Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.
Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho
2016-04-04
Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.
Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist
Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D.; Miyasaka, Masayuki
2016-01-01
Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4+ T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra−deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. PMID:26951334
Thu Le, Ha Pham; Nakamura, Yuki; Oh-Oka, Kyoko; Ishimaru, Kayoko; Nakajima, Shotaro; Nakao, Atsuhito
2017-08-19
Interleukin-17-producing CD4 + T helper (Th17) cells are a key immune lineage that protects against bacterial and fungal infections at mucosal surfaces. At steady state, Th17 cells are abundant in the small intestinal mucosa of mice. There are several mechanisms for regulating the population of Th17 cells in the small intestine, reflecting the importance of maintaining their numbers in the correct balance. Here we demonstrate the existence of a time-of-day-dependent variation in the frequency of Th17 cells in the lamina propria of the small intestine in wild-type mice, which was not observed in mice with a loss-of-function mutation of the core circadian gene Clock or in mice housed under aberrant light/dark conditions. Consistent with this, expression of CCL20, a chemokine that regulates homeostatic trafficking of Th17 cells to the small intestine, exhibited circadian rhythms in the small intestine of wild-type, but not Clock-mutated, mice. In support of these observations, the magnitude of ovalbumin (OVA)-specific antibody and T-cell responses in mice sensitized with OVA plus cholera toxin, a mucosal Th17 cell-dependent adjuvant, was correlated with daily variations in the proportion of Th17 cells in the small intestine. These results suggest that the proportion of Th17 cells in the small intestine exhibits a day-night variation in association with CCL20 expression, which depends on circadian clock activity. The findings provide novel insight into the regulation of the Th17 cell population in the small intestine at steady state, which may have translational potential for mucosal vaccination strategies. Copyright © 2017 Elsevier Inc. All rights reserved.
Three-Dimensional Coculture Of Human Small-Intestine Cells
NASA Technical Reports Server (NTRS)
Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy
1994-01-01
Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).
Expression of the monocarboxylate transporter 1 (MCT1) in cells of the porcine intestine.
Welter, Harald; Claus, Rolf
2008-06-01
Uptake of energy into cells and its allocation to individual cellular compartments by transporters are essential for tissue homeostasis. The present study gives an analysis of MCT1 expression and its cellular occurrence in the porcine intestine. Tissue portions from duodenum, jejunum, ileum, colon ascendens, colon transversum and colon descendens were collected and prepared for immunohistochemistry, Western blot and real time RT-PCR. A 169bp porcine MCT1 cDNA fragment was amplified and published. MCT1 mRNA expression in the large intestine was 20 fold higher compared to the small intestine. Western blot detected a single protein band of 41kDa at a much higher amount of MCT1 protein in the large intestine vs. the small intestine. MCT1 protein was detected in mitochondrial fractions of the large but not the small intestine. Immunohistochemistry in the small intestine showed that immune cells in the lamina propria and in the lymphoid follicles primarily expressed MCT1 while in the colon epithelial cells were the main source of MCT1. In summary, cellular expression of MCT1 differs between epithelial cells in the colon and small intestine. A possible role of MCT1 for uptake of butyrate into immune cells and the overall role of MCT1 for intestinal immune cell function remains elusive.
Tutton, P J; Barkla, D H
1982-01-01
Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.
Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi
2014-01-01
AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600
Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi
2016-01-01
Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer’s patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa. PMID:27701454
Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi
2016-01-01
Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer's patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa.
Forman, Ruth; Bramhall, Michael; Logunova, Larisa; Svensson-Frej, Marcus; Cruickshank, Sheena M; Else, Kathryn J
2016-05-31
Eosinophils are innate immune cells present in the intestine during steady state conditions. An intestinal eosinophilia is a hallmark of many infections and an accumulation of eosinophils is also observed in the intestine during inflammatory disorders. Classically the function of eosinophils has been associated with tissue destruction, due to the release of cytotoxic granule contents. However, recent evidence has demonstrated that the eosinophil plays a more diverse role in the immune system than previously acknowledged, including shaping adaptive immune responses and providing plasma cell survival factors during the steady state. Importantly, it is known that there are regional differences in the underlying immunology of the small and large intestine, but whether there are differences in context of the intestinal eosinophil in the steady state or inflammation is not known. Our data demonstrates that there are fewer IgA(+) plasma cells in the small intestine of eosinophil-deficient ΔdblGATA-1 mice compared to eosinophil-sufficient wild-type mice, with the difference becoming significant post-infection with Toxoplasma gondii. Remarkably, and in complete contrast, the absence of eosinophils in the inflamed large intestine does not impact on IgA(+) cell numbers during steady state, and is associated with a significant increase in IgA(+) cells post-infection with Trichuris muris compared to wild-type mice. Thus, the intestinal eosinophil appears to be less important in sustaining the IgA(+) cell pool in the large intestine compared to the small intestine, and in fact, our data suggests eosinophils play an inhibitory role. The dichotomy in the influence of the eosinophil over small and large intestinal IgA(+) cells did not depend on differences in plasma cell growth factors, recruitment potential or proliferation within the different regions of the gastrointestinal tract (GIT). We demonstrate for the first time that there are regional differences in the requirement of eosinophils for maintaining IgA+ cells between the large and small intestine, which are more pronounced during inflammation. This is an important step towards further delineation of the enigmatic functions of gut-resident eosinophils.
Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal
2006-11-01
Nutritional status has a major impact on the immune system. Probiotic effects ascribed to fermented dairy products arise not only from whole microorganisms but also from metabolites (peptides, exopolysaccharides) produced during the fermentation. We recently demonstrated the immunomodulating capacity of kefir in a murine model. We now aimed at studying the immunomodulating capacity in vivo of the products derived from milk fermentation by kefir microflora (PMFKM) on the gut. BALB/c mice received the PMFKM for 2, 5 or 7 consecutive days. IgA+ and IgG+ cells were determined on histological slices of the small and large intestine. IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha were determined in the gut, intestinal fluid and blood serum. IL-6 was also determined in the supernatant of a primary culture of small intestine epithelial cells challenged with PMFKM. PMFKM up-regulated IL-6 secretion, necessary for B-cell terminal differentiation to IgA secreting cells in the gut lamina propria. There was an increase in the number of IgA+ cells in the small and large intestine. The increase in the number of IgA+ cells was accompanied by an increase in the number of IL-4+, IL-10+ and IL-6+ cells in the small intestine. Effects of PMFKM in the large intestine were less widely apparent than the ones observed at the small intestine lamina propria. All cytokines that increased in the small intestine lamina propria, also did so in blood serum, reflecting here the immunostimulation achieved in the gut mucosa. We observed that the PMFKM induced a mucosal response and it was able to up and down regulate it for protective immunity, maintaining the intestinal homeostasis, enhancing the IgA production at both the small and large intestine level. The opportunity exists then to manipulate the constituents of the lumen of the intestine through dietary means, thereby enhancing the health status of the host.
Forn, Marta; Díez-Villanueva, Anna; Merlos-Suárez, Anna; Muñoz, Mar; Lois, Sergi; Carriò, Elvira; Jordà, Mireia; Bigas, Anna; Batlle, Eduard; Peinado, Miguel A.
2015-01-01
Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart. PMID:25933092
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.
Bevins, Charles L; Salzman, Nita H
2011-05-01
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Chin, Georgiana S M; Heng, Robert; Neesham, Deborah E; Petersen, Rodney W
2002-12-01
Small intestinal volvulus is a rare complication following Roux-en-Y anastomosis. A 63-year-old woman was diagnosed with small intestinal volvulus following laparotomy for clear cell carcinoma of the endometrium. Her past medical history included a total gastrectomy and antecolic Roux-en-Y anastomosis for Duke's B gastric carcinoma. Operative findings were of transmesenteric herniation of the ileum through the Roux-en-Y small intestinal mesenteric window, with metastatic deposits fixing the hernia at its base to create a volvulus. The proximal transverse colon was very dilated and thin due to partial obstruction by the volvulus. Her treatment involved adhesiolysis and unraveling of the small intestinal volvulus. This is the first case report of a small intestinal volvulus following a Roux-en-Y anastomosis involving a metastatic gynacological malignancy.
Mechanisms of small intestinal adaptation.
Jenkins, A P; Thompson, R P
1994-01-01
Luminal nutrition, hormonal factors and pancreaticobiliary secretions are probably the major mediators of small intestinal adaptation. Their actions, as discussed in this paper, are likely to be interrelated. Direct local enterotrophic effects cannot account for all the actions of luminal nutrients. Additionally, hormonal factors have been shown to contribute to indirect effects of luminal nutrients and enteroglucagon is a likely mediator of adaptive responses. Furthermore, epidermal growth factor is a peptide for which there is convincing evidence of an enterotrophic action. Attention is drawn to the fact that pancreaticobiliary secretions may have a physiological role in stimulating small intestinal mucosal proliferation. Other factors may also influence small intestinal mucosal proliferation (e.g. prostaglandins, neurovascular mechanisms, bacteria). Additionally, polyamines are crucial in initiating cell division in the small intestine, but the detailed mechanisms of their action require further clarification. Finally, a number of therapeutic applications of small intestinal epithelial cell proliferation are discussed.
Zhang, H; Wong, E A
2018-02-01
The chicken yolk sac (YS) and small intestine are essential for nutrient absorption during the pre-hatch and post-hatch periods, respectively. Absorptive enterocytes and secretory cells line the intestinal villi and originate from stem cells located in the intestinal crypts. Similarly, in the YS, there are absorptive and secretory cells that presumably originate from a stem cell population. Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) and olfactomedin 4 (Olfm4) are 2 widely used markers for intestinal stem cells. The objective of this study was to map the distribution of putative stem cells expressing LGR5 and OLFM4 mRNA in the chicken small intestine from the late embryonic period to early post hatch and the YS during embryogenesis. At embryonic d 11, 13, 15, 17, and 19, the YS was collected (n = 3), and small intestine was collected at embryonic d 19, d of hatch (doh), and d 1, 4, and 7 post hatch (n = 3). Cells expressing OLFM4 and LGR5 mRNA were identified by in situ hybridization. In the YS, cells expressing only LGR5 and not OLFM4 mRNA were localized to the vascular endothelial cells lining the blood vessels. In the small intestine, cells in the intestinal crypt expressed both LGR5 and OLFM4 mRNA. Staining for OLFM4 mRNA was more intense than LGR5 mRNA, demonstrating that Olfm4 is a more robust marker for stem cells than Lgr5. At embryonic d 19 and doh, cells staining for OLFM4 mRNA were already present in the rudimentary crypts, with the greatest staining in the duodenal crypts. The intensity of OLFM4 mRNA staining increased from doh to d 7 post hatch. Dual label staining at doh for the peptide transporter PepT1 and Olfm4 revealed a population of cells above the crypts that did not express Olfm4 or PepT1 mRNA. These cells are likely progenitor transit amplifying cells. Thus, avians and mammals share similarity in the ontogeny of stem cells in the intestinal crypts. © 2017 Poultry Science Association Inc.
Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal
2006-12-01
The probiotic effects ascribed to lactic acid bacteria (LAB) and their fermented dairy products arise not only from whole microorganisms and cell wall components but also from peptides and extracellular polysaccharides (exopolysaccharides) produced during the fermentation of milk. There is a lack of knowledge concerning the immune mechanisms induced by exopolysaccharides produced by lactic acid bacteria, which would allow a better understanding of the functional effects described to them. The aim of this study was to investigate the in vivo immunomodulating capacity of the exopolysaccharide produced by Lactobacillus kefiranofaciens by analyzing the profile of cytokines and immunoglobulins induced at the intestinal mucosa level, in the intestinal fluid and blood serum. BALB/c mice received the exopolysaccharide produced by L. kefiranofaciens for 2, 5 or 7 consecutive days. At the end of each period of administration, control and treated mice were sacrificed and the numbers of IgA+ and IgG+ cells were determined on histological slices of the small and large intestine by immunofluorescence. Cytokines (IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha) were also determined in the gut lamina propria as well as in the intestinal fluid and blood serum. There was an increase of IgA+ cells in the small and large intestine lamina propria, without change in the number of IgG+ cells in the small intestine. This study reports the effects of the oral administration of the exopolysaccharide produced by L. kefiranofaciens in the number of IgA+ cells in the small and large intestine, comparing simultaneously the production of cytokines by cells of the lamina propria and in the intestinal fluid and blood serum. The increase in the number of IgA+ cells was not simultaneously accompanied by an enhance of the number of IL-4+ cells in the small intestine. This finding would be in accordance with the fact that, in general, polysaccharide antigens elicit a T-independent immune response. For IL-10+, IL-6+ and IL-12+ cells, the values found were slightly increased compared to control values, while IFNgamma+ and TNFalpha+ cells did not change compared to control values. The effects observed on immunoglobulins and in all the cytokines assayed in the large intestine after kefiran administration were of greater magnitude than the ones observed in the small intestine lamina propria, which may be due to the saccharolytic action of the colonic microflora. In the intestinal fluid, only IL-4 and IL-12 increased compared to control values. In blood serum, all the cytokines assayed followed a pattern of production quite similar to the one found for them in the small intestine lamina propria. We observed that the exopolysaccharide induced a gut mucosal response and it was able to up and down regulate it for protective immunity, maintaining intestinal homeostasis, enhancing the IgA production at both the small and large intestine level and influencing the systemic immunity through the cytokines released to the circulating blood.
Margolskee, Elizabeth; Jobanputra, Vaidehi; Lewis, Suzanne K; Alobeid, Bachir; Green, Peter H R; Bhagat, Govind
2013-01-01
Enteropathy-associated T-cell lymphomas (EATL) are rare and generally aggressive types of peripheral T-cell lymphomas. Rare cases of primary, small intestinal CD4+ T-cell lymphomas with indolent behavior have been described, but are not well characterized. We describe morphologic, phenotypic, genomic and clinical features of 3 cases of indolent primary small intestinal CD4+ T-cell lymphomas. All patients presented with diarrhea and weight loss and were diagnosed with celiac disease refractory to a gluten free diet at referring institutions. Small intestinal biopsies showed crypt hyperplasia, villous atrophy and a dense lamina propria infiltrate of small-sized CD4+ T-cells often with CD7 downregulation or loss. Gastric and colonic involvement was also detected (n = 2 each). Persistent, clonal TCRβ gene rearrangement products were detected at multiple sites. SNP array analysis showed relative genomic stability, early in disease course, and non-recurrent genetic abnormalities, but complex changes were seen at disease transformation (n = 1). Two patients are alive with persistent disease (4.6 and 2.5 years post-diagnosis), despite immunomodulatory therapy; one died due to bowel perforation related to large cell transformation 11 years post-diagnosis. Unique pathobiologic features warrant designation of indolent small intestinal CD4+ T-cell lymphoma as a distinct entity, greater awareness of which would avoid misdiagnosis as EATL or an inflammatory disorder, especially celiac disease.
Jenkins, A P; Thompson, R P
1992-01-01
This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose. PMID:1541418
Jenkins, A P; Thompson, R P
1992-02-01
This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose.
Fiorentino, Maria; Levine, Myron M.
2014-01-01
Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to the large intestine where they invade colonocytes inducing a strong inflammatory response. PMID:24416363
Lai, Yu; Zhong, Wa; Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui
2015-01-01
The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin.
Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui
2015-01-01
Background The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. Methods BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. Results COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Conclusion Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin. PMID:26135128
Pai, Man-Hui; Liu, Jun-Jen; Hou, Yu-Chen; Yeh, Chiu-Li
2016-03-01
This study investigated the effect of different ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratios on dextran sulfate sodium (DSS)-induced changes to small intestinal intraepithelial lymphocyte (IEL) γδT-cell expression. Mice were assigned to 3 control and 3 DSS-treated groups and were maintained on a low-fat semipurified diet. One of the control (S) groups and a DSS (DS) group were provided with soybean oil; the other 2 control (Hω-3 and Lω-3) groups and 2 other DSS (DHω-3 and DLω-3) groups were fed either a soybean and fish oil mixture with a ω-6/ω-3 ratio of 2:1 or 4:1. After feeding the respective diets for 2 weeks, the DSS groups were given distilled water containing 2% DSS, and the control groups were given distilled water for 5 days. All groups were further provided distilled water 5 days for recovery, and the small intestinal IEL γδT-cell subset was isolated for analysis. DSS treatment resulted in a lower small intestinal IEL γδT-cell percentage and higher messenger RNA (mRNA) expressions of Reg IIIγ, keratinocyte growth factor (KGF), and complement 5a receptor (C5aR) by IEL γδT cells. Fish oil administration enhanced the proportion of small intestinal IEL γδT cells. Compared with the DLω-3 group, the DHω-3 group had lower Reg IIIγ, KGF, and C5aR mRNA expressions and higher expression of peroxisome proliferator-activated receptor (PPAR)-γ gene by small intestinal IEL γδT cells. Fish oil diets with a ω-6/ω-3 PUFA ratio of 2:1 were more effective than those with a ratio of 4:1 in improving DSS-induced small intestinal injury, and activation of PPAR-γ in IEL γδT cells may be associated with resolution of small intestinal inflammation. © 2014 American Society for Parenteral and Enteral Nutrition.
Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E
2016-06-15
Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.
Zhu, Cui; Chen, Zhuang; Jiang, Zongyong
2016-01-01
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719
Zhu, Cui; Chen, Zhuang; Jiang, Zongyong
2016-08-29
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
NASA Astrophysics Data System (ADS)
Blanchette, James; Lopez, Jennifer; Park, Kinam; Peppas, Nicholas
2002-03-01
Oral protein delivery requires protection from the harsh environment of the stomach, release in the small intestine and passage from the intestinal lumen into the circulation. Hydrogels that swell in response to the pH change when passing from the stomach to the small intestine can accomplish the first two points. The ability to enhance the permeability of intestinal epithelial cells is currently under investigation. Methacrylic acid-containing hydrogels have shown the ability to bind calcium ions that decreases the concentration of free extracellular calcium for these epithelial cells. This change triggers a number of intracellular events including rearrangement of the cytoskeleton leading to increased permeability. Studies done on Caco-2 cells (human colon adenocarcinoma) measuring changes in transepithelial resistance are used to assess the effect of the polymer-cell interactions on the integrity of intestinal epithelial cell monolayers.
To better understand and study the infection of the protozoan parasite Cryptosporidium parvum, a more sensitive in vitro assay is required. In vivo, this parasite infects the epithelial cells of the microvilli layer in the small intestine. While cell infection models using colon,...
Hussar, P; Kaerner, M; Duritis, I; Plivca, A; Pendovski, L; Jaerveots, T; Popovska-Percinic, F
2017-12-01
The temporospatial patterns in the localization of hexose transporters as well as in the quantitative and qualitative differences of glycoprotein mucin produced by the goblet cells of broiler chicken (Gallus gallus domesticus) small intestine during their first postnatal month were studied. The integral membrane proteins glucose transporter-2 and -5 (GLUT-2 and GLUT-5) that facilitate the transport of hexoses across epithelial cell layers that separate distinct compartments in organism were detected in the chicken intestinal epithelial cells using immunohistochemical labeling with polyclonal primary antibodies Rabbit anti-GLUT-2 and Rabbit anti-GLUT-5 (IHC kit, Abcam, UK). The chemical composition of mucin (neutral, acid) was carried out by applying the histochemical reactions by Alcian-Blue and periodic acid-Schiff methods. The results revealed presence of the hexose transporters GLUT-2 and -5, immunolocalized in the enterocytes of broiler's small intestine and the temporospatial pattern of the density of goblet cells of intestinal mucosa as well as the chemical composition of mucin produced by the goblet cells in chicken immediately after hatching and in 30-days-old chicken's. Simultanously, when goblet cells remained unstained with both antibodies in intestinal epithelium in chicken of both ages or some moderate staining was noticed in 30-days-old chickens' ileal epithelium, the increase of neutral and acid mucin- containing cells per area unit in both segments of the small intestine was detected from the first day after hatching to 30 day of life and the densilty of goblet cells was found to be higher in ileal than in duodenal region. Copyright© by the Polish Academy of Sciences.
Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L
2017-01-01
There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.
Kishimoto, Masanobu; Fukui, Toshiro; Suzuki, Ryo; Takahashi, Yu; Sumimoto, Kimi; Okazaki, Takashi; Sakao, Masayuki; Sakaguchi, Yutaku; Yoshida, Katsunori; Uchida, Kazushige; Nishio, Akiyoshi; Matsuzaki, Koichi; Okazaki, Kazuichi
2015-02-01
Quiescent (slow-cycling) and active (rapid-cycling) stem cells are demonstrated in small intestines. We have identified significant expression of Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), in murine stomach, and suggested these cells are epithelial stem cells. Here, we explore whether pSmad2/3L-Thr could serve as a biomarker for small intestine and colon stem cells. We examined small intestines and colons from C57BL/6 mice and colons with dextran sulfate sodium (DSS)-induced colitis. We performed double-immunofluorescent staining of pSmad2/3L-Thr with Ki67, cytokeratin 8, chromogranin A, CDK4, DCAMKL1, and Musashi-1. Small intestines and colons from Lgr5-EGFP knock-in mice were examined by pSmad2/3L-Thr immunofluorescent staining. To examine BrdU label retention of pSmad2/3L-Thr immunostaining-positive cells, we collected specimens after BrdU administration and observed double-immunofluorescent staining of pSmad2/3L-Thr with BrdU. In small intestines and colons, pSmad2/3L-Thr immunostaining-strongly positive cells were detected around crypt bases. Immunohistochemical co-localization of pSmad2/3L-Thr with Ki67 was not observed. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with cytokeratin 8, CDK4, and Musashi-1 and different localization from chromogranin A and DCAMKL1 immunostaining-positive cells. Under a light microscope, pSmad2/3L-Thr immunostaining-strongly positive cells were morphologically undifferentiated. In Lgr5-EGFP knock-in mice, some but not all pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with Lgr5. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with BrdU at 5, 10, and 15 days after administration. In DSS-induced colitis, pSmad2/3L-Thr and Ki67 immunostaining-positive cells increased in the regeneration phase and decreased in the injury phase. In murine small intestines and colons, we suggest pSmad2/3L-Thr immunostaining-strongly positive cells are epithelial stem-like cells just before reentry to the cell cycle.
Kober, Olivia I.; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R.
2014-01-01
Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ−/−) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ−/− mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ−/− mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ−/− mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ−/− and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine. PMID:24503767
Kober, Olivia I; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R; Juge, Nathalie
2014-04-01
Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ(-/-) mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ(-/-) and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.
Higuchi, Teruhisa; Moriyama, Mitsuhiko; Fukushima, Akiko; Matsumura, Hiroshi; Matsuoka, Shunichi; Kanda, Tatsuo; Sugitani, Masahiko; Tsunemi, Akiko; Ueno, Takahiro; Fukuda, Noboru
2018-05-25
Excess iron is associated with non-alcoholic steatohepatitis (NASH). mRNA expression of duodenal cytochrome b, divalent metal transporter 1, ferroportin 1, hepcidin, hephaestin and transferrin receptor 1 in liver were higher in high fat, high cholesterol-containing diet (HFCD) group than in normal diet (ND) group. mRNA levels of divalent metal transporter 1 and transferrin receptor 1, which stimulate iron absorption and excretion, were enhanced in small intestine. Epithelial mucosa of small intestine in HFCD group was characterized by plasma cell and eosinophil infiltration and increased vacuoles. Iron absorption was enhanced in this NASH model in the context of chronic inflammation of small intestinal epithelial cells, consequences of intestinal epithelial cell impairment caused by HFCD. Iron is transported to hepatocytes via portal blood, and abnormalities in iron absorption and excretion occur in small intestine from changes in iron transporter expression, which also occurs in NASH liver. Knockdown of hepcidin antimicrobial peptide led to enhanced heavy chain of ferritin expression in human hepatocytes, indicating association between hepcidin production and iron storage in hepatocytes. Iron-related transporters in liver and lower/upper portions of small intestine play critical roles in NASH development. Expression of iron metabolism-related genes in liver and small intestine was analyzed in stroke-prone spontaneously hypertensive rats (SHR-SP), which develop NASH. Five-week-old SHR-SP fed ND or HFCD were examined. mRNA and protein levels of iron metabolism-related genes in liver and small intestine from 12- and 19-week-old rats were evaluated by real-time RT-PCR and immunohistochemistry or Western blot.
Breast Milk Enhances Growth of Enteroids: An Ex Vivo Model of Cell Proliferation.
Lanik, Wyatt E; Xu, Lily; Luke, Cliff J; Hu, Elise Z; Agrawal, Pranjal; Liu, Victoria S; Kumar, Rajesh; Bolock, Alexa M; Ma, Congrong; Good, Misty
2018-02-15
Human small intestinal enteroids are derived from the crypts and when grown in a stem cell niche contain all of the epithelial cell types. The ability to establish human enteroid ex vivo culture systems are important to model intestinal pathophysiology and to study the particular cellular responses involved. In recent years, enteroids from mice and humans are being cultured, passaged, and banked away for future use in several laboratories across the world. This enteroid platform can be used to test the effects of various treatments and drugs and what effects are exerted on different cell types in the intestine. Here, a protocol for establishing primary stem cell-derived small intestinal enteroids derived from neonatal mice and premature human intestine is provided. Moreover, this enteroid culture system was utilized to test the effects of species-specific breast milk. Mouse breast milk can be obtained efficiently using a modified human breast pump and expressed mouse milk can then be used for further research experiments. We now demonstrate the effects of expressed mouse, human, and donor breast milk on the growth and proliferation of enteroids derived from neonatal mice or premature human small intestine.
Enteroendocrine K and L cells in healthy and type 2 diabetic individuals.
Jorsal, Tina; Rhee, Nicolai A; Pedersen, Jens; Wahlgren, Camilla D; Mortensen, Brynjulf; Jepsen, Sara L; Jelsing, Jacob; Dalbøge, Louise S; Vilmann, Peter; Hassan, Hazem; Hendel, Jakob W; Poulsen, Steen S; Holst, Jens J; Vilsbøll, Tina; Knop, Filip K
2018-02-01
Enteroendocrine K and L cells are pivotal in regulating appetite and glucose homeostasis. Knowledge of their distribution in humans is sparse and it is unknown whether alterations occur in type 2 diabetes. We aimed to evaluate the distribution of enteroendocrine K and L cells and relevant prohormone-processing enzymes (using immunohistochemical staining), and to evaluate the mRNA expression of the corresponding genes along the entire intestinal tract in individuals with type 2 diabetes and healthy participants. In this cross-sectional study, 12 individuals with type 2 diabetes and 12 age- and BMI-matched healthy individuals underwent upper and lower double-balloon enteroscopy with mucosal biopsy retrieval from approximately every 30 cm of the small intestine and from seven specific anatomical locations in the large intestine. Significantly different densities for cells positive for chromogranin A (CgA), glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, peptide YY, prohormone convertase (PC) 1/3 and PC2 were observed along the intestinal tract. The expression of CHGA did not vary along the intestinal tract, but the mRNA expression of GCG, GIP, PYY, PCSK1 and PCSK2 differed along the intestinal tract. Lower counts of CgA-positive and PC1/3-positive cells, respectively, were observed in the small intestine of individuals with type 2 diabetes compared with healthy participants. In individuals with type 2 diabetes compared with healthy participants, the expression of GCG and PYY was greater in the colon, while the expression of GIP and PCSK1 was greater in the small intestine and colon, and the expression of PCSK2 was greater in the small intestine. Our findings provide a detailed description of the distribution of enteroendocrine K and L cells and the expression of their products in the human intestinal tract and demonstrate significant differences between individuals with type 2 diabetes and healthy participants. NCT03044860.
Wireless capsule endoscopy for diagnosis of acute intestinal graft-versus-host disease.
Neumann, Susanne; Schoppmeyer, Konrad; Lange, Thoralf; Wiedmann, Marcus; Golsong, Johannes; Tannapfel, Andrea; Mossner, Joachim; Niederwieser, Dietger; Caca, Karel
2007-03-01
The small intestine is the most common location of intestinal graft-versus-host disease (GVHD). EGD with duodenal biopsies yields the highest diagnostic sensitivity, but the jejunum and ileum are not accessible by regular endoscopy. In contrast, wireless capsule endoscopy (WCE) is a noninvasive imaging procedure offering complete evaluation of the small intestine. The objective was to compare the diagnostic value of EGD, including biopsies, with the results of WCE in patients with acute intestinal symptoms who received allogeneic blood stem cell transplantation and to analyze the appearance and distribution of acute intestinal GVHD lesions in these patients. An investigator-blinded, single-center prospective study. Patients with acute intestinal symptoms after allogeneic stem cell transplantation underwent both EGD and WCE within 24 hours. Clinical data were recorded during 2 months of follow-up. Fourteen consecutive patients with clinical symptoms of acute intestinal GVHD were recruited. In 1 patient, the capsule remained in the stomach and was removed endoscopically. In 7 of 13 patients who could be evaluated, acute intestinal GVHD was diagnosed by EGD with biopsies, but 3 of these would have been missed by EGD alone. In all 7 patients with histologically confirmed acute intestinal GVHD, WCE revealed typical signs of GVHD. Lesions were scattered throughout the small intestine, but were most accentuated in the ileum. This study had a small number of patients. WCE, which is less invasive than EGD with biopsies, showed a comparable sensitivity and a high negative predictive value for diagnosing acute intestinal GVHD. It may be helpful to avoid repeated endoscopic procedures in patients who have undergone stem cell transplantation.
2013-01-15
Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer
Abiko, Yukie; Kojima, Takashi; Murata, Masaki; Tsujiwaki, Mitsuhiro; Takeuchi, Masaya; Sawada, Norimasa; Mori, Michio
2013-12-01
DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.
1993-12-31
Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes inmore » small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.« less
An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells
NASA Astrophysics Data System (ADS)
Powell, Jonathan J.; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E.; Skepper, Jeremy N.; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A.; Gomez-Morilla, Inmaculada; Grime, Geoffrey W.; Kirkby, Karen J.; Mabbott, Neil A.; Donaldson, David S.; Williams, Ifor R.; Rios, Daniel; Girardin, Stephen E.; Haas, Carolin T.; Bruggraber, Sylvaine F. A.; Laman, Jon D.; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P. H.; Pele, Laetitia C.
2015-05-01
In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1’, whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.
An Endogenous Nanomineral Chaperones Luminal Antigen and Peptidoglycan to Intestinal Immune Cells
Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine FA; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C
2015-01-01
In humans and other mammals, it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally-fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer’s patches - small areas of the intestine concentrated with particle-scavenging immune cells. In wild type mice, intestinal immune cells containing these naturally-formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1 (PD-L1)’, whereas in NOD1/2 double knock-out mice, which cannot recognize peptidoglycan, PD-L1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and how this helps to shape intestinal immune homeostasis. PMID:25751305
A vesicle trafficking protein αSNAP regulates Paneth cell differentiation in vivo.
Lechuga, Susana; Naydenov, Nayden G; Feygin, Alex; Jimenez, Antonio J; Ivanov, Andrei I
2017-05-13
A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
A VESICLE TRAFFICKING PROTEIN αSNAP REGULATES PANETH CELL DIFFERENTIATION IN VIVO
Lechuga, Susana; Naydenov, Nayden G.; Feygin, Alex; Jimenez, Antonio J.; Ivanov, Andrei I.
2017-01-01
A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. PMID:28359759
Persistent gut motor dysfunction in a murine model of T-cell-induced enteropathy.
Mizutani, T; Akiho, H; Khan, W I; Murao, H; Ogino, H; Kanayama, K; Nakamura, K; Takayanagi, R
2010-02-01
Inflammatory bowel disease (IBD) patients in remission often experience irritable bowel syndrome (IBS)-like symptoms. We investigated the mechanism for intestinal muscle hypercontractility seen in T-cell-induced enteropathy in recovery phase. BALB/c mice were treated with an anti-CD3 antibody (100 microg per mouse) and euthanized at varying days post-treatment to investigate the histological changes, longitudinal smooth muscle cell contraction, cytokines (Th1, Th2 cytokines, TNF-alpha) and serotonin (5-HT)-expressing enterochromaffin cell numbers in the small intestine. The role of 5-HT in anti-CD3 antibody-induced intestinal muscle function in recovery phase was assessed by inhibiting 5-HT synthesis using 4-chloro-DL-phenylalanine (PCPA). Small intestinal tissue damage was observed from 24 h after the anti-CD3 antibody injection, but had resolved by day 5. Carbachol-induced smooth muscle cell contractility was significantly increased from 4 h after injection, and this muscle hypercontractility was evident in recovery phase (at day 7). Th2 cytokines (IL-4, IL-13) were significantly increased from 4 h to day 7. 5-HT-expressing cells in the intestine were increased from day 1 to day 7. The 5-HT synthesis inhibitor PCPA decreased the anti-CD3 antibody-induced muscle hypercontractility in recovery phase. Intestinal muscle hypercontractility in remission is maintained at the smooth muscle cell level. Th2 cytokines and 5-HT in the small intestine contribute to the maintenance of the altered muscle function in recovery phase.
Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong
2017-04-01
Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.
Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal
Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.
2015-01-01
To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399
Horie, T; Matsumoto, H; Kasagi, M; Sugiyama, A; Kikuchi, M; Karasawa, C; Awazu, S; Itakura, Y; Fuwa, T
1999-08-01
The methotrexate (MTX) administration to rats causes the damage of small intestine. The small intestinal damage was evaluated by measuring the intestinal permeability of the poorly absorbable compound, fluorescein isothiocyanate (FITC)-labeled dextran (average molecular weight, 4,400) (FD-4) using the in vitro everted intestine technique and by determining the FD-4 that appeared in plasma using the in situ closed loop intestine technique. The MTX administration to rats fed with the standard laboratory diet increased the small intestinal permeability of FD-4 due to the damage of the small intestine. Interestingly, the permeability of FD-4, when MTX was administered to rats fed with the aged garlic extract containing diet, was depressed almost to the level of control rats without the MTX treatment. The present study showed that the aged garlic extract protected the small intestine from the damage induced by the action of MTX on the crypt cells.
Wang, Yang; Liu, Liping; Moore, Daniel J; Shen, Xi; Peek, Richard M.; Acra, Sari A; Li, Hui; Ren, Xiubao; Polk, D Brent; Yan, Fang
2016-01-01
p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting IgA production. p40 up-regulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfrfl/fl , but not Egfrfl/fl-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B cell class switching to IgA+ cells and IgA production, which was suppressed by APRIL receptor neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA+B220+, IgA+CD19+, and IgA+ plasma cells in lamina propria of Egfrfl/fl, but not Egfrfl/fl-Vil-Cre mice. Thus, p40 up-regulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production. PMID:27353252
Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L
2016-08-22
Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.
Development and maintenance of intestinal regulatory T cells.
Tanoue, Takeshi; Atarashi, Koji; Honda, Kenya
2016-05-01
Gut-resident forkhead box P3 (FOXP3)(+)CD4(+) regulatory T cells (Treg cells) are distinct from those in other organs and have gut-specific phenotypes and functions. Whereas Treg cells in other organs have T cell receptors (TCRs) specific for self antigens, intestinal Treg cells have a distinct set of TCRs that are specific for intestinal antigens, and these cells have pivotal roles in the suppression of immune responses against harmless dietary antigens and commensal microorganisms. The differentiation, migration and maintenance of intestinal Treg cells are controlled by specific signals from the local environment. In particular, certain members of the microbiota continuously provide antigens and immunoregulatory small molecules that modulate intestinal Treg cells. Understanding the development and the maintenance of intestinal Treg cells provides important insights into disease-relevant host-microorganism interactions.
Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian
2017-01-01
Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301
Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Hoon Ki; Department of Anatomy, Yeung Nam University Medical School, Daegu 705-717; Morisada, Tohru
2006-06-30
Radiation therapy is a widely used cancer treatment, but it is unable to completely block cancer metastasis. The lymphatic vasculature serves as the primary route for metastatic spread, but little is known about how lymphatic endothelial cells respond to radiation. Here, we show that lymphatic endothelial cells in the small intestine and peri-tumor areas are highly resistant to radiation injury, while blood vessel endothelial cells in the small intestine are relatively sensitive. Our results suggest the need for alternative therapeutic modalities that can block lymphatic endothelial cell survival, and thus disrupt the integrity of lymphatic vessels in peri-tumor areas.
Innate immunity in the small intestine
Santaolalla, Rebeca; Abreu, Maria T.
2012-01-01
Purpose of review This manuscript reviews the most recent publications on innate immunity in the small intestine. We will go over the innate immune receptors that act as sensors of microbial presence or cell injury, Paneth cells as the main epithelial cell type that secrete antimicrobial peptides, and mucosal production of IgA. In addition, we will give an update on examples of imbalance of the innate immune response resulting in clinical disease with the most relevant example being Crohn’s disease. Recent findings Toll-like receptors (TLRs) are involved in B-cell homing to the intestine, rejection of small intestinal allografts and recruitment of mast cells. The TLR adaptor TRIF is necessary to activate innate immunity after Yersinia enterocolitica infection. Moreover, MyD88 is required to keep the intestinal microbiota under control and physically separated from the epithelium and RegIIIγ is responsible for the bacterial segregation from the lining epithelial cells. In Crohn’s disease, ATG16L1 T300A variant promotes a pro-inflammatory response; and miR-196 downregulates a protective IRGM polymorphism leading to impaired clearance of adherent Escherichia coli in the intestine. Summary The intestine is continuously exposed to dietary and microbial antigens. The host has to maintain intestinal homeostasis to keep the commensal and pathogenic bacteria under control. Some of the mechanisms to do so are by expression of innate immune receptors, production of antimicrobial peptides, secretion of IgA or autophagy of intracellular bacteria. Unfortunately, in some cases the innate immune response fails to protect the host and chronic inflammation, transplant rejection, or other pathologies may occur. PMID:22241076
Wang, Yuli; Gunasekara, Dulan B; Reed, Mark I; DiSalvo, Matthew; Bultman, Scott J; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L
2017-06-01
The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Pietz, Grzegorz; De, Rituparna; Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten; Hammarström, Marie-Louise
2017-01-01
Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.
Immunopathology of childhood celiac disease—Key role of intestinal epithelial cells
Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten
2017-01-01
Background & Aims Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Methods Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. Results More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. Conclusion A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease. PMID:28934294
IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.
Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V
2012-09-01
Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.
Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans
2011-11-01
We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Intestinal development and differentiation
Noah, Taeko K.; Donahue, Bridgitte; Shroyer, Noah F.
2011-01-01
In this review, we present an overview of intestinal development and cellular differentiation of the intestinal epithelium. The review is separated into two sections: Section one summarizes organogenesis of the small and large intestines, including endoderm and gut tube formation in early embryogenesis, villus morphogenesis, and crypt formation. Section two reviews cell fate specification and differentiation of each cell type within the intestinal epithelium. Growth factor and transcriptional networks that regulate these developmental processes are summarized. PMID:21978911
Ai, Jing; Du, Jie; Wang, Ning; Du, Zhi-Min; Yang, Bao-Feng
2004-01-01
AIM: To investigate the inhibitory effects of sodium orthovanadate on small-intestinal glucose and maltose absorption in rats and its mechanism. METHODS: Normal Wistar rats were lavaged with sodium orthovanadate (16 mg/kg, 4 mg/kg and 1 mg/kg) for 6 d. Blood glucose values were measured after fasting and 0.5, 1, 1.5 and 2 h after glucose and maltose feeding with oxidation-enzyme method. α-glucosidase was abstracted from the upper small intestine, and its activity was examined. mRNA expression of α-glucosidase and glucose-transporter 2 (GLUT2) in epithelial cells of the small intestine was observed by in situ hybridization. RESULTS: Sodium orthovanadate could delay the increase of plasma glucose concentration after glucose and maltose loading, area under curve (AUC) in these groups was lower than that in control group. Sodium orthovanadate at dosages of 10 μmol/L, 100 μmol/L and 1000 μmol/L could suppress the activity of α-glucosidase in the small intestine of normal rats, with an inhibition rate of 68.18%, 87.22% and 91.91%, respectively. Sodium orthovanadate reduced mRNA expression of α-glucosidase and GLUT2 in epithelial cells of small intestine. CONCLUSION: Sodium orthovanadate can reduce and delay the absorption of glucose and maltose. The mechanism may be that it can inhibit the activity and mRNA expression of α-glucosidase, as well as mRNA expression of GLUT2 in small intestine. PMID:15534916
A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
Tian, Hua; Biehs, Brian; Warming, Soren; Leong, Kevin G.; Rangell, Linda; Klein, Ophir D.; de Sauvage, Frederic J.
2014-01-01
The small intestine epithelium renews every 2 to 5 days, making it one of the most regenerative mammalian tissues. Genetic inducible fate mapping studies have identified two principal epithelial stem cell pools in this tissue. One pool consists of columnar Lgr5-expressing cells that cycle rapidly and are present predominantly at the crypt base1. The other pool consists of Bmi1-expressing cells that largely reside above the crypt base2. However, the relative functions of these two pools and their interrelationship are not understood. Here, we specifically ablated Lgr5-expressing cells using a diphtheria toxin receptor (DTR) gene knocked into the Lgr5 locus. We found that complete loss of the Lgr5-expressing cells did not perturb homeostasis of the epithelium, indicating that other cell types can compensate for elimination of this population. After ablation of Lgr5-expressing cells, progeny production by Bmi1-expressing cells increased, suggesting that Bmi1-expressing stem cells compensate for the loss of Lgr5-expressing cells. Indeed, lineage tracing showed that Bmi1-expressing cells gave rise to Lgr5-expressing cells, pointing to a hierarchy of stem cells in the intestinal epithelium. Our results demonstrate that Lgr5-expressing cells are dispensable for normal intestinal homeostasis. In the absence of these cells, the Bmi1-expressing cells can serve as an alternative stem cell pool, providing the first experimental evidence for the interrelationship between these populations. The Bmi1-expressing stem cells may represent both a reserve stem cell pool in case of injury to the small intestine epithelium and a source for replenishment of the Lgr5-expressing cells under non-pathological conditions. PMID:21927002
Knoop, Kathryn A; Kumar, Nachiket; Butler, Betsy R; Sakthivel, Senthilkumar K; Taylor, Rebekah T; Nochi, Tomonori; Akiba, Hisaya; Yagita, Hideo; Kiyono, Hiroshi; Williams, Ifor R
2009-11-01
Microfold cells (M cells) are specialized epithelial cells situated over Peyer's patches (PP) and other organized mucosal lymphoid tissues that transport commensal bacteria and other particulate Ags into intraepithelial pockets accessed by APCs. The TNF superfamily member receptor activator of NF-kappaB ligand (RANKL) is selectively expressed by subepithelial stromal cells in PP domes. We found that RANKL null mice have <2% of wild-type levels of PP M cells and markedly diminished uptake of 200 nm diameter fluorescent beads. Ab-mediated neutralization of RANKL in adult wild-type mice also eliminated most PP M cells. The M cell deficit in RANKL null mice was corrected by systemic administration of exogenous RANKL. Treatment with RANKL also induced the differentiation of villous M cells on all small intestinal villi with the capacity for avid uptake of Salmonella and Yersinia organisms and fluorescent beads. The RANK receptor for RANKL is expressed by epithelial cells throughout the small intestine. We conclude that availability of RANKL is the critical factor controlling the differentiation of M cells from RANK-expressing intestinal epithelial precursor cells.
Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells
Fu, Xing; Du, Min
2018-01-01
Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health. PMID:29643147
Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel
2012-07-15
Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.
Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J; Franch, Àngels; Untersmayr, Eva; Castell, Margarida
2017-04-01
Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect. Copyright © 2017 Elsevier Inc. All rights reserved.
Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J.; Franch, Àngels; Untersmayr, Eva; Castell, Margarida
2018-01-01
Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer’s patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+ cells as well. In cocoa-fed animals, we identified a five time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+ cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect. PMID:28189917
Intestinal lymphosarcoma in captive African hedgehogs.
Raymond, J T; Clarke, K A; Schafer, K A
1998-10-01
Two captive adult female African hedgehogs (Atelerix albiventris) had inappetance and bloody diarrhea for several days prior to death. Both hedgehogs had ulceration of the small intestine and hepatic lipidosis. Histopathology revealed small intestinal lymphosarcoma with metastasis to the liver. Extracellular particles that had characteristics of retroviruses were observed associated with the surface of some neoplastic lymphoid cells by transmission electron microscopy. These are the first reported cases of intestinal lymphosarcoma in African hedgehogs.
Meyer, A M; Hess, B W; Paisley, S I; Du, M; Caton, J S
2014-09-01
We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.
Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Lu; Hu, Lingna; Yang, Baofang
Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib.more » Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.« less
A single-cell survey of the small intestinal epithelium
Haber, Adam L.; Biton, Moshe; Rogel, Noga; Herbst, Rebecca H.; Shekhar, Karthik; Smillie, Christopher; Burgin, Grace; Delorey, Toni M.; Howitt, Michael R.; Katz, Yarden; Tirosh, Itay; Beyaz, Semir; Dionne, Danielle; Zhang, Mei; Raychowdhury, Raktima; Garrett, Wendy S.; Rozenblatt-Rosen, Orit; Shi, Hai Ning; Yilmaz, Omer; Xavier, Ramnik J.; Regev, Aviv
2018-01-01
Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens. PMID:29144463
Yuqi, Luo; Chengtang, Wu; Ying, Wen; Shangtong, Lei; Kangxiong, Liao
2008-09-01
The purpose was to investigate the expression of musashi-1 (msi-1) and its significances in small intestinal mucosa that was severely damaged by high-dose 5-FU. A total of 40 adult C57BL/6J mice were divided into two groups: the control group (n = 8, group A) and experimental group (n = 32). The mice in the control group were treated with PBS by intraperitoneal injection, and the other mice were treated with high-dose 5-FU (150 mg/kg body weight for 5 consecutive days) by intraperitoneal injection. At the 1st (group B), 3rd (group C) and 5th (group D) day after treatment with high-dose 5-FU, the dying mice were killed, HE staining and immunohistochemical techniques were used to detect the expression of the putative marker of intestinal epithelial stem cells, msi-1, in samples of the middle intestine from these mice, and the percentage of the msi-1-positive cells from the intestinal mucosal cells of the mice in group B was detected by FACS. After treatment with high-dose 5-FU, the intestinal mucosa suffered severe damage: the villi and crypts disappeared, the number of msi-1-positive cells increased greatly, the intestinal epithelial cells could be divided into two fractions by FACS, and the percentage of msi-1-positive cells was up to 67.75% in the fraction in which the value of FSC was higher. After treatment with high-dose 5-FU, the percentage of intestinal stem cells had increased significantly, which was useful for the further isolation and enrichment of intestinal epithelial stem cells.
Lee, Hyeung Sik; Ku, Sae Kwang
2004-01-01
Distribution patterns and the relative frequency of different types of endocrine cells were demonstrated in the alimentary tract of the grass lizard, Takydromus wolteri, using nine specific antibodies raised against mammalian regulatory peptides. The alimentary tract of the lizard was divided into six portions from the esophagus to the rectum. Most endocrine cells were found in the epithelial lining and were generally spindle shaped with long cytoplasmic processes ending in the lumen (open cell type), whereas cells that were spherical in shape (closed cell type) were occasionally found in gastric, esophageal and intestinal glands. Endocrine cells were stained for the following regulatory peptides: bovine Sp-1/chromogranin (BCG), serotonin, somatostatin, gastrin, cholecystokinin (CCK)-8, glucagon, insulin, human pancreatic polypeptide (HPP) and secretin. Cells stained for BCG and serotonin were present throughout the entire gastrointestinal tract and they occurred with the highest frequency in stomach and pylorus, respectively. Somatostatin-positive cells were detected throughout the entire gastrointestinal tract except for the esophagus and large intestine, and were most predominant in pylorus and duodenum. Cells stained for gastrin were restricted to the pylorus and duodenum and occurred with a relatively low frequency. CCK-8-positive cells were observed from pylorus to small intestine and showed the highest frequency in the pylorus. Glucagon- and insulin-containing cells were located in duodenum and small intestine but were found only rarely. HPP-stained cells were detected in duodenum and small intestine with the highest frequency in duodenum. Cells stained for secretin were restricted to duodenum and were found only rarely. In conclusion, distribution patterns and the relative frequency of these endocrine cells correspond well with previous reports on distribution patterns of endocrine cells in reptile species but some deviating patterns were also observed.
Singh, Soudamani; Arthur, Subha; Sundaram, Uma
2018-03-01
The only Na-nutrient cotransporter described in mammalian small intestinal crypt cells is SN2/SNAT5, which facilitates glutamine uptake. In a rabbit model of chronic intestinal inflammation, SN2 stimulation is secondary to an increase in affinity of the cotransporter for glutamine. However, the immune regulation of SN2 in the crypt cells during chronic intestinal inflammation is unknown. We sought to determine the mechanism of regulation of Na-nutrient cotransporter SN2 by arachidonic acid metabolites in crypt cells. The small intestines of New Zealand white male rabbits were inflamed via inoculation with Eimeria magna oocytes. After 2-week incubation, control and inflamed rabbits were subjected to intramuscular injections of arachidonyl trifluoromethyl ketone (ATK), piroxicam and MK886 for 48 hrs. After injections, the rabbits were euthanized and crypt cells from small intestines were harvested and used. Treatment of rabbits with ATK prevented the release of AA and reversed stimulation of SN2. Inhibition of cyclooxygenase (COX) with piroxicam did not affect stimulation of SN2. However, inhibition of lipoxygenase (LOX) with MK886, thus reducing leukotriene formation during chronic enteritis, reversed the stimulation of SN2. Kinetic studies showed that the mechanism of restoration of SN2 by ATK or MK886 was secondary to the restoration of the affinity of the cotransporter for glutamine. For all treatment conditions, Western blot analysis revealed no change in SN2 protein levels. COX inhibition proved ineffective at reversing the stimulation of SN2. Thus, this study provides evidence that SN2 stimulation in crypt cells is mediated by the leukotriene pathway during chronic intestinal inflammation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku
2013-06-14
Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs)more » and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.« less
Brencher, Lisa; Petrat, Frank; Stych, Katrin; Hamburger, Tim
2017-01-01
Background Intestinal ischemia is often caused by a malperfusion of the upper mesenteric artery. Since the intestinal mucosa is one of the most rapidly proliferating organs in human body, this tissue can partly regenerate itself after the onset of ischemia and reperfusion (I/R). Therefore, we investigated whether glycine, sodium pyruvate, and resveratrol can either support or potentially harm regeneration when applied therapeutically after reperfusion injury. Methods I/R of the small intestine was initiated by occluding and reopening the upper mesenteric artery in rats. After 60 min of ischemia and 300 min of reperfusion, glycine, sodium pyruvate, or resveratrol was administered intravenously. Small intestine regeneration was analyzed regarding tissue damage, activity of saccharase, and Ki-67 positive cells. Additionally, systemic parameters and metabolic ones were obtained at selected periods. Results Resveratrol failed in improving the outcome after I/R, while glycine showed a partial beneficial effect. Sodium pyruvate ameliorated metabolic acidosis, diminished histopathologic tissue injury, and increased cell proliferation in the small intestine. Conclusion While glycine could improve in part regeneration but not proliferation, sodium pyruvate seems to be a possible therapeutic agent to facilitate proliferation and to support mucosal regeneration after I/R injury to the small intestine. PMID:29201896
Erickson, R H; Gum, J R; Lindstrom, M M; McKean, D; Kim, Y S
1995-11-02
RT-PCR was used to obtain rat small intestinal cDNAs for two peptide transporters, showing conclusively for the first time that both are present in normal intestinal mucosa. Sequencing of these cDNAs showed them to be highly homologous and similar to two different types of peptide transport proteins from either colorectal carcinoma cells (Caco-2) or human and rabbit intestine. An even distribution profile of steady state levels of mRNA for both peptide transporters was observed along the longitudinal axis of small intestine. Both were upregulated in the distal regions of intestine by a high protein diet. Also, high levels of the rat high affinity glutamate transporter EAAC1 were observed in the distal intestine. These results suggest that the distal regions of small intestine play an important role in the absorption of some amino acids and peptides. Furthermore this area appears to be a primary site where dietary-induced changes in peptide and amino acid transport occurs.
