Sample records for small intestinal function

  1. Effect of Jiangzhi tablet on gastrointestinal propulsive function in mice

    NASA Astrophysics Data System (ADS)

    Wang, Xiangrong; Geng, Xiuli; Zhao, Jingsheng; Fan, Lili; Zhang, Zhengchen

    2018-04-01

    This paper aims to study the effect of lipid-lowering tablets on gastric emptying and small intestinal propulsion in mice. Mice were randomly divided into control group, Digestant Pill group, Jiangzhi tablet group, middle dose and small dose, the mice gastric emptying phenolsulfonphthalein, gastric residual rate of phenol red indicator to evaluate the gastric emptying rate, residual rate of detection in mouse stomach; small intestine propulsion and selection of carbon ink as the experimental index. Effects were observed to promote the function of normal mice gastric emptying and intestine. The gastric emptying and small intestinal motor function of normal mice were all promoted by each administration group, and the effect was most obvious in small dose group. The effect of reducing blood lipid on gastrointestinal motility of mice ware obviously enhanced.

  2. Full-thickness small intestine necrosis with midgut volvulus, distributed in a patchy fashion, is reversible with moderate blood flow: resumption of normal function to non-viable intestine.

    PubMed

    Amano, Hizuru; Uchida, Hiroo; Kawashima, Hiroshi; Tanaka, Yujiro; Kishimoto, Hiroshi

    2014-08-01

    Midgut volvulus is a highly life-threatening condition that carries a high risk of short gut syndrome. We report a case of catastrophic neonatal midgut volvulus in which second-look laparotomy revealed apparently non-viable remnant small intestine but with a moderate blood supply. Full-thickness small intestine necrosis was distributed in a patchy fashion, with non-viable and necrotic areas distributed so widely that no portion of the intestine could be resected. A section of full-thickness necrotic intestine preserved at surgery was able to regenerate, and normal function was restored over a period of 1 month. This case indicated that intestinal resumption may be dependent on blood flow. Even when intestinal viability is questionable, preservation enables the chance of regeneration if moderate blood flow is present.

  3. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.

    PubMed

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho

    2016-04-04

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.

  4. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist

    PubMed Central

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D.; Miyasaka, Masayuki

    2016-01-01

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4+ T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra−deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. PMID:26951334

  5. Small intestinal function and dietary status in dermatitis herpetiformis.

    PubMed Central

    Gawkrodger, D J; McDonald, C; O'Mahony, S; Ferguson, A

    1991-01-01

    Small intestinal morphology and function were assessed in 82 patients with dermatitis herpetiformis, 51 of whom were taking a normal diet and 31 a gluten free diet. Methods used were histopathological evaluation of jejunal mucosal biopsy specimens, quantitation of intraepithelial lymphocytes, cellobiose/mannitol permeability test, tissue disaccharidase values, serum antigliadin antibodies, and formal assessment of dietary gluten content by a dietician. There was no correlation between dietary gluten intake and the degree of enteropathy in the 51 patients taking a normal diet, whereas biopsy specimens were normal in 24 of the 31 patients on a gluten free diet, all previously having been abnormal. Eighteen patients on gluten containing diets had normal jejunal histology and in seven of these all tests of small intestinal morphology and function were entirely normal. Intestinal permeability was abnormal and serum antigliadin antibodies were present in most patients with enteropathy. Studies of acid secretion in seven patients showed that hypochlorhydria or achlorhydria did not lead to abnormal permeability in the absence of enteropathy. This study shows that a combination of objective tests of small intestinal architecture and function will detect abnormalities in most dermatitis herpetiformis patients, including some with histologically normal jejunal biopsy specimens. Nevertheless there is a small group in whom all conventional intestinal investigations are entirely normal. PMID:2026337

  6. Gastrectomy - slideshow

    MedlinePlus

    ... the small intestine, and functions to break up food into small particles that can be absorbed by the small intestine. Review Date 11/10/2016 Updated by: Todd Gersten, MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. ...

  7. Effect of Wild-Type Shigella Species and Attenuated Shigella Vaccine Candidates on Small Intestinal Barrier Function, Antigen Trafficking, and Cytokine Release

    PubMed Central

    Fiorentino, Maria; Levine, Myron M.

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to the large intestine where they invade colonocytes inducing a strong inflammatory response. PMID:24416363

  8. Effect of vilon and epithalon on activity of enzymes in epithelial and subepithelial layers in small intestine of old rats.

    PubMed

    Khavinson, V Kh; Timofeeva, N M; Malinin, V V; Gordova, L A; Nikitina, A A

    2002-12-01

    Per os administration of Vilon (Lys-Glu) or Epithalon (Ala-Glu-Asp-Gly) to aged Wistar rats for 1 month significantly increased activity of membrane enzymes maltase and alkaline phosphatase in epithelial layer of the small intestine. In addition, Vilon significantly increased activity of cytosolic glycyl-L-leucine dipeptidase in the stromal and seromuscular layers of the small intestine in comparison with the control rats not treated with this agent. These findings suggest improvement of trophic and barrier functions of the small intestine and corroborate the hypothesis on the existence of not only epithelial, but also subepithelial enzymatic barrier supporting the enzyme system in the small intestine, especially in aged animals.

  9. MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function.

    PubMed

    Ikemura, Kenji; Iwamoto, Takuya; Okuda, Masahiro

    2014-08-01

    Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variations in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Gastrointestinal Nutrient Infusion Site and Eating Behavior: Evidence for A Proximal to Distal Gradient within the Small Intestine?

    PubMed

    Alleleyn, Annick M E; van Avesaat, Mark; Troost, Freddy J; Masclee, Adrian A M

    2016-02-26

    The rapidly increasing prevalence of overweight and obesity demands new strategies focusing on prevention and treatment of this significant health care problem. In the search for new and effective therapeutic modalities for overweight subjects, the gastrointestinal (GI) tract is increasingly considered as an attractive target for medical and food-based strategies. The entry of nutrients into the small intestine activates so-called intestinal "brakes", negative feedback mechanisms that influence not only functions of more proximal parts of the GI tract but also satiety and food intake. Recent evidence suggests that all three macronutrients (protein, fat, and carbohydrates) are able to activate the intestinal brake, although to a different extent and by different mechanisms of action. This review provides a detailed overview of the current evidence for intestinal brake activation of the three macronutrients and their effects on GI function, satiety, and food intake. In addition, these effects appear to depend on region and length of infusion in the small intestine. A recommendation for a therapeutic approach is provided, based on the observed differences between intestinal brake activation.

  11. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.

    PubMed

    Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R

    2017-07-01

    Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1  week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.

  12. Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data.

    PubMed

    Buchman, A L

    2001-07-01

    Glutamine is a nonessential amino acid that can be synthesized from glutamate and glutamic acid by glutamate-ammonia ligase. Glutamine is an important fuel source for the small intestine. It was proposed that glutamine is necessary for the maintenance of normal intestinal morphology and function in the absence of luminal nutrients. However, intestinal morphologic and functional changes related to enteral fasting and parenteral nutrition are less significant in humans than in animal models and may not be clinically significant. Therefore, it is unclear whether glutamine is necessary for the preservation of normal intestinal morphology and function in humans during parenteral nutrition. It was suggested that both glutamine-supplemented parenteral nutrition and enteral diets may pre-vent bacterial translocation via the preservation and augmentation of small bowel villus morphology, intestinal permeability, and intestinal immune function. However, it is unclear whether clinically relevant bacterial translocation even occurs in humans, much less whether there is any value in the prevention of such occurrences. Results of the therapeutic use of glutamine in humans at nonphysiologic doses indicate limited efficacy. Although glutamine is generally recognized to be safe on the basis of relatively small studies, side effects in patients receiving home parenteral nutrition and in those with liver-function abnormalities have been described. Therefore, on the basis of currently available clinical data, it is inappropriate to recommend glutamine for therapeutic use in any condition.

  13. Heterogeneity across the murine small and large intestine

    PubMed Central

    Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret

    2014-01-01

    The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed. PMID:25386070

  14. Heterogeneity across the murine small and large intestine.

    PubMed

    Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret

    2014-11-07

    The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.

  15. Effects of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on intestinal function in streptozotocin-induced diabetic rats.

    PubMed

    Hirotani, Yoshihiko; Ikeda, Takuya; Ikeda, Kenji; Yamamoto, Kaoru; Onda, Mitsuko; Arakawa, Yukio; Li, Jun; Kitamura, Kazuyuki; Kurokawa, Nobuo

    2007-09-01

    We examined the effects of Hachimi-jio-gan (HJ) on the small intestinal function in streptozotocin (STZ)-induced diabetic rats. The rats had free access to pellets containing 1% HJ extract powder for 4 weeks after STZ administration. The intestinal disaccharidase (sucrase and maltase) activity was elevated in STZ-treated rats compared with control rats, whereas it was significantly reduced by HJ administration. This suggested that HJ suppresses or delays monosaccharide production in the small intestinal epithelium. In addition, the intestinal mucosal weights and DNA contents that were significantly increased in the STZ-treated rats were restrained to the control level by HJ treatment. Simultaneously, we examined the changes in the plasma levels of glucagon-like peptide 2 (GLP-2), which is a trophic factor specific for the intestine. The plasma GLP-2 levels significantly increased in the STZ-treated rats, whereas HJ decreased the plasma GLP-2 levels. Thus intestinal mucosal weights and DNA contents correlated with plasma GLP-2 levels in diabetes-associated bowel growth. These results suggest that HJ may normalize or suppress the small intestinal disaccharidase activity and the epithelial cell proliferation mediated by GLP-2 in the animal model rats.

  16. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    PubMed Central

    Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

  17. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig

    USDA-ARS?s Scientific Manuscript database

    The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for argin...

  18. Diabetes-related dysfunction of the small intestine and the colon: focus on motility.

    PubMed

    Horváth, Viktor József; Putz, Zsuzsanna; Izbéki, Ferenc; Körei, Anna Erzsébet; Gerő, László; Lengyel, Csaba; Kempler, Péter; Várkonyi, Tamás

    2015-11-01

    In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article.

  19. Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring123

    PubMed Central

    Meyer, Allison M; Caton, Joel S

    2016-01-01

    Small-intestinal growth and function are critical for optimal animal growth and health and play a major role in nutrient digestion and absorption, energy and nutrient expenditure, and immunological competence. During fetal and perinatal development, the small intestine is affected by the maternal environment and nutrient intake. In ruminants, altered small-intestinal mass, villi morphology, hypertrophy, hyperplasia, vascularity, and gene expression have been observed as a result of poor gestational nutrition or intrauterine growth restriction. Although many of these data come from fetal stages, data have also demonstrated that nutrition during mid- and late gestation affects lamb small-intestinal growth, vascularity, digestive enzyme activity, and gene expression at 20 and 180 d of age as well. The small intestine is known to be a highly plastic tissue, changing with nutrient intake and physiological state even in adulthood, and the maternal small intestine adapts to pregnancy and advancing gestation. In ruminants, the growth, vascularity, and gene expression of the maternal small intestine also adapt to the nutritional plane and specific nutrient intake such as high selenium during pregnancy. These changes likely alter both pre- and postnatal nutrient delivery to offspring. More research is necessary to better understand the role of the offspring and maternal small intestines in whole-animal responses to developmental programming, but programming of this plastic tissue seems to play a dynamic role in gestational nutrition impacts on the whole animal. PMID:27180380

  20. Eosinophils may play regionally disparate roles in influencing IgA(+) plasma cell numbers during large and small intestinal inflammation.

    PubMed

    Forman, Ruth; Bramhall, Michael; Logunova, Larisa; Svensson-Frej, Marcus; Cruickshank, Sheena M; Else, Kathryn J

    2016-05-31

    Eosinophils are innate immune cells present in the intestine during steady state conditions. An intestinal eosinophilia is a hallmark of many infections and an accumulation of eosinophils is also observed in the intestine during inflammatory disorders. Classically the function of eosinophils has been associated with tissue destruction, due to the release of cytotoxic granule contents. However, recent evidence has demonstrated that the eosinophil plays a more diverse role in the immune system than previously acknowledged, including shaping adaptive immune responses and providing plasma cell survival factors during the steady state. Importantly, it is known that there are regional differences in the underlying immunology of the small and large intestine, but whether there are differences in context of the intestinal eosinophil in the steady state or inflammation is not known. Our data demonstrates that there are fewer IgA(+) plasma cells in the small intestine of eosinophil-deficient ΔdblGATA-1 mice compared to eosinophil-sufficient wild-type mice, with the difference becoming significant post-infection with Toxoplasma gondii. Remarkably, and in complete contrast, the absence of eosinophils in the inflamed large intestine does not impact on IgA(+) cell numbers during steady state, and is associated with a significant increase in IgA(+) cells post-infection with Trichuris muris compared to wild-type mice. Thus, the intestinal eosinophil appears to be less important in sustaining the IgA(+) cell pool in the large intestine compared to the small intestine, and in fact, our data suggests eosinophils play an inhibitory role. The dichotomy in the influence of the eosinophil over small and large intestinal IgA(+) cells did not depend on differences in plasma cell growth factors, recruitment potential or proliferation within the different regions of the gastrointestinal tract (GIT). We demonstrate for the first time that there are regional differences in the requirement of eosinophils for maintaining IgA+ cells between the large and small intestine, which are more pronounced during inflammation. This is an important step towards further delineation of the enigmatic functions of gut-resident eosinophils.

  1. Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition.

    PubMed

    Kang, Dae J; Kakiyama, Genta; Betrapally, Naga S; Herzog, Jeremy; Nittono, Hiroshi; Hylemon, Phillip B; Zhou, Huiping; Carroll, Ian; Yang, Jing; Gillevet, Patrick M; Jiao, Chunhua; Takei, Hajime; Pandak, William M; Iida, Takashi; Heuman, Douglas M; Fan, Sili; Fiehn, Oliver; Kurosawa, Takao; Sikaroodi, Masoumeh; Sartor, R B; Bajaj, Jasmohan S

    2016-08-25

    Rifaximin has clinical benefits in minimal hepatic encephalopathy (MHE) but the mechanism of action is unclear. The antibiotic-dependent and -independent effects of rifaximin need to be elucidated in the setting of MHE-associated microbiota. To assess the action of rifaximin on intestinal barrier, inflammatory milieu and ammonia generation independent of microbiota using rifaximin. Four germ-free (GF) mice groups were used (1) GF, (2) GF+rifaximin, (3) Humanized with stools from an MHE patient, and (4) Humanized+rifaximin. Mice were followed for 30 days while rifaximin was administered in chow at 100 mg/kg from days 16-30. We tested for ammonia generation (small-intestinal glutaminase, serum ammonia, and cecal glutamine/amino-acid moieties), systemic inflammation (serum IL-1β, IL-6), intestinal barrier (FITC-dextran, large-/small-intestinal expression of IL-1β, IL-6, MCP-1, e-cadherin and zonulin) along with microbiota composition (colonic and fecal multi-tagged sequencing) and function (endotoxemia, fecal bile acid deconjugation and de-hydroxylation). All mice survived until day 30. In the GF setting, rifaximin decreased intestinal ammonia generation (lower serum ammonia, increased small-intestinal glutaminase, and cecal glutamine content) without changing inflammation or intestinal barrier function. Humanized microbiota increased systemic/intestinal inflammation and endotoxemia without hyperammonemia. Rifaximin therapy significantly ameliorated these inflammatory cytokines. Rifaximin also favorably impacted microbiota function (reduced endotoxin and decreased deconjugation and formation of potentially toxic secondary bile acids), but not microbial composition in humanized mice. Rifaximin beneficially alters intestinal ammonia generation by regulating intestinal glutaminase expression independent of gut microbiota. MHE-associated fecal colonization results in intestinal and systemic inflammation in GF mice, which is also ameliorated with rifaximin.

  2. Expression of the monocarboxylate transporter 1 (MCT1) in cells of the porcine intestine.

    PubMed

    Welter, Harald; Claus, Rolf

    2008-06-01

    Uptake of energy into cells and its allocation to individual cellular compartments by transporters are essential for tissue homeostasis. The present study gives an analysis of MCT1 expression and its cellular occurrence in the porcine intestine. Tissue portions from duodenum, jejunum, ileum, colon ascendens, colon transversum and colon descendens were collected and prepared for immunohistochemistry, Western blot and real time RT-PCR. A 169bp porcine MCT1 cDNA fragment was amplified and published. MCT1 mRNA expression in the large intestine was 20 fold higher compared to the small intestine. Western blot detected a single protein band of 41kDa at a much higher amount of MCT1 protein in the large intestine vs. the small intestine. MCT1 protein was detected in mitochondrial fractions of the large but not the small intestine. Immunohistochemistry in the small intestine showed that immune cells in the lamina propria and in the lymphoid follicles primarily expressed MCT1 while in the colon epithelial cells were the main source of MCT1. In summary, cellular expression of MCT1 differs between epithelial cells in the colon and small intestine. A possible role of MCT1 for uptake of butyrate into immune cells and the overall role of MCT1 for intestinal immune cell function remains elusive.

  3. Possibility as monosaccharide laxative of rare sugar alcohols.

    PubMed

    Oosaka, Kazumasa

    2009-05-01

    Allitol, D-talitol and L-iditol are sugar alcohols that are rare in nature. Due to their previous rarity, little is known about the laxative effects of these rare sugar alcohols. Therefore, reliable data on the laxative effect that these sugar alcohols cause in experimental animals could help to evaluate the effectiveness of new monosaccharide laxative drugs. To investigate the laxative effect of rare sugar alcohols, the study was designed to observe the diarrhea that occurred after oral administration of these sugar alcohols in mice. Moreover, to investigate the influence on intestinal function of rare sugar alcohols, the study was designed to examine small intestine transit and the luminal water content. Results indicated that rare sugar alcohols have a laxative effect in mice. Diarrhea started at a dose of 4.95 g/kg of rare sugar alcohols. There was a statistically significant laxative effect for D-talitol and L-iditol at a dose of 9.9 g/kg as compared to vehicle. Moreover, rare sugar alcohols significantly increased the small intestinal transit and the luminal water content of the small intestine and cecum in mice as compared to each vehicle. Overall, L-iditol greatly changes the function of intestine. In conclusion, rare sugar alcohols increase water content in small intestine and accelerate small intestine transit. These results support laxative effect of rare sugar alcohols. Therefore, rare sugar alcohols may be useful as monosaccharide laxatives and may be used to treat constipation.

  4. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)

    USDA-ARS?s Scientific Manuscript database

    Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal ...

  5. [Role of the small intestinal decompression tube and Gastrografin in the treatment of early postoperative inflammatory small bowel obstruction].

    PubMed

    Li, Wei; Li, Zhixia; An, Dali; Liu, Jing; Zhang, Xiaohu

    2014-03-01

    To evaluate the role of the small intestinal decompression tube (SIDT) and Gastrografin in the treatment of early postoperative inflammatory small bowel obstruction (EPISBO). Twelve patients presented EPISBO after abdominal surgery in our department from April 2011 to July 2012. Initially, nasogastric tube decompression and other conventional conservative treatment were administrated. After 14 days, obstruction symptom improvement was not obvious, then the SIDT was used. At the same time, Gastrografin was injected into the small bowel through the SIDT in order to demonstrate the site of obstruction of small bowel and its efficacy. In 11 patients after this management, obstruction symptoms disappeared, bowel function recovered within 3 weeks, and oral feeding occurred gradually. Another patient did not pass flatus after 4 weeks and was reoperated. After postoperative follow-up of 6 months, no case relapsed with intestinal obstruction. For severe and long course of early postoperative inflammatory intestinal obstruction, intestinal decompression tube plus Gastrografin is safe and effective, and can avoid unnecessary reoperation.

  6. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses.

    PubMed

    Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L

    2017-01-01

    There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.

  7. The frequency of Th17 cells in the small intestine exhibits a day-night variation dependent on circadian clock activity.

    PubMed

    Thu Le, Ha Pham; Nakamura, Yuki; Oh-Oka, Kyoko; Ishimaru, Kayoko; Nakajima, Shotaro; Nakao, Atsuhito

    2017-08-19

    Interleukin-17-producing CD4 + T helper (Th17) cells are a key immune lineage that protects against bacterial and fungal infections at mucosal surfaces. At steady state, Th17 cells are abundant in the small intestinal mucosa of mice. There are several mechanisms for regulating the population of Th17 cells in the small intestine, reflecting the importance of maintaining their numbers in the correct balance. Here we demonstrate the existence of a time-of-day-dependent variation in the frequency of Th17 cells in the lamina propria of the small intestine in wild-type mice, which was not observed in mice with a loss-of-function mutation of the core circadian gene Clock or in mice housed under aberrant light/dark conditions. Consistent with this, expression of CCL20, a chemokine that regulates homeostatic trafficking of Th17 cells to the small intestine, exhibited circadian rhythms in the small intestine of wild-type, but not Clock-mutated, mice. In support of these observations, the magnitude of ovalbumin (OVA)-specific antibody and T-cell responses in mice sensitized with OVA plus cholera toxin, a mucosal Th17 cell-dependent adjuvant, was correlated with daily variations in the proportion of Th17 cells in the small intestine. These results suggest that the proportion of Th17 cells in the small intestine exhibits a day-night variation in association with CCL20 expression, which depends on circadian clock activity. The findings provide novel insight into the regulation of the Th17 cell population in the small intestine at steady state, which may have translational potential for mucosal vaccination strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Retinal dehydrogenase gene expression in stomach and small intestine of rats during postnatal development and in vitamin A deficiency.

    PubMed

    Bhat, P V

    1998-04-17

    Retinal dehydrogenase (RALDH) catalyzes the oxidation of retinal to all-trans and 9-cis retinoic acid, which function as ligands controlling RAR and RXR nuclear receptor-signaling pathways. We have recently shown the expression of RALDH transcript in the stomach and small intestine by reverse transcription polymerase chain reaction [Bhat, P.V., Labrecque J., Dumas, F., Lacroix, A. and Yoshida, A. (1995) Gene 166, 303-306]. We have examined RALDH expression in the stomach and small intestine before and during postnatal development and in vitamin A deficiency by assaying for mRNA levels and protein as well as for enzyme activity. In -2 day fetuses, RALDH expression was high in the small intestine, whereas RALDH protein was not detectable in the stomach. However, expression of RALDH was seen in the stomach after birth, and gradually increased with age and reached the highest level at postnatal day 42. In the intestine, RALDH expression decreased postnatally. Vitamin A deficiency up-regulated RALDH expression in the stomach and small intestine, and administration of retinoids down-regulated the RALDH expression in these tissues. These results show the differential expression of RALDH in the stomach and small intestine during postnatal development, and that vitamin A status regulates the expression of RALDH gene in these tissues.

  9. The migrating myoelectric complex of the small intestine

    NASA Astrophysics Data System (ADS)

    Telford, Gordon L.; Sarna, Sushil K.

    1991-10-01

    Gastric and small intestinal myoelectric and motor activity is divided into two main patterns, fed and fasted. During fasting, the predominant pattern of activity is the migrating myoelectric complex (MMC), a cyclically occurring pattern of electric and mechanical activity that is initiated in the stomach and duodenum almost simultaneously and, from there, propagates the length of the small intestine. Cyclic motor activity also occurs in the lower esophageal sphincter, the gallbladder, and the sphincter of Oddi with a duration that is related to the MMC in the small intestine. Of the possible mechanisms for initiation of the MMC in the small intestine (extrinsic neural control, intrinsic neural control, and hormonal control), intrinsic neural control via a series of coupled is the most likely. The keep this sentence in! hormone motilin also plays a role in the initiation of MMCs. After a meal, in man the MMC is disrupted and replaced by irregular contractions. The physiologic role of the MMC is to clear the stomach and small intestine of residual food, secretions, and desquamated cells and propel them to the colon. Disruption of the MMC cycle is associated with bacterial overgrowth in some patients, an observation that supports the proposed cleansing function of the MMC cycle.

  10. Effects of Physical Exercise on the Intestinal Mucosa of Rats Submitted to a Hypothalamic Obesity Condition.

    PubMed

    Gomes, J R; Freitas, J R; Grassiolli, S

    2016-10-01

    The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Effects of nucleotide supplementation in milk replacer on small intestinal absorptive capacity in dairy calves.

    PubMed

    Kehoe, S I; Heinrichs, A J; Baumrucker, C R; Greger, D L

    2008-07-01

    Milk replacer was supplemented with nucleotides and fed to dairy calves from birth through weaning to examine the potential for enhancing recovery of small intestinal function after enteric infection. Three treatments of 23 calves each were fed milk replacer (10% body weight/d) supplemented with no nucleotides (C), purified nucleotides (N), or nucleotides from an extract of Saccharomyces cerevisiae (S). Average daily gain, health scores, fecal dry matter, and fecal bacteria were monitored, and blood was analyzed for packed cell volume, glucose, blood urea nitrogen (BUN), and creatinine. Calves were monitored twice daily for fecal score, and 48 h after increased fecal fluidity was recorded, intestinal function was evaluated by measuring absorption of orally administered xylose (0.5 g/kg of body weight). Packed cell volume of blood was greater for treatment N for wk 2 and 5 compared with other treatment groups. Four calves per treatment were killed, and intestinal tissue was evaluated for morphology, enzyme activities, and nucleoside transporter mRNA expression. Treatment S calves had increased abundance of nucleoside transporter mRNA, numerically longer villi, and lower alkaline phosphatase than other groups. Growth measurements and plasma concentrations of glucose, BUN, creatinine, and IgG were not different between treatments; however, BUN-to-creatinine ratio was higher for treatment N, possibly indicating decreased kidney function. There were also no treatment effects on fecal dry matter and fecal bacteria population. However, N-treated calves had the highest detrimental and lowest beneficial bacteria overall, indicating an unfavorable intestinal environment. Supplementation of purified nucleotides did not improve intestinal morphology or function and resulted in higher fecal water loss and calf dehydration. Supplementation of nucleotides derived from yeast tended to increase calf intestinal function, provide a more beneficial intestinal environment, and improve intestinal morphology.

  12. Butter feeding enhances TNF-alpha production from macrophages and lymphocyte adherence in murine small intestinal microvessels.

    PubMed

    Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi

    2007-11-01

    Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.

  13. Small intestinal ischemia and infarction

    MedlinePlus

    Intestinal necrosis; Ischemic bowel - small intestine; Dead bowel - small intestine; Dead gut - small intestine; Infarcted bowel - small intestine; Atherosclerosis - small intestine; Hardening of the arteries - small intestine

  14. Cdx function is required for maintenance of intestinal identity in the adult.

    PubMed

    Hryniuk, Alexa; Grainger, Stephanie; Savory, Joanne G A; Lohnes, David

    2012-03-15

    The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. [Functioning of mucosal mitochondria of the small intestine in exposure of rats to high environmental temperature].

    PubMed

    Musaev, Kh N; Almatov, K T; Rakhimov, M M; Akhmedov, R

    1981-01-01

    Oxidative phosphorylation in mitochondria of small intestinal mucosa was studied after repeated overheating of rats. The hyperthermia affected the respiratory chains of mitochondrial membranes, facilitating the penetration of ADP, succinate, alpha-ketoglutarate and NADH across the membranes. Under these conditions thermostability of the respiratory chain multienzyme system was decreased and the rate of exogenous cytochrome c incorporation into mitochondrial membranes was altered. In the mitochondrial membranes from small intestinal mucosa there was noted development of latent impairments, the reversibility of which depended on the intensity and duration of hyperthermia.

  16. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal

    PubMed Central

    Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.

    2015-01-01

    To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399

  17. Proteomic analysis of the intestinal adaptation response reveals altered expression of fatty acid binding proteins following massive small bowel resection.

    PubMed

    Stephens, Andrew N; Pereira-Fantini, Prue M; Wilson, Guineva; Taylor, Russell G; Rainczuk, Adam; Meehan, Katie L; Sourial, Magdy; Fuller, Peter J; Stanton, Peter G; Robertson, David M; Bines, Julie E

    2010-03-05

    Intestinal adaptation in response to the loss of the small intestine is essential to restore enteral autonomy in patients who have undergone massive small bowel resection (MSBR). In a proportion of patients, intestinal function is not restored, resulting in chronic intestinal failure (IF). Early referral of such patients for transplant provides the best prognosis; however, the molecular mechanisms underlying intestinal adaptation remain elusive and there is currently no convenient marker to predict whether patients will develop IF. We have investigated the adaptation response in a well-characterized porcine model of intestinal adaptation. 2D DIGE analysis of ileal epithelium from piglets recovering from massive small bowel resection (MSBR) identified over 60 proteins that changed specifically in MSBR animals relative to nonoperational or sham-operated controls. Three fatty acid binding proteins (L-FABP, FABP-6, and I-FABP) showed changes in MSBR animals. The expression changes and localization of each FABP were validated by immunoblotting and immunohistochemical analysis. FABP expression changes in MSBR animals occurred concurrently with altered triglyceride and bile acid metabolism as well as weight gain. The observed FABP expression changes in the ileal epithelium occur as part of the intestinal adaptation response and could provide a clinically useful marker to evaluate adaptation following MSBR.

  18. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine

    PubMed Central

    Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.

    2017-01-01

    Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308

  19. Changes of Tight Junction Protein Claudins in Small Intestine and Kidney Tissues of Mice Fed a DDC Diet.

    PubMed

    Abiko, Yukie; Kojima, Takashi; Murata, Masaki; Tsujiwaki, Mitsuhiro; Takeuchi, Masaya; Sawada, Norimasa; Mori, Michio

    2013-12-01

    DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.

  20. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    PubMed Central

    Vegge, Andreas; Thymann, Thomas; Lund, Pernille; Stoll, Barbara; Bering, Stine B.; Hartmann, Bolette; Jelsing, Jacob; Qvist, Niels; Burrin, Douglas G.; Jeppesen, Palle B.; Holst, Jens J.

    2013-01-01

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 μg/kg body wt per h, SBS+GLP-2, n = 7) and compared with a group of unresected preterm pigs (control, n = 5). After 5 days of TPN, all piglets were fed enterally for 24 h, and a nutrient balance study was performed. Intestinal resection was associated with markedly reduced endogenous GLP-2 levels. GLP-2 increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P < 0.05). These findings were supported by a 200% increase in sucrase and maltase activities, a 50% increase in small intestinal epithelial volume (P < 0.05), as well as increased DNA and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P < 0.05). Following intestinal resection in preterm pigs, GLP-2 induced structural and functional adaptation, resulting in a higher relative absorption of fluid and macronutrients. GLP-2 treatment may be a promising therapy to enhance intestinal adaptation and improve digestive function in preterm infants with jejunostomy following intestinal resection. PMID:23764891

  1. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    PubMed

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  2. [Changes in the peritoneum of the small intestine and diaphragm in experimental portal hypertension].

    PubMed

    Khoroshaev, V A; Vorozheĭkin, V M; Baĭbekov, I M

    1991-04-01

    Diaphragm and small intestine peritoneum morphology was studied in experimental portal hypertension in rats with the help of luminescent, transmission and scanning electron microscopy techniques. Structural organizations of these peritoneum portions and performance function were different: fluid transudation realized through the small intestine peritoneum and resorption occurred via diaphragm peritoneum. Morphological signs allowed to judge about the increasing of fluid transudation in abdominal cavity and diaphragmatic resorption in early period of portal hypertension. Morphological alterations appeared in peritoneum resorption sites (pumping diaphragmatic hatchs) according to progress of portal hypertension that indicated decompensation process of peritoneal fluid absorption and led to ascites.

  3. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice.

    PubMed

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-03-14

    To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function.

  4. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice

    PubMed Central

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-01-01

    AIM: To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. METHODS: Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. RESULTS: Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. CONCLUSION: Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function. PMID:22416180

  5. [Effect of chronic intake of dietary fiber complex on the intestinal structure and function in hypercholesterolemic rats].

    PubMed

    Ma, Zhengwei; Zhang, Xizhong

    2003-07-01

    To investigate the long-term effect of dietary fiber complex (DFC) on intestinal structure and function in hypercholesterolemic rats, 60 healthy SD rats were feed with food rich in lipids and hypercholesterolemic animal models were established. The animals were randomly divided into 5 groups. Rats were fed DFC at levels of 4%, 16%, or 64% for three month in the experimental groups. Wheat fiber was used in the hypercholesterolemic control (HC) group and rats feeding on normal food were used as normal control (NC). Morphology of the small intestine, reticum and caecum were observed by light and electron microscope examination. Intestinal function was measured physically. The results showed that (1) compared with NC group, fecal weight was significantly raised in DFC group of higher level (group D and E, P < 0.05); (2) the weights of small intestine wall in D and E group were significantly higher than those of NC and HC group and weights of caecum wall in E group were significantly higher than those of NC and HC group (P < 0.05); (3) widen villi and thickened muscle layer of small intestine were observed in DFC group of higher level. No demonstrable changes in reticulum morphology in any group of animals were found under the observation of light microscope (4) microvilla becoming short and/or absent, mitochondria swelling, impairment of the integrity of the cristae were commonly observed in DFC groups. Conclusions Long-term intake of DFC composed mainly of Hippophae rhamnoides L, Bran, oat bran and guar gum at higher levels might induce some morphological changes of intestine and caecum. Therefore, DFC might be used at low level as an effective cholesterol-lowering agent.

  6. [Advances in the research of effects of glutamine on immune function of burn patients].

    PubMed

    Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J

    2018-04-20

    Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.

  7. Persistent gut motor dysfunction in a murine model of T-cell-induced enteropathy.

    PubMed

    Mizutani, T; Akiho, H; Khan, W I; Murao, H; Ogino, H; Kanayama, K; Nakamura, K; Takayanagi, R

    2010-02-01

    Inflammatory bowel disease (IBD) patients in remission often experience irritable bowel syndrome (IBS)-like symptoms. We investigated the mechanism for intestinal muscle hypercontractility seen in T-cell-induced enteropathy in recovery phase. BALB/c mice were treated with an anti-CD3 antibody (100 microg per mouse) and euthanized at varying days post-treatment to investigate the histological changes, longitudinal smooth muscle cell contraction, cytokines (Th1, Th2 cytokines, TNF-alpha) and serotonin (5-HT)-expressing enterochromaffin cell numbers in the small intestine. The role of 5-HT in anti-CD3 antibody-induced intestinal muscle function in recovery phase was assessed by inhibiting 5-HT synthesis using 4-chloro-DL-phenylalanine (PCPA). Small intestinal tissue damage was observed from 24 h after the anti-CD3 antibody injection, but had resolved by day 5. Carbachol-induced smooth muscle cell contractility was significantly increased from 4 h after injection, and this muscle hypercontractility was evident in recovery phase (at day 7). Th2 cytokines (IL-4, IL-13) were significantly increased from 4 h to day 7. 5-HT-expressing cells in the intestine were increased from day 1 to day 7. The 5-HT synthesis inhibitor PCPA decreased the anti-CD3 antibody-induced muscle hypercontractility in recovery phase. Intestinal muscle hypercontractility in remission is maintained at the smooth muscle cell level. Th2 cytokines and 5-HT in the small intestine contribute to the maintenance of the altered muscle function in recovery phase.

  8. Investigation of Morphological and Functional Changes in the Small Intestine With Pancreatic Disease.

    PubMed

    Nakamura, Yosuke; Itoh, Akihiro; Kawashima, Hiroki; Ohno, Eizaburo; Itoh, Yuya; Hiramatsu, Takeshi; Sugimoto, Hiroyuki; Sumi, Hajime; Hayashi, Daijuro; Kuwahara, Takamichi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ohmiya, Naoki; Katano, Yoshiaki; Ishigami, Masatoshi; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi; Hirooka, Yoshiki

    2015-11-01

    The aim of this study was to investigate the relationship between pancreas and small intestine evaluating the endoscopic and histopathologic findings of the proximal small intestine in pancreatic diseases. Fifty patients (18 patients with chronic pancreatitis, 17 patients with pancreatic cancer, 15 control subjects) underwent enteroscopy using a prototype enteroscope. The villous height of the jejunum on bioptic specimens was measured, and the mean values of the villi were compared among the 3 groups. Exocrine function was calculated by the pancreatic function diagnostic test, and the correlation between the recovery rate of p-aminobenzoic acid and the villous height was assessed. Finally, the distribution of the K cells secreting glucose-dependent insulinotropic polypeptide and the L cells secreting glucagon-like peptide 1 in the duodenum and jejunum was investigated using immunohistochemistry for glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1. The mean villous height in chronic pancreatitis (328 ± 67 μm) was significantly lower than that in pancreatic cancer (413 ± 57 μm) and control subjects (461 ± 97 μm) (P = 0.004 and P < 0.0001, respectively). A positive correlation was found between the recovery rate of p-aminobenzoic acid and the villous height (r = 0.52, P = 0.0001). The presence of K and L cells was verified in the duodenum and the jejunum. Close relationship between pancreas and small intestine was demonstrated.

  9. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    PubMed

    Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L

    2016-08-22

    Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.

  10. Lubiprostone prevents nonsteroidal anti-inflammatory drug-induced small intestinal damage by suppressing the expression of inflammatory mediators via EP4 receptors.

    PubMed

    Hayashi, Shusaku; Kurata, Naoto; Yamaguchi, Aya; Amagase, Kikuko; Takeuchi, Koji

    2014-06-01

    Lubiprostone, a bicyclic fatty acid derived from prostaglandin E1, has been used to treat chronic constipation and irritable bowel syndrome, and its mechanism of action has been attributed to the stimulation of intestinal fluid secretion via the activation of the chloride channel protein 2/cystic fibrosis transmembrane regulator (ClC-2/CFTR) chloride channels. We examined the effects of lubiprostone on indomethacin-induced enteropathy and investigated the functional mechanisms involved, including its relationship with the EP4 receptor subtype. Male Sprague-Dawley rats were administered indomethacin (10 mg/kg p.o.) and killed 24 hours later to examine the hemorrhagic lesions that developed in the small intestine. Lubiprostone (0.01-1 mg/kg) was administered orally twice 30 minutes before and 9 h after the indomethacin treatment. Indomethacin markedly damaged the small intestine, accompanied by intestinal hypermotility, a decrease in mucus and fluid secretion, and an increase in enterobacterial invasion as well as the up-regulation of inducible nitric-oxide synthase (iNOS) and tumor necrosis factor α (TNFα) mRNAs. Lubiprostone significantly reduced the severity of these lesions, with the concomitant suppression of the functional changes. The effects of lubiprostone on the intestinal lesions and functional alterations were significantly abrogated by the coadministration of AE3-208 [4-(4-cyano-2-(2-(4-fluoronaphthalen-1-yl)propionylamino)phenyl)butyric acid], a selective EP4 antagonist, but not by CFTR(inh)-172, a CFTR inhibitor. These results suggest that lubiprostone may prevent indomethacin-induced enteropathy via an EP4 receptor-dependent mechanism. This effect may be functionally associated with the inhibition of intestinal hypermotility and increase in mucus/fluid secretion, resulting in the suppression of bacterial invasion and iNOS/TNFα expression, which are major pathogenic events in enteropathy. The direct activation of CFTR/ClC-2 chloride channels is not likely to have contributed to the protective effects of lubiprostone.

  11. Fecal Microbiota Transplantation, Commensal Escherichia coli and Lactobacillus johnsonii Strains Differentially Restore Intestinal and Systemic Adaptive Immune Cell Populations Following Broad-spectrum Antibiotic Treatment.

    PubMed

    Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M

    2017-01-01

    The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii , respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli , L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of antibiotics-induced collateral damages to the immune system. However, defined intestinal commensals such as E. coli and L. johnsonii have the potential to restore individual functions of intestinal and systemic immunity. In conclusion, our data provide novel insights into the distinct role of individual commensal bacteria in maintaining immune functions during/following dysbiosis induced by antibiotic therapy thereby shaping host immunity and might thus open novel therapeutical avenues in conditions of perturbed microbiota composition.

  12. Fecal Microbiota Transplantation, Commensal Escherichia coli and Lactobacillus johnsonii Strains Differentially Restore Intestinal and Systemic Adaptive Immune Cell Populations Following Broad-spectrum Antibiotic Treatment

    PubMed Central

    Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii, respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli, L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of antibiotics-induced collateral damages to the immune system. However, defined intestinal commensals such as E. coli and L. johnsonii have the potential to restore individual functions of intestinal and systemic immunity. In conclusion, our data provide novel insights into the distinct role of individual commensal bacteria in maintaining immune functions during/following dysbiosis induced by antibiotic therapy thereby shaping host immunity and might thus open novel therapeutical avenues in conditions of perturbed microbiota composition. PMID:29321764

  13. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.

    PubMed

    Angeli, T R; O'Grady, G; Du, P; Paskaranandavadivel, N; Pullan, A J; Bissett, I P; Cheng, L K

    2013-05-01

    Slow-waves modulate the pattern of small intestine contractions. However, the large-scale spatial organization of intestinal slow-wave pacesetting remains uncertain because most previous studies have had limited resolution. This study applied high-resolution (HR) mapping to evaluate intestinal pacesetting mechanisms and propagation patterns in vivo. HR serosal mapping was performed in anesthetized pigs using flexible arrays (256 electrodes; 32 × 8; 4 mm spacing), applied along the jejunum. Slow-wave propagation patterns, frequencies, and velocities were calculated. Slow-wave initiation sources were identified and analyzed by animation and isochronal activation mapping. Analysis comprised 32 recordings from nine pigs (mean duration 5.1 ± 3.9 min). Slow-wave propagation was analyzed, and a total of 26 sources of slow-wave initiation were observed and classified as focal pacemakers (31%), sites of functional re-entry (23%) and circumferential re-entry (35%), or indeterminate sources (11%). The mean frequencies of circumferential and functional re-entry were similar (17.0 ± 0.3 vs 17.2 ± 0.4 cycle min(-1) ; P = 0.5), and greater than that of focal pacemakers (12.7 ± 0.8 cycle min(-1) ; P < 0.001). Velocity was anisotropic (12.9 ± 0.7 mm s(-1) circumferential vs 9.0 ± 0.7 mm s(-1) longitudinal; P < 0.05), contributing to the onset and maintenance of re-entry. This study has shown multiple patterns of slow-wave initiation in the jejunum of anesthetized pigs. These results constitute the first description and analysis of circumferential re-entry in the gastrointestinal tract and functional re-entry in the in vivo small intestine. Re-entry can control the direction, pattern, and frequency of slow-wave propagation, and its occurrence and functional significance merit further investigation. © 2013 Blackwell Publishing Ltd.

