventy-nine young soccer players from 6 teams (U-12) volunteered to participate in the study. The players completed 4 games (2 SSG, 62×51 m, and 2 RSG, 80×54 m) in 2 days. Each game was filmed to evaluate technical actions. Physical demand variables were measured using global positioning system technology. SSG showed significantly greater numbers of technical plays among 17 variables when compared to RSG ( P <0.05). The players covered significantly greater total distance during low-, moderate-, and high-speed running and sprinting in SSG than in RSG ( P <0.05). Higher numbers of high-intensity activities (repeated high-intensity efforts, explosive efforts, decelera-tions, accelerations, and sprinting) were observed in SSG compared to RSG ( P <0.05). Mean heart rate was also higher in SSG than in RSG ( P <0.05). Despite the greater physical demands during SSG, the exercise intensity was similar to that reported in previous studies. Therefore, the SSG format applied in the present study can be a suitable official game format for Korean young soccer players, resulting in significantly greater exposure to technical plays without excessive physical demands.
NASA Astrophysics Data System (ADS)
Le, Khai Q.; Dang, Ngo Hai
2018-05-01
This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.
Intensity changes in future extreme precipitation: A statistical event-based approach.
NASA Astrophysics Data System (ADS)
Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen
2017-04-01
Short-lived precipitation extremes are often responsible for hazards in urban and rural environments with economic and environmental consequences. The precipitation intensity is expected to increase about 7% per degree of warming, according to the Clausius-Clapeyron (CC) relation. However, the observations often show a much stronger increase in the sub-daily values. In particular, the behavior of the hourly summer precipitation from radar observations with the dew point temperature (the Pi-Td relation) for the Netherlands suggests that for moderate to warm days the intensification of the precipitation can be even higher than 21% per degree of warming, that is 3 times higher than the expected CC relation. The rate of change depends on the initial precipitation intensity, as low percentiles increase with a rate below CC, the medium percentiles with 2CC and the moderate-high and high percentiles with 3CC. This non-linear statistical Pi-Td relation is suggested to be used as a delta-transformation to project how a historic extreme precipitation event would intensify under future, warmer conditions. Here, the Pi-Td relation is applied over a selected historic extreme precipitation event to 'up-scale' its intensity to warmer conditions. Additionally, the selected historic event is simulated in the high-resolution, convective-permitting weather model Harmonie. The initial and boundary conditions are alternated to represent future conditions. The comparison between the statistical and the numerical method of projecting the historic event to future conditions showed comparable intensity changes, which depending on the initial percentile intensity, range from below CC to a 3CC rate of change per degree of warming. The model tends to overestimate the future intensities for the low- and the very high percentiles and the clouds are somewhat displaced, due to small wind and convection changes. The total spatial cloud coverage in the model remains, as also in the statistical method, unchanged. The advantages of the suggested Pi-Td method of projecting future precipitation events from historic events is that it is simple to use, is less expensive time, computational and resource wise compared to a numerical model. The outcome can be used directly for hydrological and climatological studies and for impact analysis such as for flood risk assessments.
The influence of the Earth's magnetosphere on the high-energy solar protons
NASA Technical Reports Server (NTRS)
Bazilevskaya, G. A.; Makhmutov, V. S.; Charakhchyan, T. N.
1985-01-01
In the Earth's polar regions the intensity of the solar protons with the energy above the critical energy of geomagnetic cutoff is the same as in the interplanetary space. The penumbra in the polar regions is small and the East-West effect is also small. However the geomagnetic cutoff rigidity R sub c in polar regions is difficult to calculate because it is not sufficient to include only the internal sources of the geomagnetic field. During the magneto-quiescent periods the real value of R sub c can be less by 0.1 GV than the calculated value because of the external sources. During the geomagnetic storms the real value of R sub c is still lower.
Description of high-power laser radiation in the paraxial approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milant'ev, V P; Karnilovich, S P; Shaar, Ya N
2015-11-30
We consider the feasibility of an adequate description of a laser pulse of arbitrary shape within the framework of the paraxial approximation. In this approximation, using a parabolic equation and an expansion in the small parameter, expressions are obtained for the field of a sufficiently intense laser radiation given in the form of axially symmetric Hermite – Gaussian beams of arbitrary mode and arbitrary polarisation. It is shown that in the case of sufficiently short pulses, corrections to the transverse components of the laser field are the first-order rather than the secondorder quantities in the expansion in the small parameter.more » The peculiarities of the description of higher-mode Hermite – Gaussian beams are outlined. (light wave transformation)« less
Ultraviolet disinfection of water for small water supplies
NASA Astrophysics Data System (ADS)
Carlson, D. A.; Seabloom, R. W.; Dewalle, F. B.; Wetzler, T. F.; Engeset, J.
1985-07-01
In the study ultraviolet radiation was considered as an alternative means of disinfection of small drinking water supplies. A major impetus for the study was the large increase in waterborne disease episodes in the United States whose etiologic agent, Giardia lamblia, was found to be highly resistant to conventional chlorination. While the germicidal effect of sunlight has long been known, it has been found that artificial UV radiation with a wavelength of 253.7 nm, can be produced by low pressure mercury vapor lamps. The inactivation of microorganisms by UV radiation is based upon photochemical reactions in DNA which result in errors in the coding system. Inactivation of microorganisms due to exposure to UV is proportional to the intensity multiplied by the time of exposure.
Apollo-Soyuz pamphlet no. 6: Cosmic ray dosage. [experimental designiradiation hazards and dosage
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
The radiation hazard inside spacecraft is discussed with emphasis on its effects on the crew, biological specimens, and spacecraft instruments. The problem of light flash sensations in the eyes of astronauts is addressed and experiment MA-106 is described. In this experiment, light flashes seen by blindfolded astronauts were counted and high energy cosmic ray intensity in the command module cabin were measured. The damage caused by cosmic ray hits on small living organisms was investigated in the Biostack 3 experiment (MA-107). Individual cosmic rays were tracked through layers of bacterial spores, small seeds, and eggs interleaved with layers of AgCl-crystal wafers, special plastic, and special photographic film that registered each cosmic ray particle passed.
Frequency Distribution of Seismic Intensity in Japan between 1950 and 2009
NASA Astrophysics Data System (ADS)
Kato, M.; Kohayakawa, Y.
2012-12-01
JMA Seismic Intensity is an index of seismic ground motion which is frequently used and reported in the media. While it is always difficult to represent complex ground motion with one index, the fact that it is widely accepted in the society makes the use of JMA Seismic Intensity preferable when seismologists communicate with the public and discuss hazard assessment and risk management. With the introduction on JMA Instrumental Intensity in 1996, the number of seismic intensity observation sites has substantially increased and the spatial coverage has improved vastly. Together with a long history of non-instrumental intensity records, the intensity data represent some aspects of the seismic ground motion in Japan. We investigate characteristics of seismic ground motion between 1950 and 2009 utilizing JMA Seismic Intensity Database. Specifically we are interested in the frequency distribution of intensity recordings. Observations of large intensity is rare compared to those of small intensity, and previous studies such as Ikegami [1961] demonstrated that frequency distribution of observed intensity obeys an exponential law, which is equivalent to the Ishimoto-Iida law [Ishimoto & Iida, 1939]. Such behavior could be used to empirically construct probabilistic seismic hazard maps [e.g., Kawasumi, 1951]. For the recent instrumental intensity data as well as pre-instrumental data, we are able to confirm that Ishimoto-Iida law explains the observation. Exponents of the Ishimoto-Iida law, or slope of the exponential law in the semi-log plot, is approximately 0.5. At stations with long recordings, there is no apparent difference between pre-instrumental and instrumental intensities when Ishimoto-Iida law is used as a measure. Numbers of average intensity reports per year and exponents of the frequency distribution curve vary regionally and local seismicity is apparently the controlling factor. The observed numbers of large intensity is slightly less than extrapolated and predicted from those of small intensity assuming the exponential relation.
Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs
NASA Technical Reports Server (NTRS)
Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia
1997-01-01
Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].
Vig, Asger Laurberg; Haldrup, Kristoffer; Enevoldsen, Nikolaj; Thilsted, Anil Haraksingh; Eriksen, Johan; Kristensen, Anders; Feidenhans'l, Robert; Nielsen, Martin Meedom
2009-11-01
We propose and describe a microfluidic system for high intensity x-ray measurements. The required open access to a microfluidic channel is provided by an out-of-plane capillary burst valve (CBV). The functionality of the out-of-plane CBV is characterized with respect to the diameter of the windowless access hole, ranging from 10 to 130 microm. Maximum driving pressures from 22 to 280 mbar corresponding to refresh rates of the exposed sample from 300 Hz to 54 kHz is demonstrated. The microfluidic system is tested at beamline ID09b at the ESRF synchrotron radiation facility in Grenoble, and x-ray scattering measurements are shown to be feasible and to require only very limited amounts of sample, <1 ml/h of measurements without recapturing of sample. With small adjustments of the present chip design, scattering angles up to 30 degrees can be achieved without shadowing effects and integration on-chip mixing and spectroscopy appears straightforward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vig, Asger Laurberg; Enevoldsen, Nikolaj; Thilsted, Anil Haraksingh
2009-11-15
We propose and describe a microfluidic system for high intensity x-ray measurements. The required open access to a microfluidic channel is provided by an out-of-plane capillary burst valve (CBV). The functionality of the out-of-plane CBV is characterized with respect to the diameter of the windowless access hole, ranging from 10 to 130 {mu}m. Maximum driving pressures from 22 to 280 mbar corresponding to refresh rates of the exposed sample from 300 Hz to 54 kHz is demonstrated. The microfluidic system is tested at beamline ID09b at the ESRF synchrotron radiation facility in Grenoble, and x-ray scattering measurements are shown tomore » be feasible and to require only very limited amounts of sample, <1 ml/h of measurements without recapturing of sample. With small adjustments of the present chip design, scattering angles up to 30 deg. can be achieved without shadowing effects and integration on-chip mixing and spectroscopy appears straightforward.« less
NASA Astrophysics Data System (ADS)
Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun
2010-06-01
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.
Analysing a cycling grand tour: Can we monitor fatigue with intensity or load ratios?
Sanders, Dajo; Heijboer, Mathieu; Hesselink, Matthijs K C; Myers, Tony; Akubat, Ibrahim
2018-06-01
This study evaluated the changes in ratios of different intensity (rating of perceived exertion; RPE, heart rate; HR, power output; PO) and load measures (session-RPE; sRPE, individualized TRIMP; iTRIMP, Training Stress Score™; TSS) in professional cyclists. RPE, PO and HR data was collected from twelve professional cyclists (VO 2max 75 ± 6 ml∙min∙kg -1 ) during a two-week baseline training period and during two cycling Grand Tours. Subjective:objective intensity (RPE:HR, RPE:PO) and load (sRPE:iTRIMP, sRPE:TSS) ratios and external:internal intensity (PO:HR) and load (TSS:iTRIMP) ratios were calculated for every session. Moderate to large increases in the RPE:HR, RPE:PO and sRPE:TSS ratios (d = 0.79-1.79) and small increases in the PO:HR and sRPE:iTRIMP ratio (d = 0.21-0.41) were observed during Grand Tours compared to baseline training data. Differences in the TSS:iTRIMP ratio were trivial to small (d = 0.03-0.27). Small to moderate week-to-week changes (d = 0.21-0.63) in the PO:HR, RPE:PO, RPE:HR, TSS:iTRIMP, sRPE:iTRIMP and sRPE:TSS were observed during the Grand Tour. Concluding, this study shows the value of using ratios of intensity and load measures in monitoring cyclists. Increases in ratios could reflect progressive fatigue that is not readily detected by changes in solitary intensity/load measures.
SMALL ANGLE SCATTERING OF X-RAYS BY PLASTICALLY DEFORMED SINGLE CRYSTALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, W.H.; Smoluchowski, R.
1959-05-01
The small-angle scattering of x rays from single crystals of magnesium plastically deformed by simple shear was measured in the angular range of 4' to 5 deg . The crystals were subjected to both unidirectional and cyclic shear stresses applied along the STAl 1 2-bar 0! direction. Thin slices of the deformed single crystals were prepared using strainfree cutting and polishing techniques. The thin slices had orientations such that the slip direction was either parallel or perpendicular to the incident x-ray beam in order to observe any anisotropy in the scattering that might be due to dislocations. It was foundmore » that those samples which contained deformation twins within the irradiated volume produced rather large scattered intensity. This scattered intensity is interpreted as being due to double Bragg scattering. The scattered intensity from other specimens was attributed to surface scattering. No evidence for small angle scattering by dislocations was found. (auth)« less
Recent progress in making protein microarray through BioLP
NASA Astrophysics Data System (ADS)
Yang, Rusong; Wei, Lian; Feng, Ying; Li, Xiujian; Zhou, Quan
2017-02-01
Biological laser printing (BioLP) is a promising biomaterial printing technique. It has the advantage of high resolution, high bioactivity, high printing frequency and small transported liquid amount. In this paper, a set of BioLP device is design and made, and protein microarrays are printed by this device. It's found that both laser intensity and fluid layer thickness have an influence on the microarrays acquired. Besides, two kinds of the fluid layer coating methods are compared, and the results show that blade coating method is better than well-coating method in BioLP. A microarray of 0.76pL protein microarray and a "NUDT" patterned microarray are printed to testify the printing ability of BioLP.