B Lymphocyte intestinal homing in inflammatory bowel disease
2011-01-01
Background Inflammatory bowel disease (IBD) is thought to be due to an abnormal interaction between the host immune system and commensal microflora. Within the intestinal immune system, B cells produce physiologically natural antibodies but pathologically atypical anti-neutrophil antibodies (xANCAs) are frequently observed in patients with IBD. The objective is to investigate the localisation of immunoglobulin-producing cells (IPCs) in samples of inflamed intestinal tissue taken from patients with IBD, and their possible relationship with clinical features. Methods The IPCs in small intestinal, colonic and rectal biopsy specimens of patients with IBD were analysed by means of immunofluorescence using polyclonal rabbit anti-human Ig and goat anti-human IgM. The B cell phenotype of the IPC-positive samples was assessed using monoclonal antibodies specific for CD79, CD20, CD23, CD21, CD5, λ and κ chains. Statistical correlations were sought between the histological findings and clinical expression. Results The study involved 96 patients (64 with ulcerative colitis and 32 with Crohn's disease). Two different patterns of B lymphocyte infiltrates were found in the intestinal tissue: one was characterised by a strong to moderate stromal localisation of small IgM+/CD79+/CD20-/CD21-/CD23-/CD5± IPCs (42.7% of cases); in the other (57.3%) no such small IPCs were detected in stromal or epithelial tissues. IPCs were significantly less frequent in the patients with Crohn's disease than in those with ulcerative colitis (p = 0.004). Conclusion Our findings suggest that different immunopathogenetic pathways underlie chronic intestinal inflammation with different clinical expressions. The presence of small B lymphocytes resembling B-1 cells also seemed to be negatively associated with Crohn's disease. It can therefore be inferred that the gut contains an alternative population of B cells that have a regulatory function. PMID:22208453
Daniaux, Lise A; Laurenson, Michele P; Marks, Stanley L; Moore, Peter F; Taylor, Sandra L; Chen, Rachel X; Zwingenberger, Allison L
2014-01-01
Gastrointestinal lymphoma is the most common form of lymphoma in the cat. More recently, an ultrasonographic pattern associated with feline small cell T-cell gastrointestinal lymphoma has been recognized as a diffuse thickening of the muscularis propria of the small intestine. This pattern is also described with feline inflammatory bowel disease. To evaluate the similarities between the diseases, we quantified the thickness of the muscularis propria layer in the duodenum, jejunum and ileum of 14 cats affected by small cell T-cell lymphoma and inflammatory bowel disease (IBD) and 19 healthy cats. We found a significantly increased thickness of the muscularis propria in cats with lymphoma and IBD compared with healthy cats. The mean thickness of the muscularis propria in cats with lymphoma or IBD was twice the thickness than that of healthy cats, and was the major contributor to significant overall bowel wall thickening in the duodenum and jejunum. A muscularis to submucosa ratio >1 is indicative of an abnormal bowel segment. Colic lymph nodes in cats with lymphoma were increased in size compared with healthy cats. In cats with gastrointestinal lymphoma and histologic transmural infiltration of the small intestines, colic or jejunal lymph nodes were rounded, increased in size and hypoechoic. PMID:23900499
Pérez-Cano, Francisco J; Castellote, Cristina; González-Castro, Ana M; Pelegrí, Carme; Castell, Margarida; Franch, Angels
2005-11-01
The main objective of this study was to characterize developmental changes in small intestinal intraepithelial lymphocyte (IEL) subpopulations during the suckling period, thus contributing to the understanding of the development of diffuse gut-associated lymphoid tissue (GALT) and to the identification of early mechanisms that protect the neonate from the first contact with diet and gut microbial antigens. The study was performed by double labeling and flow cytometry in IEL isolated from the proximal and distal small intestine of 1- to 21-d-old Lewis rats. During the suckling period, intraepithelial natural killer (NK) cells changed from a typical systemic phenotype, CD8+, to a specific intestinal phenotype, CD8-. Analysis of CD8+ IEL revealed a progressive increase in the relative number of CD8+ IEL co-expressing TCRalphabeta, cells associated with acquired immunity, whereas the percentage of CD8+ cells expressing the NK receptor, i.e. cells committed to innate immunity, decreased. At weaning, IEL maturity was still not achieved, as revealed by a phenotypic pattern that differed from that of adult rats. Thus, late after weaning, the regulatory CD8+CD4+ T IEL population appeared and the NK population declined. In summary, the intestinal intraepithelial compartment undergoes changes in its lymphocyte composition associated with the first ingestion of food. These changes are focused on a relatively high proportion of NK cells during the suckling period, and after weaning, an expansion of the regulatory CD8+CD4+ T cells.
High fat diet impairs the function of glucagon-like peptide-1 producing L-cells.
Richards, Paul; Pais, Ramona; Habib, Abdella M; Brighton, Cheryl A; Yeo, Giles S H; Reimann, Frank; Gribble, Fiona M
2016-03-01
Glucagon-like peptide-1 (GLP-1) acts as a satiety signal and enhances insulin release. This study examined how GLP-1 production from intestinal L-cells is modified by dietary changes. Transgenic mouse models were utilized in which L-cells could be purified by cell specific expression of a yellow fluorescent protein, Venus. Mice were fed on chow or 60% high fat diet (HFD) for 2 or 16 weeks. L-cells were purified by flow cytometry and analysed by microarray and quantitative RT-PCR. Enteroendocrine cell populations were examined by FACS analysis, and GLP-1 secretion was assessed in primary intestinal cultures. Two weeks HFD reduced the numbers of GLP-1 positive cells in the colon, and of GIP positive cells in the small intestine. Purified small intestinal L-cells showed major shifts in their gene expression profiles. In mice on HFD for 16 weeks, significant reductions were observed in the expression of L-cell specific genes, including those encoding gut hormones (Gip, Cck, Sct, Nts), prohormone processing enzymes (Pcsk1, Cpe), granins (Chgb, Scg2), nutrient sensing machinery (Slc5a1, Slc15a1, Abcc8, Gpr120) and enteroendocrine-specific transcription factors (Etv1, Isl1, Mlxipl, Nkx2.2 and Rfx6). A corresponding reduction in the GLP-1 secretory responsiveness to nutrient stimuli was observed in primary small intestinal cultures. Mice fed on HFD exhibited reduced expression in L-cells of many L-cell specific genes, suggesting an impairment of enteroendocrine cell function. Our results suggest that a western style diet may detrimentally affect the secretion of gut hormones and normal post-prandial signaling, which could impact on insulin secretion and satiety. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Isolation of Eosinophils from the Lamina Propria of the Murine Small Intestine.
Berek, Claudia; Beller, Alexander; Chu, Van Trung
2016-01-01
Only recently has it become apparent that eosinophils play a crucial role in mucosal immune homeostasis. Although eosinophils are the main cellular component of the lamina propria of the gastrointestinal tract, they have often been overlooked because they express numerous markers, which are normally used to characterize macrophages and/or dendritic cells. To study their function in mucosal immunity, it is important to isolate them with high purity and viability. Here, we describe a protocol to purify eosinophils from the lamina propria of the murine small intestine. The method involves preparation of the small intestine, removal of epithelial cells and digestion of the lamina propria to release eosinophils. A protocol to sort eosinophils is included.
Ou, Deyuan; Li, Defa; Cao, Yunhe; Li, Xilong; Yin, Jingdong; Qiao, Shiyan; Wu, Guoyao
2007-12-01
Dietary supplementation with a high level of zinc oxide (ZnO) has been shown to reduce the incidence of diarrhea in weanling pigs, but the underlying mechanisms remain largely unknown. Intestinal-mucosal mast cells, whose maturation and proliferation is under the control of the stem cell factor (SCF), play an important role in the etiology of diarrhea by releasing histamine. The present study was conducted to test the novel hypothesis that supplementing ZnO to the diet for weanling piglets may inhibit SCF expression in the small intestine, thereby reducing the number of mast cells, histamine release, and diarrhea. In Experiment 1, 32 piglets (28 days of age) were weaned and fed diets containing 100 or 3000 mg zinc/kg (as ZnO) for 10 days (16 piglets per group). In Experiment 2, two groups of 28-day-old piglets (8 piglets per group) were fed the 100- or 3000-mg zinc/kg diet as in Experiment 1, except that they were pair-fed the same amounts of feed. Supplementation with a high level of ZnO reduced the incidence of diarrhea in weanling piglets. Dietary Zn supplementation reduced expression of the SCF gene at both mRNA and protein levels, the number of mast cells in the mucosa and submucosa of the small intestine and histamine release from mucosal mast cells. Collectively, our results indicate that dietary supplementation with ZnO inhibits SCF expression in the small intestine, leading to reductions in the number of mast cells and histamine release. These findings may have important implications for the prevention of weaning-associated diarrhea in piglets.
Altered intestinal epithelium-associated lymphocyte repertoires and function in ApcMin/+ mice.
Marsh, Lorraine; Coletta, P Louise; Hull, Mark A; Selby, Peter J; Carding, Simon R
2012-01-01
ApcMin/+ mice spontaneously develop multiple intestinal adenomas along the length of the small intestine and colon. Currently little is known about the role of the immune system in regulating intestinal tumorigenesis in these animals. This study characterised small intestinal intraepithelial lympho-- cyte (IEL) populations in C56BL/6J ApcMin/+ mice and wild-type (Apc+/+) mice. We also determined the effect that T cells expressing either γδ or αβ encoded T cell receptors (TcR) exert on intestinal tumorigenesis. ApcMin/+ mice had significantly lower numbers of CD3+ IELs compared with Apc+/+ littermates and displayed reduced cytotoxicity against tumour target cells. Further analysis of IEL cytotoxicity revealed differences in the cytotoxic pathways utilised by IELs in ApcMin/+ and Apc+/+ mice with ApcMin/+ IELs displaying an absence of perforin/granzyme-mediated killing and increased levels of Fas-FasL-mediated cytotoxicity compared with wild-type IELs. Analysis of ApcMin/+ mice crossed with αβ T-cell deficient (TcRβ-/-) or γδ T-cell deficient (TcRδ-/-) mice on the same genetic background revealed decreased tumour multiplicity in the absence of both αβ and γδ T-cells. This study demonstrates that altered T-cell subsets play important roles in promoting tumorigenesis in ApcMin/+ mice and forms the basis for future mechanistic studies.
Does dietary fibre stimulate intestinal epithelial cell proliferation in germ free rats?
Goodlad, R A; Ratcliffe, B; Fordham, J P; Wright, N A
1989-01-01
The aim of the present experiment was to investigate the role of hind gut fermentation in the proliferative response of the intestinal epithelium to dietary fibre. We have previously shown that refeeding starved rats with an elemental diet supplemented with fermentable dietary fibre (but not inert bulk) is capable of stimulating intestinal epithelial cell proliferation throughout the gastrointestinal tract. Three groups of 10 germ free (GF) rats and three groups of 10 conventional (CV) rats, were used. All groups were starved for three days and then refed for two days with either an elemental diet (Flexical); Flexical plus 30% kaolin; or Flexical plus 30% of a fibre mixture. Cell production was determined by the accumulation of vincristine arrested metaphases in microdissected crypts. There was no significant difference between refeeding the rats with an elemental diet alone or with kaolin supplementation, however, the addition of fibre in CV rats was associated with a significant increase in intestinal crypt cell production rate in both the small intestine (p less than 0.01) and the colon (p less than 0.001). This marked proliferative effects of fibre was abolished in the GF rats. It can be concluded that it is the products of hind gut fermentation, not fibre per se that stimulate intestinal epithelial cell proliferation in the colon and small intestine. PMID:2546871
Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton
2013-01-01
The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153
Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo
2012-05-01
Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.
Reineke, Joshua J.; Cho, Daniel Y.; Dingle, Yu-Ting; Morello, A. Peter; Jacob, Jules; Thanos, Christopher G.; Mathiowitz, Edith
2013-01-01
Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine. PMID:23922388
NASA Technical Reports Server (NTRS)
Phillips, R. W.; Sawyer, H. R.; Smirnov, K. V.
1990-01-01
The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity associated with microgravity conditions of space flight as evidenced by negative nitrogen balance and muscle atrophy (Nicogossian and Parker, 1982; Oganov, 1981), as well as inhibited lymphocyte proliferation (Bechler and Cogoli, 1986), would be evident in cells characterized by a rapid rate of turnover. As a model, researchers chose to study the turnover of mucosal cells lining the jejunum of the small intestine, since these cells are among the most rapidly proliferating in the body. Under normal conditions, epithelial cells that line the small intestine are continually produced in the crypts of Lieberkuhn. These cells migrate out of the crypts onto intestinal villi, are progressively pushed up the villus as new crypt cells are formed, and ultimately reach the tip of villi where they are then descquamated. In rats, the entire process, from initial proliferation in crypts to desquamation, takes approximately 2 days (Cairnie et al., 1965; Lipkin, 1973). In this study, researchers determined the mitotic index for mucosal cells lining the proximal, middle, and distal regions of the jejunum in rats from three treatment groups (synchronous control, vivarium control and flight), and measured the depth of the crypts of Lieberkuhn and the length of villi present in each of the three jejunal regions sampled.
Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo
2013-03-15
Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013 Elsevier B.V. All rights reserved.
Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats.
Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L A; Wold, A E
1999-05-01
We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R alpha-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum + E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity.
Influence of breast milk polyamines on suckling rat immune system maturation.
Pérez-Cano, Francisco J; González-Castro, Ana; Castellote, Cristina; Franch, Angels; Castell, Margarida
2010-02-01
The aim of this study was to ascertain whether the supplementation of polyamines present in breast milk, i.e. spermine (SPM) and spermidine (SPD), influenced the post-natal maturation of the systemic and intestinal immune system in rats. From birth, pups daily received SPM or SPD. At 5, 11 and 18 days old, small intestine intraepithelial lymphocytes (IEL), lamina propria lymphocytes (LPL) and splenocytes were phenotypically characterized. SPM and, less evidently, SPD accelerated the maturation of CD8+ IEL, and enhanced the presence of intraepithelial NK cells and IEL related with specific immune responses on the proximal and distal small intestine, respectively. Polyamines increased the percentage of more mature CD4+ LPL and enhanced the early presence of splenic B cells and, later, that of NK cells. However, no effect on Ig-secretory function was detected. These results suggest that breast milk polyamines improve the maturation of the rat intestinal and systemic immune system.
Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi
2006-10-01
To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.
Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats
Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun
2015-01-01
AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463
Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats.
Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun
2015-01-14
To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14(th) day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.
Chegeni, Mohammad; Amiri, Mahdi; Nichols, Buford L; Naim, Hassan Y; Hamaker, Bruce R
2018-02-20
Dietary starch is finally converted to glucose for absorption by the small intestine mucosal α-glucosidases (sucrase-isomaltase [SI] and maltase-glucoamylase), and control of this process has health implications. Here, the molecular mechanisms were analyzed associated with starch-triggered maturation and transport of SI. Biosynthetic pulse-chase in Caco-2 cells revealed that the high MW SI species (265 kDa) induced by maltose (an α-amylase starch digestion product) had a higher rate of early trafficking and maturation compared with a glucose-induced SI (245 kDa). The maltose-induced SI was found to have higher affinity to lipid rafts, which are associated with enhanced targeting to the apical membrane and higher activity. Accordingly, in situ maltose-hydrolyzing action was enhanced in the maltose-treated cells. Thus, starch digestion products at the luminal surface of small intestinal enterocytes are sensed and accelerate the intracellular processing of SI to enhance starch digestion capacity in the intestinal lumen.-Chegeni, M., Amiri, M., Nichols, B. L., Naim, H. Y., Hamaker, B. R. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.
Quinlan, Jonathan M; Yu, Wei-Yuan; Hornsey, Mark A; Tosh, David; Slack, Jonathan M W
2006-05-25
Study of the normal development of the intestinal epithelium has been hampered by a lack of suitable model systems, in particular ones that enable the introduction of exogenous genes. Production of such a system would advance our understanding of normal epithelial development and help to shed light on the pathogenesis of intestinal neoplasia. The criteria for a reliable culture system include the ability to perform real time observations and manipulations in vitro, the preparation of wholemounts for immunostaining and the potential for introducing genes. The new culture system involves growing mouse embryo intestinal explants on fibronectin-coated coverslips in basal Eagle's medium+20% fetal bovine serum. Initially the cultures maintain expression of the intestinal transcription factor Cdx2 together with columnar epithelial (cytokeratin 8) and mesenchymal (smooth muscle actin) markers. Over a few days of culture, differentiation markers appear characteristic of absorptive epithelium (sucrase-isomaltase), goblet cells (Periodic Acid Schiff positive), enteroendocrine cells (chromogranin A) and Paneth cells (lysozyme). Three different approaches were tested to express genes in the developing cultures: transfection, electroporation and adenoviral infection. All could introduce genes into the mesenchyme, but only to a small extent into the epithelium. However the efficiency of adenovirus infection can be greatly improved by a limited enzyme digestion, which makes accessible the lateral faces of cells bearing the Coxsackie and Adenovirus Receptor. This enables reliable delivery of genes into epithelial cells. We describe a new in vitro culture system for the small intestine of the mouse embryo that recapitulates its normal development. The system both provides a model for studying normal development of the intestinal epithelium and also allows for the manipulation of gene expression. The explants can be cultured for up to two weeks, they form the full repertoire of intestinal epithelial cell types (enterocytes, goblet cells, Paneth cells and enteroendocrine cells) and the method for gene introduction into the epithelium is efficient and reliable.
Nøhr, Mark K; Pedersen, Maria H; Gille, Andreas; Egerod, Kristoffer L; Engelstoft, Maja S; Husted, Anna Sofie; Sichlau, Rasmus M; Grunddal, Kaare V; Poulsen, Steen Seier; Han, Sangdon; Jones, Robert M; Offermanns, Stefan; Schwartz, Thue W
2013-10-01
The expression of short-chain fatty acid receptors GPR41/FFAR3 and GPR43/ free fatty acid receptor 2 (FFAR2) was studied in the gastrointestinal tract of transgenic monomeric red fluorescent protein (mRFP) reporter mice. In the stomach free fatty acid receptor 3 (FFAR3)-mRFP was expressed in a subpopulation of ghrelin and gastrin cells. In contrast, strong expression of FFAR3-mRFP was observed in all cholecystokinin, glucose-dependent insulinotropic peptide (GIP), and secretin cells of the proximal small intestine and in all glucagon-like peptide-1 (GLP-1), peptide YY, and neurotensin cells of the distal small intestine. Throughout the colon and rectum, FFAR3-mRFP was strongly expressed in the large population of peptide YY and GLP-1 cells and in the neurotensin cells of the proximal colon. A gradient of expression of FFAR3-mRFP was observed in the somatostatin cells from less than 5% in the stomach to more than 95% in the rectum. Substance P-containing enterochromaffin cells displayed a similar gradient of FFAR3-mRFP expression throughout the small intestine. Surprisingly, FFAR3-mRFP was also expressed in the neuronal cells of the submucosal and myenteric ganglia. Quantitative PCR analysis of fluorescence-activated cell sorting (FACS) purified FFAR3-mRFP positive cells confirmed the coexpression with the various peptide hormones as well as key neuronal marker proteins. The FFAR2-mRFP reporter was strongly expressed in a large population of leukocytes in the lamina propria of in particular the small intestine but surprisingly only weakly in a subpopulation of enteroendocrine cells. Nevertheless, synthetic ligands specific for either FFAR3 or FFAR2 each released GLP-1 from colonic crypt cultures and the FFAR2 agonist mobilized intracellular Ca²⁺ in FFAR2 positive enteroendocrine cells. It is concluded that FFAR3-mRFP serves as a useful marker for the majority of enteroendocrine cells of the small and large intestine and that FFAR3 and FFAR2 both act as sensors for short-chain fatty acids in enteroendocrine cells, whereas FFAR3 apparently has this role alone in enteric neurons and FFAR2 in enteric leukocytes.
Park, Eunjin; Hwang, Insun; Song, Jie-Young; Jee, Youngheun
2011-01-01
An acidic polysaccharide of Panax ginseng (APG), ginsan, has been reported to protect the hematopoietic system by increasing the number of bone marrow cells and spleen cells. Therefore, we evaluated the ability of APG to protect mice from radiation-induced damage of the small intestine. APG treatment caused the lengthening of villi and a numerical increase of crypt cells in the small intestine at 3.5 days after 7Gy irradiation compared to irradiated, non-treated controls. In addition, APG significantly inhibited irradiation-induced apoptosis by decreasing the amount of pro-apoptotic p53 and Bax as well as augmenting that of anti-apoptotic Bcl-2 at 24h after irradiation. These results indicate that APG might be a useful adjunct to therapeutic irradiation as a protective agent for the gastrointestinal tract of cancer patients. Copyright © 2009 Elsevier GmbH. All rights reserved.
Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.
2017-01-01
Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308
Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate.
Moss, Angela K; Hamarneh, Sulaiman R; Mohamed, Mussa M Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S; Narisawa, Sonoko; Millán, José Luis; Warren, H Shaw; Hohmann, Elizabeth; Malo, Madhu S; Hodin, Richard A
2013-03-15
Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.
Xie, Meimin; Kotecha, Vijay R; Andrade, Jon David P; Fox, James G; Carey, Martin C
2012-01-01
Cholesterol gallstones are associated with slow intestinal transit in humans as well as in animal models, but the molecular mechanism is unknown. We investigated in C57L/J mice whether the components of a lithogenic diet (LD; 1.0% cholesterol, 0.5% cholic acid and 17% triglycerides), as well as distal intestinal infection with Helicobacter hepaticus, influence small intestinal transit time. By quantifying the distribution of 3H-sitostanol along the length of the small intestine following intraduodenal instillation, we observed that, in both sexes, the geometric centre (dimensionless) was retarded significantly (P < 0.05) by LD but not slowed further by helicobacter infection (males, 9.4 ± 0.5 (uninfected), 9.6 ± 0.5 (infected) on LD compared with 12.5 ± 0.4 and 11.4 ± 0.5 on chow). The effect of the LD was reproduced only by the binary combination of cholesterol and cholic acid. We inferred that the LD-induced cholesterol enrichment of the sarcolemmae of intestinal smooth muscle cells produced hypomotility from signal-transduction decoupling of cholecystokinin (CCK), a physiological agonist for small intestinal propulsion in mice. Treatment with ezetimibe in an amount sufficient to block intestinal cholesterol absorption caused small intestinal transit time to return to normal. In most cholesterol gallstone-prone humans, lithogenic bile carries large quantities of hepatic cholesterol into the upper small intestine continuously, thereby reproducing this dietary effect in mice. Intestinal hypomotility promotes cholelithogenesis by augmenting formation of deoxycholate, a pro-lithogenic secondary bile salt, and increasing the fraction of intestinal cholesterol absorbed. PMID:22331417
Zhang, Wang-Dong; Wang, Wen-Hui; Jia, Shuai
2015-08-25
To explore the morphological evidence of immunoglobulin G (IgG) participating in intestinal mucosal immunity, 8 healthy adult Bactrian camels used. First, IgG was successfully isolated from their serum and rabbit antibody against Bactrian camels IgG was prepared. The IgG antibody secretory cells (ASCs) in small intestine were particularly observed through immumohistochemical staining, then after were analyzed by statistical methods. The results showed that the IgG ASCs were scattered in the lamina propria (LP) and some of them aggregated around of the intestinal glands. The IgG ASCs density was the highest from middle segment of duodenum to middle segment of jejunum, and then in ended segment of jejunum and initial segment of ileum, the lowest was in initial segment of duodenum, in middle and ended segment of ileum. It was demonstrated that the IgG ASCs mainly scattered in the effector sites of the mucosal immunity, though the density of IgG ASCs was different in different segment of small intestine. Moreover, this scatted distribution characteristic would provide a morphology basis for research whether IgG form a full-protection and immune surveillance in mucosal immunity homeostasis of integral intestine.
Madureira, Ana Raquel; Campos, Débora A; Oliveira, Ana; Sarmento, Bruno; Pintado, Maria Manuela; Gomes, Ana Maria
2016-03-01
The evaluation of the digestion effects on bioactive solid lipid nanoparticles (SLN) was performed. For this purpose, witepsol and carnauba SLN loaded with rosmarinic acid (RA) were exposed to the simulated gastrointestinal tract (GIT) conditions prevailing in stomach and small intestine. The simulation of intestinal epithelium was made with a dialysis bag and intestinal cell culture lines. Changes on SLN physical properties, RA release and absorption profiles were followed at each step. Combination of digestion pH and enzymes showed a significant effect upon SLN physical properties. Zeta potential values increased at stomach conditions and decreased at small intestine simulation. Also, at intestine, SLN increased their sizes and released 40-60% of RA, maintaining its initial antioxidant activity values. Sustained release of 40% of RA from SLN was also observed in dialysis tube. At CaCo-2 cell line, both types of SLN showed similar absorbed RA % (ca. 30%). Nevertheless, in CaCo-2/HT29x mix cell lines, for carnauba SLN a lower adsorption RA % was observed than for witepsol SLN. Solid lipid nanoparticles protected RA bioactivity (in terms of antioxidant activity) until reaching the intestine. A controlled release of RA from SLN was achieved and a significant absorption was observed at intestinal cells. Overall, SLN produced with witepsol showed a higher stability than carnauba SLN. Copyright © 2015 Elsevier B.V. All rights reserved.
Macierzanka, Adam; Mackie, Alan R; Bajka, Balazs H; Rigby, Neil M; Nau, Françoise; Dupont, Didier
2014-01-01
The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake.
Sukhotnik, Igor; Mogilner, Jorge G; Lerner, Aaron; Coran, Arnold G; Lurie, Michael; Miselevich, Iness; Shiloni, Eitan
2005-06-01
The nitric oxide precursor L-arginine (ARG) has been shown to influence intestinal structure and absorptive function. It is also well known that the route of administration modulates the effects of ARG. The present study evaluated the effects of parenteral ARG on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection and reanastomosis, SBS rats underwent a 75% small bowel resection, and SBS-ARG rats underwent a 75% small bowel resection and were treated with ARG given subcutaneously at a dose of 300 mug/kg, once daily, from days 3 to 14. Parameters of intestinal adaptation, enterocyte proliferation, and enterocyte apoptosis were determined on day 15 following operation. The SBS rats demonstrated a significant increase in jejunal and ileal bowel and mucosal weight, villus height and crypt depth, and cell proliferation index compared with the sham group. The SBS-ARG animals demonstrated lower ileal bowel and mucosal weights, jejunal mucosal DNA and ileal mucosal protein, and jejunal and ileal villus height and crypt depth compared with SBS animals. The SBS-ARG rats also had a lower cell proliferation index in both jejunum and ileum and a greater enterocyte apoptotic index in ileum compared with the SBS-untreated group. In conclusion, in a rat model of SBS, parenteral arginine inhibits structural intestinal adaptation. Decreased cell proliferation and increased apoptosis are the main mechanisms responsible for decreased cell mass.
Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou
2018-06-01
The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.
Hagen, S J; Trier, J S
1988-07-01
We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.
Deficiency of interstitial cells of Cajal in the small intestine of patients with Crohn's disease.
Porcher, Christophe; Baldo, Marjolaine; Henry, Monique; Orsoni, Pierre; Julé, Yvon; Ward, Sean M
2002-01-01
Interstitial cells of Cajal are critical for the generation of electrical slow waves that regulate the phasic contractile activity of the tunica muscularis of the GI tract. Under certain pathophysiological conditions loss of interstitial cells of Cajal may play a role in the generation of certain motility disorders. The aim of the present study was to determine if there is an abnormality in the density or distribution of interstitial cells of Cajal from patients with Crohn's disease. Small intestines from control subjects and patients with Crohn's disease were examined using immunohistochemistry and antibodies against the Kit receptor, which is expressed in interstitial cells of Cajal within the tunica muscularis of the GI tract. The density and distribution of interstitial cells of Cajal were assessed in the longitudinal and circular muscle layers and in the myenteric and deep muscular plexus regions of Crohn's and control tissues. Tissues from Crohn's disease patients showed an almost complete abolition of interstitial cells of Cajal within the longitudinal and circular muscle layers and a significant reduction in numbers at the level of the myenteric and deep muscular plexuses. In tissues from Crohn's disease patients, the density of interstitial cells of Cajal was reduced throughout the tunica muscularis in comparison to control small intestines. The disturbance of intestinal motility that occurs in patients with Crohn's disease may be a consequence of the loss of or defects in specific populations of interstitial cells of Cajal within the tunica muscularis.
Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.
Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R
2017-07-01
Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1 week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin
Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by whichmore » ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.« less
NASA Astrophysics Data System (ADS)
Maruno, Kaname; Absood, Afaf; Said, Sami I.
1998-11-01
Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.
Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M
2017-01-01
The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii , respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli , L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of antibiotics-induced collateral damages to the immune system. However, defined intestinal commensals such as E. coli and L. johnsonii have the potential to restore individual functions of intestinal and systemic immunity. In conclusion, our data provide novel insights into the distinct role of individual commensal bacteria in maintaining immune functions during/following dysbiosis induced by antibiotic therapy thereby shaping host immunity and might thus open novel therapeutical avenues in conditions of perturbed microbiota composition.
Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M.
2017-01-01
The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii, respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli, L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of antibiotics-induced collateral damages to the immune system. However, defined intestinal commensals such as E. coli and L. johnsonii have the potential to restore individual functions of intestinal and systemic immunity. In conclusion, our data provide novel insights into the distinct role of individual commensal bacteria in maintaining immune functions during/following dysbiosis induced by antibiotic therapy thereby shaping host immunity and might thus open novel therapeutical avenues in conditions of perturbed microbiota composition. PMID:29321764
Goodlad, R A; Lenton, W; Ghatei, M A; Adrian, T E; Bloom, S R; Wright, N A
1987-01-01
Refeeding starved rats with a fibre free 'elemental' diet increased crypt cell production rate (CCPR) in the proximal small intestine but not in the distal regions of the gut. Little effect on CCPR was seen when inert bulk (kaolin) was added to the 'elemental' diet. Addition of a poorly fermentable dietary 'fibre' (purified wood cellulose) had little effect on intestinal epithelial cell proliferation except in the distal colon where it significantly increased CCPR. A more readily fermentable 'fibre' (purified wheat bran) caused a large proliferative response in the proximal, mid and distal colon and in the distal small intestine. A gel forming 'fibre' also stimulated proliferation in the distal colon. There was no significant correlation between CCPR and plasma gastrin concentrations, but plasma enteroglucagon concentrations were significantly correlated with CCPR in almost all the sites studied. Plasma PYY concentrations also showed some correlation with CCPR, especially in the colon. Thus, whilst inert bulk cannot stimulate colonic epithelial cell proliferation, fermentable 'fibre' is capable of stimulating proliferation in the colon, and especially in the distal colon: it can also stimulate proliferation in the distal small intestine and it is likely that plasma enteroglucagon may have a role to play in this process. PMID:2826311
Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system.
Seltana, Amira; Basora, Nuria; Beaulieu, Jean-François
2010-01-01
Rapid and efficient healing of epithelial damage is critical to the functional integrity of the small intestine. Epithelial repair is a complex process that has largely been studied in cultured epithelium but to a much lesser extent in mucosa. We describe a novel method for the study of wound healing using a co-culture system that combined an intestinal epithelial Caco-2/15 cell monolayer cultured on top of human intestinal myofibroblasts, which together formed a basement membrane-like structure that contained many of the major components found at the epithelial-mesenchymal interface in the human intestine. To investigate the mechanism of restitution, small lesions were generated in epithelial cell monolayers on plastic or in co-cultures without disturbing the underlying mesenchymal layer. Monitoring of wound healing showed that repair was more efficient in Caco-2/15-myofibroblast co-cultures than in Caco-2/15 monolayers and involved the deposition of basement membrane components. Functional experiments showed that the addition of type I collagen or human fibronectin to the culture medium significantly accelerated wound closure on epithelial cell co-cultures. This system may provide a new tool to investigate the mechanisms that regulate wound healing in the intestinal epithelium.
Glass, Leslie L; Calero-Nieto, Fernando J; Jawaid, Wajid; Larraufie, Pierre; Kay, Richard G; Göttgens, Berthold; Reimann, Frank; Gribble, Fiona M
2017-10-01
To identify sub-populations of intestinal preproglucagon-expressing (PPG) cells producing Glucagon-like Peptide-1, and their associated expression profiles of sensory receptors, thereby enabling the discovery of therapeutic strategies that target these cell populations for the treatment of diabetes and obesity. We performed single cell RNA sequencing of PPG-cells purified by flow cytometry from the upper small intestine of 3 GLU-Venus mice. Cells from 2 mice were sequenced at low depth, and from the third mouse at high depth. High quality sequencing data from 234 PPG-cells were used to identify clusters by tSNE analysis. qPCR was performed to compare the longitudinal and crypt/villus locations of cluster-specific genes. Immunofluorescence and mass spectrometry were used to confirm protein expression. PPG-cells formed 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy (comprising 51% of all PPG-cells); a cell type overlapping with Gip-expressing K-cells (14%); and a unique cluster expressing Tph1 and Pzp that was predominantly located in proximal small intestine villi and co-produced 5-HT (35%). Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated and would be differentially targetable. Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Different receptor expression profiles across the clusters highlight potential drug targets to increase gut hormone secretion for the treatment of diabetes and obesity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie
2014-01-01
Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.
Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats
Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L Å; Wold, A E
1999-01-01
We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R α-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum+ E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity. PMID:10337020
Advanced three-dimensional culture of equine intestinal epithelial stem cells.
Stewart, A Stieler; Freund, J M; Gonzalez, L M
2018-03-01
Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease (colic). © 2017 EVJ Ltd.
Tatar, Cihad; Yavas, Mazlum; Akkus, Onder; Tapkan, Bahaeddin; Batikan, Oguz Kagan; Bayrak, Savas; Arikan, Soykan
2017-01-01
Non-Hodgkin Lymphomas (NHL) appear with the malign transformation of mature lymphocytes. Intestinal perforations are one of the most well-known complications of NHLs. In this review, a 29-year-old male patient who was diagnosed with NHL with gastrointestinal involvement that developed intestinal perforation after chemotherapy is presented. A 29-year-old male patient who received systemic chemotherapy in another healthcare center due to Major B-Cell Lymphoma was examined because he had stomachache after the treatment. The patient was urgently taken to operation. In the exploration, there were partly mass lesions in all small intestine segments. It was determined that one of the lesion was perforated. Small intestine resection was applied. The pathology report on resection material was reported as High Grade Major B-Cell Lymphoma. In the treatment of Lymphoma with intestinal B-Cells, there is no consensus because this disease is rarely observed. Perforation may appear as a complication of the chemotherapy. Depending on the steroids given to the patient, perforation may develop, and the clinical symptoms may be masked. It must be born in mind that there may be intestinal involvement in patients diagnosed with NHL, and intestinal perforation may develop due to chemotherapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effects of Dai-kenchu-to on spontaneous activity in the mouse small intestine.
Kito, Yoshihiko; Suzuki, Hikaru
2006-12-01
The effects of Dai-kenchu-to (DKT), a Chinese medicine, on spontaneous activity of mouse small intestine were investigated. Experiments were carried out with tension recording and intracellular recording. DKT contracted mouse longitudinal smooth muscles in a dose dependent manner (0.1-10 mg/ml). Low concentration of DKT (0.1 mg/ml) did not contract the longitudinal muscles of mouse small intestine. DKT (0.1 mg/ml) inhibited contraction elicited by transmural nerve stimulation (TNS). DKT (1 mg/ml) evoked relaxation before contraction. The initial relaxation was abolished by Nomega-nitro-L-arginine (L-NNA). DKT (10 mg/ml)-induced contraction had two components: a transient rapid contraction and a following slow contraction. Atropine inhibited DKT (1 mg/ml)-induced contraction to about 50% of control. In the presence of atropine, tetrodotoxin (TTX) inhibited the contraction elicited by DKT (1 mg/ml) to about 80%. DKT depolarized the membrane and decreased the amplitude of pacemaker potentials recorded from in situ myenteric interstitial cells of Cajal (ICC-MY) with no alteration to the frequency, duration and maximum rates of rise in the presence of nifedipine and TTX. The same results were obtained in slow waves recorded from circular smooth muscle cells. These results indicate that DKT evoked both contraction and relaxation by releasing acetylcholine, nitric oxide and other excitatory neurotransmitters in mouse small intestine. DKT had no effects on pacemaker mechanisms and electrical coupling between ICC-MY and smooth muscle cells in mouse small intestine. The results also suggest that DKT may contract smooth muscles by depolarizing the membrane directly.
Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity.
Cazorla, Silvia I; Maldonado-Galdeano, Carolina; Weill, Ricardo; De Paula, Juan; Perdigón, Gabriela D V
2018-01-01
The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus . Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.
Savilahti, E.
1972-01-01
The numbers of immunoglobulin-containing cells in the mucosae of the small intestine and rectum were counted by a direct immunofluorescence technique in biopsy specimens from children. Immunoglobulins in the intestinal juice of the same patients were quantified by electroimmunodiffusion. In all biopsy specimens IgA-containing cells predominated. These cells were more numerous in the specimens from children over 2 years of age than in those of younger ones. The cells seemed to be fairly evenly distributed along the intestinal tract. The number of IgM-containing cells did not change with age in the group studied. In the intestinal juice the mean content of IgA was higher than that of the other immunoglobulins. More IgM and less IgA were found in the juice of infants under 2 years of age than in that of older children. The results suggest that quantitatively the IgA-producing system of the gut is not fully developed in infancy, whereas the reverse is true for the cells producing IgM. PMID:4625398
The migrating myoelectric complex of the small intestine
NASA Astrophysics Data System (ADS)
Telford, Gordon L.; Sarna, Sushil K.
1991-10-01
Gastric and small intestinal myoelectric and motor activity is divided into two main patterns, fed and fasted. During fasting, the predominant pattern of activity is the migrating myoelectric complex (MMC), a cyclically occurring pattern of electric and mechanical activity that is initiated in the stomach and duodenum almost simultaneously and, from there, propagates the length of the small intestine. Cyclic motor activity also occurs in the lower esophageal sphincter, the gallbladder, and the sphincter of Oddi with a duration that is related to the MMC in the small intestine. Of the possible mechanisms for initiation of the MMC in the small intestine (extrinsic neural control, intrinsic neural control, and hormonal control), intrinsic neural control via a series of coupled is the most likely. The keep this sentence in! hormone motilin also plays a role in the initiation of MMCs. After a meal, in man the MMC is disrupted and replaced by irregular contractions. The physiologic role of the MMC is to clear the stomach and small intestine of residual food, secretions, and desquamated cells and propel them to the colon. Disruption of the MMC cycle is associated with bacterial overgrowth in some patients, an observation that supports the proposed cleansing function of the MMC cycle.
Han, Sung-Hoon; Shim, Sehwan; Kim, Min-Jung; Shin, Hye-Yun; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Lee, Seung Bum; Park, Sunhoo
2017-02-14
To investigate a suitable long-term culture system and optimal cryopreservation of intestinal organoid to improve organoid-based therapy by acquiring large numbers of cells. Crypts were isolated from jejunum of C57BL/6 mouse. Two hundred crypts were cultured in organoid medium with either epidermal growth factor/Noggin/R-spondin1 (ENR) or ENR/CHIR99021/VPA (ENR-CV). For subculture, organoids cultured on day 7 were passaged using enzyme-free cell dissociation buffer (STEMCELL Technologies). The passage was performed once per week until indicated passage. For cryopreservation, undissociated and dissociated organoids were resuspended in freezing medium with or without Rho kinase inhibitor subjected to different treatment times. The characteristics of intestinal organoids upon extended passage and freeze-thaw were analyzed using EdU staining, methyl thiazolyl tetrazolium assay, qPCR and time-lapse live cell imaging. We established a three-dimensional culture system for murine small intestinal organoids using ENR and ENR-CV media. Both conditions yielded organoids with a crypt-villus architecture exhibiting Lgr5 + cells and differentiated intestinal epithelial cells as shown by morphological and biochemical analysis. However, during extended passage (more than 3 mo), a comparative analysis revealed that continuous passaging under ENR-CV conditions, but not ENR conditions induced phenotypic changes as observed by morphological transition, reduced numbers of Lgr5 + cells and inconsistent expression of markers for differentiated intestinal epithelial cell types. We also found that recovery of long-term cryopreserved organoids was significantly affected by the organoid state, i.e ., whether dissociation was applied, and the timing of treatment with the Rho-kinase inhibitor Y-27632. Furthermore, the retention of typical morphological characteristics of intestinal organoids such as the crypt-villus structure from freeze-thawed cells was observed by live cell imaging. The maintenance of the characteristics of intestinal organoids upon extended passage is mediated by ENR condition, but not ENR-CV condition. Identified long-term cryopreservation may contribute to the establishment of standardized cryopreservation protocols for intestinal organoids for use in clinical applications.
Functional relevance of intestinal epithelial cells in inflammatory bowel disease.
Okamoto, Ryuichi; Watanabe, Mamoru
2016-01-01
The intestinal epithelium constitutes a physical barrier between inner and outer side of our body. It also functions as a "hub" which connects factors that determine the development of inflammatory bowel disease, such as microbiota, susceptibility genes, and host immune response. Accordingly, recent studies have implicated and further featured the role of intestinal epithelial cell dysfunction in the pathophysiology of inflammatory bowel disease. For example, mucin producing goblet cells are usually "depleted" in ulcerative colitis patients. Studies have shown that those goblet cells exhibit various immune-regulatory functions in addition to mucin production, such as antigen presentation or cytokine production. Paneth cells are another key cell lineage that has been deeply implicated in the pathophysiology of Crohn's disease. Several susceptibility genes for Crohn's disease may lead to impairment of anti-bacterial peptide production and secretion by Paneth cells. Also, other susceptibility genes may determine the survival of Paneth cells, which leads to reduced Paneth cell function in the patient small intestinal mucosa. Further studies may reveal other unexpected roles of the intestinal epithelium in the pathophysiology of inflammatory bowel disease, and may help to develop alternative therapies targeted to intestinal epithelial cell functions.
Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate
Hamarneh, Sulaiman R.; Mohamed, Mussa M. Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N.; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S.; Narisawa, Sonoko; Millán, José Luis; Warren, H. Shaw; Hohmann, Elizabeth; Malo, Madhu S.; Hodin, Richard A.
2013-01-01
Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP. PMID:23306083
Dreon, Marcos S; Fernández, Patricia E; Gimeno, Eduardo J; Heras, Horacio
2014-06-01
The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies. This defense mechanism may explain the near absence of predators of apple snail eggs.
Invasion of intestinal epithelia in vitro by the parasitic nematode Trichinella spiralis.
ManWarren, T; Gagliardo, L; Geyer, J; McVay, C; Pearce-Kelling, S; Appleton, J
1997-01-01
Studies of nematode establishment in intestinal niches has been hindered by the lack of a readily manipulated in vitro assay. In this report, experiments are described wherein the larval stage of the parasitic nematode Trichinella spiralis was shown to invade epithelial cell monolayers in vitro. Larvae penetrated cells and migrated through them, leaving trails of dead cells in their wake. Cells derived from five different species were susceptible to invasion, reflecting the broad host range of T. spiralis in vivo. Epithelial cells derived from large and small intestines and kidneys were susceptible. Fibroblast and muscle cells were resistant. Larvae deposited glycoprotein antigens in the cells they invaded. Although the function of these antigens is unknown, they are targeted by rat antibodies that cause T. spiralis to be expelled from the intestine. The model system described provides the means to further investigate this process as well as the mechanisms by which this parasitic nematode establishes its intestinal niche. PMID:9353069
Chandrakesan, Parthasarathy; May, Randal; Weygant, Nathaniel; Qu, Dongfeng; Berry, William L; Sureban, Sripathi M; Ali, Naushad; Rao, Chinthalapally; Huycke, Mark; Bronze, Michael S; Houchen, Courtney W
2016-11-23
Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of Villin Cre ;Dclk1 f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.
Bing, So Jin; Kim, Min Ju; Ahn, Ginnae; Im, Jaehak; Kim, Dae Seung; Ha, Danbee; Cho, Jinhee; Kim, Areum; Jee, Youngheun
2014-04-01
Owing to its susceptibility to radiation, the small intestine of mice is valuable for studying radioprotective effects. When exposed to radiation, intestinal crypt cells immediately go through apoptosis, which impairs swift differentiation necessary for the regeneration of intestinal villi. Our previous studies have elucidated that acidic polysaccharide of Panax ginseng (APG) protects the mouse small intestine from radiation-induced damage by lengthening villi with proliferation and repopulation of crypt cells. In the present study, we identified the molecular mechanism involved. C57BL/6 mice were irradiated with gamma-rays with or without APG and the expression levels of apoptosis-related molecules in the jejunum were investigated using immunohistochemistry. APG pretreatment strongly decreased the radiation-induced apoptosis in the jejunum. It increased the expression levels of anti-apoptotic proteins (Bcl-2 and Bcl-XS/L) and dramatically reduced the expression levels of pro-apoptotic proteins (p53, BAX, cytochrome c and caspase-3). Therefore, APG attenuated the apoptosis through the intrinsic pathway, which is controlled by p53 and Bcl-2 family members. Results presented in this study suggest that APG protects the mouse small intestine from irradiation-induced apoptosis through inhibition of the p53-dependent pathway and the mitochondria/caspase pathway. Thus, APG may be a potential agent for preventing radiation induced injuries in intestinal cells during radio-therapy such as in cancer treatment. Copyright © 2013 Elsevier GmbH. All rights reserved.
Chicken astrovirus as an aetiological agent of runting-stunting syndrome in broiler chickens.
Kang, Kyung-Il; Linnemann, Erich; Icard, Alan H; Durairaj, Vijay; Mundt, Egbert; Sellers, Holly S
2018-04-01
Despite descriptions of runting-stunting syndrome (RSS) in broiler chickens dating back over 40 years, the aetiology has not yet been described. A novel chicken astrovirus (CkAstV) was isolated in an LMH liver cell line from the intestines of chickens affected with RSS. Clinical RSS is characterized by retarded growth and cystic crypt lesions in the small intestine. In 1-day-old broiler chickens infected with the CkAstV isolate, virus was only detected in the intestinal epithelial cells during the first few days after infection. Notably, the preferred host cells are the crypt epithelial cells following initial replication in the villous epithelial cells, thus implying viral preference for immature intestinal cells. Nevertheless, the CkAstV isolate did not induce remarkable pathological changes, despite the presence of the virus in situ. Serial chicken-to-chicken passages of the virus induced increased virulence, as displayed by decreased weight gain and the presence of cystic lesions in the small intestine reproducing clinical RSS in chickens. The analysis of the full-length genome sequences from the isolated CkAstV and the CkAstV from the bird-to-bird passages showed >99 % similarity. The data obtained in this study suggest that the CkAstV isolate is capable of inducing RSS following serial bird-to-bird passages in broilers and is as an aetiological agent of the disease.
Li, Tiesong; Ito, Kousei; Sumi, Shin-Ichiro; Fuwa, Toru; Horie, Toshiharu
2009-04-01
Methotrexate (MTX) causes intestinal damage, resulting in diarrhea. The side effects often disturb the cancer chemotherapy. We previously reported that AGE protected the small intestine of rats from the MTX-induced damage. In the present paper, the mechanism of the protection of AGE against the MTX-induced damage of small intestine was investigated, using IEC-6 cells originating from rat jejunum crypt. The viability and apoptosis of IEC-6 cells were examined in the presence of MTX and/or AGE. The viability of IEC-6 cells exposed to MTX was decreased by the increase of MTX concentration. The MTX-induced loss of viable IEC-6 cells was almost completely prevented by the presence of more than 0.1% AGE. In IEC-6 cells exposed to MTX, the cromatin condensation, DNA fragmentation, caspase-3 activation and cytochrome c release were observed. These were preserved to the control levels by the presence of AGE. MTX markedly decreased intracellular GSH in IEC-6 cells, but the presence of AGE in IEC-6 cells with MTX preserved intracellular GSH to the control level. IEC-6 cells in G2/M stage markedly decreased 72 h after the MTX treatment, which was preserved to the control level by the presence of AGE. These results indicated that AGE protected IEC-6 cells from the MTX-induced damage. The MTX-induced apoptosis of IEC-6 cells was shown to be depressed by AGE. AGE may be useful for the cancer chemotherapy with MTX, since AGE reduces the MTX-induced intestinal damage.
Composition and immuno-stimulatory properties of extracellular DNA from mouse gut flora.
Qi, Ce; Li, Ya; Yu, Ren-Qiang; Zhou, Sheng-Li; Wang, Xing-Guo; Le, Guo-Wei; Jin, Qing-Zhe; Xiao, Hang; Sun, Jin
2017-11-28
To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro . TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.
Carrasco, V; Rodríguez-Bertos, A; Rodríguez-Franco, F; Wise, A G; Maes, R; Mullaney, T; Kiupel, M
2015-07-01
Inflammatory bowel disease (IBD) and intestinal lymphoma are intestinal disorders in dogs, both causing similar chronic digestive signs, although with a different prognosis and different treatment requirements. Differentiation between these 2 conditions is based on histopathologic evaluation of intestinal biopsies. However, an accurate diagnosis is often difficult based on histology alone, especially when only endoscopic biopsies are available to differentiate IBD from enteropathy-associated T-cell lymphoma (EATL) type 2, a small cell lymphoma. The purpose of this study was to evaluate the utility of histopathology; immunohistochemistry (IHC) for CD3, CD20, and Ki-67; and polymerase chain reaction (PCR) for antigen receptor rearrangement (T-cell clonality) in the differential diagnosis of severe IBD vs intestinal lymphoma. Endoscopic biopsies from 32 dogs with severe IBD or intestinal lymphoma were evaluated. The original diagnosis was based on microscopic examination of hematoxylin and eosin (HE)-stained sections alone followed by a second evaluation using morphology in association with IHC for CD3 and CD20 and a third evaluation using PCR for clonality. Our results show that, in contrast to feline intestinal lymphomas, 6 of 8 canine small intestinal lymphomas were EATL type 1 (large cell) lymphomas. EATL type 2 was uncommon. Regardless, in dogs, intraepithelial lymphocytes were not an important diagnostic feature to differentiate IBD from EATL as confirmed by PCR. EATL type 1 had a significantly higher Ki-67 index than did EATL type 2 or IBD cases. Based on the results of this study, a stepwise diagnostic approach using histology as the first step, followed by immunophenotyping and determining the Ki67 index and finally PCR for clonality, improves the accuracy of distinguishing intestinal lymphoma from IBD in dogs. © The Author(s) 2014.