  14. Isolation of Eosinophils from the Lamina Propria of the Murine Small Intestine.

    PubMed

    Berek, Claudia; Beller, Alexander; Chu, Van Trung

    2016-01-01

    Only recently has it become apparent that eosinophils play a crucial role in mucosal immune homeostasis. Although eosinophils are the main cellular component of the lamina propria of the gastrointestinal tract, they have often been overlooked because they express numerous markers, which are normally used to characterize macrophages and/or dendritic cells. To study their function in mucosal immunity, it is important to isolate them with high purity and viability. Here, we describe a protocol to purify eosinophils from the lamina propria of the murine small intestine. The method involves preparation of the small intestine, removal of epithelial cells and digestion of the lamina propria to release eosinophils. A protocol to sort eosinophils is included.

  15. Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system.

    PubMed

    Seltana, Amira; Basora, Nuria; Beaulieu, Jean-François

    2010-01-01

    Rapid and efficient healing of epithelial damage is critical to the functional integrity of the small intestine. Epithelial repair is a complex process that has largely been studied in cultured epithelium but to a much lesser extent in mucosa. We describe a novel method for the study of wound healing using a co-culture system that combined an intestinal epithelial Caco-2/15 cell monolayer cultured on top of human intestinal myofibroblasts, which together formed a basement membrane-like structure that contained many of the major components found at the epithelial-mesenchymal interface in the human intestine. To investigate the mechanism of restitution, small lesions were generated in epithelial cell monolayers on plastic or in co-cultures without disturbing the underlying mesenchymal layer. Monitoring of wound healing showed that repair was more efficient in Caco-2/15-myofibroblast co-cultures than in Caco-2/15 monolayers and involved the deposition of basement membrane components. Functional experiments showed that the addition of type I collagen or human fibronectin to the culture medium significantly accelerated wound closure on epithelial cell co-cultures. This system may provide a new tool to investigate the mechanisms that regulate wound healing in the intestinal epithelium.

  16. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions.

    PubMed

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.

  17. Gene expression in human small intestinal mucosa in vivo is mediated by iron-induced oxidative stress.

    PubMed

    Troost, Freddy J; Brummer, Robert-Jan M; Haenen, Guido R M M; Bast, Aalt; van Haaften, Rachel I; Evelo, Chris T; Saris, Wim H M

    2006-04-13

    Iron-induced oxidative stress in the small intestine may alter gene expression in the intestinal mucosa. The present study aimed to determine which genes are mediated by an iron-induced oxidative challenge in the human small intestine. Eight healthy volunteers [22 yr(SD2)] were tested on two separate occasions in a randomized crossover design. After duodenal tissue sampling by gastroduodenoscopy, a perfusion catheter was inserted orogastrically to perfuse a 40-cm segment of the proximal small intestine with saline and, subsequently, with either 80 or 400 mg of iron as ferrous gluconate. After the intestinal perfusion, a second duodenal tissue sample was obtained. Thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, in intestinal fluid samples increased significantly and dose dependently at 30 min after the start of perfusion with 80 or 400 mg of iron, respectively (P < 0.001). During the perfusion with 400 mg of iron, the increase in thiobarbituric acid-reactive substances was accompanied by a significant, momentary rise in trolox equivalent antioxidant capacity, an indicator of total antioxidant capacity (P < 0.05). The expression of 89 gene reporters was significantly altered by both iron interventions. Functional mapping showed that both iron dosages mediated six distinct processes. Three of those processes involved G-protein receptor coupled pathways. The other processes were associated with cell cycle, complement activation, and calcium channels. Iron administration in the small intestine induced dose-dependent lipid peroxidation and a momentary antioxidant response in the lumen, mediated the expression of at least 89 individual gene reporters, and affected at least six biological processes.

  18. Functional Correlation Between the Pancreas and the Small Intestine in Humans: The First Evaluation Using a Newly Developed Enteroscopy.

    PubMed

    Hayashi, Daijuro; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Ishikawa, Takuya; Kuwahara, Takamichi; Kawai, Manabu; Yamamura, Takeshi; Furukawa, Kazuhiro; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Watanabe, Osamu; Ishigami, Masatoshi; Hashimoto, Senju; Goto, Hidemi

    The aim of this study is to evaluate a functional correlation between the pancreas and the small intestine and the association of this relationship with nutritional status, using magnifying enteroscopy. The subjects were adults aged 20 years or older who underwent upper gastrointestinal endoscopy. An endoscope was inserted into the jejunum, and 10% glucose was sprayed under magnifying observation to evaluate changes in blood flow in the villous capillary network. Mucosal biopsy was performed before and after spraying to evaluate the incretin response in the jejunal mucosa. A total of 124 patients participated in the study. There was a positive correlation between villous blood flow change and exocrine pancreas function (R = 0.4337, P < 0.0001). Changes of gastric inhibitory polypeptide and glucagon-like peptide messenger RNAs in biopsy samples were positively correlated with endocrine pancreas function in 88 patients without treatment for diabetes (R = 0.4314, P = 0.0012; R = 0.4112, P = 0.0081). In patients with lower villous blood flow change and decreased pancreatic exocrine function, the prognostic nutritional index were significantly lower (P = 0.0098), compared with other patients. This study provides the first evidence of a close functional correlation between the pancreas and the small intestine.

  19. The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition.

    PubMed

    Dierick, N A; Decuypere, J A; Degeyter, I

    2003-02-01

    In search for an alternative for nutritional antimicrobials in piglet feeding, the effects of adding whole Cuphea seeds, as a natural source of medium chain fatty acids (MCFA), with known antimicrobial effects, and an exogenous lipase to a weaner diet were studied. The foregut flora, the gut morphology, some digestive parameters and the zootechnical performance of weaned piglets were investigated. Thirty newly weaned piglets, initial weight 7.0 +/- 0.4 kg, were divided according to litter, sex and weight in two groups (control diet; Cuphea + lipase diet). The Cuphea seeds (lanceolata and ignea) (50 g kg(-1)) were substituted for soybean oil (15 g kg(-1)), Alphacell (25 g kg(-1)) and soy protein isolate (10 g kg(-1)) in the control diet. Also 500 mg kg(-1) microbial lipase was added to the Cuphea diet. The piglets were weighted individually on days 0, 3. 7, 14 and 16. Feed intake was recorded per pen during days 0 to 3, 3 to 7, 7 to 14 and 14 to 16. On day 7 five piglets of each experimental group were euthanized for counting the gastric and small intestinal gut flora and for gut morphology at two sites of the small intestine (proximal, distal). The results indicate a trend towards improved performances parameters by feeding Cuphea + lipase. The enzymic released MCFA (1.7 g kg(-1) fresh gastric contents) tended to decrease the number of Coliforms in the proximal small intestine, but increased the number in the stomach and distal small intestine. With Culphea, the number of Streptococci was significantly lower in small intestine, but not in the stomach, while the number of Lactobacilli was significantly lower in the distal small intestine and tended to be lower in the stomach and proximal small intestine. No differences between the diets were noted for the total anaerobic microbial load in the stomach or in the gut. Feeding Cuphea + lipase resulted in a significantly greater villus height (distal small intestine) and a lesser crypt depth (proximal and distal small intestine) and greater villus/crypt ratio depth (proximal and distal small intestine). The intra-epithelial lymphocyte (IEL) counts per 100 enterocytes were significantly decreased in the proximal small intestine and tended to decrease in the distal small intestine by feeding the Cuphea + lipase diet. Both phenomena are indicative for a more healthy and better functional state of the mucosa. Present results are in line with foregoing research, showing that manipulation of the gut ecosystem by the enzymic in situ released MCFA in the stomach and foregut can result in improved performances of the piglets, which makes the concept a potential alternative for in-feed nutritional antibiotics.

  20. [Effect of gamma-aminobutyric acid on peripheral mechanisms regulating autonomic functions].

    PubMed

    Godovalova, L A

    1976-01-01

    Experiments with cats ascertained the potentiating action of GABA (100,300,500 mg/kg) on the pressor reactions of the small intestine vessels, the systemic arterial pressure, depressing (100 mg/kg) and facilitating (500 mg/kg) effect upon the reactions of inhibition of the small intestine motor activity evoked by the efferent stimulation of the celiac nerve. Adrenolytics (dihydroergotoxin, inderal) abolished the facilitating effects of GABA. The latter (0.01 solution) inhibited spontaneous contractions of isolated small intestine lengths. As proved histochemically GABA (500 mg/kg) reduces the catecholamines content in the suprarenals, in the solar plexus ganglia and in vessles "in vivo". It also increases the catecholamines content in the small intestine wall in experiments in vivo and reduces in vitro tests. The potentiating action of GABA on the vegetative reactions in efferent stimulation of the ciliac nerve occurs, apparently, due to an increased ejection of catecholamines by suprarenals and lowered the content of catecholamines in the solar plexus ganglia, which causes facilitated conduction of excitation in the ganglia.

  1. Epidermal growth factor selectively enhances functional enterocyte adaptation after massive small bowel resection.

    PubMed

    Dunn, J C; Parungo, C P; Fonkalsrud, E W; McFadden, D W; Ashley, S W

    1997-01-01

    After massive small bowel resection, the intestine adapts to compensate. In addition to proliferation, enterocytes also undergo selective functional adaptation. In this study we examined the effect of intraperitoneal administration of epidermal growth factor (EGF) on the expression of the brush border dissacharidase sucrase, the sodium glucose cotransporter (SGLT1), and the sodium-potassium ATPase pump (NaK ATPase) by enterocytes in the remnant intestine after massive small bowel resection. Adult Lewis rats underwent either ileal transection or 70% proximal intestinal resection. These animals were subdivided into groups that received either saline or EGF intraperitoneally for 1 week. Ilea from each group were harvested 4 weeks postoperatively. Enterocytes were separated from these segments by calcium chelation. The total protein from the isolated cells was subjected to Western blot analysis. Administration of EGF to animals that underwent transection did not significantly alter the expression of sucrase, SGLT1, or NaK ATPase. After intestinal resection, the expressions of sucrase and SGLT1 were significantly increased. The combination of EGF administration and intestinal resection resulted in a further increase in SGLT1 expression. The intraperitoneal administration of EGF selectively enhanced the expression of SGLT1 by enterocytes after massive small bowel resection. Administration of EGF to sham-operated animals did not have similar effects. These results suggest that EGF augments the adaptive response and may therefore have a therapeutic role in the management of patients with short bowel syndrome.

  2. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    PubMed Central

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H. M.; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A. M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects. PMID:28045137

  3. Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome) Complicated by Perforation of the Small Intestine and Cholecystitis.

    PubMed

    Ohnuki, Yoichi; Moriya, Yusuke; Yutani, Sachiko; Mizuma, Atsushi; Nakayama, Taira; Ohnuki, Yuko; Uda, Shuji; Inomoto, Chie; Yamamoto, Soichiro; Nakamura, Naoya; Takizawa, Shunya

    2018-03-01

    We report a case of eosinophilic granulomatosis with polyangiitis (EGPA; formerly known as Churg-Strauss syndrome) complicated by perforation of the small intestine and necrotizing cholecystitis. A 69-year-old man with a history of bronchial asthma was admitted with mononeuritis multiplex. The laboratory findings included remarkable eosinophilia. He was treated with corticosteroids and his laboratory indices showed improvement; however, his functional deficits remained. His neuropathy gradually improved after the addition of intravenous immunoglobulin (IVIG). He was subsequently treated with oral prednisolone (40 mg/day) as maintenance therapy. Within a month after finishing IVIG, he developed perforation of the small intestine and necrotizing cholecystitis. Intestinal perforation has often been reported as a gastrointestinal complication of EGPA. In contrast, cholecystitis is a rare complication. We report this case because the manifestation of more than one complication is extremely rare. Gastrointestinal symptoms may be a complication of EGPA itself and/or immunosuppressive treatment.

  4. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype.

    PubMed

    De Lisle, Robert C; Mueller, Racquel; Roach, Eileen

    2010-09-15

    Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Cftr(tm1UNC) (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.

  5. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype

    PubMed Central

    2010-01-01

    Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion. PMID:20843337

  6. Functional relevance of intestinal epithelial cells in inflammatory bowel disease.

    PubMed

    Okamoto, Ryuichi; Watanabe, Mamoru

    2016-01-01

    The intestinal epithelium constitutes a physical barrier between inner and outer side of our body. It also functions as a "hub" which connects factors that determine the development of inflammatory bowel disease, such as microbiota, susceptibility genes, and host immune response. Accordingly, recent studies have implicated and further featured the role of intestinal epithelial cell dysfunction in the pathophysiology of inflammatory bowel disease. For example, mucin producing goblet cells are usually "depleted" in ulcerative colitis patients. Studies have shown that those goblet cells exhibit various immune-regulatory functions in addition to mucin production, such as antigen presentation or cytokine production. Paneth cells are another key cell lineage that has been deeply implicated in the pathophysiology of Crohn's disease. Several susceptibility genes for Crohn's disease may lead to impairment of anti-bacterial peptide production and secretion by Paneth cells. Also, other susceptibility genes may determine the survival of Paneth cells, which leads to reduced Paneth cell function in the patient small intestinal mucosa. Further studies may reveal other unexpected roles of the intestinal epithelium in the pathophysiology of inflammatory bowel disease, and may help to develop alternative therapies targeted to intestinal epithelial cell functions.

  7. Intestinal nerves and ion transport: stimuli, reflexes, and responses.

    PubMed

    Hubel, K A

    1985-03-01

    The effects of extrinsic and intrinsic nerves on ion and water transport by the intestine are considered and discussed in terms of their possible physiological function. Adrenergic nerves enter the small intestine via mesenteric nerves. Adrenergic tone is usually absent in tissues in vitro but is present in vivo. The nerves increase absorption in response to homeostatic changes associated with acute depletion of extracellular fluid. Cholinergic tone that reduces fluid absorption or causes secretion has been detected in the small intestine of humans, dogs, and cats and in the colon of humans. Extrinsic cholinergic fibers generally do not affect ion transport in small intestine but probably do so in colon. Whether peptides liberated in the mucosa affect enterocytes directly is not clear. Studies on humans and rabbits suggest that the role of substance P is minor. The physiological roles of vasoactive intestinal polypeptide (VIP) and somatostatin remain to be defined. Intraluminal factors also affect ion and water transport. Mucosal rubbing, distension, and cholera toxin cause fluid secretion; acid solutions in the duodenum cause alkaline secretion; these stimuli and hypertonic glucose liberate serotonin into the lumen, the mesenteric venous blood, or both. It has been proposed that the enterochromaffin cell is an epithelial sensory cell that responds to noxious stimuli within the lumen by liberating serotonin. The serotonin initiates a neural reflex through a nicotinic ganglion to liberate a secretagogue that acts on the enterocyte. The function of VIP in this proposed reflex is unclear. The variety of intraluminal stimuli that influence epithelial function implies that there is more than one type of epithelial sensory cell (or sensory mechanism). Prostaglandins may mediate the alkaline secretion caused by acid in the duodenum. There may be other effective substances. Although it has been known for years that intraluminal stimuli affect the coordination of smooth muscle functions, it is not known whether similar stimuli also influence salt and water transport as a meal traverses the alimentary canal.

  8. Human Milk: Bioactive Proteins/Peptides and Functional Properties.

    PubMed

    Lönnerdal, Bo

    2016-06-23

    Breastfeeding has been associated with many benefits, both in the short and in the long term. Infants being breastfed generally have less illness and have better cognitive development at 1 year of age than formula-fed infants. Later in life, they have a lower risk of obesity, diabetes and cardiovascular disease. Several components in breast milk may be responsible for these different outcomes, but bioactive proteins/peptides likely play a major role. Some proteins in breast milk are comparatively resistant towards digestion and may therefore exert their functions in the gastrointestinal tract in intact form or as larger fragments. Other milk proteins may be partially digested in the upper small intestine and the resulting peptides may exert functions in the lower small intestine. Lactoferrin, lysozyme and secretory IgA have been found intact in the stool of breastfed infants and are therefore examples of proteins that are resistant against proteolytic degradation in the gut. Together, these proteins serve protective roles against infection and support immune function in the immature infant. α-lactalbumin, β-casein, κ-casein and osteopontin are examples of proteins that are partially digested in the upper small intestine, and the resulting peptides influence functions in the gut. Such functions include stimulation of immune function, mineral and trace element absorption and defense against infection. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  9. The Down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein.

    PubMed

    Silberg, D G; Wang, W; Moseley, R H; Traber, P G

    1995-05-19

    A gene has been described, Down Regulated in Adenoma (dra), which is expressed in normal colon but is absent in the majority of colon adenomas and adenocarcinomas. However, the function of this protein is unknown. Because of sequence similarity to a recently cloned membrane sulfate transporter in rat liver, the transport function of Dra was examined. We established that dra encodes for a Na(+)-independent transporter for both sulfate and oxalate using microinjected Xenopus oocytes as an assay system. Sulfate transport was sensitive to the anion exchange inhibitor DIDS (4,4'-diisothiocyano-2,2' disulfonic acid stilbene). Using an RNase protection assay, we found that dra mRNA expression is limited to the small intestine and colon in mouse, therefore identifying Dra as an intestine-specific sulfate transporter. dra also had a unique pattern of expression during intestinal development. Northern blot analysis revealed a low level of expression in colon at birth with a marked increase in the first 2 postnatal weeks. In contrast, there was a lower, constant level of expression in small intestine in the postnatal period. Caco-2 cells, a colon carcinoma cell line that differentiates over time in culture, demonstrated a marked induction of dra mRNA as cells progressed from the preconfluent (undifferentiated) to the postconfluent (differentiated) state. These results show that Dra is an intestine-specific Na(+)-independent sulfate transporter that has differential expression during colonic development. This functional characterization provides the foundation for investigation of the role of Dra in intestinal sulfate transport and in the malignant phenotype.

  10. Polysaccharides derived from Ganoderma lucidum fungus mycelia ameliorate indomethacin-induced small intestinal injury via induction of GM-CSF from macrophages.

    PubMed

    Nagai, Kenta; Ueno, Yoshitaka; Tanaka, Shinji; Hayashi, Ryohei; Shinagawa, Kei; Chayama, Kazuaki

    2017-10-01

    Non-steroidal anti-inflammatory drugs often cause ulcers in the human small intestine, but few effective agents exist to treat such injury. Ganoderma lucidum Karst, also known as "Reishi" or "Lingzhi", is a mushroom. We previously reported that a water-soluble extract from G. lucidum fungus mycelia (MAK) has anti-inflammatory effects in murine colitis induced by trinitrobenzene sulfonic acid, and induction of granulocyte macrophage colony-stimulating factor (GM-CSF) by MAK may provide anti-inflammatory effects. However, its effects on indomethacin-induced small intestinal injuries are unknown. The present study investigated the preventative effects of MAK via immunological function and the polysaccharides from MAK on indomethacin-induced ileitis in mice. Peritoneal macrophages (PMs) were stimulated in vitro with MAK and adoptively transferred to C57BL/6 mice intraperitoneally, which were then given indomethacin. Intestinal inflammation was evaluated after 24h. We performed in vivo antibody blockade to investigate the preventive role of GM-CSF, which derived from PMs stimulated with MAK. We then used PMs stimulated with MAK pre-treated by pectinase in an adoptive transfer assay to determine the preventive role of polysaccharides. Indomethacin-induced small intestinal injury was inhibited by adoptive transfer of PMs stimulated in vitro with MAK. In this transfer model, pre-treatment with anti-GM-CSF antibody but not with control antibody reversed the improvement of small intestinal inflammation by indomethacin. Pectinase pretreatment impaired the anti-inflammatory effect of MAK. PMs stimulated by MAK appear to contribute to the anti-inflammatory response through GM-CSF in small intestinal injury induced by indomethacin. The polysaccharides may be the components that elicit the anti-inflammatory effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Digestibility of soybean and pigeon pea seed meals and morphological intestinal alterations in pigs.

    PubMed

    Mekbungwan, Apichai; Thongwittaya, Narin; Yamauchi, Koh-En

    2004-06-01

    To compare the nutrient digestibility of soybean meal (SM) and pigeon pea seed meal (PM) as well as morphological intestinal alterations in piglets fed them, three pigs per group were randomly selected at the end of the feeding experiment for ten days. Growth performance was higher in the SM group than in the PM group (p<0.05). The digestibility of crude protein, crude fat and crude fiber was 80.6%, 23.6% and 52.4% in the SM group, while in the PM group, values of 49.8%, 23.6% and 43.2% were observed, respectively. Digestible energy was 3.26 kcal g(-1) in SM and 3.17 kcal g(-1) in PM. It was concluded that the digestibility of PM was lower than that of SM; almost half of the protein in PM was digested. Dietary treatments had no effect on length of each small intestinal segment and weight of visceral organs (small intestine, liver, heart, spleen, kidney, stomach and lung) except the decreased kidney weight in the PM group (p<0.05). The epithelial cells on the jejunal villi showed a dome-like shape in the SM group, but they were a flat shape in the PM group. The present digestion trial and histological intestinal data suggest that the intestinal digestive and absorptive functions are much more atrophied in the PM group than in the SM group, and demonstrate that histological intestinal alterations might be well related with the intestinal functions.

  12. Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus

    PubMed Central

    Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian

    2017-01-01

    Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301

  13. [Change of chart genes expression in small intestines of mouse induced by electromagnetic pulse irradiation].

    PubMed

    Ren, Dongqing; Jin, Juan; Li, Xiaojuan; Zeng, Guiying

    2008-01-01

    To explore the bio-effects of electromagnetic pulse(EMP) on mouse small intestines induced by means of gene chip. Twelve BALB/c mice were randomly assigned to the normal control group and the EMP group with 6 in each group. The EMP group was irradiated with 200 kV/m, 200 pulses EMP. 18 hours after the irradiation, the mice were sacrificed and their jejunum of small intestines were eviscerated. The fluorescent cDNA probes labeled with Cy3 and Cy5 were prepared from RNA extracted from the intestines of the two groups. Probes of the two groups were then hybridized against cDNA gene chip, the fluorescent signals were scanned with a scanner and the results were analyzed by computer. Compared with the control, 56 genes in gene expression profile were altered. The expression levels of 37 genes were up-regulated distinctly while 19 genes were down-regulated significantly. Among the 56 genes, 19 were reported with known or inferred functions, 12 up-regulated genes were catenin alpha 1 (alpha-catenin), ly-6 alloantigen(Ly-6E), fructose-6-phosphate transaminase (GF6P), ribosomal protein S17 (rpS17), small proline-rich protein 2A (Sprr2a), glandular kallikrein27 (GK27), lipoxygenase-3, aldo-keto reductase (Akr1c12), GSG1, amylase 2 (Amy2),elastase 2, p6-5 gene and 7 down-regulated genes were junctional adhesion molecule (Jam), protein arginine methyltransferase (Carm1),NNP-1, 2-5 A synthetase L2,Mlark gene, ATP synthase alpha subunit, uncoupling protein-2 (Ucp2) gene; the other 37 were reported with unknown functions. EMP irradiation could induce specific expressions of some genes in mouse small intestines and most of these genes were up-regulated ones.

  14. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955

  15. Survival after total body irradiation: Effects of irradiation of exteriorized small intestine. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.

    1993-12-31

    Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes inmore » small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.« less

  16. Effect of acetylcysteine on adaptation of intestinal smooth muscle after small bowel bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrodt, N.W.; Belloso, R.M.; Biskin, L.C.

    1986-03-05

    The authors have postulated that the adaptive changes in function and structure of bypassed segments of small bowel are due in part to the change in intestinal contents following operation. The purpose of these experiments was to determine if a mucolytic agent could alter the adaptation. Rats were anesthetized and a 70% jejunoileal bypass was performed. The bypassed segments then were perfused with either saline or acetylcysteine for 3-12 days. Then, either intestinal transit was determined using Cr-51, or segments were taken for morphometric analysis. Transit, as assessed by the geometric center, was increased 32% by acetylcysteine treatment. Treatment alsomore » caused a decrease in hypertrophy of the muscularis. Muscle wet weight, muscle cross-sectional area, and muscle layer thickness all were significantly less in those animals infused with acetyl-cysteine. No decreases in hypertrophy were seen in the in-continuity segments. These data indicate that alterations in intestinal content can affect the course of adaptation of intestinal muscle in response to small bowel bypass.« less

  17. Influence of Technological Treatments on the Functionality of Bifidobacterium lactis INL1, a Breast Milk-Derived Probiotic.

    PubMed

    Zacarías, María Florencia; Souza, Tassia Costa; Zaburlín, Natalia; Carmona Cara, Denise; Reinheimer, Jorge; Nicoli, Jacques; Vinderola, Gabriel

    2017-10-01

    The aim of this study is to evaluate the influence of the technological processing on the functionality of the human breast milk probiotic strain Bifidobacterium lactis INL1. In vitro antagonistic activity of B. lactis INL1 was detected for Gram-positive and Gram-negative pathogens. B. lactis INL1 was administered to mice as fresh (F), frozen (Z), spray-dried (S), or lyophilized (L) culture. Immune parameters (IgA, IL-10, and IFN-γ) were determined and histological analysis was performed to assess functionality and protection capacity against Salmonella. In BALB/c mice, F and S cultures induced an increase in the number of IgA-producing cells in the small intestine and IL-10 levels were increased for L culture in the large intestine. In Swiss mice, B. lactis INL1 increased secretory-IgA levels in the small intestine before and after Salmonella infection, both as F or dehydrated culture. Also, an attenuation of damage in the intestinal epithelium and less inflammatory infiltrates were observed in animals that received F and S cultures, whereas in liver only F showed some effect. The anti-inflammatory effect was confirmed in both tissues by myeloperoxidase activity and by IFN-γ levels in the intestinal content. B. lactis INL1 showed inhibitory activity against pathogens and confirmed its probiotic potential in animal models. Technological processing of the probiotic strain affected its functionality. This work provides evidence about the influence of technology on the functionality of probiotics, which may help probiotics and functional food manufacturers to take processing into consideration when assessing the functionality of new strains. © 2017 Institute of Food Technologists®.

  18. The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells.

    PubMed

    Schoenborn, Alexi A; von Furstenberg, Richard J; Valsaraj, Smrithi; Hussain, Farah S; Stein, Molly; Shanahan, Michael T; Henning, Susan J; Gulati, Ajay S

    2018-06-08

    Paneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function. In this study, we sought to characterize the impact of the enteric microbiota on PC biology in the mouse small intestine. This was done by first enumerating jejunal PCs in germ-free (GF) versus conventionally-raised (CR) mice. We next evaluated the possible functional consequences of altered PC biology in these experimental groups by assessing epithelial proliferation, ISC numbers, and the production of AMPs. We found that PC numbers were significantly increased in CR versus GF mice; however, there were no differences in ISC numbers or cycling activity between groups. Of the AMPs assessed, only Reg3γ transcript expression was significantly increased in CR mice. Intriguingly, this increase was abrogated in cultured CR versus GF enteroids, and could not be re-induced with various bacterial ligands. Our findings demonstrate the enteric microbiota regulates PC function by increasing PC numbers and inducing Reg3γ expression, though the latter effect may not involve direct interactions between bacteria and the intestinal epithelium. In contrast, the enteric microbiota does not appear to regulate jejunal ISC census and proliferation. These are critical findings for investigators using GF mice and the enteroid system to study PC and ISC biology.

  19. Small bowel bacterial overgrowth

    MedlinePlus

    Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine; Small intestinal bacterial overgrowth; SIBO ... intestine does not have a high number of bacteria. Excess bacteria in the small intestine may use ...

  20. Composition and immuno-stimulatory properties of extracellular DNA from mouse gut flora.

    PubMed

    Qi, Ce; Li, Ya; Yu, Ren-Qiang; Zhou, Sheng-Li; Wang, Xing-Guo; Le, Guo-Wei; Jin, Qing-Zhe; Xiao, Hang; Sun, Jin

    2017-11-28

    To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro . TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.

  1. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    PubMed

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding.

    PubMed

    Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A

    2015-05-01

    Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans. Copyright © 2015 the American Physiological Society.

  3. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity

    USDA-ARS?s Scientific Manuscript database

    The lining of the gastrointestinal (GI) tract is the largest surface exposed to the external environment in the human body. One of the main functions of the small intestine is absorption, and intestinal absorption is a route used by essential nutrients, chemicals, and pharmaceuticals to enter the sy...

  4. Disorders of the Small Intestine

    MedlinePlus

    ... Esophagus Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of ... Esophagus Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of ...

  5. Peroxidised dietary lipids impair intestinal function and morphology of the small intestine villi of nursery pigs in a dose-dependent manner.

    PubMed

    Rosero, David S; Odle, Jack; Moeser, Adam J; Boyd, R Dean; van Heugten, Eric

    2015-12-28

    The objective of this study was to investigate the effect of increasing degrees of lipid peroxidation on structure and function of the small intestine of nursery pigs. A total of 216 pigs (mean body weight was 6·5 kg) were randomly allotted within weight blocks and sex and fed one of five experimental diets for 35 d (eleven pens per treatment with three to four pigs per pen). Treatments included a control diet without added lipid, and diets supplemented with 6 % soyabean oil that was exposed to heat (80°C) and constant oxygen flow (1 litre/min) for 0, 6, 9 and 12 d. Increasing lipid peroxidation linearly reduced feed intake (P<0·001) and weight gain (P=0·024). Apparent faecal digestibility of gross energy (P=0·001) and fat (P<0·001) decreased linearly as the degree of peroxidation increased. Absorption of mannitol (linear, P=0·097) and d-xylose (linear, P=0·089), measured in serum 2 h post gavage with a solution containing 0·2 g/ml of d-xylose and 0·3 g/ml of mannitol, tended to decrease progressively as the peroxidation level increased. Increasing peroxidation also resulted in increased villi height (linear, P<0·001) and crypt depth (quadratic, P=0·005) in the jejunum. Increasing peroxidation increased malondialdehyde concentrations (quadratic, P=0·035) and reduced the total antioxidant capacity (linear, P=0·044) in the jejunal mucosa. In conclusion, lipid peroxidation progressively diminished animal performance and modified the function and morphology of the small intestine of nursery pigs. Detrimental effects were related with the disruption of redox environment of the intestinal mucosa.

  6. Morphological and functional alterations of small intestine in chronic pancreatitis.

    PubMed

    Gubergrits, Natalya B; Linevskiy, Yuri V; Lukashevich, Galina M; Fomenko, Pavel G; Moroz, Tatyana V; Mishra, Tapan

    2012-09-10

    The small intestine in chronic pancreatitis has not been investigated yet thoroughly. It would be important to understand fat metabolism in the course of this disease and could be explained if the small intestine has some pathological conditions and, due to this reason, pancreatic enzyme substitution does not work in all patients. To investigate the pathophysiology of small intestine in chronic pancreatitis and to show the reason why in some cases pancreatic enzyme substitution does not work properly. In the process of the study 33 chronic pancreatitis patients have been examined. The control group includes 30 subjects without chronic pancreatitis similar for age, sex and alcohol consumption to the patients with chronic pancreatitis patients. Aspiration biopsy of jejunum mucosa followed by histological examination and investigation of intestinal enzymes by aspiration has been performed. Metabolism at membranic level has been studied by enzymatic activity of amylase and lipase in the small intestine. Production of enzymes (monoglyceride lipase, lactase, saccharase, maltase, glycyl-l-leucine dipeptidase) promoting metabolism in enterocytes has been estimated as to their activity in homogenates of jejunum mucosa samples. Participation of mucosa in intestinal digestion has been assessed by alkaline phosphatase activity in a secretory chyme from proximal portion of jejunum. Absorptive capacity of jejunum was evaluated by D-xylose test results. DNA, lysozyme, immunoglobulin contents of chyme have also been calculated and bacteriological study of chyme has been also performed. Secondary enteritis, accompanied by moderate dystrophic changes of mucous membrane, thinning of limbus, and decrease of Paneth cell mitotic index, was found to occur in chronic pancreatitis patients. Enteritis is followed by changes in enzymatic processes in the sphere of membrane and intestinal digestion, decrease of absorption, accelerated desquamation of epithelium, fall in local immunity and development of bacterial overgrowth syndrome. Existence of secondary enteritis and bacterial overgrowth syndrome validates lack of enzyme replacement therapy efficacy in some chronic pancreatitis patients with pancreatic insufficiency. To optimize treatment in such cases it is important to perform small intestine decontamination and escalate enzyme preparation dosage.

  7. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine.

    PubMed

    Rong, Shunxing; McDonald, Jeffrey G; Engelking, Luke J

    2017-10-01

    SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model ( Vil-BP2 -/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2 -/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2 -/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    PubMed Central

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-01-01

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719

  9. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    PubMed

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  10. Overexpression of Peroxiredoxin 4 Affects Intestinal Function in a Dietary Mouse Model of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Noguchi, Hirotsugu; Mazaki, Yuichi; Kurahashi, Toshihiro; Izumi, Hiroto; Wang, Ke-Yong; Guo, Xin; Uramoto, Hidetaka; Kohno, Kimitoshi; Taniguchi, Hatsumi; Tanaka, Yoshiya; Fujii, Junichi; Sasaguri, Yasuyuki; Tanimoto, Akihide; Nakayama, Toshiyuki

    2016-01-01

    Background Accumulating evidence has shown that methionine- and choline-deficient high fat (MCD+HF) diet induces the development of nonalcoholic fatty liver disease (NAFLD), in which elevated reactive oxygen species play a crucial role. We have reported that peroxiredoxin 4 (PRDX4), a unique secretory member of the PRDX antioxidant family, protects against NAFLD progression. However, the detailed mechanism and potential effects on the intestinal function still remain unclear. Methods & Results Two weeks after feeding mice a MCD+HF diet, the livers of human PRDX4 transgenic (Tg) mice exhibited significant suppression in the development of NAFLD compared with wild-type (WT) mice. The serum thiobarbituric acid reactive substances levels were significantly lower in Tg mice. In contrast, the Tg small intestine with PRDX4 overexpression showed more suppressed shortening of total length and villi height, and more accumulation of lipid in the jejunum, along with lower levels of dihydroethidium binding. The enterocytes exhibited fewer apoptotic but more proliferating cells, and inflammation was reduced in the mucosa. Furthermore, the small intestine of Tg mice had significantly higher expression of cholesterol absorption-regulatory factors, including liver X receptor-α, but lower expression of microsomal triglyceride-transfer protein. Conclusion Our present data provide the first evidence of the beneficial effects of PRDX4 on intestinal function in the reduction of the severity of NAFLD, by ameliorating oxidative stress-induced local and systemic injury. We can suggest that both liver and intestine are spared, to some degree, by the antioxidant properties of PRDX4. PMID:27035833

  11. Dietary Carbohydrates and Childhood Functional Abdominal Pain.

    PubMed

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-01-01

    Childhood functional gastrointestinal disorders (FGIDs) affect a large number of children throughout the world. Carbohydrates (which provide the majority of calories consumed in the Western diet) have been implicated both as culprits for the etiology of symptoms and as potential therapeutic agents (e.g., fiber) in childhood FGIDs. In this review, we detail how carbohydrate malabsorption may cause gastrointestinal symptoms (e.g., bloating) via the physiologic effects of both increased osmotic activity and increased gas production from bacterial fermentation. Several factors may play a role, including: (1) the amount of carbohydrate ingested; (2) whether ingestion is accompanied by a meal or other food; (3) the rate of gastric emptying (how quickly the meal enters the small intestine); (4) small intestinal transit time (the time it takes for a meal to enter the large intestine after first entering the small intestine); (5) whether the meal contains bacteria with enzymes capable of breaking down the carbohydrate; (6) colonic bacterial adaptation to one's diet, and (7) host factors such as the presence or absence of visceral hypersensitivity. By detailing controlled and uncontrolled trials, we describe how there is a general lack of strong evidence supporting restriction of individual carbohydrates (e.g., lactose, fructose) for childhood FGIDs. We review emerging evidence suggesting that a more comprehensive restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) may be effective. Finally, we review how soluble fiber (a complex carbohydrate) supplementation via randomized controlled intervention trials in childhood functional gastrointestinal disorders has demonstrated efficacy. © 2016 S. Karger AG, Basel.

  12. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology.

    PubMed

    Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong

    2017-03-22

    This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.

  13. A pharmacologic increase in activity of plasma transaminase derived from small intestine in animals receiving an acyl CoA: diacylglycerol transferase (DGAT) 1 inhibitor.

    PubMed

    Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.

  14. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.

    PubMed

    Wang, Yuli; Gunasekara, Dulan B; Reed, Mark I; DiSalvo, Matthew; Bultman, Scott J; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L

    2017-06-01

    The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Small Intestine Cancer—Health Professional Version

    Cancer.gov

    Adenocarcinoma is the most common type of small intestine cancer. Other types of small intestine cancer are sarcomas, carcinoid tumors, gastrointestinal stromal tumors, and lymphomas. Find evidence-based information on small intestine cancer treatment, research, and statistics.

  16. Oral gastrografin radiography for the evaluation of the functional impact of peritoneal carcinomatosis: Correlation with clinicopathological findings

    PubMed Central

    MEI, LIE-JUN; WANG, LIN-WEI; HUANG, CHAO-QUN; YANG, XIAO-JUN; LI, YAN

    2015-01-01

    This study was conducted to evaluate the functional impact of peritoneal carcinomatosis (PC) on the gastrointestinal system by oral gastrografin radiography (OGR). OGR was performed on 105 patients with PC from abdominal malignancies. The OGR characteristics were analyzed and compared with intraoperative observations. OGR provided real-time dynamic information on the functional impacts of PC. The OGR findings were normal in 9 (8.6%) and abnormal in 96 (91.4%) cases. In terms of frequency, 33 cases (31.4%) exhibited mild intestinal aggregation and flattening of the intestinal mucosa; 29 cases (27.6%) exhibited limited intestinal invasion, marginally stenotic small bowel and mucosal deformities; 26 cases (24.8%) exhibited only mild mesenteric contracture and mild slowing of gastrointestinal peristalsis; 5 cases (4.8%) exhibited obvious mesenteric contracture, ball-like changes, fixed position and disappearance of the intestinal mucosa; 2 cases (1.9%) exhibited complete pyloric obstruction; and 1 case (0.9%) exhibited duodenal obstruction. Gastric PC was associated with a higher percentage of stomach filling defects and small intestinal aggregates compared with PC from other malignancies (P<0.01 for both). In 87 cases, the ORG findings were in accordance with the intraoperative findings (κ=0.726, P<0.001), whereas 17 cases (16.2%) were underestimated and 1 (0.9%) was overestimated by OGR. This study indicated that OGR may be a useful technique for the evaluation of the functional impacts of PC on the gastrointestinal system and may help optimize the selection of patients for treatment. PMID:26623037

  17. Enteral exposure to crude red kidney bean lectin induces maturation of the gut in suckling pigs.

    PubMed

    Rådberg, K; Biernat, M; Linderoth, A; Zabielski, R; Pierzynowski, S G; Weström, B R

    2001-10-01

    The present investigation characterized the effect of red kidney bean lectin exposure on gut maturation and function in young piglets. Eleven suckling pigs were given by stomach tube a crude red kidney bean lectin preparation (containing about 25% lectin, 400 mg/kg BW) (lectin-treated pigs) at 10, 11, and 12 d of life, and an additional 16 pigs (control pigs) were given saline instead. On the next day, the intestinal absorptive capacity was determined in vivo, and on the 14th d of life the piglets were killed and organs and small intestine samples were collected for analyses and in vitro permeability experiments. The lectin-treated pigs showed an increase in stomach weights and mucosa thickness, whereas no weight effect was found for the small intestine, spleen, liver, or adrenals. Morphometric analyses of the small intestine in lectin-treated pigs showed a decrease in villus heights, an increase in crypt depths and crypt cell mitotic indices, and fewer vacuolated enterocytes per villus and reduced vacuole size. Lectin treatment also resulted in a decrease in the absorption of different-sized marker molecules after gavage feeding, a decrease in intestinal marker permeability, and a change in small intestinal disaccharidase activities, with increased maltase and sucrase activities. The size of the pancreatic acini was also greater in the lectin-treated pigs, but no increases in enzyme content or pancreatic weight could be determined. In addition, the blood plasma levels of cholecystokinin were higher in the lectin-treated than in the control pigs. The results indicate that exposure to crude red kidney bean lectin induces structural and functional maturation of the gut and pancreatic growth in young suckling piglets. This possibility of inducing gut maturation may lead to an improvement in the piglets' ability to adapt to weaning and to an increase in the growth and health of these animals.

  18. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity.

    PubMed

    Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal

    2006-12-01

    The probiotic effects ascribed to lactic acid bacteria (LAB) and their fermented dairy products arise not only from whole microorganisms and cell wall components but also from peptides and extracellular polysaccharides (exopolysaccharides) produced during the fermentation of milk. There is a lack of knowledge concerning the immune mechanisms induced by exopolysaccharides produced by lactic acid bacteria, which would allow a better understanding of the functional effects described to them. The aim of this study was to investigate the in vivo immunomodulating capacity of the exopolysaccharide produced by Lactobacillus kefiranofaciens by analyzing the profile of cytokines and immunoglobulins induced at the intestinal mucosa level, in the intestinal fluid and blood serum. BALB/c mice received the exopolysaccharide produced by L. kefiranofaciens for 2, 5 or 7 consecutive days. At the end of each period of administration, control and treated mice were sacrificed and the numbers of IgA+ and IgG+ cells were determined on histological slices of the small and large intestine by immunofluorescence. Cytokines (IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha) were also determined in the gut lamina propria as well as in the intestinal fluid and blood serum. There was an increase of IgA+ cells in the small and large intestine lamina propria, without change in the number of IgG+ cells in the small intestine. This study reports the effects of the oral administration of the exopolysaccharide produced by L. kefiranofaciens in the number of IgA+ cells in the small and large intestine, comparing simultaneously the production of cytokines by cells of the lamina propria and in the intestinal fluid and blood serum. The increase in the number of IgA+ cells was not simultaneously accompanied by an enhance of the number of IL-4+ cells in the small intestine. This finding would be in accordance with the fact that, in general, polysaccharide antigens elicit a T-independent immune response. For IL-10+, IL-6+ and IL-12+ cells, the values found were slightly increased compared to control values, while IFNgamma+ and TNFalpha+ cells did not change compared to control values. The effects observed on immunoglobulins and in all the cytokines assayed in the large intestine after kefiran administration were of greater magnitude than the ones observed in the small intestine lamina propria, which may be due to the saccharolytic action of the colonic microflora. In the intestinal fluid, only IL-4 and IL-12 increased compared to control values. In blood serum, all the cytokines assayed followed a pattern of production quite similar to the one found for them in the small intestine lamina propria. We observed that the exopolysaccharide induced a gut mucosal response and it was able to up and down regulate it for protective immunity, maintaining intestinal homeostasis, enhancing the IgA production at both the small and large intestine level and influencing the systemic immunity through the cytokines released to the circulating blood.