Atomic and Molecular Systems in Intense Ultrashort Laser Pulses
NASA Astrophysics Data System (ADS)
Saenz, A.
2008-07-01
The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some peculiar molecular strong-field effects and the possibility of strong-field control mechanisms will be demonstrated. This includes phenomena like enhanced ionization and bond softening as well as the creation of vibrational wavepacket in the non-ionized electronic ground state of H_2 by creating a Schrodinger-cat state between the ionized and the non-ionized molecules. The latter, theoretically predicted phenomenon was very recently experimentally observed and lead to the real-time observation of the so far fastest molecular motion.
Intensity of geomorphological processes in NW sector of Pacific rim marginal mountain belts
NASA Astrophysics Data System (ADS)
Lebedeva, Ekaterina; Shvarev, Sergey; Gotvansky, Veniamin
2014-05-01
Continental marginal mountains, including the mountain belts of Russian Far East, are characterized by supreme terrain contrast, mosaic structure of surface and crust, and rich complex of modern endogenous processes - volcanism, seismicity, and vertical movements. Unstable state of geomorphological systems and activity of relief forming processes here is caused also by deep dissected topography and the type and amount of precipitation. Human activities further stimulate natural processes and increase the risk of local disasters. So these territories have high intensity (or tension) of geomorphological processes. Intensity in the authors' understanding is willingness of geomorphological system to be out of balance, risk of disaster under external and internal agent, both natural and human. Mapping with quantitative accounting of intensity of natural and human potential impact is necessary for indication the areal distribution trends of geomorphological processes intensity and zones of potential risk of disasters. Methods of map drowning up are based on several criteria analyzing: 1) total terrain-form processes and their willingness to be a hazard-like, 2) existence, peculiarity and zoning of external agents which could cause extreme character of base processes within the territory, 3) peculiarity of terrain morphology which could cause hazard way of terrain-form processes. Seismic activity is one of the most important factors causing activation of geomorphological processes and contributing to the risk of dangerous situations. Earthquake even small force can provoke many catastrophic processes: landslides, mudslides, avalanches and mudflows, tsunami and others. Seismic gravitational phenomenons of different scale accompany almost all earthquakes of intensity 7-8 points and above, and some processes, such as avalanches, activated by seismic shocks intensity about 1-3 points. In this regard, we consider it important selection of high intensity seismic zones in marginal-continental mountain systems and also offer to give them extra points of tension, the number of which increases depending on the strength of the shock. Such approach allows to identify clearly the most potentially hazardous areas where there may be various, sometimes unpredictable scale catastrophic processes, provoked intense underground tremors. We also consider the impact of the depth of topography dissection and the total amount of precipitation. The marginal-continental mountain systems have often radically different moistening of coastal and inland slopes. And this difference can be 500, 1000 mm and more, that, undoubtedly, affects the course and intensity of geomorphological processes on slopes of different exposures. The total evaluation of intensity of geomorphologic processes exceeding 15 points is considered to be potentially catastrophic. At 10-15 points tension geomorphologic processes is extremely high, and at 5-10 points - high, less than 5 points - low. The maps of the key areas of the Russian Far East - Kamchatka and the north of Kuril Islands, Sakhalin and the Western Okhotsk region were compiled. These areas have differences in geodynamic regimes, landscape-climatic and anthropogenic conditions and highly significant in relation to the differentiated estimation of geomorphologic tension. The growth of intensity of geomorphological processes toward the Pacific Ocean was recorded: from 7-10 points in Western Okhotsk region to 10-13 at Sakhalin and to 13-15 points for Kamchatka.
Technology for High Pure Aluminum Oxide Production from Aluminum Scrap
NASA Astrophysics Data System (ADS)
Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.
2017-10-01
In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.
Spatial variations of the Sr I 4607 Å scattering polarization peak
NASA Astrophysics Data System (ADS)
Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.
2018-06-01
Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.
Chen, Yao; Zhu, Youqin; Yang, Daobin; Luo, Qian; Yang, Lin; Huang, Yan; Zhao, Suling; Lu, Zhiyun
2015-04-11
An asymmetrical squaraine dye (Py-3) with its two electron-donating aryl groups directly linked to the electron-withdrawing squaric acid core possesses an ideal bandgap of 1.33 eV, together with an intense and broad absorption band in the range 550-950 nm. Hence, the resulting solution-processed solar cells display an impressive Jsc of 12.03 mA cm(-2) and a PCE of 4.35%.
Neurilemmoma of the glans penis: ultrasonography and magnetic resonance imaging findings.
Jung, Dae Chul; Hwang, Sung Il; Jung, Sung Il; Kim, Sun Ho; Kim, Seung Hyup
2006-01-01
Neurilemmoma of the glans penis is rare, and no imaging findings have been reported. A case of neurilemmoma of the glans penis is presented. Ultrasonography (US) and magnetic resonance imaging revealed a well-defined small mass in the glans penis. The mass appeared hypoechoic on gray-scale US and hypervascular on color Doppler US. Magnetic resonance imaging revealed high signal intensity of the mass on a T2-weighted image and strong enhancement on a contrast-enhanced T1-weighted image.
Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics.
Qin, Zhao; Taylor, Michael; Hwang, Mary; Bertoldi, Katia; Buehler, Markus J
2014-11-12
Graphene has attracted intense attention to the use in extreme applications. However, its small thickness facilitates wrinkle formation, and it is not clear how such structural change affects its area-specific capacitance. Herein, we combine molecular dynamics and continuum mechanics-based simulations to study the changes in surface area induced by wrinkles. We find that the high specific surface area of graphene can only be affected up to 2% regardless of loading conditions, geometry, and defects.
Effects of Radiation Damping in Extreme Ultra-intense Laser-Plasma Interaction
NASA Astrophysics Data System (ADS)
Pandit, Rishi R.
Recent advances in the development of intense short pulse lasers are significant. Now it is available to access a laser with intensity 1021W/cm2 by focusing a petawatt class laser. In a few years, the intensity will exceed 1022W/cm2 , at which intensity electrons accelerated by the laser get energy more than 100 MeV and start to emit radiation strongly. Resultingly, the damping of electron motion can become large. In order to study this problem, we developed a code to solve a set of equations describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the equation of motion of an electron including radiation damping under the influence of electromagnetic fields is derived from the Lorentz-Dirac equation treating the damping as a perturbation. So far people had used the first order damping equation. This is because the second order term seems to be small and actually it is negligible under 1022W/cm2 intensity. The derivation of 2nd order equation is also complicated and challenging. We derived the second order damping equations for the first time and implemented in the code. The code was then tested via single particle motion in the extreme intensity laser. It was found that the 1st order damping term is reasonable up to the intensity 1022W/cm2, but the 2nd oder term becomes not negligible and comparable in magnitude to the first order term beyond 1023W/cm2. The radiation damping model was introduced using a one-dimensional particle-in-cell code (PIC), and tested in the laser-plasma interaction at extreme intensity. The strong damping of hot electrons in high energy tail was demonstrated in PIC simulations.
Penetration of High Intensity Radiated Fields (HIRF) Into General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Birtcher, Craig R.; Georgakopoulos, Stavros V.; Panaretos, Anastasios H.
2004-01-01
The ability to design and achieve electromagnetic compatibility is becoming more challenging with the rapid development of new electronic products and technologies. The importance of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues stems from the fact that the ambient electromagnetic environment has become very hostile; that is, it increases both in density and intensity, while the current trend in technology suggests the number of electronic devices increases in homes, businesses, factories, and transportation vehicles. Furthermore, the operating frequency of products coming into the market continuously increases. While cell phone technology has exceeded 1 GHz and Bluetooth operates at 2.4 GHz, products involving satellite communications operate near 10 GHz and automobile radar systems involve frequencies above 40 GHz. The concern about higher frequencies is that they correspond to smaller wavelengths, therefore electromagnetic waves are able to penetrate equipment enclosure through apertures or even small cracks more easily. In addition, electronic circuits have become small in size, and they are usually placed on motherboards or housed in boxes in very close proximity. Cosite interference and coupling in all electrical and electronic circuit assemblies are two essential issues that have to be examined in every design.
NASA Astrophysics Data System (ADS)
Iwao, Toru; Naito, Yuto; Shimizu, Yuta; Yamamoto, Shinji
2016-10-01
The problem of an emergency large-scale lighting with the high-intensity discharge (HID) lamp is the lack of radiation intensity because of inappropriate energy balance. Some researchers have researched that the radiation power depended on the arc temperature increases with increasing the current. However, the heat loss and the erosion of the electrode as well as the radiation power increases with increasing the current excessively. AC current replaces alternately the cathode and the anode. Thus, it is possible to avoid the concentration of the heat transfer to the anode. Moreover, the lamp efficiency decreases with increasing the current excessively because of ultra violet rays increment. It is necessary to control the temperature distribution with controlling the current and radius. In this paper, the radiation power as a function of the current in the wall-stabilized AC arc of water-cooled vortex type with small caliber was measured. As a result, the radiation power increased with increasing the current and appropriate wall radius. The radiation of AC arc is smaller than it of DC arc. And, the erosion of electrode decreases.
Cockcroft, Emma J; Williams, Craig A; Jackman, Sarah R; Bassi, Shikhar; Armstrong, Neil; Barker, Alan R
2018-01-01
The purpose of this study was to assess the acute effect of high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on glucose tolerance, insulin sensitivity and fat oxidation in young boys. Eleven boys (8.8 ± 0.8 y) completed three conditions: 1) HIIE; 2) work-matched MIE; and 3) rest (CON) followed by an oral glucose tolerance test (OGTT) to determine glucose tolerance and insulin sensitivity (Cederholm index). Fat oxidation was measured following the OGTT using indirect calorimetry. There was no effect for condition on plasma [glucose] and [insulin] area under the curve (AUC) responses following the OGTT (P > 0.09). However, there was a "trend" for a condition effect for insulin sensitivity with a small increase after HIIE (P = 0.04, ES = 0.28, 9.7%) and MIE (P = 0.07, ES = 0.21, 6.5%) compared to CON. There was an increase in fat oxidation AUC following HIIE (P = 0.008, ES = 0.79, 38.9%) compared to CON, but with no differences between MIE and CON and HIIE and MIE (P > 0.13). In conclusion, 7- to 10-year-old boys may have limited scope to improve insulin sensitivity and glucose tolerance after a single bout of HIIE and MIE. However, fat oxidation is augmented after HIIE but not MIE.
Pop, Laura A; Pileczki, Valentina; Cojocneanu-Petric, Roxana M; Petrut, Bogdan; Braicu, Cornelia; Jurj, Ancuta M; Buiga, Rares; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana
2016-01-01
Sample processing is a crucial step for all types of genomic studies. A major challenge for researchers is to understand and predict how RNA quality affects the identification of transcriptional differences (by introducing either false-positive or false-negative errors). Nanotechnologies help improve the quality and quantity control for gene expression studies. The study was performed on 14 tumor and matched normal pairs of tissue from patients with bladder urothelial carcinomas. We assessed the RNA quantity by using the NanoDrop spectrophotometer and the quality by nano-microfluidic capillary electrophoresis technology provided by Agilent 2100 Bioanalyzer. We evaluated the amplification status of three housekeeping genes and one small nuclear RNA gene using the ViiA 7 platform, with specific primers. Every step of the sample handling protocol, which begins with sample harvest and ends with the data analysis, is of utmost importance due to the fact that it is time consuming, labor intensive, and highly expensive. High temperature of the surgical procedure does not affect the small nucleic acid sequences in comparison with the mRNA. Gene expression is clearly affected by the RNA quality, but less affected in the case of small nuclear RNAs. We proved that the high-temperature, highly invasive transurethral resection of bladder tumor procedure damages the tissue and affects the integrity of the RNA from biological specimens.