Cohran, Valeria; Managlia, Elizabeth; Bradford, Emily M; Goretsky, Tatiana; Li, Ting; Katzman, Rebecca B; Cheresh, Paul; Brown, Jeffrey B; Hawkins, Jennifer; Liu, Shirley X L; De Plaen, Isabelle G; Weitkamp, Jörn-Hendrik; Helmrath, Michael; Zhang, Zheng; Barrett, Terrence A
2016-07-01
Intestinal adaptation to small-bowel resection (SBR) after necrotizing enterocolitis expands absorptive surface areas and promotes enteral autonomy. Survivin increases proliferation and blunts apoptosis. The current study examines survivin in intestinal epithelial cells after ileocecal resection. Wild-type and epithelial Pik3r1 (p85α)-deficient mice underwent sham surgery or 30% resection. RNA and protein were isolated from small bowel to determine levels of β-catenin target gene expression, activated caspase-3, survivin, p85α, and Trp53. Healthy and post-resection human infant small-bowel sections were analyzed for survivin, Ki-67, and TP53 by immunohistochemistry. Five days after ileocecal resection, epithelial levels of survivin increased relative to sham-operated on mice, which correlated with reduced cleaved caspase-3, p85α, and Trp53. At baseline, p85α-deficient intestinal epithelial cells had less Trp53 and more survivin, and relative responses to resection were blunted compared with wild-type. In infant small bowel, survivin in transit amplifying cells increased 71% after SBR. Resection increased proliferation and decreased numbers of TP53-positive epithelial cells. Data suggest that ileocecal resection reduces p85α, which lowers TP53 activation and releases survivin promoter repression. The subsequent increase in survivin among transit amplifying cells promotes epithelial cell proliferation and lengthens crypts. These findings suggest that SBR reduces p85α and TP53, which increases survivin and intestinal epithelial cell expansion during therapeutic adaptation in patients with short bowel syndrome. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Veazey, Ronald S; Amedee, Angela; Wang, Xiaolei; Bernice Kaack, M; Porretta, Constance; Dufour, Jason; Welsh, David; Happel, Kyle; Pahar, Bapi; Molina, Patricia E; Nelson, Steve; Bagby, Gregory J
2015-08-01
Alcohol use results in changes in intestinal epithelial cell turnover and microbial translocation, yet less is known about the consequences on intestinal lymphocytes in the gut. Here, we compared T-cell subsets in the intestine of macaques before and after 3 months of chronic alcohol administration to examine the effects of alcohol on intestinal T-cell subsets. Rhesus macaques received either alcohol or isocaloric sucrose as a control treatment daily over a 3-month period via indwelling gastric catheters. Intestinal lymphocyte subsets were identified in biopsy samples by flow cytometry. Twenty-four hours prior to sampling, animals were inoculated with bromo-deoxyuridine (BrdU) to assess lymphocyte proliferation. Immunohistochemistry was performed on tissue samples to quantitate CD3+ cells. Animals receiving alcohol had increased rates of intestinal T-cell turnover of both CD4+ and CD8+ T cells as reflected by increased BrdU incorporation. However, absolute numbers of T cells were decreased in intestinal tissues as evidenced by immunohistochemistry for total CD3 expression per mm(2) intestinal lamina propria in tissue sections. Combining immunohistochemistry and flow cytometry data showed that the absolute numbers of CD8+ T cells were significantly decreased, whereas absolute numbers of total CD4+ T cells were minimally decreased. Collectively, these data indicate that alcohol exposure to the small intestine results in marked loss of CD3+ T cells, accompanied by marked increases in CD4+ and CD8+ T-cell proliferation and turnover, which we speculate is an attempt to maintain stable numbers of T cells in tissues. This suggests that alcohol results in accelerated T-cell turnover in the gut, which may contribute to premature T-cell senescence. Further, these data indicate that chronic alcohol administration results in increased levels of HIV target cells (proliferating CD4+ T cells) that may support higher levels of HIV replication in intestinal tissues. Copyright © 2015 by the Research Society on Alcoholism.
Veazey, Ronald S.; Amedee, Angela; Wang, Xiaolei; Kaack, M. Bernice; Porretta, Constance; Dufour, Jason; Welsh, David; Happel, Kyle; Pahar, Bapi; Molina, Patricia E.; Nelson, Steve; Bagby, Gregory J.
2015-01-01
Background Alcohol use results in changes in intestinal epithelial cell turnover and microbial translocation, yet less in known about the consequences on intestinal lymphocytes in the gut. Here we compared T cell subsets in the intestine of macaques before and after 3 months of chronic alcohol administration to examine the effects of alcohol on intestinal T cell subsets. Methods Rhesus macaques received either alcohol or isocaloric sucrose as a control treatment daily over a 3 month period via indwelling gastric catheters. Intestinal lymphocytes subsets were identified in biopsy samples by flow cytometry. Twenty-four hours prior to sampling, animals were inoculated with BrdU to assess lymphocyte proliferation. Immunohistochemistry was performed on tissue samples to quantitate CD3+ cells. Results Animals receiving alcohol had increased rates of intestinal T cell turnover of both CD4+ and CD8+ T cells as reflected by increased BrdU incorporation. However, absolute numbers of T cells were decreased in intestinal tissues as evidenced by immunohistochemistry for total CD3 expression per mm2 intestinal lamina propria in tissue sections. Combining immunohistochemistry and flow cytometry data showed that the absolute numbers of CD8+ T cells were significantly decreased, whereas total of CD4+ T cells were minimally decreased. Conclusions Collectively, these data indicate alcohol exposure to the small intestine results in marked loss of CD3+ T cells, accompanied by marked increases in CD4+ and CD8+ T cell proliferation and turnover, which we speculate is an attempt to maintain stable numbers of T cells in tissues. This suggests alcohol results in accelerated T cell turnover in the gut, which may contribute to premature T cell senescence. Further these data indicate that chronic alcohol administration results in increased levels of HIV target cells (proliferating CD4+ T cells) that may support higher levels of HIV replication in intestinal tissues. PMID:26146859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka
2011-01-07
Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.« less
Parker, Aimee; Maclaren, Oliver J.; Fletcher, Alexander G.; Muraro, Daniele; Kreuzaler, Peter A.; Byrne, Helen M.; Maini, Philip K.; Watson, Alastair J. M.; Pin, Carmen
2017-01-01
The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. PMID:27811059
Small intestine histomorphometry of beef cattle with divergent feed efficiency
2013-01-01
Background The provision of feed is a major cost in beef production. Therefore, the improvement of feed efficiency is warranted. The direct assessment of feed efficiency has limitations and alternatives are needed. Small intestine micro-architecture is associated with function and may be related to feed efficiency. The objective was to verify the potential histomorphological differences in the small intestine of animals with divergent feed efficiency. Methods From a population of 45 feedlot steers, 12 were selected with low-RFI (superior feed efficiency) and 12 with high-RFI (inferior feed efficiency) at the end of the finishing period. The animals were processed at 13.79 ± 1.21 months of age. Within 1.5 h of slaughter the gastrointestinal tract was collected and segments from duodenum and ileum were harvested. Tissue fragments were processed, sectioned and stained with hematoxylin and eosin. Photomicroscopy images were taken under 1000x magnification. For each animal 100 intestinal crypts were imaged, in a cross section view, from each of the two intestinal segments. Images were analyzed using the software ImageJ®. The measurements taken were: crypt area, crypt perimeter, crypt lumen area, nuclei number and the cell size was indirectly calculated. Data were analyzed using general linear model and correlation procedures of SAS®. Results Efficient beef steers (low-RFI) have a greater cellularity (indicated by nuclei number) in the small intestinal crypts, both in duodenum and ileum, than less efficient beef steers (high-RFI) (P < 0.05). The mean values for the nuclei number of the low-RFI and high-RFI groups were 33.16 and 30.30 in the duodenum and 37.21 and 33.65 in the ileum, respectively. The average size of the cells did not differ between feed efficiency groups in both segments (P ≥ 0.10). A trend was observed (P ≤ 0.10) for greater crypt area and crypt perimeter in the ileum for cattle with improved feed efficiency. Conclusion Improved feed efficiency is associated with greater cellularity and no differences on average cell size in the crypts of the small intestine in the bovine. These observations are likely to lead to an increase in the energy demand by the small intestine regardless of the more desirable feed efficiency. PMID:23379622
Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F
2015-12-01
Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4. Copyright © 2015 the American Physiological Society.
Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong
2017-03-22
This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.
Ishizuka, Satoshi; Iwama, Ami; Dinoto, Achmad; Suksomcheep, Akarat; Maeta, Kohshi; Kasai, Takanori; Hara, Hiroshi; Yokota, Atsushi
2009-05-01
We evaluated the effects of Bifidobacterium breve JCM1192(T )and/or raffinose on epithelial proliferation in the rat small and large intestines. WKAH/Hkm Slc rats (4 wk old) were fed a control diet, a diet supplemented with either encapsulated B. breve (30 g/kg diet, 1.5 x 10(7) colony-forming unit/g capsule) or raffinose (30 g/kg diet), or a diet supplemented with both encapsulated B. breve and raffinose, for 3 wk. Epithelial proliferation in the small intestine, as assessed by bromodeoxyuridine immunohistochemistry, was increased only in the B. breve plus raffinose-fed group. We determined the number of bifidobacteria in cecal contents using fluorescence in situ hybridization and confirmed the presence of ingested B. breve only in the B. breve plus raffinose-fed group. This suggests that the ingested B. breve cells used raffinose and were activated in the small intestine, where they subsequently influenced epithelial proliferation. In conclusion, we found a prominent synbiotic effect of encapsulated B. breve in combination with raffinose on epithelial proliferation in rat small intestine but not in large intestine. To our knowledge, this is the first report of a synbiotic that affects epithelial proliferation.
A small intestine volvulus caused by strangulation of a mesenteric lipoma: a case report.
Kakiuchi, Yoshihiko; Mashima, Hiroaki; Hori, Naoto; Takashima, Hirotoshi
2017-03-13
An emergency department encounters a variety of cases, including rare cases of the strangulation of a mesenteric lipoma by the greater omentum band. A 67-year-old Japanese man presented with nausea, vomiting, and upper abdominal pain. There were no abnormalities detected by routine blood tests other than a slight rise in his white cell count. A contrast-enhanced computed tomography scan of his abdomen revealed a dilated intestine, a small intestine volvulus, and a well-capsulated homogeneous mass. He was suspected of having a small intestine volvulus that was affected by a mesenteric lipoma; therefore, single-port laparoscopic surgery was performed. Laparoscopy revealed a small intestine volvulus secondary to the strangulation of a mesenteric lipoma. The band and tumor were removed. He had no postoperative complications and was discharged on postoperative day 6. Although this case was an emergency, it showed that single-port laparoscopic surgery can be a safe, useful, and efficacious procedure.
2015-09-28
Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer
Tutton, P J; Barkla, D H
1988-01-01
Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.
Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei
2016-09-01
4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Kentaro; Minami, Naoki; Matsuura, Minoru
Background and aims: Acute graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation, which often targets gastrointestinal (GI) tract. Osteopontin (OPN) plays an important physiological role in the efficient development of Th1 immune responses and cell survival by inhibiting apoptosis. The role of OPN in acute GI-GVHD is poorly understood. In the present study, we investigated the role of OPN in donor T cells in the pathogenicity of acute GI-GVHD. Methods: OPN knockout (KO) mice and C57BL/6 (B6) mice were used as donors, and (C57BL/6 × DBA/2) F1 (BDF1) mice were used as allograft recipients. Mice with acutemore » GI-GVHD were divided into three groups: the control group (BDF1→BDF1), B6 group (B6→BDF1), and OPN-KO group (OPN-KO→BDF1). Bone marrow cells and spleen cells from donors were transplanted to lethally irradiated recipients. Clinical GVHD scores were assessed daily. Recipients were euthanized on day 7 after transplantation, and colons and small intestines were collected for various analyses. Results: The clinical GVHD score in the OPN-KO group was significantly increased compared with the B6 and control groups. We observed a difference in the severity of colonic GVHD between the OPN-KO group and B6 group, but not small intestinal-GVHD between these groups. Interferon-γ, Tumor necrosis factor-α, Interleukin-17A, and Interleukin-18 gene expression in the OPN-KO group was differed between the colon and small intestine. Flow cytometric analysis revealed that the fluorescence intensity of splenic and colonic CD8 T cells expressing Fas Ligand was increased in the OPN-KO group compared with the B6 group. Conclusion: We demonstrated that the importance of OPN in T cells in the onset of acute GI-GVHD involves regulating apoptosis of the intestinal cell via the Fas-Fas Ligand pathway. - Highlights: • A lack of osteopontin in donor cells exacerbated clinical gastrointestinal GVHD. • Donor cells lacking osteopontin affected intestinal inflammation of GVHD. • Donor cells lacking osteopontin increased apoptotic epithelial cells in GVHD. • Osteopontin plays an anti-inflammatory role in acute gastrointestinal GVHD.« less
Anderson, Rachel C; MacGibbon, Alastair K H; Haggarty, Neill; Armstrong, Kelly M; Roy, Nicole C
2018-01-01
Appropriate intestinal barrier maturation is essential for absorbing nutrients and preventing pathogens and toxins from entering the body. Compared to breast-fed infants, formula-fed infants are more susceptible to barrier dysfunction-associated illnesses. In infant formula dairy lipids are usually replaced with plant lipids. We hypothesised that dairy complex lipids improve in vitro intestinal epithelial barrier integrity. We tested milkfat high in conjugated linoleic acid, beta serum (SureStart™Lipid100), beta serum concentrate (BSC) and a ganglioside-rich fraction (G600). Using Caco-2 cells as a model of the human small intestinal epithelium, we analysed the effects of the ingredients on trans-epithelial electrical resistance (TEER), mannitol flux, and tight junction protein co-localisation. BSC induced a dose-dependent improvement in TEER across unchallenged cell layers, maintained the co-localisation of tight junction proteins in TNFα-challenged cells with increased permeability, and mitigated the TEER-reducing effects of lipopolysaccharide (LPS). G600 also increased TEER across healthy and LPS-challenged cells, but it did not alter the co-location of tight junction proteins in TNFα-challenged cells. SureStart™Lipid100 had similar TEER-increasing effects to BSC when added at twice the concentration (similar lipid concentration). Ultimately, this research aims to contribute to the development of infant formulas supplemented with dairy complex lipids that support infant intestinal barrier maturation.
MacGibbon, Alastair K. H.; Haggarty, Neill; Armstrong, Kelly M.; Roy, Nicole C.
2018-01-01
Appropriate intestinal barrier maturation is essential for absorbing nutrients and preventing pathogens and toxins from entering the body. Compared to breast-fed infants, formula-fed infants are more susceptible to barrier dysfunction-associated illnesses. In infant formula dairy lipids are usually replaced with plant lipids. We hypothesised that dairy complex lipids improve in vitro intestinal epithelial barrier integrity. We tested milkfat high in conjugated linoleic acid, beta serum (SureStart™Lipid100), beta serum concentrate (BSC) and a ganglioside-rich fraction (G600). Using Caco-2 cells as a model of the human small intestinal epithelium, we analysed the effects of the ingredients on trans-epithelial electrical resistance (TEER), mannitol flux, and tight junction protein co-localisation. BSC induced a dose-dependent improvement in TEER across unchallenged cell layers, maintained the co-localisation of tight junction proteins in TNFα-challenged cells with increased permeability, and mitigated the TEER-reducing effects of lipopolysaccharide (LPS). G600 also increased TEER across healthy and LPS-challenged cells, but it did not alter the co-location of tight junction proteins in TNFα-challenged cells. SureStart™Lipid100 had similar TEER-increasing effects to BSC when added at twice the concentration (similar lipid concentration). Ultimately, this research aims to contribute to the development of infant formulas supplemented with dairy complex lipids that support infant intestinal barrier maturation. PMID:29304106
The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.
Miazza, B M; Al-Mukhtar, M Y; Salmeron, M; Ghatei, M A; Felce-Dachez, M; Filali, A; Villet, R; Wright, N A; Bloom, S R; Crambaud, J C
1985-01-01
Beside intraluminal factors, humoral agents play an important role in intestinal adaptation. Enteroglucagon, the mucosal concentration of which is maximal in the terminal ileum and colon, is the strongest candidate for the role of small intestinal mucosal growth factor. The present experiment was designed to study the role of colonic enteroglucagon in stimulating mucosal growth in rats with a normal small intestine. After eight days of glucose large bowel perfusion, enteroglucagon plasma concentrations were 120.7 +/- SEM 9.2 pmol/l, versus 60.1 +/- 6.8 in mannitol perfused control rats (p less than 0.001). Gastrin, cholecystokinin, neurotensin, pancreatic glucagon, and insulin plasma concentrations were unchanged. Crypt cell proliferation, measured by the vincristine metaphase arrest technique, increased significantly in the small intestine of glucose perfused animals (p less than 0.005-0.001) in comparison with the controls. This resulted in a greater mucosal mass in both proximal and distal small bowel: mucosal wet weight, DNA, protein and alpha D-glucosidase per unit length intestine were all significantly higher (p less than 0.05-0.001) than in mannitol perfused rats. Our data, therefore, support the hypothesis that enteroglucagon is an enterotrophic factor and stress the possible role of the colon in the regulation of small bowel trophicity. PMID:3996942
[The detection of the influenza virus in the small intestine in diarrhea in piglets].
Slobodeniuk, V K; Mel'nikova, L A; Kvashnina, G A; Semenchenko, O G; Trofimova, M G; Tatarchuk, A T; Raĭkova, N L
1990-01-01
Electron microscopy used for examinations of small intestine suspensions of piglets in the prenatal and postnatal periods allowed influenza virions to be identified in virus population. An attempt was made to preserve the discovered population in alternating animal--cell culture--animal passages. Serological examinations of the swine herd confirmed the circulation of influenza viruses in the herd.
2014-01-01
Ovarian cystadenocarcinoma is characterized by marked heterogeneity and may be composed of an admixture of histologic growth patterns, including acinar, papillary and solid. In the present study, a case of isolated small intestine metastasis of ovarian papillary cystadenocarcinoma was reported. A 7-year-old female mixed-breed dog presented with a mass in the left upper quadrant with progressive enlargement of the abdomen, periodic bloody discharge from the vulva and incontinence. The tumor was histologically characterized by the presence of cysts and proliferation of papillae, both lined by single- or multi-layered pleomorphic epithelial cells. Furthermore, the mass was composed by intense cellular and nuclear pleomorphism and numerous mitotic figures. These findings indicate a tumor of high-grade malignancy with infiterative tumor cells resembling the papillary ovarian tumor in the serosal surface of the small intestine along with an intact serosa. Immunohistochemically, tumor was positive for CK7 and negative immunoreactivity for CK20. The histopathologic features coupled with the CK7 immunoreactivity led to a diagnosis of high grade ovarian papillary cystadenocarcinoma. To the best of our knowledge, this is the first case of small intestine serousal surface metastasis from ovarian papillary cystadenocarcinoma. PMID:24636424
Nakamura, Yosuke; Itoh, Akihiro; Kawashima, Hiroki; Ohno, Eizaburo; Itoh, Yuya; Hiramatsu, Takeshi; Sugimoto, Hiroyuki; Sumi, Hajime; Hayashi, Daijuro; Kuwahara, Takamichi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ohmiya, Naoki; Katano, Yoshiaki; Ishigami, Masatoshi; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi; Hirooka, Yoshiki
2015-11-01
The aim of this study was to investigate the relationship between pancreas and small intestine evaluating the endoscopic and histopathologic findings of the proximal small intestine in pancreatic diseases. Fifty patients (18 patients with chronic pancreatitis, 17 patients with pancreatic cancer, 15 control subjects) underwent enteroscopy using a prototype enteroscope. The villous height of the jejunum on bioptic specimens was measured, and the mean values of the villi were compared among the 3 groups. Exocrine function was calculated by the pancreatic function diagnostic test, and the correlation between the recovery rate of p-aminobenzoic acid and the villous height was assessed. Finally, the distribution of the K cells secreting glucose-dependent insulinotropic polypeptide and the L cells secreting glucagon-like peptide 1 in the duodenum and jejunum was investigated using immunohistochemistry for glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1. The mean villous height in chronic pancreatitis (328 ± 67 μm) was significantly lower than that in pancreatic cancer (413 ± 57 μm) and control subjects (461 ± 97 μm) (P = 0.004 and P < 0.0001, respectively). A positive correlation was found between the recovery rate of p-aminobenzoic acid and the villous height (r = 0.52, P = 0.0001). The presence of K and L cells was verified in the duodenum and the jejunum. Close relationship between pancreas and small intestine was demonstrated.
Heterogeneity across the murine small and large intestine
Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret
2014-01-01
The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed. PMID:25386070
Heterogeneity across the murine small and large intestine.
Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret
2014-11-07
The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.
Xie, D; Li, J; Wang, Z X; Cao, J; Li, T T; Chen, J L; Chen, Y X
2011-12-01
Our previous studies demonstrated that green and blue monochromatic lights were effective to stimulate immune response of the spleen in broilers. This study was designed to investigate the effects of monochromatic light on both gut mucosal mechanical and immunological barriers. A total of 120 Arbor Acre male broilers on post-hatching day (P) 0 were exposed to red light, green light (GL), blue light (BL), and white light (WL) for 49 d, respectively. As compared with broilers exposed to WL, the broilers exposed to GL showed that the villus height of small intestine was increased by 19.5% (P = 0.0205) and 38.8% (P = 0.0149), the crypt depth of small intestine was decreased by 15.1% (P = 0.0049) and 10.1% (P = 0.0005), and the ratios of villus height to crypt depth were increased by 39.3% (P < 0.0001) and 52.5% (P < 0.0001) at P7 and P21, respectively. Until P49, an increased villus height (33.6%, P = 0.0076), a decreased crypt depth (15.4%, P = 0.0201), and an increased villus height-to-crypt depth ratio (58.5%, P < 0.0001) were observed in the BL group as compared with the WL group. On the other hand, the numbers of intestinal intraepithelial lymphocytes (27.9%, P < 0.0001 and 37.0%, P < 0.0001), goblet cells (GC, 22.1%, P < 0.0001 and 18.1%, P < 0.0001), and IgA(+) cells (14.8%, P = 0.0543 and 47.9%, P = 0.0377) in the small intestine were significantly increased in the GL group as compared with the WL group at P7 and P21, respectively. The numbers of intestinal intraepithelial lymphocytes (36.2%, P < 0.0001), GC (26.5%, P < 0.0001), and IgA(+) cells (68.0%, P = 0.0177) in the BL group were also higher than those in the WL group at P49. These results suggest that both mucosal mechanical and immunological barriers of the small intestine may be improved by rearing broilers under GL at an early age and under BL at an older age.
Drummond, Coyne G; Bolock, Alexa M; Ma, Congrong; Luke, Cliff J; Good, Misty; Coyne, Carolyn B
2017-02-14
Enteroviruses are among the most common viral infectious agents of humans and are primarily transmitted by the fecal-oral route. However, the events associated with enterovirus infections of the human gastrointestinal tract remain largely unknown. Here, we used stem cell-derived enteroids from human small intestines to study enterovirus infections of the intestinal epithelium. We found that enteroids were susceptible to infection by diverse enteroviruses, including echovirus 11 (E11), coxsackievirus B (CVB), and enterovirus 71 (EV71), and that contrary to an immortalized intestinal cell line, enteroids induced antiviral and inflammatory signaling pathways in response to infection in a virus-specific manner. Furthermore, using the Notch inhibitor dibenzazepine (DBZ) to drive cellular differentiation into secretory cell lineages, we show that although goblet cells resist E11 infection, enteroendocrine cells are permissive, suggesting that enteroviruses infect specific cell populations in the human intestine. Taken together, our studies provide insights into enterovirus infections of the human intestine, which could lead to the identification of novel therapeutic targets and/or strategies to prevent or treat infections by these highly clinically relevant viruses.
Ritchie, Jennifer M.; Rui, Haopeng; Zhou, Xiaohui; Iida, Tetsuya; Kodoma, Toshio; Ito, Susuma; Davis, Brigid M.; Bronson, Roderick T.; Waldor, Matthew K.
2012-01-01
Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. PMID:22438811
Booth, Catherine; Tudor, Gregory L; Katz, Barry P; MacVittie, Thomas J
2015-11-01
Long term or residual damage post-irradiation has been described for many tissues. In hematopoietic stem cells (HSC), this is only revealed when the HSC are stressed and required to regenerate and repopulate a myeloablated host. Such an assay cannot be used to assess the recovery potential of previously irradiated intestinal stem cells (ISC) due to their incompatibility with transplantation. The best approximation to the HSC assay is the crypt microcolony assay, also based on clonogen survival. In the current study, the regenerative capacity of intestinal clonogenic cells in mice that had survived 13 Gy irradiation (with 5% bone marrow shielding to allow survival through the hematopoietic syndrome) and were then aged for 200 d was compared to previously unirradiated age-matched controls. Interestingly, at 200 d following 13 Gy, there remained a statistically significant reduction in crypts present in the various small intestinal regions (illustrating that the gastrointestinal epithelium had not fully recovered despite the 200-d interval). However, upon re-irradiation on day 196, those mice previously irradiated had improved crypt survival and regeneration compared to the age-matched controls. This was evident in all regions of the small intestine following 11-13 Gy re-exposure. Thus, there were either more clonogens per crypt within those previously irradiated and/or those that were present were more radioresistant (possibly because a subpopulation was more quiescent). This is contrary to the popular belief that previously irradiated animals may have an impaired/delayed regenerative response and be more radiosensitive.
Ikemura, Kenji; Iwamoto, Takuya; Okuda, Masahiro
2014-08-01
Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variations in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs. Copyright © 2014 Elsevier Inc. All rights reserved.
Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P
2017-08-01
An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horita, Nobukatsu; Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp; Hayashi, Ryohei
Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualisedmore » in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.« less
Hirotani, Yoshihiko; Ikeda, Takuya; Ikeda, Kenji; Yamamoto, Kaoru; Onda, Mitsuko; Arakawa, Yukio; Li, Jun; Kitamura, Kazuyuki; Kurokawa, Nobuo
2007-09-01
We examined the effects of Hachimi-jio-gan (HJ) on the small intestinal function in streptozotocin (STZ)-induced diabetic rats. The rats had free access to pellets containing 1% HJ extract powder for 4 weeks after STZ administration. The intestinal disaccharidase (sucrase and maltase) activity was elevated in STZ-treated rats compared with control rats, whereas it was significantly reduced by HJ administration. This suggested that HJ suppresses or delays monosaccharide production in the small intestinal epithelium. In addition, the intestinal mucosal weights and DNA contents that were significantly increased in the STZ-treated rats were restrained to the control level by HJ treatment. Simultaneously, we examined the changes in the plasma levels of glucagon-like peptide 2 (GLP-2), which is a trophic factor specific for the intestine. The plasma GLP-2 levels significantly increased in the STZ-treated rats, whereas HJ decreased the plasma GLP-2 levels. Thus intestinal mucosal weights and DNA contents correlated with plasma GLP-2 levels in diabetes-associated bowel growth. These results suggest that HJ may normalize or suppress the small intestinal disaccharidase activity and the epithelial cell proliferation mediated by GLP-2 in the animal model rats.
Bu, Heng-Fu; Wang, Xiao; Tang, Yi; Koti, Viola; Tan, Xiao-Di
2015-01-01
Peptidoglycan is a potent immune adjuvant derived from bacterial cell walls. Previous investigations suggest that intestinal epithelium may absorb peptidoglycan from the lumen. Nonetheless, how peptidoglycan is taken up and crosses intestinal epithelium remains largely unclear. Here, we first characterized peptidoglycan transport in vitro using IEC-18 and HT29-CL19A cells, which represent less mature epithelial cells in intestinal crypts. With fluorescent microscopy, we visualized internalization of dual-labeled peptidoglycan by enterocytes. Engulfed peptidoglycan was found to form a complex with peptidoglycan recognition protein-3, which may facilitate delivering peptidoglycan in vivo. Utilizing electronic microscopy, we revealed that uptake of apical peptidoglycan across intestinal epithelial monolayers was involved in phagocytosis, multivesicular body formation, and exosome secretion. We also studied transport of peptidoglycan using the transwell system. Our data indicated that apically loaded peptidoglycan was exocytosed to the basolateral compartment with exosomes by HT29-CL19A cells. The peptidoglycan-contained basolateral exosome extracts induced macrophage activation. Through gavaging mice with labeled peptidoglycan, we found that luminal peptidoglycan was taken up by columnar epithelial cells in crypts of the small intestine. Furthermore, we showed that pre-confluent immature but not post-confluent mature C2BBe1 cells engulfed peptidoglycan via a toll-like receptor 2-dependent manner. Together, our findings suggest that (1) crypt-based immature intestinal epithelial cells play an important role in transport of luminal peptidoglycan over the intestinal epithelium; and (2) luminal peptidoglycan is transcytosed across intestinal epithelia via a toll-like receptor 2-meciated phagocytosis-multivesicular body-exosome pathway. The absorbed peptidoglycan and its derivatives may facilitate maintenance of intestinal immune homeostasis. PMID:20020500
Schumacher, V L; Martel, A; Pasmans, F; Van Immerseel, F; Posthaus, H
2013-07-01
Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.
Small intestinal ischemia and infarction
Intestinal necrosis; Ischemic bowel - small intestine; Dead bowel - small intestine; Dead gut - small intestine; Infarcted bowel - small intestine; Atherosclerosis - small intestine; Hardening of the arteries - small intestine
Rieger, J.; Twardziok, S.; Huenigen, H.; Hirschberg, R.M.; Plendl, J.
2013-01-01
Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkagedifferences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using different fixation techniques can only be compared if the respective studyimmanent shrinkage factor has been determined and quantification results are adjusted accordingly. PMID:24085270
p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia–reperfusion
Wu, Bin; Qiu, Wei; Wang, Peng; Yu, Hui; Cheng, Tao; Zambetti, Gerard P; Zhang, Lin; Yu, Jian
2007-01-01
Background The small intestine is highly sensitive to ischaemia–reperfusion (I/R) induced injury which is associated with high morbidity and mortality. Apoptosis, or programmed cell death, is a major mode of cell death occurring during I/R induced injury. However, the mechanisms by which I/R cause apoptosis in the small intestine are poorly understood. p53 upregulated modulator of apoptosis (PUMA) is a p53 downstream target and a member of the BH3‐only group of Bcl‐2 family proteins. It has been shown that PUMA plays an essential role in apoptosis induced by a variety of stimuli in different tissues through a mitochondrial pathway. Aims The role of PUMA in I/R induced injury and apoptosis in the small intestine was investigated. The mechanisms by which PUMA is regulated in I/R induced intestinal apoptosis were also studied. Methods Ischaemia was induced by superior mesenteric artery occlusion in the mouse small intestine. Induction of PUMA in response to ischaemia alone, or ischaemia followed by reperfusion (I/R), was examined. I/R induced intestinal apoptosis and injury were compared between PUMA knockout and wild‐type mice. The mechanisms of I/R induced and PUMA mediated apoptosis were investigated through analysis of caspase activation, cytosolic release of mitochondrial cytochrome c and alterations of the proapoptotic Bcl‐2 family proteins Bax and Bak. To determine whether PUMA is induced by reactive oxygen species and/or reactive nitrogen species generated by I/R, superoxide dismutase (SOD) and N‐nitro‐L‐arginine methyl ester (L‐NAME) were used to treat animals before I/R. To determine whether p53 is involved in regulating PUMA during I/R induced apoptosis, PUMA induction and apoptosis in response to I/R were examined in p53 knockout mice. Results PUMA was markedly induced following I/R in the mucosa of the mouse small intestine. I/R induced intestinal apoptosis was significantly attenuated in PUMA knockout mice compared with that in wild‐type mice. I/R induced caspase 3 activation, cytochrome c release, Bax mitochondrial translocation and Bak multimerisation were also inhibited in PUMA knockout mice. SOD or L‐NAME significantly blunted I/R induced PUMA expression and apoptosis. Furthermore, I/R induced PUMA expression and apoptosis in the small intestine were not affected in the p53 knockout mice. Conclusions Our data demonstrated that PUMA is activated by oxidative stress in response to I/R to promote p53 independent apoptosis in the small intestine through the mitochondrial pathway. Inhibition of PUMA is potentially useful for protecting against I/R induced intestinal injury and apoptosis. PMID:17127703
Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R.; Verkman, A. S.
2014-01-01
Background Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. Objective To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Design Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Results Screening of ~150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ~1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Conclusions Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. PMID:24052273
Goodlad, R A; Lenton, W; Ghatei, M A; Adrian, T E; Bloom, S R; Wright, N A
1987-01-01
Refeeding starved rats with an elemental diet resulted in a marked increase in crypt cell production rate (CCPR) in the proximal small intestine but not in the distal regions of the gut. Little effect on CCPR was noted when inert bulk (kaolin) was added to the elemental diet. Addition of a poorly fermentable dietary fibre (purified wood cellulose) had little effect on intestinal epithelial cell proliferation except in the distal colon where it significantly increased CCPR. A more readily fermentable fibre (purified wheat bran) caused a large proliferative response in the proximal, mid, and distal colon and in the distal small intestine. A gel forming fibre only significantly stimulated proliferation in the distal colon; the rats in this group, however, did not eat all the food given. There was no significant correlation between CCPR and plasma gastrin concentrations, but plasma enteroglucagon concentrations were significantly correlated with CCPR in almost all the sites studied. Plasma PYY concentrations also showed some correlation with CCPR, especially in the colon. Thus while inert bulk cannot stimulate colonic epithelial cell proliferation fermentable fibre is capable of stimulating proliferation in the colon, and especially in the distal colon: it can also stimulate proliferation in the distal small intestine and it is likely that plasma enteroglucagon may have a role to play in this process. Images Fig. 1 PMID:3030902
Lauwaet, Tineke; Andersen, Yolanda; Van de Ven, Liesbeth; Eckmann, Lars; Gillin, Frances D.
2010-01-01
Objectives Attachment to the small intestinal mucosa is crucial for initiating and maintaining Giardia infection. We tested the effect of isoflavones on Giardia attachment. Methods We evaluated the effect of formononetin on trophozoite attachment to glass, to intestinal epithelial cell layers in vitro and to murine small intestinal explants, and on the intestinal load in mice. Results We found that the isoflavone formononetin inhibits both attachment and flagellar motility within minutes and reduces the trophozoite load of Giardia in mice within 1.5 h after treatment. Conclusions The antigiardial activity of formononetin is at least partially due to its capacity to rapidly detach trophozoites. PMID:20067984
Parsons, Sean P; Huizinga, Jan D
2015-02-15
Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.
Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su
2015-11-27
Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine aftermore » cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.« less
Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G
2002-10-01
Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.
The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635
Weight, Caroline M; Jones, Emily J; Horn, Nikki; Wellner, Nikolaus; Carding, Simon R
2015-10-01
Toxoplasma gondii is an obligate intracellular parasite infecting one third of the world's population. The small intestine is the parasite's primary route of infection, although the pathway of epithelium transmigration remains unclear. Using an in vitro invasion assay and live imaging we showed that T. gondii (RH) tachyzoites infect and transmigrate between adjacent intestinal epithelial cells in polarized monolayers without altering barrier integrity, despite eliciting the production of specific inflammatory mediators and chemokines. During invasion, T. gondii co-localized with occludin. Reducing the levels of endogenous cellular occludin with specific small interfering RNAs significantly reduced the ability of T. gondii to penetrate between and infect epithelial cells. Furthermore, an in vitro invasion and binding assays using recombinant occludin fragments established the capacity of the parasite to bind occludin and in particular to the extracellular loops of the protein. These findings provide evidence for occludin playing a role in the invasion of T. gondii in small intestinal epithelial cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Schoenborn, Alexi A; von Furstenberg, Richard J; Valsaraj, Smrithi; Hussain, Farah S; Stein, Molly; Shanahan, Michael T; Henning, Susan J; Gulati, Ajay S
2018-06-08
Paneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function. In this study, we sought to characterize the impact of the enteric microbiota on PC biology in the mouse small intestine. This was done by first enumerating jejunal PCs in germ-free (GF) versus conventionally-raised (CR) mice. We next evaluated the possible functional consequences of altered PC biology in these experimental groups by assessing epithelial proliferation, ISC numbers, and the production of AMPs. We found that PC numbers were significantly increased in CR versus GF mice; however, there were no differences in ISC numbers or cycling activity between groups. Of the AMPs assessed, only Reg3γ transcript expression was significantly increased in CR mice. Intriguingly, this increase was abrogated in cultured CR versus GF enteroids, and could not be re-induced with various bacterial ligands. Our findings demonstrate the enteric microbiota regulates PC function by increasing PC numbers and inducing Reg3γ expression, though the latter effect may not involve direct interactions between bacteria and the intestinal epithelium. In contrast, the enteric microbiota does not appear to regulate jejunal ISC census and proliferation. These are critical findings for investigators using GF mice and the enteroid system to study PC and ISC biology.
Effect of subcutaneous insulin on intestinal adaptation in a rat model of short bowel syndrome.
Sukhotnik, Igor; Mogilner, Jorge; Shamir, Raanan; Shehadeh, Naim; Bejar, Jacob; Hirsh, Mark; Coran, Arnold G
2005-03-01
Insulin has been shown to influence intestinal structure and absorptive function. The purpose of the present study was to evaluate the effects of parenteral insulin on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Male Sprague-Dawley rats were divided into three experimental groups: sham rats underwent bowel transection and reanastomosis, SBS rats underwent a 75% small bowel resection, and SBS-INS rats underwent a 75% small bowel resection and were treated with insulin given subcutaneously at a dose of 1 U/kg, twice daily, from day 3 through day 14. Parameters of intestinal adaptation, enterocyte proliferation, and enterocyte apoptosis were determined on day 15 following operation. SBS rats demonstrated a significant increase in jejunal and ileal bowel and mucosal weight, villus height and crypt depth, and cell proliferation index compared with the sham group. SBS-INS animals demonstrated higher jejunal and ileal bowel and mucosal weights, jejunal and ileal mucosal DNA and protein, and jejunal and ileal crypt depth compared with SBS animals. SBS-INS rats also had a greater cell proliferation index in both jejunum and ileum and a trend toward a decrease in enterocyte apoptotic index in jejunum and ileum compared with the SBS untreated group. In conclusion, parenteral insulin stimulates structural intestinal adaptation in a rat model of SBS. Increased cell proliferation is the main mechanism responsible for increased cell mass.
Kodani, Mio; Fukui, Hirokazu; Tomita, Toshihiko; Oshima, Tadayuki; Watari, Jiro; Miwa, Hiroto
2018-06-01
Irritable bowel syndrome (IBS) frequently occurs after infectious colitis or inflammatory bowel disease in patients with complete remission. This suggests that post‑inflammation‑associated factors may serve a role in the pathophysiology of IBS; however, the mechanism responsible remains unclear. In the present study, the involvement of macrophages and mast cells in alteration of gastrointestinal (GI) motility was investigated in mice in the remission stage after acute colitis. C57BL/6 mice were administered 2% dextran sulfate sodium in drinking water for 5 days and their intestinal tissues were investigated at intervals for up to 24 weeks. Expression of the mannose receptor (MR) and tryptase was examined by immunohistochemistry, and the GI transit time (GITT) was measured by administration of carmine red solution. A minimal degree of inflammatory cell infiltration persisted in the colon and also the small intestine of mice in remission after colitis and the GITT was significantly shorter. The number of muscularis MR‑positive macrophages was significantly increased in the small intestine of mice in remission after colitis and negatively correlated with GITT. Furthermore, results indicated that the number of muscularis tryptase‑positive mast cells was significantly increased throughout the intestine of mice during the healing process after colitis and was positively correlated with GITT. The present findings suggested an increased number of macrophages and/or mast cells in the intestinal muscular layer may be associated with the pathophysiology of GI dysmotility after colitis.
Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover
Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G
1998-01-01
Background—The functions of urokinase in intestinal epithelia are unknown. Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347
Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.
Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B; Flavell, Richard A
2017-06-29
Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.
Stem Cell Transplantation in Treating Patients With Hematologic Cancer
2012-05-31
Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Precancerous/Nonmalignant Condition; Small Intestine Cancer
Molecular cloning and expression analysis of the canine chemokine receptor CCR9.
Maeda, Shingo; Ohno, Koichi; Tsukamoto, Atsushi; Nakashima, Ko; Fukushima, Kenjiro; Goto-Koshino, Yuko; Fujino, Yasuhito; Tsujimoto, Hajime
2012-01-15
The chemokine receptor CCR9, which interacts with the thymus-expressed chemokine TECK/CCL25, contributes to the localization of lymphocytes to the small intestine, and is implicated in the development of human inflammatory bowel disease (IBD); however, their role in canine IBD is unknown. The objective of this study was to isolate cDNA encoding CCR9 and to investigate CCR9 expression in normal canine tissues and lymphoid cell lines. The complete open reading frame contained 1104 bp, encoding 367 amino acids, with 85% and 81% identity to human and mouse homologs, respectively. CCR9 mRNA was detected in all tissues investigated with the highest expression level in the small intestine. CCR9 mRNA was also expressed in GL-1, a canine B cell leukemia cell line, but not in CLBL-1, a canine B cell lymphoma cell line. Immunoblot and flow cytometry analyses of these cell lines using an anti-human CCR9 monoclonal antibody revealed that CCR9 protein expression was detected only in GL-1, indicating the cross-reactivity of the antibody. Using the antibody, flow cytometry showed that the proportions of CCR9(+) cells were small (mean, 4.88%; SD, 2.15%) in the normal canine PBMCs. This study will be useful in understanding canine intestinal immunity and the immunopathogenesis of canine IBD. Copyright © 2011 Elsevier B.V. All rights reserved.
Sodium alginate inhibits methotrexate-induced gastrointestinal mucositis in rats.
Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Kajiwara, Eiji; Nishida, Ryuichi
2013-01-01
Gastrointestinal mucositis is one of the most prevalent side effects of chemotherapy. Methotrexate is a pro-oxidant compound that depletes dihydrofolate pools and is widely used in the treatment of leukemia and other malignancies. Through its effects on normal tissues with high rates of proliferation, methotrexate treatment leads to gastrointestinal mucositis. In rats, methotrexate-induced gastrointestinal mucositis is histologically characterized by crypt loss, callus fusion and atrophy, capillary dilatation, and infiltration of mixed inflammatory cells. The water-soluble dietary fiber sodium alginate (AL-Na) is derived from seaweed and has demonstrated muco-protective and hemostatic effects on upper gastrointestinal ulcers. In the present study, we evaluated the effects of AL-Na on methotrexate-induced small intestinal mucositis in rats. Animals were subcutaneously administered methotrexate at a dosage of 2.5 mg/kg once daily for 3 d. Rats were treated with single oral doses of AL-Na 30 min before and 6 h after methotrexate administration. On the 4th day, small intestines were removed and weighed. Subsequently, tissues were stained with hematoxylin-eosin and bromodeoxyuridine. AL-Na significantly prevented methotrexate-induced small intestinal mucositis. Moreover, AL-Na prevented decreases in red blood cell numbers, hemoglobin levels, and hematocrit levels. These results suggest the potential of AL-Na as a therapy for methotrexate-induced small intestinal mucositis.
Hussein, Mahmoud R; Abu-Dief, Eman E; Kamel, Esam; Abou El-Ghait, Amal T; Abdulwahed, Saad Rezk; Ahmad, Mohamed H
2008-11-01
Roentgen irradiation can affect normal cells, especially the rapidly growing ones such as the mucosal epithelial cells of the small intestine. The small intestine is the most radiosensitive gastrointestinal organ and patients receiving radiotherapy directed to the abdomen or pelvis may develop radiation enteritis. Although roentgen rays are widely used for both imaging and therapeutic purposes, our knowledge about the morphological changes associated with radiation enteritis is lacking. This study tries to tests the hypothesis that "the intake of melatonin can minimize the morphological features of cell damage associated with radiation enteritis". We performed this investigation to test our hypothesis and to examine the possible radioprotective effects of melatonin in acute radiation enteritis. To achieve these goals, an animal model consisting of 60 Albino rats was established. The animals were divided into five groups: Group 1, non-irradiated; Group 2, X-ray irradiated (X-ray irradiation, 8 Grays); Group 3, X-ray irradiated-pretreated with solvent (ethanol and phosphate buffered saline); Group 4, non-irradiated-group treated with melatonin, and Group 5, X-ray irradiated-pretreated with melatonin. The small intestines were evaluated for gross (macroscopic), histological, morphometric (light microscopy), and ultrastructural changes (transmission electron microscopy). We found morphological variations among the non-irradiated-group, X-ray irradiated-group and X-ray irradiated-intestines of the animals pretreated with melatonin. The development of acute radiation enteritis in X-ray irradiated-group (Groups 2 and 3) was associated with symptoms of enteritis (diarrhea and abdominal distention) and histological features of mucosal injury (mucosal ulceration, necrosis of the epithelial cells). There was a significant reduction of the morphometric parameters (villous count, villous height, crypt height and villous/crypt height ratio). Moreover, the ultrastructural features of cell damage were evident including: apoptosis, lack of parallel arrangement of the microvilli, loss of the covering glycocalyx, desquamation of the microvilli, vacuolation of the apical parts of the cells, dilatation of the rough endoplasmic reticulum, and damage of the mitochondrial cristae. In the non-irradiated-group and in X-ray irradiated-intestines of the animals pretreated with melatonin (Group 5), these changes were absent and the intestinal mucosal structure was preserved. Administration of melatonin prior to irradiation can protect the intestine against X-rays destructive effects, i.e. radiation enteritis. The clinical applications of these observations await further studies.
Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H. M.; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A. M.; Troost, Freddy J.
2017-01-01
The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects. PMID:28045137
Zhang, Wang-Dong; Wang, Wen-Hui; Jia, Shuai
2016-01-01
Secretory immunoglobulin A (SIgA) and immunoglobulin G (IgG) antibody-secreting cells (ASCs) are two important cell types in the mucosal immune system. This study aimed to explore the distribution of these ASC populations in the small intestine of Bactrian camels of different ages. Twenty-four Alashan Bactrian camels were divided into the following four age groups: young (1-2 years), pubertal (3-5 years), middle-aged (6-16 years) and old (17-20 years). SIgA and IgG ASCs in the intestinal mucosa lamina propria (LP) were observed and analyzed using immunohistochemcal techniques. The results from all age groups show that both SIgA and IgG ASCs were diffusely distributed in the intestinal LP, and some cells aggregated around the crypts. Moreover, the densities of the two ASC populations gradually increased from the duodenum to the jejunum and then decreased in the ileum. Meanwhile, there were more SIgA ASCs than IgG ASCs in the duodenum, jejunum, and ileum, and these differences were significant in the young and pubertal groups (P<0.05). In addition, the SIgA and IgG ASC densities increased from the young to the pubertal period, peaked at puberty, and then gradually decreased with age. The results demonstrate that the SIgA and IgG ASC distributions help to form two immunoglobulin barriers in the intestinal mucosa to provide full protection, helping to maintain homeostasis. These findings also underscore the importance of researching the development and degeneration of intestinal mucosal immunity in Bactrian camels.
Mançanares, Celina A F; Leiser, Rudolf; Favaron, Phelipe O; Carvalho, Ana F; Oliveira, Vanessa C De; Santos, José M Dos; Ambrósio, Carlos E; Miglino, Maria A
2013-07-01
The yolk sac (YS) is the main source of embryonic nutrition during the period when the placenta has not yet formed. It is also responsible for hematopoiesis because the blood cells develop from it as part of the primitive embryonic circulation. The objective of this study was to characterize the transitional area between the YS and primitive gut using the techniques of light microscopy, transmission electron microscopy, and immunohistochemistry to detect populations of pluripotent cells by labeling with Oct4 antibody. In all investigated embryos, serial sections were made to permit the identification of this small, restricted area. We identified the YS connection with the primitive intestine and found that it is composed of many blood islands, which correspond to the vessels covered by vitelline and mesenchymal cells. We identified large numbers of hemangioblasts inside the vessels. The mesenchymal layer was thin and composed of elongated cells, and the vitelline endodermal membrane was composed of large, mono- or binucleated cells. The epithelium of the primitive intestine comprised stratified columnar cells and undifferentiated mesenchymal cells. The transitional area between the YS and the primitive intestine was very thin and composed of cells with irregular shapes, which formed a delicate lumen containing hemangioblasts. In the mesenchyme of the transitional area, there were a considerable number of small vessels containing hemangioblasts. Using Oct4 as a primary antibody, we identified positive cells in the metanephros, primordial gonad, and hepatic parenchyma as well as in YS cells, suggesting that these regions contain populations of pluripotent cells. Copyright © 2013 Wiley Periodicals, Inc.
Troost, Freddy J; Brummer, Robert-Jan M; Haenen, Guido R M M; Bast, Aalt; van Haaften, Rachel I; Evelo, Chris T; Saris, Wim H M
2006-04-13
Iron-induced oxidative stress in the small intestine may alter gene expression in the intestinal mucosa. The present study aimed to determine which genes are mediated by an iron-induced oxidative challenge in the human small intestine. Eight healthy volunteers [22 yr(SD2)] were tested on two separate occasions in a randomized crossover design. After duodenal tissue sampling by gastroduodenoscopy, a perfusion catheter was inserted orogastrically to perfuse a 40-cm segment of the proximal small intestine with saline and, subsequently, with either 80 or 400 mg of iron as ferrous gluconate. After the intestinal perfusion, a second duodenal tissue sample was obtained. Thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, in intestinal fluid samples increased significantly and dose dependently at 30 min after the start of perfusion with 80 or 400 mg of iron, respectively (P < 0.001). During the perfusion with 400 mg of iron, the increase in thiobarbituric acid-reactive substances was accompanied by a significant, momentary rise in trolox equivalent antioxidant capacity, an indicator of total antioxidant capacity (P < 0.05). The expression of 89 gene reporters was significantly altered by both iron interventions. Functional mapping showed that both iron dosages mediated six distinct processes. Three of those processes involved G-protein receptor coupled pathways. The other processes were associated with cell cycle, complement activation, and calcium channels. Iron administration in the small intestine induced dose-dependent lipid peroxidation and a momentary antioxidant response in the lumen, mediated the expression of at least 89 individual gene reporters, and affected at least six biological processes.
Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids
Di Rienzi, Sara C; Jacobson, Juliet; Kennedy, Elizabeth A; Bell, Mary E; Shi, Qiaojuan; Waters, Jillian L; Lawrence, Peter; Brenna, J Thomas; Britton, Robert A; Walter, Jens
2018-01-01
Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance. PMID:29580380
Intestinal inflammation induces genotoxicity to extraintestinal tissues and cell types in mice
Westbrook, Aya M.; Wei, Bo; Braun, Jonathan; Schiestl, Robert H.