  19. Abdominal {gamma}-Radiation Induces an Accumulation of Function-Impaired Regulatory T Cells in the Small Intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billiard, Fabienne; Buard, Valerie; Benderitter, Marc

    Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4{sup +}FoxP3{sup +} regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of {gamma}-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4{sup +} effectormore » cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-{beta}, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-{beta}), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3{sup +}CD4{sup +} Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.« less

  20. Short Bowel Syndrome

    MedlinePlus

    ... in the intestine hypomotility agents to increase the time it takes food to travel through the intestines, leading to increased nutrient absorption ... dilated segment of the small intestine slow the time it takes for food to travel through the small intestine lengthen the small intestine ...

  1. Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets

    PubMed Central

    Campbell, Sara; Moreau, Michael; Patel, Falshruti; Brooks, Andrew I.; Zhou, Yin Xiu; Häggblom, Max M.; Storch, Judith

    2017-01-01

    Bacterial communities in the mouse caecum and faeces are known to be altered by changes in dietary fat. The microbiota of the mouse small intestine, by contrast, has not been extensively profiled and it is unclear whether small intestinal bacterial communities shift with dietary fat levels. We compared the microbiota in the small intestine, caecum and colon in mice fed a low-fat (LF) or high-fat (HF) diet using 16S rRNA gene sequencing. The relative abundance of major phyla in the small intestine, Bacteriodetes, Firmicutes and Proteobacteria, was similar to that in the caecum and colon; the relative abundance of Verrucomicrobia was significantly reduced in the small intestine compared to the large intestine. Several genera were uniquely detected in the small intestine and included the aerotolerant anaerobe, Lactobacillus spp. The most abundant genera in the small intestine were accounted for by anaerobic bacteria and were identical to those identified in the large intestine. An HF diet was associated with significant weight gain and adiposity and with changes in the bacterial communities throughout the intestine, with changes in the small intestine differing from those in the caecum and colon. Prominent Gram-negative bacteria including genera of the phylum Bacteroidetes and a genus of Proteobacteria significantly changed in the large intestine. The mechanistic links between these changes and the development of obesity, perhaps involving metabolic endotoxemia, remain to be determined. PMID:28742010

  2. Division of Chinese soft-shelled turtle intestine with molecular markers is slightly different from the morphological and histological observation.

    PubMed

    Zhang, Zuobing; Song, Ruxin; Xing, Xiao; Wang, Lan; Niu, Cuijuan

    2018-01-01

    The Chinese soft-shelled turtle (Pelodiscus sinensis) is a commercially important species in Asian countries. Knowledge of its nutritional requirements and physiology is essential for determining the appropriate content of the feed for this animal. However, the lack of functional characterization of the intestine of this turtle limits the understanding of its absorption and utilization of nutritional materials. To solve this problem, this work utilized anatomical and histological methods to characterize 9 segments sampled along the anterior-posterior axis of the intestine. Furthermore, 9 genes, which have been well documented in the intestine division of mammals and fish, were employed to functionally characterize the 9 sampled segments. Our results suggest that regions covering from the starting site to S3 (position at 29.9% of the total length from the starting of the intestine) are the equivalent of mammalian dedumonen, and those covering S4 (40.2%) and S5 (65.4%), posterior to S8 (92.7%), are the equivalent of the mammalian ileum and the large intestine, respectively. As to the region spaning S6 (81.3%) and S7 (87.3%), its functional equivalent (small intestine or large intestine) may be variable and depends on the functional genes. This molecular characterization in relation to the division of the intestine of Chinese soft-shelled turtle may contribute to the understanding of the nutritional physiology of the turtle, and promote Chinese soft-shelled turtle production. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. A vesicle trafficking protein αSNAP regulates Paneth cell differentiation in vivo.

    PubMed

    Lechuga, Susana; Naydenov, Nayden G; Feygin, Alex; Jimenez, Antonio J; Ivanov, Andrei I

    2017-05-13

    A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A VESICLE TRAFFICKING PROTEIN αSNAP REGULATES PANETH CELL DIFFERENTIATION IN VIVO

    PubMed Central

    Lechuga, Susana; Naydenov, Nayden G.; Feygin, Alex; Jimenez, Antonio J.; Ivanov, Andrei I.

    2017-01-01

    A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. PMID:28359759

  5. Small intestinal digestion of raw cornstarch in cattle consuming a soybean hull-based diet is improved by duodenal casein infusion.

    PubMed

    Brake, D W; Titgemeyer, E C; Bailey, E A; Anderson, D E

    2014-09-01

    Six duodenally and ileally cannulated steers were used in 3 sequential studies to measure 1) basal nutrient flows from a soybean hull-based diet, 2) small intestinal digestibility of raw cornstarch continuously infused into the duodenum, and 3) responses of small intestinal starch digestion to duodenal infusion of 200 or 400 g/d casein. Our objective was to evaluate responses in small intestinal starch digestion in cattle over time and to measure responses in small intestinal starch digestion to increasing amounts of MP. On average, cattle consumed 3.7 kg/d DM, 68 g/d dietary N, and 70 g/d dietary starch. Starch flow to the duodenum was small (38 g/d), and N flow was 91 g/d. Small intestinal digestibility of duodenal N was 57%, and small intestinal digestion of duodenal starch flow was extensive (92%). Small intestinal starch digestibility was 34% when 1.5 kg/d raw cornstarch was continuously infused into the duodenum. Subsequently, cattle were placed in 1 of 2 replicated Latin squares that were balanced for carryover effects to determine response to casein infusions and time required for adaptation. Duodenal infusion of casein linearly increased (P ≤ 0.05) small intestinal starch digestibility, and small intestinal starch digestion adapted to infusion of casein in 6 d. Ethanol-soluble starch and unpolymerized glucose flowing to the ileum increased linearly (P ≤ 0.05) with increasing infusion of casein. Plasma cholecystokinin was not affected by casein infusion, but circulating levels of glucose were increased by casein supplementation (P ≤ 0.05). Responses in small intestinal starch digestion in cattle adapted to casein within 6 d, and increases in duodenal supply of casein up to 400 g/d increased small intestinal starch digestion in cattle.

  6. Anatomy and Physiology of the Small Bowel.

    PubMed

    Volk, Neil; Lacy, Brian

    2017-01-01

    Comprehension of small intestine physiology and function provides a framework for the understanding of several important disease pathways of the gastrointestinal system. This article reviews the development, anatomy and histology of the small bowel in addition to physiology and digestion of key nutrients. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Influence of breast milk polyamines on suckling rat immune system maturation.

    PubMed

    Pérez-Cano, Francisco J; González-Castro, Ana; Castellote, Cristina; Franch, Angels; Castell, Margarida

    2010-02-01

    The aim of this study was to ascertain whether the supplementation of polyamines present in breast milk, i.e. spermine (SPM) and spermidine (SPD), influenced the post-natal maturation of the systemic and intestinal immune system in rats. From birth, pups daily received SPM or SPD. At 5, 11 and 18 days old, small intestine intraepithelial lymphocytes (IEL), lamina propria lymphocytes (LPL) and splenocytes were phenotypically characterized. SPM and, less evidently, SPD accelerated the maturation of CD8+ IEL, and enhanced the presence of intraepithelial NK cells and IEL related with specific immune responses on the proximal and distal small intestine, respectively. Polyamines increased the percentage of more mature CD4+ LPL and enhanced the early presence of splenic B cells and, later, that of NK cells. However, no effect on Ig-secretory function was detected. These results suggest that breast milk polyamines improve the maturation of the rat intestinal and systemic immune system.

  8. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    PubMed

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  9. Primary small intestinal volvulus after laparoscopic rectopexy for rectal prolapse.

    PubMed

    Koizumi, Michihiro; Yamada, Takeshi; Shinji, Seiichi; Yokoyama, Yasuyuki; Takahashi, Goro; Hotta, Masahiro; Iwai, Takuma; Hara, Keisuke; Takeda, Kohki; Kan, Hayato; Takasaki, Hideaki; Ohta, Keiichiro; Uchida, Eiji

    2018-02-01

    Primary small intestinal volvulus is defined as torsion in the absence of congenital malrotation, band, or postoperative adhesions. Its occurrence as an early postoperative complication is rare. A 40-year-old woman presented with rectal prolapse, and laparoscopic rectopexy was uneventfully performed. She could not have food on the day after surgery. She started oral intake on postoperative day 3 but developed abdominal pain after the meal. Contrast-enhanced CT revealed torsion of the small intestinal mesentery. An emergent laparotomy showed small intestinal volvulus, without congenital malformation or intestinal adhesions. We diagnosed it as primary small intestinal volvulus. The strangulated intestine was resected, and reconstruction was performed. The patient recovered uneventfully after the second surgery. To the best of our knowledge, this is the first report of primary small intestinal volvulus occurring after rectopexy for rectal prolapse. Primary small intestinal volvulus could be a postoperative complication after laparoscopy. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  10. Inhibitory Effects and Sympathetic Mechanisms of Distension in the Distal Organs on Small Bowel Motility and Slow Waves in Canine.

    PubMed

    Song, Jun; Yin, Jieyun; Chen, Jiande D Z

    2015-12-01

    Rectal distension (RD) is known to induce intestinal dysmotility. Few studies were performed to compare effects of RD, colon distension (CD) and duodenal distension (DD) on small bowel motility. This study aimed to investigate effects and underlying mechanisms of distensions in these regions on intestinal motility and slow waves. Eight dogs chronically implanted with a duodenal fistula, a proximal colon fistula, and intestinal serosal electrodes were studied in six sessions: control, RD, CD, DD, RD + guanethidine, and CD + guanethidine. Postprandial intestinal contractions and slow waves were recorded for the assessment of intestinal motility. The electrocardiogram was recorded for the assessment of autonomic functions. (1) Isobaric RD and CD suppressed intestinal contractions (contractile index: 6.0 ± 0.4 with RD vs. 9.9 ± 0.9 at baseline, P = 0.001, 5.3 ± 0.2 with CD vs. 7.7 ± 0.8 at baseline, P = 0.008). Guanethidine at 3 mg/kg iv was able to partially block the effects. (2) RD and CD reduced the percentage of normal intestinal slow waves from 92.1 ± 2.8 to 64.2 ± 3.4 % (P < 0.001) and from 90 ± 2.7 to 69.2 ± 3.7 % (P = 0.01), respectively. Guanethidine could eliminate these inhibitory effects. (3) DD did not induce any changes in small intestinal contractions and slow waves (P > 0.05). (4) The spectral analysis of the heart rate variability showed that both RD and CD increased sympathetic activity (LF) and reduced vagal activity (HF) (P < 0.05). Isobaric RD and CD could inhibit postprandial intestinal motility and impair intestinal slow waves, which were mediated via the sympathetic pathway. However, DD at a site proximal to the measurement site did not seem to impair small intestinal contractions or slow waves.

  11. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  12. [Intraoperative placement of transnasal small intestinal feeding tube during the surgery in 5 cases with high position intestinal obstruction and postoperative feeding].

    PubMed

    Duan, Guang-qi; Zhang, Min; Guan, Xiao-hao; Yin, Zhi-qing

    2012-09-01

    To explore the value of employing the small intestinal feeding tube in treating high position intestinal obstruction of newborn infant. Five newborn infants (3 males and 2 females; 1 premature infant and 4 fully-mature infants; 2 had membranous atresia of duodenum, 1 had annular pancreas, and 2 had proximal small intestine atresia; 1 infant had malrotation). The duodenal membrane-like atresia and the blind-end of small intestine were removed and intestinal anastomosis was performed, which was combined with intestinal malrotation removal. Before the intestinal anastomosis surgery, the anesthetist inserted via nose a 6Fr small intestinal ED tube, made by CREATE MEDIC CO LTD of Japan[ the State Food and Drug Administration-instrument (Im.) 2007-NO.2661620]. Twenty-four hours after surgery, abdominal X-ray plain film was taken and patients were fed with syrup; 48 hours later, formula milk was pumped or lactose-free milk amino acids were given by intravenous injection pump through the feeding tube. The amount of milk and fluids was gradually increased to normal amount according to the condition. In initial 3 days the intravenous nutrition was given and one week after operation, the infants were fed through mouth in addition to pumping milk through the tube and stopped infusion. Ten to 22 days after operation, the tube was removed and the infant patients were discharged. All the five infants showed that the feeding through the nutrition tube was accomplished and the time of venous nutrition was reduced and fistula operation was avoided. None of the infants on question was off the tube and no jaundice exacerbation was found and the liver function was also found normal. At the very beginning, the tube was occasionally blocked by milk vale in one infant and after 0.9% sodium chloride solution flushing patency restored. After that, the feeding tube was washed once with warm water after feeding. In one infant vomiting occurred due to enough oral milk. The photograph of upper gastrointestine did not show anastomomotic stricture or fistula, or intestinal obstruction. After pulling out the tube, the symptoms disappeared and then the patient was discharged. One child was found to have diarrhea with no lactose nutrition liquid and given compound lactic bacteria preparations for oral administration, the symptom disappeared. In the 5 cases, the shortest hospital stay was 10 days and the longest was 22 days, the average stay was 16 days. Three to 5 days after operation the weight restored to birth weight, the weight had increased, when discharged, to an average of 5.5 g (kg·d). The small intestinal feeding tube was very effective for the postoperative nutrition maintenance of high position intestinal obstruction in newborn infants.

  13. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier.

    PubMed

    De Vos, M; Huygelen, V; Van Raemdonck, G; Willemen, S; Fransen, E; Van Ostade, X; Casteleyn, C; Van Cruchten, S; Van Ginneken, C

    2014-08-01

    To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets.

  14. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.

    PubMed

    Le, Viet Ha; Hernando, Leon-Rodriguez; Lee, Cheong; Choi, Hyunchul; Jin, Zhen; Nguyen, Kim Tien; Go, Gwangjun; Ko, Seong-Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    Recently, capsule endoscopes have been used for diagnosis in digestive organs. However, because a capsule endoscope does not have a locomotive function, its use has been limited to small tubular digestive organs, such as small intestine and esophagus. To address this problem, researchers have begun studying an active locomotive intestine capsule endoscope as a medical instrument for the whole gastrointestinal tract. We have developed a capsule endoscope with a small permanent magnet that is actuated by an electromagnetic actuation system, allowing active and flexible movement in the patient's gut environment. In addition, researchers have noted the need for a biopsy function in capsule endoscope for the definitive diagnosis of digestive diseases. Therefore, this paper proposes a novel robotic biopsy device for active locomotive intestine capsule endoscope. The proposed biopsy device has a sharp blade connected with a shape memory alloy actuator. The biopsy device measuring 12 mm in diameter and 3 mm in length was integrated into our capsule endoscope prototype, where the device's sharp blade was activated and exposed by the shape memory alloy actuator. Then the electromagnetic actuation system generated a specific motion of the capsule endoscope to extract the tissue sample from the intestines. The final biopsy sample tissue had a volume of about 6 mm(3), which is a sufficient amount for a histological analysis. Consequently, we proposed the working principle of the biopsy device and conducted an in-vitro biopsy test to verify the feasibility of the biopsy device integrated into the capsule endoscope prototype using the electro-magnetic actuation system. © IMechE 2015.

  15. Development and maintenance of intestinal regulatory T cells.

    PubMed

    Tanoue, Takeshi; Atarashi, Koji; Honda, Kenya

    2016-05-01

    Gut-resident forkhead box P3 (FOXP3)(+)CD4(+) regulatory T cells (Treg cells) are distinct from those in other organs and have gut-specific phenotypes and functions. Whereas Treg cells in other organs have T cell receptors (TCRs) specific for self antigens, intestinal Treg cells have a distinct set of TCRs that are specific for intestinal antigens, and these cells have pivotal roles in the suppression of immune responses against harmless dietary antigens and commensal microorganisms. The differentiation, migration and maintenance of intestinal Treg cells are controlled by specific signals from the local environment. In particular, certain members of the microbiota continuously provide antigens and immunoregulatory small molecules that modulate intestinal Treg cells. Understanding the development and the maintenance of intestinal Treg cells provides important insights into disease-relevant host-microorganism interactions.

  16. Effect of Vilon and Epithalon on glucose and glycine absorption in various regions of small intestine in aged rats.

    PubMed

    Khavinson, V Kh; Egorova, V V; Timofeeva, N M; Malinin, V V; Gordova, L A; Gromova, L V

    2002-05-01

    Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly) administered orally for 1 month improved transport characteristics of the small intestine in aged rats. Vilon enhanced passive glucose accumulation in the serous fluid in inverted sac made from the distal region of the small intestine, while Epithalon enhanced this process in the medial region. Vilon stimulated active glucose accumulation in the serous sac of the medial small intestine, Epithalon - in the proximal and distal small intestinal segments. Glycine absorption increased only in the proximal intestinal segment under the effect of Epithalon.

  17. Protective effect of aged garlic extract on the small intestinal damage of rats induced by methotrexate administration.

    PubMed

    Horie, T; Matsumoto, H; Kasagi, M; Sugiyama, A; Kikuchi, M; Karasawa, C; Awazu, S; Itakura, Y; Fuwa, T

    1999-08-01

    The methotrexate (MTX) administration to rats causes the damage of small intestine. The small intestinal damage was evaluated by measuring the intestinal permeability of the poorly absorbable compound, fluorescein isothiocyanate (FITC)-labeled dextran (average molecular weight, 4,400) (FD-4) using the in vitro everted intestine technique and by determining the FD-4 that appeared in plasma using the in situ closed loop intestine technique. The MTX administration to rats fed with the standard laboratory diet increased the small intestinal permeability of FD-4 due to the damage of the small intestine. Interestingly, the permeability of FD-4, when MTX was administered to rats fed with the aged garlic extract containing diet, was depressed almost to the level of control rats without the MTX treatment. The present study showed that the aged garlic extract protected the small intestine from the damage induced by the action of MTX on the crypt cells.

  18. Sodium alginate ameliorates indomethacin-induced gastrointestinal mucosal injury via inhibiting translocation in rats

    PubMed Central

    Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi

    2014-01-01

    AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600

  19. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch.

    PubMed

    Lohrenz, A-K; Duske, K; Schönhusen, U; Losand, B; Seyfert, H M; Metges, C C; Hammon, H M

    2011-09-01

    Diets containing corn starch may improve glucose supply by providing significant amounts of intestinal starch and increasing intestinal glucose absorption in dairy cows. Glucose absorption in the small intestine requires specific glucose transporters; that is, sodium-dependent glucose co-transporter-1 (SGLT1) and facilitated glucose transporter (GLUT2), which are usually downregulated in the small intestine of functional ruminants but are upregulated when luminal glucose is available. We tested the hypothesis that mRNA and protein expression of intestinal glucose transporters and mRNA expression of enzymes related to gluconeogenesis are affected by variable starch supply. Dairy cows (n=9/group) were fed for 4 wk total mixed rations (TMR) containing either high (HS) or low (LS) starch levels in the diet. Feed intake and milk yield were measured daily. After slaughter, tissue samples of the small intestinal mucosa (mid-duodenum and mid-jejunum) were taken for determination of mRNA concentrations of SGLT1 and GLUT2 as well as pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase by real-time reverse transcription PCR relative to a housekeeping gene. Protein expression of GLUT2 in crude mucosal membranes and of SGLT1 and GLUT2 in brush-border membrane vesicles was quantified by sodium dodecyl sulfate-PAGE and immunoblot. A mixed model was used to examine feeding and time-related changes on feed intake and milk yield and to test feeding and gut site effects on gene or protein expression of glucose transporters and enzymes in the intestinal mucosa. Dry matter intake, but not energy intake, was higher in cows fed HS compared with LS. Abundance of SGLT1 mRNA tended to be higher in duodenal than in jejunal mucosa, and mRNA abundances of pyruvate carboxylase tended to be higher in jejunal than in duodenal mucosa. In brush-border membrane vesicles, SGLT1 and GLUT2 protein expression could be demonstrated. No diet-dependent differences were found concerning mRNA and protein contents of glucose transporter or mRNA level of gluconeogenic enzymes. In conclusion, our investigations on glucose transporters and gluconeogenic enzymes in the small intestinal mucosa of dairy cows did not show significant diet regulation when TMR with different amounts of intestinal starch were fed. Therefore, predicted intestinal glucose absorption after enhanced starch feeding is probably not supported by changes of intestinal glucose transporters in dairy cows. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Pembrolizumab and XL888 in Patients With Advanced Gastrointestinal Cancer

    ClinicalTrials.gov

    2018-04-11

    Adenocarcinoma of the Gastroesophageal Junction; Colorectal Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Non-Resectable Hepatocellular Carcinoma; Recurrent Cholangiocarcinoma; Recurrent Colorectal Carcinoma; Recurrent Gastric Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Pancreatic Carcinoma; Recurrent Small Intestinal Carcinoma; Small Intestinal Adenocarcinoma; Stage III Colorectal Cancer; Stage III Gastric Cancer; Stage III Hepatocellular Carcinoma; Stage III Pancreatic Cancer; Stage III Small Intestinal Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Hepatocellular Carcinoma; Stage IIIA Small Intestinal Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Hepatocellular Carcinoma; Stage IIIB Small Intestinal Cancer; Stage IIIC Gastric Cancer; Stage IV Colorectal Cancer; Stage IV Gastric Cancer; Stage IV Hepatocellular Carcinoma; Stage IV Pancreatic Cancer; Stage IV Small Intestinal Cancer; Stage IVA Colorectal Cancer; Stage IVA Hepatocellular Carcinoma; Stage IVA Pancreatic Cancer; Stage IVB Colorectal Cancer; Stage IVB Hepatocellular Carcinoma; Stage IVB Pancreatic Cancer; Unresectable Pancreatic Carcinoma; Unresectable Small Intestinal Carcinoma

  1. Long-term intermittent glutamine supplementation repairs intestinal damage (structure and functional mass) with advanced age: assessment with plasma citrulline in a rodent model.

    PubMed

    Beaufrère, A M; Neveux, N; Patureau Mirand, P; Buffière, C; Marceau, G; Sapin, V; Cynober, L; Meydinal-Denis, D

    2014-11-01

    Glutamine is the preferred fuel for the rat small intestine and promotes the growth of intestinal mucosa, especially in the event of gut injury. Quantitatively, glutamine is one important precursor for intestinal citrulline release. The aim of this study was to determine whether the effect of glutamine on the increase in intestinal villus height is correlated with an increase in both gut mass and citrulline plasma level in very old rats. We intermittently supplemented very old (27-mo) female rats with oral glutamine (20% of diet protein). Intestinal histomorphometric analysis of the small bowel was performed. Amino acids, in particular citrulline, were measured in the plasma, liver and jejunum. Markers of renal (creatinine, urea) and liver (alanine aminotransferase [ALT]) and aspartate aminotransferase (AST) functions were measured to evaluate renal and liver functions in relation to aging and to glutamine supplementation. Liver glutathione was also determined to evaluate cellular redox state. Glutamine supplementation maintains the body weight of very old rats, not by limiting sarcopenia but rather by increasing the organ mass of the splanchnic area. Total intestine mass was significantly higher in glutamine-supplemented rats than in controls (15%). Measurement of villus height and crypt depth demonstrated that the difference between villus and crypt was significantly improved in glutamine pre-treated rats compared to controls (~ 11%). Plasma citrulline also increased by 15% in glutamine-supplemented rats compared to controls. Citrulline appears as a biomarker of enterocyte mass in villous atrophy associated with advanced age. Non-invasive measurement of this metabolite may be useful in following the state of the gastrointestinal tract in very old people, whose numbers are increasing worldwide and the care of whom is a major public health issue. The gut may contribute to the malnutrition caused by malabsorption frequently observed in the elderly.

  2. Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis.

    PubMed

    Bauer, Paige V; Duca, Frank A; Waise, T M Zaved; Dranse, Helen J; Rasmussen, Brittany A; Puri, Akshita; Rasti, Mozhgan; O'Brien, Catherine A; Lam, Tony K T

    2018-03-06

    Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Ontogenetic shifts and spatial associations in organ positions for snakes.

    PubMed

    Anderson, Gretchen E; Secor, Stephen M

    2015-12-01

    Snakes possess an elongated body form and serial placement of organs which provides the opportunity to explore historic and adaptive mechanisms of organ position. We examined the influence of body size and sex on the position of, and spatial associations between, the heart, liver, small intestine, and right kidney for ten phylogenetically diverse species of snakes that vary in body shape and habitat. Snake snout-vent length explained much of the variation in the position of these four organs. For all ten species, the position of the heart and liver relative to snout-vent length decreased as a function of size. As body size increased from neonate to adult, these two organs shifted anteriorly an average of 4.7% and 5.7% of snout-vent length, respectively. Similarly, the small intestine and right kidney shifted anteriorly with an increase in snout-vent length for seven and five of the species, respectively. The absolute and relative positioning of these organs did not differ between male and female Burmese pythons (Python molurus). However, for diamondback water snakes (Nerodia rhombifer), the liver and small intestine were more anteriorly positioned in females as compared to males, whereas the right kidney was positioned more anteriorly for males. Correlations of residuals of organ position (deviation from predicted position) demonstrated significant spatial associations between organs for nine of the ten species. For seven species, individuals with hearts more anterior (or posterior) than predicted also tended to possess livers that were similarly anteriorly (or posteriorly) placed. Positive associations between liver and small intestine positions and between small intestine and right kidney positions were observed for six species, while spatial associations between the heart and small intestine, heart and right kidney, and liver and right kidney were observed in three or four species. This study demonstrates that size, sex, and spatial associations may have potential interacting effects when testing evolutionary scenarios for the position of snake organs. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer

    PubMed Central

    Kober, Olivia I.; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R.

    2014-01-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ−/−) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ−/− mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ−/− mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ−/− mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ−/− and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine. PMID:24503767

  5. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer.

    PubMed

    Kober, Olivia I; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R; Juge, Nathalie

    2014-04-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ(-/-) mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ(-/-) and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.

  6. Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model.

    PubMed

    Krebs, Shelly J; Taylor, Ronald K

    2011-10-01

    Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXΦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells.

  7. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1

    PubMed Central

    Jayewickreme, Chenura D.; Shivdasani, Ramesh A.

    2015-01-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579

  8. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.

    PubMed

    Jayewickreme, Chenura D; Shivdasani, Ramesh A

    2015-09-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Animal experimental studies using small intestine endoscope

    PubMed Central

    Liu, Jin-Hua; Liu, Dan-Yang; Wang, Li; Han, Li-Ping; Qi, Zhe-Yu; Ren, Hai-Jun; Feng, Yan; Luan, Feng-Ming; Mi, Liang-Tian; Shan, Shu-Mei

    2017-01-01

    AIM To assess the feasibility and safety of a novel enteroscope, negative-pressure suction endoscope in examining the small intestine of a porcine model. METHODS In vitro experiments in small intestinal loops from 20 pigs and in vivo experiments in 20 living pigs were conducted. RESULTS In in vitro experiments, a negative pressure of > 0.06 MPa was necessary for optimal visualization of the intestine, and this pressure did not cause gross or histological damage to the mucosa. For satisfactory examination of the small intestine in vivo, higher negative pressure (> 1.00 MPa) was required. Despite this higher pressure, the small intestine did not show any gross or microscopic damage in the suctioned areas. The average time of examination in the living animals was 60 ± 7.67 min. The animals did not experience any apparent ill effects from the procedure. CONCLUSION Small intestine endoscope was safely performed within a reasonable time period and enabled complete visualization of the intestine in most cases. PMID:28611521

  10. High fat diet impairs the function of glucagon-like peptide-1 producing L-cells.

    PubMed

    Richards, Paul; Pais, Ramona; Habib, Abdella M; Brighton, Cheryl A; Yeo, Giles S H; Reimann, Frank; Gribble, Fiona M

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) acts as a satiety signal and enhances insulin release. This study examined how GLP-1 production from intestinal L-cells is modified by dietary changes. Transgenic mouse models were utilized in which L-cells could be purified by cell specific expression of a yellow fluorescent protein, Venus. Mice were fed on chow or 60% high fat diet (HFD) for 2 or 16 weeks. L-cells were purified by flow cytometry and analysed by microarray and quantitative RT-PCR. Enteroendocrine cell populations were examined by FACS analysis, and GLP-1 secretion was assessed in primary intestinal cultures. Two weeks HFD reduced the numbers of GLP-1 positive cells in the colon, and of GIP positive cells in the small intestine. Purified small intestinal L-cells showed major shifts in their gene expression profiles. In mice on HFD for 16 weeks, significant reductions were observed in the expression of L-cell specific genes, including those encoding gut hormones (Gip, Cck, Sct, Nts), prohormone processing enzymes (Pcsk1, Cpe), granins (Chgb, Scg2), nutrient sensing machinery (Slc5a1, Slc15a1, Abcc8, Gpr120) and enteroendocrine-specific transcription factors (Etv1, Isl1, Mlxipl, Nkx2.2 and Rfx6). A corresponding reduction in the GLP-1 secretory responsiveness to nutrient stimuli was observed in primary small intestinal cultures. Mice fed on HFD exhibited reduced expression in L-cells of many L-cell specific genes, suggesting an impairment of enteroendocrine cell function. Our results suggest that a western style diet may detrimentally affect the secretion of gut hormones and normal post-prandial signaling, which could impact on insulin secretion and satiety. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Disorders of the Large Intestine

    MedlinePlus

    ... Chapel Hill, NC from the Functional GI Disorder Education Guide, IFFGD; 2005, and "Characteristics of Chronic Constipation" IFFGD; 2006. (Accessed April 15, 2006) Link. Digestive ... Motility Testing Esophagus Stomach Small ...

  12. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    PubMed

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

  13. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression.

    PubMed

    Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong

    2017-04-01

    Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.

  14. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats.

    PubMed

    Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L A; Wold, A E

    1999-05-01

    We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R alpha-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum + E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity.

  15. Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells

    PubMed Central

    Fu, Xing; Du, Min

    2018-01-01

    Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health. PMID:29643147

  16. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].

    PubMed

    Logvinovich, O S; Aksenova, G E

    2013-01-01

    Ornithine decarboxylase (ODC, EC 4.1.1.17.) is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.

  17. Application of small intestine decompression combined with oral feeding in middle and late period of malignant small bowel obstruction.

    PubMed

    Li, Dechun; Du, Hongtao; Shao, Guoqing; Guo, Yongtuan; Lu, Wan; Li, Ruihong

    2017-07-01

    The application value of small intestine decompression combined with oral feeding in the middle and late period of malignant small bowel obstruction was examined. A total of 22 patients with advanced malignant small bowel obstruction were included in the present study. An ileus tube was inserted via the nose under fluoroscopy into the obstructed small intestine of each patient. At the same time, the insertion depth the of the catheter was adjusted. When the catheter was blocked, small bowel selective angiography was performed to determine the location and cause of the obstruction and the extent of the obstruction, and to determine the length of the small intestine in the site of obstruction, and to select the variety and tolerance of enteral nutrition. We observed the decompression tube flow and ease of intestinal obstruction. In total, 20 patients were treated with oral enteral nutrition after abdominal distension, and 22 cases were treated by the nose to observe the drainage and the relief of intestinal obstruction. The distal end of the catheter was placed in a predetermined position. The symptoms of intestinal obstruction were relieved 1-4 days after decompression. The 22 patients with selective angiography of the small intestine showed positive X-ray signs: 18 patients with oral enteral nutrition therapy had improved the nutritional situation 2 weeks later. In 12 cases, where there was anal defecation exhaust, 2 had transient removal of intestinal obstruction catheter. In conclusion, this comprehensive treatment based on small intestine decompression combined with enteral nutrition is expected to become a new therapeutic approach and method for the treatment of patients with advanced tumor small bowel obstruction.

  18. [Plasma citrulline concentration as a biomarker of intestinal function in short bowel syndrome and in intestinal transplant].

    PubMed

    Vecino López, R; Andrés Moreno, A M; Ramos Boluda, E; Martinez-Ojinaga Nodal, E; Hernanz Macías, A; Prieto Bozano, G; Lopez Santamaria, M; Tovar Larrucea, J A

    2013-10-01

    Citrulline is a non-essential amino acid produced solely in the enterocyte. The aim of this study was to analyse the role of serum citrulline as a biomarker of enterocyte load in children with intestinal failure due to short bowel syndrome (SBS) and its relationship to enteral adaptation. Plasma citrulline concentration was determined by chromatography (normal value>15 μmol/L) in 57 patients (age 0.5-18 years) admitted to our Intestinal Rehabilitation Unit with intestinal failure. Those who were dehydrated, with renal insufficiency, or other conditions able to modify the results were excluded. Patients were divided into 4 groups: group i: SBS totally dependent on parenteral nutrition (PN); group ii: SBS under mixed enteral-parenteral nutrition; group iii: IF weaned from PN after a rehabilitation period; group iv: small bowel transplanted patients weaned from PN and taking a normal diet. The mean ± SD plasma citrulline values were: group i (n=15): 7.1 ± 4.1; group ii (n=11): 15.8 ± 8.9; group iii (n=13): 20.6 ± 7.5; group iv (n=25): 28.8 ± 10.1. Values were significantly lower in group i in comparison with groups ii-iii-iv (P<.001), and in group ii in comparison with groups iii-iv (P<.001). A low citrulline was associated with remnant small bowel length (P<.001, r=0.85). In group iv citrulline levels decreased >50% in 3 patients who developed moderate-severe rejection, and in one patient who developed viral enteritis. 1. Plasma citrulline could be a sensitive and specific biomarker of the residual functional enterocyte load. 2. It is related to enteral feeding tolerance. 3. Its prognostic value in the process of intestinal adaptation and as a rejection marker in small bowel transplanted patients needs to be confirmed. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  19. Small intestine histomorphometry of beef cattle with divergent feed efficiency

    PubMed Central

    2013-01-01

    Background The provision of feed is a major cost in beef production. Therefore, the improvement of feed efficiency is warranted. The direct assessment of feed efficiency has limitations and alternatives are needed. Small intestine micro-architecture is associated with function and may be related to feed efficiency. The objective was to verify the potential histomorphological differences in the small intestine of animals with divergent feed efficiency. Methods From a population of 45 feedlot steers, 12 were selected with low-RFI (superior feed efficiency) and 12 with high-RFI (inferior feed efficiency) at the end of the finishing period. The animals were processed at 13.79 ± 1.21 months of age. Within 1.5 h of slaughter the gastrointestinal tract was collected and segments from duodenum and ileum were harvested. Tissue fragments were processed, sectioned and stained with hematoxylin and eosin. Photomicroscopy images were taken under 1000x magnification. For each animal 100 intestinal crypts were imaged, in a cross section view, from each of the two intestinal segments. Images were analyzed using the software ImageJ®. The measurements taken were: crypt area, crypt perimeter, crypt lumen area, nuclei number and the cell size was indirectly calculated. Data were analyzed using general linear model and correlation procedures of SAS®. Results Efficient beef steers (low-RFI) have a greater cellularity (indicated by nuclei number) in the small intestinal crypts, both in duodenum and ileum, than less efficient beef steers (high-RFI) (P < 0.05). The mean values for the nuclei number of the low-RFI and high-RFI groups were 33.16 and 30.30 in the duodenum and 37.21 and 33.65 in the ileum, respectively. The average size of the cells did not differ between feed efficiency groups in both segments (P ≥ 0.10). A trend was observed (P ≤ 0.10) for greater crypt area and crypt perimeter in the ileum for cattle with improved feed efficiency. Conclusion Improved feed efficiency is associated with greater cellularity and no differences on average cell size in the crypts of the small intestine in the bovine. These observations are likely to lead to an increase in the energy demand by the small intestine regardless of the more desirable feed efficiency. PMID:23379622

  20. Small Intestine Cancer—Patient Version

    Cancer.gov

    Small intestine cancer usually begins in an area of the intestine called the duodenum. This cancer is rarer than cancers in other parts of the gastrointestinal system, such as the colon and stomach. Explore the links on this page to learn more about small intestine cancer treatment, statistics, research, and clinical t

  1. Quantitation of small intestinal permeability during normal human drug absorption

    PubMed Central

    2013-01-01

    Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting that it is nearly completely absorbed in the first part of the intestine where the pH is about 5.4. Conclusions The AM deconvolution method provides an accurate estimate of the human intestinal permeability. The results for these 90 drugs should provide a useful benchmark for evaluating QSAR models. PMID:23800230

  2. B Lymphocyte intestinal homing in inflammatory bowel disease

    PubMed Central

    2011-01-01

    Background Inflammatory bowel disease (IBD) is thought to be due to an abnormal interaction between the host immune system and commensal microflora. Within the intestinal immune system, B cells produce physiologically natural antibodies but pathologically atypical anti-neutrophil antibodies (xANCAs) are frequently observed in patients with IBD. The objective is to investigate the localisation of immunoglobulin-producing cells (IPCs) in samples of inflamed intestinal tissue taken from patients with IBD, and their possible relationship with clinical features. Methods The IPCs in small intestinal, colonic and rectal biopsy specimens of patients with IBD were analysed by means of immunofluorescence using polyclonal rabbit anti-human Ig and goat anti-human IgM. The B cell phenotype of the IPC-positive samples was assessed using monoclonal antibodies specific for CD79, CD20, CD23, CD21, CD5, λ and κ chains. Statistical correlations were sought between the histological findings and clinical expression. Results The study involved 96 patients (64 with ulcerative colitis and 32 with Crohn's disease). Two different patterns of B lymphocyte infiltrates were found in the intestinal tissue: one was characterised by a strong to moderate stromal localisation of small IgM+/CD79+/CD20-/CD21-/CD23-/CD5± IPCs (42.7% of cases); in the other (57.3%) no such small IPCs were detected in stromal or epithelial tissues. IPCs were significantly less frequent in the patients with Crohn's disease than in those with ulcerative colitis (p = 0.004). Conclusion Our findings suggest that different immunopathogenetic pathways underlie chronic intestinal inflammation with different clinical expressions. The presence of small B lymphocytes resembling B-1 cells also seemed to be negatively associated with Crohn's disease. It can therefore be inferred that the gut contains an alternative population of B cells that have a regulatory function. PMID:22208453

  3. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5.

    PubMed

    Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-03-15

    Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python.

    PubMed

    Secor, Stephen M; Taylor, Josi R; Grosell, Martin

    2012-01-01

    Snakes exhibit an apparent dichotomy in the regulation of gastrointestinal (GI) performance with feeding and fasting; frequently feeding species modestly regulate intestinal function whereas infrequently feeding species rapidly upregulate and downregulate intestinal function with the start and completion of each meal, respectively. The downregulatory response with fasting for infrequently feeding snakes is hypothesized to be a selective attribute that reduces energy expenditure between meals. To ascertain the links between feeding habit, whole-animal metabolism, and GI function and metabolism, we measured preprandial and postprandial metabolic rates and gastric and intestinal acid-base secretion, epithelial conductance and oxygen consumption for the frequently feeding diamondback water snake (Nerodia rhombifer) and the infrequently feeding Burmese python (Python molurus). Independent of body mass, Burmese pythons possess a significantly lower standard metabolic rate and respond to feeding with a much larger metabolic response compared with water snakes. While fasting, pythons cease gastric acid and intestinal base secretion, both of which are stimulated with feeding. In contrast, fasted water snakes secreted gastric acid and intestinal base at rates similar to those of digesting snakes. We observed no difference between fasted and fed individuals for either species in gastric or intestinal transepithelial potential and conductance, with the exception of a significantly greater gastric transepithelial potential for fed pythons at the start of titration. Water snakes experienced no significant change in gastric or intestinal metabolism with feeding. Fed pythons, in contrast, experienced a near-doubling of gastric metabolism and a tripling of intestinal metabolic rate. For fasted individuals, the metabolic rate of the stomach and small intestine was significantly lower for pythons than for water snakes. The fasting downregulation of digestive function for pythons is manifested in a depressed gastric and intestinal metabolism, which selectively serves to reduce basal metabolism and hence promote survival between infrequent meals. By maintaining elevated GI performance between meals, fasted water snakes incur the additional cost of tissue activity, which is expressed in a higher standard metabolic rate.

  5. Functional morphology of digestion in the stomachless, piscivorous needlefishes Tylosurus gavialoides and Strongylura leiura ferox (Teleostei: Beloniformes).

    PubMed

    Manjakasy, Jennifer M; Day, Ryan D; Kemp, Anne; Tibbetts, Ian R

    2009-10-01

    Belonidae are unusual in that they are carnivorous but lack a stomach and have a straight, short gut. To develop a functional morphological model for this unusual system the gut contents and alimentary tract morphology of Tylosurus gavialoides and Strongylura leiura ferox were investigated. The posterior orientation of the majority of the pharyngeal teeth supports the swallowing of whole large prey, but not their mastication. Mucogenic cells are abundant in the mucosa lining, particularly the esophagus, and their secretions are likely to protect the gut lining from damage while lubricating passage of the prey. Esophagus, anterior intestine, posterior intestine, and rectum all have highly reticulate mucosae. The anterior three gut sections are distensible to accommodate the passage of prey. However, following ingestion large prey are passed to the highly distensible posterior intestine where they rest head first against the ileorectal valve. Alimentary pH ranges from neutral to weakly acidic. Fish prey is digested head first with the head being largely digested while the remainder of the body is still intact. The nondistensibility of the rectum and the small aperture provided by the ileorectal valve suggest the products of intestinal digestion are either small particulates or fluids that pass into rectum where they are absorbed. 2009 Wiley-Liss, Inc.