Pop, Laura A; Pileczki, Valentina; Cojocneanu-Petric, Roxana M; Petrut, Bogdan; Braicu, Cornelia; Jurj, Ancuta M; Buiga, Rares; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana
2016-01-01
Background Sample processing is a crucial step for all types of genomic studies. A major challenge for researchers is to understand and predict how RNA quality affects the identification of transcriptional differences (by introducing either false-positive or false-negative errors). Nanotechnologies help improve the quality and quantity control for gene expression studies. Patients and methods The study was performed on 14 tumor and matched normal pairs of tissue from patients with bladder urothelial carcinomas. We assessed the RNA quantity by using the NanoDrop spectrophotometer and the quality by nano-microfluidic capillary electrophoresis technology provided by Agilent 2100 Bioanalyzer. We evaluated the amplification status of three housekeeping genes and one small nuclear RNA gene using the ViiA 7 platform, with specific primers. Results Every step of the sample handling protocol, which begins with sample harvest and ends with the data analysis, is of utmost importance due to the fact that it is time consuming, labor intensive, and highly expensive. High temperature of the surgical procedure does not affect the small nucleic acid sequences in comparison with the mRNA. Conclusion Gene expression is clearly affected by the RNA quality, but less affected in the case of small nuclear RNAs. We proved that the high-temperature, highly invasive transurethral resection of bladder tumor procedure damages the tissue and affects the integrity of the RNA from biological specimens. PMID:27330317
Fernandes-da-Silva, Juliano; Castagna, Carlo; Teixeira, Anderson Santiago; Carminatti, Lorival José; Guglielmo, Luiz Guilherme Antonacci
2016-12-01
The aim of this study was to examine the relationship between the peak velocity derived from the Carminatti Test (T-CAR) (PV T-CAR ) and physical match performance in young soccer players. Thirty-three youth soccer players were recruited from 2 non-professional clubs. Friendly matches and small-sided game were performed. Physical match demands were assessed using Global Positioning System (GPS) technology. On a separate occasion, the players were submitted to the T-CAR. Players were categorised into 3 groups based on their T-CAR performance: Low (PV T-CAR ≤ P33), Intermediate (P33 > PV T-CAR < P66) and High (PV T-CAR ≥ P66). The PV T-CAR (15.5 ± 0.7 km·h -1 ) was significantly related to high-intensity activities (HIA; r = 0.78, P < 0.001), high-intensity running (HIR; r = 0.66, P < 0.001), sprinting (r = 0.62, P < 0.001) and total distance (TD) covered (r = 0.47, P < 0.01) during friendly matches. The PV T-CAR was strongly correlated with the amount of HIA (r = 0.81, P < 0.001), HIR (r = 0.85, P < 0.001) and TD covered (r = 0.81, P < 0.001) during small-sided game. No significant correlation was observed between the PV T-CAR and distance of sprinting (r = 0.49, P = 0.067) during small-side game. Furthermore, players in the High group covered significantly more TD (10%) and did more HIA (42%), sprinting (31%) and HIR (25%) during friendly matches compared to the players classified as having Low performance on the T-CAR. These differences still remained after adjusting for chronological age (CA), maturity and body size. In conclusion, the current study gives empirical support to the ecological and construct validity of this novel field test (T-CAR) as an indicator of match-related physical performance in young soccer players during pubertal years.
A Hidden State in Light-Harvesting Complex II Revealed By Multipulse Spectroscopy
2015-01-01
Light-harvesting complex II (LHCII) is pivotal both for collecting solar radiation for photosynthesis, and for protection against photodamage under high light intensities (via a process called nonphotochemical quenching, NPQ). Aggregation of LHCII is associated with fluorescence quenching, and is used as an in vitro model system of NPQ. However, there is no agreement on the nature of the quencher and on the validity of aggregation as a model system. Here, we use ultrafast multipulse spectroscopy to populate a quenched state in unquenched (unaggregated) LHCII. The state shows characteristic features of lutein and chlorophyll, suggesting that it is an excitonically coupled state between these two compounds. This state decays in approximately 10 ps, making it a strong competitor for photodamage and photochemical quenching. It is observed in trimeric and monomeric LHCII, upon re-excitation with pulses of different wavelengths and duration. We propose that this state is always present, but is scarcely populated under low light intensities. Under high light intensities it may become more accessible, e.g. by conformational changes, and then form a quenching channel. The same state may be the cause of fluorescence blinking observed in single-molecule spectroscopy of LHCII trimers, where a small subpopulation is in an energetically higher state where the pathway to the quencher opens up. PMID:25815531
Chan, W I; Liao, P H; Lo, K V
2010-11-01
Using the microwave-enhanced advanced oxidation process (MW/H2O2-AOP), the pH and irradiation intensity on waste activated sludge samples were investigated to provide insight to the athermal effects on nutrients release, solids destruction, particle size distribution and dewaterability, and to demonstrate their interrelationships. Carbonaceous matters and nutrients released into solution depended on the irradiation intensity and time. Higher irradiation levels tended to be more effective in the solubilization of nutrients and had more pronounced effects in the dewaterability of sludge. In terms of particle size distribution, detectable particles increased in size for treatments in acidic conditions, while the dewaterability of treated sludge was improved. In treatments under neutral and alkaline conditions, the particle size range increased, with more small particles formed, thereby significantly deteriorating the dewaterability of sludge treated in alkaline conditions. The best results for the solubilization of nutrients were in alkaline conditions with high irradiation power, but dewaterability of the sludge was compromised. Sludge treatment with the MW/H2O2-AOP in acidic conditions with high irradiation power yielded the best dewaterable sludge and significant nutrient solubilization; therefore, it is the recommended treatment condition for activated sludge.
Lovell, Karina; Bower, Peter; Gellatly, Judith; Byford, Sarah; Bee, Penny; McMillan, Dean; Arundel, Catherine; Gilbody, Simon; Gega, Lina; Hardy, Gillian; Reynolds, Shirley; Barkham, Michael; Mottram, Patricia; Lidbetter, Nicola; Pedley, Rebecca; Molle, Jo; Peckham, Emily; Knopp-Hoffer, Jasmin; Price, Owen; Connell, Janice; Heslin, Margaret; Foley, Christopher; Plummer, Faye; Roberts, Christopher
2017-06-01
Obsessive-compulsive disorder (OCD) is prevalent and without adequate treatment usually follows a chronic course. "High-intensity" cognitive-behaviour therapy (CBT) from a specialist therapist is current "best practice." However, access is difficult because of limited numbers of therapists and because of the disabling effects of OCD symptoms. There is a potential role for "low-intensity" interventions as part of a stepped care model. Low-intensity interventions (written or web-based materials with limited therapist support) can be provided remotely, which has the potential to increase access. However, current evidence concerning low-intensity interventions is insufficient. We aimed to determine the clinical effectiveness of 2 forms of low-intensity CBT prior to high-intensity CBT, in adults meeting the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for OCD. This study was approved by the National Research Ethics Service Committee North West-Lancaster (reference number 11/NW/0276). All participants provided informed consent to take part in the trial. We conducted a 3-arm, multicentre randomised controlled trial in primary- and secondary-care United Kingdom mental health services. All patients were on a waiting list for therapist-led CBT (treatment as usual). Four hundred and seventy-three eligible patients were recruited and randomised. Patients had a median age of 33 years, and 60% were female. The majority were experiencing severe OCD. Patients received 1 of 2 low-intensity interventions: computerised CBT (cCBT; web-based CBT materials and limited telephone support) through "OCFighter" or guided self-help (written CBT materials with limited telephone or face-to-face support). Primary comparisons concerned OCD symptoms, measured using the Yale-Brown Obsessive Compulsive Scale-Observer-Rated (Y-BOCS-OR) at 3, 6, and 12 months. Secondary outcomes included health-related quality of life, depression, anxiety, and functioning. At 3 months, guided self-help demonstrated modest benefits over the waiting list in reducing OCD symptoms (adjusted mean difference = -1.91, 95% CI -3.27 to -0.55). These effects did not reach a prespecified level of "clinically significant benefit." cCBT did not demonstrate significant benefit (adjusted mean difference = -0.71, 95% CI -2.12 to 0.70). At 12 months, neither guided self-help nor cCBT led to differences in OCD symptoms. Early access to low-intensity interventions led to significant reductions in uptake of high-intensity CBT over 12 months; 86% of the patients allocated to the waiting list for high-intensity CBT started treatment by the end of the trial, compared to 62% in supported cCBT and 57% in guided self-help. These reductions did not compromise longer-term patient outcomes. Data suggested small differences in satisfaction at 3 months, with patients more satisfied with guided self-help than supported cCBT. A significant issue in the interpretation of the results concerns the level of access to high-intensity CBT before the primary outcome assessment. We have demonstrated that providing low-intensity interventions does not lead to clinically significant benefits but may reduce uptake of therapist-led CBT. International Standard Randomized Controlled Trial Number (ISRCTN) Registry ISRCTN73535163.
Mendez, Derek; Watkins, Herschel; Qiao, Shenglan; ...
2016-09-26
During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlinedmore » for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. Finally, it is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.« less
Experimental evidence that livestock grazing intensity affects the activity of a generalist predator
NASA Astrophysics Data System (ADS)
Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve
2013-05-01
Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.
The atomic geometries of GaP(110) and ZnS(110) revisited - A structural ambiguity and its resolution
NASA Technical Reports Server (NTRS)
Duke, C. B.; Paton, A.; Kahn, A.
1984-01-01
The atomic geometries of GaP(110) and ZnS(110) are reexamined using the R-factor minimization procedure, developed for GaAs(110) and previously applied to GaSb(110), ZnTe(110), InAs(110), and AlP(110), to analyze experimental elastic low-energy electron diffraction intensities. Unlike most of the earlier cases, both GaP(110) and ZnS(110) exhibit two distinct minimum-Rx structures which cannot be distinguished by analysis of the shapes of the intensity profiles alone. One region of best-fit structures exhibits top-layer displacements normal to the surface characterized by a small bond-length-conserving, top-layer rotation (omega aproximately 2-3 deg), a small relaxation of the top layer away from the surface, and a 10 percent expansion of the top-layer bond length. The other region of best-fit structures is the conventional one: nearly bond-length-conserving rotations of omega = 26-28 deg in the top layer and a small (approximately 0.1 A) contraction of the uppermost layer spacing. This ambiguity may be removed, however, by consideration of the integrated beam intensities. The conventional region of structural parameters provides a decisively better description of the relative magnitudes of the integrated beam intensities and hence is the preferred structure.
Stress-Intensity Factors for Elliptical Cracks Emanating from Countersunk Rivet Holes
DOT National Transportation Integrated Search
1998-04-01
Small cracks developing from rivet holes in lap joints of fuselage structure have been an issue of concern over the past decade. Stress-intensity factor solutions required to assess the structural integrity of such configurations are lacking. To addr...
ICPP: Relativistic Plasma Physics with Ultra-Short High-Intensity Laser Pulses
NASA Astrophysics Data System (ADS)
Meyer-Ter-Vehn, Juergen
2000-10-01
Recent progress in generating ultra-short high-intensity laser pulses has opened a new branch of relativistic plasma physics, which is discussed in this talk in terms of particle-in-cell (PIC) simulations. These pulses create small plasma volumes of high-density plasma with plasma fields above 10^12 V/m and 10^8 Gauss. At intensities beyond 10^18 W/cm^2, now available from table-top systems, they drive relativistic electron currents in self-focussing plasma channels. These currents are close to the Alfven limit and allow to study relativistic current filamentation. A most remarkable feature is the generation of well collimated relativistic electron beams emerging from the channels with energies up to GeV. In dense matter they trigger cascades of gamma-rays, e^+e^- pairs, and a host of nuclear and particle processes. One of the applications may be fast ignition of compressed inertial fusion targets. Above 10^23 W/cm^2, expected to be achieved in the future, solid-density matter becomes relativistically transparent for optical light, and the acceleration of protons to multi-GeV energies is predicted in plasma layers less than 1 mm thick. These results open completely new perspectives for plasma-based accelerator schemes. Three-dimensional PIC simulations turn out to be the superior tool to explore the relativistic plasma kinetics at such intensities. Results obtained with the VLPL code [1] are presented. Different mechanisms of particle acceleration are discussed. Both laser wakefield and direct laser acceleration in plasma channels (by a mechanism similar to inverse free electron lasers) have been identified. The latter describes recent MPQ experimental results. [1] A. Pukhov, J. Plasma Physics 61, 425 - 433 (1999): Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Laboratory).