2011-01-01
Chronic intestinal inflammation leads to increased risk of colorectal and small intestinal cancers, and is also associated with extraintestinal manifestations such as lymphomas, other solid cancers, and autoimmune disorders. We have previously found that acute and chronic intestinal inflammation causes DNA damage to circulating peripheral leukocytes, manifesting a systemic effect in genetic and chemically-induced models of intestinal inflammation. This study addresses the scope of tissue targets and genotoxic damage induced by inflammation-associated genotoxicity. Using several experimental models of intestinal inflammation, we analyzed various types of DNA damage in leukocyte subpopulations of the blood, spleen, mesenteric and peripheral lymph nodes; and, in intestinal epithelial cells, hepatocytes, and the brain. Genotoxicity in the form of DNA single and double stranded breaks accompanied by oxidative base damage was found in leukocyte subpopulations of the blood, diverse lymphoid organs, intestinal epithelial cells, and hepatocytes. The brain did not demonstrate significant levels of DNA double strand breaks as measured by γ-H2AX immunostaining. CD4+ and CD8+ T-cells were most sensitive to DNA damage versus other cell types in the peripheral blood. In vivo measurements and in vitro modeling suggested that genotoxicity was induced by increased levels of systemically circulating proinflammatory cytokines. Moreover, genotoxicity involved increased damage rather than reduced repair, since it not associated with decreased expression of the DNA double-strand break recognition and repair protein, ataxia telangiectasia mutated (ATM). These findings suggest that levels of intestinal inflammation contribute to the remote tissue burden of genotoxicity, with potential effects on non-intestinal diseases and cancer. PMID:21520038
Golomb, Benjamin L.; Hirao, Lauren A.; Dandekar, Satya; Marco, Maria L.
2016-01-01
Chronic HIV infection results in impairment of gut-associated lymphoid tissue leading to systemic immune activation. We previously showed that in early SIV-infected rhesus macaques intestinal dysfunction is initiated with the induction of the IL-1β pathway in the small intestine and reversed by treatment with an exogenous Lactobacillus plantarum strain. Here, we provide evidence that the transcriptomes of L. plantarum and ileal microbiota are not altered shortly after SIV infection. L. plantarum adapts to the small intestine by expressing genes required for tolerating oxidative stress, modifying cell surface composition, and consumption of host glycans. The ileal microbiota of L. plantarum-containing healthy and SIV+ rhesus macaques also transcribed genes for host glycan metabolism as well as for cobalamin biosynthesis. Expression of these pathways by bacteria were proposed but not previously demonstrated in the mammalian small intestine. PMID:27102350
Dann, Sara M; Manthey, Carolin F; Le, Christine; Miyamoto, Yukiko; Gima, Lauren; Abrahim, Andrew; Cao, Anthony T; Hanson, Elaine M; Kolls, Jay K; Raz, Eyal; Cong, Yingzi; Eckmann, Lars
2015-09-01
Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide. It colonizes the lumen and epithelial surface of the small intestine, but does not invade the mucosa. Acute infection causes only minimal mucosal inflammation. Effective immune defenses exist, yet their identity and mechanisms remain incompletely understood. Interleukin (IL)-17A has emerged as an important cytokine involved in inflammation and antimicrobial defense against bacterial pathogens at mucosal surfaces. In this study, we demonstrate that IL-17A has a crucial function in host defense against Giardia infection. Using murine infection models with G. muris and G. lamblia, we observed marked and selective induction of intestinal IL-17A with peak expression after 2 weeks. Th17 cells in the lamina propria and innate immune cells in the epithelial compartment of the small intestine were responsible for the IL-17A response. Experiments in gene-targeted mice revealed that the cytokine, and its cognate receptor IL-17RA, were required for eradication of the parasite. The actions of the cytokine were mediated by hematopoietic cells, and were required for the transport of IgA into the intestinal lumen, since IL-17A deficiency led to marked reduction of fecal IgA levels, as well as for increased intestinal expression of several other potential effectors, including β-defensin 1 and resistin-like molecule β. In contrast, intestinal hypermotility, another major antigiardial defense mechanism, was not impacted by IL-17A loss. Taken together, these findings demonstrate that IL-17A and IL-17 receptor signaling are essential for intestinal defense against the important lumen-dwelling intestinal parasite Giardia. Copyright © 2015 Elsevier Inc. All rights reserved.
Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark
2015-01-01
ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures. PMID:26446608
Silberg, D G; Wang, W; Moseley, R H; Traber, P G
1995-05-19
A gene has been described, Down Regulated in Adenoma (dra), which is expressed in normal colon but is absent in the majority of colon adenomas and adenocarcinomas. However, the function of this protein is unknown. Because of sequence similarity to a recently cloned membrane sulfate transporter in rat liver, the transport function of Dra was examined. We established that dra encodes for a Na(+)-independent transporter for both sulfate and oxalate using microinjected Xenopus oocytes as an assay system. Sulfate transport was sensitive to the anion exchange inhibitor DIDS (4,4'-diisothiocyano-2,2' disulfonic acid stilbene). Using an RNase protection assay, we found that dra mRNA expression is limited to the small intestine and colon in mouse, therefore identifying Dra as an intestine-specific sulfate transporter. dra also had a unique pattern of expression during intestinal development. Northern blot analysis revealed a low level of expression in colon at birth with a marked increase in the first 2 postnatal weeks. In contrast, there was a lower, constant level of expression in small intestine in the postnatal period. Caco-2 cells, a colon carcinoma cell line that differentiates over time in culture, demonstrated a marked induction of dra mRNA as cells progressed from the preconfluent (undifferentiated) to the postconfluent (differentiated) state. These results show that Dra is an intestine-specific Na(+)-independent sulfate transporter that has differential expression during colonic development. This functional characterization provides the foundation for investigation of the role of Dra in intestinal sulfate transport and in the malignant phenotype.
Taniguchi, Kan; Matsuura, Kimio; Matsuoka, Takanori; Nakatani, Hajime; Nakano, Takumi; Furuya, Yasuo; Sugimoto, Takeki; Kobayashi, Michiya; Araki, Keijiro
2005-06-01
Hirschsprung's disease is a congenital aganglionic neural disorder of the segmental distal intestine characterized by unsettled pathogenesis. The relationship between Hirschsprung's disease and pacemaker cells (PMC), which almost corresponds to that of the interstitial cells of Cajal (ICC), was morphologically observed at the level of the intermuscular layer corresponding to Auerbach's plexus using ls/ls mice. These mice are an ideal model because of their large intestinal aganglionosis and gene abnormalities, which are similar to the human form of the disease. Immunostaining using anti-c-kit receptor antibody (ACK2), a marker of PMC, applied to whole-mount muscle-layer specimens, revealed the presence of c-kit immunopositive multipolar cells with many cytoplasmic processes in normal mice. For ls/ls mice, however, there were significantly fewer processes. The average number of processes per positive cell of 2.5 for the aganglionic large intestine was fewer than 3.5 for the large and small intestine of normal mice, indicating the inability to form connections between nerves and PMC in the aganglionic intestine. For normal mice with an Auerbach's plexus, the process attachment of ICC to the Auerbach's plexus was observed by scanning electron microscopy. However, for ls/ls mice no attachment to the intermuscular nerve without Auerbach's plexus was found, although transmission electron microscopy showed no difference in the cell structure and organelles of the c-kit immunopositive cells between the normal and ls/ls mice. These findings suggest that in the aganglionic intestine of Hirschsprung's disease, aplasia of enteric ganglia induces secondary disturbances during the normal development of intestinal PMC.
Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young
2018-01-01
Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.
Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen
2015-12-22
Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.
A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures
2016-08-01
Acronyms and Symbols ARA Applied Research Associates, Inc. ARS Acute radiation syndrome d Days DE Differential Evolution DTRA Defense Threat...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...epithelial cells to acute radiation alone. The model has been modified for improved radiation response, and an addition to the model allows for thermal injury
Singh, Soudamani; Arthur, Subha; Talukder, Jamilur; Palaniappan, Balasubramanian; Coon, Steven; Sundaram, Uma
2015-04-15
In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. Chronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with (3)H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies. In villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged. In the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells that are uniquely altered in the chronically inflamed small intestine.
Fasting induces a biphasic adaptive metabolic response in murine small intestine
Sokolović, Milka; Wehkamp, Diederik; Sokolović, Aleksandar; Vermeulen, Jacqueline; Gilhuijs-Pederson, Lisa A; van Haaften, Rachel IM; Nikolsky, Yuri; Evelo, Chris TA; van Kampen, Antoine HC; Hakvoort, Theodorus BM; Lamers, Wouter H
2007-01-01
Background The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. Results Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. Conclusion The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover. PMID:17925015
Fasting induces a biphasic adaptive metabolic response in murine small intestine.
Sokolović, Milka; Wehkamp, Diederik; Sokolović, Aleksandar; Vermeulen, Jacqueline; Gilhuijs-Pederson, Lisa A; van Haaften, Rachel I M; Nikolsky, Yuri; Evelo, Chris T A; van Kampen, Antoine H C; Hakvoort, Theodorus B M; Lamers, Wouter H
2007-10-09
The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover.
Powell, Robin H; Behnke, Michael S
2017-05-15
Recent years have seen significant developments in the ability to continuously propagate organoids derived from intestinal crypts. These advancements have been applied to mouse and human samples providing models for gastrointestinal tissue development and disease. We adapt these methods for the propagation of intestinal organoids (enteroids) from various large farm and small companion (LF/SC) animals, including cat, dog, cow, horse, pig, sheep and chicken. We show that LF/SC enteroids propagate and expand in L-WRN conditioned media containing signaling factors Wnt3a, R-spondin-3, and Noggin (WRN). Multiple successful isolations were achieved for each species, and the growth of LF/SC enteroids was maintained to high passage number. LF/SC enteroids expressed crypt stem cell marker LGR5 and low levels of mesenchymal marker VIM. Labeling with EdU also showed distinct regions of cell proliferation within the enteroids marking crypt-like regions. The ability to grow and maintain LF/SC enteroid cell lines provides additional models for the study of gastrointestinal developmental biology as well as platforms for the study of host-pathogen interactions between intestinal cells and zoonotic enteric pathogens of medical importance. © 2017. Published by The Company of Biologists Ltd.
Evaluation of jojoba oil as a low-energy fat. 1. A 4-week feeding study in rats.
Verschuren, P M
1989-01-01
The nutritional properties of jojoba oil (JO) were examined in a 4-wk feeding study of rats fed a diet with JO at dose levels of 2.2, 4.5 and 9%, supplemented with a conventional fat up to 18%. General health, survival and food intake were not adversely affected. Body-weight gains showed a dose-related decline, which amounted to 20% of the body weight in the high-dose group of both sexes. Clinical chemistry revealed significantly increased levels of various enzymes that were indicative of cell damage. Haematology showed a dose-related increase in white blood cells. On necropsy an apparent distension of the small intestine was found. Histopathological evaluation revealed marked intestinal changes characterized by massive vacuolization and lipid deposition in the enterocytes, accompanied by distension of the villi and an increased cell turnover of small intestinal cells. Faeces production and faeces lipid content were increased with increasing JO levels. The recovery of JO in the faeces also increased in a dose-related manner and was found to be correlated with the intestinal histopathological changes. The significant adverse clinical and histopathological effects observed in this study imply that JO cannot be considered as a promising alternative dietary fat with a low digestibility.
Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice.
Losada-Eaton, D M; Uzal, F A; Fernández Miyakawa, M E
2008-06-01
Clostridium perfringens epsilon toxin is a potent toxin responsible for a rapidly fatal enterotoxaemia in several animal species. The pathogenesis of epsilon toxin includes toxicity to endothelial cells and neurons. Although epsilon toxin is absorbed from the gastrointestinal tract, the intestinal regions where the toxin is absorbed and the conditions favoring epsilon toxin absorption are unknown. The aim of this paper was to determine the toxicity of epsilon toxin absorbed from different gastrointestinal segments of mice and to evaluate the influence of the intestinal environment in the absorption of this toxin. Epsilon toxin diluted in one of several different saline solutions was surgically introduced into ligated stomach or intestinal segments of mice. Comparison of the toxicity of epsilon toxin injected in different sections of the gastrointestinal tract showed that this toxin can be absorbed from the small and the large intestine but not from the stomach of mice. The lethality of epsilon toxin was higher when this toxin was injected in the colon than in the small intestine. Low pH, and Na(+) and glucose added to the saline solution increased the toxicity of epsilon toxin injected into the small intestine. This study shows that absorption of epsilon toxin can occur in any intestinal segment of mice and that the physicochemical characteristics of the intestinal content can affect the absorption of this toxin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, K.E.; Hume, S.P.; Marigold, J.C.
Scanning and transmission electron microscopy (S.E.M. and T.E.M.) and resin histology have been used to investigate the effects on mouse small intestinal villi of heating at 43 degrees C for 20 minutes and of irradiation with 10 Gy X-rays. Damage after irradiation included conical villi and giant cells. Damage after heating included the production of conical and rudimentary villi and the stacking of enterocytes. Individual cells showed signs of abnormalities in their cell membranes, nuclei and cytoplasmic components. The differences in the response after irradiation and hyperthermia are linked to the fact that heating has a primary effect on villousmore » structure, whereas irradiation mainly affects the proliferative pool of crypt cells.« less
Scillitani, Giovanni; Mentino, Donatella; Mastrodonato, Maria
2017-10-01
The secretion of the goblet cells in the intestine of Trachemys scripta elegans was studied in situ by histochemical methods to analyze the diversity of sugar chains, with particular regard to the acidic glycans. Conventional histochemical stains (Periodic acid-Schiff, Alcian Blue pH 2.5, High Iron Diamine) and binding with ten FITC-labelled lectins combined with chemical and enzymatic pre-treatments were used to characterize the oligosaccharidic chains. The intestine can be divided into three regions, i.e. a duodenum, a small intestine and a large intestine. Goblet cells were observed in all the three tracts and presented an acidic secretion. WGA, LFA, PNA and SBA binding was observed only after desulfation. Glycans secreted by the three tracts consist mainly of sulfosialomucins with 1,2-linked fucose, mannosylated, glucosaminylated and subterminal galactosyl/galactosaminylated residuals. Differences among tracts are quantitative rather than qualitative, with sulfated, galactosaminylated and glycosaminylated residuals increasing from duodenum to large intestine, and galactosylated and fucosylated residuals showing an opposite trend. Variation is observed also between apices and bases of villi in both duodenum and small intestine, where sulphation decreases from the base to the apex and glycosylation shows an opposite trend. Functional implication of these findings is discussed in a comparative context. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noda, Seiko; Yamada, Asako; Nakaoka, Kanae; Goseki-Sone, Masae
2017-10-01
Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation, and development. The principal function of vitamin D in calcium homeostasis is to increase the absorption of calcium from the intestine, and the level of alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. Intestinal-type ALP is expressed at a high concentration in the brush border membrane of intestinal epithelial cells, and is known to be affected by several kinds of nutrients. Recent reviews have highlighted the importance of intestinal-type ALP in gut homeostasis. Intestinal-type ALP controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. In this study, we investigated the influence of vitamin D on the expression of 2 types of alternative mRNA variants encoding the human alkaline phosphatase, intestinal (ALPI) gene in human Caco-2 cells as an in vitro model of the small intestinal epithelium. After treatment with 1-alpha,25-dihydroxyvitamin D 3 , the biologically active form of vitamin D 3 , there were significant increases in the ALP activities of Caco-2 cells. Inhibitor and thermal inactivation experiments showed that the increased ALP had properties of intestinal-type ALP. Reverse transcription-polymerase chain reaction analysis revealed that expression of the 2 types of alternative mRNA variants from the ALPI gene was markedly enhanced by vitamin D in Caco-2 cells. In conclusion, these findings agree with the hypothesis: vitamin D up-regulated the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells; vitamin D may be an important regulator of ALPI gene expression in gut homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Pucci Molineris, M; Gonzalez Polo, V; Perez, F; Ramisch, D; Rumbo, M; Gondolesi, G E; Meier, D
2018-04-01
Graft survival after small bowel transplantation remains impaired due to acute cellular rejection (ACR), the leading cause of graft loss. Although it was shown that the number of enteroendocrine progenitor cells in intestinal crypts was reduced during mild ACR, no results of Paneth and intestinal stem cells localized at the crypt bottom have been shown so far. Therefore, we wanted to elucidate integrity and functionality of the Paneth and stem cells during different degrees of ACR, and to assess whether these cells are the primary targets of the rejection process. We compared biopsies from ITx patients with no, mild, or moderate ACR by immunohistochemistry and quantitative PCR. Our results show that numbers of Paneth and stem cells remain constant in all study groups, whereas the transit-amplifying zone is the most impaired zone during ACR. We detected an unchanged level of antimicrobial peptides in Paneth cells and similar numbers of Ki-67 + IL-22R + stem cells revealing cell functionality in moderate ACR samples. We conclude that Paneth and stem cells are not primary target cells during ACR. IL-22R + Ki-67 + stem cells might be an interesting target cell population for protection and regeneration of the epithelial monolayer during/after a severe ACR in ITx patients. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells
Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R.; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A.; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B.; Flavell, Richard A.
2018-01-01
Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide1. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling2–5, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens. PMID:28636595
Expression of monocarboxylate transporter 1 (MCT1) in the dog intestine.
Shimoyama, Yumiko; Kirat, Doaa; Akihara, Yuko; Kawasako, Kazufumi; Komine, Misa; Hirayama, Kazuko; Matsuda, Kazuya; Okamoto, Minoru; Iwano, Hidetomo; Kato, Seiyu; Taniyama, Hiroyuki
2007-06-01
In this study, the expression and distribution of monocarboxyolate transporter 1 (MCT1) along the intestines (duodenum, jejunum, ileum, cecum, colon and rectum) of dogs were investigated at both the mRNA and protein levels. The expression of MCT1 protein and its distribution were confirmed by Western blotting and immunohistochemical staining using the antibody for MCT1. We identified mRNA coding for MCT1 and a 43-kDa band of MCT1 protein in all regions from the duodenum to the rectum. Immunoreactive staining for MCT1 was also observed in epithelial cells throughout the intestines. MCT1 immunoreactivity was greater in the large intestine than in the small intestine. MCT1 protein was predominantly expressed on the basolateral membranes along intestinal epithelial cells, suggesting that MCT1 may play an important role in lactate efflux and transport of short-chain fatty acids (SCFAs) to the bloodstream across the basolateral membranes of the dog intestine.
Optimality in the Development of Intestinal Crypts
NASA Astrophysics Data System (ADS)
van Oudenaarden, Alexander
2012-02-01
Intestinal crypts in mammals are comprised of long-lived stem cells and shorter-lived progenies, maintained under tight proportions during adult life. Here we ask what are the design principles that govern the dynamics of these proportions during crypt morphogenesis. We use optimal control theory to show that a stem cell proliferation strategy known as a `bang-bang' control minimizes the time to obtain a mature crypt. This strategy consists of a surge of symmetric stem cell divisions, establishing the entire stem cell pool first, followed by a sharp transition to strictly asymmetric stem cell divisions, producing non-stem cells with a delay. We validate these predictions using lineage tracing and single molecule fluorescent in-situ hybridization of intestinal crypts in newborn mice and find that small crypts are entirely composed of Lgr5 stem cells, which become a minority as crypts further grow. Our approach can be used to uncover similar design principles in other developmental systems.
2015-06-03
Anaplastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia
Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan
2018-02-01
To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.
Jiang, Min; Fang, Jing; Peng, Xi; Cui, Hengmin; Yu, Zhengqiang
2015-01-01
Aflatoxin B1 (AFB1) is the most toxic group of mycotoxins produced by two species of the Aspergillus, common contaminants of food and animal feed. The purpose of our study was to determine the effect of AFB1 on the number of IgA(+) cell and immunoglobulin mRNA expression in the intestine of broilers. One hundred and fifty six one-day-old healthy Cobb broilers were randomly divided into the control group (the dosage of 0 mg/kg AFB1) and AFB1 group (the dosage of 0.6 mg/kg AFB1) with three replicates per group and 26 birds per replicate for 21 days, respectively. After necropsy at 7, 14 and 21 days of age, duodenum, jejunum and ileum samples were taken for analyzing IgA(+) cell by immunohistochemistry and IgA, pIgR, IgM and IgG mRNA expression by qRT-PCR. IgA(+) cells were mainly distributed in the lamina propria of small intestinal mucosa in both groups at 14 and 21 days of age. A significant decrease in the number of IgA(+) cells in the duodenum, jejunum and ileum was revealed in the AFB1 group compared with that of the control group. The expression levels of IgA, pIgR, IgM and IgG mRNA in the intestinal mucosa were lower in the AFB1 group than those in the control group at 14 and 21 days of age. Our data demonstrated that the dosage of 0.6 mg/kg AFB1 in broiler diet reduced the number of IgA(+) cell and the expression of IgA, pIgR, IgM and IgG mRNA in the small intestine.
TLR signaling modulates side effects of anticancer therapy in the small intestine
Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W.; Cario, Elke
2014-01-01
Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified and there is so far no successful therapeutic intervention. Here, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b+-myeloid cell infiltration and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/MDR1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b+-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wildtype mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies, by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. PMID:25589072
Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.
Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B
2017-10-13
Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.
Intestinal lymphangiectasia in adults.
Freeman, Hugh James; Nimmo, Michael
2011-02-15
Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and "secondary" changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple's disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn's disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial diagnosis of intestinal lymphangiectasia. Treatment has been historically defined to include a low fat diet with medium-chain triglyceride supplementation that leads to portal venous rather than lacteal uptake. A number of other pharmacological measures have been reported or proposed but these are largely anecdotal. Finally, rare reports of localized surgical resection of involved areas of small intestine have been described but follow-up in these cases is often limited.
Intestinal lymphangiectasia in adults
Freeman, Hugh James; Nimmo, Michael
2011-01-01
Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and “secondary” changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple’s disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn’s disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial diagnosis of intestinal lymphangiectasia. Treatment has been historically defined to include a low fat diet with medium-chain triglyceride supplementation that leads to portal venous rather than lacteal uptake. A number of other pharmacological measures have been reported or proposed but these are largely anecdotal. Finally, rare reports of localized surgical resection of involved areas of small intestine have been described but follow-up in these cases is often limited. PMID:21364842
Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H
2011-05-26
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.
Salemis, Nikolaos S; Nikou, Efstathios; Liatsos, Christos; Gakis, Christos; Karagkiouzis, Grigorios; Gourgiotis, Stavros
2012-09-01
The incidence of gastrointestinal metastases from lung cancer is higher than previously thought as they have been reported in 2-14% of the cases in autopsy studies. However, clinically significant metastases are rare. Small bowel perforation secondary to metastatic non-small cell lung cancer is a very rare clinical entity. The aim of this study is to describe a case of ileal perforation in a patient with intestinal metastases of a non-small cell lung cancer, along with a review of the literature. A 57-year-old male with a history of non-small cell lung cancer was referred to our emergency department with signs and symptoms of acute surgical abdomen. A computed tomography scan demonstrated dilated small bowel loops, liver deposits, and signs of perforation of an intra-abdominal hollow viscus. Emergency exploratory laparotomy revealed diffuse purulent peritonitis and a perforated ileal tumor. A segmental small bowel resection and primary anastomosis were performed. Histological and immunohistochemical findings were consistent with a metastatic non-small cell lung carcinoma. Additional evaluation revealed widespread metastatic disease. Unfortunately, despite adjuvant treatment, the patient died of progressive disease 2 months after surgery. Small bowel perforation due to metastatic non-small cell lung cancer is a very rare clinical entity. The possibility of small bowel metastases should be kept in mind in patients with lung cancer presenting with an acute abdomen. Intestinal perforation occurs in advanced stages and is usually a sign of widespread disease. Aggressive surgery can provide effective palliation and may improve short-term survival. The prognosis is however dismal.
Mandir, N; Goodlad, R A
2008-04-01
Dietary conjugated linoleic acids (CLA) have had many health benefits claimed for them, including antineoplastic actions. The effects of the predominant forms of CLA, namely the c9t11 and t10c12 isomers, or a mixture of these on polyp development, were investigated in the Apc(Min/+) mouse. CLAs have also been linked to altered rates of cell renewal and cell proliferation so this was also studied, as was a further means of increasing tissue mass, namely crypt fission. The stomach and small intestine were significantly heavier in the t10c12, and in the mixture-treated groups (P < 0.001). Crypt fission was increased in the middle small intestine by the t10c12 diet while colonic weight was reduced by c9t11 provision and crypts were 20% shorter. The t10c12 and the mixture significantly reduced polyp number in the proximal small intestine but they increased polyp diameter in the middle and distal small intestine, to an extent that the polyp burden was significantly increased at these sites. All CLAs significantly reduced polyp number in the colon, but the mixture significantly increased polyp diameter in the colon. Increased polyp diameter associated with t10c12 diet and especially with the mixture is a cause of concern, as this is the commercially available form. The naturally occurring isomer, c9t11 decreased colonic polyp number and did not increase diameter, suggesting that this natural isomer is the most likely to be protective.
Zhang, Wang-Dong; Wang, Wen-Hui; Jia, Shuai
2016-01-01
Secretory immunoglobulin A (SIgA) and immunoglobulin G (IgG) antibody-secreting cells (ASCs) are two important cell types in the mucosal immune system. This study aimed to explore the distribution of these ASC populations in the small intestine of Bactrian camels of different ages. Twenty-four Alashan Bactrian camels were divided into the following four age groups: young (1–2 years), pubertal (3–5 years), middle-aged (6–16 years) and old (17–20 years). SIgA and IgG ASCs in the intestinal mucosa lamina propria (LP) were observed and analyzed using immunohistochemcal techniques. The results from all age groups show that both SIgA and IgG ASCs were diffusely distributed in the intestinal LP, and some cells aggregated around the crypts. Moreover, the densities of the two ASC populations gradually increased from the duodenum to the jejunum and then decreased in the ileum. Meanwhile, there were more SIgA ASCs than IgG ASCs in the duodenum, jejunum, and ileum, and these differences were significant in the young and pubertal groups (P<0.05). In addition, the SIgA and IgG ASC densities increased from the young to the pubertal period, peaked at puberty, and then gradually decreased with age. The results demonstrate that the SIgA and IgG ASC distributions help to form two immunoglobulin barriers in the intestinal mucosa to provide full protection, helping to maintain homeostasis. These findings also underscore the importance of researching the development and degeneration of intestinal mucosal immunity in Bactrian camels. PMID:27249417
Cario, Elke; Podolsky, Daniel K.
2000-01-01
Initiation and perpetuation of the inflammatory intestinal responses in inflammatory bowel disease (IBD) may result from an exaggerated host defense reaction of the intestinal epithelium to endogenous lumenal bacterial flora. Intestinal epithelial cell lines constitutively express several functional Toll-like receptors (TLRs) which appear to be key regulators of the innate response system. The aim of this study was to characterize the expression pattern of TLR2, TLR3, TLR4, and TLR5 in primary intestinal epithelial cells from patients with IBD. Small intestinal and colonic biopsy specimens were collected from patients with IBD (Crohn's disease [CD], ulcerative colitis [UC]) and controls. Non-IBD specimens were assessed by immunofluorescence histochemistry using polyclonal antibodies specific for TLR2, TLR3, TLR4, and TLR5. Primary intestinal epithelial cells (IEC) of normal mucosa constitutively expressed TLR3 and TLR5, while TLR2 and TLR4 were only barely detectable. In active IBD, the expression of TLR3 and TLR4 was differentially modulated in the intestinal epithelium. TLR3 was significantly downregulated in IEC in active CD but not in UC. In contrast, TLR4 was strongly upregulated in both UC and CD. TLR2 and TLR5 expression remained unchanged in IBD. These data suggest that IBD may be associated with distinctive changes in selective TLR expression in the intestinal epithelium, implying that alterations in the innate response system may contribute to the pathogenesis of these disorders. PMID:11083826
Jabaji, Ziyad; Sears, Connie M; Brinkley, Garrett J; Lei, Nan Ye; Joshi, Vaidehi S; Wang, Jiafang; Lewis, Michael; Stelzner, Matthias; Martín, Martín G; Dunn, James C Y
2013-12-01
Methods for the in vitro culture of primary small intestinal epithelium have improved greatly in recent years. A critical barrier for the translation of this methodology to the patient's bedside is the ability to grow intestinal stem cells using a well-defined extracellular matrix. Current methods rely on the use of Matrigel(™), a proprietary basement membrane-enriched extracellular matrix gel produced in mice that is not approved for clinical use. We demonstrate for the first time the capacity to support the long-term in vitro growth of murine intestinal epithelium in monoculture, using type I collagen. We further demonstrate successful in vivo engraftment of enteroids co-cultured with intestinal subepithelial myofibroblasts in collagen gel. Small intestinal crypts were isolated from 6 to 10 week old transgenic enhanced green fluorescent protein (eGFP+) mice and suspended within either Matrigel or collagen gel; cultures were supported using previously reported media and growth factors. After 1 week, cultures were either lysed for DNA or RNA extraction or were implanted subcutaneously in syngeneic host mice. Quantitative real-time polymerase chain reaction (qPCR) was performed to determine expansion of the transgenic eGFP-DNA and to determine the mRNA gene expression profile. Immunohistochemistry was performed on in vitro cultures and recovered in vivo explants. Small intestinal crypts reliably expanded to form enteroids in either Matrigel or collagen in both mono- and co-cultures as confirmed by microscopy and eGFP-DNA qPCR quantification. Collagen-based cultures yielded a distinct morphology with smooth enteroids and epithelial monolayer growth at the gel surface; both enteroid and monolayer cells demonstrated reactivity to Cdx2, E-cadherin, CD10, Periodic Acid-Schiff, and lysozyme. Collagen-based enteroids were successfully subcultured in vitro, whereas pure monolayer epithelial sheets did not survive passaging. Reverse transcriptase-polymerase chain reaction demonstrated evidence of Cdx2, villin 1, mucin 2, chromogranin A, lysozyme 1, and Lgr5 expression, suggesting a fully elaborated intestinal epithelium. Additionally, collagen-based enteroids co-cultured with myofibroblasts were successfully recovered after 5 weeks of in vivo implantation, with a preserved immunophenotype. These results indicate that collagen-based techniques have the capacity to eliminate the need for Matrigel in intestinal stem cell culture. This is a critical step towards producing neo-mucosa using good manufacturing practices for clinical applications in the future.
Donaldson, David S.; Else, Kathryn J.
2015-01-01
ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal GALT are the essential early sites of prion accumulation. Furthermore, congruent infection with a large intestinal helminth (worm) around the time of oral prion exposure did not affect disease pathogenesis. This is important for our understanding of the factors that influence the risk of prion infection and the preclinical diagnosis of disease. The detection of prions within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, our data suggest that using these biopsy specimens may miss individuals in the early stages of oral prion infection and significantly underestimate the disease prevalence. PMID:26157121
Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption.
Lostao, M P; Urdaneta, E; Martínez-Ansó, E; Barber, A; Martínez, J A
1998-02-27
Leptin is involved in food intake and thermogenesis regulation. Since leptin receptor expression has been found in several tissues including small intestine, a possible role of leptin in sugar absorption by the intestine was investigated. Leptin inhibited D-galactose uptake by rat small intestinal rings 33% after 5 min of incubation. The inhibition increased to 56% after 30 min. However, neither at 5 min nor at 30 min did leptin prevent intracellular galactose accumulation. This leptin effect was accompanied by a decrease of the active sugar transport apparent Vmax (20 vs. 4.8 micromol/g wet weight 5 min) and apparent Km (15.8 vs. 5.3 mM) without any change in the phlorizin-resistant component. On the other hand, immunohistochemical experiments using anti-leptin monoclonal antibodies recognized leptin receptors in the plasma membrane of immune cells located in the lamina propria. These results indicate for the first time that leptin has a rapid inhibitory effect on sugar absorption and demonstrate the presence of leptin receptors in the intestinal mucosa.
Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R; Verkman, A S
2014-07-01
Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Screening of ∼150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ∼1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Optimality in the Development of Intestinal Crypts
Itzkovitz, Shalev; Blat, Irene C.; Jacks, Tyler; Clevers, Hans; van Oudenaarden, Alexander
2012-01-01
SUMMARY Intestinal crypts in mammals are comprised of long-lived stem cells and shorter-lived progenies. These two populations are maintained in specific proportions during adult life. Here, we investigate the design principles governing the dynamics of these proportions during crypt morphogenesis. Using optimal control theory, we show that a proliferation strategy known as a “bang-bang” control minimizes the time to obtain a mature crypt. This strategy consists of a surge of symmetric stem cell divisions, establishing the entire stem cell pool first, followed by a sharp transition to strictly asymmetric stem cell divisions, producing nonstem cells with a delay. We validate these predictions using lineage tracing and single-molecule fluorescence in situ hybridization of intestinal crypts in infant mice, uncovering small crypts that are entirely composed of Lgr5-labeled stem cells, which become a minority as crypts continue to grow. Our approach can be used to uncover similar design principles in other developmental systems. PMID:22304925
Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease.
Bondar, Constanza; Araya, Romina E; Guzman, Luciana; Rua, Eduardo Cueto; Chopita, Nestor; Chirdo, Fernando G
2014-01-01
Lymphocytic infiltration in the lamina propria (LP), which is primarily composed of CD4(+) Th1 cells and plasma cells, and increased numbers of intraepithelial lymphocytes (IELs), is a characteristic finding in active celiac disease (CD). Signals for this selective cell recruitment have not been fully established. CXCR3 and its ligands, particularly CXCL10, have been suggested to be one of the most relevant pathways in the attraction of cells into inflamed tissues. In addition, CXCR3 is characteristically expressed by Th1 cells. The aim of this work was to investigate the participation of the chemokine CXCL10/CXCR3 axis in CD pathogenesis. A higher concentration of CXCL10 was found in the serum of untreated CD patients. The mRNA levels of CXCL10 and CXCL11 but not CXCL9 were significantly higher in duodenal biopsies from untreated CD patients compared with non-CD controls or treated patients. The results demonstrate that CXCL10 is abundantly produced in untreated CD and reduced in treated patients, and the expression of CXCL10 was found to be correlated with the IFNγ levels in the tissue. Plasma cells and enterocytes were identified as CXCL10-producing cells. Moreover, the CXCL10 expression in intestinal tissues was upregulated by poly I:C and IL-15. IELs, LP T lymphocytes, and plasma cells, which infiltrate the intestinal mucosa in untreated CD, express CXCR3. The CXCR3/CXCL10 signalling axis is overactivated in the small intestinal mucosa in untreated patients, and this finding explains the specific recruitment of the major cell populations that infiltrate the epithelium and the LP in CD.
Tran, Hoa T.; Barnich, Nicolas; Mizoguchi, Emiko
2011-01-01
Summary The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like-1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions. PMID:21938682
Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis
Tian, Hua; Biehs, Brian; Chiu, Cecilia; Siebel, Chris; Wu, Yan; Costa, Mike; de Sauvage, Frederic J.; Klein, Ophir D.
2015-01-01
Summary Proper organ homeostasis requires tight control of adult stem cells and differentiation through integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a de-repression of the Wnt signaling pathway, leading to mis-expression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. PMID:25818302
Pin, Carmen; Parker, Aimee; Gunning, A Patrick; Ohta, Yuki; Johnson, Ian T; Carding, Simon R; Sato, Toshiro
2015-02-01
Intestinal crypt fission is a homeostatic phenomenon, observable in healthy adult mucosa, but which also plays a pathological role as the main mode of growth of some intestinal polyps. Building on our previous individual based model for the small intestinal crypt and on in vitro cultured intestinal organoids, we here model crypt fission as a budding process based on fluid mechanics at the individual cell level and extrapolated predictions for growth of the intestinal epithelium. Budding was always observed in regions of organoids with abundant Paneth cells. Our data support a model in which buds are biomechanically initiated by single stem cells surrounded by Paneth cells which exhibit greater resistance to viscoelastic deformation, a hypothesis supported by atomic force measurements of single cells. Time intervals between consecutive budding events, as simulated by the model and observed in vitro, were 2.84 and 2.62 days, respectively. Predicted cell dynamics was unaffected within the original crypt which retained its full capability of providing cells to the epithelium throughout fission. Mitotic pressure in simulated primary crypts forced upward migration of buds, which simultaneously grew into new protruding crypts at a rate equal to 1.03 days(-1) in simulations and 0.99 days(-1) in cultured organoids. Simulated crypts reached their final size in 4.6 days, and required 6.2 days to migrate to the top of the primary crypt. The growth of the secondary crypt is independent of its migration along the original crypt. Assuming unrestricted crypt fission and multiple budding events, a maximal growth rate of the intestinal epithelium of 0.10 days(-1) is predicted and thus approximately 22 days are required for a 10-fold increase of polyp size. These predictions are in agreement with the time reported to develop macroscopic adenomas in mice after loss of Apc in intestinal stem cells.
Gomes, J R; Freitas, J R; Grassiolli, S
2016-10-01
The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
The lining of the gastrointestinal (GI) tract is the largest surface exposed to the external environment in the human body. One of the main functions of the small intestine is absorption, and intestinal absorption is a route used by essential nutrients, chemicals, and pharmaceuticals to enter the sy...
Caminero, Alberto; Galipeau, Heather J; McCarville, Justin L; Johnston, Chad W; Bernier, Steve P; Russell, Amy K; Jury, Jennifer; Herran, Alexandra R; Casqueiro, Javier; Tye-Din, Jason A; Surette, Michael G; Magarvey, Nathan A; Schuppan, Detlef; Verdu, Elena F
2016-10-01
Partially degraded gluten peptides from cereals trigger celiac disease (CD), an autoimmune enteropathy occurring in genetically susceptible persons. Susceptibility genes are necessary but not sufficient to induce CD, and additional environmental factors related to unfavorable alterations in the microbiota have been proposed. We investigated gluten metabolism by opportunistic pathogens and commensal duodenal bacteria and characterized the capacity of the produced peptides to activate gluten-specific T-cells from CD patients. We colonized germ-free C57BL/6 mice with bacteria isolated from the small intestine of CD patients or healthy controls, selected for their in vitro gluten-degrading capacity. After gluten gavage, gliadin amount and proteolytic activities were measured in intestinal contents. Peptides produced by bacteria used in mouse colonizations from the immunogenic 33-mer gluten peptide were characterized by liquid chromatography tandem mass spectrometry and their immunogenic potential was evaluated using peripheral blood mononuclear cells from celiac patients after receiving a 3-day gluten challenge. Bacterial colonizations produced distinct gluten-degradation patterns in the mouse small intestine. Pseudomonas aeruginosa, an opportunistic pathogen from CD patients, exhibited elastase activity and produced peptides that better translocated the mouse intestinal barrier. P aeruginosa-modified gluten peptides activated gluten-specific T-cells from CD patients. In contrast, Lactobacillus spp. from the duodenum of non-CD controls degraded gluten peptides produced by human and P aeruginosa proteases, reducing their immunogenicity. Small intestinal bacteria exhibit distinct gluten metabolic patterns in vivo, increasing or reducing gluten peptide immunogenicity. This microbe-gluten-host interaction may modulate autoimmune risk in genetically susceptible persons and may underlie the reported association of dysbiosis and CD. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Effects of a small molecule R-spondin-1 substitute RS-246204 on a mouse intestinal organoid culture.
Nam, Myeong-Ok; Hahn, Soojung; Jee, Joo Hyun; Hwang, Tae-Sun; Yoon, Ho; Lee, Dong Hyeon; Kwon, Min-Soo; Yoo, Jongman
2018-01-19
Organoids, a multi-cellular and organ-like structure cultured in vitro , can be used in a variety of fields such as disease modeling, drug discovery, or cell therapy development. When organoids derived from Lgr5 stem cells are cultured ex vivo , recombinant R-spondin-1 protein should be added at a high concentration for the initiation and maintenance of the organoids. Because the addition of large amounts of R-spondin-1 greatly increases the cost of organoids, the organoids grown with R-spondin-1 are not practical for large-scale drug screening and for the development of therapeutic agents. In this study, we tried to find a R-spondin-1 substitute compound that is able initiate small intestinal organoids without the use of the R-spondin-1 protein; thus, using organoid media that each included one compound from among an 8,364 compound library instead of R-spondin-1, we observed whether organoids were established from the crypts of the small intestine. As a result, we found one compound that could promote the initial formation and growth of enteroids in the medium without R-spondin-1 and named it RS-246204. The enteroids grown with RS-246204 had a similar differentiation capacity as well as self-renewal capacity as the enteroids grown with R-spondin-1. Furthermore, the RS-246204-derived enteroids could successfully produce the forskolin induced swelling and the organoid based epithelial to mesenchymal transition model. This compound could be used for developing a cost-efficient culturing method for intestinal organoids as well as for exploring Lgr5 signaling, intestinal stem cell physiology and therapeutics for GI tract diseases.
Perkins, S E; Fox, J G; Taylor, N S; Green, D L; Lipman, N S
1995-08-01
Four specific-pathogen-free rabbits with anorexia died peracutely; decreased fecal output, nasal exudate, and labored breathing were the only other clinical abnormalities observed in two of the rabbits before death. The animals, three juveniles and one adult, were on a standard polyclonal antibody production regimen and had received immunizations approximately 2 weeks before presentation. External examination revealed distended abdomen and perineal fecal staining. At necropsy the small intestine was distended with fluid, and the cecum was distended with chyme. The small intestines and cecum had marked serosal hyperemia. Anaerobic bacterial culture techniques were used to isolate Clostridium difficile from the small intestine (3/4) and cecum (2/4). In all cases C. difficile toxin B was detected at high titers (10(2) to > 10(5)) in the small intestine by cytotoxicity assay with HeLa 229 cell culture. In two of the four rabbits C. difficile was isolated, and cytotoxin titers were detected at 10(1) and 10(4) in the cecum of affected rabbits. Toxin B was neutralized with C. sordellii antiserum but not C. spiroforme antiserum. In addition, toxin A was detected in each of the cytotoxin B-positive samples by a commercial toxin A enzyme immunosorbent assay. In vitro production of toxins A and B was detected from each culture isolate after incubation in chopped meat broth. These cases are noteworthy because spontaneous (nonantibiotic-associated) C. difficile enterotoxemia has not been previously reported in rabbits. Also the toxins of clostridial organisms are usually documented in the cecum, not the small intestine, of rabbits.(ABSTRACT TRUNCATED AT 250 WORDS)
Quercetin Represses Apolipoprotein B Expression by Inhibiting the Transcriptional Activity of C/EBPβ
Inoue, Jun; Sato, Ryuichiro
2015-01-01
Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5′-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes. PMID:25875015
Ren, Wenkai; Duan, Jielin; Yin, Jie; Liu, Gang; Cao, Zhong; Xiong, Xia; Chen, Shuai; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Wu, Guoyao
2014-10-01
This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.
Yang, Yan; Wu, Xin; Wei, Zhifeng; Dou, Yannong; Zhao, Di; Wang, Ting; Bian, Difei; Tong, Bei; Xia, Ying; Xia, Yufeng; Dai, Yue
2015-01-01
Curcumin (CUR) has been proven to be clinically effective in rheumatoid arthritis (RA) therapy, but its low oral bioavailability eclipses existent evidence that attempts to explain the underlying mechanism. Small intestine, the only organ exposed to a relatively high concentration of CUR, is the main site that generates gut hormones which are involved in the pathogenesis of RA. This study aims at addressing the hypothesis that one or more gut hormones serve as an intermediary agent for the anti-arthritic action of CUR. The protein and mRNA levels of gut hormones in CUR-treated rats were analyzed by ELISA and RT-PCR. Somatostatin (SOM) depletor and receptor antagonist were used to verify the key role of SOM in CUR-mediated anti-arthritic effect. The mechanisms underlying CUR-induced upregulation of SOM levels were explored by cellular experiments and immunohistochemical staining. The data showed that oral administration of CUR (100 mg/kg) for consecutive two weeks in adjuvant-induced arthritis rats still exhibited an extremely low plasma exposure despite of a dramatic amelioration of arthritis symptoms. When injected intraperitoneally, CUR lost anti-arthritic effect in rats, suggesting that it functions in an intestine-dependent manner. CUR elevated SOM levels in intestines and sera, and SOM depletor and non-selective SOM receptor antagonist could abolish the inhibitory effect of CUR on arthritis. Immunohistochemical assay demonstrated that CUR markedly increased the number of SOM-positive cells in both duodenum and jejunum. In vitro experiments demonstrated that CUR could augment SOM secretion from intestinal endocrine cells, and this effect could be hampered by either MEK1/2 or Ca(2+)/calmodulin-dependent kinase II (CAMKII) inhibitor. In summary, oral administration of CUR exhibits anti-arthritic effect through augmenting SOM secretion from the endocrine cells in small intestines via cAMP/PKA and Ca(2+)/CaMKII signaling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Intestinal nerves and ion transport: stimuli, reflexes, and responses.
Hubel, K A
1985-03-01
The effects of extrinsic and intrinsic nerves on ion and water transport by the intestine are considered and discussed in terms of their possible physiological function. Adrenergic nerves enter the small intestine via mesenteric nerves. Adrenergic tone is usually absent in tissues in vitro but is present in vivo. The nerves increase absorption in response to homeostatic changes associated with acute depletion of extracellular fluid. Cholinergic tone that reduces fluid absorption or causes secretion has been detected in the small intestine of humans, dogs, and cats and in the colon of humans. Extrinsic cholinergic fibers generally do not affect ion transport in small intestine but probably do so in colon. Whether peptides liberated in the mucosa affect enterocytes directly is not clear. Studies on humans and rabbits suggest that the role of substance P is minor. The physiological roles of vasoactive intestinal polypeptide (VIP) and somatostatin remain to be defined. Intraluminal factors also affect ion and water transport. Mucosal rubbing, distension, and cholera toxin cause fluid secretion; acid solutions in the duodenum cause alkaline secretion; these stimuli and hypertonic glucose liberate serotonin into the lumen, the mesenteric venous blood, or both. It has been proposed that the enterochromaffin cell is an epithelial sensory cell that responds to noxious stimuli within the lumen by liberating serotonin. The serotonin initiates a neural reflex through a nicotinic ganglion to liberate a secretagogue that acts on the enterocyte. The function of VIP in this proposed reflex is unclear. The variety of intraluminal stimuli that influence epithelial function implies that there is more than one type of epithelial sensory cell (or sensory mechanism). Prostaglandins may mediate the alkaline secretion caused by acid in the duodenum. There may be other effective substances. Although it has been known for years that intraluminal stimuli affect the coordination of smooth muscle functions, it is not known whether similar stimuli also influence salt and water transport as a meal traverses the alimentary canal.
Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F
2012-01-01
Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. PMID:22385244
Cdx function is required for maintenance of intestinal identity in the adult.
Hryniuk, Alexa; Grainger, Stephanie; Savory, Joanne G A; Lohnes, David
2012-03-15
The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon. Copyright © 2012 Elsevier Inc. All rights reserved.
Effects of Mesalamine Treatment on Gut Barrier Integrity Following Burn Injury
Cannon, Abigail R.; Akhtar, Suhail; Hammer, Adam M.; Morris, Niya L.; Javorski, Mike J.; Li, Xiaoling; Kennedy, Richard H.; Gamelli, Richard L.; Choudhry, Mashkoor A.
2016-01-01
Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, we examined whether therapeutic intervention with mesalamine (5-ASA), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an ~20% total body surface area dorsal scald burn and resuscitated with either 1mL normal saline or 100mg/kg of 5-ASA dissolved in saline. We examined intestinal transit and permeability along with levels of small intestine epithelial cell pro-inflammatory cytokines and tight junction protein expression one day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed one day after burn injury, which accompanied a significant increase in gut permeability. We found a substantial increase in the levels of IL-6 (by ~1.5 fold) and IL-18 (by ~2.5 fold) in small intestine epithelial cells one day after injury. Furthermore, burn injury decreases expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn induced increase in permeability, partially restored normal intestinal transit, normalized levels of the pro-inflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin to that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury. PMID:27388883
Effects of Mesalamine Treatment on Gut Barrier Integrity After Burn Injury.
Cannon, Abigail R; Akhtar, Suhail; Hammer, Adam M; Morris, Niya L; Javorski, Michael J; Li, Xiaoling; Kennedy, Richard H; Gamelli, Richard L; Choudhry, Mashkoor A
2016-01-01
Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, the authors examined whether therapeutic intervention with mesalamine (5-aminosalicylic acid [5-ASA]), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an approximately 20% TBSA dorsal scald burn and resuscitated with either 1 ml normal saline or 100 mg/kg of 5-ASA dissolved in saline. The authors examined intestinal transit and permeability along with the levels of small intestine epithelial cell proinflammatory cytokines and tight junction protein expression 1 day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed 1 day after burn injury, which accompanied a significant increase in gut permeability. The authors found a substantial increase in the levels of interleukin (IL)-6 (by ~1.5-fold) and IL-18 (by ~2.5-fold) in the small intestine epithelial cells 1 day after injury. Furthermore, burn injury decreases the expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn-induced increase in permeability, partially restored normal intestinal transit, normalized the levels of the proinflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin compared with that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury.
[Gut barrier in the critically ill patient: facts and trends].
Velasco, Nicolás
2006-08-01
The disturbances of gut barrier in critically ill patients may influence their outcome and prognosis. Experiments in animals show that fasting and stress collaborate to produce intestinal atrophy and translocation of microorganisms and toxins. This fact is one of the main arguments to promote the use of early enteral feeding in critically ill patients. However, the intestinal barrier behaves differently in humans than in animals. The human enteral cells have a good tolerance to fasting and stress, mucosal atrophy is mild and it is not always associated with changes in intestinal permeability. Moreover, the relationship between intestinal permeability with sepsis and bacterial translocation is controversial. This last phenomenon also happens in normal subjects and may be a mechanism to build immunological memory. One of the most important factors that influence bacterial translocation is the microorganism, that under stress conditions can adhere to the intestinal cell and penetrate the intestinal barrier. Splanchnic ischemia and reperfusion is one of the main pathogenic factors in the failure of intestinal barrier. Finally, the fact that the small bowel is an inflammatory target of extra intestinal injuries, explains several clinical situations. The pathophysiology of the intestinal barrier definitely requires more research.
Loo, Donald D F; Wright, Ernest M; Zeuthen, Thomas
2002-07-01
The transport of water across epithelia has remained an enigma ever since it was discovered over 100 years ago that water was transported across the isolated small intestine in the absence of osmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute transport, the actual mechanisms are not well understood. Current dogma holds that active ion transport sets up local osmotic gradients in the spaces between epithelial cells, the lateral intercellular spaces, and this in turn drives water transport by local osmosis. In the case of the small intestine, which in humans absorbs about 8 l of water a day, there is no direct evidence for either local osmosis or aquaporin gene expression in enterocytes. Intestinal water absorption is greatly enhanced by glucose, and this is the basis for oral rehydration therapy in patients with secretory diarrhoea. In our studies of the intestinal brush border Na+-glucose cotransporter we have obtained evidence that there is a direct link between the transport of Na+, glucose and water transport, i.e. there is cotransport of water along with Na+ and sugar, that will account for about 50 % of the total water transport across the human intestinal brush border membrane. In this short review we summarize the evidence for water cotransport and propose how this occurs during the enzymatic turnover of the transporter. This is a general property of cotransporters and so we expect that this may have wider implications in the transport of water and other small polar molecules across cell membranes in animals and plants.