  6. Comparison of radiography and ultrasonography for diagnosing small-intestinal mechanical obstruction in vomiting dogs.

    PubMed

    Sharma, Ajay; Thompson, Margret S; Scrivani, Peter V; Dykes, Nathan L; Yeager, Amy E; Freer, Sean R; Erb, Hollis N

    2011-01-01

    A cross-sectional study was performed on acutely vomiting dogs to compare the accuracy of radiography and ultrasonography for the diagnosis of small-intestinal mechanical obstruction and to describe several radiographic and ultrasonographic signs to identify their contribution to the final diagnosis. The sample population consisted of 82 adult dogs and small-intestinal obstruction by foreign body was confirmed in 27/82 (33%) dogs by surgery or necropsy. Radiography produced a definitive result (obstructed or not obstructed) in 58/82 (70%) of dogs; ultrasonography produced a definitive result in 80/82 (97%) of dogs. On radiographs, a diagnosis of obstruction was based on detection of segmental small-intestinal dilatation, plication, or detection of a foreign body. Approximately 30% (8/27) of obstructed dogs did not have radiographic signs of segmental small-intestinal dilatation, of which 50% (4/8) were due to linear foreign bodies. The ultrasonographic diagnosis of small-intestinal obstruction was based on detection of an obstructive lesion, sonographic signs of plication or segmental, small-intestinal dilatation. The ultrasonographic presence or absence of moderate-to-severe intestinal diameter enlargement (due to lumen dilatation) of the jejunum (>1.5 cm) was a useful discriminatory finding and, when present, should prompt a thorough search for a cause of small-intestinal obstruction. In conclusion, both abdominal radiography and abdominal ultrasonography are accurate for diagnosing small-intestinal obstruction in vomiting dogs and either may be used depending on availability and examiner choice. Abdominal ultrasonography had greater accuracy, fewer equivocal results and provided greater diagnostic confidence compared with radiography. © 2010 Veterinary Radiology & Ultrasound.

  7. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer’s Patches

    PubMed Central

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer’s patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa. PMID:27701454

  8. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer's Patches.

    PubMed

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer's patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa.

  9. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning

    PubMed Central

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G.; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer (Cervus nippon) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia–Shigella, and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development. PMID:29410651

  10. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning.

    PubMed

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer ( Cervus nippon ) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia - Shigella , and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development.

  11. Small Intestine Disorders

    MedlinePlus

    Your small intestine is the longest part of your digestive system - about twenty feet long! It connects your stomach ... many times to fit inside your abdomen. Your small intestine does most of the digesting of the ...

  12. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia).

    PubMed

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-06-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b(0,+)AT, EAAT3, y(+)LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b(0,+)AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y(+)LAT2 had positive correlations with body weight (0.71

  13. Glycopattern analysis of acidic secretion in the intestine of the red-eared slender turtle; Trachemys scripta elegans (Testudines: Emydidae).

    PubMed

    Scillitani, Giovanni; Mentino, Donatella; Mastrodonato, Maria

    2017-10-01

    The secretion of the goblet cells in the intestine of Trachemys scripta elegans was studied in situ by histochemical methods to analyze the diversity of sugar chains, with particular regard to the acidic glycans. Conventional histochemical stains (Periodic acid-Schiff, Alcian Blue pH 2.5, High Iron Diamine) and binding with ten FITC-labelled lectins combined with chemical and enzymatic pre-treatments were used to characterize the oligosaccharidic chains. The intestine can be divided into three regions, i.e. a duodenum, a small intestine and a large intestine. Goblet cells were observed in all the three tracts and presented an acidic secretion. WGA, LFA, PNA and SBA binding was observed only after desulfation. Glycans secreted by the three tracts consist mainly of sulfosialomucins with 1,2-linked fucose, mannosylated, glucosaminylated and subterminal galactosyl/galactosaminylated residuals. Differences among tracts are quantitative rather than qualitative, with sulfated, galactosaminylated and glycosaminylated residuals increasing from duodenum to large intestine, and galactosylated and fucosylated residuals showing an opposite trend. Variation is observed also between apices and bases of villi in both duodenum and small intestine, where sulphation decreases from the base to the apex and glycosylation shows an opposite trend. Functional implication of these findings is discussed in a comparative context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. General Information about Small Intestine Cancer

    MedlinePlus

    ... Small Intestine Cancer Treatment (PDQ®)–Patient Version General Information About Small Intestine Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  15. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs)more » and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.« less

  16. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    PubMed

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  17. Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine.

    PubMed

    Bjornvad, C R; Elnif, J; Sangild, P T

    2004-11-01

    For many mammalian species short-term fasting is associated with intestinal atrophy and decreased digestive capacity. Under natural conditions, strictly carnivorous animals often experience prey scarcity during winter, and they may therefore be particularly well adapted to short-term food deprivation. To examine how the carnivorous gastrointestinal tract is affected by fasting, small-intestinal structure, brush-border enzyme activities and hepatic structure and function were examined in fed mink (controls) and mink that had been fasted for 1-10 days. During the first 1-2 days of fasting, intestinal mass decreased more rapidly than total body mass and villus heights were reduced 25-40%. In contrast, tissue-specific activity of the brush-border enzymes sucrase, maltase, lactase, aminopeptidase A and dipeptidylpeptidase IV increased 0.5- to 1.5-fold at this time, but returned to prefasting levels after 6 days of fasting. After 6-10 days of fasting there was a marked increase in the activity of hepatic enzymes and accumulation of intra-hepatic lipid vacuoles. Thus, mink may be a useful model for studying fasting-induced intestinal atrophy and adaptation as well as mechanisms involved in accumulation of intra-hepatic lipids following food deprivation in strictly carnivorous domestic mammals, such as cats and ferrets.

  18. Duodenal supply of glutamate and casein both improve intestinal starch digestion in cattle but by apparently different mechanisms.

    PubMed

    Brake, D W; Titgemeyer, E C; Anderson, D E

    2014-09-01

    Greater postruminal flows of protein increase small intestinal starch digestion in cattle. Our objective was to determine if small intestinal starch digestion is increased by duodenal supplementation of AA. We fed 5 duodenally and ileally cannulated steers a low-starch soybean hull-based diet in 5 × 5 Latin square designs and provided continuous duodenal infusion of raw cornstarch in combination with AA or casein and measured small intestinal starch digestion. In Exp. 1 treatments were continuous duodenal infusion of 1) no supplement (control), 2) casein (400 g/d), 3) crystalline AA similar in amount and AA composition to the casein (CASAA), 4) crystalline nonessential AA similar to those provided by casein, or 5) crystalline essential AA similar to those provided by casein. In Exp. 2 treatments were continuous duodenal infusion of 1) no supplement (control), 2) casein (400 g/d), 3) Glu (133 g/d), 4) Phe and Trp plus Met (30.4, 6.5, and 17.5 g/d, respectively; PTM), or 5) a combination of Glu and PTM. Duodenal infusion of casein increased (P ≤ 0.05) small intestinal starch digestion. When CASAA was infused, small intestinal starch digestion was similar (P = 0.30) to casein infusion. Infusion of only nonessential AA tended to increase (P = 0.14) small intestinal starch digestion relative to the control, but infusion of essential AA alone did not affect (P = 0.84) small intestinal starch digestion. In addition, infusion of casein or CASAA increased ileal flows of ethanol-soluble starch (small-chain α-glycosides), but nonessential AA alone were not different than the control. Duodenal infusion of Glu increased (P ≤ 0.05) small intestinal starch digestion, whereas PTM did not. Neither Glu nor PTM increased ileal flow of ethanol-soluble starch, but Glu and PTM provided together tended (P = 0.07) to increase ileal flows of small chain α-glycosides. Our data suggest that Glu alone can increase small intestinal starch digestion in cattle similar to casein, but increases in small intestinal starch digestion in response to Glu are not associated with an increase in ileal flows of small chain α-glycosides.

  19. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    PubMed

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  20. Whipple's Disease

    MedlinePlus

    ... function in one or more connecting or supporting structures of the body. celiac disease —a digestive disease that damages the small intestine and interferes with the absorption of nutrients from food. People who have celiac ...

  1. TLR signaling modulates side effects of anticancer therapy in the small intestine

    PubMed Central

    Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W.; Cario, Elke

    2014-01-01

    Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified and there is so far no successful therapeutic intervention. Here, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b+-myeloid cell infiltration and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/MDR1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b+-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wildtype mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies, by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. PMID:25589072

  2. Short bowel syndrome in infants: the critical role of luminal nutrients in a management program.

    PubMed

    Roy, Claude C; Groleau, Véronique; Bouthillier, Lise; Pineault, Marjolain; Thibault, Maxime; Marchand, Valérie

    2014-07-01

    Short bowel syndrome develops when the remnant mass of functioning enterocytes following massive resections cannot support growth or maintain fluid-electrolyte balance and requires parenteral nutrition. Resection itself stimulates the intestine's inherent ability to adapt morphologically and functionally. The capacity to change is very much related to the high turnover rate of enterocytes and is mediated by several signals; these signals are mediated in large part by enteral nutrition. Early initiation of enteral feeding, close clinical monitoring, and ongoing assessment of intestinal adaptation are key to the prevention of irreversible intestinal failure. The length of the functional small bowel remnant is the most important variable affecting outcome. The major objective of intestinal rehabilitation programs is to achieve early oral nutritional autonomy while maintaining normal growth and nutrition status and minimizing total parenteral nutrition related comorbidities such as chronic progressive liver disease. Remarkable progress has been made in terms of survivability and quality of life, especially in the context of coordinated multidisciplinary programs, but much work remains to be done.

  3. Intestinal alkaline phosphatase: novel functions and protective effects.

    PubMed

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  4. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings.

    PubMed

    Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan

    2018-02-01

    To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.

  5. Three-Dimensional Coculture Of Human Small-Intestine Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

    1994-01-01

    Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

  6. Protein metabolism in the small intestine during cancer cachexia and chemotherapy in mice.

    PubMed

    Samuels, S E; Knowles, A L; Tilignac, T; Debiton, E; Madelmont, J C; Attaix, D

    2000-09-01

    The impact of cancer cachexia and chemotherapy on small intestinal protein metabolism and its subsequent recovery was investigated. Cancer cachexia was induced in mice with colon 26 adenocarcinoma, which is a small and slow-growing tumor characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C6H12ClN3O4S). Both healthy mice and tumor-bearing mice were given a single i.p. injection of cystemustine (20 mg/kg) 3 days after the onset of cachexia. Cancer cachexia led to a reduced in vivo rate of protein synthesis in the small intestine relative to healthy mice (-13 to -34%; P < 0.05), resulting in a 25% loss of protein mass (P < 0.05), and decreased villus width and crypt depth (P < 0.05). In treated mice, acute cytotoxicity of chemotherapy did not promote further wasting of small intestinal protein mass, nor did it result in further damage to intestinal morphology. In contrast, mucosal damage and a 17% reduction in small intestinal protein mass (P < 0.05) were evident in healthy mice treated with cystemustine, suggesting that the effects of chemotherapy on the small intestine in a state of cancer cachexia are not additive, which was an unexpected finding. Complete and rapid recovery of small intestinal protein mass in cured mice resulted from an increase in the rate of protein synthesis compared with healthy mice (23-34%; P < 0.05). Northern hybridizations of mRNA encoding components of the major proteolytic systems suggested that proteolysis may not have mediated intestinal wasting or recovery. A major clinical goal should be to design methods to improve small intestinal protein metabolism before the initiation of chemotherapy.

  7. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model.

    PubMed

    Chen, Hong; Chen, Daiwen; Qin, Wen; Liu, Yuntao; Che, Lianqiang; Huang, Zhiqing; Luo, Yuheng; Zhang, Qing; Lin, Derong; Liu, Yaowen; Han, Guoquan; DeSmet, Stefaan; Michiels, Joris

    2017-02-01

    The objective of this study was to determine the impact of wheat bran and its main polysaccharides on intestinal bacteria and gene expression of intestinal barrier function relevant proteins. Thirty freshly weaned male piglets were assigned randomly to five dietary treatment groups with six piglets per group. Accordingly, five synthetic diets including a basal control diet without fiber components (CON), wheat bran diet (10% wheat bran, WB), arabinoxylan diet (AX), cellulose diet (CEL) and combined diet of arabinoxylan and cellulose (CB) were studied. The piglets were fed ad libitum for 30 d. Lower Escherichia coli (E. coli) populations in WB group and higher probiotic (Lactobacillus and Bifidobacterium) populations in groups fed diets containing arabinoxylan (WB, AX and CB) were observed and compared with CON group. Compared with CON group, the gene expressions of cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated chloride channel regulator 1 (CLCA1) and voltage-gated chloride channel 2 (CIC2) were suppressed in the WB group. And wheat bran down-regulated gene expression of pro-inflammation (TNF-α, IL-1β, IL-6) and TLRs/MyD88/NF-κB pathway compared with CON group. In conclusion, wheat bran and its main polysaccharides could change intestinal microflora and down-regulate the gene expression of intestinal barrier function relevant proteins in the distal small intestinal mucosa.

  8. Small intestinal volvulus following laparotomy for endometrial clear cell carcinoma in a woman with a past history of total gastrectomy and Roux-en-Y anastomosis for gastric carcinoma.

    PubMed

    Chin, Georgiana S M; Heng, Robert; Neesham, Deborah E; Petersen, Rodney W

    2002-12-01

    Small intestinal volvulus is a rare complication following Roux-en-Y anastomosis. A 63-year-old woman was diagnosed with small intestinal volvulus following laparotomy for clear cell carcinoma of the endometrium. Her past medical history included a total gastrectomy and antecolic Roux-en-Y anastomosis for Duke's B gastric carcinoma. Operative findings were of transmesenteric herniation of the ileum through the Roux-en-Y small intestinal mesenteric window, with metastatic deposits fixing the hernia at its base to create a volvulus. The proximal transverse colon was very dilated and thin due to partial obstruction by the volvulus. Her treatment involved adhesiolysis and unraveling of the small intestinal volvulus. This is the first case report of a small intestinal volvulus following a Roux-en-Y anastomosis involving a metastatic gynacological malignancy.

  9. A case of child death caused by intestinal volvulus following magnetic toy ingestion.

    PubMed

    Olczak, Mieszko; Skrzypek, Ewa

    2015-05-01

    An 8-year boy was admitted to the ER of one of Warsaw's pediatric hospitals with a history of having bloody vomiting the day before. During admission the boy collapsed and lost consciousness. CPR was unsuccessful. On medico-legal autopsy, two foreign objects (small magnetic spheres--0.5 cm in diameter) were found in two different places in the small and large intestines and were notably attracted magnetically one to another. A loop of approximately 1-m length with features of small intestinal hemorrhagic necrosis and small intestinal mechanical obstruction was found. The cause of death was intestinal volvulus and small intestinal mechanical obstruction caused by ingestion of foreign objects (two neodymium magnets). Most likely these small magnetic spheres were part of a popular toy, the safety of which, lately, has been widely discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Mechanisms of small intestinal adaptation.

    PubMed

    Jenkins, A P; Thompson, R P

    1994-01-01

    Luminal nutrition, hormonal factors and pancreaticobiliary secretions are probably the major mediators of small intestinal adaptation. Their actions, as discussed in this paper, are likely to be interrelated. Direct local enterotrophic effects cannot account for all the actions of luminal nutrients. Additionally, hormonal factors have been shown to contribute to indirect effects of luminal nutrients and enteroglucagon is a likely mediator of adaptive responses. Furthermore, epidermal growth factor is a peptide for which there is convincing evidence of an enterotrophic action. Attention is drawn to the fact that pancreaticobiliary secretions may have a physiological role in stimulating small intestinal mucosal proliferation. Other factors may also influence small intestinal mucosal proliferation (e.g. prostaglandins, neurovascular mechanisms, bacteria). Additionally, polyamines are crucial in initiating cell division in the small intestine, but the detailed mechanisms of their action require further clarification. Finally, a number of therapeutic applications of small intestinal epithelial cell proliferation are discussed.

  11. Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease

    PubMed Central

    Albenberg, Lindsey G.; Wu, Gary D.

    2014-01-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breast- vs formula-fed infants, or differences in microbial richness in individuals consuming an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome, and may contribute to health or pathogenesis of disorders such as coronary vascular disease and inflammatory bowel diseases. PMID:24503132

  12. Purinoceptor-mediated, capsaicin-resistant excitatory effect of allyl isothiocyanate on neurons of the guinea-pig small intestine.

    PubMed

    Bartho, Lorand; Nordtveit, Elin; Szombati, Veronika; Benko, Rita

    2013-08-01

    Allyl isothiocyanate (AITC; 200 μM) caused atropine- and tetrodotoxin-sensitive longitudinal muscle contraction on the guinea-pig small intestine. The response was not influenced by hexamethonium, a functional blockade of capsaicin-sensitive neurons or by antagonists acting at TRPV1 or TRPA1, but was abolished by the P2 purinoceptor antagonist PPADS (50 μM). It is concluded that cholinergic motoneurons are activated by a purinergic mechanism in the course of the AITC response, independently of capsaicin-sensitive processes or even TRPA1. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  13. Development and characterization of a novel mouse line humanized for the intestinal peptide transporter PEPT1.

    PubMed

    Hu, Yongjun; Xie, Yehua; Wang, Yuqing; Chen, Xiaomei; Smith, David E

    2014-10-06

    The proton-coupled oligopeptide transporter PEPT1 (SLC15A1) is abundantly expressed in the small intestine, but not colon, of mammals and found to mediate the uptake of di/tripeptides and peptide-like drugs from the intestinal lumen. However, species differences have been observed in both the expression (and localization) of PEPT1 and its substrate affinity. With this in mind, the objectives of this study were to develop a humanized PEPT1 mouse model (huPEPT1) and to characterize hPEPT1 expression and functional activity in the intestines. Thus, after generating huPEPT1 mice in animals previously nulled for mouse Pept1, phenotypic, PCR, and immunoblot analyses were performed, along with in situ single-pass intestinal perfusion and in vivo oral pharmacokinetic studies with a model dipeptide, glycylsarcosine (GlySar). Overall, the huPEPT1 mice had normal survival rates, fertility, litter size, gender distribution, and body weight. There was no obvious behavioral or pathological phenotype. The mRNA and protein profiles indicated that huPEPT1 mice had substantial PEPT1 expression in all regions of the small intestine (i.e., duodenum, jejunum, and ileum) along with low but measurable expression in both proximal and distal segments of the colon. In agreement with PEPT1 expression, the in situ permeability of GlySar in huPEPT1 mice was similar to but lower than wildtype animals in small intestine, and greater than wildtype mice in colon. However, a species difference existed in the in situ transport kinetics of jejunal PEPT1, in which the maximal flux and Michaelis constant of GlySar were reduced 7-fold and 2- to 4-fold, respectively, in huPEPT1 compared to wildtype mice. Still, the in vivo function of intestinal PEPT1 appeared fully restored (compared to Pept1 knockout mice) as indicated by the nearly identical pharmacokinetics and plasma concentration-time profiles following a 5.0 nmol/g oral dose of GlySar to huPEPT1 and wildtype mice. This study reports, for the first time, the development and characterization of mice humanized for PEPT1. This novel transgenic huPEPT1 mouse model should prove useful in examining the role, relevance, and regulation of PEPT1 in diet and disease, and in the drug discovery process.

  14. Digestive enzyme expression and epithelial structure of small intestine in neonatal rats after 16 days spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.

    It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.

  15. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II - contemporary contextual research.

    PubMed

    Bested, Alison C; Logan, Alan C; Selhub, Eva M

    2013-03-14

    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract - its functional integrity and microbial residents - might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term 'autointoxication'. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota.

  16. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation.

    PubMed

    Meyer, A M; Hess, B W; Paisley, S I; Du, M; Caton, J S

    2014-09-01

    We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.

  17. Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis

    PubMed Central

    Xie, Meimin; Kotecha, Vijay R; Andrade, Jon David P; Fox, James G; Carey, Martin C

    2012-01-01

    Cholesterol gallstones are associated with slow intestinal transit in humans as well as in animal models, but the molecular mechanism is unknown. We investigated in C57L/J mice whether the components of a lithogenic diet (LD; 1.0% cholesterol, 0.5% cholic acid and 17% triglycerides), as well as distal intestinal infection with Helicobacter hepaticus, influence small intestinal transit time. By quantifying the distribution of 3H-sitostanol along the length of the small intestine following intraduodenal instillation, we observed that, in both sexes, the geometric centre (dimensionless) was retarded significantly (P < 0.05) by LD but not slowed further by helicobacter infection (males, 9.4 ± 0.5 (uninfected), 9.6 ± 0.5 (infected) on LD compared with 12.5 ± 0.4 and 11.4 ± 0.5 on chow). The effect of the LD was reproduced only by the binary combination of cholesterol and cholic acid. We inferred that the LD-induced cholesterol enrichment of the sarcolemmae of intestinal smooth muscle cells produced hypomotility from signal-transduction decoupling of cholecystokinin (CCK), a physiological agonist for small intestinal propulsion in mice. Treatment with ezetimibe in an amount sufficient to block intestinal cholesterol absorption caused small intestinal transit time to return to normal. In most cholesterol gallstone-prone humans, lithogenic bile carries large quantities of hepatic cholesterol into the upper small intestine continuously, thereby reproducing this dietary effect in mice. Intestinal hypomotility promotes cholelithogenesis by augmenting formation of deoxycholate, a pro-lithogenic secondary bile salt, and increasing the fraction of intestinal cholesterol absorbed. PMID:22331417

  18. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats

    PubMed Central

    Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L Å; Wold, A E

    1999-01-01

    We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R α-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum+ E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity. PMID:10337020

  19. Lymphangiectasia of small intestine presenting as intussusception.

    PubMed

    Katoch, Pervez; Bhardwaj, Subhash

    2008-01-01

    Intussusception is defined as telescoping of a segment of gastrointestinal tract into an adjacent one. In small children, it is the commonest cause of intestinal obstruction. More than 90% of childhood intussusceptions are idiopathic. We report a rare case of localized small intestinal lymphangiectasia, presenting as intussusception in a 6-month-old male child. The child presented with features of acute intestinal obstruction for which he was later operated. The gross examination of excised ileocecal mass revealed intussusception. Histopathologic examination revealed lymphangiectasia of small intestine, which acted as a lead point for ileocecal intussusception. Postoperative period was uneventful.

  20. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig.

    PubMed

    Marini, Juan C; Agarwal, Umang; Robinson, Jason L; Yuan, Yang; Didelija, Inka C; Stoll, Barbara; Burrin, Douglas G

    2017-08-01

    The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for arginine synthesis argininosuccinate synthase (ASS1) and lyase (ASL) are present in the gut. However, evidence of high plasma citrulline concentrations in neonates suggests otherwise. We quantified in vivo citrulline production in premature (10 days preterm), neonatal (7 days old), and young pigs (35 days old) using citrulline tracers. Neonatal pigs had higher fluxes (69 µmol·kg -1 ·h -1 , P < 0.001) than premature and young pigs (43 and 45 µmol·kg -1 ·h -1 , respectively). Plasma citrulline concentration was also greater in neonatal pigs than in the other age groups. We also determined the site of synthesis and utilization of citrulline in neonatal and young pigs by measuring organ balances across the gut and the kidney. Citrulline was released from the gut and utilized by the kidney in both neonatal and young pigs. The abundance and localization of the enzymes involved in the synthesis and utilization were determined in intestinal and kidney tissue. Despite the presence of ASS1 and ASL in the neonatal small intestine, the lack of colocalization with the enzymes that produce citrulline results in the release of citrulline by the PDV and its utilization by the kidney to produce arginine. In conclusion, the intestinal-renal axis for arginine synthesis is present in the neonatal pig. Copyright © 2017 the American Physiological Society.

  1. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  2. A single-cell survey of the small intestinal epithelium

    PubMed Central

    Haber, Adam L.; Biton, Moshe; Rogel, Noga; Herbst, Rebecca H.; Shekhar, Karthik; Smillie, Christopher; Burgin, Grace; Delorey, Toni M.; Howitt, Michael R.; Katz, Yarden; Tirosh, Itay; Beyaz, Semir; Dionne, Danielle; Zhang, Mei; Raychowdhury, Raktima; Garrett, Wendy S.; Rozenblatt-Rosen, Orit; Shi, Hai Ning; Yilmaz, Omer; Xavier, Ramnik J.; Regev, Aviv

    2018-01-01

    Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens. PMID:29144463

  3. Comparison of Surgically Treated Large Versus Small Intestinal Volvulus (2009-2014).

    PubMed

    Davis, Elizabeth; Townsend, Forrest I; Bennett, Julie W; Takacs, Joel; Bloch, Christopher P

    2016-01-01

    The purpose of this retrospective study was to compare the outcome for dogs with surgically treated large versus small intestinal volvulus between October 2009 and February 2014. A total of 15 dogs met the inclusion criteria and underwent an abdominal exploratory. Nine dogs were diagnosed with large intestinal volvulus during the study period, and all nine had surgical correction for large intestinal volvulus. All dogs were discharged from the hospital. Of the seven dogs available for phone follow-up (74 to 955 days postoperatively), all seven were alive and doing well. Six dogs were diagnosed with small intestinal volvulus during the study period. One of the six survived to hospital discharge. Three of the six were euthanized at the time of surgery due to an extensive amount of necrotic bowel. Of the three who were not, one died postoperatively the same day, one died 3 days later, and one dog survived for greater than 730 days. Results concluded that the outcome in dogs with surgically corrected large intestinal volvulus is excellent, compared with a poor outcome in dogs with small intestinal volvulus. The overall survival to discharge for large intestinal volvulus was 100%, versus 16% for small intestinal volvulus.

  4. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection.

    PubMed

    Saxena, Kapil; Simon, Lukas M; Zeng, Xi-Lei; Blutt, Sarah E; Crawford, Sue E; Sastri, Narayan P; Karandikar, Umesh C; Ajami, Nadim J; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E; Shaw, Chad A; Estes, Mary K

    2017-01-24

    The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.

  5. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection

    PubMed Central

    Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.

    2017-01-01

    The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine. PMID:28069942

  6. Light exposure influences the diurnal oscillation of gut microbiota in mice.

    PubMed

    Wu, Guangyan; Tang, Wenli; He, Yan; Hu, Jingjuan; Gong, Shenhai; He, Zhanke; Wei, Guoquan; Lv, Liyi; Jiang, Yong; Zhou, Hongwei; Chen, Peng

    2018-06-18

    The gut microbiota exhibit diurnal compositional and functional oscillations that influence the host homeostasis. However, the upstream factors that affect the microbial oscillations remain elusive. Here, we focused on the potential impact of light exposure, the main factor that affects the host circadian oscillation, on the diurnal oscillations of intestinal microflora to explore the upstream factor that governs the fluctuations of the gut microbes. The gut microbiota of the mice that were underwent regular light/dark (LD) cycles exhibited a robust rhythm at both compositional and functional level, in all parts of the intestine. Comparably, constant darkness (Dark-Dark, DD) led to the loss of the rhythmic oscillations in almost all parts of the intestine. Additionally, the abundance of Clostridia in DD conditions was dramatically enhanced in the small intestine. Our data indicated light exposure is the upstream factor that governs the regular diurnal fluctuations of gut microbiota in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    PubMed

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  8. Clinical radiology of the small intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlinger, H.; Maglinte, D.

    1989-01-01

    This book discussed embryology, anatomy, physiology, and immunology of the small intestine. Radiographic procedures in the small intestine especially enterolysis are presented. Focus is on the role of other types of imaging techniques including sonography, computed tomography, radionuclide imaging, angiography, biopsy, and enteroscopy.

  9. Sand impaction of the small intestine in eight dogs.

    PubMed

    Moles, A D; McGhite, A; Schaaf, O R; Read, R

    2010-01-01

    To describe signalment, clinical findings, imaging and treatment of intestinal sand impaction in the dog. Medical records of dogs with radiographic evidence of small intestinal sand impaction were reviewed. Sand impaction resulting in small intestinal obstruction was diagnosed in eight dogs. All dogs presented with signs of vomiting. Other clinical signs included anorexia, lethargy and abdominal pain. Radiographs confirmed the presence of radio-opaque material consistent with sand causing distension of the terminal small intestine in all dogs. Four dogs were treated surgically for their impaction and four dogs were managed medically. Seven of the eight dogs survived. Both medical and surgical management of intestinal sand impaction in the dog can be effective and both afford a good prognosis for recovery.

  10. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.« less

  11. Proximal duodenoileal anastomosis for treatment of small intestinal obstruction and volvulus in a green iguana (Iguana iguana).

    PubMed

    Wills, Sarah; Beaufrère, Hugues; Watrous, Gwyneth; Oblak, Michelle L; Smith, Dale A

    2016-11-01

    CASE DESCRIPTION A 13-year-old female green iguana (Iguana iguana) was examined because of a 6-day history of vomiting, anorexia, and lethargy and a 4-day history of decreased fecal and urate output. CLINICAL FINDINGS Physical examination revealed a distended abdomen, signs of depression, pallor, tachycardia, harsh lung sounds, and vomiting. Abdominal radiographs revealed gas distention of the stomach and small intestine with fluid lines evident on the lateral view. Plasma biochemical analysis indicated hypochloremic metabolic alkalosis, hyperglycemia, and hyperuricemia. TREATMENT AND OUTCOME Exploratory laparotomy confirmed a diagnosis of small intestinal entrapment and 170° volvulus involving approximately 80% (20 to 30 cm) of the small intestine. The portion of the small intestine extending from the middle portion of the duodenum to the caudal extent of the ileum was resected, and end-to-end anastomosis of the remaining small intestine was performed. The iguana recovered without apparent complications and was reportedly doing well 1 year after surgery. CLINICAL RELEVANCE Findings suggested that iguanas, as hindgut fermenters, may tolerate > 70% resection of the small intestine with a good outcome and no clinical evidence of residual gastrointestinal dysfunction.

  12. [Study on different responses of rats' small intestine mucous membrane and bladder transitional epithelium in the same carcinogenic urine environment].

    PubMed

    Wu, B; Pan, C; Song, G

    2001-10-25

    To preliminarily verify the tentative idea of replacement of bladder transitional epithelium with small intestine mucous membrane to prevent recurrence of carcinoma of bladder. A certain segment of small intestine was transplanted to the urinary bladder of the same body in 17 rats. Then N-butyl-N-(4-hydroxy-butyl) nitrosamine (BBN) was used to induce carcinoma of bladder. BBN was used to 11 control rats that did not undergo operation. Bladder carcinoma failed to be found in the transplanted small intestine mucous membrane in all experimental rats except one. After stimulation of BBN, carcinoma of urinary bladder occurred in all rats' bladder transitional epithelium. 1) The carcinogenic substances in the urine of rats suffering from BBN-induced bladder carcinoma are carcinogenic only to bladder transitional epithelium and have no effect on small intestine epithelium. 2) Bladder transitional epithelium may be more sensitive to the urine carcinogenic substances and easier to be cancerized than small intestine epithelium. 3) The tentative idea of substitution of small intestine mucous membrane for bladder transitional epithelium to prevent the recurrence of bladder carcinoma is worth further studying.

  13. Free Total Rhubarb Anthraquinones Protect Intestinal Injury via Regulation of the Intestinal Immune Response in a Rat Model of Severe Acute Pancreatitis

    PubMed Central

    Xiong, Yuxia; Chen, Li; Fan, Ling; Wang, Lulu; Zhou, Yejiang; Qin, Dalian; Sun, Qin; Wu, Jianming; Cao, Shousong

    2018-01-01

    Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP). Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs) isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg) into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg) or normal saline (control) immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), nitric oxide (NO), myeloperoxidase (MPO), capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD domain (ASC), casepase-1, secretary immunoglobulin A (SIgA), regulatory T cells (Tregs), and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN) cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while significantly increased the expression of SIgA in the intestinal tissues and/or MLN cells in SAP rats. Our results indicate that FTRAs could protect intestinal injury and improve intestinal mucosal barrier function through regulating immune function of SAP rats. Therefore, FTRAs may have the potential to be developed as the novel agent for the treatment of SAP clinically. PMID:29487524

  14. Transcriptional and functional profiling defines human small intestinal macrophage subsets.

    PubMed

    Bujko, Anna; Atlasy, Nader; Landsverk, Ole J B; Richter, Lisa; Yaqub, Sheraz; Horneland, Rune; Øyen, Ole; Aandahl, Einar Martin; Aabakken, Lars; Stunnenberg, Hendrik G; Bækkevold, Espen S; Jahnsen, Frode L

    2018-02-05

    Macrophages (Mfs) are instrumental in maintaining immune homeostasis in the intestine, yet studies on the origin and heterogeneity of human intestinal Mfs are scarce. Here, we identified four distinct Mf subpopulations in human small intestine (SI). Assessment of their turnover in duodenal transplants revealed that all Mf subsets were completely replaced over time; Mf1 and Mf2, phenotypically similar to peripheral blood monocytes (PBMos), were largely replaced within 3 wk, whereas two subsets with features of mature Mfs, Mf3 and Mf4, exhibited significantly slower replacement. Mf3 and Mf4 localized differently in SI; Mf3 formed a dense network in mucosal lamina propria, whereas Mf4 was enriched in submucosa. Transcriptional analysis showed that all Mf subsets were markedly distinct from PBMos and dendritic cells. Compared with PBMos, Mf subpopulations showed reduced responsiveness to proinflammatory stimuli but were proficient at endocytosis of particulate and soluble material. These data provide a comprehensive analysis of human SI Mf population and suggest a precursor-progeny relationship with PBMos. © 2018 Bujko et al.

  15. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of β-Catenin.

    PubMed

    Lai, Yu; Zhong, Wa; Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui

    2015-01-01

    The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin.

  16. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of β-Catenin

    PubMed Central

    Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui

    2015-01-01

    Background The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. Methods BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. Results COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Conclusion Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin. PMID:26135128

  17. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity

    PubMed Central

    Zhong, Ze-yu; Sun, Bin-bin; Shu, Nan; Xie, Qiu-shi; Tang, Xian-ge; Ling, Zhao-li; Wang, Fan; Zhao, Kai-jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-zhu; Liu, Xiao-dong

    2016-01-01

    Aim: Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. Methods: The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Results: Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine

  18. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity.

    PubMed

    Zhong, Ze-Yu; Sun, Bin-Bin; Shu, Nan; Xie, Qiu-Shi; Tang, Xian-Ge; Ling, Zhao-Li; Wang, Fan; Zhao, Kai-Jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-Zhu; Liu, Xiao-Dong

    2016-07-01

    Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine

  19. Digestion, absorption, and fermentation of carbohydrates in the newborn.

    PubMed

    Kien, C L

    1996-06-01

    In the newborn, sugars present in human milk and formulas are assimilated by both small intestinal digestion and, especially in the case of lactose, colonic bacterial fermentation. Colonic fermentation of carbohydrate serves three major functions: (1) conservation of a fraction of the metabolizable energy of dietary carbohydrate that is not absorbed in the small intestine; (2) prevention of osmotic diarrhea; and (3) production of short-chain fatty acids that stimulate sodium and water absorption, serve as fuel for colonocytes, and stimulate cell replication in colon and small intestine. Diarrhea produced in association with small bowel malabsorption of sugar may be caused by three, potentially overlapping mechanisms: (1) osmotic effects of unfermented sugar, which may cause secondary disruption of fermentation by purging the bacteria or diluting the bacteria mass; (2) damage to the colon mucosa from excessive fermentation leading to SCFA malabsorption and osmotic diarrhea on this basis; and (3) excessive fermentation leading to lowering of luminal pH and inhibition of bacterial enzymes. Therapy aimed at reducing diarrhea associated with sugar malabsorption might involve either slowing of motility to facilitate fermentation or stimulation of fermentative activity, but such interventions would depend on greater understanding of the mechanisms for colonic dysfunction in this condition.

  20. Regulation of Dab2 expression in intestinal and renal epithelia by development.

    PubMed

    Vázquez-Carretero, María D; García-Miranda, Pablo; Calonge, María L; Peral, María J; Ilundáin, Anunciación A

    2011-01-01

    Disabled-2 (Dab2) is an intracellular adaptor protein proposed to function in endocytosis. Here, we investigate the intestinal and renal Dab2 expression versus maturation. Dab2 mRNA levels measured by RT-PCR are greater in the small than in the large intestine. Immunological studies localize Dab2 to the terminal web domain of the enterocytes and reveal the presence of a 96-kDa Dab2 isoform in the apical membrane of the jejunum, ileum, and renal cortex of the suckling and adult rat. A 69-kDa Dab2 isoform is only observed in the apical membranes of the suckling ileum. During the suckling period, the Dab2 mRNA levels measured in the enterocytes and crypts and those of the 96-kDa Dab2 isoform are greater in the ileum than in the jejunum. No segmental differences are observed in the adult intestine. In the intestine, the levels of Dab2 mRNA and those of the 96-kDa Dab2 isoform decrease to adult values at weaning, whereas in the kidney they increase with development. Weaning the pups on a commercial milk diet slows the periweaning decline in the levels of Dab2 mRNA in the crypts and of those of the 96-kDa isoform. This is the first report showing that the 96-kDa Dab2 isoform is expressed at the apical domain of rat small intestine, that ontogeny regulates Dab2 gene expression in intestine and kidney and that retarding weaning affects intestinal Dab2 gene expression.

  1. Effects of Mesalamine Treatment on Gut Barrier Integrity Following Burn Injury

    PubMed Central

    Cannon, Abigail R.; Akhtar, Suhail; Hammer, Adam M.; Morris, Niya L.; Javorski, Mike J.; Li, Xiaoling; Kennedy, Richard H.; Gamelli, Richard L.; Choudhry, Mashkoor A.

    2016-01-01

    Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, we examined whether therapeutic intervention with mesalamine (5-ASA), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an ~20% total body surface area dorsal scald burn and resuscitated with either 1mL normal saline or 100mg/kg of 5-ASA dissolved in saline. We examined intestinal transit and permeability along with levels of small intestine epithelial cell pro-inflammatory cytokines and tight junction protein expression one day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed one day after burn injury, which accompanied a significant increase in gut permeability. We found a substantial increase in the levels of IL-6 (by ~1.5 fold) and IL-18 (by ~2.5 fold) in small intestine epithelial cells one day after injury. Furthermore, burn injury decreases expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn induced increase in permeability, partially restored normal intestinal transit, normalized levels of the pro-inflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin to that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury. PMID:27388883

  2. Effects of Mesalamine Treatment on Gut Barrier Integrity After Burn Injury.

    PubMed

    Cannon, Abigail R; Akhtar, Suhail; Hammer, Adam M; Morris, Niya L; Javorski, Michael J; Li, Xiaoling; Kennedy, Richard H; Gamelli, Richard L; Choudhry, Mashkoor A

    2016-01-01

    Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, the authors examined whether therapeutic intervention with mesalamine (5-aminosalicylic acid [5-ASA]), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an approximately 20% TBSA dorsal scald burn and resuscitated with either 1 ml normal saline or 100 mg/kg of 5-ASA dissolved in saline. The authors examined intestinal transit and permeability along with the levels of small intestine epithelial cell proinflammatory cytokines and tight junction protein expression 1 day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed 1 day after burn injury, which accompanied a significant increase in gut permeability. The authors found a substantial increase in the levels of interleukin (IL)-6 (by ~1.5-fold) and IL-18 (by ~2.5-fold) in the small intestine epithelial cells 1 day after injury. Furthermore, burn injury decreases the expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn-induced increase in permeability, partially restored normal intestinal transit, normalized the levels of the proinflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin compared with that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury.

  3. A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer.

    PubMed

    Merenda, Alessandra; Andersson-Rolf, Amanda; Mustata, Roxana C; Li, Taibo; Kim, Hyunki; Koo, Bon-Kyoung

    2017-07-12

    CRISPR/Cas9 technology has greatly improved the feasibility and speed of loss-of-function studies that are essential in understanding gene function. In higher eukaryotes, paralogous genes can mask a potential phenotype by compensating the loss of a gene, thus limiting the information that can be obtained from genetic studies relying on single gene knockouts. We have developed a novel, rapid cloning method for guide RNA (gRNA) concatemers in order to create multi-gene knockouts following a single round of transfection in mouse small intestinal organoids. Our strategy allows for the concatemerization of up to four individual gRNAs into a single vector by performing a single Golden Gate shuffling reaction with annealed gRNA oligos and a pre-designed retroviral vector. This allows either the simultaneous knockout of up to four different genes, or increased knockout efficiency following the targeting of one gene by multiple gRNAs. In this protocol, we show in detail how to efficiently clone multiple gRNAs into the retroviral CRISPR-concatemer vector and how to achieve highly efficient electroporation in intestinal organoids. As an example, we show that simultaneous knockout of two pairs of genes encoding negative regulators of the Wnt signaling pathway (Axin1/2 and Rnf43/Znrf3) renders intestinal organoids resistant to the withdrawal of key growth factors.

  4. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs.

    PubMed

    Erickson, R H; Gum, J R; Lindstrom, M M; McKean, D; Kim, Y S

    1995-11-02

    RT-PCR was used to obtain rat small intestinal cDNAs for two peptide transporters, showing conclusively for the first time that both are present in normal intestinal mucosa. Sequencing of these cDNAs showed them to be highly homologous and similar to two different types of peptide transport proteins from either colorectal carcinoma cells (Caco-2) or human and rabbit intestine. An even distribution profile of steady state levels of mRNA for both peptide transporters was observed along the longitudinal axis of small intestine. Both were upregulated in the distal regions of intestine by a high protein diet. Also, high levels of the rat high affinity glutamate transporter EAAC1 were observed in the distal intestine. These results suggest that the distal regions of small intestine play an important role in the absorption of some amino acids and peptides. Furthermore this area appears to be a primary site where dietary-induced changes in peptide and amino acid transport occurs.