Wang, Zhi Biao; Wu, Junru; Fang, Liao Qiong; Wang, Hua; Li, Fa Qi; Tian, Yun Bo; Gong, Xiao Bo; Zhang, Hong; Zhang, Lian; Feng, Ruo
2011-04-01
High intensity focused ultrasound (HIFU) has become a new noninvasive surgical modality in medicine. A portion of tissue seated inside a patient's body may experience coagulative necrosis after a few seconds of insonification by high intensity focused ultrasound (US) generated by an extracorporeal focusing US transducer. The region of tissue affected by coagulative necrosis (CN) usually has an ellipsoidal shape when the thermal effect due to US absorption plays the dominant role. Its long and short axes are parallel and perpendicular to the US propagation direction respectively. It was shown by numerical computations using a nonlinear Gaussian beams model to describe the sound field in a focal zone and ex vivo experiments that the dimension of the short and long axes of the tissue which experiences CN can be as small as 50μm and 250μm respectively after one second exposure of US pulse (the spatial and pulse average acoustic power is on the order of tens of Watts and the local acoustic spatial and temporal pulse averaged intensity is on the order of 3×10(4)W/cm(2)) generated by a 1.6MHz HIFU transducer of 12cm diameter and 11cm geometric focal length (f-number=0.92). The concept of thermal dose of cumulative equivalent minutes was used to describe the possible tissue coagulative necrosis generated by HIFU. The numbers of cells which suffered CN were estimated to be on the order of 40. This result suggests that HIFU is able to interact with tens of cells at/near its focal zone while keeping the neighboring cells minimally affected, and thus the targeted cell surgery may be achievable. Copyright © 2010 Elsevier B.V. All rights reserved.
Soil carbon in Australian fire-prone forests determined by climate more than fire regimes.
Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John
2018-10-15
Knowledge of global C cycle implications from changes to fire regime and climate are of growing importance. Studies on the role of the fire regime in combination with climate change on soil C pools are lacking. We used Bayesian modelling to estimate the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC) from field samples collected using a stratified sampling approach. These observations were derived from the following scenarios: 1. Three fire frequencies across three distinctive climate regions in a homogeneous dry sclerophyll forest in south-eastern Australia over four decades. 2. The effects of different fire intensity combinations from successive wildfires. We found climate had a stronger effect than fire frequency on the size of the estimated mineral soil C pool. The largest soil C pool was estimated to occur under a wet and cold (WC) climate, via presumed effects of high precipitation, an adequate growing season temperature (i.e. resulting in relatively high NPP) and winter conditions sufficiently cold to retard seasonal soil respiration rates. The smallest soil C pool was estimated in forests with lower precipitation but warmer mean annual temperature (MAT). The lower precipitation and higher temperature was likely to have retarded NPP and litter decomposition rates but may have had little effect on relative soil respiration. Small effects associated with fire frequency were found, but both their magnitude and direction were climate dependent. There was an increase in soil C associated with a low intensity fire being followed by a high intensity fire. For both fire frequency and intensity the response of % RPC mirrored that of % C Tot : i.e. it was effectively a constant across all combinations of climate and fire regimes sampled. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hampton, S. E.
2015-12-01
The science necessary to unravel complex environmental problems confronts severe computational challenges - coping with huge volumes of heterogeneous data, spanning vast spatial scales at high resolution, and requiring integration of disparate measurements from multiple disciplines. But as cyberinfrastructure advances to support such work, scientists in many fields lack sufficient computational skills to participate in interdisciplinary, data-intensive research. In response, we developed innovative training workshops for early-career scientists, in order to explore both the needs and solutions for training next-generation scientists in skills for data-intensive environmental research. In 2013 and 2014 we ran intensive 3-week training workshops for early-career researchers. One of the workshops was run concurrently in California and North Carolina, connected by virtual technologies and coordinated schedules. We attracted applicants to the workshop with the opportunity to pursue data-intensive small-group research projects that they proposed. This approach presented a realistic possibility that publishable products could result from 3 weeks of focused hands-on classroom instruction combined with self-directed group research in which instructors were present to assist trainees. Instruction addressed 1) collaboration modes and technologies, 2) data management, preservation, and sharing, 3) preparing data for analysis using scripting, 4) reproducible research, 5) sustainable software practices, 6) data analysis and modeling, and 7) communicating results to broad communities. The most dramatic improvements in technical skills were in data management, version control, and working with spatial data outside of proprietary software. In addition, participants built strong networks and collaborative skills that later resulted in a successful student-led grant proposal, published manuscripts, and participants reported that the training was a highly influential experience.
Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits.
Connerney, J E P; Adriani, A; Allegrini, F; Bagenal, F; Bolton, S J; Bonfond, B; Cowley, S W H; Gerard, J-C; Gladstone, G R; Grodent, D; Hospodarsky, G; Jorgensen, J L; Kurth, W S; Levin, S M; Mauk, B; McComas, D J; Mura, A; Paranicas, C; Smith, E J; Thorne, R M; Valek, P; Waite, J
2017-05-26
The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator. Copyright © 2017, American Association for the Advancement of Science.
Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Cowley, S. W. H.; Gerard, J.-C.; Gladstone, G. R.; Grodent, D.; Hospodarsky, G.; Jorgensen, J. L.; Kurth, W. S.; Levin, S. M.; Mauk, B.; McComas, D. J.; Mura, A.; Paranicas, C.; Smith, E. J.; Thorne, R. M.; Valek, P.; Waite, J.
2017-05-01
The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno’s capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno’s passage over the poles and traverse of Jupiter’s hazardous inner radiation belts. Juno’s energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.
NASA Astrophysics Data System (ADS)
Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong
2018-06-01
An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.
Parallel algorithm of VLBI software correlator under multiprocessor environment
NASA Astrophysics Data System (ADS)
Zheng, Weimin; Zhang, Dong
2007-11-01
The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.
NASA Technical Reports Server (NTRS)
Burley, Richard R.; Harrington, Douglas E.
1987-01-01
An experimental investigation was conducted in the high speed leg of the 0.1 scale model of the proposed Altitude Wind Tunnel to evaluate flow conditioner configurations in the settling chamber and their effect on the flow through the short contraction section. The lowest longitudinal turbulence intensity measured at the contraction-section entrance, 1.2%, was achieved with a honeycomb plus three fine-mesh screens. Turbulence intensity in the test section was estimated to be between 0.1 and 0.2% with the honeycomb plus three fine mesh screens in the settling chamber. Adding screens, however, adversely affected the total pressure profile, causing a small defect near the centerline at the contraction section entrance. No significant boundary layer separation was evident in the short contraction section.
Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian
2015-07-01
We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.
Quantification of intensive hybrid coastal reclamation for revealing its impacts on macrozoobenthos
NASA Astrophysics Data System (ADS)
Yan, Jiaguo; Cui, Baoshan; Zheng, Jingjing; Xie, Tian; Wang, Qing; Li, Shanze
2015-01-01
Managing and identifying the sources of anthropogenic stress in coastal wetlands requires an in-depth understanding of relationships between species diversity and human activities. Empirical and experimental studies provide clear evidence that coastal reclamation can have profound impacts on marine organisms, but the focus of such studies is generally on comparative or laboratory research. We developed a compound intensity index (reclamation intensity index, RI) on hybrid coastal reclamation, to quantify the impacts of reclamation on coastal ecosystems. We also made use of mean annual absolute changes to a number of biotic variables (biodiversity, species richness, biomass of total macrozoobenthos, and species richness and biomass of Polychaeta, Mollusca, Crustacea, and Echinodermata) to determine Hedges’d index, which is a measure of the potential effects of coastal reclamation. Our results showed that there was significant difference of coastal reclamation intensity between Yellow Sea, East China Sea and South China Sea, the biological changes in effect sizes of the three regions differed greatly over time. Our modelling analyses showed that hybrid coastal reclamation generally had significant negative impacts on species diversity and biomass of macrozoobenthos. These relationships varied among different taxonomic groups and included both linear and nonlinear relationships. The results indicated that a high-intensity of coastal reclamation contributed to a pronounced decline in species diversity and biomass, while lower-intensity reclamation, or reclamation within certain thresholds, resulted in a small increase in species diversity and biomass. These results have important implications for biodiversity conservation and the ecological restoration of coastal wetlands in face of the intensive reclamation activities.
Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Shi, Dennis; Kumar, Kaushlendra; Goodwin, Andrew P
2017-09-01
The mechanical effects of cavitation can be effective for therapy but difficult to control, thus potentially leading to off-target side effects in patients. While administration of ultrasound active agents such as fluorocarbon microbubbles and nanodroplets can locally enhance the effects of high intensity focused ultrasound (HIFU), it has been challenging to prepare ultrasound active agents that are small and stable enough to accumulate in tumors and internalize into cancer cells. Here, this paper reports the synthesis of 100 nm nanoparticle ultrasound agents based on phospholipid-coated, mesoporous, hydrophobically functionalized silica nanoparticles that can internalize into cancer cells and remain acoustically active. The ultrasound agents produce bubbles when subjected to short HIFU pulses (≈6 µs) with peak negative pressure as low as ≈7 MPa and at particle concentrations down to 12.5 µg mL -1 (7 × 10 9 particles mL -1 ). Importantly, ultrasound agents are effectively uptaken by cancer cells without cytotoxic effects, but HIFU insonation causes destruction of the cells by the acoustically generated bubbles, as demonstrated by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase assays and flow cytometry. Finally, it is showed that the HIFU dose required to effectively eliminate cancer cells in the presence of ultrasound agents causes only a small temperature increase of ≈3.5 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Young-Sun; Lim, Hyo Keun; Rhim, Hyunchul
2016-01-01
To evaluate the effect of bowel interposition on assessing procedure feasibility, and the usefulness and limiting conditions of bowel displacement techniques in magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. Institutional review board approved this study. A total of 375 screening MR exams and 206 MR-HIFU ablations for symptomatic uterine fibroids performed between August 2010 and March 2015 were retrospectively analyzed. The effect of bowel interposition on procedure feasibility was assessed by comparing pass rates in periods before and after adopting a unique bowel displacement technique (bladder filling, rectal filling and subsequent bladder emptying; BRB maneuver). Risk factors for BRB failure were evaluated using logistic regression analysis. Overall pass rates of pre- and post-BRB periods were 59.0% (98/166) and 71.7% (150/209), and in bowel-interposed cases they were 14.6% (7/48) and 76.4% (55/72), respectively. BRB maneuver was technically successful in 81.7% (49/60). Through-the-bladder sonication was effective in eight of eleven BRB failure cases, thus MR-HIFU could be initiated in 95.0% (57/60). A small uterus on treatment day was the only significant risk factor for BRB failure (B = 0.111, P = 0.017). The BRB maneuver greatly reduces the fraction of patients deemed ineligible for MR-HIFU ablation of uterine fibroids due to interposed bowels, although care is needed when the uterus is small.
Casamichana, David; Castellano, Julen; Castagna, Carlo
2012-03-01
This study compared the physical demands of friendly matches (FMs) and small-sided games (SGs) in semiprofessional soccer players by means of global positioning system technology. Twenty-seven semiprofessional soccer players were monitored during 7 FMs and 9 sessions involving different SGs. Their physical profile was described on the basis of 20 variables related to distances and frequencies at different running speeds, the number of accelerations, and through global indicators of workload such as the work:rest ratio, player workload, and the exertion index. Results showed significant differences (p < 0.01) between SGs and FMs for the following variables: overall workload (SG > FM); the distribution of the distance covered in the speed zones 7.0-12.9 km·h(-1) (SG > FM) and >21 km·h(-1) (FM > SG); the distribution of time spent in certain speed zones (FM > SG: 0.0-6.9 and >21 km·h(-1); FM > SG: 7.0-12.9 km·h(-1)). More sprints per hour of play were performed during FMs, with greater mean durations and distances, greater maximum durations and distances, and a greater frequency per hour of play for sprints of 10-40 and >40 m (p < 0.01). The frequency of repeated high-intensity efforts was higher during FM (p < 0.01). The results show that coaches and strength and conditioning professionals should consider FMs during their training routine to foster specific adaptations in the domain of high-intensity effort.
NASA Astrophysics Data System (ADS)
Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck
2014-12-01
Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.
Amin, Mohamed O; Madkour, Metwally; Al-Hetlani, Entesar
2018-05-17
We explored the applicability of different metal oxide nanoparticles (NPs; ZnO, TiO 2 , Fe 2 O 3 , and CeO 2 ) for the optical imaging and mass spectrometric determination of small drug molecules in latent fingerprints (LFPs). Optical imaging was achieved using a dry method-simply dusting the LFPs with a minute amount of NP powder-and still images were captured using a digital microscope and a smartphone camera. Mass spectrometric determination was performed using the NPs as substrates for surface-assisted laser desorption ionization/mass spectrometry (SALDI-MS), which enabled the detection of small drug molecules with high signal intensities. The reproducibility of the results was studied by calculating the % error, SD, and RSD in the results obtained with the various metal oxide NPs. Collectively, the findings showed that using NPs can boost the intensity of the detected signal while minimizing background noise which is an issue predominantly associated with conventional organic matrices of MALDI-MS. Among the four metal oxide NPs, utilization of the Fe 2 O 3 NPs led to the best SALDI performance and the highest detection sensitivity for the analytes of interest. The study was then extended by investigating the influence of time elapsed since the generation of the LFP on the detection of drug molecules in the LFP. The results demonstrated that this method allows the analysis of drug molecules after as long as one week at low and intermediate temperatures (0 and 25 °C). Therefore, the SALDI analysis of small molecules using inorganic NPs, which can be implemented in forensic laboratories for screening and detection purposes, as a powerful alternative to the use of organic matrices. Graphical abstract ᅟ.
Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles
NASA Astrophysics Data System (ADS)
Machida, Keisuke; Adachi, Kenji
2015-07-01
An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.
Ubiquitous solar atmospheric coronal and transition region bright points (BPs) are compact features overlying strong concentrations of magnetic flux. Here, we utilize high-cadence observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to provide the first observations of extreme ultraviolet quiet-Sun (QS) network BP activity associated with sigmoidal structuring. To our knowledge, this previously unresolved fine structure has never been associated with such small-scale QS events. This QS event precedes a bi-directional jet in a compact, low-energy, and low-temperature environment, where evidence is found in support of the typical fan-spine magnetic field topology. As in active regionsmore » and micro-sigmoids, the sigmoidal arcade is likely formed via tether-cutting reconnection and precedes peak intensity enhancements and eruptive activity. Our QS BP sigmoid provides a new class of small-scale structuring exhibiting self-organized criticality that highlights a multi-scaled self-similarity between large-scale, high-temperature coronal fields and the small-scale, lower-temperature QS network. Finally, our QS BP sigmoid elevates arguments for coronal heating contributions from cooler atmospheric layers, as this class of structure may provide evidence favoring mass, energy, and helicity injections into the heliosphere.« less
Wu, Qian; Wang, Yan; Gu, Xue; Zhou, Junyi; Zhang, Huiping; Lv, Wang; Chen, Zhe; Yan, Chao
2014-07-01
Metabolic profiles from human urine reveal the significant difference of carnitine and acylcarnitines levels between non-small cell lung carcinoma patients and healthy controls. Urine samples from cancer patients and healthy individuals were assayed in this metabolomic study using ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The data were normalized by the sum of all intensities and creatinine calibration, respectively, before orthogonal partial least squares discriminant analysis. Twenty differential metabolites were identified based on standard compounds or tandem mass spectrometry fragments. Among them, some medium-/long-chain acylcarnitines, for example, cis-3,4-methylene heptanoylcarnitine, were found to be downregulated while carnitine was upregulated in urine samples from the cancer group compared to the control group. Receiver operating characteristic analysis of the two groups showed that the area under curve for the combination of carnitine and 11 selected acylcarnitines was 0.958. This study suggests that the developed carnitine and acylcarnitines profiling method has the potential to be used for screening non-small cell lung carcinoma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sex Differences in Learning Rate in an Intensive Summer Reading Clinic.
ERIC Educational Resources Information Center
Cahn, Lorynne, D.
1988-01-01
Examines whether sex differences in reading learning rate occurred when female instructors worked with small groups of elementary school boys and girls on an individualized basis in an intensive summer reading clinic program. Reports that girls outperformed boys on all measures. (RAE)
HEp-2 cell image classification method based on very deep convolutional networks with small datasets
NASA Astrophysics Data System (ADS)
Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping
2017-07-01
Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.
Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.
Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad
2016-10-01
Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.
Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons
Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong
2015-01-01
Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372
High-temperature hot spots on Io as seen by the Galileo solid state imaging (SSI) experiment
McEwen, A.S.; Simonelli, D.P.; Senske, D.R.; Klaasen, K.P.; Keszthelyi, L.; Johnson, T.V.; Geissler, P.E.; Carr, M.H.; Belton, M.J.S.
1997-01-01
High-temperature hot spots on Io have been imaged at ???50 km spatial resolution by Galileo's CCD imaging system (SSI). Images were acquired during eclipses (Io in Jupiter's shadow) via the SSI clear filter (???0.4-1.0 ??m), detecting emissions from both small intense hot spots and diffuse extended glows associated with Io's atmosphere and plumes. A total of 13 hot spots have been detected over ???70% of Io's surface. Each hot spot falls precisely on a low-albedo feature corresponding to a caldera floor and/or lava flow. The hot-spot temperatures must exceed ???700 K for detection by SSI. Observations at wavelengths longer than those available to SSI require that most of these hot spots actually have significantly higher temperatures (???1000 K or higher) and cover small areas. The high-temperature hot spots probably mark the locations of active silicate volcanism, supporting suggestions that the eruption and near-surface movement of silicate magma drives the heat flow and volcanic activity of Io. Copyright 1997 by the American Geophysical Union.
Increasing rigor in NMR-based metabolomics through validated and open source tools
Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L
2016-01-01
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism’s phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. PMID:27643760
Increasing rigor in NMR-based metabolomics through validated and open source tools.
Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L
2017-02-01
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. Copyright © 2016. Published by Elsevier Ltd.
Simmons, Cameron S.; Knouf, Emily Christine; Tewari, Muneesh; Lin, Lih Y.
2011-01-01
A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5 This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP's generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper. PMID:21988841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Matthew W.; Dallmeyer, Ian; Johnson, Timothy J.
2016-04-01
Raman spectroscopy is a powerful tool for the characterization of many carbon 27 species. The complex heterogeneous nature of chars and activated carbons has confounded 28 complete analysis due to the additional shoulders observed on the D-band and high intensity 29 valley between the D and G-bands. In this paper the effects of various vacancy and substitution 30 defects have been systematically analyzed via molecular modeling using density functional 31 theory (DFT) and how this is manifested in the calculated gas-phase Raman spectra. The 32 accuracy of these calculations was validated by comparison with (solid-phase) experimental 33 spectra, with amore » small correction factor being applied to improve the accuracy of frequency 34 predictions. The spectroscopic effects on the char species are best understood in terms of a 35 reduced symmetry as compared to a “parent” coronene molecule. Based upon the simulation 36 results, the shoulder observed in chars near 1200 cm-1 has been assigned to the totally symmetric 37 A1g vibrations of various small polyaromatic hydrocarbons (PAH) as well as those containing 38 rings of seven or more carbons. Intensity between 1400 cm-1 and 1450 cm-1 is assigned to A1g 39 type vibrations present in small PAHs and especially those containing cyclopentane rings. 40 Finally, band intensity between 1500 cm-1 and 1550 cm-1 is ascribed to predominately E2g 41 vibrational modes in strained PAH systems. A total of ten potential bands have been assigned 42 between 1000 cm-1 and 1800 cm-1. These fitting parameters have been used to deconvolute a 43 thermoseries of cellulose chars produced by pyrolysis at 300-700 °C. The results of the 44 deconvolution show consistent growth of PAH clusters with temperature, development of non-45 benzyl rings as temperature increases and loss of oxygenated features between 400 °C and 46 600 °C« less
2012-01-01
Background People living in neighbourhoods of lower socioeconomic status have been shown to have higher rates of obesity and a lower likelihood of meeting physical activity recommendations than their more affluent counterparts. This study examines the sociospatial distribution of access to facilities for moderate or vigorous intensity physical activity in Scotland and whether such access differs by the mode of transport available and by Urban Rural Classification. Methods A database of all fixed physical activity facilities was obtained from the national agency for sport in Scotland. Facilities were categorised into light, moderate and vigorous intensity activity groupings before being mapped. Transport networks were created to assess the number of each type of facility accessible from the population weighted centroid of each small area in Scotland on foot, by bicycle, by car and by bus. Multilevel modelling was used to investigate the distribution of the number of accessible facilities by small area deprivation within urban, small town and rural areas separately, adjusting for population size and local authority. Results Prior to adjustment for Urban Rural Classification and local authority, the median number of accessible facilities for moderate or vigorous intensity activity increased with increasing deprivation from the most affluent or second most affluent quintile to the most deprived for all modes of transport. However, after adjustment, the modelling results suggest that those in more affluent areas have significantly higher access to moderate and vigorous intensity facilities by car than those living in more deprived areas. Conclusions The sociospatial distributions of access to facilities for both moderate intensity and vigorous intensity physical activity were similar. However, the results suggest that those living in the most affluent neighbourhoods have poorer access to facilities of either type that can be reached on foot, by bicycle or by bus than those living in less affluent areas. This poorer access from the most affluent areas appears to be reversed for those with access to a car. PMID:22568969
Assessing changes in extreme convective precipitation from a damage perspective
NASA Astrophysics Data System (ADS)
Schroeer, K.; Tye, M. R.
2016-12-01
Projected increases in high-intensity short-duration convective precipitation are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to which, not only are extreme events rare, but such small scale events are likely to be underreported where they don't coincide with the observation network. Rather than focus solely on the convective precipitation, understanding the characteristics of these extremes which drive damage may be more effective to assess future risks. Two sources of data are used in this study. First, sub-daily precipitation observations over the Southern Alps enable an examination of seasonal and regional patterns in high-intensity convective precipitation and their relationship with weather types. Secondly, reports of private loss and damage on a household scale are used to identify which events are most damaging, or what conditions potentially enhance the vulnerability to these extremes.This study explores the potential added value from including recorded loss and damage data to understand the risks from summertime convective precipitation events. By relating precipitation generating weather types to the severity of damage we hope to develop a mechanism to assess future risks. A further benefit would be to identify from damage reports the likely occurrence of precipitation extremes where no direct observations are available and use this information to validate remotely sensed observations.
ERIC Educational Resources Information Center
Hamilton, J. R.; And Others
Using aggregate data from several Idaho counties and towns, the study examined the economic forces which pressure small town people and merchants--pressures which ultimately shape and will shape small towns in areas like Idaho. Six towns chosen for intensive study were Priest River, Cottonwood, Riggins, Shoshone, Oakley, and Malad. Focusing on…
Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi
2016-12-01
Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization ( P H ). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = -35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å -1 ) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å -1 ) decreased with increasing P H , which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H . At P H = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q -3.6 , which is consistent with the results for the SBR/CP mixture.
Hazard assessment for small torrent catchments - lessons learned
NASA Astrophysics Data System (ADS)
Eisl, Julia; Huebl, Johannes
2013-04-01
The documentation of extreme events as a part of the integral risk management cycle is an important basis for the analysis and assessment of natural hazards. In July 2011 a flood event occurred in the Wölzer-valley in the province of Styria, Austria. For this event at the "Wölzerbach" a detailed event documentation was carried out, gathering data about rainfall, runoff and sediment transport as well as information on damaged objects, infrastructure or crops using various sources. The flood was triggered by heavy rainfalls in two tributaries of the Wölzer-river. Though a rain as well as a discharge gaging station exists for the Wölzer-river, the torrents affected by the high intensity rainfalls are ungaged. For these ungaged torrent catchments the common methods for hazard assessment were evaluated. The back-calculation of the rainfall event was done using a new approach for precipitation analysis. In torrent catchments especially small-scale and high-intensity rainfall events are mainly responsible for extreme events. Austria's weather surveillance radar is operated by the air traffic service "AustroControl". The usually available dataset is interpreted and shows divergences especially when it comes to high intensity rainfalls. For this study the raw data of the radar were requested and analysed. Further on the event was back-calculated with different rainfall-runoff models, hydraulic models and sediment transport models to obtain calibration parameters for future use in hazard assessment for this region. Since there are often problems with woody debris different scenarios were simulated. The calibrated and plausible results from the runoff models were used for the comparison with empirical approaches used in the practical sector. For the planning of mitigation measures of the Schöttl-torrent, which is one of the affected tributaries of the Wölzer-river, a physical scale model was used in addition to the insights of the event analysis to design a check dam for sediment retention. As far as the transport capacity of the lower reaches is limited a balance had to be found between protection on the one hand and sediment connectivity to the Wölzer-river on the other. The lessons learned kicked off discussions for future hazard assessment especially concerning the use of rainfall data and design precipitation values for small torrent catchments. Also the comparison with empirical values showed the need for differentiated concepts for hazard analysis. Therefor recommendations for the use of spatial rainfall reduction factors as well as the demarcation of hazard maps using different event scenarios are proposed.
Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi
2016-01-01
Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q −3.6, which is consistent with the results for the SBR/CP mixture. PMID:27980510
Stream protection with small cable yarding systems
Penn A. Peters; Chris B. LeDoux
1984-01-01
Small cable yarder systems that can be purchased and operated by independent logging contractors have less potential negative impact on water quality than ground-based systems operating on steep terrain because they do not require such an intense road system. Stream protection costs were estimated at $3.78 per lineal foot of stream when a typical small yarder (Koller K...