Stringer, Andrea M; Gibson, Rachel J; Bowen, Joanne M; Logan, Richard M; Ashton, Kimberly; Yeoh, Ann SJ; Al-Dasooqi, Noor; Keefe, Dorothy MK
2009-01-01
Chemotherapy-induced diarrhoea is a major oncological problem, caused by the cytotoxic effects of cancer chemotherapy. Irinotecan is linked with severe mucositis and diarrhoea, the mechanisms of which remain poorly understood. Bacterial β-glucuronidase is thought to be involved in the metabolism of irinotecan, implicating the intestinal flora. Intestinal mucins may also be implicated in the development of chemotherapy-induced diarrhoea. Rats were treated with 200 mg/kg of irinotecan and killed at 96, 120 and 144 h. The rats were monitored for diarrhoea. Pathology and immunohistochemical staining was performed. The samples were cultured and faecal DNA was analysed using real-time polymerase chain reaction. Severe diarrhoea was observed from 72 to 96 h. A decrease in body mass was also observed after treatment. Significant changes in goblet cell numbers (both complete and cavitated cells) were observed in the small and large intestines. Changes in MUC gene expression were observed in the small intestine only. Modifications were observed to the intestinal flora profile, especially Escherichia coli, and an increase in the expression of β-glucuronidase was detected. In conclusion, irinotecan-induced diarrhoea may be caused by an increase in some β-glucuronidase-producing bacteria, especially E. coli, exacerbating the toxicity of active metabolites. Accelerated mucous secretion and mucin release may also contribute to the delayed onset of diarrhoea. PMID:19765103
Enteric defensins are essential regulators of intestinal microbial ecology.
Salzman, Nita H; Hung, Kuiechun; Haribhai, Dipica; Chu, Hiutung; Karlsson-Sjöberg, Jenny; Amir, Elad; Teggatz, Paul; Barman, Melissa; Hayward, Michael; Eastwood, Daniel; Stoel, Maaike; Zhou, Yanjiao; Sodergren, Erica; Weinstock, George M; Bevins, Charles L; Williams, Calvin B; Bos, Nicolaas A
2010-01-01
Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell alpha-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if alpha-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota of mice expressing a human alpha-defensin gene (DEFA5) and in mice lacking an enzyme required for the processing of mouse alpha-defensins. In these complementary models, we detected significant alpha-defensin-dependent changes in microbiota composition, but not in total bacterial numbers. Furthermore, DEFA5-expressing mice had striking losses of segmented filamentous bacteria and fewer interleukin 17 (IL-17)-producing lamina propria T cells. Our data ascribe a new homeostatic role to alpha-defensins in regulating the makeup of the commensal microbiota.
Barnett, Alicia M.; Roy, Nicole C.; McNabb, Warren C.; Cookson, Adrian L.
2016-01-01
Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function. PMID:27164134
Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L
2016-05-06
Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.
Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Huang, Jianying
2014-01-01
The objective of this study was to investigate the toxicological effects of dietary NiCl2 on IgA+ B cells and the immunoglobulins including sIgA, IgA, IgG and IgM in the small intestine and cecal tonsil of broilers by the methods of immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Two hundred and forty one-day-old avian broilers were randomly divided into four groups and fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Compared with the control group, the IgA+ B cell number and the sIgA, IgA, IgG, and IgM contents in the NiCl2-treated groups were significantly decreased (p < 0.05 or p < 0.01). It was concluded that dietary NiCl2 in the excess of 300 mg/kg had negative effects on the IgA+ B cell number and the abovementioned immunoglobulin contents in the small intestine and the cecal tonsil. NiCl2-reduced sIgA, IgA, IgG and IgM contents is due to decrease in the population and/or the activation of B cell. The results suggest that NiCl2 at high levels has intestinal mucosal humoral immunotoxicity in animals. PMID:25116637
Wang, Hua; Sun, Rui-Ting; Li, Yang; Yang, Yue-Feng; Xiao, Feng-Jun; Zhang, Yi-Kun; Wang, Shao-Xia; Sun, Hui-Yan; Zhang, Qun-Wei; Wu, Chu-Tse; Wang, Li-Sheng
2015-01-01
Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII). Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis. The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells. Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.
Kehoe, S I; Heinrichs, A J; Baumrucker, C R; Greger, D L
2008-07-01
Milk replacer was supplemented with nucleotides and fed to dairy calves from birth through weaning to examine the potential for enhancing recovery of small intestinal function after enteric infection. Three treatments of 23 calves each were fed milk replacer (10% body weight/d) supplemented with no nucleotides (C), purified nucleotides (N), or nucleotides from an extract of Saccharomyces cerevisiae (S). Average daily gain, health scores, fecal dry matter, and fecal bacteria were monitored, and blood was analyzed for packed cell volume, glucose, blood urea nitrogen (BUN), and creatinine. Calves were monitored twice daily for fecal score, and 48 h after increased fecal fluidity was recorded, intestinal function was evaluated by measuring absorption of orally administered xylose (0.5 g/kg of body weight). Packed cell volume of blood was greater for treatment N for wk 2 and 5 compared with other treatment groups. Four calves per treatment were killed, and intestinal tissue was evaluated for morphology, enzyme activities, and nucleoside transporter mRNA expression. Treatment S calves had increased abundance of nucleoside transporter mRNA, numerically longer villi, and lower alkaline phosphatase than other groups. Growth measurements and plasma concentrations of glucose, BUN, creatinine, and IgG were not different between treatments; however, BUN-to-creatinine ratio was higher for treatment N, possibly indicating decreased kidney function. There were also no treatment effects on fecal dry matter and fecal bacteria population. However, N-treated calves had the highest detrimental and lowest beneficial bacteria overall, indicating an unfavorable intestinal environment. Supplementation of purified nucleotides did not improve intestinal morphology or function and resulted in higher fecal water loss and calf dehydration. Supplementation of nucleotides derived from yeast tended to increase calf intestinal function, provide a more beneficial intestinal environment, and improve intestinal morphology.
Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.
Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas
2017-01-01
The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.
Lange, Stefan; Nygren, Håkan; Svennerholm, Ann-Mari; Holmgren, Jan
1980-01-01
The importance of the mode of antigen presentation (intravenous, oral, or enteral restricted to the lower ileum) in the development of a local immune response and immunological memory for such a response in different parts of the intestine was studied in mice. Cholera toxin was used as antigen and the immune response was assayed by determining both the number of specific antitoxin-containing cells in the lamina propria and protection against experimental cholera. The results showed that all of these routes of antigen presentation could induce significant memory along the entire small intestine. In contrast, the actual production of antitoxin-containing cells or protective immune response elicited by booster immunization was restricted to those parts of the intestine that were directly exposed to antigen; i.e., lower ileum boosting resulted in immunity in the distal ileum but not in the proximal jejunum, whereas oral or intravenous boosting gave a response in both jejunum and ileum. Protection correlated closely with the number of antitoxin-containing cells in the lamina propria (correlation coefficient, 0.88); ≥4,000 antitoxin-containing cells per mm3 conferred solid immunity to cholera toxin-induced diarrhea. The total number of immunoglobulin-containing cells in intestines was not significantly influenced by the specific immunizations. There were four times as many of these cells in the upper jejunum (167,000 cells per mm3) as in the lower ileum, but the proportions of immunoglobulin A-containing cells (80 to 85%), immunoglobulin M-containing cells (14 to 20%), and immunoglobulin G-containing cells (0.4 to 0.9%) were similar in various parts of the intestine. The results indicate a differential dependence on local tissue antigen for the intestinal antibody-secreting cells and their memory cell precursors. PMID:7189747
Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity
Cheng, Leo K; Komuro, Rie; Austin, Travis M; Buist, Martin L; Pullan, Andrew J
2007-01-01
One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach. PMID:17457969
Jayakumar, Asha; Bothwell, Alfred L M
2017-08-01
Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4-induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs) cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4-induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor-BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.
Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M
1990-06-01
It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.
2012-01-01
Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question. PMID:22726358
Carr, Jacquelyn S; King, Stephanie; Dekaney, Christopher M
2017-01-01
While enteric bacteria have been shown to play a critical role in other forms of intestinal damage, their role in mediating the response to the chemotherapeutic drug Doxorubicin (Doxo) is unclear. In this study, we used a mouse model of intestinal bacterial depletion to evaluate the role enteric bacteria play in mediating Doxo-induced small intestinal damage and, more specifically, in mediating chemokine expression and leukocyte infiltration following Doxo treatment. An understanding of this pathway may allow for development of intervention strategies to reduce chemotherapy-induced small intestinal damage. Mice were treated with (Abx) or without (NoAbx) oral antibiotics in drinking water for four weeks and then with Doxo. Jejunal tissues were collected at various time points following Doxo treatment and stained and analyzed for apoptosis, crypt damage and restitution, and macrophage and neutrophil number. In addition, RNA expression of inflammatory markers (TNFα, IL1-β, IL-10) and cytokines (CCL2, CC7, KC) was assessed by qRT-PCR. In NoAbx mice Doxo-induced damage was associated with rapid induction of apoptosis in jejunal crypt epithelium and an increase weight loss and crypt loss. In addition, we observed an increase in immune-modulating chemokines CCL2, CCL7 and KC and infiltration of macrophages and neutrophils. In contrast, while still positive for induction of apoptosis following Doxo treatment, Abx mice showed neither the overall weight loss nor crypt loss seen in NoAbx mice nor the increased chemokine expression and leukocyte infiltration. Enteric bacteria play a critical role in Doxo-induced small intestinal damage and are associated with an increase in immune-modulating chemokines and cells. Manipulation of enteric bacteria or the damage pathway may allow for prevention or treatment of chemotherapy-induced small intestinal damage.
Ekmekciu, Ira; von Klitzing, Eliane; Fiebiger, Ulrike; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M.
2017-01-01
There is compelling evidence linking the commensal intestinal microbiota with host health and, in turn, antibiotic induced perturbations of microbiota composition with distinct pathologies. Despite the attractiveness of probiotic therapy as a tool to beneficially alter the intestinal microbiota, its immunological effects are still incompletely understood. The aim of the present study was to assess the efficacy of the probiotic formulation VSL#3 consisting of eight distinct bacterial species (including Streptococcus thermophilus, Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. Bulgaricus) in reversing immunological effects of microbiota depletion as compared to reassociation with a complex murine microbiota. To address this, conventional mice were subjected to broad-spectrum antibiotic therapy for 8 weeks and perorally reassociated with either VSL#3 bacteria or a complex murine microbiota. VSL#3 recolonization resulted in restored CD4+ and CD8+ cell numbers in the small and large intestinal lamina propria as well as in B220+ cell numbers in the former, whereas probiotic intervention was not sufficient to reverse the antibiotic induced changes of respective cell populations in the spleen. However, VSL#3 application was as efficient as complex microbiota reassociation to attenuate the frequencies of regulatory T cells, activated dendritic cells and memory/effector T cells in the small intestine, colon, mesenteric lymph nodes, and spleen. Whereas broad-spectrum antibiotic treatment resulted in decreased production of cytokines such as IFN-γ, IL-17, IL-22, and IL-10 by CD4+ cells in respective immunological compartments, VSL#3 recolonization was sufficient to completely recover the expression of the anti-inflammatory cytokine IL-10 without affecting pro-inflammatory mediators. In summary, the probiotic compound VSL#3 has an extensive impact on mucosal, peripheral, and systemic innate as well as adaptive immunity, exerting beneficial anti-inflammatory effects in intestinal as well as systemic compartments. Hence, VSL#3 might be considered a therapeutic immunomodulatory tool following antibiotic therapy. PMID:28529928
Sukhotnik, Igor; Lerner, Aaron; Sabo, Edmund; Krausz, Michael M; Siplovich, Leonardo; Coran, Arnold G; Mogilner, Jorge; Shiloni, Eitan
2003-07-01
The nitric oxide precursor L-arginine (ARG) has been shown to influence intestinal morphology and intestinal absorptive function. The purpose of the present study was to determine the effect of enteral ARG supplementation on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Thirty male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection, SBS rats underwent 75% small bowel resection, and SBS-ARG rats underwent bowel resection and were treated with ARG given in the drinking water (2%). Parameters of intestinal adaptation, enterocyte proliferation and enterocyte apoptosis were determined on day 14 following operation. We have demonstrated that SBS-ARG animals had a lower jejunal and ileal mucosal weight, jejunal mucosal DNA and protein, ileal mucosal protein, jejunal villus height, jejunal and ileal crypt depth, and enterocyte proliferation index and a greater enterocyte apoptosis compared to SBS untreated animals. We conclude that in a rat model of SBS enteral L-arginine inhibits structural intestinal adaptation. Possible mechanism for this effect may be decreased cell proliferation and increased cell apoptosis.
2013-09-27
Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Estrogen Receptor-negative Breast Cancer; Extensive Stage Small Cell Lung Cancer; Gastrointestinal Stromal Tumor; HER2-negative Breast Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Progesterone Receptor-negative Breast Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Borderline Ovarian Surface Epithelial-stromal Tumor; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Cell Lung Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Borderline Ovarian Surface Epithelial-stromal Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Triple-negative Breast Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Metastatic Squamous Neck Cancer With Occult Primary
Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats.
Goldstein, Jorge; Morris, Winston E; Loidl, César Fabián; Tironi-Farinati, Carla; Tironi-Farinatti, Carla; McClane, Bruce A; Uzal, Francisco A; Fernandez Miyakawa, Mariano E
2009-09-18
Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.
Rehabilitative therapy of short bowel syndrome: experimental study and clinical trial.
Li, N; Zhu, W; Guo, F; Ren, J; Li, Y; Wang, X; Li, J
2000-08-01
To investigate the effect of growth hormone on proliferative activity of the residual small intestinal mucosa after massive small intestinal resection and to evaluate the clinical efficacy of bowel rehabilitative therapy for short bowel syndrome. Small intestinal mucosa proliferative activity were compared in rats from control group (sham operation), short bowel group (80% small bowel resection) and growth hormone treatment group (80% small bowel resection + growth hormone 1 U x kg(-1) x d(-1) for 28 days) with the aid of histology image analysis, flow cytometric assay, immunohistochemistry analysis and RT-PCR assay. The nutritional status, D-xylose absorption and stool nitrogen output were observed in 9 consecutive parenteral nutrition dependent patients with short bowel syndrome after intestinal rehabilitative therapy (growth hormone 8 - 12 U x kg(-1) x d(-1) im + glutamine 0.6 g x kg(-1) x d(-1) iv + special diet) for 21 continuous days. Growth hormone administration significantly increased rat small intestinal mucosal villous height, mucosal thickness, proliferative index, and the expression of proliferating cell nuclear antigen and c-jun mRNA. Rehabilitative therapy increased the body weight, serum total protein and album in concentrations in patients. Their D-xylose absorption indices increased and fecal nitrogen losses decreased. Follow-up data showed that 6 of the 9 patients sustained on enteral nutrition. Growth hormone enhances the proliferative activity of the mucosal epithelium and bowel rehabilitative therapy may benefit the patients with short bowel syndrome.
Krebs, Shelly J; Taylor, Ronald K
2011-10-01
Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXΦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells.
Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H
2011-01-01
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093
Wang, Xiaoqiu; Lin, Gang; Liu, Chuang; Feng, Cuiping; Zhou, Huaijun; Wang, Taiji; Li, Defa; Wu, Guoyao; Wang, Junjun
2014-07-01
The fetus/neonate with intrauterine growth restriction (IUGR) has a high perinatal mortality and morbidity rate, as well as reduced efficiency for nutrients utilization. Our previous studies showed alterations of intestinal proteome in IUGR piglets both at birth and during the nursing period. Considering the potential long-term impacts of fetal programming and substantial increases in amounts of amniotic fluid nutrients from mid-gestation in pigs, the present study involved IUGR porcine fetuses from days 60 to 110 of gestation (mid to late gestation). We identified 59 differentially expressed proteins in the fetal small intestine that are related to intestinal growth, development and reprogramming. Our results further indicated increased abundances of proteins and enzymes associated with oxidative stress, apoptosis and protein degradation, as well as decreased abundances of proteins that are required for maintenance of cell structure and motility, absorption and transport of nutrients, energy metabolism, and protein synthesis in the fetal gut. Moreover, IUGR from middle to late gestation was associated with reduced expression of intestinal proteins that participate in regulation of gene expression and signal transduction. Collectively, these findings provide the first evidence for altered proteomes in the small intestine of IUGR fetuses, thereby predisposing the gut to metabolic defects during gestation and neonatal periods. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Jiehao; Zhao, Jing; Li, Yiqun; Zou, Yiyi; Lu, Binjie; Chen, Yuyin; Ma, Youzhi; Xu, Haisheng
2016-09-01
Pelodiscus sinensis is the most common turtle species that has been raised in East and Southeast Asia. However, there are still limited studies about the immune defense mechanisms in its small intestine until now. In the present research, histological analysis and transcriptome analysis was performed on the small intestine of P. sinensis after intragastric challenge with LPS to explore its mechanisms of immune responses to pathogens. The result showed the number of intraepithelial lymphocytes (IELs) and goblet cells (GCs) in its intestine increased significantly at 48 h post-challenge with LPS by intragastrical route, indicating clearly the intestinal immune response was induced. Compared with the control, a total of 748 differentially expressed genes (DEGs) were identified, including 361 up-regulated genes and 387 down-regulated genes. Based on the Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG), 48 immune-related DEGs were identified, which were classified into 82 GO terms and 14 pathways. Finally, 18 DEGs, which were randomly selected, were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide valuable information for further analysis of the immune defense mechanisms against pathogens in the small intestine of P. sinensis. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-08-01
Brain and Central Nervous System Tumors; Breast Cancer; Extragonadal Germ Cell Tumor; Infection; Lung Cancer; Lymphoma; Ovarian Cancer; Small Intestine Cancer; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific
Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C
2016-09-01
Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.
The paneth cell: A guardian of gut health
USDA-ARS?s Scientific Manuscript database
The article by Podany et al in the current issue of Cellular and Molecular Gastroenterology and Hepatology makes observations that significantly advance our understanding of Paneth cells and zinc transporters in maintenance of a healthy gut barrier and microbiota of the small intestine. Paneth cells...
Hughes, K. R.; Harnisch, L. C.; Alcon-Giner, C.; Mitra, S.; Wright, C. J.; Ketskemety, J.
2017-01-01
Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi—a process termed ‘cell shedding’. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. PMID:28123052
Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J
2017-01-01
Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. © 2017 The Authors.
Morphological and functional alterations of small intestine in chronic pancreatitis.
Gubergrits, Natalya B; Linevskiy, Yuri V; Lukashevich, Galina M; Fomenko, Pavel G; Moroz, Tatyana V; Mishra, Tapan
2012-09-10
The small intestine in chronic pancreatitis has not been investigated yet thoroughly. It would be important to understand fat metabolism in the course of this disease and could be explained if the small intestine has some pathological conditions and, due to this reason, pancreatic enzyme substitution does not work in all patients. To investigate the pathophysiology of small intestine in chronic pancreatitis and to show the reason why in some cases pancreatic enzyme substitution does not work properly. In the process of the study 33 chronic pancreatitis patients have been examined. The control group includes 30 subjects without chronic pancreatitis similar for age, sex and alcohol consumption to the patients with chronic pancreatitis patients. Aspiration biopsy of jejunum mucosa followed by histological examination and investigation of intestinal enzymes by aspiration has been performed. Metabolism at membranic level has been studied by enzymatic activity of amylase and lipase in the small intestine. Production of enzymes (monoglyceride lipase, lactase, saccharase, maltase, glycyl-l-leucine dipeptidase) promoting metabolism in enterocytes has been estimated as to their activity in homogenates of jejunum mucosa samples. Participation of mucosa in intestinal digestion has been assessed by alkaline phosphatase activity in a secretory chyme from proximal portion of jejunum. Absorptive capacity of jejunum was evaluated by D-xylose test results. DNA, lysozyme, immunoglobulin contents of chyme have also been calculated and bacteriological study of chyme has been also performed. Secondary enteritis, accompanied by moderate dystrophic changes of mucous membrane, thinning of limbus, and decrease of Paneth cell mitotic index, was found to occur in chronic pancreatitis patients. Enteritis is followed by changes in enzymatic processes in the sphere of membrane and intestinal digestion, decrease of absorption, accelerated desquamation of epithelium, fall in local immunity and development of bacterial overgrowth syndrome. Existence of secondary enteritis and bacterial overgrowth syndrome validates lack of enzyme replacement therapy efficacy in some chronic pancreatitis patients with pancreatic insufficiency. To optimize treatment in such cases it is important to perform small intestine decontamination and escalate enzyme preparation dosage.
Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro
2018-01-01
Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.
Qiu, Yueqin; Jiang, Zongyong; Hu, Shenglan; Wang, Li; Ma, Xianyong; Yang, Xuefen
2017-11-13
Interleukin (IL)-22-producing Natural Killer (NK) cells protect the gut epithelial cell barrier from pathogens. A strain of probiotics, Lactobacillus plantarum (L. plantarum, LP), was previously found by our laboratory to significantly improve the mucosal barrier integrity and function of the small intestine in pigs. However, it was unclear whether LP benefited the intestinal mucosal barrier via interactions with the intestinal NK cells. The present study, therefore, was focused on the therapeutic effect of NK cells that were stimulated by LP on attenuating enterotoxigenic Escherichia coli (ETEC)-induced the damage to the integrity of the epithelial cell barrier. The results showed that LP can efficiently increase protein levels of the natural cytotoxicity receptor (NCR) family, and the expression levels of IL-22 mRNA and protein in NK cells. Transfer of NK cells stimulated by LP conferred protection against ETEC K88-induced intestinal epithelial barrier damage in NCM460 cells. We found that NK cells stimulated by LP could partially offset the reduction in NCM460 cell monolayers transepithelial electrical resistance (TEER) caused by ETEC K88, and increase ZO-1 and occludin mRNA and protein expressions by ETEC K88-infected NCM460 cells. Furthermore, adding NK cells that were stimulated by LP to ETEC K88-infected NCM460cells, IL-22R1, p-Stat3, and p-Tyk2 expression by NCM460 cells was increased. Mechanistic experiment showed that NK cells stimulated by LP lost the function of maintaining TEER of NCM460 cells challenged with ETEC K88, when polyclonal anti-IL-22 antibody was used to block IL-22 production. Collectively, our results suggested that LP stimulation of NK could enhance IL-22 production, which might be able to provide defense against ETEC-induced damage to the integrity of intestinal epithelial barrier.
Vinderola, Gabriel; Matar, Chantal; Perdigon, Gabriela
2005-01-01
The mechanisms by which probiotic bacteria exert their effects on the immune system are not completely understood, but the epithelium may be a crucial player in the orchestration of the effects induced. In a previous work, we observed that some orally administered strains of lactic acid bacteria (LAB) increased the number of immunoglobulin A (IgA)-producing cells in the small intestine without a concomitant increase in the CD4+ T-cell population, indicating that some LAB strains induce clonal expansion only of B cells triggered to produce IgA. The present work aimed to study the cytokines induced by the interaction of probiotic LAB with murine intestinal epithelial cells (IEC) in healthy animals. We focused our investigation mainly on the secretion of interleukin 6 (IL-6) necessary for the clonal expansion of B cells previously observed with probiotic bacteria. The role of Toll-like receptors (TLRs) in such interaction was also addressed. The cytokines released by primary cultures of IEC in animals fed with Lactobacillus casei CRL 431 or Lactobacillus helveticus R389 were determined. Cytokines were also determined in the supernatants of primary cultures of IEC of unfed animals challenged with different concentrations of viable or nonviable lactobacilli and Escherichia coli, previously blocked or not with anti-TLR2 and anti-TLR4. We concluded that the small intestine is the place where a major distinction would occur between probiotic LAB and pathogens. This distinction comprises the type of cytokines released and the magnitude of the response, cutting across the line that separates IL-6 necessary for B-cell differentiation, which was the case with probiotic lactobacilli, from inflammatory levels of IL-6 for pathogens. PMID:16148174
Akiho, Hirotada; Nakamura, Kazuhiko
2011-01-01
Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.
alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.
Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B
2000-12-01
Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.
[Advances in the research of effects of glutamine on immune function of burn patients].
Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J
2018-04-20
Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.
Non-Ablative Allo HSCT For Hematologic Malignancies or SAA
2011-12-07
Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Precancerous/Nonmalignant Condition; Small Intestine Cancer
Schmid-Schönbein, Geert W.
2017-01-01
Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737
Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro
2014-01-01
Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014
Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.
2000-01-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391
Ren, P; Silberg, D G; Sirica, A E
2000-02-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478-486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats.
Radiation sensitivity of foodborne pathogens in meat byproducts with different packaging
NASA Astrophysics Data System (ADS)
Yong, Hae In; Kim, Hyun-Joo; Nam, Ki Chang; Kwon, Joong Ho; Jo, Cheorun
2015-10-01
The aim of this study was to determine radiation sensitivity of Escherichia coli O157:H7 and Listeria monocytogenes in edible meat byproducts. Seven beef byproducts (heart, liver, lung, lumen, omasum, large intestine, and small intestine) and four pork byproducts (heart, large intestine, liver, and small intestine) were used. Electron beam irradiation significantly reduced the numbers of pathogenic microorganisms in meat byproducts and no viable cells were detected in both aerobically- and vacuum-packaged samples irradiated at 4 kGy. Meat byproducts packed under vacuum had higher D10 value than the ones packed aerobically. No significant difference was observed between the D10 values of E. coli O157:H7 and L. monocytogenes inoculated in either aerobically or vacuum packaged samples. These results suggest that low-dose electron beam irradiation can significantly decrease microbial numbers and reduce the risk of meat byproduct contamination by the foodborne pathogens.
Primary intestinal lymphangiectasia with generalized warts.
Lee, Soon Jae; Song, Hyun Joo; Boo, Sun-Jin; Na, Soo-Young; Kim, Heung Up; Hyun, Chang Lim
2015-07-21
Primary intestinal lymphangiectasia (PIL) is a rare protein-losing enteropathy with lymphatic leakage into the small intestine. Dilated lymphatics in the small intestinal wall and mesentery are observed in this disease. Laboratory tests of PIL patients revealed hypoalbuminemia, lymphocytopenia, hypogammaglobulinemia and increased stool α-1 antitrypsin clearance. Cell-mediated immunodeficiency is also present in PIL patients because of loss of lymphocytes. As a result, the patients are vulnerable to chronic viral infection and lymphoma. However, cases of PIL with chronic viral infection, such as human papilloma virus-induced warts, are rarely reported. We report a rare case of PIL with generalized warts in a 36-year-old male patient. PIL was diagnosed by capsule endoscopy and colonoscopic biopsy with histological tissue confirmation. Generalized warts were observed on the head, chest, abdomen, back, anus, and upper and lower extremities, including the hands and feet of the patient.
Primary intestinal lymphangiectasia with generalized warts
Lee, Soon Jae; Song, Hyun Joo; Boo, Sun-Jin; Na, Soo-Young; Kim, Heung Up; Hyun, Chang Lim
2015-01-01
Primary intestinal lymphangiectasia (PIL) is a rare protein-losing enteropathy with lymphatic leakage into the small intestine. Dilated lymphatics in the small intestinal wall and mesentery are observed in this disease. Laboratory tests of PIL patients revealed hypoalbuminemia, lymphocytopenia, hypogammaglobulinemia and increased stool α-1 antitrypsin clearance. Cell-mediated immunodeficiency is also present in PIL patients because of loss of lymphocytes. As a result, the patients are vulnerable to chronic viral infection and lymphoma. However, cases of PIL with chronic viral infection, such as human papilloma virus-induced warts, are rarely reported. We report a rare case of PIL with generalized warts in a 36-year-old male patient. PIL was diagnosed by capsule endoscopy and colonoscopic biopsy with histological tissue confirmation. Generalized warts were observed on the head, chest, abdomen, back, anus, and upper and lower extremities, including the hands and feet of the patient. PMID:26217101
Intestinal nodular lymphoid hyperplasia and extraintestinal lymphoma--a rare association.
Monsanto, P; Lérias, C; Almeida, N; Lopes, S; Cabral, J E; Figueiredo, P; Silva, M; Julião, M; Gouveia, H; Sofia, C
2012-06-01
Nodular lymphoid hyperplasia of the gastrointestinal tract is characterized by the presence of innumerable small discrete nodules involving a variable segment of the gastrointestinal tract. The association between nodular lymphoid hyperplasia and other benign and malignant diseases has been clearly described, with an increased risk of gastrointestinal tumours, namely gastrointestinal lymphoma. However, the association with extraintestinal lymphoma seems extremely rare. The authors present a clinical case of a patient with nodular lymphoid hyperplasia of the small and large intestine that subsequently developed an extraintestinal lymphoma (diffuse large B-cell lymphoma).
Disseminated Mycobacterium intracellulare infection in a broad-snouted caiman Caiman latirostris.
Kik, Marja J L
2013-11-25
A 10 yr old broad-snouted caiman Caiman latirostris from a small Dutch animal park was presented with long-term variable periods of anorexia and weight loss. Blood chemistry showed slightly elevated uric acid levels and low ionised calcium concentration. Ultrasonographical thickening of the intestinal wall in the region of the duodenum was evident. Pathological changes were a thickening of the wall of 90% of the small intestines, enlarged spleen with multifocal white foci and an enlarged light-brown liver. Histopathological lesions consisted of disseminated granulomas in the intestinal wall, the liver and the spleen. Multinucleated giant cells and epitheloid macrophages were abundant. Ziehl-Neelsen staining showed numerous intralesional acid-fast bacteria. Polymerase chain reaction for Mycobacterium intracellulare was positive.
Sun, Daming; Li, Hongwei; Mao, Shengyong; Zhu, Weiyun; Liu, Junhua
2018-02-15
The objective of this study was to investigate the effects of different sources of starch in starter feed on small intestinal growth and endogenous glucagon-like peptide 2 (GLP-2) secretion in preweaned lambs. Twenty-four 10-d-old lambs were divided into three groups that were treated with different iso-starch diets containing purified cassava starch (CS, n = 8), maize starch (MS, n = 8), and pea starch (PS, n = 8). At 56 d old, there was no significant difference in final body weight (BW) of lambs among the three groups. However, different starch source in starter significantly affected the average daily feed intake (ADFI) and average daily gain (ADG) of lambs among three groups. Compared with the CS and MS diets, the PS diet significantly increased the GLP-2 concentration in blood plasma (P < 0.001), the crypt depth of the jejunum (P = 0.006), and the villus height of the ileum (P = 0.039). Meanwhile, PS diet significantly increased the mRNA expression of proglucagon and the glucagon-like peptide 2 receptor (GLP-2R) in the jejunum and ileum (P < 0.001). Furthermore, the PS diet significantly upregulated the mRNA expression of cyclin D1 (P < 0.001), cyclin E (P = 0.006), and cyclin-dependent kinases 6 (CDK6) (P = 0.048) in the jejunum and cyclin A (P < 0.001), cyclin D1 (P < 0.001), and CDK6 (P = 0.002) in the ileum. Correlation analysis showed that endogenous GLP-2 secretion was positively related to the mRNA levels of cell cycle proteins in small intestinal mucosa. In summary, all results showed that PS in starter feed promoted small intestinal growth that may, in part, be related to cell cycle acceleration and endogenous GLP-2 secretion in preweaned lambs. These findings provide new insights into nutritional interventions that promote the development of small intestines in young ruminants.
TLR signaling modulates side effects of anticancer therapy in the small intestine.
Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W; Cario, Elke
2015-02-15
Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified, and there is so far no successful therapeutic intervention. In this study, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b(+)-myeloid cell infiltration, and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/multidrug resistance (MDR)1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b(+)-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wild-type mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. Copyright © 2015 by The American Association of Immunologists, Inc.
Small bowel bacterial overgrowth
Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine; Small intestinal bacterial overgrowth; SIBO ... intestine does not have a high number of bacteria. Excess bacteria in the small intestine may use ...
Loo, Donald D F; Wright, Ernest M; Zeuthen, Thomas
2002-01-01
The transport of water across epithelia has remained an enigma ever since it was discovered over 100 years ago that water was transported across the isolated small intestine in the absence of osmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute transport, the actual mechanisms are not well understood. Current dogma holds that active ion transport sets up local osmotic gradients in the spaces between epithelial cells, the lateral intercellular spaces, and this in turn drives water transport by local osmosis. In the case of the small intestine, which in humans absorbs about 8 l of water a day, there is no direct evidence for either local osmosis or aquaporin gene expression in enterocytes. Intestinal water absorption is greatly enhanced by glucose, and this is the basis for oral rehydration therapy in patients with secretory diarrhoea. In our studies of the intestinal brush border Na+-glucose cotransporter we have obtained evidence that there is a direct link between the transport of Na+, glucose and water transport, i.e. there is cotransport of water along with Na+ and sugar, that will account for about 50 % of the total water transport across the human intestinal brush border membrane. In this short review we summarize the evidence for water cotransport and propose how this occurs during the enzymatic turnover of the transporter. This is a general property of cotransporters and so we expect that this may have wider implications in the transport of water and other small polar molecules across cell membranes in animals and plants. PMID:12096049
Intrauterine Growth Restriction Impairs Small Intestinal Mucosal Immunity in Neonatal Piglets
Dong, Li; Zhong, Xiang; Ahmad, Hussain; Li, Wei; Wang, Yuanxiao; Zhang, Lili
2014-01-01
Intrauterine growth restriction (IUGR) is a very common problem in both piglet and human neonate populations. We hypothesized that IUGR neonates have impaired intestinal mucosal immunity from birth. Using neonatal piglets as IUGR models, immune organ weights, the weight and length of the small intestine (SI), intestinal morphology, intraepithelial immune cell numbers, levels of cytokines and immunoglobulins, and the relative gene expression of cytokines in the SI were investigated. IUGR neonatal piglets were observed to have lower absolute immune organ weight and SI length, decreased relative weights of the thymus, spleen, mesenteric lymph node, and thinner but longer SIs. Damaged and jagged villi, shorter microvilli, presence of autophagosomes, swelled mitochondria, and decreased villus surface areas were also found in the SIs of IUGR neonatal piglets. We also found a smaller number of epithelial goblet cells and lymphocytes in the SIs of IUGR neonates. In addition, we detected reduced levels of the cytokines TNF-α and IFN-γ and decreased gene expression of cytokines in IUGR neonates. In conclusion, IUGR was shown to impair the mucosal immunity of the SI in neonatal piglets, and the ileum was the major site of impairment. PMID:24710659
Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian
2017-11-01
Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.
In vivo deep tissue fluorescence imaging of the murine small intestine and colon
NASA Astrophysics Data System (ADS)
Crosignani, Viera; Dvornikov, Alexander; Aguilar, Jose S.; Stringari, Chiara; Edwards, Roberts; Mantulin, Williams; Gratton, Enrico
2012-03-01
Recently we described a novel technical approach with enhanced fluorescence detection capabilities in two-photon microscopy that achieves deep tissue imaging, while maintaining micron resolution. This technique was applied to in vivo imaging of murine small intestine and colon. Individuals with Inflammatory Bowel Disease (IBD), commonly presenting as Crohn's disease or Ulcerative Colitis, are at increased risk for developing colorectal cancer. We have developed a Giα2 gene knock out mouse IBD model that develops colitis and colon cancer. The challenge is to study the disease in the whole animal, while maintaining high resolution imaging at millimeter depth. In the Giα2-/- mice, we have been successful in imaging Lgr5-GFP positive stem cell reporters that are found in crypts of niche structures, as well as deeper structures, in the small intestine and colon at depths greater than 1mm. In parallel with these in vivo deep tissue imaging experiments, we have also pursued autofluorescence FLIM imaging of the colon and small intestine-at more shallow depths (roughly 160μm)- on commercial two photon microscopes with excellent structural correlation (in overlapping tissue regions) between the different technologies.
Involvement of mitochondrial Na+–Ca2+ exchange in intestinal pacemaking activity
Kim, Byung Joo; Jun, Jae Yeoul; So, Insuk; Kim, Ki Whan
2006-01-01
AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na+-Ca2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 µmol/L and CGP37157 from 10 to 30 µmol/L effectively inhibited Ca2+ efflux from mitochondria in pacemaking activity of ICCs. The IC50s of clonazepam and CGP37157 were 37.1 and 18.2 µmol/L, respectively. The addition of 20 µmol/L NiCl2 to the internal solution caused a “wax and wane” phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondrial Na+-Ca2+ exchange has an important role in intestinal pacemaking activity. PMID:16521198
Blood and small intestine cell kinetics under radiation exposures: Mathematical modeling
NASA Astrophysics Data System (ADS)
Smirnova, Olga
Biophysical models, which describe the dynamics of vital body systems (namely, hematopoiesis and small intestinal epithelium) in mammals exposed to acute and chronic radiation, are developed. These models, based on conventional biological theories, are realized as the systems of nonlinear differential equations. Their variables and constant parameters have real biological meaning, that provides successful identification and verification of the models in hand. The explanation of a number of radiobiological effects, including those of the low-level long-term exposures, is proposed proceeding from the modeling results. It is proved that the predictions the models agree with the respective experimental data at both qualitative and quantitative levels. All this testifies to the efficiency of employment of the developed models in investigation and prediction of radiation effects on the hematopoietic and small intestinal epithelium systems, that can be used for the radiation risk assessment in the long-term space missions such as lunar colony and Mars voyage.
Diabetes-related dysfunction of the small intestine and the colon: focus on motility.
Horváth, Viktor József; Putz, Zsuzsanna; Izbéki, Ferenc; Körei, Anna Erzsébet; Gerő, László; Lengyel, Csaba; Kempler, Péter; Várkonyi, Tamás
2015-11-01
In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article.
Zhu, Yao-Hong; Li, Xiao-Qiong; Zhang, Wei; Zhou, Dong; Liu, Hao-Yu; Wang, Jiu-Feng
2014-03-01
The mechanism underlying the dose effect of probiotics on ameliorating diarrhea has not been fully elucidated. Here, low (1 × 10(9) CFU/ml) or high (1 × 10(11) CFU/ml) doses of Lactobacillus rhamnosus ATCC 7469 were administered orally to piglets for 1 week before F4 (K88)-positive enterotoxigenic Escherichia coli (F4(+) ETEC) challenge. Administration of a low, but not a high, dose of L. rhamnosus decreased the percentage of CD3(+) CD4(+) CD8(-) T cells in the peripheral blood. Notably, transiently increased serum concentrations of interleukin-17A (IL-17A) were observed after F4(+) ETEC challenge in pigs pretreated with a high dose of L. rhamnosus. Administration of L. rhamnosus increased the percentage of the small intestinal lamina propria CD3(+) CD4(+) CD8(-) cells and Peyer's patch CD3(+) CD4(-) CD8(-) and CD3(-) CD4(-) CD8(+) cells. The percentage of ileal intraepithelial CD3(+) CD4(-) CD8(+) cells increased only in the high-dose piglets. Administration of L. rhamnosus downregulated expression of ileal IL-17A after F4(+) ETEC challenge but had no effect on expression of gamma interferon (IFN-γ), IL-12, IL-4, and FOXP3 mRNA in the small intestine. Expression of jejunal IL-2, ileal transforming growth factor β1 (TGF-β1), and ileal IL-10 was upregulated in the low-dose piglets after F4(+) ETEC challenge. Our findings suggest that amelioration of infectious diarrhea in piglets by L. rhamnosus is associated with the generation of lamina propria CD3(+) CD4(+) CD8(-) T cells, the expansion of Peyer's patch CD3(+) CD4(-) CD8(-) and CD3(-) CD4(-) CD8(+) cells, and the attenuation of F4(+) ETEC-induced increase in CD3(+) CD4(+) CD8(+) T cells in the small intestine. However, consumption of high doses of L. rhamnosus may increase levels of serum IL-17A after F4(+) ETEC challenge, thus eliciting a strong proinflammatory response.
Zhu, Yao-Hong; Li, Xiao-Qiong; Zhang, Wei; Zhou, Dong; Liu, Hao-Yu
2014-01-01
The mechanism underlying the dose effect of probiotics on ameliorating diarrhea has not been fully elucidated. Here, low (1 × 109 CFU/ml) or high (1 × 1011 CFU/ml) doses of Lactobacillus rhamnosus ATCC 7469 were administered orally to piglets for 1 week before F4 (K88)-positive enterotoxigenic Escherichia coli (F4+ ETEC) challenge. Administration of a low, but not a high, dose of L. rhamnosus decreased the percentage of CD3+ CD4+ CD8− T cells in the peripheral blood. Notably, transiently increased serum concentrations of interleukin-17A (IL-17A) were observed after F4+ ETEC challenge in pigs pretreated with a high dose of L. rhamnosus. Administration of L. rhamnosus increased the percentage of the small intestinal lamina propria CD3+ CD4+ CD8− cells and Peyer's patch CD3+ CD4− CD8− and CD3− CD4− CD8+ cells. The percentage of ileal intraepithelial CD3+ CD4− CD8+ cells increased only in the high-dose piglets. Administration of L. rhamnosus downregulated expression of ileal IL-17A after F4+ ETEC challenge but had no effect on expression of gamma interferon (IFN-γ), IL-12, IL-4, and FOXP3 mRNA in the small intestine. Expression of jejunal IL-2, ileal transforming growth factor β1 (TGF-β1), and ileal IL-10 was upregulated in the low-dose piglets after F4+ ETEC challenge. Our findings suggest that amelioration of infectious diarrhea in piglets by L. rhamnosus is associated with the generation of lamina propria CD3+ CD4+ CD8− T cells, the expansion of Peyer's patch CD3+ CD4− CD8− and CD3− CD4− CD8+ cells, and the attenuation of F4+ ETEC-induced increase in CD3+ CD4+ CD8+ T cells in the small intestine. However, consumption of high doses of L. rhamnosus may increase levels of serum IL-17A after F4+ ETEC challenge, thus eliciting a strong proinflammatory response. PMID:24389928
Dietary palmitic acid modulates intestinal re-growth after massive small bowel resection in a rat.
Sukhotnik, Igor; Hayari, Lili; Bashenko, Yulia; Chemodanov, Elena; Mogilner, Jorge; Shamir, Raanan; Bar Yosef, Fabiana; Shaoul, Ron; Coran, Arnold G
2008-12-01
Among factors promoting intestinal adaptation after bowel resection, dietary fatty acids have a special role. The purpose of the present study was to evaluate the effects of palmitic acid (PA) on early intestinal adaptation in rats with short bowel syndrome (SBS). Male Sprague-Dawley rats underwent either a bowel transection with re-anastomosis (sham rats) or 75% small bowel resection (SBS rats). Animals were randomly assigned to one of four groups: sham rats fed normal chow (sham-NC); SBS rats fed NC (SBS-NC), SBS rats fed high palmitic acid diet (SBS-HPA), and SBS rats fed low palmitic acid diet (SBS-LPA). Rats were sacrificed on day 14. Parameters of intestinal adaptation, overall bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, cell proliferation and apoptosis were determined at sacrifice. RT-PCR and Western blotting were used to determine the level of bax and bcl-2 mRNA and protein (parameters of apoptosis), and ERK protein levels (parameter of proliferation). Statistical analysis was performed using Kruskal-Wallis test followed by post hoc test for multiple comparisons with P values of less than 0.05 considered statistically significant. SBS-HFD rats demonstrated higher bowel and mucosal weight, mucosal DNA and protein in ileum, while deprivation of PA (SBS-LPA) inhibited intestinal re-growth both in jejunum and ileum compared to SBS-NC rats. A significant up-regulation of ERK protein coincided with increased cell proliferation in SBS-HFD rats (vs. SBS-NC). Also, the initial decreased levels of apoptosis corresponded with the early decrease in bax and increase in bcl-2 at both mRNA and protein levels. Early exposure to HPA both augments and accelerates structural bowel adaptation in a rat model of SBS. Increased cell proliferation and decreased cell apoptosis may be responsible for this effect. Deprivation of PA in the diet inhibits intestinal re-growth.
Immunoglobulin E (IgE) and IgE-containing cells in human gastrointestinal fluids and tissues.
Brown, W R; Borthistle, B K; Chen, S T
1975-01-01
Human gastric, small intestinal, colonic and rectal mucosae were examined for IgE-containing cells by single- and double-antibody immunofluorescence techniques, and IgE in intesinal fluids was measured by a double-antibody radioimmunoassay. IgE-containing cells were identified in all tissue specimens and comprised about 2% of all immunoglobulin-containing cells. Although less numerous than cells containing IgA, IgM or IgG, they were remarkably numerous in relation to the concentration of IgE in serum (about 0-001% of total immunoglobulin). IgE immunocytes were significantly more numerous in stomach and proximal small bowel than in colon and rectum, and were very numerous at bases of gastric and duodenal peptic ulcers. Measurable IgE was found in seventy-eight of eighty-five (92%) intestinal fluids. Sucrose gradient ultracentrifugation analysis of four of the fluids revealed that the immunologically reactive IgE was largely in fractions corresponding to molecules of lower molecular weight than that of albumin, which suggests that IgE in gut contents is degraded by proteolytic enzymes. The presence of IgE-forming cells in gastrointestinal tissues, and IgE or a fragment of IgE in intestinal fluids, suggests that IgE antibodies are available for participation in local reaginic-type reactions in the gut. Images FIG. 1 PMID:813925
Nivolumab and Ipilimumab in Treating Patients With Rare Tumors
2018-06-27
Acinar Cell Carcinoma; Adenoid Cystic Carcinoma; Adrenal Cortex Carcinoma; Adrenal Gland Pheochromocytoma; Anal Canal Neuroendocrine Carcinoma; Anal Canal Undifferentiated Carcinoma; Appendix Mucinous Adenocarcinoma; Bartholin Gland Transitional Cell Carcinoma; Bladder Adenocarcinoma; Cervical Adenocarcinoma; Cholangiocarcinoma; Chordoma; Colorectal Squamous Cell Carcinoma; Desmoid-Type Fibromatosis; Endometrial Transitional Cell Carcinoma; Endometrioid Adenocarcinoma; Esophageal Neuroendocrine Carcinoma; Esophageal Undifferentiated Carcinoma; Extrahepatic Bile Duct Carcinoma; Fallopian Tube Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Fibromyxoid Tumor; Gastric Neuroendocrine Carcinoma; Gastric Squamous Cell Carcinoma; Gastrointestinal Stromal Tumor; Giant Cell Carcinoma; Intestinal Neuroendocrine Carcinoma; Intrahepatic Cholangiocarcinoma; Lung Carcinoid Tumor; Lung Sarcomatoid Carcinoma; Major Salivary Gland Carcinoma; Malignant Odontogenic Neoplasm; Malignant Peripheral Nerve Sheath Tumor; Malignant Testicular Sex Cord-Stromal Tumor; Metaplastic Breast Carcinoma; Metastatic Malignant Neoplasm of Unknown Primary Origin; Minimally Invasive Lung Adenocarcinoma; Mixed Mesodermal (Mullerian) Tumor; Mucinous Adenocarcinoma; Mucinous Cystadenocarcinoma; Nasal Cavity Adenocarcinoma; Nasal Cavity Carcinoma; Nasopharyngeal Carcinoma; Nasopharyngeal Papillary Adenocarcinoma; Nasopharyngeal Undifferentiated Carcinoma; Oral Cavity Carcinoma; Oropharyngeal Undifferentiated Carcinoma; Ovarian Adenocarcinoma; Ovarian Germ Cell Tumor; Ovarian Mucinous Adenocarcinoma; Ovarian Squamous Cell Carcinoma; Ovarian Transitional Cell Carcinoma; Pancreatic Acinar Cell Carcinoma; Pancreatic Neuroendocrine Carcinoma; Paraganglioma; Paranasal Sinus Adenocarcinoma; Paranasal Sinus Carcinoma; Parathyroid Gland Carcinoma; Pituitary Gland Carcinoma; Placental Choriocarcinoma; Placental-Site Gestational Trophoblastic Tumor; Primary Peritoneal High Grade Serous Adenocarcinoma; Pseudomyxoma Peritonei; Rare Disorder; Scrotal Squamous Cell Carcinoma; Seminal Vesicle Adenocarcinoma; Seminoma; Serous Cystadenocarcinoma; Small Intestinal Adenocarcinoma; Small Intestinal Squamous Cell Carcinoma; Spindle Cell Neoplasm; Squamous Cell Carcinoma of the Penis; Teratoma With Malignant Transformation; Testicular Non-Seminomatous Germ Cell Tumor; Thyroid Gland Carcinoma; Tracheal Carcinoma; Transitional Cell Carcinoma; Undifferentiated Gastric Carcinoma; Ureter Adenocarcinoma; Ureter Squamous Cell Carcinoma; Urethral Adenocarcinoma; Urethral Squamous Cell Carcinoma; Vaginal Adenocarcinoma; Vaginal Squamous Cell Carcinoma, Not Otherwise Specified; Vulvar Carcinoma
2010-03-31
Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Graft Versus Host Disease; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor
Accessory cells in physiological lymphoid tissue from the intestine: an immunohistochemical study.
Sarsfield, P; Rinne, A; Jones, D B; Johnson, P; Wright, D H
1996-03-01
We report a study of the organization of accessory cell populations, in normal mucosal lymphoid tissue from small intestine (8 cases), large intestine (6) and appendix (9) using a panel of monoclonal antibodies and polyclonal antisera in paraffin-embedded tissue. Two populations were identified in dome areas, one positive for acid cysteine proteinase inhibitor and HLA class II (WR18) only and the second positive for S-100 protein, CD68, and WR18 and negative for acid cysteine proteinase inhibitor and factor XIIIa. Superficial colonic mucosal and small intestinal villous tip macrophages stained positively with CD68 and WR18 only, while deeper cryptal and submucosal populations exhibited additional positivity for factor XIIIa, but both populations were negative for acid cysteine proteinase inhibitor and S-100 protein. Germinal centre macrophages were positive for CD68, WR18 and acid cysteine proteinase inhibitor and negative for factor XIIIa, and S-100 protein. T zone dendritic cells included a population which stained positively for S-100 protien, WR18 and were negative for factor XIIIa, CD68 and acid cysteine proteinase inhibitor, an immunophenotype typical of interdigitating dendritic reticulum cells. This distribution of phenotypically identifiable accessory cell subpopulations was apparent at all three sites examined. We suggest that the specialized subpopulations of dendritic cells staining for S-100 protein and for acid cysteine proteinase inhibitor which are restricted to the dome areas, may have a potential role in the transfer of antigen across the epithelium to the germinal centres, while factor XIIIa appears to identify a tissue macrophage population with a potential role in stromal modulation distant from direct antigen challenge.
Metzger, Marco; Bareiss, Petra M; Danker, Timm; Wagner, Silvia; Hennenlotter, Joerg; Guenther, Elke; Obermayr, Florian; Stenzl, Arnulf; Koenigsrainer, Alfred; Skutella, Thomas; Just, Lothar
2009-12-01
Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.
Sklan, D; Shelly, M; Makovsky, B; Geyra, A; Klipper, E; Friedman, A
2003-03-01
1. The effects of feeding T-2 toxin or diacetoxyscirpenol (DAS) at levels up to 1 ppm for 32 d on performance, health, small intestinal physiology and immune response to enteral and parenteral immunisation were examined in young poults. 2. Slight improvement in growth was observed in some groups of poults fed T-2 or DAS mycotoxins for 32 d, with no change in feed efficiency. Feeding both T-2 and DAS resulted in oral lesions which had maximal severity after 7-15 d. 3. Mild intestinal changes were observed at 32 d but no pathological or histopathological lesions were found. Both mycotoxins altered small intestinal morphology, especially in the jejunum where villi were shorter and thinner. In addition, both DAS and T-2 mycotoxins enhanced the proportion of proliferating cells both in the crypts and along the villi. Migration rates were reduced in the jejunum of poults fed T-2 toxin but did not change in the duodenum or in poults fed DAS. 4. No significant effects of T-2 or DAS were observed on antibody production to antigens administered by enteral or parenteral routes. 5. This study indicates that tricothecene toxins at concentrations of up to 1 ppm for more than 30 d influenced small intestinal morphology but did not affect growth or antibody production.