  5. Parenteral arginine impairs intestinal adaptation following massive small bowel resection in a rat model.

    PubMed

    Sukhotnik, Igor; Mogilner, Jorge G; Lerner, Aaron; Coran, Arnold G; Lurie, Michael; Miselevich, Iness; Shiloni, Eitan

    2005-06-01

    The nitric oxide precursor L-arginine (ARG) has been shown to influence intestinal structure and absorptive function. It is also well known that the route of administration modulates the effects of ARG. The present study evaluated the effects of parenteral ARG on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection and reanastomosis, SBS rats underwent a 75% small bowel resection, and SBS-ARG rats underwent a 75% small bowel resection and were treated with ARG given subcutaneously at a dose of 300 mug/kg, once daily, from days 3 to 14. Parameters of intestinal adaptation, enterocyte proliferation, and enterocyte apoptosis were determined on day 15 following operation. The SBS rats demonstrated a significant increase in jejunal and ileal bowel and mucosal weight, villus height and crypt depth, and cell proliferation index compared with the sham group. The SBS-ARG animals demonstrated lower ileal bowel and mucosal weights, jejunal mucosal DNA and ileal mucosal protein, and jejunal and ileal villus height and crypt depth compared with SBS animals. The SBS-ARG rats also had a lower cell proliferation index in both jejunum and ileum and a greater enterocyte apoptotic index in ileum compared with the SBS-untreated group. In conclusion, in a rat model of SBS, parenteral arginine inhibits structural intestinal adaptation. Decreased cell proliferation and increased apoptosis are the main mechanisms responsible for decreased cell mass.

  6. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation

    PubMed Central

    Tran, Hoa T.; Barnich, Nicolas; Mizoguchi, Emiko

    2011-01-01

    Summary The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like-1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions. PMID:21938682

  7. Diet and the intestinal microbiome: associations, functions, and implications for health and disease.

    PubMed

    Albenberg, Lindsey G; Wu, Gary D

    2014-05-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Altered intestinal epithelium-associated lymphocyte repertoires and function in ApcMin/+ mice.

    PubMed

    Marsh, Lorraine; Coletta, P Louise; Hull, Mark A; Selby, Peter J; Carding, Simon R

    2012-01-01

    ApcMin/+ mice spontaneously develop multiple intestinal adenomas along the length of the small intestine and colon. Currently little is known about the role of the immune system in regulating intestinal tumorigenesis in these animals. This study characterised small intestinal intraepithelial lympho-- cyte (IEL) populations in C56BL/6J ApcMin/+ mice and wild-type (Apc+/+) mice. We also determined the effect that T cells expressing either γδ or αβ encoded T cell receptors (TcR) exert on intestinal tumorigenesis. ApcMin/+ mice had significantly lower numbers of CD3+ IELs compared with Apc+/+ littermates and displayed reduced cytotoxicity against tumour target cells. Further analysis of IEL cytotoxicity revealed differences in the cytotoxic pathways utilised by IELs in ApcMin/+ and Apc+/+ mice with ApcMin/+ IELs displaying an absence of perforin/granzyme-mediated killing and increased levels of Fas-FasL-mediated cytotoxicity compared with wild-type IELs. Analysis of ApcMin/+ mice crossed with αβ T-cell deficient (TcRβ-/-) or γδ T-cell deficient (TcRδ-/-) mice on the same genetic background revealed decreased tumour multiplicity in the absence of both αβ and γδ T-cells. This study demonstrates that altered T-cell subsets play important roles in promoting tumorigenesis in ApcMin/+ mice and forms the basis for future mechanistic studies.

  9. Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury.

    PubMed

    Chandrakesan, Parthasarathy; May, Randal; Weygant, Nathaniel; Qu, Dongfeng; Berry, William L; Sureban, Sripathi M; Ali, Naushad; Rao, Chinthalapally; Huycke, Mark; Bronze, Michael S; Houchen, Courtney W

    2016-11-23

    Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of Villin Cre ;Dclk1 f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.

  10. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia)*

    PubMed Central

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-01-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b0,+AT, EAAT3, y+LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b0,+AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y+LAT2 had positive correlations with body weight (0.71

  11. The transit of dosage forms through the small intestine.

    PubMed

    Yuen, Kah-Hay

    2010-08-16

    The human small intestine, with its enormous absorptive surface area, is invariably the principal site of drug absorption. Hence, the residence time of a dosage form in this part of the gut can have a great influence on the absorption of the contained drug. Various methods have been employed to monitor the gastrointestinal transit of pharmaceutical dosage forms, but the use of gamma-scintigraphy has superceded all the other methods. However, careful consideration of the time interval for image acquisition and proper analysis of the scintigraphic data are important for obtaining reliable results. Most studies reported the mean small intestinal transit time of various dosage forms to be about 3-4h, being closely similar to that of food and water. The value does not appear to be influenced by their physical state nor the presence of food, but the timing of food intake following administration of the dosage forms can influence the small intestinal transit time. While the mean small intestinal transit time is quite consistent among dosage forms and studies, individual values can vary widely. There are differing opinions regarding the effect of density and size of dosage forms on their small intestinal transit properties. Some common excipients employed in pharmaceutical formulations can affect the small intestinal transit and drug absorption. There is currently a lack of studies regarding the effects of excipients, as well as the timing of food intake on the small intestinal transit of dosage forms and drug absorption. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Carrier-mediated transport of riboflavin in the rat colon.

    PubMed

    Yuasa, H; Hirobe, M; Tomei, S; Watanabe, J

    2000-03-01

    Carriers involved in riboflavin transport have generally been presumed to be localized in the upper small intestine. However, using a closed loop technique, we found that in the rat colon the absorption of riboflavin could be significantly reduced by raising the concentration from 0.1 to 200 microM and by adding lumiflavin, an analogue of riboflavin. These results suggest that saturable transport by the carrier that is specific for riboflavin and analogues may also be involved in riboflavin absorption in the colon. At the lower concentration of 0.1 microM, carrier-mediated transport was suggested to prevail, compared with passive transport, both in the colon and the small intestine. Furthermore, carrier-mediated transport in the colon was comparable with that in the small intestine. This study is the first to suggest carrier-mediated riboflavin transport in the colon. Although the riboflavin transport system in the colon needs to be subjected to more detailed investigation of its transport functions and role in riboflavin absorption after oral administration, it would be of interest to explore potential use of this carrier as a system for drug delivery.

  13. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II – contemporary contextual research

    PubMed Central

    2013-01-01

    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract – its functional integrity and microbial residents – might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term ‘autointoxication’. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota. PMID:23497633

  14. Decrease in oral bioavailability of ciclosporin by intravenous pulse of methylprednisolone succinate in rats.

    PubMed

    Konishi, Hiroki; Sumi, Masaki; Shibata, Nobuhito; Takada, Kanji; Minouchi, Tokuzo; Yamaji, Akira

    2004-10-01

    We examined the effects of high-dose methylprednisolone on the bioavailability of orally administered ciclosporin in rats. To emulate the clinical protocol of methylprednisolone pulse therapy, methylprednisolone sodium succinate (MPS), a prodrug of methylprednisolone, was intravenously administered as repeated doses (66.3 mg kg(-1)) for 3 days. The area under the blood ciclosporin concentration versus time curve after oral administration was significantly reduced by 60% by pulse treatment with MPS. Based on our previous finding that the total body clearance of ciclosporin was reduced by about 20% by the same methylprednisolone pulse protocol, the extent of reduction in the oral bioavailability of ciclosporin was estimated to be approximately 50%, indicating a drug interaction between high-dose methylprednisolone and orally administered ciclosporin, which affected the absorption process. In rats treated with MPS, an in-situ efflux experiment using rhodamine-123 demonstrated that the reverse transport function of P-glycoprotein (P-gp) in the small intestine was significantly enhanced, although there was no significant increase in the intestinal microsomal activity of triazolam alpha- and 4-hydroxylation, metabolic probes for CYP3A. In addition, a significant decrease was observed in the amount of secreted bile acids serving as an enhancer of gastrointestinal absorption of ciclosporin in MPS treatment. To directly estimate the absorptive capacity, an in-situ absorption test was conducted using a closed-loop of small intestine in control and MPS-treated rats. Intestinal absorption of ciclosporin was significantly decreased, not only in the absence of bile flow but also by treatment with MPS, which well reflected the change in the in-vivo pharmacokinetic behaviour of ciclosporin after methylprednisolone pulsing. These results demonstrate that bioavailability of ciclosporin is markedly reduced by MPS pulse treatment, and the mechanism of this interaction was confirmed to involve enhancement of small-intestinal P-gp function and decrease in bile secretion.

  15. Transcriptome analysis reveals regional and temporal differences in mucosal immune system development in the small intestine of neonatal calves.

    PubMed

    Liang, Guanxiang; Malmuthuge, Nilusha; Bao, Hua; Stothard, Paul; Griebel, Philip J; Guan, Le Luo

    2016-08-11

    Postnatal development of the mammalian mucosal immune system is crucial for responding to the rapid colonization by commensal bacteria and possible exposure to pathogens. This study analyzed expression patterns for mRNAs and their relationship with microRNAs (miRNAs) in the bovine small intestine during the critical neonatal period (0 to 42 days). This analysis revealed molecular mechanisms regulating the postnatal development of the intestinal mucosal immune system. Small intestine samples (jejunum and ileum) were collected from newborn male, Holstein calves immediately post-partum (n = 3) and at 7 (n = 5), 21 (n = 5), and 42 (n = 5) days of age and the transcriptomes were profiled using RNA-Seq. When analyzing all time points collectively, greater expression of genes encoding the complement functional pathway, as well as lower expression of genes encoding Toll-like receptors and NOD-like receptors were observed in the jejunum when compared to the ileum. In addition, significant changes in the expression of immune-related genes were detected within the first week post-partum in both jejunum and ileum. For example, increased expression of genes encoding tight junction proteins (claudin 1, claudin 4 and occludin), an antimicrobial peptide (Regenerating Islet-Derived 3-γ), NOD-like receptors (NACHT, LRR and PYD domain-containing protein 3), regulatory T cell marker (forkhead box P3), and both anti-inflammatory (interleukin 10) and pro-inflammatory (interleukin 8) cytokines was observed throughout the small intestine of 7-day-old calves when compared to newborn calves. Moreover, the expression of mucosal immune-related genes were either positively or negatively correlated with total bacterial population depending on both intestinal region and age. The integrated analysis of miRNAs and mRNAs supported the conclusion that miRNAs may regulate temporal changes in the expression of genes encoding tight junction proteins (miR-335), cytokines (miR-335) and bacterial recognition (miR-100) during the first week of small intestine development. The rapid development of transcriptional differences between jejunum and ileum reveal that these two intestinal regions make distinct contributions to the intestinal mucosal immune system during the early neonatal period. In addition, transcriptome analysis indicates that the first week after birth is a very dynamic developmental period for the intestinal mucosal immune system and these changes may be regulated by both miRNAs and microbial colonization. Findings from this study indicate that a detailed analysis of both the abundance and diversity of the colonizing microbiome may be necessary to understand factors regulating the rapid development of the mucosal immune system during the first week of life.

  16. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  17. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tomohito; Momoi, Kanae; Hosoyamada, Makoto

    2008-03-15

    Divalent metal transporter 1 (DMT1) is a mammalian iron (Fe) transporter and also transports Cadmium (Cd) in vitro. This study compared Cd absorption in DMT1-dysfunctional MK/Rej-{sup mk}/{sub mk} mice (mk/mk mice) and in DMT1-functional, Fe-deficient wild-type (WT) mice, to clarify the role of DMT1 in intestinal Cd absorption in vivo. Mice were given 1 ppm CdCl{sub 2} aq in drinking water for 2 weeks, and the concentrations of Cd and Fe in liver, kidney, and intestinal epithelium were subsequently determined. The Fe concentration in intestinal epithelia of WT mice was decreased in proportion to the level of dietary Fe limitation,more » while Cd accumulation under the same conditions was increased. DMT1 mRNA expression in the small intestine of Fe-deficient WT mice was clearly increased compared to that in Fe-sufficient WT mice. Iron deficiency resulted in up-regulation of Cd uptake in the intestine of Fe-deficient WT mice. The mk/mk mice have a mutation in DMT1 and loss of its function led to decreased intestinal Fe concentration. However, intestinal Cd accumulation was the same as in WT mice and it was also increased in Fe-deficient situation. There is the possibility that an unknown Cd pathway has taken a role on Cd intestinal absorption in vivo and that this pathway is regulated by food Fe concentrations. Therefore, DMT1 is not the sole transporter of intestinal cadmium absorption in vivo.« less

  18. An experimental study of resistant properties of the small intestine for an active capsule endoscope.

    PubMed

    Wang, X; Meng, M Q-H

    2010-01-01

    Use of the capsule endoscope (CE) in clinical examinations is limited by its passive movement resulting from the natural peristalsis of the gastrointestinal (GI) tract. Therefore, a locomotion mechanism is desirable for the next generation of capsule endoscope. Understanding the resistant properties of the small intestine is essential for designing a wireless magnetic actuation mechanism. In this paper, in vitro experiments were carried out to investigate the resistant force of the small intestine using 15 specially designed capsule prototypes and analysed the effect of the capsule dimension and moving speed. Segments of porcine small intestine were employed as a conservative model for the human intestine. When the capsules under experiment were moving at a speed of 0.5 mm/s, a resistant force of 20 to 100 mN were measured for the capsule diameter in the range of 8 to 13 mm. The force increased with moving speed. The intrinsic cause of the resistant force of the small intestine is discussed based on an analysis of the experimental data. It is believed that the viscoelastic properties of the tissue play an important role in the resistant characteristics of the small intestine.

  19. Primary Volvulus of the Small Intestine Exhibiting Chylous Ascites: A Case Report.

    PubMed

    Hayama, Tamuro; Shioya, Takeshi; Hankyo, Meishi; Shimizu, Takao; Shibuya, Hajime; Komine, Osamu; Watanabe, Yoshimasa; Nanbu, Kotaro; Yamada, Taro

    2017-01-01

    Primary volvulus of the small intestine associated with chylous ascites is very rare, with only four reported cases. In this paper, we report a new case of primary volvulus associated with chylous ascites. The patient was a 70-year-old man. After experiencing bloating and abdominal pain for several hours, he called an ambulance and underwent an emergency examination at our hospital. Abdominal distension, pressure pain, and rebound tenderness were observed throughout his entire abdomen. The patient had a history of hypertension for which he was receiving oral treatment. Abdominal contrast-enhanced computed tomography (CT) revealed an edematous change in the intestinal membrane and volvulus of the small intestine. As findings suggestive of ischemia were observed in part of the intestines, emergency surgery was performed on the day of admission. Open surgery revealed approximately 500 mL of chylous ascites in the abdominal cavity. The small intestine had twisted 180° in a counter-clockwise direction at the root of the superior mesenteric artery, and the mesentery appeared milky white with edematous changes extending 75 to 240 cm from the ligament of Treitz. There was no evidence of intestinal necrosis; therefore intestinal resection was not performed. The volvulus of the small intestine was corrected. Moreover, because there was no other underlying disease observed, surgery was completed. The ascites collected during surgery revealed high levels of triglycerides at 332 mg/dL, and chylous ascites was diagnosed. An abdominal CT performed on the third day after surgery showed an improvement in intestinal edema, and primary volvulus of the small intestine associated with chylous ascites was diagnosed. Postoperative progress was good, and the patient was discharged on hospital day 10.

  20. Diaphragm disease of the small intestine: an interesting case report.

    PubMed

    Ullah, Sana; Ajab, Shereen; Rao, Rajashekhar; Raghunathan, Girish; DaCosta, Philip

    2015-06-01

    Diaphragm disease of small intestine usually presents with nonspecific clinical features. Radiological investigations often fail to differentiate it from small intestinal tumors and inflammatory bowel disease. It is therefore diagnosed on final histology after surgical resection. We hereby report an interesting case of a suspected small bowel tumor later diagnosed as diaphragm disease on histology. © The Author(s) 2014.

  1. Molecular Diagnostics in the Neoplasms of Small Intestine and Appendix: 2018 Update.

    PubMed

    Zhang, Yingtao; Zulfiqar, Muhammad; Bluth, Martin H; Bhalla, Amarpreet; Beydoun, Rafic

    2018-06-01

    Neoplasms of the small intestine are rare in comparison with colorectal tumors. The most common tumor types arising in the small intestine are adenocarcinomas, well-differentiated neuroendocrine tumors, gastrointestinal stromal tumors, and lymphoma. Primary appendiceal neoplasms are rare and found in less than 2% of appendectomy specimens with an incidence of approximately 1.2 cases per 100,000 people per year in the United States. This article explores molecular diagnostics in the neoplasms of small intestine and appendix. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Lynch syndrome-related small intestinal adenocarcinomas.

    PubMed

    Jun, Sun-Young; Lee, Eui-Jin; Kim, Mi-Ju; Chun, Sung Min; Bae, Young Kyung; Hong, Soon Uk; Choi, Jene; Kim, Joon Mee; Jang, Kee-Taek; Kim, Jung Yeon; Kim, Gwang Il; Jung, Soo Jin; Yoon, Ghilsuk; Hong, Seung-Mo

    2017-03-28

    Lynch syndrome is an autosomal-dominant disorder caused by defective DNA mismatch repair (MMR) genes and is associated with increased risk of malignancies in multiple organs. Small-intestinal adenocarcinomas are common initial manifestations of Lynch syndrome. To define the incidence and characteristics of Lynch syndrome-related small-intestinal adenocarcinomas, meticulous familial and clinical histories were obtained from 195 patients with small-intestinal adenocarcinoma, and MMR protein immunohistochemistry, microsatellite instability, MLH1 methylation, and germline mutational analyses were performed. Lynch syndrome was confirmed in eight patients (4%), all of whom had synchronous/metachronous malignancies without noticeable familial histories. Small-intestinal adenocarcinomas were the first clinical manifestation in 37% (3/8) of Lynch syndrome patients, and second malignancies developed within 5 years in 63% (5/8). The patients with accompanying Lynch syndrome were younger (≤50 years; P=0.04) and more likely to have mucinous adenocarcinomas (P=0.003), and tended to survive longer (P=0.11) than those with sporadic cases. A meticulous patient history taking, MMR protein immunolabeling, and germline MMR gene mutational analysis are important for the diagnosis of Lynch syndrome-related small-intestinal adenocarcinomas. Identifying Lynch syndrome in patients with small-intestinal adenocarcinoma can be beneficial for the early detection and treatment of additional Lynch syndrome-related cancers, especially in patients who are young or have mucinous adenocarcinomas.

  3. Lynch syndrome-related small intestinal adenocarcinomas

    PubMed Central

    Jun, Sun-Young; Lee, Eui-Jin; Kim, Mi-Ju; Chun, Sung Min; Bae, Young Kyung; Hong, Soon Uk; Choi, Jene; Kim, Joon Mee; Jang, Kee-Taek; Kim, Jung Yeon; Kim, Gwang Il; Jung, Soo Jin; Yoon, Ghilsuk; Hong, Seung-Mo

    2017-01-01

    Lynch syndrome is an autosomal-dominant disorder caused by defective DNA mismatch repair (MMR) genes and is associated with increased risk of malignancies in multiple organs. Small-intestinal adenocarcinomas are common initial manifestations of Lynch syndrome. To define the incidence and characteristics of Lynch syndrome-related small-intestinal adenocarcinomas, meticulous familial and clinical histories were obtained from 195 patients with small-intestinal adenocarcinoma, and MMR protein immunohistochemistry, microsatellite instability, MLH1 methylation, and germline mutational analyses were performed. Lynch syndrome was confirmed in eight patients (4%), all of whom had synchronous/metachronous malignancies without noticeable familial histories. Small-intestinal adenocarcinomas were the first clinical manifestation in 37% (3/8) of Lynch syndrome patients, and second malignancies developed within 5 years in 63% (5/8). The patients with accompanying Lynch syndrome were younger (≤50 years; P=0.04) and more likely to have mucinous adenocarcinomas (P=0.003), and tended to survive longer (P=0.11) than those with sporadic cases. A meticulous patient history taking, MMR protein immunolabeling, and germline MMR gene mutational analysis are important for the diagnosis of Lynch syndrome-related small-intestinal adenocarcinomas. Identifying Lynch syndrome in patients with small-intestinal adenocarcinoma can be beneficial for the early detection and treatment of additional Lynch syndrome-related cancers, especially in patients who are young or have mucinous adenocarcinomas. PMID:28206961

  4. Modulation of small intestinal homeostasis along with its microflora during acclimatization at simulated hypobaric hypoxia.

    PubMed

    Adak, Atanu; Ghosh; Mondal, Keshab Chandra

    2014-11-01

    At high altitude (HA) hypobaric hypoxic environment manifested several pathophysiological consequences of which gastrointestinal (GI) disorder are very common phenomena. To explore the most possible clue behind this disorder intestinal flora, the major player of the GI functions, were subjected following simulated hypobaric hypoxic treatment in model animal. For this, male albino rats were exposed to 55 kPa (approximately 4872.9 m) air pressure consecutively for 30 days for 8 h/day and its small intestinal microflora, their secreted digestive enzymes and stress induced marker protein were investigated of the luminal epithelia. It was observed that population density of total aerobes significantly decreased, but the quantity of total anaerobes and Escherichia coli increased significantly after 30 days of hypoxic stress. The population density of strict anaerobes like Bifidobacterium sp., Bacteroides sp. and Lactobacillus sp. and obligate anaerobes like Clostridium perfringens and Peptostreptococcus sp. were expanded along with their positive growth direction index (GDI). In relation to the huge multiplication of anaerobes the amount of gas formation as well as content of IgA and IgG increased in duration dependent manner. The activity of some luminal enzymes from microbial origin like a-amylase, gluco-amylase, proteinase, alkaline phosphatase and beta-glucuronidase were also elevated in hypoxic condition. Besides, hypoxia induced in formation of malondialdehyde along with significant attenuation of catalase, glutathione peroxidase, superoxide dismutase activity and lowered GSH/GSSG pool in the intestinal epithelia. Histological study revealed disruption of intestinal epithelial barrier with higher infiltration of lymphocytes in lamina propia and atrophic structure. It can be concluded that hypoxia at HA modified GI microbial imprint and subsequently causes epithelial barrier dysfunction which may relate to the small intestinal dysfunction at HA.

  5. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    PubMed

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  6. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota

    PubMed Central

    Xiao, Hui-wen; Li, Yuan; Luo, Dan; Dong, Jia-li; Zhou, Li-xin; Zhao, Shu-yi; Zheng, Qi-sheng; Wang, Hai-chao; Cui, Ming; Fan, Sai-jun

    2018-01-01

    Although radiation therapy is a cornerstone of modern management of malignancies, various side effects are inevitably linked to abdominal and pelvic cancer after radiotherapy. Radiation-mediated gastrointestinal (GI) toxicity impairs the life quality of cancer survivors and even shortens their lifespan. Hydrogen has been shown to protect against tissue injuries caused by oxidative stress and excessive inflammation, but its effect on radiation-induced intestinal injury was previously unknown. In the present study, we found that oral gavage with hydrogen-water increased the survival rate and body weight of mice exposed to total abdominal irradiation (TAI); oral gavage with hydrogen-water was also associated with an improvement in GI tract function and the epithelial integrity of the small intestine. Mechanistically, microarray analysis revealed that hydrogen-water administration upregulated miR-1968-5p levels, thus resulting in parallel downregulation of MyD88 expression in the small intestine after TAI exposure. Additionally, high-throughput sequencing showed that hydrogen-water oral gavage resulted in retention of the TAI-shifted intestinal bacterial composition in mice. Collectively, our findings suggested that hydrogen-water might be used as a potential therapeutic to alleviate intestinal injury induced by radiotherapy for abdominal and pelvic cancer in preclinical settings. PMID:29371696

  7. The influence of androgens, anti-androgens, and castration on cell proliferation in the jejunal and colonic crypt epithelia, and in dimethylhydrazine-induced adenocarcinoma of rat colon.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.

  8. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts.

    PubMed

    Caviedes-Vidal, Enrique; McWhorter, Todd J; Lavin, Shana R; Chediack, Juan G; Tracy, Christopher R; Karasov, William H

    2007-11-27

    Anecdotal evidence suggests that birds have smaller intestines than mammals. In the present analysis, we show that small birds and bats have significantly shorter small intestines and less small intestine nominal (smooth bore tube) surface area than similarly sized nonflying mammals. The corresponding >50% reduction in intestinal volume and hence mass of digesta carried is advantageous because the energetic costs of flight increase with load carried. But, a central dilemma is how birds and bats satisfy relatively high energy needs with less absorptive surface area. Here, we further show that an enhanced paracellular pathway for intestinal absorption of water-soluble nutrients such as glucose and amino acids may compensate for reduced small intestines in volant vertebrates. The evidence is that l-rhamnose and other similarly sized, metabolically inert, nonactively transported monosaccharides are absorbed significantly more in small birds and bats than in nonflying mammals. To broaden our comparison and test the veracity of our finding we surveyed the literature for other similar studies of paracellular absorption. The patterns found in our focal species held up when we included other species surveyed in our analysis. Significantly greater amplification of digestive surface area by villi in small birds, also uncovered by our analysis, may provide one mechanistic explanation for the observation of higher paracellular absorption relative to nonflying mammals. It appears that reduced intestinal size and relatively enhanced intestinal paracellular absorption can be added to the suite of adaptations that have evolved in actively flying vertebrates.

  9. The high incidence of intestinal volvulus in Iran 1

    PubMed Central

    Saidi, Farrokh

    1969-01-01

    The incidence of intestinal volvulus gleaned from the world's medical literature spread over the past seven decades supports the contention that this bowel disorder has distinct geographical predilections. Sigmoid volvulus, invariably superimposed upon a redundancy of this part of the bowel, probably results from a functional disturbance of the colon mediated perhaps by a high-residue vegetable diet. The same factors appear to hold for small bowel volvulus, though caecal volvulus occurs strictly on the basis of preexisting anatomical abnormalities. ImagesFIG. 1 PMID:5350109

  10. Volvulus of the small intestine associated with left paraduodenal hernia: a case report.

    PubMed

    Ghorbel, Soufiene; Chouikh, Taieb; Chariag, Awatef; Nouira, Faouzi; Khemakhem, Rachid; Jlidi, Said; Chaouachi, Beji

    2011-02-01

    To report a rare case of a left paraduodenal hernia presenting as volvulus of the small intestine associated to an intestinal malrotation. A 2 months-old girl presented with history of bilious vomiting, sonography showed signs of volvulus and emergency laparotomy was performed and confirmed left paraduodenal hernia containing a part of the ileon, coecum with right colon and volvulus of the small intestine out of the hernia sac. Paraduodenal hernia is an uncommon cause of small bowel volvulus. It can be suspected by clinical and radiological findings, surgery is always required to prevent small bowel necrosis and to repair the defect.

  11. Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation.

    PubMed

    Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal

    2006-11-01

    Nutritional status has a major impact on the immune system. Probiotic effects ascribed to fermented dairy products arise not only from whole microorganisms but also from metabolites (peptides, exopolysaccharides) produced during the fermentation. We recently demonstrated the immunomodulating capacity of kefir in a murine model. We now aimed at studying the immunomodulating capacity in vivo of the products derived from milk fermentation by kefir microflora (PMFKM) on the gut. BALB/c mice received the PMFKM for 2, 5 or 7 consecutive days. IgA+ and IgG+ cells were determined on histological slices of the small and large intestine. IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha were determined in the gut, intestinal fluid and blood serum. IL-6 was also determined in the supernatant of a primary culture of small intestine epithelial cells challenged with PMFKM. PMFKM up-regulated IL-6 secretion, necessary for B-cell terminal differentiation to IgA secreting cells in the gut lamina propria. There was an increase in the number of IgA+ cells in the small and large intestine. The increase in the number of IgA+ cells was accompanied by an increase in the number of IL-4+, IL-10+ and IL-6+ cells in the small intestine. Effects of PMFKM in the large intestine were less widely apparent than the ones observed at the small intestine lamina propria. All cytokines that increased in the small intestine lamina propria, also did so in blood serum, reflecting here the immunostimulation achieved in the gut mucosa. We observed that the PMFKM induced a mucosal response and it was able to up and down regulate it for protective immunity, maintaining the intestinal homeostasis, enhancing the IgA production at both the small and large intestine level. The opportunity exists then to manipulate the constituents of the lumen of the intestine through dietary means, thereby enhancing the health status of the host.

  12. Diagnosis and surgical management of abdominal cocoon: results from 12 cases.

    PubMed

    Liu, Hai-yan; Wang, Yong-sheng; Yang, Wan-guang; Yin, Sheng-lu; Pei, Hui; Sun, Tong-wen; Wang, Lexin

    2009-01-01

    This study was designed to describe the characteristics, diagnostic and therapeutic methods of abdominal cocoon. Twelve patients with abdominal cocoon were surgically treated. The clinical findings from these patients were analyzed. All patients presented with acute complete intestinal obstruction, and 10 had a previous history of abdominal mass. In nine patients, the whole or part of the small intestines were covered by an ash gray, dense and tough fibrous membrane. The capsule was surgically excised, and the adhesion was released. Partial resection of the small intestines was performed. In the other three patients, the small intestines were only partially covered by a membrane, and there was an extensive adhesion of intestinal tract, forming a large mass which could not be relieved by surgical lysis. Intestinal tube was put in, and fistulation procedures were performed. All patients recovered fully after the surgery. There are four types of surgical findings in abdominal cocoon. The most common type is that the small intestines are fully covered by a thick white membrane, causing intestinal obstruction. Surgical excision of the membrane and the release of adhesion is the treatment of choice.

  13. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    PubMed

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  14. Decreased activity and expression of intestinal oligopeptide transporter PEPT1 in rats with hyperthyroidism in vivo.

    PubMed

    Ashida, Kayoko; Katsura, Toshiya; Saito, Hideyuki; Inui, Ken-ichi

    2004-06-01

    To examine the effect of thyroid hormone status on PEPT1 in vivo, the activity and expression of PEPT1 in the small intestine were examined in euthyroid and hyperthyroid rats. Hyperthyroidism was induced by treating rats with L-thyroxine (12 mg/L) in the drinking water for 21 days. Transport activity was measured by everted small intestinal preparations and in situ intestinal loop technique. Expressions of PEPT1 mRNA and protein were evaluated by competitive polymerase chain reaction and Western blotting, respectively. The uptake of [14C]glycylsarcosine by everted small intestinal preparations was significantly decreased in hyperthyroid rats, whereas that of methyl-alpha-D-[14C(U)]-glucopyranoside was not altered. Kinetic analysis showed that the Vmax value for [14C]glycylsarcosine uptake was significantly decreased in hyperthyroid rats, whereas the Km value was not affected. The mean portal vein concentrations after intrajejunal administration of [14C]glycylsarcosine were also decreased in hyperthyroid rats. Moreover, hyperthyroidism caused a significant decrease in the expression of PEPT1 mRNA in the small intestine, whereas the expression of Na+/glucose cotransporter (SGLT1) mRNA was not changed. The level of PEPT1 protein was also decreased in the small intestine of hyperthyroid rats. These results indicate that in hyperthyroid rats, the activity and expression of PEPT1 were decreased in the small intestine.

  15. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats.

    PubMed

    Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei

    2016-09-01

    4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Long-term exposure to zero-g and the gastro-intestinal tract function

    NASA Technical Reports Server (NTRS)

    Mccormack, Percial D.

    1989-01-01

    The gastrointestinal tract (GIT) function is described with emphasis placed on its important role to smooth, delay, and modify sudden fluid load stress applied to the fluid distribution control system in the body. Two basic components of the GIT are considered: stomach dynamics, which involves storage, mixing, and discharge of food into the intestine after addition of gastric juices; and absorption of water and electrolytes from the small intestine. A dynamic model of these components is described, along with performance characteristics computed consecutively for one g and zero g conditions. The main impact of the zero g condition appears to be through a change in osmotic driven transport across the gut wall. A dramatic change in transport characteristics is predicted with implication for many body systems (the immune system in particular) during long-term exposure to zero g. Experimental measurements in zero g are needed to evaluate these predictions.

  17. Viscoelastic properties of the small intestinal and caecal contents of the chicken.

    PubMed

    Takahashi, T; Goto, M; Sakata, T

    2004-06-01

    We measured the coefficients of viscosity, shear rates and shear stresses of chicken small intestinal and caecal contents, including solid particles, using a tube-flow viscometer. The coefficients of viscosity of chicken small intestinal and caecal contents were correlated negatively with their shear rates, a characteristic typical of non-Newtonian fluids. The coefficient of viscosity of the small intestinal contents was lower than that of the caecal contents at a shear rate of 1 s(-1). Chicken caecal contents were more viscous than pig caecal contents. The exponential relationship between shear stress and shear rate showed that chicken small intestinal and caecal contents had an apparent Herschel-Bulkley fluid nature. These results indicate that solid particles, including uric acid crystals, are mainly responsible for the viscosity of the digesta in the chicken.

  18. Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine.

    PubMed

    Saitoh, Hiroshi; Saikachi, Yuko; Kobayashi, Mikako; Yamaguchi, Michiko; Oda, Masako; Yuhki, Yoshimitsu; Achiwa, Kazuhito; Tadano, Koji; Takahashi, Yasushi; Aungst, Bruce J

    2006-05-01

    The significance of intestinal P-glycoprotein (P-gp) in determining the oral bioavailability of tacrolimus has been still controversial. In this study, we reevaluated the interaction of tacrolimus with P-gp in the rat small intestine, by evaluating its absorption from the rat small intestine and its modulating effect on the absorption of known P-gp substrates (digoxin, methylprednisolone, and vinblastine). Intestinal absorption of tacrolimus itself was as extensive as other P-gp modulators such as cyclosporine and verapamil. While cyclosporine and verapamil significantly increased the absorption of methylprednisolone and vinblastine through potent inhibition of intestinal P-gp, tacrolimus failed to achieve this. When cyclosporine and tacrolimus were intravenously administered to rats, digoxin absorption was significantly increased by cyclosporine but not by tacrolimus. When tacrolimus was coadministered with clotrimazole, a specific CYP3A inhibitor, into the rat small intestine, the area under the curve of tacrolimus blood concentrations increased more than seven-fold compared with that of tacrolimus alone. Our present results strongly suggest that the interaction between tacrolimus and P-gp is limited in the rat small intestine and that extensive metabolism by CYP3A enzymes is more responsible for the low oral bioavailability of tacrolimus. It was considered that the extensive absorption of cyclosporine and verapamil was closely associated with their potent ability to inhibit intestinal P-gp.

  19. TLR signaling modulates side effects of anticancer therapy in the small intestine.

    PubMed

    Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W; Cario, Elke

    2015-02-15

    Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified, and there is so far no successful therapeutic intervention. In this study, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b(+)-myeloid cell infiltration, and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/multidrug resistance (MDR)1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b(+)-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wild-type mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia.

    PubMed

    Dann, Sara M; Manthey, Carolin F; Le, Christine; Miyamoto, Yukiko; Gima, Lauren; Abrahim, Andrew; Cao, Anthony T; Hanson, Elaine M; Kolls, Jay K; Raz, Eyal; Cong, Yingzi; Eckmann, Lars

    2015-09-01

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide. It colonizes the lumen and epithelial surface of the small intestine, but does not invade the mucosa. Acute infection causes only minimal mucosal inflammation. Effective immune defenses exist, yet their identity and mechanisms remain incompletely understood. Interleukin (IL)-17A has emerged as an important cytokine involved in inflammation and antimicrobial defense against bacterial pathogens at mucosal surfaces. In this study, we demonstrate that IL-17A has a crucial function in host defense against Giardia infection. Using murine infection models with G. muris and G. lamblia, we observed marked and selective induction of intestinal IL-17A with peak expression after 2 weeks. Th17 cells in the lamina propria and innate immune cells in the epithelial compartment of the small intestine were responsible for the IL-17A response. Experiments in gene-targeted mice revealed that the cytokine, and its cognate receptor IL-17RA, were required for eradication of the parasite. The actions of the cytokine were mediated by hematopoietic cells, and were required for the transport of IgA into the intestinal lumen, since IL-17A deficiency led to marked reduction of fecal IgA levels, as well as for increased intestinal expression of several other potential effectors, including β-defensin 1 and resistin-like molecule β. In contrast, intestinal hypermotility, another major antigiardial defense mechanism, was not impacted by IL-17A loss. Taken together, these findings demonstrate that IL-17A and IL-17 receptor signaling are essential for intestinal defense against the important lumen-dwelling intestinal parasite Giardia. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations.

    PubMed

    Looft, Torey; Allen, Heather K; Cantarel, Brandi L; Levine, Uri Y; Bayles, Darrell O; Alt, David P; Henrissat, Bernard; Stanton, Thaddeus B

    2014-08-01

    Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.

  2. Significance and Regional Dependency of Peptide Transporter (PEPT) 1 in the Intestinal Permeability of Glycylsarcosine: In Situ Single-Pass Perfusion Studies in Wild-Type and Pept1 Knockout Mice

    PubMed Central

    Jappar, Dilara; Wu, Shu-Pei; Hu, Yongjun

    2010-01-01

    The purpose of this study was to evaluate the role, relevance, and regional dependence of peptide transporter (PEPT) 1 expression and function in mouse intestines using the model dipeptide glycylsarcosine (GlySar). After isolating specific intestinal segments, in situ single-pass perfusions were performed in wild-type and Pept1 knockout mice. The permeability of [3H]GlySar was measured as a function of perfusate pH, dipeptide concentration, potential inhibitors, and intestinal segment, along with PEPT1 mRNA and protein. We found the permeability of GlySar to be saturable (Km = 5.7 mM), pH-dependent (maximal value at pH 5.5), and specific for PEPT1; other peptide transporters, such as PHT1 and PHT2, were not involved, as judged by the lack of GlySar inhibition by excess concentrations of histidine. GlySar permeabilities were comparable in the duodenum and jejunum of wild-type mice but were much larger than that in ileum (approximately 2-fold). A PEPT1-mediated permeability was not observed for GlySar in the colon of wild-type mice (<10% residual uptake compared to proximal small intestine). Moreover, GlySar permeabilities were very low and not different in the duodenum, jejunum, ileum, and colon of Pept1 knockout mice. Functional activity of intestinal PEPT1 was confirmed by real-time polymerase chain reaction and immunoblot analyses. Our findings suggest that a loss of PEPT1 activity (e.g., due to polymorphisms, disease, or drug interactions) should have a major effect in reducing the intestinal absorption of di-/tripeptides, peptidomimetics, and peptide-like drugs. PMID:20660104

  3. Paneth and intestinal stem cells preserve their functional integrity during worsening of acute cellular rejection in small bowel transplantation.

    PubMed

    Pucci Molineris, M; Gonzalez Polo, V; Perez, F; Ramisch, D; Rumbo, M; Gondolesi, G E; Meier, D

    2018-04-01

    Graft survival after small bowel transplantation remains impaired due to acute cellular rejection (ACR), the leading cause of graft loss. Although it was shown that the number of enteroendocrine progenitor cells in intestinal crypts was reduced during mild ACR, no results of Paneth and intestinal stem cells localized at the crypt bottom have been shown so far. Therefore, we wanted to elucidate integrity and functionality of the Paneth and stem cells during different degrees of ACR, and to assess whether these cells are the primary targets of the rejection process. We compared biopsies from ITx patients with no, mild, or moderate ACR by immunohistochemistry and quantitative PCR. Our results show that numbers of Paneth and stem cells remain constant in all study groups, whereas the transit-amplifying zone is the most impaired zone during ACR. We detected an unchanged level of antimicrobial peptides in Paneth cells and similar numbers of Ki-67 + IL-22R + stem cells revealing cell functionality in moderate ACR samples. We conclude that Paneth and stem cells are not primary target cells during ACR. IL-22R + Ki-67 + stem cells might be an interesting target cell population for protection and regeneration of the epithelial monolayer during/after a severe ACR in ITx patients. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors: 2. C18 fatty acids.

    PubMed

    Glasser, F; Schmidely, P; Sauvant, D; Doreau, M

    2008-05-01

    In ruminants, dietary lipids are extensively hydrogenated by rumen micro-organisms, and the extent of this biohydrogenation is a major determinant of long-chain fatty acid profiles of animal products (milk, meat). This paper reports on the duodenal flows of C18 fatty acids and their absorption in the small intestine, using a meta-analysis of a database of 77 experiments (294 treatments). We established equations for the prediction of duodenal flows of various 18-carbon (C18) fatty acids as a function of the intakes of their precursors and other dietary factors (source and/or technological treatment of dietary lipids). We also quantified the influence of several factors modifying rumen metabolism (pH, forage : concentrate ratio, level of intake, fish oil supplementation). We established equations for the apparent absorption of these fatty acids in the small intestine as a function of their duodenal flows. For all C18 unsaturated fatty acids, apparent absorption was a linear function of duodenal flow. For 18:0, apparent absorption levelled off for high duodenal flows. From this database, with fatty acid flows expressed in g/kg dry matter intake, we could not find any significant differences between animal categories (lactating cows, other cattle or sheep) in terms of rumen metabolism or intestinal absorption of C18 fatty acids.

  5. A prospective study of meat and fat intake in relation to small intestinal cancer.

    PubMed

    Cross, Amanda J; Leitzmann, Michael F; Subar, Amy F; Thompson, Frances E; Hollenbeck, Albert R; Schatzkin, Arthur

    2008-11-15

    Diets high in red and processed meats are associated with carcinogenesis of the large intestine, but no prospective study has examined meat and fat intake in relation to cancer of the small intestine. We prospectively investigated meat and fat intakes, estimated from a food frequency questionnaire, in relation to small intestinal cancer among half a million men and women enrolled in the NIH-AARP Diet and Health Study. We used Cox proportional hazards regression to estimate hazard ratios (HR) and 95% confidence intervals (95% CI). During up to 8 years of follow-up, 60 adenocarcinomas and 80 carcinoid tumors of the small intestine were diagnosed. Despite slightly elevated HRs for red meat, there were no clear associations for red or processed meat intake and either adenocarcinoma or carcinoid tumors of the small intestine. In contrast, we noted a markedly elevated risk for carcinoid tumors of the small intestine with saturated fat intake in both the categorical (highest versus lowest tertile: HR, 3.18; 95% CI, 1.62-6.25) and continuous data (HR, 3.72; 95% CI, 1.79-7.74 for each 10-g increase in intake per 1,000 kcal). Our findings suggest that the positive associations for meat intake reported in previous case-control studies may partly be explained by saturated fat intake.