Actin proteolysis during ripening of dry fermented sausages at different pH values.
Berardo, A; Devreese, B; De Maere, H; Stavropoulou, D A; Van Royen, G; Leroy, F; De Smet, S
2017-04-15
In dry fermented sausages, myofibrillar proteins undergo intense proteolysis generating small peptides and free amino acids that play a role in flavour generation. This study aimed to identify small peptides arising from actin proteolysis, as influenced by the type of processing. Two acidification profiles were imposed, in order to mimic the pH normally obtained in southern-type and northern-type dry fermented sausages. The identification of peptides was done by liquid chromatography coupled to mass spectrometry in a data-independent positive mode of acquisition (LC-MS E ). During manufacturing of the dry fermented sausages, actin was highly proteolysed, especially in nine regions of the sequence. After fermentation, 52 and 42 actin-derived peptides were identified at high and low pH, respectively, which further increased to 66 and 144 peptides, respectively, at the end of ripening. Most peptides were released at the cleavage sites of cathepsins B and D, which thus play an important role. Copyright © 2016 Elsevier Ltd. All rights reserved.
Proposal for a novel type of small scale aneutronic fusion reactor
NASA Astrophysics Data System (ADS)
Gruenwald, J.
2017-02-01
The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.
EqualChance: Addressing Intra-set Write Variation to Increase Lifetime of Non-volatile Caches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S
To address the limitations of SRAM such as high-leakage and low-density, researchers have explored use of non-volatile memory (NVM) devices, such as ReRAM (resistive RAM) and STT-RAM (spin transfer torque RAM) for designing on-chip caches. A crucial limitation of NVMs, however, is that their write endurance is low and the large intra-set write variation introduced by existing cache management policies may further exacerbate this problem, thereby reducing the cache lifetime significantly. We present EqualChance, a technique to increase cache lifetime by reducing intra-set write variation. EqualChance works by periodically changing the physical cache-block location of a write-intensive data item withinmore » a set to achieve wear-leveling. Simulations using workloads from SPEC CPU2006 suite and HPC (high-performance computing) field show that EqualChance improves the cache lifetime by 4.29X. Also, its implementation overhead is small, and it incurs very small performance and energy loss.« less
Bright betatron X-ray radiation from a laser-driven-clustering gas target
Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.
2013-01-01
Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033
Oh, Seong Hwan; Joo, Chang Hwa
2018-01-01
The aims of this study were to examine the differences in technical aspects and physical demands between small-size games (SSG; 8 vs. 8) and regular-size games (RSG; 11 vs. 11) in young Korean soccer players. Seventy-nine young soccer players from 6 teams (U-12) volunteered to participate in the study. The players completed 4 games (2 SSG, 62×51 m, and 2 RSG, 80×54 m) in 2 days. Each game was filmed to evaluate technical actions. Physical demand variables were measured using global positioning system technology. SSG showed significantly greater numbers of technical plays among 17 variables when compared to RSG (P<0.05). The players covered significantly greater total distance during low−, moderate−, and high-speed running and sprinting in SSG than in RSG (P<0.05). Higher numbers of high-intensity activities (repeated high-intensity efforts, explosive efforts, decelera-tions, accelerations, and sprinting) were observed in SSG compared to RSG (P<0.05). Mean heart rate was also higher in SSG than in RSG (P<0.05). Despite the greater physical demands during SSG, the exercise intensity was similar to that reported in previous studies. Therefore, the SSG format applied in the present study can be a suitable official game format for Korean young soccer players, resulting in significantly greater exposure to technical plays without excessive physical demands. PMID:29740560
Wang, Qian; Zhang, Qionghua; Dzakpasu, Mawuli; Lian, Bin; Wu, Yaketon; Wang, Xiaochang C
2018-03-01
Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.
A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.
Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G
2013-06-01
The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.
The Effects of Interset Rest on Adaptation to 7 Weeks of Explosive Training in Young Soccer Players
Ramirez-Campillo, Rodrigo; Andrade, David C.; Álvarez, Cristian; Henríquez-Olguín, Carlos; Martínez, Cristian; Báez-SanMartín, Eduardo; Silva-Urra, Juan; Burgos, Carlos; Izquierdo, Mikel
2014-01-01
The aim of the study was to compare the effects of plyometric training using 30, 60, or 120 s of rest between sets on explosive adaptations in young soccer players. Four groups of athletes (age 10.4 ± 2.3 y; soccer experience 3.3 ± 1.5 y) were randomly formed: control (CG; n = 15), plyometric training with 30 s (G30; n = 13), 60 s (G60; n = 14), and 120 s (G120; n = 12) of rest between training sets. Before and after intervention players were measured in jump ability, 20-m sprint time, change of direction speed (CODS), and kicking performance. The training program was applied during 7 weeks, 2 sessions per week, for a total of 840 jumps. After intervention the G30, G60 and G120 groups showed a significant (p = 0.0001 – 0.04) and small to moderate effect size (ES) improvement in the countermovement jump (ES = 0.49; 0.58; 0.55), 20 cm drop jump reactive strength index (ES = 0.81; 0.89; 0.86), CODS (ES = -1.03; -0.87; -1.04), and kicking performance (ES = 0.39; 0.49; 0.43), with no differences between treatments. The study shows that 30, 60, and 120 s of rest between sets ensure similar significant and small to moderate ES improvement in jump, CODS, and kicking performance during high-intensity short-term explosive training in young male soccer players. Key points Replacing some soccer drills by low volume high-intensity plyometric training would be beneficial in jumping, change of direction speed, and kicking ability in young soccer players. A rest period of 30, 60 or 120 seconds between low-volume high-intensity plyometric sets would induce significant and similar explosive adaptations during a short-term training period in young soccer players. Data from this research can be helpful for soccer trainers in choosing efficient drills and characteristics of between sets recovery programs to enhance performances in young male soccer players. PMID:24790481
Köklü, Yusuf; Ersöz, Gülfem; Alemdaroğlu, Utku; Aşç, Alper; Ozkan, Ali
2012-11-01
The purpose of this study was to examine the influence of different team formation methods on the physiological responses to and time-motion characteristics of 4-a-side small-sided games (SSG4) in young soccer players. Thirty-two young soccer players (age 16.2 ± 0.7 years; height 172.9 ± 6.1 cm; body mass 64.1 ± 7.7 kg) voluntarily participated in this study. Anthropometric measurements, technical tests, and maximum oxygen uptake (V[Combining Dot Above]O2max) tests were carried out on the players. The SSG4 teams were then created using 4 different methods: according to the coaches' subjective evaluation (CE), technical scores (TS), V[Combining Dot Above]O2max (AP), and V[Combining Dot Above]O2max multiplied by TSs (CG). The teams thus created played 4 bouts of SSG4 at 2-day intervals. During the SSG4, heart rate (HR) responses, distance covered, and time spent in HRmax zones were recorded. In addition, rating of perceived exertion (RPE) and blood lactate level (La) were determined at the end of the last bout of each SSG4. Percent of HRmax (%HRmax), La, and RPE responses during SSG4 were significantly higher for teams chosen according to AP and CG compared with that according to CE and TS (p < 0.05). In addition, teams chosen by AP and CG spent significantly more time in zone 4 (>90% HRmax ) and covered a greater distance in the high-intensity running zone (>18 km·h) than did teams formed according to TS. Moreover, AP teams covered significantly greater total distance than TS teams did (p < 0.05). In conclusion, to spend more time in both the high-intensity HR zone and the high-intensity running zone, the teams in SSG4 should be formed according to the players' V[Combining Dot Above]O2max values or the values calculated using both the V[Combining Dot Above]O2max and technique scores.
High-resolution 3D MR microangiography of the rat ocular circulation.
Shih, Yen-Yu I; Muir, Eric R; Li, Guang; De La Garza, Bryan H; Duong, Timothy Q
2012-07-01
To develop high-spatial-resolution magnetic resonance (MR) microangiography techniques to image the rat ocular circulation. Animal experiments were performed with institutional Animal Care Committee approval. MR microangiography (resolution, 84×84×84 μm or 42×42×84 μm) of the rat eye (eight rats) was performed by using a custom-made small circular surface coil with an 11.7-T MR unit before and after monocrystalline iron oxide nanoparticle (MION) injection. MR microangiography measurements were made during air, oxygen, and carbogen inhalation. From three-dimensional MR microangiography, the retina was virtually flattened to enable en face views of various retinal depths, including the retinal and choroidal vascular layers. Signal intensity changes within the retinal or choroidal arteries and veins associated with gas challenges were analyzed. Statistical analysis was performed by using paired t tests, with P<.05 considered to indicate a significant difference. Bonferroni correction was used to adjust for multiple comparisons. The central retinal artery, long posterior ciliary arteries, and choroidal vasculature could be distinguished on MR microangiograms of the eye. With MR microangiography, retinal arteries and veins could be distinguished on the basis of blood oxygen level-dependent contrast. Carbogen inhalation-enhanced MR microangiography signal intensity in both the retina (P=.001) and choroid (P=.027) compared with oxygen inhalation. Carbogen inhalation showed significantly higher signal intensity changes in the retinal arteries (P=.001, compared with oxygen inhalation), but not in the veins (P=.549). With MION administration, MR microangiography depicted retinal arterial vasoconstriction when the animals were breathing oxygen (P=.02, compared with animals breathing air). MR microangiography of the eye allows depth-resolved imaging of small angiographic details of the ocular circulation. This approach may prove useful in studying microvascular pathologic findings and neurovascular dysfunction in the eye and retina. © RSNA, 2012.
NASA Astrophysics Data System (ADS)
Hopkins, J.; Palmer, M.; Wihsgott, J. U.; Sharples, J.; Sivyer, D.; Greenwood, N.; Hull, T.; Hickman, A. E.; Williams, C. A. J.
2016-02-01
Although the approximate timing of the spring bloom can be predicted following Sverdrup's critical depth hypothesis the precise timing, intensity and evolution of this annual peak in primary production is determined by small scale and often incoherent, short and transient events. This is particularly true in shallow and highly dynamic temperate continental shelf sea environments. Following an intense field campaign on the NW European Shelf during the transition from mixed to stratified conditions we are able to examine the physical drivers behind initiation of the spring bloom in unprecedented detail. A wave powered vertically profiling float co-located with two ocean gliders provided high resolution profiles of density, chlorophyll-a fluorescence and the rate of turbulent kinetic energy dissipation every 10-15 minutes for 21 days. Full water column currents, meteorological variables and near surface PAR are taken from additional moorings in the array. After the onset of positive net surface heat fluxes, our data sets show how the timing and subsequent development of the bloom is determined by the available PAR and its recent history; the fine scale vertical hydrographic and turbulent structure of the water column that controls the residence time of phytoplankton at each depth; and the timing and intensity of wind and tidal mixing events. In April 2015 the main peak in depth integrated chlorophyll occurred almost a week after the main seasonal thermocline had started to form. It peaked following three consecutive sunny days and a reduction in wind stress that allowed a thin (10 m) near surface warm layer to be established and maintained overnight. There is significant semi-diurnal variability in the depth integrated chlorophyll demonstrating how small scale (< 10 km) incoherence in these physical drivers leads to strong gradients and patchiness in the bloom dynamics across a shelf.
Andrade, Chittaranjan; Srinivasamurthy, Gurunath M; Vishwasenani, A; Prakash, G Sai; Srihari, B S; Chandra, J Suresh
2002-06-01
Clinical research shows that the antidepressant and cognitive adverse effects of electroconvulsive therapy are both dependent on the administered electrical stimulus intensity (dose); however, dose-dependent neurotransmitter system changes in the brain, which might underlie the therapeutic or adverse effects, remain to be demonstrated. We used a behavioral model to examine dose-related effects of electroconvulsive shock (ECS) on dopamine postsynaptic receptor functioning in the rat brain. In a factorially designed study, rats (n = 100) were treated with five once-daily ECSs at three levels (sham ECS, 30 mC ECS, and 120 mC ECS), and with drug at two levels (saline, and 1 mg/kg s.c. apomorphine). Motility was assessed in the small open field. Apomorphine-elicited, dopamine postsynaptic receptor-mediated hypermotility was significantly increased by 120 mC ECS but not by 30 mC ECS. An additional but unrelated finding was that, while the ECS seizure duration expectedly decreased across time, no dose-dependent effects were observed. ECS-induced dopamine postsynaptic receptor up-regulation may depend on the intensity of the administered electrical stimulus.
Automatic Extraction of Road Markings from Mobile Laser-Point Cloud Using Intensity Data
NASA Astrophysics Data System (ADS)
Yao, L.; Chen, Q.; Qin, C.; Wu, H.; Zhang, S.