Du, Lei; Yang, Yu-Hong; Xu, Jie; Wang, Yu-Ming; Xue, Chang-Hu; Kurihara, Hideyuki; Takahashi, Koretaro
2016-04-01
Nowadays, marine complex lipids, including starfish phospholipids (SFP) and cerebrosides (SFC) separated from Asterias amurensis as well as sea cucumber phospholipids (SCP) and cerebrosides (SCC) isolated from Cucumaria frondosa, have received much attention because of their potent biological activities. However, little information is known on the transport and uptake of these lipids in liposome forms in small intestinal cells. Therefore, this study was undertaken to investigate the effects of these complex lipid liposomes on transport and uptake in Caco-2 and M cell monolayer models. The results revealed that SFP and SCP contained 42% and 47.9% eicosapentaenoic acid (EPA), respectively. The average particle sizes of liposomes prepared in this study were from 169 to 189 nm. We found that the transport of the liposomes across the M cell monolayer model was much higher than the Caco-2 cell monolayer model. The liposomes consisting of SFP or SCP showed significantly higher transport and uptake than soy phospholipid (soy-PL) liposomes in both Caco-2 and M cell monolayer models. Our results also exhibited that treatment with 1 mM liposomes composed of SFP or SCP for 3 h tended to increase the EPA content in phospholipid fractions of both differentiated Caco-2 and M cells. Moreover, it was also found that the hybrid liposomes consisting of SFP/SFC/cholesterol (Chol) revealed higher transport and uptake across the M cell monolayer in comparison with other liposomes. Furthermore, treatment with SFP/SFC/Chol liposomes could notably decrease the trans-epithelial electrical resistance (TEER) values of Caco-2 and M cell monolayers. The present data also showed that the cell viability of differentiated Caco-2 and M cells was not affected after the treatment with marine complex lipids or soy-PL liposomes. Based on the data in this study, it was suggested that marine complex lipid liposomes exhibit prominent transport and uptake in small intestinal epithelial cell models.
Shekhawat, Prem S; Sonne, Srinivas; Carter, A Lee; Matern, Dietrich; Ganapathy, Vadivel
2013-07-01
Carnitine is essential for mitochondrial β-oxidation of long-chain fatty acids. Deficiency of carnitine leads to severe gut atrophy, ulceration and inflammation in animal models of carnitine deficiency. Genetic studies in large populations have linked mutations in the carnitine transporters OCTN1 and OCTN2 with Crohn's disease (CD), while other studies at the same time have failed to show a similar association and report normal serum carnitine levels in CD patients. In this report, we have studied the expression of carnitine-synthesizing enzymes in intestinal epithelial cells to determine the capability of these cells to synthesize carnitine de novo. We studied expression of five enzymes involved in carnitine biosynthesis, namely 6-N-trimethyllysine dioxygenase (TMLD), 4-trimethylaminobutyraldehyde dehydrogenase (TMABADH), serine hydroxymethyltransferase 1 and 2 (SHMT1 and 2) and γ-butyrobetaine hydroxylase (BBH) by real-time PCR in mice (C3H strain). We also measured activity of γ-BBH in the intestine using an ex vivo assay and localized its expression by in situ hybridization. Our investigations show that mouse intestinal epithelium expresses all five enzymes required for de novo carnitine biosynthesis; the expression is localized mainly in villous surface epithelial cells throughout the intestine. The final rate-limiting enzyme γ-BBH is highly active in the small intestine; its activity was 9.7 ± 3.5 pmol/mg/min, compared to 22.7 ± 7.3 pmol/mg/min in the liver. We conclude that mouse gut epithelium is able to synthesize carnitine de novo. This capacity to synthesize carnitine in the intestine may play an important role in gut health and can help explain lack of clinical carnitine deficiency signs in subjects with mutations with OCTN transporters. Copyright © 2012 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
Pyarokhil, Asadullah Hamid; Ishihara, Miyuki; Sasaki, Motoki; Kitamura, Nobuo
2012-04-10
The regional distribution and relative frequency of peptide YY (PYY)-, pancreatic polypeptide (PP)-, and glucagon-like peptide 1 (GLP-1)-immunoreactive (IR) cells were determined immunohistochemically in the gastrointestinal tract at seven ontogenetic stages in pre- and postnatal cattle. Different frequencies of PYY-, PP-, and GLP-1-IR cells were found in the intestines at all stages; they were not found in the esophagus and stomach. The frequencies varied depending on the intestinal segment and the developmental stage. The frequencies of PYY- and PP-IR cells were lower in the small intestine and increased from ileum to rectum, whereas GLP-1-IR cells were more numerous in duodenum and jejunum, decreased in ileum and cecum, and increased again in colon and rectum. The frequencies also varied according to pre- and postnatal stages. All three cell types were most numerous in fetus, and decreased in calf and adult groups, indicating that the frequencies of these three types of endocrine cells decrease with postnatal development. The results suggest that these changes vary depending on feeding habits and adaptation of growth, secretion, and motility of intestine at different ontogenetic stages of cattle. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yingying; Li, Xiaoxue; Bai, Yunyun
Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus releasedmore » into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.« less
A Unique Cause of Intestinal and Splenic Infarction in a Sickle Cell Trait Patient
Asfaw, Sofya H.; Falk, Gavin A.; Morris-Stiff, Gareth; Tuthill, Ralph J.; Moorman, Matthew L.; Samotowka, Michael A.
2013-01-01
Sickle-cell trait is a common genetic abnormality in the African American population. A sickle-cell crisis in a patient with sickle-cell trait is uncommon at best. Abdominal painful crises are typical of patients with sickle cell anemia. The treatment for an abdominal painful crisis is usually medical and rarely surgical. We present the case of a cocaine-induced sickle-cell crisis in a sickle-cell trait patient that resulted in splenic, intestinal, and cerebral infarctions and multisystem organ failure necessitating a splenectomy, subtotal colectomy, and small bowel resection. This case highlights the diagnostic dilemma that abdominal pain can present in the sickle-cell population and illustrates the importance of recognizing the potential for traditionally medically managed illnesses to become surgical emergencies. PMID:23738181
A unique cause of intestinal and splenic infarction in a sickle cell trait patient.
Asfaw, Sofya H; Falk, Gavin A; Morris-Stiff, Gareth; Tuthill, Ralph J; Moorman, Matthew L; Samotowka, Michael A
2013-01-01
Sickle-cell trait is a common genetic abnormality in the African American population. A sickle-cell crisis in a patient with sickle-cell trait is uncommon at best. Abdominal painful crises are typical of patients with sickle cell anemia. The treatment for an abdominal painful crisis is usually medical and rarely surgical. We present the case of a cocaine-induced sickle-cell crisis in a sickle-cell trait patient that resulted in splenic, intestinal, and cerebral infarctions and multisystem organ failure necessitating a splenectomy, subtotal colectomy, and small bowel resection. This case highlights the diagnostic dilemma that abdominal pain can present in the sickle-cell population and illustrates the importance of recognizing the potential for traditionally medically managed illnesses to become surgical emergencies.
Identification of Mucosa-Invading and Intravascular Bacteria in Feline Small Intestinal Lymphoma.
Hoehne, S N; McDonough, S P; Rishniw, M; Simpson, K W
2017-03-01
Persistent bacterial infections of the gastrointestinal mucosa are causally linked to gastric carcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma in people and laboratory animals. We examined the relationship of mucosa-associated bacteria to alimentary lymphoma in cats. Intestinal biopsies from 50 cats with alimentary lymphoma (small cell, n = 33; large cell, n = 17) and 38 controls without lymphoma (normal to minimal change on histopathology, n = 18; lymphocytic-plasmacytic enteritis, n = 20) were evaluated. The number and spatial distribution of bacteria (ie, in luminal cellular debris, villus-associated mucus, adherent to epithelium, mucosal invasion, intravascular, or serosal) were determined by fluorescence in situ hybridization with the eubacterial probe EUB-338. Mucosa-invasive bacteria were more frequently observed in cats with large cell lymphoma (82%, P ≤ .001) than in cats with small cell lymphoma (18%), normal to minimal change on histopathology, and lymphocytic-plasmacytic enteritis (3%). Intravascular bacteria were observed solely in large cell lymphoma (29%), and serosal colonization was more common in cats with large cell lymphoma (57%) than with small cell lymphoma (11%, P ≤ .01), normal to minimal change (8%, P ≤ .01), and lymphocytic-plasmacytic enteritis (6%, P ≤ .001). The high frequency of invasive bacteria within blood vessels and serosa of cats with large cell lymphoma may account for the sepsis-related complications associated with large cell lymphoma and inform clinical management. Further studies are required to determine the role of intramucosal bacteria in the etiopathogenesis of feline alimentary lymphoma.
CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium.
Silberg, D G; Furth, E E; Taylor, J K; Schuck, T; Chiou, T; Traber, P G
1997-08-01
CDX1 is an intestine-specific transcription factor expressed early in intestinal development that may be involved in regulation of proliferation and differentiation of intestinal epithelial cells. We examined the pattern of CDX1 protein expression in metaplastic and neoplastic tissue to provide insight into its possible role in abnormal differentiation. Tissue samples were stained by immunohistochemistry using an affinity-purified, polyclonal antibody against a peptide epitope of CDX1. Specific nuclear staining was found in epithelial cells of the small intestine and colon. Esophagus and stomach did not express CDX1 protein; however, adjacent areas of intestinal metaplastic tissue intensely stained for CDX1. Adenocarcinomas of the stomach and esophagus had both positive and negative nuclear staining for CDX1. Colonic epithelial cells in adenomatous polyps and adenocarcinomas had a decreased intensity of staining compared with normal colonic crypts in the same specimen. CDX1 may be important in the transition from normal gastric and esophageal epithelium to intestinal-type metaplasia. The variability in expression of CDX1 in gastric and esophageal adenocarcinomas suggests more than one pathway in the development of these carcinomas. The decrease of CDX1 in colonic adenocarcinomas may indicate a role for CDX1 in growth regulation and in the maintenance of the differentiated phenotype.
Disorders of the Small Intestine
... Esophagus Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of ... Esophagus Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of ...
Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota
Chung, Hachung; Pamp, Sünje J.; Hill, Jonathan A.; Surana, Neeraj K.; Edelman, Sanna M.; Troy, Erin B.; Reading, Nicola C.; Villablanca, Eduardo J.; Wang, Sen; Mora, Jorge R.; Umesaki, Yoshinori; Mathis, Diane; Benoist, Christophe; Relman, David A.; Kasper, Dennis L.
2012-01-01
SUMMARY Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4+ and CD8+ T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression–all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system. PMID:22726443
Modelling Spatially Regulated β-Catenin Dynamics and Invasion in Intestinal Crypts
Murray, Philip J.; Kang, Jun-Won; Mirams, Gary R.; Shin, Sung-Young; Byrne, Helen M.; Maini, Philip K.; Cho, Kwang-Hyun
2010-01-01
Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt. PMID:20682248
Histopathological effects of carbaryl on digestive system of snake-eyed lizard, Ophisops elegans.
Cakici, Ozlem; Akat, Esra
2012-05-01
We examined the effects of carbaryl in the digestive system of Ophisops elegans. Lizards were exposed once to different concentrations of carbaryl (2.5, 25 and 250 μg/g). After 96 h, findings related to the esophagus in all treatment groups were not conspicuous. The most important histological defects were observed in the stomach. In the small intestine, collapse of villi was prominent at high-dose. In the large intestine, disintegration in epithelial cells and scattered secretory granules of goblet cells were observed at high dose.
A unique role for autophagy and Atg16L1 in Paneth cells in murine and human intestine
Cadwell, Ken; Liu, John; Brown, Sarah L.; Miyoshi, Hiroyuki; Loh, Joy; Lennerz, Jochen; Kishi, Chieko; KC, Wumesh; Carrero, Javier A.; Hunt, Steven; Stone, Christian; Brunt, Elizabeth M.; Xavier, Ramnik J.; Sleckman, Barry P.; Li, Ellen; Mizushima, Noboru; Stappenbeck, Thaddeus S.; Virgin, Herbert W.
2008-01-01
Susceptibility to Crohn's disease (CD), a complex inflammatory disease involving the small intestine, is controlled by up to 32 loci1. One CD risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG162. It is not known how Atg16L1 or autophagy contributes to intestinal biology or CD pathogenesis. To address these questions we generated and characterized mice that are hypomorphic for Atg16L1 protein expression, and validated conclusions based on studies in these mice by analyzing intestinal tissues that we collected from CD patients carrying the CD risk allele of ATG16L1. We show that Atg16L1 is a bona fide autophagy protein. Within the ileal epithelium, both Atg16L1 and a second essential autophagy protein Atg5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell which functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment3. Atg16L1 and Atg5-deficient Paneth cells exhibited striking abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to Atg16L1-deficient Paneth cells including increased expression of genes involved in PPAR signaling and lipid metabolism, acute phase reactants, as well as two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, CD patients homozygous for the ATG16L1 CD risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy protein-deficient mice and expressed increased levels of leptin protein. Thus, Atg16L1, and likely the process of autophagy, play their role within the intestinal epithelium of mice and CD patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells. PMID:18849966
NASA Technical Reports Server (NTRS)
Bai, J. P.; Amidon, G. L.
1992-01-01
The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.
Hammi, Sanaa; Berrani, Hajar; Benouchen, Thami; Lamlami, Naima; Elkhiyat, Imane; Bourkadi, Jamal Eddine
2017-01-01
Primary intestinal lymphangiectasia (Waldmann’s disease) is an exudative enteropathy characterized by lymph leakage into the small bowel lumen leading to hypoalbuminemia, hypogammaglobulinemia and lymphopenia (particularly T-cell). The diagnosis is based on viewing the duodenal lymphangiectasia. A 20 years old female patient, treated for a primary intestinal lymphangiectasia, has consulted for anasarca. Etiological work-up reveals pleural and pericardial tuberculosis. The clinical aggravation of an enteropathy, particularly in adulthood, requires a search for a secondary etiology. Tuberculosis should be sought systematically. PMID:28491220
Hammi, Sanaa; Berrani, Hajar; Benouchen, Thami; Lamlami, Naima; Elkhiyat, Imane; Bourkadi, Jamal Eddine
2017-01-01
Primary intestinal lymphangiectasia (Waldmann's disease) is an exudative enteropathy characterized by lymph leakage into the small bowel lumen leading to hypoalbuminemia, hypogammaglobulinemia and lymphopenia (particularly T-cell). The diagnosis is based on viewing the duodenal lymphangiectasia. A 20 years old female patient, treated for a primary intestinal lymphangiectasia, has consulted for anasarca. Etiological work-up reveals pleural and pericardial tuberculosis. The clinical aggravation of an enteropathy, particularly in adulthood, requires a search for a secondary etiology. Tuberculosis should be sought systematically.
Kidd, Mark; Modlin, Irvin M; Drozdov, Ignat
2014-07-15
Tumor transcriptomes contain information of critical value to understanding the different capacities of a cell at both a physiological and pathological level. In terms of clinical relevance, they provide information regarding the cellular "toolbox" e.g., pathways associated with malignancy and metastasis or drug dependency. Exploration of this resource can therefore be leveraged as a translational tool to better manage and assess neoplastic behavior. The availability of public genome-wide expression datasets, provide an opportunity to reassess neuroendocrine tumors at a more fundamental level. We hypothesized that stringent analysis of expression profiles as well as regulatory networks of the neoplastic cell would provide novel information that facilitates further delineation of the genomic basis of small intestinal neuroendocrine tumors. We re-analyzed two publically available small intestinal tumor transcriptomes using stringent quality control parameters and network-based approaches and validated expression of core secretory regulatory elements e.g., CPE, PCSK1, secretogranins, including genes involved in depolarization e.g., SCN3A, as well as transcription factors associated with neurodevelopment (NKX2-2, NeuroD1, INSM1) and glucose homeostasis (APLP1). The candidate metastasis-associated transcription factor, ST18, was highly expressed (>14-fold, p < 0.004). Genes previously associated with neoplasia, CEBPA and SDHD, were decreased in expression (-1.5 - -2, p < 0.02). Genomic interrogation indicated that intestinal tumors may consist of two different subtypes, serotonin-producing neoplasms and serotonin/substance P/tachykinin lesions. QPCR validation in an independent dataset (n = 13 neuroendocrine tumors), confirmed up-regulated expression of 87% of genes (13/15). An integrated cellular transcriptomic analysis of small intestinal neuroendocrine tumors identified that they are regulated at a developmental level, have key activation of hypoxic pathways (a known regulator of malignant stem cell phenotypes) as well as activation of genes involved in apoptosis and proliferation. Further refinement of these analyses by RNAseq studies of large-scale databases will enable definition of individual master regulators and facilitate the development of novel tissue and blood-based tools to better understand diagnose and treat tumors.
2016-08-09
B-cell Adult Acute Lymphoblastic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Kaptan, Engin; Bas, Serap Sancar; Inceli, Meliha Sengezer
2013-03-01
This study aimed to investigate the functional relationship of sialic acid in regressing and remodelling organs such as the tail, small intestine and liver during the metamorphosis of Pelophylax ridibundus. For this purpose, four groups were composed according to developmental periods by considering Gosner's criteria (1964). Our findings showed that the sialic acid content of the larval tail has an opposite profile to cell death process. Although the sialic acid content of the small intestine and liver did not change evidently during metamorphosis, it increased after the completion of metamorphosis. Frog tail extensively exhibited cell death process and decreased proliferative activity and underwent complete degeneration during metamorphic climax. In spite of increased apoptotic index, a decreased sialic acid level in the tail tissues during climax can be the indication of a death cell removal process. However, the intestine and the liver included both cell death and proliferative process and remodelling in their adult forms. Thus, their sialic acid profiles during metamorphosis were different from the tail's profile. These data show that sialic acid may be an indicator of the presence of some cellular events during metamorphosis and that it can have different roles in the developmental process depending on the organ's fate throughout metamorphosis. Copyright © 2012 John Wiley & Sons, Ltd.
2014-09-03
Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Infection; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Precancerous Condition; Secondary Myelofibrosis; Small Intestine Cancer
Šuligoj, Tanja; Gregorini, Armando; Colomba, Mariastella; Ellis, H Julia; Ciclitira, Paul J
2013-12-01
Coeliac disease is a chronic small intestinal immune-mediated enteropathy triggered by dietary gluten in genetically predisposed individuals. Since it is unknown if all wheat varieties are equally toxic to coeliac patients seven Triticum accessions showing different origin (ancient/modern) and ploidy (di-, tetra- hexaploid) were studied. Selected strains of wheat were ancient Triticum monococcum precoce (AA genome) and Triticum speltoides (BB genome), accessions of Triticum turgidum durum (AABB genome) including two ancient (Graziella Ra and Kamut) and two modern (Senatore Cappelli and Svevo) durum strains of wheat and Triticum aestivum compactum (AABBDD genome). Small intestinal gluten-specific T-cell lines generated from 13 coeliac patients were tested with wheat accessions by proliferation assays. All strains of wheat independent of ploidy or ancient/modern origin triggered heterogeneous responses covering wide ranges of stimulation indices. Ancient strains of wheat, although previously suggested to be low or devoid of coeliac toxicity, should be tested for immunogenicity using gluten-specific T-cell lines from multiple coeliac patients rather than gluten-specific clones to assess their potential toxicity. Our findings provide further evidence for the need for a strict gluten-free diet in coeliac patients, including avoidance of ancient strains of wheat. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu
2014-01-01
The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1
Jayewickreme, Chenura D.; Shivdasani, Ramesh A.
2015-01-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.
Jayewickreme, Chenura D; Shivdasani, Ramesh A
2015-09-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F
2012-04-01
Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
Treatment for Chronic Pain in Patients With Advanced Cancer
2016-11-25
Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Pain; Precancerous/Nonmalignant Condition; Small Intestine Cancer; Unspecified Adult Solid Tumor, Protocol Specific
[Histochemical study of the digestive organs of rats after a flight on "Kosmos-605"].
Shubich, M G; Goriacheva, L L; Dudetskiĭ, V I; Lutsenko, N M; Mogil'naia, G M
1977-01-01
The histochemical study of the stomach, small and large intestines and pancreas of rats flown aboard the biosatellite Cosmos-605 as well as of synchronous and vivarium controls demonstrated a significant decline in the mucine producing capacity of epithelial cells of the stomach of the flight rats on the R + 1 day. The study showed an increased content of sialo- and sulphosaccharides in goblet cells of cryptae of large intestine and a reduced content of free cation protein in the acinar cells of the pancreas of flight rats. The changes were transient and disappeared by the R + 26 day.
Birthdating of myenteric neuron subtypes in the small intestine of the mouse.
Bergner, Annette J; Stamp, Lincon A; Gonsalvez, David G; Allison, Margaret B; Olson, David P; Myers, Martin G; Anderson, Colin R; Young, Heather M
2014-02-15
There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype. Copyright © 2013 Wiley Periodicals, Inc.
Small Intestine Cancer—Health Professional Version
Adenocarcinoma is the most common type of small intestine cancer. Other types of small intestine cancer are sarcomas, carcinoid tumors, gastrointestinal stromal tumors, and lymphomas. Find evidence-based information on small intestine cancer treatment, research, and statistics.
Chen, Binrui; Zhu, Shuwen; Du, Lijun; He, Huiqin; Kim, John J; Dai, Ning
2017-10-01
Intestinal dysmotility and immune activation are likely involved in the pathogenesis of small intestinal bacteria overgrowth (SIBO) in irritable bowel syndrome (IBS). We aimed at investigating the role of interstitial cells of Cajal (ICC) and intestinal inflammation in the development of SIBO using a post-infectious IBS (PI-IBS) mouse model. NIH mice were randomly infected with Trichinella spiralis. Visceral sensitivity and stool pattern were assessed at 8-weeks post-infection (PI). Intestinal bacteria counts from jejunum and ileum were measured by quantitative real-time PCR to evaluate the presence of SIBO. ICC density, intraepithelial lymphocytes (IELs) counts, and intestinal cytokine levels (IL1-β, IL-6, toll-like receptor-4 (TLR-4), IL-10) in the ileum were examined. PI-IBS mice demonstrated increased visceral sensitivity compared with the control group. One-third of the PI-IBS mice developed SIBO (SIBO+/PI-IBS) and was more likely to have abnormal stool form compared with SIBO negative PI-IBS (SIBO-/PI-IBS) mice but without difference in visceral sensitivity. SIBO+/PI-IBS mice had decreased ICC density and increased IELs counts in the ileum compared with SIBO-/PI-IBS mice. No difference in inflammatory cytokine expression levels were detected among the groups except for increased TLR-4 in PI-IBS mice compared with the control group. Development of SIBO in PI-IBS mice was associated with reduced ICC density and increased IELs counts in the ileum. Our findings support the role of intestinal dysmotility and inflammation in the pathogenesis of SIBO in IBS and may provide potential therapeutic targets.
Wong, Eric B; Mallet, Jean-François; Duarte, Jairo; Matar, Chantal; Ritz, Barry W
2014-04-01
Oral administration of bovine colostrum affects intestinal immunity, including an increased percentage of natural killer (NK) cells. However, effects on NK cell cytotoxic activity and resistance to infection as well as a potential mechanism remain unclear. Therefore, we investigated the effects of bovine colostrum (La Belle, Inc, Bellingham, WA) on the NK cytotoxic response to influenza infection and on toll-like receptor (TLR) activity in a primary intestinal epithelial cell culture. We hypothesized that colostrum would increase NK cell activity and that TLR-2 and TLR-4 blocking would reduce interleukin 6 production by epithelial cells in response to contact stimulation with colostrum. Four-month-old female C57BL/6 mice were supplemented with 1 g of colostrum per kilogram of body weight before and after infection with influenza A virus (H1N1). Animals were assessed for weight loss, splenic NK cell activity, and lung virus titers. Colostrum-supplemented mice demonstrated less reduction in body weight after influenza infection, indicating a less severe infection, increased NK cell cytotoxicity, and less virus burden in the lungs compared with controls. Colostrum supplementation enhanced NK cell cytotoxicity and improved the immune response to primary influenza virus infection in mice. To investigate a potential mechanism, a primary culture of small intestine epithelial cells was then stimulated with colostrum. Direct activation of epithelial cells resulted in increased interleukin 6 production, which was inhibited with TLR-2 and TLR-4 blocking antibodies. The interaction between colostrum and immunity may be dependent, in part, on the interaction of colostrum components with innate receptors at the intestinal epithelium, including TLR-2 and TLR-4. Copyright © 2014 Elsevier Inc. All rights reserved.
Melton-Witt, Jody A.; Rafelski, Susanne M.; Portnoy, Daniel A.
2012-01-01
Listeria monocytogenes causes a serious food-borne disease due to its ability to spread from the intestine to other organs, a process that is poorly understood. In this study we used 20 signature-tagged wild-type clones of L. monocytogenes in guinea pigs in combination with extensive quantitative data analysis to gain insight into extraintestinal dissemination. We show that L. monocytogenes colonized the liver in all asymptomatic animals. Spread to the liver occurred as early as 4 h after ingestion via a direct pathway from the intestine to the liver. This direct pathway contributed significantly to the bacterial load in the liver and was followed by a second wave of dissemination via the mesenteric lymph nodes (indirect pathway). Furthermore, bacteria were eliminated in the liver, whereas small intestinal villi provided a niche for bacterial replication, indicating organ-specific differences in net bacterial growth. Bacteria were shed back from intestinal villi into the small intestinal lumen and reinfected the Peyer's patches. Together, these results support a novel dissemination model where L. monocytogenes replicates in intestinal villi, is shed into the lumen, and reinfects intestinal immune cells that traffic to liver and mesenteric lymph nodes, a process that occurs even during asymptomatic colonization. PMID:22083714
Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana
2006-09-11
The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.
Nagano, Y; Matsui, H; Shimokawa, O; Hirayama, A; Tamura, M; Nakamura, Y; Kaneko, T; Rai, K; Indo, H P; Majima, H J; Hyodo, I
2012-04-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) often cause gastrointestinal complications such as gastric ulcers and erosions. Recent studies on the pathogenesis have revealed that NSAIDs induce lipid peroxidation in gastric epithelial cells by generating superoxide anion in mitochondria, independently with cyclooxygenase-inhibition and the subsequent prostaglandin deficiency. Although not clearly elucidated, the impairment of mitochondrial oxidative phosphorylation, or uncoupling, by NSAIDs is associated with the generation of superoxide anion. Physiologically, superoxide is immediately transformed into hydrogen peroxide and diatomic oxygen with manganese superoxide dismutase (MnSOD). Rebamipide is an antiulcer agent that showed protective effects against NSAID-induced lipid peroxidation in gastrointestinal tracts. We hypothesized that rebamipide may attenuate lipid peroxidation by increasing the expression of MnSOD protein in mitochondria and decreasing the leakage of superoxide anion in NSAID-treated gastric and small intestinal epithelial cells. Firstly, to examine rebamipide increases the expression of MnSOD proteins in mitochondria of gastrointestinal epithelial cells, we underwent Western blotting analysis against anti-MnSOD antibody in gastric RGM1 cells and small intestinal IEC6 cells. Secondly, to examine whether the pretreatment of rebamipide decreases NSAID-induced mitochondrial impairment and lipid peroxidation, we treated these cells with NSAIDs with or without rebamipide pretreatment, and examined with specific fluorescent indicators. Finally, to examine whether pretreatment of rebamipide attenuates NSAID-induced superoxide anion leakage from mitochondria, we examined the mitochondria from indomethacin-treated RGM1 cells with electron spin resonance (ESR) spectroscopy using a specific spin-trapping reagent, CYPMPO. Rebamipide increased the expression of MnSOD protein, and attenuated NSAID-induced mitochondrial impairment and lipid peroxidation in RGM1 and IEC6 cells. The pretreatment of rebamipide significantly decreased the signal intensity of superoxide anion from the mitochondria. We conclude that rebamipide attenuates lipid peroxidation by increasing the expression of MnSOD protein and decreasing superoxide anion leakage from mitochondria in both gastric and small intestinal epithelial cells.
Liu, Shang-Pin; Chang, Chien-Yu; Huang, Wen-Hung; Fu, Yaw-Syan; Chao, David; Huang, Hung-Tu
2010-01-01
Intravenous application of a high dose of endotoxin, also called lipopoly-saccharide (LPS), results in endotoxemia in animals, that induces production of cytokines and free radicals, systemic inflammation and mucin discharge from mucous tissues. The present study was to investigate (1) whether LPS application increased goblet cell secretion by compound exocytotic activity in mucosal villi and crypts of rat small intestine, and (2) whether hydroxyl radicals were involved in LPS-induced compound exocytosis in goblet cells and plasma leakage. Scanning electron microscopy showed that the numbers of goblet cells undergoing compound exocytosis (cavitated goblet cells) per mm(2) of ileal villus epithelium in rats 5 and 30 min after LPS (15 mg kg(-1)) were 693 +/- 196 (N = 6) and 547 +/- 213 (N = 6), respectively, which were 5.1 and 8.4 times (P < 0.05) the number of saline control. The percentage of villus cavitated goblet cell numbers, in both duodenum and ileum 5 min after LPS and in the ileum 30 min after LPS, increased significantly (P < 0.05). Pretreatment with dimethylthiourea (DMTU), a hydroxyl radical scavenger, decreased the number of cavitated goblet cells to saline control (P > 0.05). Morphometric analysis showed that the percentage of crypt epithelial area in the duodenum and ileum occupied by goblet cell mucin stores in the duodenum and ileum 30 min after LPS were 3.8 +/- 0.2% (N = 6) and 6.9 +/- 0.5 (N = 6), respectively reducing to one half the amount of control (P < 0.01). When DMTU was given prior to LPS the crypt goblet cell mucin stores and the amount of plasma leakage returned to the level of control. It is concluded that hydroxyl radicals were involved in the LPS-induced increase in compound exocytotic activity of goblet cells and the increase in plasma leakage during acute phases of inflammatory response in rat small intestine.
[Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].
Logvinovich, O S; Aksenova, G E
2013-01-01
Ornithine decarboxylase (ODC, EC 4.1.1.17.) is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.
Acute exercises induce disorders of the gastrointestinal integrity in a murine model.
Gutekunst, Katrin; Krüger, Karsten; August, Christian; Diener, Martin; Mooren, Frank-Christoph
2014-03-01
Many endurance athletes complain about gastrointestinal (GI) symptoms. It is assumed that exercise-induced shift of perfusion with consecutive hypoperfusion of the enteral vascular system leads to an increased GI permeability and tissue damage. Therefore, the aim of the study was to investigate permeability, apoptosis, electrogenic ion transport (Isc), and tissue conductance (Gt) of the small intestine in a murine exercise model. After spirometry, male Swiss CD-1 mice were subjected to an intensive treadmill exercise (80% VO2max). Sedentary mice served as controls. The small intestine was removed at several time intervals post-exercise. Apoptotic cells were determined by the TUNEL method, while fluorescein isothiocyanate dextran permeation indicated intestinal permeability. The Gt and Isc measurements were carried out in a modified Ussing chamber. Apoptosis of epithelial cells increased continuously until 24 h post exercise (0.8 ± 0.42 versus 39.2 ± 26.0%; p < 0.05). Compared with the control group the permeability increased 2 h after exercise (0.47 ± 0.07 versus 0.67 ± 0.14 FU/min; p < 0.05). Isc measurements of the ileum were augmented after 24 h (3.33 ± 0.56 versus 5.77 ± 1.16 μEq/h/cm(2); p < 0.05). At this time the Gt increased as well (28.8 ± 3.37 versus 32.5 ± 2.59 mS/cm(2); p < 0.05). In the murine exercise model there is evidence that after intense endurance exercise repair processes occur in small intestinal epithelial cells, which affect permeability, Gt, and Isc. The formation of lamellipodia to close the "leaky" tight junctions caused by apoptosis might be an underlying mechanism.
EMD 121974 in Treating Patients With Locally Advanced or Metastatic Cancer
2014-09-16
Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Precancerous/Nonmalignant Condition; Small Intestine Cancer; Unspecified Adult Solid Tumor, Protocol Specific
Beliaeva, N N; Mikhaĭlova, R I; Sycheva, L P; Savostikova, O N; Zelenkina, E A; Gasimova, Z M; Alekseeva, A V; Ryzhova, I N; Altaeva, A A
2012-01-01
The experiment was conducted in male mice SBAchS57Vl/6 and Balb/c, which consumed water, obtained from the use of carbon nanotubes. in a free drinking regimen for 2 weeks (mice SBAchS57Vl/6) and 2 months (mice Balb/c) Control group consisted of three groups of animals: intact and mice received fine coal in the same concentrations as under the impact of the nanotubes. Under exposure to the maximal of the studied concentration of carbon nanotubes a significant change in the fine structure of the villi of the small intestine was found in the form of increasing the number of unstructured villi and proliferation of epithelial cells, most pronounced in duration of exposure until 2 months.
Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M
2014-12-01
Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Using the small intestine enterocyte Caco-2 cell model, sucrase-isomaltase (SI, the mucosal alpha-glucosidase complex) expression and modification were examined relative to exposure to different mono- and disaccharide glycemic carbohydrates. Caco-2/TC7 cells were grown on porous supports to post-con...
Peng, Hao-Fan; Liu, Jin Yu
2011-01-01
Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation. PMID:21083418
Kato, Takashi; Ichihara, Shin; Gotoda, Hiroko; Muraoka, Shunji; Kubo, Terufumi; Sugita, Shintaro; Hasegawa, Tadashi
2017-12-01
Clear cell sarcoma-like tumor of the gastrointestinal tract (CCSLGT) is an extremely rare malignant neoplasm in the digestive tract. Its cytomorphologic features have never previously been reported. Here, we describe a case of CCSLGT, including its cytologic examination findings. A 47-year-old woman presented with a mass in the small intestine, which was resected and sent for imprint cytology. Imprint smears revealed tumor cells with light eosinophilic or clear cytoplasm in a necrotic background. Many of the tumor cells were arranged in a perivascular growth with a pseudopapillary formation, and there were some non-neoplastic osteoclast-like giant cells. Histological examination revealed solid nests and a pseudopapillary pattern of the tumor cells with clear or pale eosinophilic cytoplasm and large nuclei with small nucleoli. Immunohistochemistry showed positive for vimentin, S-100, and SOX-10, and negative for SMA, c-KIT, cytokeratin, HMB-45, and MelanA. The EWSR1 gene split signal was detected by reverse transcriptase fluorescence in situ hybridization, and EWSR1-CREB1 gene fusion was indicated by reverse transcriptase polymerase chain reaction analysis. From these findings, we diagnosed the tumor as CCSLGT. To best of our knowledge, this is the first description of the imprint cytology features of CCSLGT. © 2017 Wiley Periodicals, Inc.
Mechanisms and pathways of Toxoplasma gondii transepithelial migration
Jones, Emily J.; Carding, Simon R.
2017-01-01
ABSTRACT Toxoplasma gondii is a ubiquitous parasite and a prevalent food-borne parasitic pathogen. Infection of the host occurs principally through oral consumption of contaminated food and water with the gastrointestinal tract being the primary route for entry into the host. To promote infection, T. gondii has evolved highly specialized strategies for rapid traversal of the single cell thick intestinal epithelial barrier. Parasite transmigration via the paracellular pathway between adjacent cells enables parasite dissemination to secondary sites of infection where chronic infection of muscle and brain tissue is established. It has recently been proposed that parasite interactions with the integral tight junction (TJ) protein occludin influences parasite transmigration of the intestinal epithelium. We review here the emerging mechanisms of T. gondii transmigration of the small intestinal epithelium alongside the developing role played in modulating the wider TJ-associated proteome to rewire host cell regulatory systems for the benefit of the parasite. PMID:28452683
Mechanisms and pathways of Toxoplasma gondii transepithelial migration.
Jones, Emily J; Korcsmaros, Tamas; Carding, Simon R
2017-01-02
Toxoplasma gondii is a ubiquitous parasite and a prevalent food-borne parasitic pathogen. Infection of the host occurs principally through oral consumption of contaminated food and water with the gastrointestinal tract being the primary route for entry into the host. To promote infection, T. gondii has evolved highly specialized strategies for rapid traversal of the single cell thick intestinal epithelial barrier. Parasite transmigration via the paracellular pathway between adjacent cells enables parasite dissemination to secondary sites of infection where chronic infection of muscle and brain tissue is established. It has recently been proposed that parasite interactions with the integral tight junction (TJ) protein occludin influences parasite transmigration of the intestinal epithelium. We review here the emerging mechanisms of T. gondii transmigration of the small intestinal epithelium alongside the developing role played in modulating the wider TJ-associated proteome to rewire host cell regulatory systems for the benefit of the parasite.
Aged garlic extract protects against methotrexate-induced apoptotic cell injury of IEC-6 cells.
Horie, Toshiharu; Li, Tiesong; Ito, Kousei; Sumi, Shin-ichiro; Fuwa, Toru
2006-03-01
Gastrointestinal toxicity is one of the most serious side effects of methotrexate (MTX) treatment. The side effects often disrupt the cancer chemotherapy. We previously reported that aged garlic extract (AGE) protects the small intestine of rats from MTX-induced damage. In this study, the protection of AGE against MTX-induced damage of IEC-6 cells originating from the rat jejunum crypt was investigated. MTX decreased the viability of IEC-6 cells, but this effect was prevented by AGE (0.5%). The MTX-induced apoptosis of IEC-6 cells was depressed by AGE. These results indicated that AGE protects IEC-6 cells from the MTX-induced damage. AGE may be useful in cancer chemotherapy with MTX because it reduces MTX-induced intestinal damage.
... in the intestine hypomotility agents to increase the time it takes food to travel through the intestines, leading to increased nutrient absorption ... dilated segment of the small intestine slow the time it takes for food to travel through the small intestine lengthen the small intestine ...
Magness, Scott T.; Puthoff, Brent J.; Crissey, Mary Ann; Dunn, James; Henning, Susan J.; Houchen, Courtney; Kaddis, John S.; Kuo, Calvin J.; Li, Linheng; Lynch, John; Martin, Martin G.; May, Randal; Niland, Joyce C.; Olack, Barbara; Qian, Dajun; Stelzner, Matthias; Swain, John R.; Wang, Fengchao; Wang, Jiafang; Wang, Xinwei; Yan, Kelley; Yu, Jian
2013-01-01
Fluorescence-activated cell sorting (FACS) is an essential tool for studies requiring isolation of distinct intestinal epithelial cell populations. Inconsistent or lack of reporting of the critical parameters associated with FACS methodologies has complicated interpretation, comparison, and reproduction of important findings. To address this problem a comprehensive multicenter study was designed to develop guidelines that limit experimental and data reporting variability and provide a foundation for accurate comparison of data between studies. Common methodologies and data reporting protocols for tissue dissociation, cell yield, cell viability, FACS, and postsort purity were established. Seven centers tested the standardized methods by FACS-isolating a specific crypt-based epithelial population (EpCAM+/CD44+) from murine small intestine. Genetic biomarkers for stem/progenitor (Lgr5 and Atoh 1) and differentiated cell lineages (lysozyme, mucin2, chromogranin A, and sucrase isomaltase) were interrogated in target and control populations to assess intra- and intercenter variability. Wilcoxon's rank sum test on gene expression levels showed limited intracenter variability between biological replicates. Principal component analysis demonstrated significant intercenter reproducibility among four centers. Analysis of data collected by standardized cell isolation methods and data reporting requirements readily identified methodological problems, indicating that standard reporting parameters facilitate post hoc error identification. These results indicate that the complexity of FACS isolation of target intestinal epithelial populations can be highly reproducible between biological replicates and different institutions by adherence to common cell isolation methods and FACS gating strategies. This study can be considered a foundation for continued method development and a starting point for investigators that are developing cell isolation expertise to study physiology and pathophysiology of the intestinal epithelium. PMID:23928185
Wang, X; Peebles, E D; Morgan, T W; Harkess, R L; Zhai, W
2015-01-01
In a companion study, high amino acid (AA) or apparent metabolizable energy (AME) densities in the diets of broilers from 8 to 21 d of age were found to improve feed conversion. A total of 1,120 male Ross×Ross 708 chicks were randomly allocated to 80 pens (8 treatments, 10 replications per treatment, 14 chicks per pen). A 2×2×2 factorial arrangement of treatments was used to investigate the interaction among the protein source (high distillers dried grains with solubles diet [hDDGS] or high meat and bone meal diet [hMBM]), AA density (moderate or high), and AME density (2,998 or 3,100 kcal/kg) of diets on small intestine morphology. Duodenum, jejunum, and ileum samples from 2 chicks per pen were collected and measured individually at 21 d. Jejunum sections were processed for histological analysis. Chicks fed hDDGS diets exhibited longer small intestines than did chicks fed hMBM diets. Particularly, when chicks were fed high AA density diets, jejuna were longer in groups fed hDDGS diets than groups fed hMBM diets. Dietary treatments did not affect jejunum villus height, width, area, crypt depth, villus to crypt ratio, goblet cell size, or cell density. In birds fed diets containing a moderate AA and a high AME density, jejunum muscle layers of chicks fed hDDGS diets were thicker than those fed hMBM diets. Chicks exhibited a lower feed conversion ratio (FCR) and a higher BW gain when their crypts were shorter. In conclusion, an hDDGS diet may facilitate small intestine longitudinal growth in broilers, which may subsequently improve dietary nutrient absorption. In addition, broiler chicks with shallow intestinal crypts exhibited better growth performance. © 2014 Poultry Science Association Inc.
Campbell, Sara; Moreau, Michael; Patel, Falshruti; Brooks, Andrew I.; Zhou, Yin Xiu; Häggblom, Max M.; Storch, Judith
2017-01-01
Bacterial communities in the mouse caecum and faeces are known to be altered by changes in dietary fat. The microbiota of the mouse small intestine, by contrast, has not been extensively profiled and it is unclear whether small intestinal bacterial communities shift with dietary fat levels. We compared the microbiota in the small intestine, caecum and colon in mice fed a low-fat (LF) or high-fat (HF) diet using 16S rRNA gene sequencing. The relative abundance of major phyla in the small intestine, Bacteriodetes, Firmicutes and Proteobacteria, was similar to that in the caecum and colon; the relative abundance of Verrucomicrobia was significantly reduced in the small intestine compared to the large intestine. Several genera were uniquely detected in the small intestine and included the aerotolerant anaerobe, Lactobacillus spp. The most abundant genera in the small intestine were accounted for by anaerobic bacteria and were identical to those identified in the large intestine. An HF diet was associated with significant weight gain and adiposity and with changes in the bacterial communities throughout the intestine, with changes in the small intestine differing from those in the caecum and colon. Prominent Gram-negative bacteria including genera of the phylum Bacteroidetes and a genus of Proteobacteria significantly changed in the large intestine. The mechanistic links between these changes and the development of obesity, perhaps involving metabolic endotoxemia, remain to be determined. PMID:28742010
Parsons, Sean P; Huizinga, Jan D
2018-06-03
What is the central question of this study? What is the nature of slow wave driven contraction frequency gradients in the small intestine? What is the main finding and its importance? Frequency plateaus are composed of discrete waves of increased interval, each wave associated with a contraction dislocation. Smooth frequency gradients are generated by localised neural modulation of wave frequency, leading to functionally important wave turbulence. Both patterns are emergent properties of a network of coupled oscillators, the interstitial cells of Cajal. A gut-wide network of interstitial cells of Cajal (ICC) generate electrical oscillations (slow waves) that orchestrate waves of muscle contraction. In the small intestine there is a gradient in slow wave frequency from high at the duodenum to low at the terminal ileum. Time-averaged measurements of frequency have suggested either a smooth or stepped (plateaued) gradient. We measured individual contraction intervals from diameter maps of the mouse small intestine to create interval maps (IMaps). IMaps showed that each frequency plateau was composed of discrete waves of increased interval. Each interval wave originated at a terminating contraction wave, a "dislocation", at the plateau's proximal boundary. In a model chain of coupled phase oscillators, interval wave frequency increased as coupling decreased or as the natural frequency gradient or noise increased. Injuring the intestine at a proximal point to destroy coupling, suppressed distal steps which then reappeared with gap junction block by carbenoxolone. This lent further support to our previous hypothesis that lines of dislocations were fixed by points of low coupling strength. Dislocations induced by electrical field pulses in the intestine and by equivalent phase shift in the model, were associated with interval waves. When the enteric nervous system was active, IMaps showed a chaotic, turbulent pattern of interval change with no frequency steps or plateaus. This probably resulted from local, stochastic release of neurotransmitters. Plateaus, dislocations, interval waves and wave turbulence arise from a dynamic interplay between natural frequency and coupling in the ICC network. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
In vitro enzymic hydrolysis of chlorogenic acids in coffee.
da Encarnação, Joana Amarante; Farrell, Tracy L; Ryder, Alexandra; Kraut, Nicolai U; Williamson, Gary
2015-02-01
Coffee is rich in quinic acid esters of phenolic acids (chlorogenic acids) but also contains some free phenolic acids. A proportion of phenolic acids appear in the blood rapidly after coffee consumption due to absorption in the small intestine. We investigated in vitro whether this appearance could potentially be derived from free phenolic acids in instant coffee or from hydrolysis of chlorogenic acids by pancreatic or brush border enzymes. We quantified six free phenolic acids in instant coffees using HPLC-DAD-mass spectrometry. The highest was caffeic acid, but all were present at low levels compared to the chlorogenic acids. Roasting and decaffeination significantly reduced free phenolic acid content. We estimated, using pharmacokinetic modelling with previously published data, that the contribution of these compounds to small intestinal absorption is minimal. Hydrolysis of certain chlorogenic acids was observed with human-differentiated Caco-2 cell monolayers and with porcine pancreatin, which showed maximal rates on 3- and 5-O-caffeoylquinic acids, respectively. The amounts of certain free phenolic acids in coffee could only minimally account for small intestinal absorption based on modelling. The hydrolysis of caffeoylquinic, but not feruloylquinic acids, by enterocyte and pancreatic esterases is potentially a contributing mechanism to small intestinal absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018-01-26
Adult Grade III Lymphomatoid Granulomatosis; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Brake, D W; Titgemeyer, E C; Bailey, E A; Anderson, D E
2014-09-01
Six duodenally and ileally cannulated steers were used in 3 sequential studies to measure 1) basal nutrient flows from a soybean hull-based diet, 2) small intestinal digestibility of raw cornstarch continuously infused into the duodenum, and 3) responses of small intestinal starch digestion to duodenal infusion of 200 or 400 g/d casein. Our objective was to evaluate responses in small intestinal starch digestion in cattle over time and to measure responses in small intestinal starch digestion to increasing amounts of MP. On average, cattle consumed 3.7 kg/d DM, 68 g/d dietary N, and 70 g/d dietary starch. Starch flow to the duodenum was small (38 g/d), and N flow was 91 g/d. Small intestinal digestibility of duodenal N was 57%, and small intestinal digestion of duodenal starch flow was extensive (92%). Small intestinal starch digestibility was 34% when 1.5 kg/d raw cornstarch was continuously infused into the duodenum. Subsequently, cattle were placed in 1 of 2 replicated Latin squares that were balanced for carryover effects to determine response to casein infusions and time required for adaptation. Duodenal infusion of casein linearly increased (P ≤ 0.05) small intestinal starch digestibility, and small intestinal starch digestion adapted to infusion of casein in 6 d. Ethanol-soluble starch and unpolymerized glucose flowing to the ileum increased linearly (P ≤ 0.05) with increasing infusion of casein. Plasma cholecystokinin was not affected by casein infusion, but circulating levels of glucose were increased by casein supplementation (P ≤ 0.05). Responses in small intestinal starch digestion in cattle adapted to casein within 6 d, and increases in duodenal supply of casein up to 400 g/d increased small intestinal starch digestion in cattle.
Ling, Binhua; Mohan, Mahesh; Lackner, Andrew A; Green, Linda C; Marx, Preston A; Doyle, Lara A; Veazey, Ronald S
2010-12-15
Although patients with human immunodeficiency virus type 1 infection who are receiving antiretroviral therapy and those with long-term, nonprogressive infection (LTNPs) usually have undetectable viremia, virus persists in tissue reservoirs throughout infection. However, the distribution and magnitude of viral persistence and replication in tissues has not been adequately examined. Here, we used the simian immunodeficiency virus (SIV) macaque model to quantify and compare viral RNA and DNA in the small (jejunum) and large (colon) intestine of LTNPs. In LTNPs with chronic infection, the colon had consistently higher viral levels than did the jejunum. The colon also had higher percentages of viral target cells (memory CD4(+) CCR5(+) T cells) and proliferating memory CD4(+) T cells than did the jejunum, whereas markers of cell activation were comparable in both compartments. These data indicate that the large intestine is a major viral reservoir in LTNPs, which may be the result of persistent, latently infected cells and higher turnover of naive and central memory CD4(+) T cells in this major immunologic compartment.
Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG.
Banasaz, M; Norin, E; Holma, R; Midtvedt, T
2002-06-01
There is increasing scientific and commercial interest in using beneficial microorganisms (i.e., probiotics) to enhance intestinal health. Of the numerous microbial strains examined, Lactobacillus rhamnosus GG has been most extensively studied. Daily intake of L. rhamnosus GG shortens the course of rotavirus infection by mechanisms that have not been fully elucidated. Comparative studies with germfree and conventional rats have shown that the microbial status of an animal influences the intestinal cell kinetics and morphology. The present study was undertaken to study whether establishment of L. rhamnosus GG as a mono-associate in germfree rats influences intestinal cell kinetics and morphology. L. rhamnosus GG was easily established in germfree rats. After 3 days of mono-association, the rate of mitoses in the upper part of the small intestine (jejunum 1) increased as much as 14 and 22% compared to the rates in germfree and conventional counterparts, respectively. The most striking alteration in morphology was an increase in the number of cells in the villi. We hypothesis that the compartmentalized effects of L. rhamnosus GG may represent a reparative event for the mucosa.
Primary small intestinal volvulus after laparoscopic rectopexy for rectal prolapse.