  6. Polydatin Alleviates Small Intestine Injury during Hemorrhagic Shock as a SIRT1 Activator

    PubMed Central

    Zeng, Zhenhua; Chen, Zhongqing; Xu, Siqi; Song, Rui; Yang, Hong; Zhao, Ke-seng

    2015-01-01

    Objective. To evaluate the role of SIRT1 in small intestine damage following severe hemorrhagic shock and to investigate whether polydatin (PD) can activate SIRT1 in shock treatment. Research Design and Methods. The severe hemorrhagic shock model was reproduced in Sprague Dawley rats. Main Outcome Measures. Two hours after drug administration, half of the rats were assessed for survival time evaluation and the remainder were used for small intestinal tissue sample collection. Results. Bleeding and swelling appeared in the small intestine with epithelial apoptosis and gut barrier disturbance during hemorrhagic shock. SIRT1 activity and PGC-1α protein expression of the small intestine were decreased, which led to an increase in acetylated SOD2 and decreases in the expression and activity of SOD2, resulting in severe oxidative stress. The decreased SIRT1 activity and expression were partially restored in the PD administration group, which showed reduced intestine injury and longer survival time. Notably, the effect of PD was abolished after the addition of Ex527, a selective inhibitor of SIRT1. Conclusions. The results collectively suggest a role for the SIRT1-PGC-1α-SOD2 axis in small intestine injury following severe hemorrhagic shock and that PD is an effective SIRT1 activator for the shock treatment. PMID:26301045

  7. Success of serial transverse enteroplasty in an adult with extreme short bowel syndrome: a case report.

    PubMed

    Fan, Shengxian; Li, Yousheng; Zhang, Shaoyi; Wang, Jian; Li, Jieshou

    2015-04-01

    Since its introduction as an alternative intestinal lengthening technique, serial transverse enteroplasty has been increasingly used as the surgical treatment of choice for children with refractory short bowel syndrome, but there have been few reports about the adult patients. This report describes the case of a 71-year-old man with a short bowel after distal gastrectomy with Billroth II reconstruction for gastric cancer, followed by extensive intestinal resection. The serial transverse enteroplasty operation was performed and lengthened the small intestine from 49 to 67 cm. The patient tolerated the procedure well and weaned off total parenteral nutrition. Liver function also improved. This case shows that the serial transverse enteroplasty procedure increases intestinal length. This procedure should be considered a surgical option for adult patients with extreme short bowel syndrome.

  8. Physiology of Intestinal Absorption and Secretion

    PubMed Central

    Kiela, Pawel R.; Ghishan, Fayez K.

    2016-01-01

    Virtually all nutrients from the diet are absorbed into blood across the highly polarized epithelial cell layer forming the small and large intestinal mucosa. Anatomical, histological, and functional specializations along the gastrointestinal tract are responsible for the effective and regulated nutrient transport via both passive and active mechanisms. In this chapter, we summarize the current state of knowledge regarding the mechanism of intestinal absorption of key nutrients such as sodium, anions (chloride, sulfate, oxalate), carbohydrates, amino acids and peptides, lipids, lipidand water-soluble vitamins, as well as the major minerals and micronutrients. This outline, including the molecular identity, specificity, and coordinated activities of key transport proteins and genes involved, serves as the background for the following chapters focused on the pathophysiology of acquired and congenital intestinal malabsorption, as well as clinical tools to test and treat malabsorptive symptoms. PMID:27086882

  9. Inflammation and Disintegration of Intestinal Villi in an Experimental Model for Vibrio parahaemolyticus-Induced Diarrhea

    PubMed Central

    Ritchie, Jennifer M.; Rui, Haopeng; Zhou, Xiaohui; Iida, Tetsuya; Kodoma, Toshio; Ito, Susuma; Davis, Brigid M.; Bronson, Roderick T.; Waldor, Matthew K.

    2012-01-01

    Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. PMID:22438811

  10. The Delayed Effects of Acute Radiation Syndrome: Evidence of Long-Term Functional Changes in the Clonogenic Cells of the Small Intestine.

    PubMed

    Booth, Catherine; Tudor, Gregory L; Katz, Barry P; MacVittie, Thomas J

    2015-11-01

    Long term or residual damage post-irradiation has been described for many tissues. In hematopoietic stem cells (HSC), this is only revealed when the HSC are stressed and required to regenerate and repopulate a myeloablated host. Such an assay cannot be used to assess the recovery potential of previously irradiated intestinal stem cells (ISC) due to their incompatibility with transplantation. The best approximation to the HSC assay is the crypt microcolony assay, also based on clonogen survival. In the current study, the regenerative capacity of intestinal clonogenic cells in mice that had survived 13 Gy irradiation (with 5% bone marrow shielding to allow survival through the hematopoietic syndrome) and were then aged for 200 d was compared to previously unirradiated age-matched controls. Interestingly, at 200 d following 13 Gy, there remained a statistically significant reduction in crypts present in the various small intestinal regions (illustrating that the gastrointestinal epithelium had not fully recovered despite the 200-d interval). However, upon re-irradiation on day 196, those mice previously irradiated had improved crypt survival and regeneration compared to the age-matched controls. This was evident in all regions of the small intestine following 11-13 Gy re-exposure. Thus, there were either more clonogens per crypt within those previously irradiated and/or those that were present were more radioresistant (possibly because a subpopulation was more quiescent). This is contrary to the popular belief that previously irradiated animals may have an impaired/delayed regenerative response and be more radiosensitive.

  11. Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats.

    PubMed

    Boutry, Claire; Bos, Cecile; Matsumoto, Hideki; Even, Patrick; Azzout-Marniche, Dalila; Tome, Daniel; Blachier, Francois

    2011-01-01

    Monosodium glutamate (MSG) is a worldwide used flavor enhancer. Supplemental glutamate may impact physiological functions. The aim of this study was to document the metabolic and physiological consequences of supplementation with 2% MSG (w/w) in rats. After 15 days-supplementation and following the ingestion of a test meal containing 2% MSG, glutamic acid accumulated for 5h in the stomach and for 1h in the small intestine. This coincided with a significant decrease of intestinal glutaminase activity, a marked specific increase in plasma glutamine concentration and a transient increase of plasma insulin concentration. MSG after chronic or acute supplementation had no effect on food intake, body weight, adipose tissue masses, gastric emptying rate, incorporation of dietary nitrogen in gastrointestinal and other tissues, and protein synthesis in intestinal mucosa, liver and muscles. The only significant effects of chronic supplementation were a slightly diminished gastrocnemius muscle mass, increased protein mass in intestinal mucosa and decreased protein synthesis in stomach. It is concluded that MSG chronic supplementation promotes glutamine synthesis in the body but has little effect on the physiological functions examined.

  12. Preservation of Intestinal Structural Integrity by Zinc Is Independent of Metallothionein in Alcohol-Intoxicated Mice

    PubMed Central

    Lambert, Jason C.; Zhou, Zhanxiang; Wang, Lipeng; Song, Zhenyuan; McClain, Craig J.; Kang, Y. James

    2004-01-01

    Intestinal-derived endotoxins are importantly involved in alcohol-induced liver injury. Disruption of intestinal barrier function and endotoxemia are common features associated with liver inflammation and injury due to acute ethanol exposure. Zinc has been shown to inhibit acute alcohol-induced liver injury. This study was designed to determine the inhibitory effect of zinc on alcohol-induced endotoxemia and whether the inhibition is mediated by metallothionein (MT) or is independent of MT. MT knockout (MT-KO) mice were administered three oral doses of zinc sulfate (2.5 mg zinc ion/kg body weight) every 12 hours before being administered a single dose of ethanol (6 g/kg body weight) by gavage. Ethanol administration caused liver injury as determined by increased serum transaminases, parenchymal fat accumulation, necrotic foci, and an elevation of tumor necrosis factor (TNF-α). Increased plasma endotoxin levels were detected in ethanol-treated animals whose small intestinal structural integrity was compromised as determined by microscopic examination. Zinc supplementation significantly inhibited acute ethanol-induced liver injury and suppressed hepatic TNF-α production in association with decreased circulating endotoxin levels and a significant protection of small intestine structure. As expected, MT levels remained undetectable in the MT-KO mice under the zinc treatment. These results thus demonstrate that zinc preservation of intestinal structural integrity is associated with suppression of endotoxemia and liver injury induced by acute exposure to ethanol and the zinc protection is independent of MT. PMID:15161632

  13. A Novel Local Recycling Mechanism That Enhances Enteric Bioavailability of Flavonoids and Prolongs Their Residence Time in the Gut

    PubMed Central

    Xia, Bijun; Zhou, Qiong; Zheng, Zhijie; Ye, Ling; Hu, Ming; Liu, Zhongqiu

    2013-01-01

    Recycling in the gastrointestinal tract is important for endogenous substances such as bile acids and for xenobiotics such as flavonoids. Although both enterohepatic and enteric recycling mechanisms are well recognized, no one has discussed the third recycling mechanism for glucuronides: local recycling. The intestinal absorption and metabolism of wogonin and wogonoside (wogonin-7-glucuronide) was characterized by using a four-site perfused rat intestinal model, and hydrolysis of wogonoside was measured in various enzyme preparations. In the perfusion model, the wogonoside and wogonin were inter-converted in all four perfused segments. Absorption of wogonoside and conversion to its aglycone at upper small intestine was inhibited in the presence of a glucuronidase inhibitor (saccharolactone) but was not inhibited by a LPH inhibitor gluconolactone or antibiotics. Further investigation indicated that hydrolysis of wogonoside in the blank intestinal perfusate was not correlated with bacteria counts. Kinetic studies indicated that Km values from blank duodenal and jejunal perfusate were essentially identical to the Km values from intestinal S9 fraction but were much higher (>2-fold) than those from the microbial enzyme extract. Lastly, jejunal perfusate and S9 fraction share the same optimal pH, which was different from those of fecal extract. In conclusion, local recycling of wogonin and wogonoside is the first demonstrated example that this novel mechanism is functional in the upper small intestine without significant contribution from bacteria β-glucuronidase. PMID:23033922

  14. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut.

    PubMed

    Xia, Bijun; Zhou, Qiong; Zheng, Zhijie; Ye, Ling; Hu, Ming; Liu, Zhongqiu

    2012-11-05

    Recycling in the gastrointestinal tract is important for endogenous substances such as bile acids and for xenobiotics such as flavonoids. Although both enterohepatic and enteric recycling mechanisms are well recognized, no one has discussed the third recycling mechanism for glucuronides: local recycling. The intestinal absorption and metabolism of wogonin and wogonoside (wogonin-7-glucuronide) was characterized by using a four-site perfused rat intestinal model, and hydrolysis of wogonoside was measured in various enzyme preparations. In the perfusion model, the wogonoside and wogonin were interconverted in all four perfused segments. Absorption of wogonoside and conversion to its aglycon at the upper small intestine was inhibited in the presence of a glucuronidase inhibitor (saccharolactone) but was not inhibited by lactase phlorizin hydrolase (LPH) inhibitor gluconolactone or antibiotics. Further investigation indicated that hydrolysis of wogonoside in the blank intestinal perfusate was not correlated with bacterial counts. Kinetic studies indicated that K(m) values from blank duodenal and jejunal perfusate were essentially identical to the K(m) values from intestinal S9 fraction but were much higher (>2-fold) than those from the microbial enzyme extract. Lastly, jejunal perfusate and S9 fraction share the same optimal pH, which was different from those of fecal extract. In conclusion, local recycling of wogonin and wogonoside is the first demonstrated example that this novel mechanism is functional in the upper small intestine without significant contribution from bacteria β-glucuronidase.

  15. A water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia attenuates the small intestinal injury induced by anti-cancer drugs

    PubMed Central

    KASHIMOTO, NAOKI; ISHII, SATOMI; MYOJIN, YUKI; USHIJIMA, MITSUYASU; HAYAMA, MINORU; WATANABE, HIROMITSU

    2010-01-01

    The present study investigated whether a water-soluble extract from the culture medium of Ganoderma lucidum (Reishi) mycelia (MAK) is able to protect the small intestine against damage induced by anti-cancer drugs. Six-week-old male B6C3F1/Crlj mice were fed a basal diet (MF) alone or with various doses of MAK or Agarics blazei Murrill (AGA) beginning one week before treatment with the anti-cancer drugs. Mice were sacrificed 3.5 days after injection of the anti-cancer drug, the small intestine was removed and tissue specimens were examined for the regeneration of small intestinal crypts. In experiment 1, the number of regenerative crypts after the administration of 5-fluorouracil (5FU) intravenously (250 mg/kg) or intraperitoneally (250 or 500 mg/kg) was compared after treatment with MAK or AGA. MAK protected against 5FU-induced small intestinal injury whereas AGA did not. In experiment 2, we investigated the protective effect of MAK against small intestinal injury induced by the anti-cancer drugs: UFT (tegafur with uracil; 1,000 mg/kg, orally), cisplatin (CDDP; 12.5 and 25 mg/kg, intraperitoneally), cyclophosphamide (CPA; 250 mg/kg, orally) and gefitinib (Iressa; 2,000 and 4,000 mg/kg, orally). UFT and CDDP decreased the number of regenerative crypts, but treatment with MAK attenuated the extent of UFT- or CDDP-induced small intestinal injury. CPA or Iressa plus MAK up-regulated crypt regeneration. The present results indicate that MAK ameliorates the small intestinal injury caused by several anti-cancer drugs, suggesting that MAK is a potential preventive agent against this common adverse effect of chemotherapy. PMID:22966257

  16. Association of mRNA expression of iron metabolism-associated genes and progression of non-alcoholic steatohepatitis in rats.

    PubMed

    Higuchi, Teruhisa; Moriyama, Mitsuhiko; Fukushima, Akiko; Matsumura, Hiroshi; Matsuoka, Shunichi; Kanda, Tatsuo; Sugitani, Masahiko; Tsunemi, Akiko; Ueno, Takahiro; Fukuda, Noboru

    2018-05-25

    Excess iron is associated with non-alcoholic steatohepatitis (NASH). mRNA expression of duodenal cytochrome b, divalent metal transporter 1, ferroportin 1, hepcidin, hephaestin and transferrin receptor 1 in liver were higher in high fat, high cholesterol-containing diet (HFCD) group than in normal diet (ND) group. mRNA levels of divalent metal transporter 1 and transferrin receptor 1, which stimulate iron absorption and excretion, were enhanced in small intestine. Epithelial mucosa of small intestine in HFCD group was characterized by plasma cell and eosinophil infiltration and increased vacuoles. Iron absorption was enhanced in this NASH model in the context of chronic inflammation of small intestinal epithelial cells, consequences of intestinal epithelial cell impairment caused by HFCD. Iron is transported to hepatocytes via portal blood, and abnormalities in iron absorption and excretion occur in small intestine from changes in iron transporter expression, which also occurs in NASH liver. Knockdown of hepcidin antimicrobial peptide led to enhanced heavy chain of ferritin expression in human hepatocytes, indicating association between hepcidin production and iron storage in hepatocytes. Iron-related transporters in liver and lower/upper portions of small intestine play critical roles in NASH development. Expression of iron metabolism-related genes in liver and small intestine was analyzed in stroke-prone spontaneously hypertensive rats (SHR-SP), which develop NASH. Five-week-old SHR-SP fed ND or HFCD were examined. mRNA and protein levels of iron metabolism-related genes in liver and small intestine from 12- and 19-week-old rats were evaluated by real-time RT-PCR and immunohistochemistry or Western blot.

  17. Influence of Chronic Social Defeat Stress on Digestive System Functioning in Rats.

    PubMed

    Toyoda, Atsushi; Iio, Wataru; Matsukawa, Noriko; Tsukahara, Takamitsu

    2015-01-01

    Mental disorders are caused by chronic psychosocial stress, and can cause various symptoms related to the digestive system. We focused on the conjugation of intestinal absorptive and enzymatic mechanisms between chronic social defeat stress (CSDS) model rats and healthy controls to obtain general biochemical data about the intestine of the model in this study. The small intestine was divided into three regions: proximal (PI), middle (MI), and distal (DI); mRNA expression associated with a nutrient absorption, glucose absorption activity, and activities of the digestive enzymes such as maltase, sucrase and lactase was measured. Expression of both sodium-dependent glucose transporter 1 (Sglt1) and glucose transporter 2 gene tended to be higher in the stress group compared to the control group in PI. Glucose absorption was also higher in PI of the CSDS group. Sglt1 and peptide transporter 1 gene expressions in the CSDS group were significantly higher than those in the control group in DI. Furthermore, in PI, expression of the aquaporin 1 gene was significantly higher in the CSDS group compared to the control group. Thus, absorption of some nutrients might be higher in the small intestine of the CSDS rat.

  18. [A Case of Small Intestinal Metastasis with Intussusception Due to Barium].

    PubMed

    Tsujio, Gen; Nagahara, Hisashi; Nakao, Shigetomi; Fukuoka, Tatsunari; Shibutani, Masatsune; Maeda, Kiyoshi; Matsutani, Shinji; Kimura, Kenjiro; Toyokawa, Takahiro; Amano, Ryosuke; Tanaka, Hiroaki; Muguruma, Kazuya; Yashiro, Masakazu; Hirakawa, Kosei; Ohira, Masaichi

    2017-11-01

    A 48-year-old man noticed nausea and took health examination. After chest X-ray and gastrointestinal barium study was underwent, he was referred to our hospital because of abnormal shadow in the chest X-ray. CT scan revealed about 4 cm tumor in the hilum of left lung and target sign in the small intestine. He was diagnosed with intussusception and emergency operation was performed. During the laparotomy, we found 2 intussusceptions in the small intestine and we performed manual reduction using Hutchinson's maneuver. We confirmed the mass in oral side of the intussusception site but we did not confirmed any tumor in anal of the intussusception. This suggests the intussusception was caused by barium. Finally 3 small intestine tumor was observed and we resected and reconstructed each of the tumor. Histopathological examination showed small intestinal metastasis from pleomorphic carcinoma of the lung.

  19. Sutureless functional end-to-end anastomosis using a linear stapler with polyglycolic acid felt for intestinal anastomoses.

    PubMed

    Naito, Masanori; Miura, Hirohisa; Nakamura, Takatoshi; Sato, Takeo; Yamanashi, Takahiro; Tsutsui, Atsuko; Watanabe, Masahiko

    2017-05-01

    Gastrointestinal anastomosis remains associated with a considerable burden of morbidity and, in some cases, mortality. Functional end-to-end anastomosis, whilst extremely efficient, is vulnerable to increased intestinal pressure in the immediate postoperative period, which may predispose to development of anastomotic leakage or bleeding. Therefore, there is a requirement for new techniques that facilitate safe and efficacious anastomotic procedures. This study examined the clinical application of functional end-to-end anastomosis with a stapler that automatically applies a bioabsorbable polyglycolic acid sheet (Endo GIA™ Reinforced Reload with Tri-Staple™ Technology). A porcine model was used to examine functional end-to-end anastomosis with and without application of a bioabsorbable polyglycolic acid sheet. As the crotch of the anastomosis is considered the weakest point, a probe was used to test the integrity of these anastomoses. Furthermore, we performed functional end-to-end anastomosis using the Endo GIA™ Reinforced stapler in a clinical series of 20 patients undergoing gastrointestinal tract resection. In all cases, functional end-to-end anastomosis was performed without suture reinforcement. Small intestine anastomoses in the animal study exhibited no weakness at the crotch of the anastomosis, as tested with a probe, suggesting an increased resiliency to conventional complications of functional end-to-end anastomosis. In the clinical population, no postoperative complications were noted. No adhesive intestinal obstruction was noted. Sutureless functional end-to-end anastomosis using the Endo GIA™ Reinforced appears to be safe, efficacious, and straightforward. Reinforcement of the crotch site with a bioabsorbable polyglycolic acid sheet appears to mitigate conventional problems with crotch-site vulnerability.

  20. Effect of N-acetylcysteine on microcirculation of mucosa in rat ileum in a model of intestinal inflammation.

    PubMed

    Ruh, Joachim; Schmidt, Eduard; Vogel, Frank

    2003-05-01

    Oxygen radicals are formed by the endothelium and blood cells and have specific functions in various organs systems. On the level of the microcirculation, oxygen radicals take part in the regulation of the leukocyte-endothelial interaction. The involvement of oxygen radicals has previously been found in conditions such as sepsis, ischemia-reperfusion, and inflammation. Indomethacin is a clinically applied nonsteroidal antiphlogistic, and in previous studies in the rat, it has been found to induce an inflammatory reaction in the small intestine characterized by edema and reddening of the intestinal epithelium, ulceration, and dysregulation in the intestinal-epithelial barrier function. In the present study, we investigated the effect of N-acetylcysteine on erythrocyte velocity and the arteriolar diameter of the main arteriole in single villi, thus providing insight in the perfusion of the mucosa in indomethacin-induced intestinal inflammation. N-Acetylcysteine is known to inactivate superoxide and its precursors. Therefore, we used N-acetylcysteine to investigate whether superoxide and its precursors participate in the regulation of blood supply to single villi in this animal model. We found that indomethacin induced an increase in villous perfusion that was significantly reduced by N-acetylcysteine, indicating that superoxide and its precursors may participate in the regulation of blood supply to the mucosa in this animal model of intestinal inflammation.

  1. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity

    PubMed Central

    Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P

    2013-01-01

    Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749

  2. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome.

    PubMed

    Thymann, Thomas; Stoll, Barbara; Mecklenburg, Lars; Burrin, Douglas G; Vegge, Andreas; Qvist, Niels; Eriksen, Thomas; Jeppesen, Palle B; Sangild, Per T

    2014-06-01

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our objective was to test the efficacy of the long-acting synthetic human GLP-2 analogue, teduglutide (ALX-0600), in a neonatal piglet jejunostomy model. Two-day-old pigs were subjected to resection of 50% of the small intestine (distal part), and the remnant intestine was exteriorized on the abdominal wall as a jejunostomy. All pigs were given total parenteral nutrition for 7 days and a single daily injection of the following doses of teduglutide: 0.01 (n = 6), 0.02 (n = 6), 0.1 (n = 5), or 0.2 mg · kg · day (n = 6), and compared with placebo (n = 9). Body weight increment was similar for all 4 teduglutide groups but higher than placebo (P < 0.05). There was a dose-dependent increase in weight per length of the remnant intestine (P < 0.01) and fractional protein synthesis rate in the intestine was increased in the 0.2 mg · kg · day group versus placebo (P < 0.001); however, functional and structural endpoints including activity of digestive enzymes, absorption of enteral nutrients, and immunohistochemistry (Ki67, villin, FABP2, ChgA, and GLP-2R) were not affected by the treatment. Teduglutide induces trophicity on the remnant intestine but has limited acute effects on functional endpoints. Significant effects of teduglutide on gut function may require a longer adaptation period and/or a more frequent administration of the peptide. In perspective, GLP-2 or its analogues may be relevant to improve intestinal adaptation in pediatric patients with short bowel syndrome.

  3. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh

    2014-03-01

    Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.

  5. Detection of longitudinal ulcer using roughness value for computer aided diagnosis of Crohn's disease

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku

    2011-03-01

    The purpose of this paper is to present a new method to detect ulcers, which is one of the symptoms of Crohn's disease, from CT images. Crohn's disease is an inflammatory disease of the digestive tract. Crohn's disease commonly affects the small intestine. An optical or a capsule endoscope is used for small intestine examinations. However, these endoscopes cannot pass through intestinal stenosis parts in some cases. A CT image based diagnosis allows a physician to observe whole intestine even if intestinal stenosis exists. However, because of the complicated shape of the small and large intestines, understanding of shapes of the intestines and lesion positions are difficult in the CT image based diagnosis. Computer-aided diagnosis system for Crohn's disease having automated lesion detection is required for efficient diagnosis. We propose an automated method to detect ulcers from CT images. Longitudinal ulcers make rough surface of the small and large intestinal wall. The rough surface consists of combination of convex and concave parts on the intestinal wall. We detect convex and concave parts on the intestinal wall by a blob and an inverse-blob structure enhancement filters. A lot of convex and concave parts concentrate on roughed parts. We introduce a roughness value to differentiate convex and concave parts concentrated on the roughed parts from the other on the intestinal wall. The roughness value effectively reduces false positives of ulcer detection. Experimental results showed that the proposed method can detect convex and concave parts on the ulcers.

  6. Niche specificity of two Glypthelmins (Trematoda) congeners infecting Leptodactylus chaquensis (Anura: Leptodactylidae) from Argentina.

    PubMed

    Hamann, M I; Kehr, A I; González, C E

    2009-08-01

    Sixty-five specimens of the frog Leptodactylus chaquensis were infected by 2 Glypthelmins species (Glypthelmins repandum: 41%, and Glypthelmins palmipedis: 38%) in the small intestine. This study was designed to determine the site specificity of both species along the length of the small intestine by analyzing the distribution, niche overlap, morphological characteristics, and population dynamics. The location of G. palmipedis is very restricted, with the core infection site in the anterior small intestine. In contrast, G. repandum can be characterized as having an expanded niche within the small intestine. In single infections and with different intensities, individuals of both parasitic species showed preference for the anterior small intestine. In concurrent infections and with different intensities, the distribution of G. palmipedis did not change when G. repandum was present; however, displacement of G. repandum toward the middle of the small intestine was observed. Glypthelmins species used the same microhabitat and presumably the same food resource and were generally found to overlap more than expected by chance. This finding suggests the possibility of different feeding mechanisms given by differences in their pharynx size by 37%. Also, the coexistence of these could be associated with the differentiation of realized niches.

  7. Invasion of intestinal epithelia in vitro by the parasitic nematode Trichinella spiralis.

    PubMed Central

    ManWarren, T; Gagliardo, L; Geyer, J; McVay, C; Pearce-Kelling, S; Appleton, J

    1997-01-01

    Studies of nematode establishment in intestinal niches has been hindered by the lack of a readily manipulated in vitro assay. In this report, experiments are described wherein the larval stage of the parasitic nematode Trichinella spiralis was shown to invade epithelial cell monolayers in vitro. Larvae penetrated cells and migrated through them, leaving trails of dead cells in their wake. Cells derived from five different species were susceptible to invasion, reflecting the broad host range of T. spiralis in vivo. Epithelial cells derived from large and small intestines and kidneys were susceptible. Fibroblast and muscle cells were resistant. Larvae deposited glycoprotein antigens in the cells they invaded. Although the function of these antigens is unknown, they are targeted by rat antibodies that cause T. spiralis to be expelled from the intestine. The model system described provides the means to further investigate this process as well as the mechanisms by which this parasitic nematode establishes its intestinal niche. PMID:9353069

  8. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo

    PubMed Central

    Chu, Derek K.; Jimenez-Saiz, Rodrigo; Verschoor, Christopher P.; Walker, Tina D.; Goncharova, Susanna; Llop-Guevara, Alba; Shen, Pamela; Gordon, Melissa E.; Barra, Nicole G.; Bassett, Jennifer D.; Kong, Joshua; Fattouh, Ramzi; McCoy, Kathy D.; Bowdish, Dawn M.; Erjefält, Jonas S.; Pabst, Oliver; Humbles, Alison A.; Kolbeck, Roland; Waserman, Susan

    2014-01-01

    Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4+/+ or il4−/− eosinophils. Eosinophils controlled CD103+ dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity. PMID:25071163

  9. The influence of intestinal infusion of fats on small intestinal motility and digesta transit in pigs.

    PubMed Central

    Gregory, P C; Rayner, V; Wenham, G

    1986-01-01

    The influence of duodenal and ileal infusion of nutrients on small intestinal transit of digesta, measured by the passage of phenol red marker, was studied in twelve pigs fitted with duodenal and ileal catheters, and a terminal ileal cannula. Changes in gastrointestinal motility were observed by electromyography and by use of an X-ray image intensifier in four of the pigs fitted additionally with nichrome wire electrodes in the gut wall and in seven pigs fitted only with a gastric catheter. Small intestinal transit time was unaffected by intestinal catheterization per se, or by duodenal or ileal infusion of glucose or peptone. It was reduced by duodenal infusion of fat or of some of the products of fat digestion including oleic acid and a monoglyceride containing unsaturated fatty acids (monoglyceride LS) but was not affected by infusion of glycerol, stearic acid or a monoglyceride containing saturated fatty acids (monoglyceride P). Ileal transit time was greatly reduced by ileal infusion of soya bean oil mixed with bile salts and lipase and by monoglyceride LS but not by soya bean oil alone. Total small intestinal transit time was reduced to a lesser degree by ileal infusion of soya bean oil mixed with bile salts and lipase and by monoglyceride LS and was unaffected by soya bean oil alone. The level of irregular spiking activity of the small intestine was greatly reduced by both duodenal and ileal infusion of fat, but rapidly propagated spike bursts were initiated from the point of infusion (identified radiologically as peristaltic rushes) many of which travelled right through to the ileo-caecal junction. It is concluded that intestinal infusion of fat accelerates small intestinal transit in pigs by induction of peristaltic rushes; that since the ileal transit times were more severely reduced than total small intestinal transit times by ileal infusion of fat the response is probably only seen over those areas of intestine in direct contract with the fat; and that the effect depends upon the presence of fat digestion products, i.e. the fatty acid and the monoglyceride, although probably only those containing unsaturated fatty acids. PMID:3559994

  10. [Intestinal volvulus. Case report and a literature review].

    PubMed

    Santín-Rivero, Jorge; Núñez-García, Edgar; Aguirre-García, Manuel; Hagerman-Ruiz-Galindo, Gonzalo; de la Vega-González, Francisco; Moctezuma-Velasco, Carla Rubi

    2015-01-01

    Small bowel volvulus is a rare cause of intestinal obstruction in adult patients. This disease is more common in children and its aetiology and management is different to that in adults. A 30 year-old male with sarcoidosis presents with acute abdomen and clinical data of intestinal obstruction. Small bowel volvulus is diagnosed by a contrast abdominal tomography and an exploratory laparotomy is performed with devolvulation and no intestinal resection. In the days following surgery, he developed a recurrent small bowel volvulus, which was again managed with surgery, but without intestinal resection. Medical treatment for sarcoidosis was started, and with his clinical progress being satisfactory,he was discharged to home. Making an early and correct diagnosis of small bowel volvulus prevents large intestinal resections. Many surgical procedures have been described with a high rate of complications. Therefore, conservative surgical management (no intestinal resection) is recommended as the best treatment with the lowest morbidity and mortality rate. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  11. Wireless capsule endoscopy for diagnosis of acute intestinal graft-versus-host disease.

    PubMed

    Neumann, Susanne; Schoppmeyer, Konrad; Lange, Thoralf; Wiedmann, Marcus; Golsong, Johannes; Tannapfel, Andrea; Mossner, Joachim; Niederwieser, Dietger; Caca, Karel

    2007-03-01

    The small intestine is the most common location of intestinal graft-versus-host disease (GVHD). EGD with duodenal biopsies yields the highest diagnostic sensitivity, but the jejunum and ileum are not accessible by regular endoscopy. In contrast, wireless capsule endoscopy (WCE) is a noninvasive imaging procedure offering complete evaluation of the small intestine. The objective was to compare the diagnostic value of EGD, including biopsies, with the results of WCE in patients with acute intestinal symptoms who received allogeneic blood stem cell transplantation and to analyze the appearance and distribution of acute intestinal GVHD lesions in these patients. An investigator-blinded, single-center prospective study. Patients with acute intestinal symptoms after allogeneic stem cell transplantation underwent both EGD and WCE within 24 hours. Clinical data were recorded during 2 months of follow-up. Fourteen consecutive patients with clinical symptoms of acute intestinal GVHD were recruited. In 1 patient, the capsule remained in the stomach and was removed endoscopically. In 7 of 13 patients who could be evaluated, acute intestinal GVHD was diagnosed by EGD with biopsies, but 3 of these would have been missed by EGD alone. In all 7 patients with histologically confirmed acute intestinal GVHD, WCE revealed typical signs of GVHD. Lesions were scattered throughout the small intestine, but were most accentuated in the ileum. This study had a small number of patients. WCE, which is less invasive than EGD with biopsies, showed a comparable sensitivity and a high negative predictive value for diagnosing acute intestinal GVHD. It may be helpful to avoid repeated endoscopic procedures in patients who have undergone stem cell transplantation.

  12. A metagenomic study of the preventive effect of Lactobacillus rhamnosus GG on intestinal polyp formation in ApcMin/+ mice.

    PubMed

    Ni, Y; Wong, V H Y; Tai, W C S; Li, J; Wong, W Y; Lee, M M L; Fong, F L Y; El-Nezami, H; Panagiotou, G

    2017-03-01

    To investigate the in vivo effects of Lactobacillus rhamnosus GG (LGG) on intestinal polyp development and the interaction between this single-organism probiotic and the gut microbiota therein. The Apc Min/+ mouse model was used to study the potential preventive effect of LGG on intestinal polyposis, while shotgun metagenomic sequencing was employed to characterize both taxonomic and functional changes within the gut microbial community. We found that the progression of intestinal polyps in the control group altered the community functional profile remarkably despite small variation in the taxonomic diversity. In comparison, the consumption of LGG helped maintain the overall functional potential and taxonomic profile in the resident microbes, thereby leading to a 25% decrease of total polyp counts. Furthermore, we found that LGG enriched those microbes or microbial activities related to short-chain fatty acid production (e.g. Roseburia and Coprococcus), as well as suppressed the ones that can lead to inflammation (e.g. Bilophila wadsworthia). Our study using shotgun metagenomics highlights how single probiotic LGG may exert its beneficial effects and decrease polyp formation in mice by maintaining gut microbial functionality. This probiotic intervention targeting microbiota may be used in conjugation with other dietary supplements or drugs as part of prevention strategies for early-stage colon cancer, after further clinical validations in human. © 2016 The Society for Applied Microbiology.

  13. Inhibition of small-intestinal sugar absorption mediated by sodium orthovanadate Na3VO4 in rats and its mechanisms

    PubMed Central

    Ai, Jing; Du, Jie; Wang, Ning; Du, Zhi-Min; Yang, Bao-Feng

    2004-01-01

    AIM: To investigate the inhibitory effects of sodium orthovanadate on small-intestinal glucose and maltose absorption in rats and its mechanism. METHODS: Normal Wistar rats were lavaged with sodium orthovanadate (16 mg/kg, 4 mg/kg and 1 mg/kg) for 6 d. Blood glucose values were measured after fasting and 0.5, 1, 1.5 and 2 h after glucose and maltose feeding with oxidation-enzyme method. α-glucosidase was abstracted from the upper small intestine, and its activity was examined. mRNA expression of α-glucosidase and glucose-transporter 2 (GLUT2) in epithelial cells of the small intestine was observed by in situ hybridization. RESULTS: Sodium orthovanadate could delay the increase of plasma glucose concentration after glucose and maltose loading, area under curve (AUC) in these groups was lower than that in control group. Sodium orthovanadate at dosages of 10 μmol/L, 100 μmol/L and 1000 μmol/L could suppress the activity of α-glucosidase in the small intestine of normal rats, with an inhibition rate of 68.18%, 87.22% and 91.91%, respectively. Sodium orthovanadate reduced mRNA expression of α-glucosidase and GLUT2 in epithelial cells of small intestine. CONCLUSION: Sodium orthovanadate can reduce and delay the absorption of glucose and maltose. The mechanism may be that it can inhibit the activity and mRNA expression of α-glucosidase, as well as mRNA expression of GLUT2 in small intestine. PMID:15534916

  14. 1-alpha,25-Dihydroxyvitamin D3 up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis.

    PubMed

    Noda, Seiko; Yamada, Asako; Nakaoka, Kanae; Goseki-Sone, Masae

    2017-10-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation, and development. The principal function of vitamin D in calcium homeostasis is to increase the absorption of calcium from the intestine, and the level of alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. Intestinal-type ALP is expressed at a high concentration in the brush border membrane of intestinal epithelial cells, and is known to be affected by several kinds of nutrients. Recent reviews have highlighted the importance of intestinal-type ALP in gut homeostasis. Intestinal-type ALP controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. In this study, we investigated the influence of vitamin D on the expression of 2 types of alternative mRNA variants encoding the human alkaline phosphatase, intestinal (ALPI) gene in human Caco-2 cells as an in vitro model of the small intestinal epithelium. After treatment with 1-alpha,25-dihydroxyvitamin D 3 , the biologically active form of vitamin D 3 , there were significant increases in the ALP activities of Caco-2 cells. Inhibitor and thermal inactivation experiments showed that the increased ALP had properties of intestinal-type ALP. Reverse transcription-polymerase chain reaction analysis revealed that expression of the 2 types of alternative mRNA variants from the ALPI gene was markedly enhanced by vitamin D in Caco-2 cells. In conclusion, these findings agree with the hypothesis: vitamin D up-regulated the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells; vitamin D may be an important regulator of ALPI gene expression in gut homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.

    PubMed

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B; Flavell, Richard A

    2017-06-29

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.

  16. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    PubMed Central

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal GALT are the essential early sites of prion accumulation. Furthermore, congruent infection with a large intestinal helminth (worm) around the time of oral prion exposure did not affect disease pathogenesis. This is important for our understanding of the factors that influence the risk of prion infection and the preclinical diagnosis of disease. The detection of prions within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, our data suggest that using these biopsy specimens may miss individuals in the early stages of oral prion infection and significantly underestimate the disease prevalence. PMID:26157121

  17. Hair Follicle-Derived Smooth Muscle Cells and Small Intestinal Submucosa for Engineering Mechanically Robust and Vasoreactive Vascular Media

    PubMed Central

    Peng, Hao-Fan; Liu, Jin Yu

    2011-01-01

    Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation. PMID:21083418

  18. Small bowel resection

    MedlinePlus

    ... of the small intestine from conditions such as Crohn disease Cancer Carcinoid tumor Injuries to the small intestine ... a long-term (chronic) condition, such as cancer, Crohn disease or ulcerative colitis, you may need ongoing medical ...

  19. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    PubMed Central

    Barnett, Alicia M.; Roy, Nicole C.; McNabb, Warren C.; Cookson, Adrian L.

    2016-01-01

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function. PMID:27164134

  20. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    PubMed

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  1. Morphological and functional changes after benzalkonium chloride treatment of the small intestinal Thiry-Vella loop in rats.

    PubMed

    Móricz, K; Gyetvai, B; Bárdos, G

    1998-08-01

    The aim of this work was to study the effects of benzalkonium chloride (BAC) treatment on the small intestine and its functioning in rats surgically prepared with Thiry-Vella intestinal loop. The loops were treated with either BAC, which ablated much of the myenteric plexus and extrinsic innervation, or with physiological saline (SAL). In vivo drinking experiments were performed to examine the effect on fluid intake and behavioral indices of distending the loop with a balloon. Spontaneous motility and its changes induced by acetylcholine (ACh) and histamine (His) were studied on isolated stripes in vitro. Finally, samples from the loops were examined histologically. Though reduction of the cell number was less than expected and no differences of the thickness of the muscular layer between the two groups was observed, BAC treatment altered the pattern of spontaneous activity and also the sensitivity to ACh and His in isolated stripes. In vivo distension of the SAL-treated loops reduced fluid intake and produced signs of aversivity; these effects were absent in the BAC-treated group. Our results show that despite the differences in the degree of ablation from those obtained by others, BAC treatment can be used to study the mechanisms underlying the effects of the enteral stimuli on the behavior.

  2. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine aftermore » cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.« less

  3. What are the effects of proton pump inhibitors on the small intestine?

    PubMed Central

    Fujimori, Shunji

    2015-01-01

    Generally, proton-pump inhibitors (PPIs) have great benefit for patients with acid related disease with less frequently occurring side effects. According to a recent report, PPIs provoke dysbiosis of the small intestinal bacterial flora, exacerbating nonsteroidal anti-inflammatory drug-induced small intestinal injury. Several meta-analyses and systematic reviews have reported that patients treated with PPIs, as well as post-gastrectomy patients, have a higher frequency of small intestinal bacterial overgrowth (SIBO) compared to patients who lack the aforementioned conditions. Furthermore, there is insufficient evidence that these conditions induce Clostridium difficile infection. At this time, PPI-induced dysbiosis is considered a type of SIBO. It now seems likely that intestinal bacterial flora influence many diseases, such as inflammatory bowel disease, diabetes mellitus, obesity, non-alcoholic fatty liver disease, and autoimmune diseases. When attempting to control intestinal bacterial flora with probiotics, prebiotics, and fecal microbiota transplantation, etc., the influence of acid suppression therapy, especially PPIs, should not be overlooked. PMID:26078557

  4. What are the effects of proton pump inhibitors on the small intestine?

    PubMed

    Fujimori, Shunji

    2015-06-14

    Generally, proton-pump inhibitors (PPIs) have great benefit for patients with acid related disease with less frequently occurring side effects. According to a recent report, PPIs provoke dysbiosis of the small intestinal bacterial flora, exacerbating nonsteroidal anti-inflammatory drug-induced small intestinal injury. Several meta-analyses and systematic reviews have reported that patients treated with PPIs, as well as post-gastrectomy patients, have a higher frequency of small intestinal bacterial overgrowth (SIBO) compared to patients who lack the aforementioned conditions. Furthermore, there is insufficient evidence that these conditions induce Clostridium difficile infection. At this time, PPI-induced dysbiosis is considered a type of SIBO. It now seems likely that intestinal bacterial flora influence many diseases, such as inflammatory bowel disease, diabetes mellitus, obesity, non-alcoholic fatty liver disease, and autoimmune diseases. When attempting to control intestinal bacterial flora with probiotics, prebiotics, and fecal microbiota transplantation, etc., the influence of acid suppression therapy, especially PPIs, should not be overlooked.

  5. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  6. The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense.