2018-04-01
With the development of intelligent transportation, road's high precision information data has been widely applied in many fields. This paper proposes a concise and practical way to extract road marking information from point cloud data collected by mobile mapping system (MMS). The method contains three steps. Firstly, road surface is segmented through edge detection from scan lines. Then the intensity image is generated by inverse distance weighted (IDW) interpolation and the road marking is extracted by using adaptive threshold segmentation based on integral image without intensity calibration. Moreover, the noise is reduced by removing a small number of plaque pixels from binary image. Finally, point cloud mapped from binary image is clustered into marking objects according to Euclidean distance, and using a series of algorithms including template matching and feature attribute filtering for the classification of linear markings, arrow markings and guidelines. Through processing the point cloud data collected by RIEGL VUX-1 in case area, the results show that the F-score of marking extraction is 0.83, and the average classification rate is 0.9.
Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation
NASA Astrophysics Data System (ADS)
Yadav, Rahul; Mathew, Shibu K.
2018-04-01
Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.
Nonlinear propagation of light in Dirac matter.
Eliasson, Bengt; Shukla, P K
2011-09-01
The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.
Stampfli, Andreas; Bloor, Juliette M G; Fischer, Markus; Zeiter, Michaela
2018-05-01
Climate change projections anticipate increased frequency and intensity of drought stress, but grassland responses to severe droughts and their potential to recover are poorly understood. In many grasslands, high land-use intensity has enhanced productivity and promoted resource-acquisitive species at the expense of resource-conservative ones. Such changes in plant functional composition could affect the resistance to drought and the recovery after drought of grassland ecosystems with consequences for feed productivity resilience and environmental stewardship. In a 12-site precipitation exclusion experiment in upland grassland ecosystems across Switzerland, we imposed severe edaphic drought in plots under rainout shelters and compared them with plots under ambient conditions. We used soil water potentials to scale drought stress across sites. Impacts of precipitation exclusion and drought legacy effects were examined along a gradient of land-use intensity to determine how grasslands resisted to, and recovered after drought. In the year of precipitation exclusion, aboveground net primary productivity (ANPP) in plots under rainout shelters was -15% to -56% lower than in control plots. Drought effects on ANPP increased with drought severity, specified as duration of topsoil water potential ψ < -100 kPa, irrespective of land-use intensity. In the year after drought, ANPP had completely recovered, but total species diversity had declined by -10%. Perennial species showed elevated mortality, but species richness of annuals showed a small increase due to enhanced recruitment. In general, the more resource-acquisitive grasses increased at the expense of the deeper-rooted forbs after drought, suggesting that community reorganization was driven by competition rather than plant mortality. The negative effects of precipitation exclusion on forbs increased with land-use intensity. Our study suggests a synergistic impact of land-use intensification and climate change on grassland vegetation composition, and implies that biomass recovery after drought may occur at the expense of biodiversity maintenance. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
The threat to coral reefs from more intense cyclones under climate change.
Cheal, Alistair J; MacNeil, M Aaron; Emslie, Michael J; Sweatman, Hugh
2017-04-01
Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central-southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid-century poses a global threat to coral reefs and dependent societies. © 2017 John Wiley & Sons Ltd.
Objectively Measured Total and Occupational Sedentary Time in Three Work Settings
van Dommelen, Paula; Coffeng, Jennifer K.; van der Ploeg, Hidde P.; van der Beek, Allard J.; Boot, Cécile R. L.; Hendriksen, Ingrid J. M.
2016-01-01
Background Sedentary behaviour increases the risk for morbidity. Our primary aim is to determine the proportion and factors associated with objectively measured total and occupational sedentary time in three work settings. Secondary aim is to study the proportion of physical activity and prolonged sedentary bouts. Methods Data were obtained using ActiGraph accelerometers from employees of: 1) a financial service provider (n = 49 men, 31 women), 2) two research institutes (n = 30 men, 57 women), and 3) a construction company (n = 38 men). Total (over the whole day) and occupational sedentary time, physical activity and prolonged sedentary bouts (lasting ≥30 minutes) were calculated by work setting. Linear regression analyses were performed to examine general, health and work-related factors associated with sedentary time. Results The employees of the financial service provider and the research institutes spent 76–80% of their occupational time in sedentary behaviour, 18–20% in light intensity physical activity and 3–5% in moderate-to-vigorous intensity physical activity. Occupational time in prolonged sedentary bouts was 27–30%. Total time was less sedentary (64–70%), and had more light intensity physical activity (26–33%). The employees of the construction company spent 44% of their occupational time in sedentary behaviour, 49% in light, and 7% in moderate intensity physical activity, and spent 7% in sedentary bouts. Total time spent in sedentary behavior was 56%, 40% in light, and 4% in moderate intensity physical behaviour, and 12% in sedentary bouts. For women, low to intermediate education was the only factor that was negatively associated with occupational sedentary time. Conclusions Sedentary behaviour is high among white-collar employees, especially in highly educated women. A relatively small proportion of sedentary time was accrued in sedentary bouts. It is recommended that worksite health promotion efforts should focus on reducing sedentary behaviour through improving light intensity physical activity. PMID:26937959
Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.
2000-01-01
High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.
NASA Astrophysics Data System (ADS)
Armstrong, Kristina Ochsner
Across the world, crises in food, energy, land and water resources, as well as waste and greenhouse gas accumulation are inspiring research into the interactions among these environmental pressures. In the food/energy/waste problem set, most of the research is focused on describing the antagonistic relationships between food, energy and waste; these relationships are often analyzed with life cycle assessment (LCA). These analyses often include reporting of metrics of environmental performance with few functional units, often focusing on energy use, productivity and environmental impact while neglecting water use, food nutrition and safety. Additionally, they are often attributional studies with small scope which report location-specific parameters only. This thesis puts forth a series of recommendations to amend the current practice of LCA to combat these limitations and then utilizes these suggestions to analyze a synergistic food/waste/energy system. As an example analysis, this thesis describes the effect of combining wastewater treatment and microalgae cultivation on the productivity and scalability of the synergistic system. To ameliorate the high nutrient and water demands of microalgae cultivation, many studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low environmental costs. While cultivation studies have found this to be true, none explore the viability of the substitution in terms of productivity and scale-up. The results of this study suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt water microalgae cultivation. This study shows that the integration could result in reduced lipid content, high wastewater requirements, no greenhouse gas emissions benefit and only a small energy benefit.
Faulting, damage, and intensity in the Canyondam earthquake of May 23, 2013
Chapman, K.; Gold, M.B.; Boatwright, John; Sipe, J.; Quitoriano, V.; Dreger, D.; Hardebeck, Jeanne
2016-09-23
On Thursday evening, May 23, 2013 (0347 May 24 UTC), a moment magnitude (Mw) = 5.7 earthquake occurred northeast of Canyondam, California. A two-person team of U.S. Geological Survey scientists went to the area to search for surface rupture and to canvass damage in the communities around Lake Almanor. While the causative fault had not been identified at the time of the field survey, surface rupture was expected to have occurred just south of Lake Almanor, approximately 2–4 kilometers south of the epicenter. No surface rupture was discovered. Felt intensity among the communities around Lake Almanor appeared to vary significantly. Lake Almanor West (LAW), Lake Almanor Country Club (LACC), and Hamilton Branch (HB) experienced Modified Mercalli Intensity (MMI) ≥7, whereas other communities around the lake experienced MMI ≤6; the maximum observed intensity was MMI 8, in LAW. Damage in the high intensity areas consisted of broken and collapsed chimneys, ruptured pipes, and some damage to foundations and to structural elements within houses. Although this shaking damage is not usually expected for an Mw 5.7 earthquake, the intensities at Lake Almanor Country Club correlate with the peak ground acceleration (38 percent g) and peak ground velocity (30 centimeters per second) recorded by the California Strong Motion Instrumentation Program accelerometer located at the nearby Lake Almanor Fire Station. The intensity distribution for the three hardest hit areas (LAW, LACC, and HB) appears to increase as the azimuth from epicenter to the intensity sites approaches the fault strike. The small communities of Almanor and Prattville on the southwestern shore of Lake Almanor experienced somewhat lower intensities. The town of Canyondam experienced a lower intensity as well, despite its location up-dip of the earthquake rupture. This report contains information on the earthquake itself, the search for surface rupture, and the damage we observed and compiled from other sources.
A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering
NASA Astrophysics Data System (ADS)
Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.
2011-07-01
A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.
Bingemann, Dieter; Allen, Rachel M.
2012-01-01
We describe a statistical method to analyze dual-channel photon arrival trajectories from single molecule spectroscopy model-free to identify break points in the intensity ratio. Photons are binned with a short bin size to calculate the logarithm of the intensity ratio for each bin. Stochastic photon counting noise leads to a near-normal distribution of this logarithm and the standard student t-test is used to find statistically significant changes in this quantity. In stochastic simulations we determine the significance threshold for the t-test’s p-value at a given level of confidence. We test the method’s sensitivity and accuracy indicating that the analysis reliably locates break points with significant changes in the intensity ratio with little or no error in realistic trajectories with large numbers of small change points, while still identifying a large fraction of the frequent break points with small intensity changes. Based on these results we present an approach to estimate confidence intervals for the identified break point locations and recommend a bin size to choose for the analysis. The method proves powerful and reliable in the analysis of simulated and actual data of single molecule reorientation in a glassy matrix. PMID:22837704
Parsels, Leslie A; Parsels, Joshua D; Tanska, Daria M; Maybaum, Jonathan; Lawrence, Theodore S; Morgan, Meredith A
2018-06-12
Small molecule inhibitors of the checkpoint proteins CHK1 and WEE1 are currently in clinical development in combination with the antimetabolite gemcitabine. It is unclear, however, if there is a therapeutic advantage to CHK1 vs. WEE1 inhibition for chemosensitization. The goals of this study were to directly compare the relative efficacies of the CHK1 inhibitor MK8776 and the WEE1 inhibitor AZD1775 to sensitize pancreatic cancer cell lines to gemcitabine and to identify pharmacodynamic biomarkers predictive of chemosensitization. Cells treated with gemcitabine and either MK8776 or AZD1775 were first assessed for clonogenic survival. With the exception of the homologous recombination-defective Capan1 cells, which were relatively insensitive to MK8776, we found that these cell lines were similarly sensitized to gemcitabine by CHK1 or WEE1 inhibition. The abilities of either the CDK1/2 inhibitor roscovitine or exogenous nucleosides to prevent MK8776 or AZD1775-mediated chemosensitization, however, were both inhibitor-dependent and variable among cell lines. Given the importance of DNA replication stress to gemcitabine chemosensitization, we next assessed high-intensity, pan-nuclear γH2AX staining as a pharmacodynamic marker for sensitization. In contrast to total γH2AX, aberrant mitotic entry or sub-G1 DNA content, high-intensity γH2AX staining correlated with chemosensitization by either MK8776 or AZD1775 (R 2 0.83 - 0.53). In summary, we found that MK8776 and AZD1775 sensitize to gemcitabine with similar efficacy. Furthermore, our results suggest that the effects of CHK1 and WEE1 inhibition on gemcitabine-mediated replication stress best predict chemosensitization and support the use of high-intensity or pan-nuclear γH2AX staining as a marker for therapeutic response.
Modulating Retro-Reflectors: Technology, Link Budgets and Applications
NASA Technical Reports Server (NTRS)
Salas, Alberto Guillen; Stupl, Jan; Mason, James
2012-01-01
Satellite communications systems today -- usually radio frequency (RF) -- tend to have low data rates and use a lot of on-board power. For CubeSats, communications often dominate the power budget. We investigate the use of modulating retro-reflectors (MRRs), previously demonstrated on the ground, for high data-rate communication downlinks from small satellites. A laser ground station would illuminate a retro-reflector on-board the satellite while an element in the retro-reflector modulates the intensity of the reflected signal, thereby encoding a data stream on the returning beam. A detector on the ground receives the data, keeping the complex systems and the vast majority of power consumption on the ground. Reducing the power consumption while increasing data rates would relax constraints on power budgets for small satellites, leaving more power available for payloads. In the future, this could enable the use of constellations of nano-satellites for a variety of missions, possibly leading to a paradigm shift in small satellite applications.
NASA Astrophysics Data System (ADS)
Hereford, Richard
1987-10-01
Alluvium deposited in a reservoir from 1937 to 1976 records the sediment-yield history of a small (2.8 km2), high-relief basin in semiarid southern Utah. Stratification in the alluvium shows that sediment was deposited in the reservoir only 21 times in 38 yr, a runoff recurrence interval of 1.8 yr. Thus, on average, the particular combination of rainfall intensity, duration, and antecedent moisture conditions producing runoff did not recur often. On the basis of the volume of beds in the reservoir fill, sediment yield of individual runoff events averaged 2500 m3/km2 (5.3 a-ft/mi2) with slightly less than one order of magnitude variation. This low variation is not expected of small basins and probably resulted from limited hillslope sediment supply, suggesting that transport processes were more rapid than weathering processes. Sediment yield, therefore, was evidently controlled by the availability of freshly weathered material.