Koizumi, Michihiro; Yamada, Takeshi; Shinji, Seiichi; Yokoyama, Yasuyuki; Takahashi, Goro; Hotta, Masahiro; Iwai, Takuma; Hara, Keisuke; Takeda, Kohki; Kan, Hayato; Takasaki, Hideaki; Ohta, Keiichiro; Uchida, Eiji
2018-02-01
Primary small intestinal volvulus is defined as torsion in the absence of congenital malrotation, band, or postoperative adhesions. Its occurrence as an early postoperative complication is rare. A 40-year-old woman presented with rectal prolapse, and laparoscopic rectopexy was uneventfully performed. She could not have food on the day after surgery. She started oral intake on postoperative day 3 but developed abdominal pain after the meal. Contrast-enhanced CT revealed torsion of the small intestinal mesentery. An emergent laparotomy showed small intestinal volvulus, without congenital malformation or intestinal adhesions. We diagnosed it as primary small intestinal volvulus. The strangulated intestine was resected, and reconstruction was performed. The patient recovered uneventfully after the second surgery. To the best of our knowledge, this is the first report of primary small intestinal volvulus occurring after rectopexy for rectal prolapse. Primary small intestinal volvulus could be a postoperative complication after laparoscopy. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
Dunn, J C; Parungo, C P; Fonkalsrud, E W; McFadden, D W; Ashley, S W
1997-01-01
After massive small bowel resection, the intestine adapts to compensate. In addition to proliferation, enterocytes also undergo selective functional adaptation. In this study we examined the effect of intraperitoneal administration of epidermal growth factor (EGF) on the expression of the brush border dissacharidase sucrase, the sodium glucose cotransporter (SGLT1), and the sodium-potassium ATPase pump (NaK ATPase) by enterocytes in the remnant intestine after massive small bowel resection. Adult Lewis rats underwent either ileal transection or 70% proximal intestinal resection. These animals were subdivided into groups that received either saline or EGF intraperitoneally for 1 week. Ilea from each group were harvested 4 weeks postoperatively. Enterocytes were separated from these segments by calcium chelation. The total protein from the isolated cells was subjected to Western blot analysis. Administration of EGF to animals that underwent transection did not significantly alter the expression of sucrase, SGLT1, or NaK ATPase. After intestinal resection, the expressions of sucrase and SGLT1 were significantly increased. The combination of EGF administration and intestinal resection resulted in a further increase in SGLT1 expression. The intraperitoneal administration of EGF selectively enhanced the expression of SGLT1 by enterocytes after massive small bowel resection. Administration of EGF to sham-operated animals did not have similar effects. These results suggest that EGF augments the adaptive response and may therefore have a therapeutic role in the management of patients with short bowel syndrome.
Lopatin, Uri; Blutt, Sarah E.; Conner, Margaret E.
2013-01-01
Rotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα−/−) mice that lack Peyer's patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα−/− and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses. However, unlike wild-type mice, which resolved the intestinal infection within 10 days, LTα−/− mice shed fecal virus for approximately 50 days after inoculation. The resolution of fecal virus shedding occurred concurrently with induction of intestinal rotavirus-specific IgA in both mouse strains. Induction of intestinal rotavirus-specific IgA in LTα−/− mice correlated with the (late) appearance of IgA-producing plasma cells in the small intestine. This, together with the absence of rotavirus-specific serum IgA, implies that secretory rotavirus-specific IgA was produced locally. These findings indicate that serum IgG responses are insufficient and imply that local intestinal IgA responses are important for the clearance of rotavirus from intestinal tissues. Furthermore, they show that while LTα-dependent lymphoid tissues are important for the generation of IgA-producing B cells in the intestine, they are not absolutely required in the setting of rotavirus infection. Moreover, the induction of local IgA-producing B cell responses can occur late after infection and in an LTα-independent manner. PMID:23097456
Zheng, Xiaodan; Xie, Jianlan; Zhou, Xiaoge
2015-01-01
Epstein-Barr virus (EBV)-associated T-cell lymphoproliferative disease (LPD) is not uncommon in China, but gastrointestinal involvement is very rare. We report on an immunocompetent patient with EBV-associated T-cell LPD of the colon. The 26-year-old man was initially misdiagnosed with ulcerative colitis (UC). A colon biopsy revealed the presence of small to medium-sized lymphoid cells infiltrating the intestinal wall. The neoplastic cells expressed CD3, CD5, and granzyme B, not CD56. EBV-encoded small ribonucleic acid was detected in the tumor cells of the colon as well as the lymph node, and the T-cell receptor gene rearrangement result displayed δ gene monoclonal rearrangement. The patient died 2 moths after the diagnosis. The clinical course of EBV-associated T-cell LPD is aggressive and the prognosis is poor, the wrong diagnosis may delay treatment. Therefore, we should be very careful to prevent misdiagnosis. When patients have multiple intestinal ulcers that are not typical of UC and the clinical course is unusual, although morphology looks like inflammatory change, pathologist should consider the possibility of EBV-associated LPD. The treatment strategy and prognosis of these two diseases are different.
Vallance, Bruce A.; Galeazzi, Francesca; Collins, Stephen M.; Snider, Denis P.
1999-01-01
Expulsion of intestinal nematode parasites and the associated increased contraction by intestinal muscle are T cell dependent, since both are attenuated in athymic rodents. The CD4 T-cell subset has been strongly associated with worm expulsion; however, the relationship between these cells, antigen presentation, and worm expulsion is not definitive and the role of these factors in intestinal muscle hypercontractility has not been defined. We infected C57BL/6, athymic, CD4-deficient, CD8α-deficient, and major histocompatibility complex class II (MHC II)-deficient (C2d) mice with Trichinella spiralis larvae. We examined intestinal worm numbers, longitudinal muscle contraction, and MHC II expression. Numerous MHC II-positive cells were identified within the muscularis externa of infected but not uninfected C57BL/6 mice. C57BL/6 and CD8α-deficient mice developed large increases in muscle contraction, expelling the parasite by day 21. Athymic and C2d mice exhibited much smaller increases in muscle contraction and delayed parasite expulsion. CD4-deficient mice exhibited intermediate levels of muscle contraction and delayed parasite expulsion. To further examine the role of MHC II and CD4 T cells, we irradiated C2d mice and reconstituted them with C57BL/6 bone marrow alone or with C57BL/6 CD4 T cells. C57BL/6 bone marrow alone did not affect muscle function or worm expulsion in recipient C2d mice. Partial CD4 T-cell reconstitution was sufficient to restore increased muscle contraction but not worm expulsion. Thus, hematopoietic MHC II expression alone is insufficient for the development of muscle hypercontractility and worm expulsion, but the addition of even small numbers of CD4 T cells was sufficient to induce intestinal muscle pathophysiology. PMID:10531271
Green, Benedict T; Brown, David R
2016-01-01
The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include enteric neurons, whose activity is influenced by bacterial pathogens, and their secreted products. Neurotransmitters appear to influence epithelial associations with bacteria in the intestinal lumen. For example, internalization of Salmonella enterica and Escherichia coli O157:H7 into the Peyer's patch mucosa of the small intestine is altered after the inhibition of neural activity with saxitoxin, a neuronal sodium channel blocker. Catecholamine neurotransmitters, such as dopamine and norepinephrine, also alter bacterial internalization in Peyer's patches. In the large intestine, norepinephrine increases the mucosal adherence of E. coli. These neurotransmitter actions are mediated by well-defined catecholamine receptors situated on the basolateral membranes of epithelial cells rather than through direct interactions with luminal bacteria. Investigations of the involvement of neuroepithelial communication in the regulation of interactions between the intestinal mucosa and luminal bacteria will provide novel insights into the mechanisms underlying bacterial colonization and pathogenesis at mucosal surfaces.
Sasu, Alciona; Herman, Hildegard; Mariasiu, Teodora; Rosu, Marcel; Balta, Cornel; Anghel, Nicoleta; Miutescu, Eftimie; Cotoraci, Coralia; Hermenean, Anca
2015-10-01
Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the protective effects of silymarin on epirubicin-induced mucosal barrier injury in CD-1 mice. Immunohistochemical activity of both pro-apoptotic Bax and anti-apoptotic Bcl-2 markers, together with p53, cyt-P450 expression and DNA damage analysis on stomach, small intestine and colon were evaluated. Our results indicated stronger expression for cyt P450 in all analyzed gastrointestinal tissues of Epi group, which demonstrate intense drug detoxification. Bax immunopositivity was intense in the absorptive enterocytes and lamina connective cells of the small intestine, surface epithelial cells of the stomach and also in the colonic epithelium and lamina concomitant with a decreased Bcl-2 expression in all analyzed tissues. Epirubicin-induced gastrointestinal damage was verified by a goblet cell count and morphology analysis on histopathological sections stained for mucins. In all analyzed tissues, Bax immunopositivity has been withdrawn by highest dose of silymarin concomitant with reversal of Bcl-2 intensity at a level comparable with control. p53 expression was found in all analyzed tissues and decreased by high dose of silymarin. Also, DNA internucleosomal fragmentation was observed in the Epi groups for all analyzed tissues was almost suppressed at 100 mg/kg Sy co-treatment. Histological aspect and goblet cell count were restored at a highest dose of Sy for both small and large intestine. In conclusion, our findings suggest that silymarin may prevent cellular damage of epirubicin-induced toxicity and was effective in reducing the severity indicators of gastrointestinal mucositis in mice.
Blood and small intestine cell kinetics under radiation exposures: Mathematical modeling
NASA Astrophysics Data System (ADS)
Smirnova, O. A.
2009-12-01
Mathematical models which describe the dynamics of two vital body systems (hematopoiesis and small intestinal epithelium) in mammals exposed to acute and chronic radiation are developed. These models, based on conventional biological theories, are implemented as systems of nonlinear differential equations. Their variables and constant parameters have clear biological meaning, that provides successful identification and verification of the models in hand. It is shown that the predictions of the models qualitatively and quantitatively agree with the respective experimental data for small laboratory animals (mice, rats) exposed to acute/chronic irradiation in wide ranges of doses and dose rates. The explanation of a number of radiobiological effects, including those of the low-level long-term exposures, is proposed proceeding from the modeling results. All this bears witness to the validity of employment of the developed models, after a proper identification, in investigation and prediction of radiation effects on the hematopoietic and small intestinal epithelium systems in various mammalian species, including humans. In particular, the models can be used for estimating effects of irradiation on astronauts in the long-term space missions, such as Lunar colonies and Mars voyages.
Jones, B A; Gores, G J
1997-12-01
Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.
Torres, K A A; Pizauro, J M; Soares, C P; Silva, T G A; Nogueira, W C L; Campos, D M B; Furlan, R L; Macari, M
2013-06-01
The effect of replacing corn with low-tannin sorghum on broiler performance, carcass yield, integrity of mucosa of small intestine segments, and activity of membrane enzymes of the jejunum is investigated. A total of 594 male Cobb-500 broiler chicks were randomly assigned to 3 dietary treatments: 100% corn (control), 50% corn replacement with low-tannin sorghum (low sorghum), and 100% corn replacement with low-tannin sorghum (high sorghum). Body weight gain, feed consumption, feed conversion, and carcass yield were determined at 7, 21, and 42 d, and segments of the small intestine were collected. Feed conversion and weight gain were impaired at d 42 in broilers fed the high-sorghum diet, but no differences were observed for carcass yield among the treatments (P > 0.05). Crypt cell mitotic index of the jejunum and ileum at d 21 and 42 was lower in broilers fed the control diet than in those fed low- and high-sorghum diets (P < 0.05). Aminopeptidase activity was higher in broilers fed the control diet than in those fed low- and high-sorghum diets irrespective of age (P < 0.05). Conversely, intestinal alkaline phosphatase activity in the small intestine did not differ among the dietary treatments (P > 0.05). Our results indicate that 50% corn replacement with low-tannin sorghum is suitable for broiler diets, whereas 100% corn replacement with low-tannin sorghum had negative effects on the intestinal mucosa and performance of broilers at 42 d.
Kechele, Daniel O.; Blue, R. Eric; Zwarycz, Bailey; Espenschied, Scott T.; Mah, Amanda T.; Siegel, Marni B.; Perou, Charles M.; Ding, Shengli; Magness, Scott T.; Lund, P. Kay
2017-01-01
Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling–induced proliferation, particularly during regeneration and adenoma formation. PMID:28094771
Bilić-Šobot, Diana; Kubale, Valentina; Škrlep, Martin; Čandek-Potokar, Marjeta; Prevolnik Povše, Maja; Fazarinc, Gregor; Škorjanc, Dejan
2016-10-01
This study aimed to evaluate the effect of hydrolysable tannin supplementation on morphology, cell proliferation and apoptosis in the intestine and liver of fattening boars. A total of 24 boars (Landrace × Large white) were assigned to four treatment groups: Control (fed commercial feed mixture) and three experimental groups fed the same diet supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract. Animals were housed individually with ad libitum access to feed and then slaughtered at 193 d of age and 122 ± 10 kg body weight. Diets supplemented with hydrolysable tannin affected the morphometric traits of the duodenum mucosa as reflected in increased villus height, villus perimeter and mucosal thickness. No effect was observed on other parts of the small intestine. In the large intestine, tannin supplementation reduced mitosis (in the caecum and descending colon) and apoptosis (in the caecum, ascending and descending colon). No detrimental effect of tannin supplementation on liver tissue was observed. The present findings suggest that supplementing boars with hydrolysable tannins at concentrations tested in this experiment has no unfavourable effects on intestinal morphology. On the contrary, it may alter cell debris production in the large intestine and thus reduce intestinal skatole production.
Lichtenstein, Dajana; Ebmeyer, Johanna; Knappe, Patrick; Juling, Sabine; Böhmert, Linda; Selve, Sören; Niemann, Birgit; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso
2015-11-01
Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components--carbohydrates, proteins and fatty acids--were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results.
Schober, Gudrun; Arnold, Myrtha; Birtles, Susan; Buckett, Linda K.; Pacheco-López, Gustavo; Turnbull, Andrew V.; Langhans, Wolfgang; Mansouri, Abdelhak
2013-01-01
Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect. PMID:23449193
Wan, Changrong; Yin, Peng; Xu, Xiaolong; Liu, Mingjiang; He, Shasha; Song, Shixiu; Liu, Fenghua; Xu, Jianqin
2014-04-01
The present study investigated the effects of simulated transport stress on morphology and gene expression in the small intestine of laboratory rats. Sprague Dawley rats were subjected to 35°C and 0.1×g on a constant temperature shaker for physiological, biochemical, morphological and microarray analysis before and after treatment. The treatment induced obvious stress responses with significant decreases in body weight (P<0.01), increases in rectal temperature, serum corticosterone (CORT), serum glucose (GLU), creatine kinase (CK) and lactate dehydrogenase (LDH) levels (P<0.01), as well as expression of Hsp27/70/90 mRNA (P<0.05; P<0.01). The rat jejunum was severely damaged and apoptotic after mimicking transport stress, which may mainly be related to cell death, oxidation reduction and hormone imbalance determined by microarray analysis. The bioinformatics analysis from the present study would provide insight into the potential mechanisms underlying transport stress-induced injury in the rat small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M
2018-02-01
Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.
FcγRI (CD64): an identity card for intestinal macrophages.
De Calisto, Jaime; Villablanca, Eduardo J; Mora, J Rodrigo
2012-12-01
Macrophages are becoming increasingly recognized as key cellular players in intestinal immune homeostasis. However, differentiating between macrophages and dendritic cells (DCs) is often difficult, and finding a specific phenotypic signature for intestinal macrophage identification has remained elusive. In this issue of the European Journal of Immunology, Tamoutounour et al. [Eur. J. Immunol. 2012. 42: 3150-3166] identify CD64 as a specific macrophage marker that can be used to discriminate DCs from macrophages in the murine small and large intestine, under both steady-state and inflammatory conditions. The authors also propose a sequential 'monocyte-waterfall' model for intestinal macrophage differentiation, with implications for immune tolerance and inflammation at the gut mucosal interface. This Commentary will discuss the advantages and potential limitations of CD64 as a marker for intestinal macrophages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morphogenesis and maturation of the embryonic and postnatal intestine.
Chin, Alana M; Hill, David R; Aurora, Megan; Spence, Jason R
2017-06-01
The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di
2018-04-03
Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA expression. Exposure of IECs to interleukin (IL) 22 increased levels of H19 lncRNA with time and dose, which required STAT3 and protein kinase A activity. IL22 induced expression of H19 in mouse intestinal epithelial organoids within 6 hours. Exposure to IL22 increased growth of intestinal epithelial organoids derived from control mice, but not H19 ΔEx1/+ mice. Overexpression of H19 in HT-29 cells increased their proliferation. Intestinal mucosa healed more slowly after withdrawal of DSS from H19 ΔEx1/+ mice vs control mice. Crypt epithelial cells from H19 ΔEx1/+ mice proliferated more slowly than those from control mice after exposure to LPS. H19 lncRNA bound to p53 and microRNAs that inhibit cell proliferation, including microRNA 34a and let-7; H19 lncRNA binding blocked their function, leading to increased expression of genes that promote regeneration of the epithelium. The level of lncRNA H19 is increased in inflamed intestinal tissues from mice and patients. The inflammatory cytokine IL22 induces expression of H19 in IECs, which is required for intestinal epithelial proliferation and mucosal healing. H19 lncRNA appears to inhibit p53 protein and microRNA 34a and let-7 to promote proliferation of IECs and epithelial regeneration. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology.
Foulke-Abel, Jennifer; In, Julie; Yin, Jianyi; Zachos, Nicholas C; Kovbasnjuk, Olga; Estes, Mary K; de Jonge, Hugo; Donowitz, Mark
2016-03-01
Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Facciuolo, Antonio; Gonzalez-Cano, Patricia; Napper, Scott; Griebel, Philip J.
2016-01-01
In cattle, Mycobacterium avium subsp. paratuberculosis infection is primarily mediated through M cells overlying Peyer’s patches (PP) in the ileum. The capacity of M. avium subsp. paratuberculosis to invade ileal PP (IPP) versus discrete PP in the jejunum (JPP) and subsequent differences in mucosal immune responses were investigated. Intestinal segments were surgically prepared in both mid-jejunum, containing two JPPs, and in terminal small intestine containing continuous IPP. M. avium subsp. paratuberculosis (109 CFU) was injected into the lumen of half of each intestinal segment when calves were 10–14 days-old and infection confirmed 1–2 months later by PCR and immunohistochemistry. Thirteen recombinant M. avium subsp. paratuberculosis proteins, previously identified as immunogenic, were used to analyze pathogen-specific B- and T-cell responses in PP and mesenteric lymph nodes. IgA plasma cell responses to 9 of 13 recombinant proteins were detected in JPP but not in IPP. Secretory IgA reacting in ELISA with 9 of the 13 recombinant proteins was detected in luminal contents from both jejunal and ileal segments. These observations support the conclusion that pathogen-specific IgA B cells were induced in JPP but not IPP early after a primary infection. The presence of secretory IgA in intestinal contents is consistent with dissemination of IgA plasma cells from the identified mucosa-associated immune induction sites. This is the first direct evidence for M. avium subsp. paratuberculosis uptake by bovine JPP and for local induction of pathogen-specific IgA plasma cell responses after enteric infection. We also provide evidence that bacterial invasion of IPP, a primary B lymphoid tissue, provides a novel strategy to evade induction of mucosal immune responses. Over 60% of PPs in the newborn calf small intestine is primary lymphoid tissue, which has significant implications when designing oral vaccines or diagnostic tests to detect early M. avium subsp. paratuberculosis infections. PMID:27387969
Baldridge, Megan T; Lee, Sanghyun; Brown, Judy J; McAllister, Nicole; Urbanek, Kelly; Dermody, Terence S; Nice, Timothy J; Virgin, Herbert W
2017-04-01
Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1 We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1 -deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1 -null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity. IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1 -/- mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections. Copyright © 2017 American Society for Microbiology.
Baldridge, Megan T.; Lee, Sanghyun; Brown, Judy J.; McAllister, Nicole; Urbanek, Kelly; Dermody, Terence S.
2017-01-01
ABSTRACT Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1. We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity. IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo. Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1−/− mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections. PMID:28077655
USDA-ARS?s Scientific Manuscript database
Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advan...
Kim, Doeun; Kim, Jung Nam; Nam, Joo Hyun; Lee, Jong Rok; Kim, Sang Chan; Kim, Byung Joo
2018-04-19
The Gamisoyo-san (GSS) has been used for -improving the gastrointestinal (GI) symptoms. The purpose of this study was to investigate the effects of GSS, a traditional Chinese herbal medicine, on the pacemaker potentials of mouse small intestinal interstitial cells of Cajal (ICCs). ICCs from the small intestines were dissociated and cultured. Whole-cell patch-clamp configuration was used to record pacemaker potentials and membrane currents. GSS depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with 4-diphenylacetoxypiperidinium iodide completely inhibited GSS-induced pacemaker potential depolarizations. Intracellular GDP-β-S inhibited GSS-induced effects, and in the presence of U-73122, GSS-induced effects were inhibited. Also, GSS in the presence of a Ca2+-free solution or thapsigargin did not depolarize pacemaker potentials. However, in the presence of calphostin C, GSS slightly depolarized pacemaker potentials. Furthermore, GSS inhibited both transient receptor potential melastatin7 and Ca2+-activated Cl- channel (anoctamin1) currents. GSS depolarized pacemaker potentials of ICCs via G protein and muscarinic M3 receptor signaling pathways and through internal or external Ca2+-, phospholipase C-, and protein kinase C-dependent and transient receptor potential melastatin 7-, and anoctamin 1-independent pathways. The study shows that GSS may regulate GI tract motility, suggesting that GSS could be a basis for developing novel prokinetic agents for treating GI motility dysfunctions. © 2018 S. Karger AG, Basel.
Tissue-specific mutation accumulation in human adult stem cells during life
NASA Astrophysics Data System (ADS)
Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben
2016-10-01
The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.
Sukhotnik, I; Shahar, Y Ben; Pollak, Y; Dorfman, T; Shefer, H Kreizman; Assi, Z E; Mor-Vaknin, N; Coran, A G
2018-02-01
Intermediate filaments (IFs) are a part of the cytoskeleton that extend throughout the cytoplasm of all cells and function in the maintenance of cell-shape by bearing tension and serving as structural components of the nuclear lamina. In normal intestine, IFs provide a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. The purpose of this study was to evaluate the role of IFs during intestinal adaptation in a rat model of short bowel syndrome (SBS). Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75% bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression (DGE) analysis was used to determine the cytoskeleton-related gene expression profiling. IF-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. Massive small bowel resection resulted in a significant increase in enterocyte proliferation and concomitant increase in cell apoptosis. From the total number of 20,000 probes, 16 cytoskeleton-related genes were investigated. Between these genes, only myosin and tubulin levels were upregulated in SBS compared to sham animals. Between IF-related genes, desmin, vimentin and lamin levels were down-regulated and keratin and neurofilament remain unchanged. The levels of TGF-β, vimentin and desmin gene and protein were down-regulated in resected rats (vs sham animals). Two weeks following massive bowel resection in rats, the accelerated cell turnover was accompanied by a stimulated microfilaments and microtubules, and by inhibited intermediate filaments. Resistance to cell compression rather that maintenance of cell-shape by bearing tension are responsible for contraction, motility and postmitotic cell separation in a late stage of intestinal adaptation.
Modeling Long-Term Host Cell-Giardia lamblia Interactions in an In Vitro Co-Culture System
Fisher, Bridget S.; Estraño, Carlos E.; Cole, Judith A.
2013-01-01
Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions. PMID:24312526
Expression of PCSK1 (PC1/3), PCSK2 (PC2) and PCSK3 (furin) in mouse small intestine.
Gagnon, Jeffrey; Mayne, Janice; Mbikay, Majambu; Woulfe, John; Chrétien, Michel
2009-01-08
The family of serine proteases known as the proprotein convertases subtilisin/kexin type (PCSK) is responsible for the cleavage and maturation of many precursor hormones. Over its three successive regions, the duodenum, the jejunum and the ileum, the small intestine (SI) expresses over 40 peptide hormones necessary for normal intestinal physiology. Most of these hormones derive from proteolytic cleavage of their cognate inactive polypeptide precursors. Members of the PCSK family of proteases have been implicated in this process, although details of enzyme-substrate interactions are largely lacking. As a first step towards elucidating these interactions, we have analyzed by immunohistochemistry the regional distribution of PCSK1, PCSK2 and PCSK3 in mouse SI as well as their cellular co-localization with substance P (SP), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and somatostatin (SS), 4 peptide hormones known to result from PCSK-mediated processing. Results indicate that PCSK1 is found in all three regions of the SI while PCSK2 and PCSK3 are primarily expressed in the upper two, the duodenum and the jejunum. In these proximal regions, PCSK1 was detectable in 100% of SP-positive (+) cells, 85% of CCK+ cells and 50% of GIP+ cells; PCSK2 was detectable in 40% of SS+ cells and 35% of SP+ cells; PCSK3 was detectable in 75% of GIP+ cells and 60% of SP+ cells. These histological data suggest that the 3 PCSKs may play differential and overlapping roles in prohormone processing in the three regions of the SI.
Kuga, Daisuke; Ushida, Kaori; Mii, Shinji; Enomoto, Atsushi; Asai, Naoya; Nagino, Masato; Takahashi, Masahide; Asai, Masato
2017-01-01
Summary Tuft cells (TCs) are minor components of gastrointestinal epithelia, characterized by apical tufts and spool-shaped somas. The lack of reliable TC-markers has hindered the elucidation of its role. We developed site-specific and phosphorylation-status–specific antibodies against Girdin at tyrosine-1798 (pY1798) and found pY1798 immunostaining of mouse jejunum clearly depicted epithelial cells closely resembling TCs. This study aimed to validate pY1798 as a TC-marker. Double-fluorescence staining of intestines was performed with pY1798 and known TC-markers, for example, hematopoietic-prostaglandin-D-synthase (HPGDS), or doublecortin-like kinase 1 (DCLK1). Odds ratios (ORs) were calculated from cell counts to determine whether two markers were attracting (OR<1) or repelling (OR>1). In consequence, pY1798 signals strongly attracted those of known TC-markers. ORs for HPGDS in mouse stomach, small intestine, and colon were 0 for all, and 0.08 for DCLK1 in human small intestine. pY1798-positive cells in jejunum were distinct from other minor epithelial cells, including goblet, Paneth, and neuroendocrine cells. Thus, pY1798 was validated as a TC-marker. Interestingly, apoptosis inducers significantly increased relative TC frequencies despite the absence of proliferation at baseline. In conclusion, pY1798 is a novel TC-marker. Selective tyrosine phosphorylation and possible resistance to apoptosis inducers implied the activation of certain kinase(s) in TCs, which may become a clue to elucidate the enigmatic roles of TCs. PMID:28375676
Kuga, Daisuke; Ushida, Kaori; Mii, Shinji; Enomoto, Atsushi; Asai, Naoya; Nagino, Masato; Takahashi, Masahide; Asai, Masato
2017-06-01
Tuft cells (TCs) are minor components of gastrointestinal epithelia, characterized by apical tufts and spool-shaped somas. The lack of reliable TC-markers has hindered the elucidation of its role. We developed site-specific and phosphorylation-status-specific antibodies against Girdin at tyrosine-1798 (pY1798) and found pY1798 immunostaining of mouse jejunum clearly depicted epithelial cells closely resembling TCs. This study aimed to validate pY1798 as a TC-marker. Double-fluorescence staining of intestines was performed with pY1798 and known TC-markers, for example, hematopoietic-prostaglandin-D-synthase (HPGDS), or doublecortin-like kinase 1 (DCLK1). Odds ratios (ORs) were calculated from cell counts to determine whether two markers were attracting (OR<1) or repelling (OR>1). In consequence, pY1798 signals strongly attracted those of known TC-markers. ORs for HPGDS in mouse stomach, small intestine, and colon were 0 for all, and 0.08 for DCLK1 in human small intestine. pY1798-positive cells in jejunum were distinct from other minor epithelial cells, including goblet, Paneth, and neuroendocrine cells. Thus, pY1798 was validated as a TC-marker. Interestingly, apoptosis inducers significantly increased relative TC frequencies despite the absence of proliferation at baseline. In conclusion, pY1798 is a novel TC-marker. Selective tyrosine phosphorylation and possible resistance to apoptosis inducers implied the activation of certain kinase(s) in TCs, which may become a clue to elucidate the enigmatic roles of TCs. .
Khavinson, V Kh; Egorova, V V; Timofeeva, N M; Malinin, V V; Gordova, L A; Gromova, L V
2002-05-01
Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly) administered orally for 1 month improved transport characteristics of the small intestine in aged rats. Vilon enhanced passive glucose accumulation in the serous fluid in inverted sac made from the distal region of the small intestine, while Epithalon enhanced this process in the medial region. Vilon stimulated active glucose accumulation in the serous sac of the medial small intestine, Epithalon - in the proximal and distal small intestinal segments. Glycine absorption increased only in the proximal intestinal segment under the effect of Epithalon.
Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.
Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans
2016-10-18
Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.
2017-05-25
B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype.
De Lisle, Robert C; Mueller, Racquel; Roach, Eileen
2010-09-15
Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Cftr(tm1UNC) (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.
Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype
2010-01-01
Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion. PMID:20843337
2015-08-18
Adult B Acute Lymphoblastic Leukemia; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; HIV Infection; Intraocular Lymphoma; Multicentric Angiofollicular Lymphoid Hyperplasia; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Plasma Cell Myeloma; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia
Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E
2017-03-01
Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the interaction of these two intestinal toxic routes was found to be synergistic.
Modelling spatially regulated beta-catenin dynamics and invasion in intestinal crypts.
Murray, Philip J; Kang, Jun-Won; Mirams, Gary R; Shin, Sung-Young; Byrne, Helen M; Maini, Philip K; Cho, Kwang-Hyun
2010-08-04
Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
XU, RUI; LEI, YI-HUI; SHI, JUN; ZHOU, YI-JUN; CHEN, YING-WEI; HE, ZHEN-JUAN
2016-01-01
The aim of the present study was to investigate the effects of lactadherin on plasma D-lactic acid and small intestinal mucin (MUC) 2 and claudin-1 expression levels in rats with diarrhea induced by rotavirus (RV) infection. A total of 75 seven-day-old healthy Sprague-Dawley rats were randomly divided into the following five groups: Control (C), RV infection (RVI), lactadherin before rotavirus infection (LBRI), lactadherin after rotavirus infection (LARI), and blank (B). On day 4 of artificial feeding, the rats in groups RVI, LBRI and LARI were intragastric administered 1×106 PFU RV; whereas the rats in groups C and B were intragastrically administered an equal volume of maintenance solution from the RV supernatant and normal saline, respectively. In the LBRI and LARI groups, rats received daily intragastric administration of 0.25 mg lactadherin for three days prior to and following infection with RV, respectively. The course of diarrheal symptoms was observed in each group and samples were collected on days 1, 4, and 7 post-infection in order to determine the mucosal morphology, plasma D-lactic acid levels and the expression levels of MUC2 and the intracellular junction protein, claudin-1, in the small intestine. On day 4 post-infection, the rats in group RVI demonstrated severely damaged small intestines and typical diarrheal characteristics, as detected by light microscopy; whereas rats in groups LBRI and LARI demonstrated intact small intestinal villi with partial vacuolation of epithelial cells and changes in the position of their nuclei. Electron microscopy demonstrated that the rats in the RVI group had sparse, shortened, disordered intestinal microvilli and widened intercellular junctions; whereas those in groups LBRI and LARI had long intestinal microvilli sparser compared with groups B and C and slightly widened intercellular junctions. Plasma D-lactic acid levels were increased in groups RVI, LBRI and LARI, as compared with groups B and C, and the greatest levels were detected in the RVI group on days 1, 4 and 7 post-infection. In addition to maintaining intestinal permeability, lactadherin enhanced the expression levels of MUC2 and reduced the expression of claudin-1; therefore, further protecting the intestinal epithelial barrier, which may contribute to the prevention and treatment of diarrhea induced by infection with RV. PMID:26998017
Xu, Rui; Lei, Yi-Hui; Shi, Jun; Zhou, Yi-Jun; Chen, Ying-Wei; He, Zhen-Juan
2016-03-01
The aim of the present study was to investigate the effects of lactadherin on plasma D-lactic acid and small intestinal mucin (MUC) 2 and claudin-1 expression levels in rats with diarrhea induced by rotavirus (RV) infection. A total of 75 seven-day-old healthy Sprague-Dawley rats were randomly divided into the following five groups: Control (C), RV infection (RVI), lactadherin before rotavirus infection (LBRI), lactadherin after rotavirus infection (LARI), and blank (B). On day 4 of artificial feeding, the rats in groups RVI, LBRI and LARI were intragastric administered 1×106 PFU RV; whereas the rats in groups C and B were intragastrically administered an equal volume of maintenance solution from the RV supernatant and normal saline, respectively. In the LBRI and LARI groups, rats received daily intragastric administration of 0.25 mg lactadherin for three days prior to and following infection with RV, respectively. The course of diarrheal symptoms was observed in each group and samples were collected on days 1, 4, and 7 post-infection in order to determine the mucosal morphology, plasma D-lactic acid levels and the expression levels of MUC2 and the intracellular junction protein, claudin-1, in the small intestine. On day 4 post-infection, the rats in group RVI demonstrated severely damaged small intestines and typical diarrheal characteristics, as detected by light microscopy; whereas rats in groups LBRI and LARI demonstrated intact small intestinal villi with partial vacuolation of epithelial cells and changes in the position of their nuclei. Electron microscopy demonstrated that the rats in the RVI group had sparse, shortened, disordered intestinal microvilli and widened intercellular junctions; whereas those in groups LBRI and LARI had long intestinal microvilli sparser compared with groups B and C and slightly widened intercellular junctions. Plasma D-lactic acid levels were increased in groups RVI, LBRI and LARI, as compared with groups B and C, and the greatest levels were detected in the RVI group on days 1, 4 and 7 post-infection. In addition to maintaining intestinal permeability, lactadherin enhanced the expression levels of MUC2 and reduced the expression of claudin-1; therefore, further protecting the intestinal epithelial barrier, which may contribute to the prevention and treatment of diarrhea induced by infection with RV.
Hydrogen sulphide protects against NSAID-enteropathy through modulation of bile and the microbiota
Blackler, Rory W; Motta, Jean-Paul; Manko, Anna; Workentine, Matthew; Bercik, Premysl; Surette, Michael G; Wallace, John L
2015-01-01
Background and Purpose Hydrogen sulphide is an important mediator of gastrointestinal mucosal defence. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is significantly limited by their toxicity in the gastrointestinal tract. Particularly concerning is the lack of effective preventative or curative treatments for NSAID-induced intestinal damage and bleeding. We evaluated the ability of a hydrogen sulphide donor to protect against NSAID-induced enteropathy. Experimental Approach Intestinal ulceration and bleeding were induced in Wistar rats by oral administration of naproxen. The effects of suppression of endogenous hydrogen sulphide synthesis or administration of a hydrogen sulphide donor (diallyl disulphide) on naproxen-induced enteropathy was examined. Effects of diallyl disulphide on small intestinal inflammation and intestinal microbiota were also assessed. Bile collected after in vivo naproxen and diallyl disulphide administration was evaluated for cytotoxicity in vitro using cultured intestinal epithelial cells. Key Results Suppression of endogenous hydrogen sulphide synthesis by β-cyano-L-alanine exacerbated naproxen-induced enteropathy. Diallyl disulphide co-administration dose-dependently reduced the severity of naproxen-induced small intestinal damage, inflammation and bleeding. Diallyl disulphide administration attenuated naproxen-induced increases in the cytotoxicity of bile on cultured enterocytes, and prevented or reversed naproxen-induced changes in the intestinal microbiota. Conclusions and Implications Hydrogen sulphide protects against NSAID-enteropathy in rats, in part reducing the cytotoxicity of bile and preventing NSAID-induced dysbiosis. PMID:25297699
MDX-010 in Treating Patients With Recurrent or Refractory Lymphoma
2014-05-22
Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
[Primary intestinal lymphangiectasia (Waldmann's disease)].
Vignes, S; Bellanger, J
2017-08-31
Primary intestinal lymphangiectasia (PIL), Waldmann's disease, is a rare disorder of unknown etiology characterized by dilated intestinal lacteals leading to lymph leakage into the small-bowel lumen and responsible for protein-losing enteropathy leading to lymphopenia, hypoalbuminemia and hypogammaglobulinemia. PIL is generally diagnosed before 3 years of age but may be diagnosed in older patients. The main symptom is bilateral lower limb edema. Edema may be moderate to severe including pleural effusion, pericarditis or ascites. Protein-losing enteropathy is confirmed by the elevated 24-h stool α1-antitrypsin clearance and diagnosis by endoscopic observation of intestinal lymphangiectasia with the corresponding histology of biopsies. Videocapsule endoscopy may be useful when endoscopic findings are not contributive. Several B-cell lymphomas of the gastrointestinal tract or with extra-intestinal localizations were reported in PIL patients. A long-term strictly low-fat diet associated with medium-chain triglyceride and liposoluble vitamin supplementation is the cornerstone of PIL medical management. Octreotide, a somatostatin analog, have been proposed with an inconsistent efficacy in association with diet. Surgical small-bowel resection is useful in the rare cases with segmental and localized intestinal lymphangiectasia. A prolonged clinical and biological follow-up is recommended. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Yu, Yingxin; Wang, Mengmeng; Zhang, Kaiqiong; Yang, Dan; Zhong, Yufang; An, Jing; Lei, Bingli; Zhang, Xinyu
2017-04-01
Oral ingestion plays an important role in human exposure to polybrominated diphenyl ethers (PBDEs). The uptake of PBDEs primarily occurs in the small intestine. The aim of the present study is to investigate the transepithelial transport characteristics and mechanisms of PBDEs in the small intestine using a Caco-2 cell monolayer model. The apparent permeability coefficients of PBDEs indicated that tri- to hepta-BDEs were poorly absorbed compounds. A linear increase in transepithelial transport was observed with various concentrations of PBDEs, which suggested that passive diffusion dominated their transport at the concentration range tested. In addition, the pseudo-first-order kinetics equation can be applied to the transepithelial transport of PBDEs. The rate-determining step in transepithelial transport of PBDEs was trans-cell transport including the trans-pore process. The significantly lower transepithelial transport rates at low temperature for bidirectional transepithelial transport suggested that an energy-dependent transport mechanism was involved. The efflux transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) and influx transporters (organic cation transporters) participated in the transepithelial transport of PBDEs. In addition, the transepithelial transport of PBDEs was pH sensitive; however, more information is required to understand the influence of pH. Copyright © 2016 Elsevier Inc. All rights reserved.
A Celiac Diasease Associated lncRNA Named HCG14 Regulates NOD1 Expression in Intestinal Cells.
Santin, Izortze; Jauregi-Miguel, Amaia; Velayos, Teresa; Castellanos-Rubio, Ainara; Garcia-Etxebarria, Koldo; Romero-Garmendia, Irati; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Castaño, Luis; Bilbao, Jose Ramón
2018-03-29
To identify additional celiac disease associated loci in the Major Histocompatibility Complex independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level. We performed a high resolution SNP genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84. MHC genotyping revealed two associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells. We have sucessfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HGC14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.
Zhang, Yan; Wang, Changyuan; Liu, Zhihao; Meng, Qiang; Huo, Xiaokui; Liu, Qi; Sun, Pengyuan; Yang, Xiaobo; Sun, Huijun; Ma, Xiaodong; Liu, Kexin
2018-04-01
Afatinib is an irreversible multi-targeted TKI, used in the treatment with EGFR mutated non-small cell lung cancer (NSCLC). The purpose of this study is to explore the molecular pharmacokinetic mechanism underlying the effect of P-gp inhibitors on the intestinal absorption and biliary excretion and to understand how P-gp inhibitors affect afatinib pharmacokinetics. Pharmacokinetics in vivo, in situ intestinal perfusion, perfused rat liver in situ, Caco-2 cells, P-gp ATPase activity, sandwich-cultured rat hepatocytes (SCRH) and transfected-cell transport were used in the evaluation. P-gp inhibitor verapamil (Ver) markedly increased the plasma concentrations and significantly decreased the biliary excretion of afatinib in vivo. Ver increased the intestinal absorption and decreased biliary excretion of afatinib in situ single-pass intestinal perfusion studies and in situ perfused rat liver, respectively. The accumulation of afatinib in Caco-2 cells was enhanced by Ver and Cyclosporin A (CsA). The biliary excretion index (BEI) of afatinib in SCRH was decreased by Ver and CsA, respectively. The net efflux ratio of afatinib was 2.3 across vector-/MDR1-MDCKII cell monolayers and was decreased by P-gp inhibitor. The activity of P-gp ATPase was induced by afatinib and the K m and V max were 1.05μM and 59.88nmol ATP/mg hP-gp/min, respectively. At least partly P-gp is involved in increasing the intestinal absorption and decreasing the biliary excretion of afatinib in rats. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Glucose, epithelium, and enteric nervous system: dialogue in the dark.
Pfannkuche, H; Gäbel, G
2009-06-01
The gastrointestinal epithelium is in close contact with the various components of the chymus, including nutrients, bacteria and toxins. The epithelial barrier has to decide which components are effectively absorbed and which components are extruded. In the small intestine, a nutrient like glucose is mainly absorbed by the sodium linked glucose cotransporter 1 (SGLT1) and the glucose transporter 2 (GLUT2). The expression and activity of both transport proteins is directly linked to the amount of intraluminal glucose. Besides the direct interaction between glucose and the enterocytes, glucose also stimulates different sensory mechanisms within the intestinal wall. The most important types of cells involved in the sensing of intraluminal contents are enteroendocrine cells and neurones of the enteric nervous system. Regarding glucosensing, a distinct type of enteroendocrine cells, the enterochromaffine (EC) cells are involved. Excitation of EC cells by intraluminal glucose results in the release of serotonin (5-HT), which modulates epithelial functions and activates enteric secretomotorneurones. Enteric neurones are not only activated by 5-HT, but also directly by glucose. The activation of different cell types and the subsequent crosstalk between these cells may trigger appropriate absorptive and secretory processes within the intestine.
Silver, Kristopher; Littlejohn, A.; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D.
2017-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. PMID:28342779
Digestibility of soybean and pigeon pea seed meals and morphological intestinal alterations in pigs.
Mekbungwan, Apichai; Thongwittaya, Narin; Yamauchi, Koh-En
2004-06-01
To compare the nutrient digestibility of soybean meal (SM) and pigeon pea seed meal (PM) as well as morphological intestinal alterations in piglets fed them, three pigs per group were randomly selected at the end of the feeding experiment for ten days. Growth performance was higher in the SM group than in the PM group (p<0.05). The digestibility of crude protein, crude fat and crude fiber was 80.6%, 23.6% and 52.4% in the SM group, while in the PM group, values of 49.8%, 23.6% and 43.2% were observed, respectively. Digestible energy was 3.26 kcal g(-1) in SM and 3.17 kcal g(-1) in PM. It was concluded that the digestibility of PM was lower than that of SM; almost half of the protein in PM was digested. Dietary treatments had no effect on length of each small intestinal segment and weight of visceral organs (small intestine, liver, heart, spleen, kidney, stomach and lung) except the decreased kidney weight in the PM group (p<0.05). The epithelial cells on the jejunal villi showed a dome-like shape in the SM group, but they were a flat shape in the PM group. The present digestion trial and histological intestinal data suggest that the intestinal digestive and absorptive functions are much more atrophied in the PM group than in the SM group, and demonstrate that histological intestinal alterations might be well related with the intestinal functions.
Pembrolizumab and XL888 in Patients With Advanced Gastrointestinal Cancer
2018-04-11
Adenocarcinoma of the Gastroesophageal Junction; Colorectal Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Non-Resectable Hepatocellular Carcinoma; Recurrent Cholangiocarcinoma; Recurrent Colorectal Carcinoma; Recurrent Gastric Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Pancreatic Carcinoma; Recurrent Small Intestinal Carcinoma; Small Intestinal Adenocarcinoma; Stage III Colorectal Cancer; Stage III Gastric Cancer; Stage III Hepatocellular Carcinoma; Stage III Pancreatic Cancer; Stage III Small Intestinal Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Hepatocellular Carcinoma; Stage IIIA Small Intestinal Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Hepatocellular Carcinoma; Stage IIIB Small Intestinal Cancer; Stage IIIC Gastric Cancer; Stage IV Colorectal Cancer; Stage IV Gastric Cancer; Stage IV Hepatocellular Carcinoma; Stage IV Pancreatic Cancer; Stage IV Small Intestinal Cancer; Stage IVA Colorectal Cancer; Stage IVA Hepatocellular Carcinoma; Stage IVA Pancreatic Cancer; Stage IVB Colorectal Cancer; Stage IVB Hepatocellular Carcinoma; Stage IVB Pancreatic Cancer; Unresectable Pancreatic Carcinoma; Unresectable Small Intestinal Carcinoma
Autodigestion: Proteolytic Degradation and Multiple Organ Failure in Shock
Altshuler, Angelina E.; Kistler, Erik B.; Schmid-Schönbein, Geert W.
2015-01-01
There is currently no effective treatment for multiorgan failure following shock other than alleviation supportive care. A better understanding of the pathogenesis of these sequelae to shock is required. The intestine plays a central role in multiorgan failure. It was previously suggested that bacteria and their toxins are responsible for the organ failure seen in circulatory shock, but clinical trials in septic patients have not confirmed this hypothesis. Instead, we review here evidence that the digestive enzymes, synthesized in the pancreas and discharged into the small intestine as requirement for normal digestion, may play a role in multi-organ failure. These powerful enzymes are non-specific, highly concentrated and fully activated in the lumen of the intestine. During normal digestion they are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. However, if this barrier becomes permeable, e.g. in an ischemic state, the digestive enzymes escape into the wall of the intestine. They digest tissues in the mucosa and generate small molecular weight cytotoxic fragments such as unbound free fatty acids. Digestive enzymes may also escape into the systemic circulation and activate other degrading proteases. These proteases have the ability to clip the ectodomain of surface receptors and compromise their function; for example cleaving the insulin receptor causing insulin resistance. The combination of digestive enzymes and cytotoxic fragments leaking into the central circulation causes cell and organ dysfunction, and ultimately may lead to complete organ failure and death. We summarize current evidence suggesting that enteral blockade of digestive enzymes inside the lumen of the intestine may serve to reduce acute cell and organ damage and improve survival in experimental shock. PMID:26717111
Early establishment of epithelial apoptosis in the developing human small intestine.
Vachon, P H; Cardin, E; Harnois, C; Reed, J C; Vézina, A
2000-12-01
In the adult small intestine, the dynamic renewal of the epithelium is characterized by a sequence of cell production in the crypts, cell maturation and cell migration to the tip of villi, where apoptosis is undertaken. Little is known about enterocytic apoptosis during development. In man, intestinal architectural features and functions are acquired largely by mid-gestation (18-20 wks); the question whether the establishment of enterocytic apoptotic processes parallels or not the acquisition of other intestinal functional features remains open. In the present study, we approached this question by examining enterocytic apoptosis during development of the human jejunum (9-20 wks gestation), using the ISEL (in situ terminal uridine deoxynucleotidyl nick-end labelling) method. Between 9 and 17 wks, apoptotic enterocytes were not evidenced. However, beginning at the 18 wks stage, ISEL-positive enterocytes were regularly observed at the tip of villi. Since the Bcl-2 family of proteins constitutes a critical checkpoint in apoptosis, acting upstream of the apoptotic machinery, we investigated the expression of six Bcl-2 homologs (Bcl-2, Bcl-X(L), Mcl-1, Bax, Bak, Bad) and one non-homologous associated molecule (Bag-1). By immunofluorescence, we found that all homologs analyzed were expressed by enterocytes between 9 and 20 wks. However, Bcl-2 homologs underwent a gradual compartmentalization of epithelial expression along the maturing crypt-villus axis, to establish gradients of expression by 18-20 wks. Western blot analyses indicated that the expression levels of Bcl-2 homologs were modulated during morphogenesis of the crypt-villus axis, in parallel to their gradual compartmentalization of expression. Altogether, these data suggest that regulatory mechanisms of human enterocytic apoptosis become established by mid-gestation (18-20 wks) and coincide with the maturation of the crypt-villus axis of cell proliferation, differentiation and renewal.
Xiong, Yuxia; Chen, Li; Fan, Ling; Wang, Lulu; Zhou, Yejiang; Qin, Dalian; Sun, Qin; Wu, Jianming; Cao, Shousong
2018-01-01
Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP). Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs) isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg) into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg) or normal saline (control) immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), nitric oxide (NO), myeloperoxidase (MPO), capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD domain (ASC), casepase-1, secretary immunoglobulin A (SIgA), regulatory T cells (Tregs), and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN) cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while significantly increased the expression of SIgA in the intestinal tissues and/or MLN cells in SAP rats. Our results indicate that FTRAs could protect intestinal injury and improve intestinal mucosal barrier function through regulating immune function of SAP rats. Therefore, FTRAs may have the potential to be developed as the novel agent for the treatment of SAP clinically. PMID:29487524
Bauer, Paige V; Duca, Frank A; Waise, T M Zaved; Dranse, Helen J; Rasmussen, Brittany A; Puri, Akshita; Rasti, Mozhgan; O'Brien, Catherine A; Lam, Tony K T
2018-03-06
Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Al-Masaudi, Saad; El Kaoutari, Abdessamad; Drula, Elodie; Al-Mehdar, Hussein; Redwan, Elrashdy M; Lombard, Vincent; Henrissat, Bernard
2017-01-01
The digestive microbiota of humans and of a wide range of animals has recently become amenable to in-depth studies due to the emergence of DNA-based metagenomic techniques that do not require cultivation of gut microbes. These techniques are now commonly used to explore the feces of humans and animals under the assumption that such samples are faithful proxies for the intestinal microbiota. Sheep ( Ovis aries ) are ruminant animals particularly adapted to life in arid regions and in particular Najdi, Noaimi (Awassi), and Harrei (Harri) breeds that are raised in Saudi Arabia for milk and/or meat production. Here we report a metagenomics investigation of the distal digestive tract of one animal from each breed that (i) examines the microbiota at three intestinal subsites (small intestine, mid-colon, and rectum), (ii) performs an in-depth analysis of the carbohydrate-active enzymes genes encoded by the microbiota at the three subsites, and (iii) compares the microbiota and carbohydrate-active enzyme profile at the three subsites across the different breeds. For all animals we found that the small intestine is characterized by a lower taxonomic diversity than that of the large intestine and of the rectal samples. Mirroring this observation, we also find that the spectrum of encoded carbohydrate-active enzymes of the mid-colon and rectal sites is much richer than that of the small intestine. However, the number of encoded cellulases and xylanases in the various intestinal subsites was found to be surprisingly low, indicating that the bulk of the fiber digestion is performed upstream in the rumen, and that the carbon source for the intestinal flora is probably constituted of the rumen fungi and bacteria that pass in the intestines. In consequence we argue that ruminant feces, which are often analyzed for the search of microbial genes involved in plant cell wall degradation, are probably a poor proxy for the lignocellulolytic potential of the host.