    PubMed

    Luo, Beibei; Xiang, Dao; Nieman, David C; Chen, Peijie

    2014-07-01

    The purpose of this study was to examine the effect of moderate exercise on repeated restraint stress (RRS)-induced intestinal barrier dysfunction and explore possible mechanisms in a mouse model. Male Balb/c mice (6weeks) were randomized into 7 groups: CON functioned as controls with no intervention; RRS was subjected to 6h per day RRS for 7 consecutive days; RRS+SWIM received 30min per day of swimming prior to RRS; CON+SWIM only received 30min per day of swimming; and the other groups received one session of 30min swimming prior to sacrifice at 1-, 3- and 6h recovery. Intestinal permeability was quantified with FITC-dextran. Bacterial translocation was determined by quantification of bacterial colony forming units (CFUs) in cultured mesenteric lymph nodes (MLN), and with fluorescence in situ hybridization (FISH). Antimicrobial related gene expression at baseline and 1h after one session of 30min swimming was tested by quantitative real-time polymerase chain reaction (Q-PCR) in small intestinal segments. Protein expression of 5 genes with statistically significant increase was measured at baseline, and 1-, 3- and 6h post-swimming using enzyme-linked immunosorbent assay (ELISA). Thirty minutes per day of swimming before RRS attenuated bacterial translocations and maintained intestinal permeability. Gene expression and protein levels for four antimicrobial peptides (α-defensin 5, β-defensin 1, RegIIIβ and RegIIIγ) were significantly increased after one 30min swimming session. In conclusion, moderate exercise attenuated chronic stress-induced intestinal barrier dysfunction in mice, possibly due to augmentation of antimicrobial responses in the small intestine. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    PubMed

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P < 0.05) between 0.0001 and 0.1 µM folic acid. Above 0.1 µM, the slope of the regression line was not significantly different from zero (P < 0.137). Folic acid uptake in the jejunum showed a maximum rate of transport at pH 6.0, but was lowest at pH 7.5. The presence of 5-methyl and 10-formyltetrahydrofolate as well as heme impeded folic acid uptake, reducing intestinal folic acid absorption when added at concentrations ranging from 0 to 100 µM. Overall, these data indicated the presence of a folic acid transport system in the entire intestine of the laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  8. Occurrence of small intestinal volvulus in a terrier puppy-a case report

    PubMed Central

    Golshahi, Hannaneh; Tavasoly, Abbas; Namjoo, Abdolrasol; Bahmani, Mahmoud

    2014-01-01

    Volvulus is the torsion of an organ around its root. In dogs, volvulus of the stomach is well known, but volvulus of the small intestine is rare. A dead 3-month-old female terrier puppy was presented for postmortem examination. According to owner statements, the puppy was depressed, lethargic and had abdominal pain, abdominal distension, severe diarrhea and vomiting a few hours before death. With gross and histopathologic studies, the death of this puppy was indorsed to small intestinal volvulus, subsequent infarction, peritonitis and likely acute toxaemia and/or septicaemia. The present case is going to be the first recorded case of small intestinal volvulus in dog in Iran.

  9. Brain gut microbiome interactions and functional bowel disorders

    USDA-ARS?s Scientific Manuscript database

    Alterations in the bidirectional interactions between the intestine and the nervous system have important roles in the pathogenesis of irritable bowel syndrome (IBS). A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. A small and poorly defined r...

  10. A neonate with intestinal volvulus without malrotation exhibiting early jaundice with a suspected fetal onset.

    PubMed

    Hara, Kaori; Kinoshita, Mari; Kin, Takane; Arimitsu, Takeshi; Matsuzaki, Yohei; Ikeda, Kazushige; Tomita, Hiroshi; Fujino, Akihiro; Kuroda, Tatsuo

    2015-01-01

    Intestinal volvulus without malrotation is a rare disease that causes volvulus of the small intestine despite normal intestinal rotation and fixation. We encountered a neonate with this disease who developed early jaundice and was suspected to have a fetal onset. This patient was characterized by early jaundice complicating intestinal volvulus without malrotation and is considered to have exhibited reduced fetal movement and early jaundice as a result of volvulus, necrosis, and hemorrhage of the small intestine in the fetal period. If abdominal distention accompanied by early jaundice is noted in a neonate, intestinal volvulus without malrotation and associated intraabdominal hemorrhage should be suspected and promptly treated.

  11. Effects of polyphenols from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) on methotrexate-induced intestinal injury in rats.

    PubMed

    Sugiyama, Akihiko; Kimura, Hideto; Ogawa, Satoshi; Yokota, Kazushige; Takeuchi, Takashi

    2011-05-01

    The purpose of this study was to evaluate the effects of polyphenols from seed shells of Japanese horse chestnut (JHP) on methotrexate (MTX)-induced intestinal injury in rats. MTX application caused intestinal morphological injury and increase in malondialdehyde (MDA) levels, decrease in levels of glutathione (GSH) and glutathione peroxidase (GSH-Px) activities in small intestine. However, oral administration of JHP ameliorated MTX-induced intestinal injury and inhibited the increase in MDA and the decrease in GSH and GSH-Px activity in small intestine. In conclusion, our results indicated that oral administration of JHP alleviated MTX-induced intestinal injury through its antioxidant properties.

  12. Slow wave contraction frequency plateaus in the small intestine are composed of discrete waves of interval increase associated with dislocations.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2018-06-03

    What is the central question of this study? What is the nature of slow wave driven contraction frequency gradients in the small intestine? What is the main finding and its importance? Frequency plateaus are composed of discrete waves of increased interval, each wave associated with a contraction dislocation. Smooth frequency gradients are generated by localised neural modulation of wave frequency, leading to functionally important wave turbulence. Both patterns are emergent properties of a network of coupled oscillators, the interstitial cells of Cajal. A gut-wide network of interstitial cells of Cajal (ICC) generate electrical oscillations (slow waves) that orchestrate waves of muscle contraction. In the small intestine there is a gradient in slow wave frequency from high at the duodenum to low at the terminal ileum. Time-averaged measurements of frequency have suggested either a smooth or stepped (plateaued) gradient. We measured individual contraction intervals from diameter maps of the mouse small intestine to create interval maps (IMaps). IMaps showed that each frequency plateau was composed of discrete waves of increased interval. Each interval wave originated at a terminating contraction wave, a "dislocation", at the plateau's proximal boundary. In a model chain of coupled phase oscillators, interval wave frequency increased as coupling decreased or as the natural frequency gradient or noise increased. Injuring the intestine at a proximal point to destroy coupling, suppressed distal steps which then reappeared with gap junction block by carbenoxolone. This lent further support to our previous hypothesis that lines of dislocations were fixed by points of low coupling strength. Dislocations induced by electrical field pulses in the intestine and by equivalent phase shift in the model, were associated with interval waves. When the enteric nervous system was active, IMaps showed a chaotic, turbulent pattern of interval change with no frequency steps or plateaus. This probably resulted from local, stochastic release of neurotransmitters. Plateaus, dislocations, interval waves and wave turbulence arise from a dynamic interplay between natural frequency and coupling in the ICC network. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    PubMed Central

    Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte

    2017-01-01

    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine. PMID:28915252

  14. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine

    PubMed Central

    Tomas, Julie; Mulet, Céline; Saffarian, Azadeh; Cavin, Jean-Baptiste; Ducroc, Robert; Regnault, Béatrice; Kun Tan, Chek; Duszka, Kalina; Burcelin, Rémy; Wahli, Walter; Sansonetti, Philippe J.; Pédron, Thierry

    2016-01-01

    Diet is among the most important factors contributing to intestinal homeostasis, and basic functions performed by the small intestine need to be tightly preserved to maintain health. Little is known about the direct impact of high-fat (HF) diet on small-intestinal mucosal defenses and spatial distribution of the microbiota during the early phase of its administration. We observed that only 30 d after HF diet initiation, the intervillous zone of the ileum—which is usually described as free of bacteria—became occupied by a dense microbiota. In addition to affecting its spatial distribution, HF diet also drastically affected microbiota composition with a profile characterized by the expansion of Firmicutes (appearance of Erysipelotrichi), Proteobacteria (Desulfovibrionales) and Verrucomicrobia, and decrease of Bacteroidetes (family S24-7) and Candidatus arthromitus. A decrease in antimicrobial peptide expression was predominantly observed in the ileum where bacterial density appeared highest. In addition, HF diet increased intestinal permeability and decreased cystic fibrosis transmembrane conductance regulator (Cftr) and the Na-K-2Cl cotransporter 1 (Nkcc1) gene and protein expressions, leading to a decrease in ileal secretion of chloride, likely responsible for massive alteration in mucus phenotype. This complex phenotype triggered by HF diet at the interface between the microbiota and the mucosal surface was reversed when the diet was switched back to standard composition or when mice were treated for 1 wk with rosiglitazone, a specific agonist of peroxisome proliferator-activated receptor-γ (PPAR-γ). Moreover, weaker expression of antimicrobial peptide-encoding genes and intervillous bacterial colonization were observed in Ppar-γ–deficient mice, highlighting the major role of lipids in modulation of mucosal immune defenses. PMID:27638207

  15. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable

    PubMed Central

    Tian, Hua; Biehs, Brian; Warming, Soren; Leong, Kevin G.; Rangell, Linda; Klein, Ophir D.; de Sauvage, Frederic J.

    2014-01-01

    The small intestine epithelium renews every 2 to 5 days, making it one of the most regenerative mammalian tissues. Genetic inducible fate mapping studies have identified two principal epithelial stem cell pools in this tissue. One pool consists of columnar Lgr5-expressing cells that cycle rapidly and are present predominantly at the crypt base1. The other pool consists of Bmi1-expressing cells that largely reside above the crypt base2. However, the relative functions of these two pools and their interrelationship are not understood. Here, we specifically ablated Lgr5-expressing cells using a diphtheria toxin receptor (DTR) gene knocked into the Lgr5 locus. We found that complete loss of the Lgr5-expressing cells did not perturb homeostasis of the epithelium, indicating that other cell types can compensate for elimination of this population. After ablation of Lgr5-expressing cells, progeny production by Bmi1-expressing cells increased, suggesting that Bmi1-expressing stem cells compensate for the loss of Lgr5-expressing cells. Indeed, lineage tracing showed that Bmi1-expressing cells gave rise to Lgr5-expressing cells, pointing to a hierarchy of stem cells in the intestinal epithelium. Our results demonstrate that Lgr5-expressing cells are dispensable for normal intestinal homeostasis. In the absence of these cells, the Bmi1-expressing cells can serve as an alternative stem cell pool, providing the first experimental evidence for the interrelationship between these populations. The Bmi1-expressing stem cells may represent both a reserve stem cell pool in case of injury to the small intestine epithelium and a source for replenishment of the Lgr5-expressing cells under non-pathological conditions. PMID:21927002

  16. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  17. Small intestinal model for electrically propelled capsule endoscopy

    PubMed Central

    2011-01-01

    The aim of this research is to propose a small intestine model for electrically propelled capsule endoscopy. The electrical stimulus can cause contraction of the small intestine and propel the capsule along the lumen. The proposed model considered the drag and friction from the small intestine using a thin walled model and Stokes' drag equation. Further, contraction force from the small intestine was modeled by using regression analysis. From the proposed model, the acceleration and velocity of various exterior shapes of capsule were calculated, and two exterior shapes of capsules were proposed based on the internal volume of the capsules. The proposed capsules were fabricated and animal experiments were conducted. One of the proposed capsules showed an average (SD) velocity in forward direction of 2.91 ± 0.99 mm/s and 2.23 ± 0.78 mm/s in the backward direction, which was 5.2 times faster than that obtained in previous research. The proposed model can predict locomotion of the capsule based on various exterior shapes of the capsule. PMID:22177218

  18. An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds.

    PubMed

    Jandacek, Ronald J; Genuis, Stephen J

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine--thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants.

  19. Effect of dietary fat on the distribution of mucosal mass and cell proliferation along the small intestine.

    PubMed Central

    Jenkins, A P; Thompson, R P

    1992-01-01

    This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose. PMID:1541418

  20. Hyperenteroglucagonaemia and small intestinal mucosal growth after colonic perfusion of glucose in rats.

    PubMed Central

    Miazza, B M; Al-Mukhtar, M Y; Salmeron, M; Ghatei, M A; Felce-Dachez, M; Filali, A; Villet, R; Wright, N A; Bloom, S R; Crambaud, J C

    1985-01-01

    Beside intraluminal factors, humoral agents play an important role in intestinal adaptation. Enteroglucagon, the mucosal concentration of which is maximal in the terminal ileum and colon, is the strongest candidate for the role of small intestinal mucosal growth factor. The present experiment was designed to study the role of colonic enteroglucagon in stimulating mucosal growth in rats with a normal small intestine. After eight days of glucose large bowel perfusion, enteroglucagon plasma concentrations were 120.7 +/- SEM 9.2 pmol/l, versus 60.1 +/- 6.8 in mannitol perfused control rats (p less than 0.001). Gastrin, cholecystokinin, neurotensin, pancreatic glucagon, and insulin plasma concentrations were unchanged. Crypt cell proliferation, measured by the vincristine metaphase arrest technique, increased significantly in the small intestine of glucose perfused animals (p less than 0.005-0.001) in comparison with the controls. This resulted in a greater mucosal mass in both proximal and distal small bowel: mucosal wet weight, DNA, protein and alpha D-glucosidase per unit length intestine were all significantly higher (p less than 0.05-0.001) than in mannitol perfused rats. Our data, therefore, support the hypothesis that enteroglucagon is an enterotrophic factor and stress the possible role of the colon in the regulation of small bowel trophicity. PMID:3996942

  1. Effect of dietary fat on the distribution of mucosal mass and cell proliferation along the small intestine.

    PubMed

    Jenkins, A P; Thompson, R P

    1992-02-01

    This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose.

  2. Bilateral ‘gut-tie’ in a recently castrated steer

    PubMed Central

    Haruna, Julius A.; Ortenburger, Art

    2006-01-01

    Abstract Small intestinal obstruction caused by 2 fibrous bands was found in a steer. Distended small intestine was palpable per rectum. Each band was located bilaterally between the caudal abdominal wall and the pelvic inlet. The compromised portion of intestine was considered nonviable and the animal was euthanized. PMID:16579042

  3. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut.

    PubMed

    Nerurkar, Nandan L; Mahadevan, L; Tabin, Clifford J

    2017-02-28

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth-driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution.

  4. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut

    PubMed Central

    Nerurkar, Nandan L.; Mahadevan, L.; Tabin, Clifford J.

    2017-01-01

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth–driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution. PMID:28193855

  5. Oral curcumin has anti-arthritic efficacy through somatostatin generation via cAMP/PKA and Ca(2+)/CaMKII signaling pathways in the small intestine.

    PubMed

    Yang, Yan; Wu, Xin; Wei, Zhifeng; Dou, Yannong; Zhao, Di; Wang, Ting; Bian, Difei; Tong, Bei; Xia, Ying; Xia, Yufeng; Dai, Yue

    2015-01-01

    Curcumin (CUR) has been proven to be clinically effective in rheumatoid arthritis (RA) therapy, but its low oral bioavailability eclipses existent evidence that attempts to explain the underlying mechanism. Small intestine, the only organ exposed to a relatively high concentration of CUR, is the main site that generates gut hormones which are involved in the pathogenesis of RA. This study aims at addressing the hypothesis that one or more gut hormones serve as an intermediary agent for the anti-arthritic action of CUR. The protein and mRNA levels of gut hormones in CUR-treated rats were analyzed by ELISA and RT-PCR. Somatostatin (SOM) depletor and receptor antagonist were used to verify the key role of SOM in CUR-mediated anti-arthritic effect. The mechanisms underlying CUR-induced upregulation of SOM levels were explored by cellular experiments and immunohistochemical staining. The data showed that oral administration of CUR (100 mg/kg) for consecutive two weeks in adjuvant-induced arthritis rats still exhibited an extremely low plasma exposure despite of a dramatic amelioration of arthritis symptoms. When injected intraperitoneally, CUR lost anti-arthritic effect in rats, suggesting that it functions in an intestine-dependent manner. CUR elevated SOM levels in intestines and sera, and SOM depletor and non-selective SOM receptor antagonist could abolish the inhibitory effect of CUR on arthritis. Immunohistochemical assay demonstrated that CUR markedly increased the number of SOM-positive cells in both duodenum and jejunum. In vitro experiments demonstrated that CUR could augment SOM secretion from intestinal endocrine cells, and this effect could be hampered by either MEK1/2 or Ca(2+)/calmodulin-dependent kinase II (CAMKII) inhibitor. In summary, oral administration of CUR exhibits anti-arthritic effect through augmenting SOM secretion from the endocrine cells in small intestines via cAMP/PKA and Ca(2+)/CaMKII signaling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine

    PubMed Central

    Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F

    2012-01-01

    Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. PMID:22385244

  7. Spatial dynamics of the bacterial community structure in the gastrointestinal tract of red kangaroo (Macropus rufus).

    PubMed

    Li, Meirong; Jin, Wei; Li, Yuanfei; Zhao, Lingling; Cheng, Yanfen; Zhu, Weiyun

    2016-06-01

    The quantification and community of bacteria in the gastrointestinal (GI) tract (stomach, jejunum, ileum, cecum, colon and rectum) of red kangaroos (Macropus rufus) were examined by using real-time PCR and paired-end Illumina sequencing. The quantification of bacteria showed that the number of bacteria in jejunum and rectum was significantly lower than that in colon and cecum (P < 0.05). A total of 1,872,590 sequences was remained after quality-filtering and 50,948 OTUs were identified at the 97 % similarity level. The dominant phyla in the GI tract of red kangaroos were identified as Actinobacteria, Bacteroidetes and Firmicutes. At the level of genus, the samples from different parts of GI tract clustered into three groups: stomach, small intestine (jejunum and ileum) and large intestine (cecum and rectum). Prevotella (29.81 %) was the most dominant genus in the stomach and significantly (P < 0.05) higher than that in other parts of GI tract. In the small intestine, Bifidobacterium (33.04, 12.14 %) and Streptococcus (22.90, 19.16 %) were dominant genera. Unclassified Ruminococcaceae was the most dominant family in large intestine and the total relative abundance of unclassified bacteria was above 50 %. In identified genera, Dorea was the most important variable to discriminate large intestine and it was significantly higher in cecum than in stomach, small intestine and colon (P < 0.05). Bifidobacterium (21.89 %) was the only dominant genus in colon. Future work on culture in vitro and genome sequencing of those unidentified bacteria might give us insight into the function of these microorganisms in the GI tract. In addition, the comparison of the bacterial community in the foregut of kangaroos and other herbivores and the rumen might give us insight into the mechanism of fiber degradation and help us exploit approaches to improve the feed efficiency and subsequently, reduce the methane emission from herbivores.

  8. Synbiotic promotion of epithelial proliferation by orally ingested encapsulated Bifidobacterium breve and raffinose in the small intestine of rats.

    PubMed

    Ishizuka, Satoshi; Iwama, Ami; Dinoto, Achmad; Suksomcheep, Akarat; Maeta, Kohshi; Kasai, Takanori; Hara, Hiroshi; Yokota, Atsushi

    2009-05-01

    We evaluated the effects of Bifidobacterium breve JCM1192(T )and/or raffinose on epithelial proliferation in the rat small and large intestines. WKAH/Hkm Slc rats (4 wk old) were fed a control diet, a diet supplemented with either encapsulated B. breve (30 g/kg diet, 1.5 x 10(7) colony-forming unit/g capsule) or raffinose (30 g/kg diet), or a diet supplemented with both encapsulated B. breve and raffinose, for 3 wk. Epithelial proliferation in the small intestine, as assessed by bromodeoxyuridine immunohistochemistry, was increased only in the B. breve plus raffinose-fed group. We determined the number of bifidobacteria in cecal contents using fluorescence in situ hybridization and confirmed the presence of ingested B. breve only in the B. breve plus raffinose-fed group. This suggests that the ingested B. breve cells used raffinose and were activated in the small intestine, where they subsequently influenced epithelial proliferation. In conclusion, we found a prominent synbiotic effect of encapsulated B. breve in combination with raffinose on epithelial proliferation in rat small intestine but not in large intestine. To our knowledge, this is the first report of a synbiotic that affects epithelial proliferation.

  9. Intestinal Cancer

    MedlinePlus

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  10. [Postconditioning -- effective method against distant organ dysfunction?].

    PubMed

    Onody, Péter; Rosero, Olivér; Kovács, Tibor; Garbaisz, Dávid; Hegedüs, Viktor; Lotz, Gábor; Harsányi, László; Szijártó, Attila

    2012-08-01

    The ischemia-reperfusion injury of the small intestine is a condition of high mortality, which occurs following superior mesenteric artery (SMA) embolization or circulatory redistribution. The aim of the study was to evaluate the local and systemic effects of postconditioning in a rat model of small intestine ischemia-reperfusion. Male Wistar rats underwent 60 min ischemia by the clamping of the SMA, followed by 6 hrs of reperfusion. The animals (n = 30) were randomized into three groups: sham-operated, control-, and postconditioned. Postconditioning was performed at the very onset of reperfusion by 6 alternating cycles of 10-10 seconds reperfusion/reocclusion, for a total of 2 min. At the end of the reperfusion blood and tissue (small intestine, lungs, kidney, liver) samples were taken for histological examination. The antioxidant status of small intestine was measured from intestinal homogenates. Histologic results revealed increased damage in control-group lungs, kidney, liver and small intestine in comparison with the postconditioned group. The injury was supported by significantly higher wet/dry weight ratio (p = 0.026), and serum levels of creatinine (p = 0.013), ASAT (p = 0.038), LDH (p = 0.028) and CK (p = 0.038) in the control group. The postconditioned group showed lower serum IL-6 levels (420 pg/ml vs. 188 pg/ml), as well as significantly higher mucosal antioxidant concentration. Postconditioning was able to decrease not only local, but the systemic damage intensity also, after a small intestinal ischemic-reperfusion episode.

  11. Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi.

    PubMed

    Furuya, Sonoko; Furuya, Kishio; Shigemoto, Ryuichi; Sokabe, Masahiro

    2010-11-01

    Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca(2+) measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca(2+) concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.

  12. Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings.

    PubMed

    Ver Donck, L; Lammers, W J E P; Moreaux, B; Smets, D; Voeten, J; Vekemans, J; Schuurkes, J A J; Coulie, B

    2006-03-01

    Myoelectric recordings from the intestines in conscious animals have been limited to a few electrode sites with relatively large inter-electrode distances. The aim of this project was to increase the number of recording sites to allow high-resolution reconstruction of the propagation of myoelectrical signals. Sets of six unipolar electrodes, positioned in a 3x2 array, were constructed. A silver ring close to each set served as the reference electrodes. Inter-electrode distances varied from 4 to 8 mm. Electrode sets, to a maximum of 4, were implanted in various configurations allowing recording from 24 sites simultaneously. Four sets of 6 electrodes each were implanted successfully in 11 female Beagles. Implantation sites evaluated were the upper small intestine (n=10), the lower small intestine (n=4) and the stomach (n=3). The implants remained functional for 7.2 months (median; range 1.4-27.3 months). Recorded signals showed slow waves at regular intervals and spike potentials. In addition, when the sets were positioned close together, it was possible to re-construct the propagation of individual slow waves, to determine their direction of propagation and to calculate their propagation velocity. No signs or symptoms of interference with normal GI-function were observed in the tested animals. With this approach, it is possible to implant 24 extracellular electrodes on the serosal surface of the intestines without interfering with its normal physiology. This approach makes it possible to study the electrical activities of the GI system at high resolution in vivo in the conscious animal.

  13. Small intestinal volvulus caused by loose surgical staples.

    PubMed

    Page, Matthew P; Kim, Heung Bae; Fishman, Steven J

    2009-09-01

    Small intestinal volvulus beyond infancy is rare and usually has an iatrogenic cause. The authors describe an adolescent boy with small bowel volvulus secondary to the presence of free intraperitoneal surgical staples after a laparoscopic appendectomy.

  14. Intestinal lymphangiectasia in adults.

    PubMed

    Freeman, Hugh James; Nimmo, Michael

    2011-02-15

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and "secondary" changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple's disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn's disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial diagnosis of intestinal lymphangiectasia. Treatment has been historically defined to include a low fat diet with medium-chain triglyceride supplementation that leads to portal venous rather than lacteal uptake. A number of other pharmacological measures have been reported or proposed but these are largely anecdotal. Finally, rare reports of localized surgical resection of involved areas of small intestine have been described but follow-up in these cases is often limited.

  15. Intestinal lymphangiectasia in adults

    PubMed Central

    Freeman, Hugh James; Nimmo, Michael

    2011-01-01

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and “secondary” changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple’s disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn’s disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial diagnosis of intestinal lymphangiectasia. Treatment has been historically defined to include a low fat diet with medium-chain triglyceride supplementation that leads to portal venous rather than lacteal uptake. A number of other pharmacological measures have been reported or proposed but these are largely anecdotal. Finally, rare reports of localized surgical resection of involved areas of small intestine have been described but follow-up in these cases is often limited. PMID:21364842

  16. Effect of Yifukang oral liquid on gastric emptying and intestinal peristalsis in mice

    NASA Astrophysics Data System (ADS)

    Sun, Jianhua; Li, Jun; Li, Xianyu; Hao, Shaojun; Guo, Junyi; Ma, Zhenzhen; Zhang, Zhengchen

    2018-04-01

    To observe the effect of Yifukang oral liquid on gastric emptying and intestinal peristalsis in mice. Methods: 60 mice were randomly divided into 5 groups. The suspension of Baohe Pill and the same volume of normal saline group were given once a day for 7 days. After the last administration for 30 minutes, 0.25 ml of 0.04% phenolic red solution was administered by stomach. After 20 minutes, the animals were killed, the stomach was removed, the gastric contents were cleaned, and the lotion 5ml was centrifuged. The absorbance of the supernatant was measured by TU-1901 ultraviolet spectrophotometer at the wavelength of 560nm. The residual rate of gastric phenolic red was calculated. Rate was used to evaluate gastric emptying velocity.60 mice were randomly divided into five groups: group 5, large, medium, small Yifukang oral liquid dosage group, pill suspension and the same volume normal saline. After 20 min after the last dose of carbon powder suspension, the mice were sacrificed, the abdominal cavity was cut open, the intestine of the ileocecum was cut off, the intestinal mesentery was separated, the total length of the small intestine (cm) was measured, and the distance (cm) in the small intestine was measured, and the end-of-carbon propulsion rate was calculated. Compared with the blank group, small dose of Yi Fu Kang group and Baohe Pill group could significantly promote the ability of gastric emptying in mice. Compared with the blank group, small dose group and rehabilitation benefits Baohewan group can significantly promote the gastric emptying ability of mice (P<0.01), high dose group had no obvious benefit rehabilitation ability to promote gastric emptying in mice. Yi Fu Kang oral liquid group could significantly increase the percentage of small intestine carbon powder(P<0.01), Large, medium-dose Yifukang oral liquid and Baofuwan group could significantly increase the percentage of small intestinal carbon in mice (P<0.05). Yi Fukang oral liquid has the effect of promoting gastric emptying and small intestinal peristalsis.

  17. [Prevention of side effects and complications after operation for partial ileal bypass].

    PubMed

    Mirchuk, K K; Sedletskiĭ, Iu I

    2014-01-01

    Side effects and complications of the application of partial ileal bypass used for dislipidemia were analyzed in 162 patients with atherosclerosis. It was shown, that the partial ileal bypass operation could lead to the development of series of undesirable side effects such as diarrhea, hypovitaminosis B12, off-state intestine enteritis. The application of modification of partial ileal bypass such as formation of ileo-ileoanastomosis 5-6 cm long near ileocecal valve with the maintenance of its functions disposed the diarrhea and minimized the risk of the development of hypovitaminosis B12 after operation. It is possible to prevent the development of enteritis of off-state loop of the small intestine by using microanastomosis between off-state and functioning iliac intestine. The partial ileal bypass operation didn't influence on body weight, wouldn't increase the risk of stone formation in the gallbladder and kidneys. The risk of the development of hypovitaminosis B12 is minimal after operation.

  18. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis

    PubMed Central

    Tian, Hua; Biehs, Brian; Chiu, Cecilia; Siebel, Chris; Wu, Yan; Costa, Mike; de Sauvage, Frederic J.; Klein, Ophir D.

    2015-01-01

    Summary Proper organ homeostasis requires tight control of adult stem cells and differentiation through integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a de-repression of the Wnt signaling pathway, leading to mis-expression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. PMID:25818302

  19. Intestinal lymphosarcoma in captive African hedgehogs.

    PubMed

    Raymond, J T; Clarke, K A; Schafer, K A

    1998-10-01

    Two captive adult female African hedgehogs (Atelerix albiventris) had inappetance and bloody diarrhea for several days prior to death. Both hedgehogs had ulceration of the small intestine and hepatic lipidosis. Histopathology revealed small intestinal lymphosarcoma with metastasis to the liver. Extracellular particles that had characteristics of retroviruses were observed associated with the surface of some neoplastic lymphoid cells by transmission electron microscopy. These are the first reported cases of intestinal lymphosarcoma in African hedgehogs.

  20. Paracetamol absorption from different sites in the human small intestine.

    PubMed Central

    Gramatté, T; Richter, K

    1994-01-01

    Site-specificity in the small intestinal absorption of paracetamol was investigated using a segmental intestinal steady state perfusion technique (triple-lumen tubing system) combined with simultaneous measurements of serum drug concentrations. Dissolved paracetamol was perfused over 160 min into different parts of the small intestine (65-210 cm beyond the teeth). Each of the four healthy subjects was studied twice with a proximal and a more distal site of perfusion. Serum drug concentrations were similar after proximal and distal perfusions. Mean drug absorption rates calculated from intestinal aspirate concentrations were similar in both parts of the intestine--proximal: 869 micrograms 30 cm-1 min-1 (95% CI: 659-1079) vs distal: 941 micrograms 30 cm-1 min-1 (794-1088). The absorption rate was related directly to the amount of paracetamol perfused per unit time as well as to the rate of transmucosal water fluxes. PMID:7917782

  1. Rare small intestinal volvulus from entrapment in hepato-diaphragmatic adhesions in a 45-year-old lady

    PubMed Central

    Olaoye, Iyiade Olatunde; Adesina, Micheal Dapo

    2016-01-01

    Small intestinal volvulus is rare in adults and rarely caused by string adhesions between the liver and the diaphragm. Similar adhesions were described in Fitz-Hugh-Curtis syndrome. We report a 45-year-old lady with small intestinal volvulus from entrapment of a loop in string adhesions between the liver and the diaphragm. Her plain radiographs showed a significant shadow of the trapped loop. PMID:28003317

  2. Small Intestinal Infections.

    PubMed

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections.

  3. The impact of high-fat diet on metabolism and immune defense in small intestine mucosa.

    PubMed

    Wiśniewski, Jacek R; Friedrich, Alexandra; Keller, Thorsten; Mann, Matthias; Koepsell, Hermann

    2015-01-02

    Improved procedures for sample preparation and proteomic data analysis allowed us to identify 7700 different proteins in mouse small intestinal mucosa and calculate the concentrations of >5000 proteins. We compared protein concentrations of small intestinal mucosa from mice that were fed for two months with normal diet (ND) containing 34.4% carbohydrates, 19.6% protein, and 3.3% fat or high-fat diet (HFD) containing 25.3% carbohydrates, 24.1% protein, and 34.6% fat. Eleven percent of the quantified proteins were significantly different between ND and HFD. After HFD, we observed an elevation of proteins involved in protein synthesis, protein N-glycosylation, and vesicle trafficking. Proteins engaged in fatty acid absorption, fatty acid β-oxidation, and steroid metabolism were also increased. Enzymes of glycolysis and pentose phosphate cycle were decreased, whereas proteins of the respiratory chain and of ATP synthase were increased. The protein concentrations of various nutrient transporters located in the enterocyte plasma membrane including the Na(+)-d-glucose cotransporter SGLT1, the passive glucose transporter GLUT2, and the H(+)-peptide cotransporter PEPT1 were decreased. The concentration of the Na(+),K(+)-ATPase, which turned out to be the most strongly expressed enterocyte transporter, was also decreased. HFD also induced concentration changes of drug transporters and of enzymes involved in drug metabolism, which suggests effects of HFD on pharmacokinetics and toxicities. Finally, we observed down-regulation of antibody subunits and of components of the major histocompatibility complex II that may reflect impaired immune defense and immune tolerance in HFD. Our work shows dramatic changes in functional proteins of small intestine mucosa upon excessive fat consumption.

  4. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology.

    PubMed

    Foulke-Abel, Jennifer; In, Julie; Yin, Jianyi; Zachos, Nicholas C; Kovbasnjuk, Olga; Estes, Mary K; de Jonge, Hugo; Donowitz, Mark

    2016-03-01

    Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. The small intestinal epithelia of beef steers differentially express sugar transporter messenger ribonucleic acid in response to abomasal versus ruminal infusion of starch hydrolysate.

    PubMed

    Liao, S F; Harmon, D L; Vanzant, E S; McLeod, K R; Boling, J A; Matthews, J C

    2010-01-01

    In mammals, the absorption of monosaccharides from small intestinal lumen involves at least 3 sugar transporters (SugT): sodium-dependent glucose transporter 1 (SGLT1; gene SLC5A1) transports glucose and galactose, whereas glucose transporter (GLUT) 5 (GLUT5; gene SLC2A5) transports fructose, across the apical membrane of enterocytes. In contrast, GLUT2 (gene SLC2A2) transports all of these sugars across basolateral and apical membranes. To compare the distribution patterns and sensitivity with nutritional regulation of these 3 SugT mRNA in beef cattle small intestinal tissue, 18 ruminally and abomasally catheterized Angus steers (BW approximately 260 kg) were assigned to water (control), ruminal cornstarch (partially hydrolyzed by alpha-amylase; SH), or abomasal SH infusion treatments (n = 6) and fed an alfalfa-cube-based diet at 1.3 x NE(m) requirement. The SH infusions amounted to 20% of ME intake. After 14- or 16-d of infusion, steers were killed; duodenal, jejunal, and ileal epithelia harvested; and total RNA extracted. The relative amount of SugT mRNA in epithelia was determined using real-time reverse transcription-PCR quantification methods. Basal expression of GLUT2 and SGLT1 mRNA was greater (P < 0.09) by jejunal than by duodenal or ileal epithelia, whereas basal content of GLUT5 mRNA was greater (P < or = 0.02) by jejunal and duodenal than by ileal epithelia. The content of GLUT5 mRNA in small intestinal epithelia was not affected (P > or = 0.16) by either SH infusion treatment. In contrast, GLUT2 and SGLT1 mRNA content in the ileal epithelium was increased (P < or = 0.05) by 6.5- and 1.3-fold, respectively, after abomasal SH infusion. Duodenal SGLT1 mRNA content also was increased (P = 0.07) by 64% after ruminal SH infusion. These results demonstrate that the ileum of beef cattle small intestine adapts to an increased luminal supply of glucose by increasing SGLT1 and GLUT2 mRNA content, whereas increased ruminal SH supply results in duodenal upregulation of SGLT1 mRNA content. These adaptive responses of GLUT2 and SGLT1 mRNA to abomasal or ruminal SH infusion suggest that beef cattle can adapt to increase their carbohydrate assimilation through small intestinal epithelia, assuming that altered SugT mRNA contents reflect the altered transport functional capacities.

  6. "Snowmelt Sign" and "Corkscrew Microvessels" Predicting Epithelium Regeneration After Acute Rejection of Small-Bowel Transplantation: A Case Report.

    PubMed

    Chung, C-S; Lee, T-H; Chiu, C-T; Chen, Y

    2017-12-01

    Intestinal failure characterized by inadequate maintenance of nutrition via normal intestinal function comprises a group of disorders with many different causes. If parenteral nutrition dependency develops, which is associated with higher mortality and complications, it is considered for intestine transplantation. However, the graft failure rate is not low, and acute cellular rejection is one of the most important reasons for graft failure. As a result, early identification of rejection and timely modification of anti-rejection medications have been considered to be associated with better graft and patient survival rates. The diagnostic gold standard for rejection is mainly based on histology, but hours of delay by pathology may occur. Some researchers investigated the association of endoscopic images with graft rejection to provide timely diagnosis. In this study, we present the first case report with characteristic features under magnifying endoscopy with a narrow-band imaging system to predict epithelial regeneration and improvement of graft rejection in a patient with small-bowel transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A mechanistic model of small intestinal starch digestion and glucose uptake in the cow.

    PubMed

    Mills, J A N; France, J; Ellis, J L; Crompton, L A; Bannink, A; Hanigan, M D; Dijkstra, J

    2017-06-01

    The high contribution of postruminal starch digestion (up to 50%) to total-tract starch digestion on energy-dense, starch-rich diets demands that limitations to small intestinal starch digestion be identified. A mechanistic model of the small intestine was described and evaluated with regard to its ability to simulate observations from abomasal carbohydrate infusions in the dairy cow. The 7 state variables represent starch, oligosaccharide, glucose, and pancreatic amylase in the intestinal lumen, oligosaccharide and glucose in the unstirred water layer at the intestinal wall, and intracellular glucose of the enterocyte. Enzymatic hydrolysis of starch was modeled as a 2-stage process involving the activity of pancreatic amylase in the lumen and of oligosaccharidase at the brush border of the enterocyte confined within the unstirred water layer. The Na + -dependent glucose transport into the enterocyte was represented along with a facilitative glucose transporter 2 transport system on the basolateral membrane. The small intestine is subdivided into 3 main sections, representing the duodenum, jejunum, and ileum for parameterization. Further subsections are defined between which continual digesta flow is represented. The model predicted nonstructural carbohydrate disappearance in the small intestine for cattle unadapted to duodenal infusion with a coefficient of determination of 0.92 and a root mean square prediction error of 25.4%. Simulation of glucose disappearance for mature Holstein heifers adapted to various levels of duodenal glucose infusion yielded a coefficient of determination of 0.81 and a root mean square prediction error of 38.6%. Analysis of model behavior identified limitations to the efficiency of small intestinal starch digestion with high levels of duodenal starch flow. Limitations to individual processes, particularly starch digestion in the proximal section of the intestine, can create asynchrony between starch hydrolysis and glucose uptake capacity. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Apo AIV and Citrulline Plasma Concentrations in Short Bowel Syndrome Patients: The Influence of Short Bowel Anatomy.

    PubMed

    López-Tejero, M Dolores; Virgili, Núria; Targarona, Jordi; Ruiz, Jorge; García, Natalia; Oró, Denise; García-Villoria, Judit; Creus, Gloria; Pita, Ana M

    Parenteral nutrition (PN) dependence in short bowel syndrome (SBS) patients is linked to the functionality of the remnant small bowel (RSB). Patients may wean off PN following a period of intestinal adaptation that restores this functionality. Currently, plasma citrulline is the standard biomarker for monitoring intestinal functionality and adaptation. However, available studies reveal that the relationship the biomarker with the length and function of the RSB is arguable. Thus, having additional biomarkers would improve pointing out PN weaning. By measuring concomitant changes in citrulline and the novel biomarker apolipoprotein AIV (Apo AIV), as well as taking into account the anatomy of the RSB, this exploratory study aims to a better understanding of the intestinal adaptation process and characterization of the SBS patients under PN. Thirty four adult SBS patients were selected and assigned to adapted (aSBS) and non-adapted (nSBS) groups after reconstructive surgeries. Remaining jejunum and ileum lengths were recorded. The aSBS patients were either on an oral diet (ORAL group), those with intestinal insufficiency, or on oral and home parenteral nutrition (HPN group), those with chronic intestinal failure. Apo AIV and citrulline were analyzed in plasma samples after overnight fasting. An exploratory ROC analysis using citrulline as gold standard was performed. Biomarkers, Apo AIV and citrulline showed a significant correlation with RSBL in aSBS patients. In jejuno-ileocolic patients, only Apo AIV correlated with RSBL (rb = 0.54) and with ileum length (rb = 0.84). In patients without ileum neither biomarker showed any correlation with RSBL. ROC analysis indicated the Apo AIV cut-off value to be 4.6 mg /100 mL for differentiating between the aSBS HPN and ORAL groups. Therefore, in addition to citrulline, Apo AIV can be set as a biomarker to monitor intestinal adaptation in SBS patients. As short bowel anatomy is shown to influence citrulline and Apo AIV plasma values, both biomarkers complement each other furnishing a new insight to manage PN dependence.

  9. Effects of enteral arginine supplementation on the structural intestinal adaptation in a rat model of short bowel syndrome.

    PubMed

    Sukhotnik, Igor; Lerner, Aaron; Sabo, Edmund; Krausz, Michael M; Siplovich, Leonardo; Coran, Arnold G; Mogilner, Jorge; Shiloni, Eitan

    2003-07-01

    The nitric oxide precursor L-arginine (ARG) has been shown to influence intestinal morphology and intestinal absorptive function. The purpose of the present study was to determine the effect of enteral ARG supplementation on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Thirty male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection, SBS rats underwent 75% small bowel resection, and SBS-ARG rats underwent bowel resection and were treated with ARG given in the drinking water (2%). Parameters of intestinal adaptation, enterocyte proliferation and enterocyte apoptosis were determined on day 14 following operation. We have demonstrated that SBS-ARG animals had a lower jejunal and ileal mucosal weight, jejunal mucosal DNA and protein, ileal mucosal protein, jejunal villus height, jejunal and ileal crypt depth, and enterocyte proliferation index and a greater enterocyte apoptosis compared to SBS untreated animals. We conclude that in a rat model of SBS enteral L-arginine inhibits structural intestinal adaptation. Possible mechanism for this effect may be decreased cell proliferation and increased cell apoptosis.

  10. Inflammatory responses in the muscle coat of stomach and small bowel in the postoperative ileus model of guinea pig.

    PubMed

    Choi, Hong Kyu; Lee, Young Ju; Lee, Young Ho; Park, Jong Pil; Min, Kevin; Park, Hyojin

    2013-11-01

    Small intestinal function returns first after surgery, and then the function of the stomach returns to normal after postoperative ileus (POI). The aim of this study was to investigate inflammatory responses in the muscle coat of stomach and small intestine in guinea pig POI model. The distance of charcoal migration from pylorus to the distal intestine was measured. Hematoxylin and eosin (H&E) and immunohistochemical stain for calprotectin were done from the histologic sections of stomach, jejunum and ileum obtained at 3 and 6 hour after operation. Data were compared between sham operation and POI groups. The distance of charcoal migration was significantly reduced in the 3 and 6 hour POI groups compared with sham operated groups (p<0.05). On H&E staining, the degree of inflammation was significantly higher in the stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). Calprotectin positive cells were significantly increased in the muscle coat of stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). There was strong association between the degree of inflammation and calprotectin positive cells in stomach. Postoperative ileus induced by cecal manipulation significantly increased the degree of inflammation and calprotectin positive cells in the muscle coat of stomach as a remote organ. The relevance of degree of inflammation and the recovery time of ileus should be pursued in the future research.