Yong, William H.; Butte, Pramod V.; Pikul, Brian K.; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Black, Keith L.; Marcu, Laura
2010-01-01
Neuropathology frozen section diagnoses are difficult in part because of the small tissue samples and the paucity of adjunctive rapid intraoperative stains. This study aims to explore the use of time-resolved laser-induced fluorescence spectroscopy as a rapid adjunctive tool for the diagnosis of glioma specimens and for distinction of glioma from normal tissues intraoperatively. Ten low grade gliomas, 15 high grade gliomas without necrosis, 6 high grade gliomas with necrosis and/or radiation effect, and 14 histologically uninvolved “normal” brain specimens are spectroscopicaly analyzed and contrasted. Tissue autofluorescence was induced with a pulsed Nitrogen laser (337 nm, 1.2 ns) and the transient intensity decay profiles were recorded in the 370-500 nm spectral range with a fast digitized (0.2 ns time resolution). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site were used for tissue characterization. A linear discriminant analysis diagnostic algorithm was used for tissue classification. Both low and high grade gliomas can be distinguished from histologically uninvolved cerebral cortex and white matter with high accuracy (above 90%). In addition, the presence or absence of treatment effect and/or necrosis can be identified in high grade gliomas. Taking advantage of tissue autofluorescence, this technique facilitates a direct and rapid investigation of surgically obtained tissue. PMID:16368511
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAvoy, Sarah; Ciura, Katherine; Wei, Caimiao
2014-11-15
Purpose: Intrathoracic recurrence of non-small cell lung cancer (NSCLC) after initial treatment remains a dominant cause of death. We report our experience using proton beam therapy and intensity modulated radiation therapy for reirradiation in such cases, focusing on patterns of failure, criteria for patient selection, and predictors of toxicity. Methods and Materials: A total of 102 patients underwent reirradiation for intrathoracic recurrent NSCLC at a single institution. All doses were recalculated to an equivalent dose in 2-Gy fractions (EQD2). All patients had received radiation therapy for NSCLC (median initial dose of 70 EQD2 Gy), with median interval to reirradiation ofmore » 17 months and median reirradiation dose of 60.48 EQD2 Gy. Median follow-up time was 6.5 months (range, 0-72 months). Results: Ninety-nine patients (97%) completed reirradiation. Median local failure-free survival, distant metastasis-free survival (DMFS), and overall survival times were 11.43 months (range, 8.6-22.66 months), 11.43 months (range, 6.83-23.84 months), and 14.71 (range, 10.34-20.56 months), respectively. Toxicity was acceptable, with rates of grade ≥3 esophageal toxicity of 7% and grade ≥3 pulmonary toxicity of 10%. Of the patients who developed local failure after reirradiation, 88% had failure in either the original or the reirradiation field. Poor local control was associated with T4 disease, squamous histology, and Eastern Cooperative Oncology Group performance status score >1. Concurrent chemotherapy improved DMFS, but T4 disease was associated with poor DMFS. Higher T status, Eastern Cooperative Oncology Group performance status ≥1, squamous histology, and larger reirradiation target volumes led to worse overall survival; receipt of concurrent chemotherapy and higher EQD2 were associated with improved OS. Conclusions: Intensity modulated radiation therapy and proton beam therapy are options for treating recurrent non-small cell lung cancer. However, rates of locoregional recurrence and distant metastasis are high, and patients should be selected carefully to maximize the benefit of additional aggressive local therapy while minimizing the risk of adverse side effects.« less
Variation of lunar sodium emission intensity with phase angle
NASA Technical Reports Server (NTRS)
Potter, A. E.; Morgan, T. H.
1994-01-01
We report new measurements of the sodium emission intensity seen in a line of sight just above the surface of the Moon. These data show a strong dependence on lunar phase. The emission intensity decreases from a maximum around first quarter (phase angle 90 deg) to very small values near full Moon (phase angle 0 deg). This suggests that the rate of sodium vapor production from the lunar surface is largest at the subsolar point and becomes small near the terminator. However, the sodium emission near full Moon falls below that which would be expected for solar photon-driven processes. Since the solar wind flux decreases substantially when the Moon enters the Earth's magnetotail near full Moon, while the global solar photon flux is undiminished, we suggest that solar wind sputtering is the dominant process for sodium production.
Expression of mucins in the mucosal surface of small intestines in 1 week-old pigs.
Kim, Chung Hyun; Oh, Yeonsu; Ha, Yooncheol; Ahn, Qwein; Kim, Sung-Hoon; Cho, Kyung-Dong; Lee, Bog-Hieu; Chae, Chanhee
2010-02-01
The aim of this study was to determine the immunoexpression of mucins in jejunal and ileal villous epithelium using six antibodies against MUC1, MUC2, MUC4 MUC5AC, MUC5B and MUC6. The immunohistochemical score for MUC1 has significantly intense staining compared with MUC2 (P=0.008) and the immunohistochemical socre for MUC4 and MUC 6 has significantly intense staining compared with MUC2 (P=0.032) in ileal villous surface. The immunohistochemical score for MUC4 (P=0.008), MUC5AC (P=0.016) and MUC6 (P=0.016) in ileal villous surface has significantly intense staining compared with ileal cryptic surface. The results of this study demonstrated that six mucins gave distinctly different expression patterns throughout the 1 week-old porcine small intestinal tract.
Prey-mediated avoidance of an intraguild predator by its intraguild prey
Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.
2010-01-01
Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.
High-Resolution Simulation of Hurricane Bonnie (1998). Part 1; The Organization of Vertical Motion
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Pu, Zhaoxia
2003-01-01
Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.
Moody, John A.; Ebel, Brian A.
2012-01-01
We developed a difference infiltrometer to measure time series of non-steady infiltration rates during rainstorms at the point scale. The infiltrometer uses two, tipping bucket rain gages. One gage measures rainfall onto, and the other measures runoff from, a small circular plot about 0.5-m in diameter. The small size allows the infiltration rate to be computed as the difference of the cumulative rainfall and cumulative runoff without having to route water through a large plot. Difference infiltrometers were deployed in an area burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado, USA, and data were collected during the summer of 2011. The difference infiltrometer demonstrated the capability to capture different magnitudes of infiltration rates and temporal variability associated with convective (high intensity, short duration) and cyclonic (low intensity, long duration) rainstorms. Data from the difference infiltrometer were used to estimate saturated hydraulic conductivity of soil affected by the heat from a wildfire. The difference infiltrometer is portable and can be deployed in rugged, steep terrain and does not require the transport of water, as many rainfall simulators require, because it uses natural rainfall. It can be used to assess infiltration models, determine runoff coefficients, identify rainfall depth or rainfall intensity thresholds to initiate runoff, estimate parameters for infiltration models, and compare remediation treatments on disturbed landscapes. The difference infiltrometer can be linked with other types of soil monitoring equipment in long-term studies for detecting temporal and spatial variability at multiple time scales and in nested designs where it can be linked to hillslope and basin-scale runoff responses.
Hartl, Caroline; Frank, Kilian; Amenitsch, Heinz; Fischer, Stefan; Liedl, Tim; Nickel, Bert
2018-04-11
DNA origami objects allow for accurate positioning of guest molecules in three dimensions. Validation and understanding of design strategies for particle attachment as well as analysis of specific particle arrangements are desirable. Small-angle X-ray scattering (SAXS) is suited to probe distances of nano-objects with subnanometer resolution at physiologically relevant conditions including pH and salt and at varying temperatures. Here, we show that the pair density distribution function (PDDF) obtained from an indirect Fourier transform of SAXS intensities in a model-free way allows to investigate prototypical DNA origami-mediated gold nanoparticle (AuNP) assemblies. We analyze the structure of three AuNP-dimers on a DNA origami block, an AuNP trimer constituted by those dimers, and a helical arrangement of nine AuNPs on a DNA origami cylinder. For the dimers, we compare the model-free PDDF and explicit modeling of the SAXS intensity data by superposition of scattering intensities of the scattering objects. The PDDF of the trimer is verified to be a superposition of its dimeric contributions, that is, here AuNP-DNA origami assemblies were used as test boards underlining the validity of the PDDF analysis beyond pairs of AuNPs. We obtain information about AuNP distances with an uncertainty margin of 1.2 nm. This readout accuracy in turn can be used for high precision placement of AuNP by careful design of the AuNP attachment sites on the DNA-structure and by fine-tuning of the connector types.
Impact of Fatigue on Positional Movements During Professional Rugby Union Match Play.
Tee, Jason C; Lambert, Mike I; Coopoo, Yoga
2017-04-01
In team sports, fatigue is manifested by a self-regulated decrease in movement distance and intensity. There is currently limited information on the effect of fatigue on movement patterns in rugby union match play, particularly for players in different position groups (backs vs forwards). This study investigated the effect of different match periods on movement patterns of professional rugby union players. Global positioning system (GPS) data were collected from 46 professional match participations to determine temporal effects on movement patterns. Total relative distance (m/min) was decreased in the 2nd half for both forwards (-13%, ±8%, ES = very likely large) and backs (-9%, ±7%, ES = very likely large). A larger reduction in high-intensity-running distance in the 2nd half was observed for forwards (-27%, ±16%, ES = very likely medium) than for backs (-10%, ±15%; ES = unclear). Similar patterns were observed for sprint (>6 m/s) frequency (forwards -29%, ±29%, ES = likely small vs backs -13% ±18%, ES = possibly small) and acceleration (>2.75 m/s 2 ) frequency (forwards -27%, ±24%, ES = likely medium vs backs -5%, ±46%, ES = unclear). Analysis of 1st- and 2nd-half quartiles revealed differing pacing strategies for forwards and backs. Forwards display a "slow-positive" pacing strategy, while the pacing strategy of backs is "flat." Forwards suffered progressively greater performance decrements over the course of the match, while backs were able to maintain performance intensity. These findings reflect differing physical demands, notably contact and running loads, of players in different positions.
Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire
NASA Astrophysics Data System (ADS)
Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.
2016-12-01
Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.
NASA Astrophysics Data System (ADS)
Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.
2010-11-01
The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.
NASA Astrophysics Data System (ADS)
Lindegren, Lennart
2012-01-01
The launch of the Hipparcos satellite in 1989 and the Hubble Space Telescope in 1990 revolutionized astrometry. By no means does this imply that not much progress was made in the ground-based techniques used exclusively until then. On the contrary, the 1960s to 1980s saw an intense development of new or highly improved instruments, including photoelectric meridian circles, automated plate measuring machines, and the use of chargecoupled device (CCD) detectors for small-field differential astrometry (for a review of optical astrometry at the time, see Monet 1988). In the radio domain, very long baseline interferometry (VLBI) astrometry already provided an extragalactic reference frame accurate to about 1 milliarcsecond (mas) (Ma et al. 1990). Spectacular improvements were made in terms of accuracy, the faintness of the observed objects, and their numbers. However, there was a widening gulf between small-angle astrometry, where differential techniques could overcome atmospheric effects down to below 1 mas, and large-angle astrometry, where conventional instruments such as meridian circles seemed to have hit a barrier in the underlying systematic errors at about 100 mas. Though very precise, the small-angle measurements were of limited use for the determination of positions and proper motions, due to the lack of suitable reference objects in the small fields, and even for parallaxes the necessary correction for the mean parallax of background stars was highly non-trivial. Linking the optical observations to the accurate VLBI frame also proved extremely difficult.
What Is Intensive Instruction and Why Is It Important?
ERIC Educational Resources Information Center
Fuchs, Douglas; Fuchs, Lynn S.; Vaughn, Sharon
2014-01-01
In this article, the authors present two models of intensive instruction for students with and without disabilities who are having difficulties with Response to Intervention (RTI) currently in practice (Tier 1: general instruction that all students receive in mainstream classrooms, and Tier 2: programs often involving small group instruction). The…
Long-term stability of microcrystalline silicon p-i-n solar cells exposed to sun light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanguino, P.; Koynov, S.; Schwarz, R.
1999-07-01
The performance of an entirely microcrystalline p-i-n solar cell was monitored during a long-term outdoor test in Lisbon starting in September 1998. A small decrease of the short circuit current was observed after 5 months of operation. The open-circuit voltage remained stable around 400 mV. From the analysis of the I-V characteristic in dark and under illumination they could identify the weak points of the test structure, like large series resistance, high recombination rate, and intensity-dependent collection efficiency.