Kubota, Atsuhito; Kobayashi, Masaki; Sarashina, Sota; Takeno, Reiko; Okamoto, Keisuke; Narumi, Katsuya; Furugen, Ayako; Suzuki, Yuji; Takahashi, Natsuko; Iseki, Ken
2018-03-25
Immunoglobulin A (IgA) secretion and alpha-defensins play a role in the innate immune system to protect against infection. Ganoderma lucidum (W.Curt.: Fr.) P. Karst. (Reishi) is a well-known mushroom in traditional Chinese medicine. This study aimed to determine the effects of Reishi on IgA secretion from Peyer's patch (PP) cells and alpha-defensin-5 (RD-5) and RD-6 expression in the rat small intestine. The rats received an oral injection of 0.5-5mg/kg of Reishi powder (1mL/kg) by sonde. All animals were euthanized 24h after Reishi administration. We examined RD-5, RD-6, and Toll-like receptor (TLR) 4 mRNA levels in the jejunum, ileum, and in Peyer's patches (PP) through quantitative real-time PCR analysis. IgA secretion from PP was measured through enzyme-linked immunosorbent assay of the supernatant after primary culture. Reishi increased IgA secretion in the presence of lipopolysaccharide (LPS) and increased TLR4 mRNA levels, but had no effect on the viability of PP cells. Moreover, Reishi increased RD-5, RD-6, and TLR4 mRNA levels significantly in the ileum in a concentration-dependent manner. Reishi can induce IgA secretion and increase the mRNA levels of RD-5 and RD-6 in the rat small intestine, through a TLR4-dependent pathway. The present results indicate that Reishi might reduce the risk of intestinal infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Ishida, Tsukasa; Miki, Ikuya; Tanahashi, Toshihito; Yagi, Saori; Kondo, Yasuyuki; Inoue, Jun; Kawauchi, Shoji; Nishiumi, Sin; Yoshida, Masaru; Maeda, Hideko; Tode, Chisato; Takeuchi, Atsuko; Nakayama, Hirokazu; Azuma, Takeshi; Mizuno, Shigeto
2013-08-15
Non-steroidal anti-inflammatory drugs (NSAIDs)-induced small intestinal injury is a serious clinical event with recent advances of diagnostic technologies, but a successful therapeutic method to treat such injuries is still lacking. Licorice, a traditional herbal medicine, and its derivatives have been widely used for the treatment of a variety of diseases due to their extensive biological actions. However, it is unknown whether these derivatives have an effect on NSAIDs-induced small intestinal damage. Previously, the anti-inflammatory effects of three compounds extracted from the licorice root, glycyrrhizin, 18β-glycyrrhetinic acid, and dipotassium glycyrrhizinate, were compared in vitro cell culture. The most prominent inhibitory effect on the tumor necrosis factor-α (TNF-α) production was observed with the administration of 18β-glycyrrhetinic acid as an active metabolite of glycyrrhizin. In this study, a complex compound of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin was examined to improve the oral bioavailability. After administration of this complex to indomethacin treated mice, a significantly high plasma concentration of 18β-glycyrrhetinic acid was detected using the tandem mass spectrometry coupled with the HPLC. Furthermore, the complex form of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin reduced mRNA expressions of TNF-α, interleukin (IL)-1β, and IL-6, which was histologically confirmed in the improvement of indomethacin-induced small intestinal damage. These results suggest that the complex of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin has the potential therapeutic value for preventing the adverse effects of indomethacin-induced small intestinal injury. Copyright © 2013 Elsevier B.V. All rights reserved.
2017-05-28
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia
Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A
2002-01-01
In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955
von Klitzing, Eliane; Ekmekciu, Ira; Kühl, Anja A.; Bereswill, Stefan
2017-01-01
Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation. PMID:28414794
von Klitzing, Eliane; Ekmekciu, Ira; Kühl, Anja A; Bereswill, Stefan; Heimesaat, Markus M
2017-01-01
Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. With respect to the intestinal microbiota composition "humanized" mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation.
Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua
2014-01-01
Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.
Dahan, Arik; Amidon, Gordon L
2009-01-01
The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels in this region.
Tsujikawa, T; Bamba, T; Hosoda, S
1990-06-01
This study was undertaken to evaluate the effect of epidermal growth factor (EGF) on the morphological changes and polyamine metabolism in the atrophic small intestinal mucosa of rats caused by feeding elemental diet (ED; Elental, Ajinomoto, Tokyo) for several weeks. Four-week-old Wistar male rats were given ad libitum ED (1 kcal/ml) for 4 weeks. The body weight increased to the same extent as the control group fed a pellet diet. However, the small intestine became atrophic: the mucosal wet weight of the jejunum decreased to 70%, while that of the ileum decreased to 60%. EGF (10 micrograms/kg) was subcutaneously injected into these rats every 8 hours. Ornithine decarboxylase (ODC) activities of the jejunal and ileal mucosa rose within 12 hours of the initial EGF administration. Mucosal DNA specific activities tended to increase. Next, EGF (30 micrograms/kg/day) was intraperitoneally administered with a Mini-osmotic pump for one week. The wet weight, protein and DNA contents of the ileal mucosa increased significantly compared with those of the saline administered controls, while the crypt cell production rate (CCPR) also increased. Histologically, increases in both villus height and crypt depth were confirmed. These findings indicate that EGF causes mucosal proliferation through polyamine metabolism even in the atrophic small intestine of mature rats after ED administration for 4 weeks.
NASA Astrophysics Data System (ADS)
Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.
It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.
Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao
2016-01-01
High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P < 0.05) and led to vacuole-like cell death in intestinal porcine epithelial cells. These adverse effects of L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P < 0.05), whereas those for p-ERK1/2 were reduced (P < 0.05). Collectively, excessive L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.
Gan, Xiaoliang; Liu, Dezhao; Huang, Pinjie; Gao, Wanling; Chen, Xinzhi; Hei, Ziqing
2012-06-01
Mast cell has been demonstrated to be involved in the small intestinal ischemia-reperfusion (IIR) injury, however, the precise role of tryptase released from mast cell on acute lung injury(ALI) induced by IIR remains to be elucidated, our study aimed to observe the roles of tryptase on ALI triggered by IIR and its underlying mechanism. Adult SD rats were randomized into sham-operated group, sole IIR group in which rats were subjected to 75 min superior mesenteric artery occlusion followed by 4 h reperfusion, or IIR being respectively treated with cromolyn sodium, protamine, and compound 48/80. The above agents were, respectively, administrated intravenously 5 min before reperfusion. At the end of experiment, lung tissue was obtained for assays for protein expressions of tryptase and mast cell protease 7 (MCP7) and protease-activated receptor 2 (PAR-2). Pulmonary mast cell number and levels of IL-8 were quantified. Lung histologic injury scores and lung water content were measured. IIR resulted in lung injury evidenced as significant increases in lung histological scores and lung water contents, accompanied with concomitant increases of expressions of tryptase and MCP7, and elevations in PAR-2 expressions and IL-8 levels in lungs. Stabilizing mast cell with cromolyn sodium and inhibiting tryptase with protamine significantly reduced IIR-mediated ALI and the above biochemical changes while activating mast cell with compound 48/80 further aggravated IIR-mediated ALI and the increases of above parameters. Tryptase released from mast cells mediates ALI induced by intestinal ischemia-reperfusion by activating PAR-2 to produce IL-8.
Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome.
Millar-Büchner, Pamela; Philp, Amber R; Gutierrez, Noemí; Villanueva, Sandra; Kerr, Bredford; Flores, Carlos A
2016-12-01
Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon changes observed in the Mecp2-null mice, indicating the participation of other cells in this phenotype and the complex interaction between different cell types in this disease.
Flora, Alyssa D; Teel, Louise D; Smith, Mark A; Sinclair, James F; Melton-Celsa, Angela R; O'Brien, Alison D
2013-01-01
Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock.
Flora, Alyssa D.; Teel, Louise D.; Smith, Mark A.; Sinclair, James F.; Melton-Celsa, Angela R.; O’Brien, Alison D.
2013-01-01
Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock. PMID:23874986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Chad A.; Smith, Harold C., E-mail: harold.smith@rochester.edu
Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expressionmore » of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.« less
Govers, Coen; van der Meulen, Jan; van Hoef, Angeline; Stoopen, Geert; Hamers, Astrid; Hoekman, Arjan; de Vos, Ric; Bovee, Toine F. H.; Smits, Mari; Mes, Jurriaan J.
2016-01-01
Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies. PMID:27631494
de Wit, Nicole J W; Hulst, Marcel; Govers, Coen; van der Meulen, Jan; van Hoef, Angeline; Stoopen, Geert; Hamers, Astrid; Hoekman, Arjan; de Vos, Ric; Bovee, Toine F H; Smits, Mari; Mes, Jurriaan J; Hendriksen, Peter J M
2016-01-01
Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.
Animal experimental studies using small intestine endoscope
Liu, Jin-Hua; Liu, Dan-Yang; Wang, Li; Han, Li-Ping; Qi, Zhe-Yu; Ren, Hai-Jun; Feng, Yan; Luan, Feng-Ming; Mi, Liang-Tian; Shan, Shu-Mei
2017-01-01
AIM To assess the feasibility and safety of a novel enteroscope, negative-pressure suction endoscope in examining the small intestine of a porcine model. METHODS In vitro experiments in small intestinal loops from 20 pigs and in vivo experiments in 20 living pigs were conducted. RESULTS In in vitro experiments, a negative pressure of > 0.06 MPa was necessary for optimal visualization of the intestine, and this pressure did not cause gross or histological damage to the mucosa. For satisfactory examination of the small intestine in vivo, higher negative pressure (> 1.00 MPa) was required. Despite this higher pressure, the small intestine did not show any gross or microscopic damage in the suctioned areas. The average time of examination in the living animals was 60 ± 7.67 min. The animals did not experience any apparent ill effects from the procedure. CONCLUSION Small intestine endoscope was safely performed within a reasonable time period and enabled complete visualization of the intestine in most cases. PMID:28611521
A chronic oral reference dose for hexavalent chromium-induced intestinal cancer†
Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A
2014-01-01
High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg–1 day–1 was derived for diffuse hyperplasia—an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l–1. This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l–1) and well above levels of Cr(VI) in US drinking water supplies (typically ≤ 5 µg l–1). © 2013 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:23943231
Sukhotnik, Igor; Coran, Arnold G; Pollak, Yulia; Kuhnreich, Eviatar; Berkowitz, Drora; Saxena, Amulya K
2017-09-01
Notch signaling is thought to act to drive cell versification in the lining of the small intestine. The purpose of the present study was to evaluate the role of the Notch signaling pathway in stem cell differentiation in the late stages of intestinal adaptation after massive small bowel resection in a rat. Male Sprague-Dawley rats were randomly assigned to one of two experimental groups of eight rats each: Sham rats underwent bowel transection and reanastomosis, while SBS rats underwent 75% small bowel resection. Rats were euthanized on day 14 Illumina's Digital Gene Expression (DGE) analysis was used to determine Notch signaling gene expression profiling. Notch-related gene and protein expression was determined using real-time PCR, Western blot analysis, and immunohistochemistry. From seven investigated Notch-related (by DGE analysis) genes, six genes were upregulated in SBS vs. control animals with a relative change in gene expression level of 20% or more. A significant upregulation of Notch signaling-related genes in resected animals was accompanied by a significant increase in Notch-1 protein levels (Western blot analysis) and a significant increase in the number of Notch1 and Hes1 (target gene)-positive cells (immunohistochemistry) compared with sham animals. Evaluation of cell differentiation has shown a strong increase in total number of absorptive cells (unchanged secretory cells) compared with control rats. In conclusion, 2 wk after bowel resection in rats, stimulated Notch signaling directs the crypt cell population toward absorptive progenitors. NEW & NOTEWORTHY This study provides novel insight into the mechanisms of cell proliferation following massive small bowel resection. We show that 2 wk after bowel resection in rats, enhanced stem cell activity was associated with stimulated Notch signaling pathway. We demonstrate that activated Notch signaling cascade directs the crypt cell population toward absorptive progenitors. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billiard, Fabienne; Buard, Valerie; Benderitter, Marc
Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4{sup +}FoxP3{sup +} regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of {gamma}-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4{sup +} effectormore » cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-{beta}, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-{beta}), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3{sup +}CD4{sup +} Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.« less
Li, Yue; Zhang, Hao; Su, Weipeng; Ying, Zhixiong; Chen, Yueping; Zhang, Lili; Lu, Zhaoxin; Wang, Tian
2018-01-01
The focus of recent research has been directed toward the probiotic potential of Bacillus amyloliquefaciens (BA) on the gut health of animals. However, little is known about BA's effects on piglets with intra-uterine growth retardation (IUGR). Therefore, this study investigated the effects of BA supplementation on the growth performance, intestinal morphology, inflammatory response, and microbiota of IUGR piglets. Eighteen litters of newborn piglets were selected at birth, with one normal birth weight (NBW) and two IUGR piglets in each litter (i.e., 18 NBW and 36 IUGR piglets in total). At weaning, the NBW piglet and one of the IUGR piglets were assigned to groups fed a control diet (i.e., the NBW-CON and IUGR-CON groups). The other IUGR piglet was assigned to a group fed the control diet supplemented with 2.0 g BA per kg of diet (i.e., IUGR-BA group). The piglets were thus distributed across three groups for a four-week period. IUGR reduced the growth performance of the IUGR-CON piglets compared with the NBW-CON piglets. It was also associated with decreased villus sizes, increased apoptosis rates, reduced goblet cell numbers, and an imbalance between pro- and anti-inflammatory cytokines in the small intestine. Supplementation with BA improved the average daily weight gain and the feed efficiency of the IUGR-BA group compared with the IUGR-CON group ( P < 0.05). The IUGR-BA group exhibited increases in the ratio of jejunal villus height to crypt depth, in ileal villus height, and in ileal goblet cell density. They also exhibited decreases in the numbers of jejunal and ileal apoptotic cells and ileal proliferative cells ( P < 0.05). Supplementation with BA increased interleukin 10 content, but it decreased tumor necrosis factor alpha level in the small intestines of the IUGR-BA piglets ( P < 0.05). Furthermore, compared with the IUGR-CON piglets, the IUGR-BA piglets had less Escherichia coli in their jejunal digesta, but more Lactobacillus and Bifidobacterium in their ileal digesta ( P < 0.05). Dietary supplementation with BA improves morphology, decreases inflammatory response, and regulates microbiota in the small intestines of IUGR piglets, which may contribute to improved growth performance during early life.
Marlicz, Wojciech; Zuba-Surma, Ewa; Kucia, Magda; Blogowski, Wojciech; Starzynska, Teresa; Ratajczak, Mariusz Z
2012-09-01
Developmentally early cells, including hematopoietic stem progenitor cells (HSPCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs), are mobilized into peripheral blood (PB) in response to tissue/organ injury. We sought to determine whether these cells are mobilized into PB in patients with Crohn's disease (CD). Twenty-five patients with active CD, 20 patients in clinical remission, and 25 age-matched controls were recruited and PB samples harvested. The circulating CD133+/Lin-/CD45+ and CD34+/Lin-/CD45+ cells enriched for HSPCs, CD105+/STRO-1+/CD45- cells enriched for MSCs, CD34+/KDR+/CD31+/CD45-cells enriched for EPCs, and small CXCR4+CD34+CD133+ subsets of Lin-CD45- cells that correspond to the population of VSELs were counted by fluorescence-activated cell sorting (FACS) and evaluated by direct immunofluorescence staining for pluripotency embryonic markers and by reverse-transcription polymerase chain reaction (RT-PCR) for expression of messenger (m)RNAs for a panel of genes expressed in intestine epithelial stem cells. The serum concentration of factors involved in stem cell trafficking, such as stromal derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) were measured by enzyme-linked immunosorbent assay (ELISA). Our data indicate that cells expressing markers for MSCs, EPCs, and small Oct-4+Nanog+SSEA-4+CXCR4+lin-CD45- VSELs are mobilized into PB in CD. The mobilized cells also expressed at the mRNA level genes playing a role in development and regeneration of gastrointestinal epithelium. All these changes were accompanied by increased serum concentrations of VEGF and HGF. CD triggers the mobilization of MSCs, EPCs, and VSELs, while the significance and precise role of these mobilized cells in repair of damaged intestine requires further study. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.
Geelhaar, Anika; Moos, Verena; Schinnerling, Katina; Allers, Kristina; Loddenkemper, Christoph; Fenollar, Florence; LaScola, Bernard; Raoult, Didier; Schneider, Thomas
2010-01-01
Whipple's disease is a chronic multisystemic infection caused by Tropheryma whipplei that is characterized by arthritis, weight loss, and diarrhea. The immunological defects in the duodenal mucosa, the site of major replication of the agent underlying the pathogenesis of Whipple's disease, are poorly understood. Mucosal immunoglobulins are essential for the defense against intestinal pathogens; therefore, we analyzed the B-cell response in duodenal specimens and sera of Whipple's disease patients. Whereas systemic immunoglobulin production was affected only marginally, duodenal biopsy specimens of Whipple's disease patients contained reduced numbers of immunoglobulin-positive plasma cells and secreted less immunoglobulin compared to healthy controls but showed a weak secretory IgA response toward T. whipplei. This T. whipplei-specific intestinal immune response was not observed in controls. Thus, we were able to demonstrate that general mucosal immunoglobulin production in Whipple's disease patients is impaired. However, this deficiency does not completely abolish T. whipplei-specific secretory IgA production that nonetheless does not protect from chronic infection. PMID:20696822
Satora, Leszek; Mytych, Jennifer; Bilska-Kos, Anna
2018-05-23
Bronze corydoras (Corydoras aeneus) is a small diurnal activity fish from South America. Under hypoxia conditions, it uses the posterior part of the intestine as an accessory respiratory organ. The present PCR studies demonstrated higher expression of HIF-1α (hypoxia-inducible factor) gene in the respiratory than that in digestive part of bronze corydoras intestine. Further, immunolocalization studies using antibodies specific to HIF-1α and transmission electron microscopy (TEM) revealed the presence of HIF-1α epitopes in the intestine of Corydoras aeneus. In the respiratory intestine, the numerous clusters of gold particles visualizing HIF-1α antibody were observed within fibroblasts, whereas in the digestive tract of this species, single gold grains in the epithelial cells were noted. On the other hand, the presence of HIF-1α and the cytoplasmic domain of the epidermal growth factor receptor (EGFR) in the respiratory intestine of bronze corydoras assumes their interactions in the system where these factors appeared for the first time. The non-obligatory air-breathing fishes using their digestive tract as an accessory respiratory organ during hypoxia conditions are very interesting for the studies of the processes that control HIF-1α expression and squamous cell proliferation.
Motexafin Gadolinium and Doxorubicin in Treating Patients With Advanced Cancer
2015-09-30
Breast Cancer; Chronic Myeloproliferative Disorders; Colorectal Cancer; Head and Neck Cancer; Leukemia; Lung Cancer; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic/Myeloproliferative Diseases; Prostate Cancer; Small Intestine Cancer; Unspecified Adult Solid Tumor, Protocol Specific
Li, Dechun; Du, Hongtao; Shao, Guoqing; Guo, Yongtuan; Lu, Wan; Li, Ruihong
2017-07-01
The application value of small intestine decompression combined with oral feeding in the middle and late period of malignant small bowel obstruction was examined. A total of 22 patients with advanced malignant small bowel obstruction were included in the present study. An ileus tube was inserted via the nose under fluoroscopy into the obstructed small intestine of each patient. At the same time, the insertion depth the of the catheter was adjusted. When the catheter was blocked, small bowel selective angiography was performed to determine the location and cause of the obstruction and the extent of the obstruction, and to determine the length of the small intestine in the site of obstruction, and to select the variety and tolerance of enteral nutrition. We observed the decompression tube flow and ease of intestinal obstruction. In total, 20 patients were treated with oral enteral nutrition after abdominal distension, and 22 cases were treated by the nose to observe the drainage and the relief of intestinal obstruction. The distal end of the catheter was placed in a predetermined position. The symptoms of intestinal obstruction were relieved 1-4 days after decompression. The 22 patients with selective angiography of the small intestine showed positive X-ray signs: 18 patients with oral enteral nutrition therapy had improved the nutritional situation 2 weeks later. In 12 cases, where there was anal defecation exhaust, 2 had transient removal of intestinal obstruction catheter. In conclusion, this comprehensive treatment based on small intestine decompression combined with enteral nutrition is expected to become a new therapeutic approach and method for the treatment of patients with advanced tumor small bowel obstruction.
Transcriptional and functional profiling defines human small intestinal macrophage subsets.
Bujko, Anna; Atlasy, Nader; Landsverk, Ole J B; Richter, Lisa; Yaqub, Sheraz; Horneland, Rune; Øyen, Ole; Aandahl, Einar Martin; Aabakken, Lars; Stunnenberg, Hendrik G; Bækkevold, Espen S; Jahnsen, Frode L
2018-02-05
Macrophages (Mfs) are instrumental in maintaining immune homeostasis in the intestine, yet studies on the origin and heterogeneity of human intestinal Mfs are scarce. Here, we identified four distinct Mf subpopulations in human small intestine (SI). Assessment of their turnover in duodenal transplants revealed that all Mf subsets were completely replaced over time; Mf1 and Mf2, phenotypically similar to peripheral blood monocytes (PBMos), were largely replaced within 3 wk, whereas two subsets with features of mature Mfs, Mf3 and Mf4, exhibited significantly slower replacement. Mf3 and Mf4 localized differently in SI; Mf3 formed a dense network in mucosal lamina propria, whereas Mf4 was enriched in submucosa. Transcriptional analysis showed that all Mf subsets were markedly distinct from PBMos and dendritic cells. Compared with PBMos, Mf subpopulations showed reduced responsiveness to proinflammatory stimuli but were proficient at endocytosis of particulate and soluble material. These data provide a comprehensive analysis of human SI Mf population and suggest a precursor-progeny relationship with PBMos. © 2018 Bujko et al.
Narai, Asako; Watanabe, Hirohito; Iwanaga, Toshihiko; Tomita, Toshio; Shimizu, Makoto
2004-11-01
We have previously found a transepithelial electrical resistance (TEER)-decreasing protein derived from Flammulina velutipes, which was revealed to be identical to flammutoxin (FTX) that is known as a hemolytic pore-forming protein. This protein induced a rapid decrease in TEER and parallel increase in paracellular permeability in the intestinal epithelial Caco-2 cell monolayer without any cytotoxicity. An immunoblotting analysis revealed that the FTX-induced decrease in TEER was accompanied by the formation of a high-molecular-weight complex on the surface of Caco-2 cells. Intracellular Ca(2+) imaging showed that exposure to FTX caused a rapid Ca(2+) influx. It was observed by electron microscopy that FTX induced swelling of microvilli and expansion of the cellular surface. Staining with fluorescent phalloidin showed a marked change to filamentous actin in the FTX-treated cells. These results suggest that TEER reduction could sensitively detect small membrane pore formation by FTX in the intestinal epithelium which causes a morphological alteration and disruption of the paracellular barrier function.
Small Intestine Cancer—Patient Version
Small intestine cancer usually begins in an area of the intestine called the duodenum. This cancer is rarer than cancers in other parts of the gastrointestinal system, such as the colon and stomach. Explore the links on this page to learn more about small intestine cancer treatment, statistics, research, and clinical t
Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T
2018-03-01
Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).
Digestion, absorption, and fermentation of carbohydrates in the newborn.
Kien, C L
1996-06-01
In the newborn, sugars present in human milk and formulas are assimilated by both small intestinal digestion and, especially in the case of lactose, colonic bacterial fermentation. Colonic fermentation of carbohydrate serves three major functions: (1) conservation of a fraction of the metabolizable energy of dietary carbohydrate that is not absorbed in the small intestine; (2) prevention of osmotic diarrhea; and (3) production of short-chain fatty acids that stimulate sodium and water absorption, serve as fuel for colonocytes, and stimulate cell replication in colon and small intestine. Diarrhea produced in association with small bowel malabsorption of sugar may be caused by three, potentially overlapping mechanisms: (1) osmotic effects of unfermented sugar, which may cause secondary disruption of fermentation by purging the bacteria or diluting the bacteria mass; (2) damage to the colon mucosa from excessive fermentation leading to SCFA malabsorption and osmotic diarrhea on this basis; and (3) excessive fermentation leading to lowering of luminal pH and inhibition of bacterial enzymes. Therapy aimed at reducing diarrhea associated with sugar malabsorption might involve either slowing of motility to facilitate fermentation or stimulation of fermentative activity, but such interventions would depend on greater understanding of the mechanisms for colonic dysfunction in this condition.
Ajandouz, El Hassan; Berdah, Stéphane; Moutardier, Vincent; Bege, Thierry; Birnbaum, David Jérémie; Perrier, Josette; Di Pasquale, Eric; Maresca, Marc
2016-01-01
In addition to deoxynivalenol (DON), acetylated derivatives, i.e., 3-acetyl and 15-acetyldexynivalenol (or 3/15ADON), are present in cereals leading to exposure to these mycotoxins. Animal and human studies suggest that 3/15ADON are converted into DON after their ingestion through hydrolysis of the acetyl moiety, the site(s) of such deacetylation being still uncharacterized. We used in vitro and ex vivo approaches to study the deacetylation of 3/15ADON by enzymes and cells/tissues present on their way from the food matrix to the blood in humans. We found that luminal deacetylation by digestive enzymes and bacteria is limited. Using human cells, tissues and S9 fractions, we were able to demonstrate that small intestine and liver possess strong deacetylation capacity compared to colon and kidneys. Interestingly, in most cases, deacetylation was more efficient for 3ADON than 15ADON. Although we initially thought that carboxylesterases (CES) could be responsible for the deacetylation of 3/15ADON, the use of pure human CES1/2 and of CES inhibitor demonstrated that CES are not involved. Taken together, our original model system allowed us to identify the small intestine and the liver as the main site of deacetylation of ingested 3/15ADON in humans. PMID:27483321
Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negoro, Ryosuke; Takayama, Kazuo; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research
Many drugs have potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in small intestinal enterocytes. Therefore, a model that can accurately evaluate drug-mediated CYP3A4 induction is urgently needed. In this study, we overlaid Matrigel on the human induced pluripotent stem cells-derived enterocyte-like cells (hiPS-ELCs) to generate the mature hiPS-ELCs that could be applied to drug-mediated CYP3A4 induction test. By overlaying Matrigel in the maturation process of enterocyte-like cells, the gene expression levels of intestinal markers (VILLIN, sucrase-isomaltase, intestine-specific homeobox, caudal type homeobox 2, and intestinal fatty acid-binding protein) were enhanced suggesting that the enterocyte-like cellsmore » were maturated by Matrigel overlay. The percentage of VILLIN-positive cells in the hiPS-ELCs found to be approximately 55.6%. To examine the CYP3A4 induction potential, the hiPS-ELCs were treated with various drugs. Treatment with dexamethasone, phenobarbital, rifampicin, or 1α,25-dihydroxyvitamin D3 resulted in 5.8-fold, 13.4-fold, 9.8-fold, or 95.0-fold induction of CYP3A4 expression relative to that in the untreated controls, respectively. These results suggest that our hiPS-ELCs would be a useful model for CYP3A4 induction test. - Highlights: • The hiPS-ELCs were matured by Matrigel overlay. • The hiPS-ELCs expressed intestinal nuclear receptors, such as PXR, GR and VDR. • The hiPS-ELC is a useful model for the drug-mediated CYP3A4 induction test.« less
Lemme-Dumit, J M; Polti, M A; Perdigón, G; Galdeano, C Maldonado
2018-01-29
The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.
Choi, Hong Kyu; Lee, Young Ju; Lee, Young Ho; Park, Jong Pil; Min, Kevin; Park, Hyojin
2013-11-01
Small intestinal function returns first after surgery, and then the function of the stomach returns to normal after postoperative ileus (POI). The aim of this study was to investigate inflammatory responses in the muscle coat of stomach and small intestine in guinea pig POI model. The distance of charcoal migration from pylorus to the distal intestine was measured. Hematoxylin and eosin (H&E) and immunohistochemical stain for calprotectin were done from the histologic sections of stomach, jejunum and ileum obtained at 3 and 6 hour after operation. Data were compared between sham operation and POI groups. The distance of charcoal migration was significantly reduced in the 3 and 6 hour POI groups compared with sham operated groups (p<0.05). On H&E staining, the degree of inflammation was significantly higher in the stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). Calprotectin positive cells were significantly increased in the muscle coat of stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). There was strong association between the degree of inflammation and calprotectin positive cells in stomach. Postoperative ileus induced by cecal manipulation significantly increased the degree of inflammation and calprotectin positive cells in the muscle coat of stomach as a remote organ. The relevance of degree of inflammation and the recovery time of ileus should be pursued in the future research.
Hafner, Christian; Meyer, Stefanie; Langmann, Thomas; Schmitz, Gerd; Bataille, Frauke; Hagen, Ilja; Becker, Bernd; Roesch, Alexander; Rogler, Gerhard; Landthaler, Michael; Vogt, Thomas
2005-01-01
AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD). METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model. RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1, we found abundantly co-expressed EphB2 and ephrin-B1/2. Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrin-B1/2 expressing rat IEC-6-cells with recombinant EphB1-Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge. CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD. PMID:15996027
Sharma, Ajay; Thompson, Margret S; Scrivani, Peter V; Dykes, Nathan L; Yeager, Amy E; Freer, Sean R; Erb, Hollis N
2011-01-01
A cross-sectional study was performed on acutely vomiting dogs to compare the accuracy of radiography and ultrasonography for the diagnosis of small-intestinal mechanical obstruction and to describe several radiographic and ultrasonographic signs to identify their contribution to the final diagnosis. The sample population consisted of 82 adult dogs and small-intestinal obstruction by foreign body was confirmed in 27/82 (33%) dogs by surgery or necropsy. Radiography produced a definitive result (obstructed or not obstructed) in 58/82 (70%) of dogs; ultrasonography produced a definitive result in 80/82 (97%) of dogs. On radiographs, a diagnosis of obstruction was based on detection of segmental small-intestinal dilatation, plication, or detection of a foreign body. Approximately 30% (8/27) of obstructed dogs did not have radiographic signs of segmental small-intestinal dilatation, of which 50% (4/8) were due to linear foreign bodies. The ultrasonographic diagnosis of small-intestinal obstruction was based on detection of an obstructive lesion, sonographic signs of plication or segmental, small-intestinal dilatation. The ultrasonographic presence or absence of moderate-to-severe intestinal diameter enlargement (due to lumen dilatation) of the jejunum (>1.5 cm) was a useful discriminatory finding and, when present, should prompt a thorough search for a cause of small-intestinal obstruction. In conclusion, both abdominal radiography and abdominal ultrasonography are accurate for diagnosing small-intestinal obstruction in vomiting dogs and either may be used depending on availability and examiner choice. Abdominal ultrasonography had greater accuracy, fewer equivocal results and provided greater diagnostic confidence compared with radiography. © 2010 Veterinary Radiology & Ultrasound.
[Expression of carcinoembryonic antigen receptor in digestive organs].
Zhao, Hui-min; Zhang, Sen; Gao, Feng
2010-08-01
To explore the significance of the expression of carcinoembryonic antigen receptors (CEAR) in digestive organs. Specimens were procured from 20 male BALB/c mice including esophagus, small intestine, stomach, colon, pancreas, and liver. Kupffer cells were obtained by density gradient centrifugation following enzymatic digestion of the fresh liver specimen. Immunohistochemistry and immunocytochemistry methods were used to detect CEAR in those organs or Kupffer cells. CEAR was found both in cytoplasm and nuclei of the digestive tract mucosal epithelial cells and pancreas islet cells, but only in the cytoplasm of liver cells, Kupffer cells, and smooth muscle cells of the whole digestive tract. The mean ranks of CEAR expression were 174.33 in the mucosal epithelial cells of colon, 160.70 in epithelial cells of small intestine, 139.18 in Kupffer cells, 137.43 in pancreas islet cells, 131.70 in liver cells, 124.23 in gastric epithelial cells, 77.15 in esophageal epithelial cells and 57.80-71.00 in smooth muscle cells of the entire digestive tract examined. There were significantly differences in the CEAR expression intensity among those positive cells (chi2=99.58, P<0.01) while CEAR was not present in submucosal connective tissue cells, pancreatic exocrine cells, or hepatic sinusoid endothelial cells. There are significantly differences in the expression of CEAR in the main digestive organs according to the different tissue and cells, which may play an important role in the carcinogenesis and hepatic metastasis from tumors of the digestive system.
Kaji, Izumi; Karaki, Shin-ichiro; Kuwahara, Atsukazu
2014-01-01
The colonic lumen is continually exposed to many compounds, including beneficial and harmful compounds that are produced by colonic microflora. The intestinal epithelia form a barrier between the internal and luminal (external) environments. Chemical receptors that sense the luminal environment are thought to play important roles as sensors and as modulators of epithelial cell functions. The recent molecular identification of various membrane receptor proteins has revealed the sensory role of intestinal epithelial cells. Nutrient sensing by these receptors in the small intestine is implicated in nutrient absorption and metabolism. However, little is known about the physiological roles of chemosensors in the large intestine. Since 1980s, researchers have examined the effects of short-chain fatty acids (SCFA), the primary products of commensal bacteria, on gut motility, secretion, and incretin release, for example. In this decade, the SCFA receptor genes and their expression were identified in the mammalian colon. Furthermore, many other chemical receptors, including taste and olfactory receptors have been found in colonic epithelial cells. These findings indicate that the large intestinal epithelia express chemosensors that detect the luminal contents, particularly bacterial metabolites, and induce the host defense systems and the modulation of systemic metabolism via incretin release. In this review, we describe the local effects of chemical stimuli on the lumen associated with the expression pattern of sensory receptors. We propose that sensory receptors expressed in the colonic mucosa play important roles in luminal chemosensing to maintain homeostasis.
Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.
Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa
2018-04-07
Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.
Your small intestine is the longest part of your digestive system - about twenty feet long! It connects your stomach ... many times to fit inside your abdomen. Your small intestine does most of the digesting of the ...
Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel
2013-01-01
The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196
Dahan, Arik; Amidon, Gordon L
2010-02-15
We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.
Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D
2017-05-15
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21)
Nollevaux, Géraldine; Devillé, Christelle; El Moualij, Benaïssa; Zorzi, Willy; Deloyer, Patricia; Schneider, Yves-Jacques; Peulen, Olivier; Dandrifosse, Guy
2006-01-01
Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium) did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules. PMID:16670004
Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.
Bortvedt, Sarah F; Lund, P Kay
2012-03-01
To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.
Dunne, Margaret R.; Elliott, Louise; Hussey, Seamus; Mahmud, Nasir; Kelly, Jacinta; Doherty, Derek G.; Feighery, Conleth F.
2013-01-01
Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity. PMID:24124528
Dunne, Margaret R; Elliott, Louise; Hussey, Seamus; Mahmud, Nasir; Kelly, Jacinta; Doherty, Derek G; Feighery, Conleth F
2013-01-01
Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56(+) T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.
General Information about Small Intestine Cancer
... Small Intestine Cancer Treatment (PDQ®)–Patient Version General Information About Small Intestine Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...
Meyer, Allison M; Caton, Joel S
2016-01-01
Small-intestinal growth and function are critical for optimal animal growth and health and play a major role in nutrient digestion and absorption, energy and nutrient expenditure, and immunological competence. During fetal and perinatal development, the small intestine is affected by the maternal environment and nutrient intake. In ruminants, altered small-intestinal mass, villi morphology, hypertrophy, hyperplasia, vascularity, and gene expression have been observed as a result of poor gestational nutrition or intrauterine growth restriction. Although many of these data come from fetal stages, data have also demonstrated that nutrition during mid- and late gestation affects lamb small-intestinal growth, vascularity, digestive enzyme activity, and gene expression at 20 and 180 d of age as well. The small intestine is known to be a highly plastic tissue, changing with nutrient intake and physiological state even in adulthood, and the maternal small intestine adapts to pregnancy and advancing gestation. In ruminants, the growth, vascularity, and gene expression of the maternal small intestine also adapt to the nutritional plane and specific nutrient intake such as high selenium during pregnancy. These changes likely alter both pre- and postnatal nutrient delivery to offspring. More research is necessary to better understand the role of the offspring and maternal small intestines in whole-animal responses to developmental programming, but programming of this plastic tissue seems to play a dynamic role in gestational nutrition impacts on the whole animal. PMID:27180380
2017-07-24
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
Jwo, Shyh-Chuan; Chiu, Chu-Hua; Tang, Shye-Jye; Hsieh, Ming-Fa
2013-12-01
The proper regeneration of intestinal muscle for functional peristalsis is the most challenging aspect of current small intestine tissue engineering. This study aimed to fabricate a hydrogel scaffold for the proliferation of intestinal smooth muscle cells (ISMCs). Tubular porous scaffolds of 10-20 wt% gelatin and 0.05-0.1 wt% poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel were cross-linked by carbodiimide and succinimide in an annular space of a glass mold. The scaffolds with higher gelatin contents degraded slower in the phosphate buffer solution. In rheological measurements, the hydrated scaffolds were elastic (all tangent delta <0.45); they responded differentially to frequency, indicating a complete viscoelastic property that is beneficial for soft tissue regeneration. Isolated rat ISMCs, with the characteristic biomarkers α-SMA, calponin and myh11, were loaded into the scaffolds by using either static or centrifugal methods. The average cell density inside the scaffolds increased in a time-dependent manner in most scaffolds of both seeding groups, although at early time points (seven days) the centrifugal seeding method trapped cells more efficiently and yielded a higher cell density than the static seeding method. The static seeding method increased the cell density from 7.5-fold to 16.3-fold after 28 days, whereas the centrifugal procedure produced a maximum increase of only 2.4-fold in the same period. In vitro degradation data showed that 50-80% of the scaffold was degraded by the 14th day. However, the self-secreted extracellular matrix maintained the integrity of the scaffolds for cell proliferation and spreading for up to 28 days. Confocal microscopic images revealed cell-cell contacts with the formation of a 3D network, demonstrating that the fabricated scaffolds were highly biocompatible. Therefore, these polymeric biomaterials hold great promise for in vivo applications of intestinal tissue engineering.
Thaiwong, T; Wise, A G; Maes, R K; Mullaney, T; Kiupel, M
2016-11-01
Recurrent outbreaks of sudden death and bloody diarrhea were reported in March 2013 and February 2014 in a breeding colony of Papillon dogs. During the first outbreak, 1 adult dog and 2 eight-month-old puppies died. During the second outbreak, 2 ten-week-old puppies died. One puppy from the first outbreak and 2 puppies from the second outbreak were examined at necropsy. Histologically, all 3 puppies had severe segmental crypt necrosis of the small intestine and marked lymphoid follicle depletion in the spleen and Peyer's patches. Real-time (RT) polymerase chain reaction (PCR) demonstrated abundant canine parvovirus (CPV-2) DNA (Ct<15) in the affected small intestine, and immunohistochemistry detected large amounts of CPV-2 antigen in intestinal crypt epithelium and Kupffer cells but few positive macrophages in lymphoid organs. All puppies had marked sinusoidal histiocytosis and multifocal granulomatous inflammation in mesenteric lymph nodes and spleen, prompting additional RT-PCR testing for canine circovirus 1 (CaCV-1). Very high levels of CaCV-1 DNA (Ct<13) were detected in small intestine, lymph nodes, and spleen. In situ hybridization for CaCV-1 detected rare positive nuclei of regenerating crypt epithelium but abundant amounts of CaCV-1 nucleic acid in the cytoplasm and nuclei of histiocytes in all lymphoid tissues, including granulomatous inflammatory foci and hepatic Kupffer cells. Significant levels of CaCV-1 DNA were detected in blood and serum (Ct as low as 13) but not feces from 3 surviving dogs at 2 months or 1 year after the outbreak, respectively. We hypothesize that CPV-2 infection predisposed dogs to CaCV-1 infection and ultimately resulted in more severe clinical disease. © The Author(s) 2016.
Brake, D W; Titgemeyer, E C; Anderson, D E
2014-09-01
Greater postruminal flows of protein increase small intestinal starch digestion in cattle. Our objective was to determine if small intestinal starch digestion is increased by duodenal supplementation of AA. We fed 5 duodenally and ileally cannulated steers a low-starch soybean hull-based diet in 5 × 5 Latin square designs and provided continuous duodenal infusion of raw cornstarch in combination with AA or casein and measured small intestinal starch digestion. In Exp. 1 treatments were continuous duodenal infusion of 1) no supplement (control), 2) casein (400 g/d), 3) crystalline AA similar in amount and AA composition to the casein (CASAA), 4) crystalline nonessential AA similar to those provided by casein, or 5) crystalline essential AA similar to those provided by casein. In Exp. 2 treatments were continuous duodenal infusion of 1) no supplement (control), 2) casein (400 g/d), 3) Glu (133 g/d), 4) Phe and Trp plus Met (30.4, 6.5, and 17.5 g/d, respectively; PTM), or 5) a combination of Glu and PTM. Duodenal infusion of casein increased (P ≤ 0.05) small intestinal starch digestion. When CASAA was infused, small intestinal starch digestion was similar (P = 0.30) to casein infusion. Infusion of only nonessential AA tended to increase (P = 0.14) small intestinal starch digestion relative to the control, but infusion of essential AA alone did not affect (P = 0.84) small intestinal starch digestion. In addition, infusion of casein or CASAA increased ileal flows of ethanol-soluble starch (small-chain α-glycosides), but nonessential AA alone were not different than the control. Duodenal infusion of Glu increased (P ≤ 0.05) small intestinal starch digestion, whereas PTM did not. Neither Glu nor PTM increased ileal flow of ethanol-soluble starch, but Glu and PTM provided together tended (P = 0.07) to increase ileal flows of small chain α-glycosides. Our data suggest that Glu alone can increase small intestinal starch digestion in cattle similar to casein, but increases in small intestinal starch digestion in response to Glu are not associated with an increase in ileal flows of small chain α-glycosides.
Alternative functional in vitro models of human intestinal epithelia
Kauffman, Amanda L.; Gyurdieva, Alexandra V.; Mabus, John R.; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J.
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport. PMID:23847534
Alternative functional in vitro models of human intestinal epithelia.
Kauffman, Amanda L; Gyurdieva, Alexandra V; Mabus, John R; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.
Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela
2014-01-01
Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ−/− mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ−/− mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ−/− mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper–tyrosine-phosphorylated in the PTPσ−/− mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ−/− mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD. PMID:24385580
2017-10-10
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Yuki; Iwatsuki, Ken; Hanyu, Hikaru
We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivationmore » conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation. - Highlights: • Met influences the proliferation of enteroids. • Met plays a crucial role in the maintenance of stem cells. • Met deprivation potentially promotes differentiation into secretory cells.« less
Gut microbes and adverse food reactions: Focus on gluten related disorders.
Galipeau, Heather J; Verdu, Elena F
2014-01-01
Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions.
Gut microbes and adverse food reactions: Focus on gluten related disorders
Galipeau, Heather J; Verdu, Elena F
2014-01-01
Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions. PMID:25483329
Protein metabolism in the small intestine during cancer cachexia and chemotherapy in mice.
Samuels, S E; Knowles, A L; Tilignac, T; Debiton, E; Madelmont, J C; Attaix, D
2000-09-01
The impact of cancer cachexia and chemotherapy on small intestinal protein metabolism and its subsequent recovery was investigated. Cancer cachexia was induced in mice with colon 26 adenocarcinoma, which is a small and slow-growing tumor characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C6H12ClN3O4S). Both healthy mice and tumor-bearing mice were given a single i.p. injection of cystemustine (20 mg/kg) 3 days after the onset of cachexia. Cancer cachexia led to a reduced in vivo rate of protein synthesis in the small intestine relative to healthy mice (-13 to -34%; P < 0.05), resulting in a 25% loss of protein mass (P < 0.05), and decreased villus width and crypt depth (P < 0.05). In treated mice, acute cytotoxicity of chemotherapy did not promote further wasting of small intestinal protein mass, nor did it result in further damage to intestinal morphology. In contrast, mucosal damage and a 17% reduction in small intestinal protein mass (P < 0.05) were evident in healthy mice treated with cystemustine, suggesting that the effects of chemotherapy on the small intestine in a state of cancer cachexia are not additive, which was an unexpected finding. Complete and rapid recovery of small intestinal protein mass in cured mice resulted from an increase in the rate of protein synthesis compared with healthy mice (23-34%; P < 0.05). Northern hybridizations of mRNA encoding components of the major proteolytic systems suggested that proteolysis may not have mediated intestinal wasting or recovery. A major clinical goal should be to design methods to improve small intestinal protein metabolism before the initiation of chemotherapy.
Consumption of Diet Containing Free Amino Acids Exacerbates Colitis in Mice
Souza, Adna Luciana; Fiorini Aguiar, Sarah Leão; Gonçalves Miranda, Mariana Camila; Lemos, Luisa; Freitas Guimaraes, Mauro Andrade; Reis, Daniela Silva; Vieira Barros, Patrícia Aparecida; Veloso, Emerson Soares; Carvalho, Toniana Gonçalves; Ribeiro, Fabiola Mara; Ferreira, Enio; Cara, Denise Carmona; Gomes-Santos, Ana Cristina; Faria, Ana Maria Caetano
2017-01-01
Dietary proteins can influence the maturation of the immune system, particularly the gut-associated lymphoid tissue, when consumed from weaning to adulthood. Moreover, replacement of dietary proteins by amino acids at weaning has been shown to impair the generation of regulatory T cells in the gut as well as immune activities such as protective response to infection, induction of oral and nasal tolerance as well as allergic responses. Polymeric and elemental diets are used in the clinical practice, but the specific role of intact proteins and free amino acids during the intestinal inflammation are not known. It is plausible that these two dietary nitrogen sources would yield distinct immunological outcomes since proteins are recognized by the immune system as antigens and amino acids do not bind to antigen-recognition receptors but instead to intracellular receptors such as mammalian target of rapamycin (mTOR). In this study, our aim was to evaluate the effects of consumption of an amino acid-containing diet (AA diet) versus a control protein-containing diet in adult mice at steady state and during colitis development. We showed that consumption of a AA diet by adult mature mice lead to various immunological changes including decrease in the production of serum IgG as well as increase in the levels of IL-6, IL-17A, TGF-β, and IL-10 in the small and large intestines. It also led to changes in the intestinal morphology, to increase in intestinal permeability, in the number of total and activated CD4+ T cells in the small intestine as well as in the frequency of proliferating cells in the colon. Moreover, consumption of AA diet during and prior to development of dextran sodium sulfate-induced colitis exacerbated gut inflammation. Administration of rapamycin during AA diet consumption prevented colitis exacerbation suggesting that mTOR activation was involved in the effects triggered by the AA diet. Therefore, our study suggests that different outcomes can result from the use of diets containing either intact proteins or free amino acids such as elemental, semielemental, and polymeric diets during intestinal inflammation. These results may contribute to the design of nutritional therapeutic intervention for inflammatory bowel diseases. PMID:29209321
de Oliveira Belém, Mônica; Cirilo, Carla Possani; de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Comar, Jurandir Fernando; Natali, Maria Raquel Marçal; de Almeida Araújo, Eduardo José
2015-09-01
During the aging process, the body's systems change structurally and loss of function can occur. Ingesting a smaller amount of food has been considered a plausible proposal for increased longevity with the quality of life. However, the effects of dietary restriction (DR) during aging are still poorly understood, especially for organs of the digestive system. This study aimed to describe the body weight, oxidative status and possible morphological changes of the intestinal wall of rats submitted to DR during the aging process (7 to 18months old). Twelve 7-month-old male Wistar rats fed ad libitum since birth were assigned to two groups: control group (CG, n=6) fed ad libitum from 7 to 18months old; and dietary restriction group (DRG, n=6) fed 50% of the amount of chow consumed by the CG from 7 to 18months old. The body weight, feed and water intake were monitored throughout the experiment. Blood, periepididymal adipose tissue (PAT) and retroperitoneal adipose tissue (RAT), and the small intestine were collected at 18months old. The blood was collected to evaluate its components and oxidative status. Sections from the duodenum and ileum were stained with HE, PAS and AB pH2.5 for morphometric analyses of the intestinal wall components, and to count intraepithelial lymphocytes (IELs), goblet cells and cells in mitosis in the epithelium. DR rats showed a reduction in weight, naso-anal length, PAT, RAT and intestinal length; however, they consumed more water. Blood parameters indicate that the DR rats remained well nourished. In addition, they showed lower lipid peroxidation. Hypertrophy of the duodenal mucosa and atrophy of the ileal mucosa were observed. The number of goblet cells and IELs was reduced, but the mitotic index remained unaltered in both duodenum and ileum. In conclusion, 50% dietary restriction for rats from 7 to 18months old contributed to improving their nutritional parameters but, to achieve this, adjustments were required in the structure of the body weight and morphology of the small intestine. Copyright © 2015 Elsevier Inc. All rights reserved.
2017-01-12
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Colon Cancer; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Melanoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Rectal Cancer; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
Gastrointestinal Carcinoid Tumors—Patient Version
Gastrointestinal (GI) carcinoid tumors are slow-growing tumors that form in the neuroendocrine cells in the GI tract. The GI tract includes the stomach, small intestine, colon, rectum, appendix, and other organs. Start here to find treatment information and research on gastrointestinal carcinoid tumors.
Identification of novel small-molecule Ulex europaeus I mimetics for targeted drug delivery.
Hamashin, Christa; Spindler, Lisa; Russell, Shannon; Schink, Amy; Lambkin, Imelda; O'Mahony, Daniel; Houghten, Richard; Pinilla, Clemencia
2003-11-17
Lectin mimetics have been identified that may have potential application towards targeted drug delivery. Synthetic multivalent polygalloyl constructs effectively competed with Ulex europaeus agglutinin I (UEA1) for binding to intestinal Caco-2 cell membranes.
A case of child death caused by intestinal volvulus following magnetic toy ingestion.
Olczak, Mieszko; Skrzypek, Ewa
2015-05-01
An 8-year boy was admitted to the ER of one of Warsaw's pediatric hospitals with a history of having bloody vomiting the day before. During admission the boy collapsed and lost consciousness. CPR was unsuccessful. On medico-legal autopsy, two foreign objects (small magnetic spheres--0.5 cm in diameter) were found in two different places in the small and large intestines and were notably attracted magnetically one to another. A loop of approximately 1-m length with features of small intestinal hemorrhagic necrosis and small intestinal mechanical obstruction was found. The cause of death was intestinal volvulus and small intestinal mechanical obstruction caused by ingestion of foreign objects (two neodymium magnets). Most likely these small magnetic spheres were part of a popular toy, the safety of which, lately, has been widely discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kovšca Janjatović, A; Lacković, G; Božić, F; Spoljarić, D; Popović, M; Valpotić, H; Vijtiuk, N; Pavičić, Z; Valpotić, I
2009-12-29
Colidiarrhea and colienterotoxemia caused by F4(+) and/or F18(+) enterotoxigenic E. coli (ETEC) strains are the most prevalent infections of suckling and weaned pigs. Here we tested the immunogenicity and protective effectiveness of attenuated F18ac(+) non-ETEC vaccine candidate strain against challenge infection with F4ac(+) ETEC strain by quantitative phenotypic analysis of small intestinal leukocyte subsets in weaned pigs.We also evaluated levamisole as an immune response modifier (IRM) and its adjuvanticity when given in the combination with the experimental vaccine. The pigs were parenterally immunized with either levamisole (at days -2, -1 and 0) or with levamisole and perorally given F18ac(+) non-ETEC strain (at day 0), and challenged with F4ac(+) ETEC strain 7 days later.At day 13 the pigs were euthanatized and sampled for immunohistological/histomorphometrical analyses. Lymphoid CD3(+), CD45RA(+), CD45RC(+), CD21(+), IgA(+) and myeloid SWC3(+) cell subsets were identified in jejunal and ileal epithelium, lamina propria and Peyer's patches using the avidin-biotin complex method, and their numbers were determined by computer-assisted histomorphometry. Quantitative immunophenotypic analyses showed that levamisole treated pigs had highly increased numbers of jejunal CD3(+), CD45RC(+) and SWC3(+) cells (p<0.05) as compared to those recorded in nontreated control pigs.In the ileum of these pigs we have recorded that only CD21(+) cells were significantly increased (p<0.01). The pigs that were treated with levamisole adjuvanted experimental vaccine had significantly increased numbers of all tested cell subsets in both segments of the small intestine. It was concluded that levamisole adjuvanted F18ac(+) non-ETEC vaccine was a requirement for the elicitation of protective gut immunity in this model; nonspecific immunization with levamisole was less effective, but confirmed its potential as an IRM.