  11. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard.

    PubMed

    Kohl, Kevin D; Brun, Antonio; Magallanes, Melisa; Brinkerhoff, Joshua; Laspiur, Alejandro; Acosta, Juan Carlos; Bordenstein, Seth R; Caviedes-Vidal, Enrique

    2016-06-15

    While herbivory is a common feeding strategy in a number of vertebrate classes, less than 4% of squamate reptiles feed primarily on plant material. It has been hypothesized that physiological or microbial limitations may constrain the evolution of herbivory in lizards. Herbivorous lizards exhibit adaptations in digestive morphology and function that allow them to better assimilate plant material. However, it is unknown whether these traits are fixed or perhaps phenotypically flexible as a result of diet. Here, we maintained a naturally omnivorous lizard, Liolaemus ruibali, on a mixed diet of 50% insects and 50% plant material, or a plant-rich diet of 90% plant material. We compared parameters of digestive performance, gut morphology and function, and gut microbial community structure between the two groups. We found that lizards fed the plant-rich diet maintained nitrogen balance and exhibited low minimum nitrogen requirements. Additionally, lizards fed the plant-rich diet exhibited significantly longer small intestines and larger hindguts, demonstrating that gut morphology is phenotypically flexible. Lizards fed the plant-rich diet harbored small intestinal communities that were more diverse and enriched in Melainabacteria and Oscillospira compared with mixed diet-fed lizards. Additionally, the relative abundance of sulfate-reducing bacteria in the small intestine significantly correlated with whole-animal fiber digestibility. Thus, we suggest that physiological and microbial limitations do not sensu stricto constrain the evolution of herbivory in lizards. Rather, ecological context and fitness consequences may be more important in driving the evolution of this feeding strategy. © 2016. Published by The Company of Biologists Ltd.

  12. A Revised Model for Dosimetry in the Human Small Intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Poston; Nasir U. Bhuiyan; R. Alex Redd

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  13. Effect of subcutaneous insulin on intestinal adaptation in a rat model of short bowel syndrome.

    PubMed

    Sukhotnik, Igor; Mogilner, Jorge; Shamir, Raanan; Shehadeh, Naim; Bejar, Jacob; Hirsh, Mark; Coran, Arnold G

    2005-03-01

    Insulin has been shown to influence intestinal structure and absorptive function. The purpose of the present study was to evaluate the effects of parenteral insulin on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Male Sprague-Dawley rats were divided into three experimental groups: sham rats underwent bowel transection and reanastomosis, SBS rats underwent a 75% small bowel resection, and SBS-INS rats underwent a 75% small bowel resection and were treated with insulin given subcutaneously at a dose of 1 U/kg, twice daily, from day 3 through day 14. Parameters of intestinal adaptation, enterocyte proliferation, and enterocyte apoptosis were determined on day 15 following operation. SBS rats demonstrated a significant increase in jejunal and ileal bowel and mucosal weight, villus height and crypt depth, and cell proliferation index compared with the sham group. SBS-INS animals demonstrated higher jejunal and ileal bowel and mucosal weights, jejunal and ileal mucosal DNA and protein, and jejunal and ileal crypt depth compared with SBS animals. SBS-INS rats also had a greater cell proliferation index in both jejunum and ileum and a trend toward a decrease in enterocyte apoptotic index in jejunum and ileum compared with the SBS untreated group. In conclusion, parenteral insulin stimulates structural intestinal adaptation in a rat model of SBS. Increased cell proliferation is the main mechanism responsible for increased cell mass.

  14. Gastric heterotopia with extensive involvement of the small intestine associated with congenital short bowel syndrome and intestinal malrotation.

    PubMed

    Shehata, Bahig; Chang, Tiffany; Greene, Courtney; Steelman, Charlotte; McHugh, Mary; Zarroug, Abdalla; Ricketts, Richard

    2011-01-01

    We present a case of extensive gastric heterotopia involving the small intestine associated with congenital short bowel syndrome and malrotation. The infant showed a normal mesenteric artery, without signs of "apple peel" deformity. Gastric heterotopia extended from the duodenum to the mid-ileum involving the short bowel. Gastric mucosa heterotopia may involve any segment of the gastrointestinal tract. It can be associated with pancreatic heterotopia and Meckel diverticulum. However, our case showed involvement of two-thirds of the small intestine without pancreatic heterotopia. To our knowledge, this is the first report of gastric heterotopia with congenital short gut syndrome and malrotation.

  15. Small bowel dilation in children with short bowel syndrome is associated with mucosal damage, bowel-derived bloodstream infections, and hepatic injury.

    PubMed

    Hukkinen, Maria; Mutanen, Annika; Pakarinen, Mikko P

    2017-09-01

    Liver disease occurs frequently in short bowel syndrome. Whether small bowel dilation in short bowel syndrome could influence the risk of liver injury through increased bacterial translocation remains unknown. Our aim was to analyze associations between small bowel dilation, mucosal damage, bloodstream infections, and liver injury in short bowel syndrome patients. Among short bowel syndrome children (n = 50), maximal small bowel diameter was measured in contrast series and expressed as the ratio to the height of the fifth lumbar vertebra (small bowel diameter ratio), and correlated retrospectively to fecal calprotectin and plasma citrulline-respective markers of mucosal inflammation and mass-bloodstream infections, liver biochemistry, and liver histology. Patients with pathologic small bowel diameter ratio >2.17 had increased fecal calprotectin and decreased citrulline (P < .04 each). Of 33 bloodstream infections observed during treatment with parenteral nutrition, 16 were caused by intestinal bacteria, cultured 15 times more frequently when small bowel diameter ratio was >2.17 (P < .001). Intestinal bloodstream infections were predicted by small bowel diameter ratio (odds ratio 1.88, P = .017), and their frequency decreased after operative tapering procedures (P = .041). Plasma bilirubin concentration, gamma-glutamyl transferase activity, and histologic grade of cholestasis correlated with small bowel diameter ratio (0.356-0.534, P < .014 each), and were greater in the presence of intestinal bloodstream infections (P < .001 for all). Bloodstream infections associated with portal inflammation, cholestasis, and fibrosis grades (P < .031 for each). In linear regression, histologic cholestasis was predicted by intestinal bloodstream infections, small bowel diameter ratio, and parenteral nutrition (β = 0.36-1.29; P < .014 each), while portal inflammation by intestinal bloodstream infections only (β = 0.62; P = .033). In children with short bowel syndrome, small bowel dilation correlates with mucosal damage, bloodstream infections of intestinal origin, and cholestatic liver injury. In addition to parenteral nutrition, small bowel dilation and intestinal bloodstream infections contribute to development of short bowel syndrome-associated liver disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Population-based study of esophageal and small intestinal atresia/stenosis.

    PubMed

    Takahashi, Daijiro; Hiroma, Takehiko; Takamizawa, Shigeru; Nakamura, Tomohiko

    2014-12-01

    The aim of this study was to describe the prevalence of esophageal atresia/stenosis and small intestinal atresia/stenosis in Nagano, Japan, together with associated anomalies, prenatal diagnosis and survival. A population-based cohort study of the prevalence of esophageal atresia/stenosis and small intestinal atresia/stenosis was conducted in Nagano in January 1993-December 2011. The Mann-Whitney test, χ(2) test and Kruskal-Wallis test were used to compare variables. P < 0.05 was considered statistically significant. In total, 74 cases of esophageal atresia/stenosis and 87 cases of small intestinal atresia/stenosis (31 duodenal, 56 jejuno-ileal) were identified. Prevalences were 1.97 for esophageal atresia/stenosis and 2.23 for small intestinal atresia/stenosis (0.83 for duodenal atresia/stenosis and 1.49 for jejuno-ileal atresia/stenosis) per 10,000 births, respectively. The prevalence of esophageal atresia/stenosis increased significantly from 1993-2001 to 2002-2011 (relative risk [RR], 1.6), as did the prevalences of duodenal atresia/stenosis (RR, 2.2) and jejuno-ileal atresia/stenosis (RR, 3.1). Chromosomal anomalies, particularly trisomy 21, were seen significantly more often in association with duodenal atresia/stenosis (55%) than with esophageal atresia/stenosis (28%, P < 0.01) or jejuno-ileal atresia/stenosis (2%, P < 0.01). The proportion of patients associated with prenatally diagnosed chromosomal anomaly was higher compared to postnatal diagnosis (P < 0.01) in the esophageal atresia/stenosis group. The prevalence of esophageal and small intestinal atresia/stenosis increased significantly from 1993-2001 to 2002-2011. Prenatally diagnosed esophageal atresia/stenosis is associated with multiple anomalies, particularly chromosomal anomalies, compared to other small intestine atresia/stenosis. © 2014 Japan Pediatric Society.

  17. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation

    PubMed Central

    Kechele, Daniel O.; Blue, R. Eric; Zwarycz, Bailey; Espenschied, Scott T.; Mah, Amanda T.; Siegel, Marni B.; Perou, Charles M.; Ding, Shengli; Magness, Scott T.; Lund, P. Kay

    2017-01-01

    Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling–induced proliferation, particularly during regeneration and adenoma formation. PMID:28094771

  18. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells

    PubMed Central

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R.; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A.; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B.; Flavell, Richard A.

    2018-01-01

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide1. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling2–5, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens. PMID:28636595

  19. Effect of dietary zinc on morphological characteristics and apoptosis related gene expression in the small intestine of Bama miniature pigs.

    PubMed

    Zhou, Xin; Li, Yansen; Li, Zhaojian; Cao, Yun; Wang, Fei; Li, ChunMei

    2017-04-01

    To investigate the effects of dietary zinc (Zn) on small intestinal mucosal epithelium, 6-month-old male Bama miniature pigs were randomly allocated into three groups and treated with three levels of Zn (Control, T1, and T2 diet supplemented with 0, 50, and 1500mg/kg Zn, respectively, as zinc sulfate) for 38days. The samples of small intestine tissues, serum, and feces were collected. The results showed that Zn concentrations of small intestine in the T2 group were higher than those in the control and T1 groups (p<0.05). In the T2 group, the pharmacological dose of dietary Zn treatment caused marked damage to the small intestinal epithelium. The expression of Bax, cleaved caspase-3, and caspase-8 were increased in the duodenum and the jejunum of the T2 group (p<0.05). The mRNA transcript levels of BAX, CYCS and CASP3 genes were upregulated in the duodenum and the jejunum of the T2 group. We concluded that a diet with a pharmacological dose of Zn increased the accumulation of Zn and the expression of Bax, cleaved caspase-3, and caspase-8, which might activate the apoptosis and lead to the marked injury of porcine small intestinal epithelium. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Effects of vasoactive intestinal peptide and pancreatic polypeptide in rabbit intestine.

    PubMed Central

    Camilleri, M; Cooper, B T; Adrian, T E; Bloom, S R; Chadwick, V S

    1981-01-01

    The effects of porcine vasoactive intestinal peptide (VIP) and bovine pancreatic polypeptide (PP) on jejunal, ileal, and colonic fluid transport were studied in the rabbit. VIP produced secretion in the small intestine (jejunum greater than ileum) but did not affect absorption in the colon. PP had no secretory effects in jejunum, ileum, or colon. The small intestinal secretion induced by VIP was not associated with raised cAMP concentrations in the mucosa; this suggests that the secretory effects of VIP in vivo are mediated by a mechanism other than stimulation of adenylate cyclase. PMID:6257593

  1. Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes

    PubMed Central

    Kurokawa, Ken; Itoh, Takehiko; Kuwahara, Tomomi; Oshima, Kenshiro; Toh, Hidehiro; Toyoda, Atsushi; Takami, Hideto; Morita, Hidetoshi; Sharma, Vineet K.; Srivastava, Tulika P.; Taylor, Todd D.; Noguchi, Hideki; Mori, Hiroshi; Ogura, Yoshitoshi; Ehrlich, Dusko S.; Itoh, Kikuji; Takagi, Toshihisa; Sakaki, Yoshiyuki; Hayashi, Tetsuya; Hattori, Masahira

    2007-01-01

    Numerous microbes inhabit the human intestine, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects human physiology. To identify the genomic features common to all human gut microbiomes as well as those variable among them, we performed a large-scale comparative metagenomic analysis of fecal samples from 13 healthy individuals of various ages, including unweaned infants. We found that, while the gut microbiota from unweaned infants were simple and showed a high inter-individual variation in taxonomic and gene composition, those from adults and weaned children were more complex but showed a high functional uniformity regardless of age or sex. In searching for the genes over-represented in gut microbiomes, we identified 237 gene families commonly enriched in adult-type and 136 families in infant-type microbiomes, with a small overlap. An analysis of their predicted functions revealed various strategies employed by each type of microbiota to adapt to its intestinal environment, suggesting that these gene sets encode the core functions of adult and infant-type gut microbiota. By analysing the orphan genes, 647 new gene families were identified to be exclusively present in human intestinal microbiomes. In addition, we discovered a conjugative transposon family explosively amplified in human gut microbiomes, which strongly suggests that the intestine is a ‘hot spot’ for horizontal gene transfer between microbes. PMID:17916580

  2. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horita, Nobukatsu; Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp; Hayashi, Ryohei

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualisedmore » in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.« less

  3. Protective effect of geranylgeranylacetone against loxoprofen sodium-induced small intestinal lesions in rats.

    PubMed

    Iwai, Tomohisa; Ichikawa, Takafumi; Kida, Mitsuhiro; Goso, Yukinobu; Kurihara, Makoto; Koizumi, Wasaburo; Ishihara, Kazuhiko

    2011-02-10

    Nonsteroidal anti-inflammatory drugs induce small intestinal ulcers but the preventive measures against it remain unknown. So we evaluated the effect of geranylgeranylacetone (GGA), a mucosal protectant, on both the mucus content and loxoprofen sodium-induced lesions in the rat small intestine. Normal male Wistar rats were given GGA (200 or 400mg/kg p.o.) and euthanized 3h later for measurement of mucin content and immunoreactivity. Other Wistar rats were given loxoprofen sodium (30mg/kg s.c.) and euthanized 24h later. GGA (30-400mg/kg p.o.) was administered twice: 30min before and 6h after loxoprofen sodium. The total mucin content of the small intestinal mucosa increased, especially the ratio of sialomucin, which increased approximately 20% more than the control level after a single dose of GGA. Loxoprofen sodium provoked linear ulcers along the mesenteric margin of the distal jejunum, accompanied by an increase in enterobacterial translocation. Treatment of the animals with GGA dose-dependently prevented the development of intestinal lesions, and bacterial translocation following loxoprofen sodium was also significantly decreased. GGA protects the small intestine against loxoprofen sodium-induced lesions, probably by inhibiting enterobacterial invasion of the mucosa as a result of the increase in the mucosal barrier. 2010 Elsevier B.V. All rights reserved.

  4. Effect of Glycine, Pyruvate, and Resveratrol on the Regeneration Process of Postischemic Intestinal Mucosa

    PubMed Central

    Brencher, Lisa; Petrat, Frank; Stych, Katrin; Hamburger, Tim

    2017-01-01

    Background Intestinal ischemia is often caused by a malperfusion of the upper mesenteric artery. Since the intestinal mucosa is one of the most rapidly proliferating organs in human body, this tissue can partly regenerate itself after the onset of ischemia and reperfusion (I/R). Therefore, we investigated whether glycine, sodium pyruvate, and resveratrol can either support or potentially harm regeneration when applied therapeutically after reperfusion injury. Methods I/R of the small intestine was initiated by occluding and reopening the upper mesenteric artery in rats. After 60 min of ischemia and 300 min of reperfusion, glycine, sodium pyruvate, or resveratrol was administered intravenously. Small intestine regeneration was analyzed regarding tissue damage, activity of saccharase, and Ki-67 positive cells. Additionally, systemic parameters and metabolic ones were obtained at selected periods. Results Resveratrol failed in improving the outcome after I/R, while glycine showed a partial beneficial effect. Sodium pyruvate ameliorated metabolic acidosis, diminished histopathologic tissue injury, and increased cell proliferation in the small intestine. Conclusion While glycine could improve in part regeneration but not proliferation, sodium pyruvate seems to be a possible therapeutic agent to facilitate proliferation and to support mucosal regeneration after I/R injury to the small intestine. PMID:29201896

  5. An Assessment of the Intestinal Lumen as a Site for Intervention in Reducing Body Burdens of Organochlorine Compounds

    PubMed Central

    Jandacek, Ronald J.; Genuis, Stephen J.

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine—thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants. PMID:23476122

  6. Mesenteric lipoblastoma presenting as a small intestinal volvulus in an infant: A case report and literature review.

    PubMed

    Nagano, Yuka; Uchida, Keiichi; Inoue, Mikihiro; Ide, Shozo; Shimura, Tadanobu; Hashimoto, Kiyoshi; Koike, Yuki; Kusunoki, Masato

    2017-01-01

    A 1-year-old boy with no underlying disorder presented with non-bilious vomiting since 4 days before admission. He was referred to our hospital and was diagnosed with a small bowel obstruction due to an intraabdominal tumor. Laparotomy revealed an intestinal volvulus with a soft and lobulated tumor arising from the mesentery. The resected tumor with a small part of the small bowel was diagnosed as lipoblastoma histologically. From a literature review, mesenteric lipoblastoma with an intestinal volvulus showed different characteristics such as greater frequency of vomiting and less frequency of abdominal mass as clinical symptoms, and the size of the tumor was smaller than that of the tumor without the intestinal volvulus. Copyright © 2013. Published by Elsevier Taiwan.

  7. Acute intestinal obstruction due to metastatic lung cancer—case report

    PubMed Central

    2017-01-01

    Abstract We present a case of male patient, who was referred to our department because of acute intestinal obstruction, which was the initial clinical symptom of primary lung cancer. The abdominal computed tomography (CT) prior to the emergency operation showed small intestinal obstruction and metastases to both adrenal glands. The patient underwent an emergency abdominal exploratory laparotomy, that confirmed small bowel obstruction and diffuse metastatic lesions along the entire small bowel length. During the operation we took a sample of one metastasis for pathological examination and we created an intestinal bypass to relieve small bowel obstruction. The pathologist suspected to primary lung cancer according to the immunohistochemical staining. The chest CT after the emergency operation showed a large primary tumor in the left upper pulmonary lobe. PMID:28458837

  8. Clinical outcomes of enteroscopy using the double-balloon method for strictures of the small intestine

    PubMed Central

    Sunada, Keijiro; Yamamoto, Hironori; Kita, Hiroto; Yano, Tomonori; Sato, Hiroyuki; Hayashi, Yoshikazu; Miyata, Tomohiko; Sekine, Yutaka; Kuno, Akiko; Iwamoto, Michiko; Ohnishi, Hirohide; Ido, Kenichi; Sugano, Kentaro

    2005-01-01

    AIM: To evaluate the clinical outcome of enteroscopy, using the double-balloon method, focusing on the involvement of neoplasms in strictures of the small intestine. METHODS: Enteroscopy, using the double-balloon method, was performed between December 1999 and December 2002 at Jichi Medical School Hospital, Japan and strictures of the small intestine were found in 17 out of 62 patients. These 17 consecutive patients were subjected to analysis. RESULTS: The double-balloon enteroscopy contributed to the diagnosis of small intestinal neoplasms found in 3 out of 17 patients by direct observation of the strictures as well as biopsy sampling. Surgical procedures were chosen for these three patients, while balloon dilation was chosen for the strictures in four patients diagnosed with inflammation without involvement of neoplasm. CONCLUSION: Double-balloon enteroscopy is a useful method for the diagnosis and treatment of strictures in the small bowel. PMID:15742422

  9. The effect of Daikenchuto on postoperative intestinal motility in patients with right-side colon cancer.

    PubMed

    Yamada, Takeshi; Matsumoto, Satoshi; Matsuda, Michihiro Koizumi Akihisa; Shinji, Seiichi; Yokoyama, Yasuyuki; Takahashi, Goro; Iwai, Takuma; Takeda, Kouki; Ohta, Keiichiro; Uchida, Eiji

    2017-07-01

    Daikenchuto (DKT) has a stimulant effect on intestinal motility and reportedly has a positive effect on postoperative intestinal motility in patients with sigmoid colon cancer. In this study, we investigated the effects of DKT in patients with right-side colon cancer. This retrospective study included 88 patients with right-side colon cancer. We orally administered 7.5 g of DKT in the DKT group and did not administer any DKT to patients in the no-DKT group. All patients ingested radiopaque markers 2 h before surgery, which were used to assess intestinal motility. The postoperative intestinal motility was radiologically assessed by counting the numbers of residual markers in the large and small intestines. The DKT and no-DKT groups showed no marked differences in the total number of residual markers or number of residual markers in the small intestine. However, in the elderly subgroup, the total number of residual markers in the DKT group was significantly less than in the no-DKT group. Although DKT had some small effect on the postoperative intestinal motility for most patients, it may have positive effects in elderly patients.

  10. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    PubMed

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  11. Effect of small bowel preparation with simethicone on capsule endoscopy.

    PubMed

    Fang, You-hong; Chen, Chun-xiao; Zhang, Bing-ling

    2009-01-01

    Capsule endoscopy is a novel non-invasive method for visualization of the entire small bowel. The diagnostic yield of capsule endoscopy depends on the quality of visualization of the small bowel mucosa and its complete passage through the small bowel. To date, there is no standardized protocol for bowel preparation before capsule endoscopy. The addition of simethicone in the bowel preparation for the purpose of reducing air bubbles in the intestinal lumen had only been studied by a few investigators. Sixty-four participants were randomly divided into two groups to receive a bowel preparation of polyethylene glycol (PEG) solution (Group 1) and both PEG solution and simethicone (Group 2). The PEG solution and simethicone were taken the night before and 20 min prior to capsule endoscopy, respectively. Frames taken in the small intestine were examined and scored for luminal bubbles by two professional capsule endoscopists. Gastric emptying time and small bowel transit time were also recorded. Simethicone significantly reduced luminal bubbles both in the proximal and distal small intestines. The mean time proportions with slight bubbles in the proximal and distal intestines in Group 2 were 97.1% and 99.0%, respectively, compared with 67.2% (P<0.001) and 68.8% (P<0.001) in Group 1. Simethicone had no effect on mean gastric emptying time, 32.08 min in Group 2 compared with 30.88 min in Group 1 (P=0.868), but it did increase mean small intestinal transit time from 227.28 to 281.84 min (P=0.003). Bowel preparation with both PEG and simethicone significantly reduced bubbles in the intestinal lumen and improved the visualization of the small bowel by capsule endoscopy without any side effects observed.

  12. Effect of small bowel preparation with simethicone on capsule endoscopy*

    PubMed Central

    Fang, You-hong; Chen, Chun-xiao; Zhang, Bing-ling

    2009-01-01

    Background: Capsule endoscopy is a novel non-invasive method for visualization of the entire small bowel. The diagnostic yield of capsule endoscopy depends on the quality of visualization of the small bowel mucosa and its complete passage through the small bowel. To date, there is no standardized protocol for bowel preparation before capsule endoscopy. The addition of simethicone in the bowel preparation for the purpose of reducing air bubbles in the intestinal lumen had only been studied by a few investigators. Methods: Sixty-four participants were randomly divided into two groups to receive a bowel preparation of polyethylene glycol (PEG) solution (Group 1) and both PEG solution and simethicone (Group 2). The PEG solution and simethicone were taken the night before and 20 min prior to capsule endoscopy, respectively. Frames taken in the small intestine were examined and scored for luminal bubbles by two professional capsule endoscopists. Gastric emptying time and small bowel transit time were also recorded. Results: Simethicone significantly reduced luminal bubbles both in the proximal and distal small intestines. The mean time proportions with slight bubbles in the proximal and distal intestines in Group 2 were 97.1% and 99.0%, respectively, compared with 67.2% (P<0.001) and 68.8% (P<0.001) in Group 1. Simethicone had no effect on mean gastric emptying time, 32.08 min in Group 2 compared with 30.88 min in Group 1 (P=0.868), but it did increase mean small intestinal transit time from 227.28 to 281.84 min (P=0.003). Conclusion: Bowel preparation with both PEG and simethicone significantly reduced bubbles in the intestinal lumen and improved the visualization of the small bowel by capsule endoscopy without any side effects observed. PMID:19198022

  13. Segmental-dependent permeability throughout the small intestine following oral drug administration: Single-pass vs. Doluisio approach to in-situ rat perfusion.

    PubMed

    Lozoya-Agullo, Isabel; Zur, Moran; Beig, Avital; Fine, Noa; Cohen, Yael; González-Álvarez, Marta; Merino-Sanjuán, Matilde; González-Álvarez, Isabel; Bermejo, Marival; Dahan, Arik

    2016-12-30

    Intestinal drug permeability is position dependent and pertains to a specific point along the intestinal membrane, and the resulted segmental-dependent permeability phenomenon has been recognized as a critical factor in the overall absorption of drug following oral administration. The aim of this research was to compare segmental-dependent permeability data obtained from two different rat intestinal perfusion approaches: the single-pass intestinal perfusion (SPIP) model and the closed-loop (Doluisio) rat perfusion method. The rat intestinal permeability of 12 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was assessed in three small intestinal regions: the upper jejunum, mid-small intestine, and the terminal ileum, using both the SPIP and the Doluisio experimental methods. Excellent correlation was evident between the two approaches, especially in the upper jejunum (R 2 =0.95). Significant regional-dependent permeability was found in half of drugs studied, illustrating the importance and relevance of segmental-dependent intestinal permeability. Despite the differences between the two methods, highly comparable results were obtained by both methods, especially in the medium-high P eff range. In conclusion, the SPIP and the Doluisio method are both equally useful in obtaining crucial segmental-dependent intestinal permeability data. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Successful treatment of small intestinal volvulus in two cats.

    PubMed

    Knell, Sebastian C; Andreoni, Angelo A; Dennler, Matthias; Venzin, Claudio M

    2010-11-01

    Mesenteric volvulus describes a torsion of the small intestine around the mesenteric root, which can be partial or complete. In dogs, it is an uncommon condition, with German shepherd dogs showing a predisposition. Chronic mesenteric volvulus has also been described. In cats, previous reports have documented two cases of small intestinal volvulus, both diagnosed at necropsy, and a further case of volvulus of the colon in a patient that died after surgery. This report describes two cats with mesenteric volvulus that were successfully treated. To the authors' knowledge, no reports of antemortem diagnosis or treatment of small intestinal volvulus in cats have previously been published. On the basis of the cases presented, it appears that the diagnosis of intestinal volvulus may be more difficult in cats than in dogs, but that the prognosis may not be as poor. Therefore, it is suggested that owners be encouraged to pursue surgery. Copyright © 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  15. A small intestine volvulus caused by strangulation of a mesenteric lipoma: a case report.

    PubMed

    Kakiuchi, Yoshihiko; Mashima, Hiroaki; Hori, Naoto; Takashima, Hirotoshi

    2017-03-13

    An emergency department encounters a variety of cases, including rare cases of the strangulation of a mesenteric lipoma by the greater omentum band. A 67-year-old Japanese man presented with nausea, vomiting, and upper abdominal pain. There were no abnormalities detected by routine blood tests other than a slight rise in his white cell count. A contrast-enhanced computed tomography scan of his abdomen revealed a dilated intestine, a small intestine volvulus, and a well-capsulated homogeneous mass. He was suspected of having a small intestine volvulus that was affected by a mesenteric lipoma; therefore, single-port laparoscopic surgery was performed. Laparoscopy revealed a small intestine volvulus secondary to the strangulation of a mesenteric lipoma. The band and tumor were removed. He had no postoperative complications and was discharged on postoperative day 6. Although this case was an emergency, it showed that single-port laparoscopic surgery can be a safe, useful, and efficacious procedure.

  16. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    PubMed

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  17. The effect of recombinant growth hormone on intestinal anastomotic wound healing in rats with obstructive jaundice.

    PubMed

    Cağlikülekçi, Mehmet; Ozçay, Necdet; Oruğ, Taner; Aydoğ, Gülden; Renda, Nurten; Atalay, Fuat

    2002-03-01

    Several clinical and experimental studies have shown that obstructive jaundice delays wound healing. Growth hormone may prevent delayed wound healing, since it has effects on the release of mediators in jaundice, as well as increasing the protein synthesis. Forty male Wistar rats were allocated to four groups: Group I (n=10): intestinal anastomosis to normal small bowel, Group II (n=10): intestinal anastomosis to normal small bowel followed by growth hormone therapy (2mg/kg/day, subcutaneously), Group III (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel, Group IV (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel followed by growth hormone therapy at the same dosage The animals were observed for seven days then killed. Intraabdominal adhesions, anastomotic complications and anastomotic bursting pressures were recorded and tissue samples from the anastomotic site were obtained to measure hydroxyproline levels and for histopathologic examination. Growth hormone had a beneficial effect on the healing of intestinal anastomosis in both jaundiced and non-jaundiced rats. This was demonstrated by clinical and mechanical parameters such as a significant increase in anastomotic bursting pressure, hydroxyproline content and histopathological scores. Growth hormone reverses the adverse effects of obstructive jaundice on small bowel anastomotic healing. It can be hypothesized that this effect is due to augmentation of insulin-like growth factors, protection of hepatocytes, enhancement of intestinal epithelization, and reversal of the resultant malnutritional state caused by growth hormone in obstructive jaundice.

  18. Differential Alteration in Intestinal Epithelial Cell Expression of Toll-Like Receptor 3 (TLR3) and TLR4 in Inflammatory Bowel Disease

    PubMed Central

    Cario, Elke; Podolsky, Daniel K.

    2000-01-01

    Initiation and perpetuation of the inflammatory intestinal responses in inflammatory bowel disease (IBD) may result from an exaggerated host defense reaction of the intestinal epithelium to endogenous lumenal bacterial flora. Intestinal epithelial cell lines constitutively express several functional Toll-like receptors (TLRs) which appear to be key regulators of the innate response system. The aim of this study was to characterize the expression pattern of TLR2, TLR3, TLR4, and TLR5 in primary intestinal epithelial cells from patients with IBD. Small intestinal and colonic biopsy specimens were collected from patients with IBD (Crohn's disease [CD], ulcerative colitis [UC]) and controls. Non-IBD specimens were assessed by immunofluorescence histochemistry using polyclonal antibodies specific for TLR2, TLR3, TLR4, and TLR5. Primary intestinal epithelial cells (IEC) of normal mucosa constitutively expressed TLR3 and TLR5, while TLR2 and TLR4 were only barely detectable. In active IBD, the expression of TLR3 and TLR4 was differentially modulated in the intestinal epithelium. TLR3 was significantly downregulated in IEC in active CD but not in UC. In contrast, TLR4 was strongly upregulated in both UC and CD. TLR2 and TLR5 expression remained unchanged in IBD. These data suggest that IBD may be associated with distinctive changes in selective TLR expression in the intestinal epithelium, implying that alterations in the innate response system may contribute to the pathogenesis of these disorders. PMID:11083826

  19. Autodigestion: Proteolytic Degradation and Multiple Organ Failure in Shock

    PubMed Central

    Altshuler, Angelina E.; Kistler, Erik B.; Schmid-Schönbein, Geert W.

    2015-01-01

    There is currently no effective treatment for multiorgan failure following shock other than alleviation supportive care. A better understanding of the pathogenesis of these sequelae to shock is required. The intestine plays a central role in multiorgan failure. It was previously suggested that bacteria and their toxins are responsible for the organ failure seen in circulatory shock, but clinical trials in septic patients have not confirmed this hypothesis. Instead, we review here evidence that the digestive enzymes, synthesized in the pancreas and discharged into the small intestine as requirement for normal digestion, may play a role in multi-organ failure. These powerful enzymes are non-specific, highly concentrated and fully activated in the lumen of the intestine. During normal digestion they are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. However, if this barrier becomes permeable, e.g. in an ischemic state, the digestive enzymes escape into the wall of the intestine. They digest tissues in the mucosa and generate small molecular weight cytotoxic fragments such as unbound free fatty acids. Digestive enzymes may also escape into the systemic circulation and activate other degrading proteases. These proteases have the ability to clip the ectodomain of surface receptors and compromise their function; for example cleaving the insulin receptor causing insulin resistance. The combination of digestive enzymes and cytotoxic fragments leaking into the central circulation causes cell and organ dysfunction, and ultimately may lead to complete organ failure and death. We summarize current evidence suggesting that enteral blockade of digestive enzymes inside the lumen of the intestine may serve to reduce acute cell and organ damage and improve survival in experimental shock. PMID:26717111

  20. Small intestinal bacterial overgrowth syndrome

    PubMed Central

    Bures, Jan; Cyrany, Jiri; Kohoutova, Darina; Förstl, Miroslav; Rejchrt, Stanislav; Kvetina, Jaroslav; Vorisek, Viktor; Kopacova, Marcela

    2010-01-01

    Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO. PMID:20572300

  1. Chronic Intestinal Pseudo-obstruction: Clinical and Manometric Characteristics in the Chilean Population

    PubMed Central

    de Arce, Edith Pérez; Landskron, Glauben; Hirsch, Sandra; Defilippi, Carlos; Madrid, Ana María

    2017-01-01

    Background/Aims Chronic intestinal pseudo-obstruction (CIPO) is a rare syndrome characterized by a failure of the propulsion of intraluminal contents and recurrent symptoms of partial bowel obstruction in the absence of mechanical obstruction. Regional variations of the intestinal compromise have been described. Intestinal manometry can indicate the pathophysiology and prognosis. Our objective is to establish the demographic and clinical characteristics of group Chilean patients and analyze the motility of the small intestine and its prognostic value. Methods Patients with symptoms of intestinal pseudo-obstruction with dilated bowel loops were included, in all of whom a manometry of the small intestine was performed using perfused catheters. Results Of the 64 patients included, 51 women (average age 41.5 ± 17.6 years), 54 primary and 10 secondary CIPO were included. Dilatation of the small intestine was the only finding in 38 patients; in the remaining, the compromise was associated with other segments, primarily the colon. Forty-nine patients underwent 65 surgeries, mainly exploratory laparotomies and colectomies. Intestinal manometry was performed on all patients; 4 “patterns” were observed: neuropathic (n = 26), myopathic (n = 3), mixed (n = 24), and a group without motor activity (n = 11). The most relevant findings were the complex migrating motor disorders and decreased frequency and propagation of contractions. The 9 patients who died had a severe myopathic compromise. Conclusions In our series, isolated small bowel compromise was the most common disorder. Neuropathic motor compromise was observed in most of the patients. Mortality was associated with severe myopathic compromise. PMID:27669829

  2. Overlapping DNA Methylation Dynamics in Mouse Intestinal Cell Differentiation and Early Stages of Malignant Progression

    PubMed Central

    Forn, Marta; Díez-Villanueva, Anna; Merlos-Suárez, Anna; Muñoz, Mar; Lois, Sergi; Carriò, Elvira; Jordà, Mireia; Bigas, Anna; Batlle, Eduard; Peinado, Miguel A.

    2015-01-01

    Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart. PMID:25933092

  3. Soybean and Fish Oil Mixture With Different ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Modulates Dextran Sulfate Sodium-Induced Changes in Small Intestinal Intraepithelial γδT-Lymphocyte Expression in Mice.

    PubMed

    Pai, Man-Hui; Liu, Jun-Jen; Hou, Yu-Chen; Yeh, Chiu-Li

    2016-03-01

    This study investigated the effect of different ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratios on dextran sulfate sodium (DSS)-induced changes to small intestinal intraepithelial lymphocyte (IEL) γδT-cell expression. Mice were assigned to 3 control and 3 DSS-treated groups and were maintained on a low-fat semipurified diet. One of the control (S) groups and a DSS (DS) group were provided with soybean oil; the other 2 control (Hω-3 and Lω-3) groups and 2 other DSS (DHω-3 and DLω-3) groups were fed either a soybean and fish oil mixture with a ω-6/ω-3 ratio of 2:1 or 4:1. After feeding the respective diets for 2 weeks, the DSS groups were given distilled water containing 2% DSS, and the control groups were given distilled water for 5 days. All groups were further provided distilled water 5 days for recovery, and the small intestinal IEL γδT-cell subset was isolated for analysis. DSS treatment resulted in a lower small intestinal IEL γδT-cell percentage and higher messenger RNA (mRNA) expressions of Reg IIIγ, keratinocyte growth factor (KGF), and complement 5a receptor (C5aR) by IEL γδT cells. Fish oil administration enhanced the proportion of small intestinal IEL γδT cells. Compared with the DLω-3 group, the DHω-3 group had lower Reg IIIγ, KGF, and C5aR mRNA expressions and higher expression of peroxisome proliferator-activated receptor (PPAR)-γ gene by small intestinal IEL γδT cells. Fish oil diets with a ω-6/ω-3 PUFA ratio of 2:1 were more effective than those with a ratio of 4:1 in improving DSS-induced small intestinal injury, and activation of PPAR-γ in IEL γδT cells may be associated with resolution of small intestinal inflammation. © 2014 American Society for Parenteral and Enteral Nutrition.

  4. Immunocytochemical localization of actin in epithelial cells of rat small intestine by light and electron microscopy.

    PubMed

    Hagen, S J; Trier, J S

    1988-07-01

    We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.

  5. Imaging diagnosis--Use of multiphasic contrast-enhanced computed tomography for diagnosis of mesenteric volvulus in a dog.

    PubMed

    Chow, Kathleen Ella; Stent, Andrew William; Milne, Marjorie

    2014-01-01

    A 4-year-old German shorthaired pointer presented with collapse and hematochezia. Radiographs showed gas and fluid-distended small intestines and loss of serosal detail. Ultrasound examination showed hypomotile, fluid-distended small intestines, and thrombosed jejunal veins. Multiphasic contrast-enhanced computed tomography was performed and showed a CT "whirl sign," an important but nonspecific sign of intestinal volvulus in human patients. At surgery, the majority of the small intestine was entangled in the volvulus and showed black discoloration. The patient was euthanized. Postmortem evaluation yielded a diagnosis of jejunoileal mesenteric volvulus secondary to a congenital omphalomesenteric duct remnant. © 2013 American College of Veterinary Radiology.

  6. Imaging diagnosis--muscular hypertrophy of the small intestine and pseudodiverticula in a horse.

    PubMed

    Navas De Solís, Cristobal; Biscoe, Elisabeth W; Lund, Caleb M; Labbe, Karyn; Muñoz, Juan; Farnsworth, Kelly

    2015-01-01

    A 14-year-old Thoroughbred gelding was presented for chronic colic and weight loss. Transcutaneous and transrectal abdominal ultrasonography revealed distended, thickened small intestine with primary thickening of the muscularis and a focally more thickened loop with an echoic structure crossing the wall from the mucosa to the serosa. Visualization of diffuse thickening of the muscularis (muscular hypertrophy of the small intestine) and a focal lesion (pseudodiverticulum) helped clinicians make informed decisions. This case illustrates the importance of transabdominal and transrectal ultrasonography in horses with chronic colic and the relevance of considering the abnormalities in layering pattern of the intestinal wall. © 2014 American College of Veterinary Radiology.

  7. Development of CAD prototype system for Crohn's disease

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku

    2010-03-01

    The purpose of this paper is to present a CAD prototype system for Crohn's disease. Crohn's disease causes inflammation or ulcers of the gastrointestinal tract. The number of patients of Crohn's disease is increasing in Japan. Symptoms of Crohn's disease include intestinal stenosis, longitudinal ulcers, and fistulae. Optical endoscope cannot pass through intestinal stenosis in some cases. We propose a new CAD system using abdominal fecal tagging CT images for efficient diagnosis of Crohn's disease. The system displays virtual unfolded (VU), virtual endoscopic, curved planar reconstruction, multi planar reconstruction, and outside views of both small and large intestines. To generate the VU views, we employ a small and large intestines extraction method followed by a simple electronic cleansing method. The intestine extraction is based on the region growing process, which uses a characteristic that tagged fluid neighbor air in the intestine. The electronic cleansing enables observation of intestinal wall under tagged fluid. We change the height of the VU views according to the perimeter of the intestine. In addition, we developed a method to enhance the longitudinal ulcer on views of the system. We enhance concave parts on the intestinal wall, which are caused by the longitudinal ulcer, based on local intensity structure analysis. We examined the small and the large intestines of eleven CT images by the proposed system. The VU views enabled efficient observation of the intestinal wall. The height change of the VU views helps finding intestinal stenosis on the VU views. The concave region enhancement made longitudinal ulcers clear on the views.

  8. Long-term prospective evaluation of intestinal anastomosis using stainless steel staples in 14 dogs

    PubMed Central

    Benlloch-Gonzalez, Manuel; Gomes, Eymeric; Bouvy, Bernard; Poncet, Cyrill

    2015-01-01

    This prospective clinical study evaluated the use, complications, and clinical and ultrasonographic follow-ups of end-to-end intestinal anastomoses with skin staples in naturally occurring diseases in canine small and large intestines. Intestinal anastomoses were performed in 14 dogs and pre-, peri-, and postoperative data were recorded. Postoperative clinical and ultrasound evaluations were performed at regular intervals for 1 year. The mean time taken to construct the anastomosis was 5 min. There were no intraoperative complications. Hemorrhage and colonic stricture were the main postoperative complications. Staple loss occurred in 2 cases. Absence of wall layering and focal wall thickening were observed in all cases at each ultrasonographic follow-up. Hyperechoic fat was observed in all but 1 of the cases at month 1. Nine dogs were alive with normal digestive function at the end of the study. The skin stapler technique enabled rapid construction of consistent anastomoses with inexpensive stapling material. PMID:26130833

  9. Absorption sites of orally administered drugs in the small intestine.

    PubMed

    Murakami, Teruo

    2017-12-01

    In pharmacotherapy, drugs are mostly taken orally to be absorbed systemically from the small intestine, and some drugs are known to have preferential absorption sites in the small intestine. It would therefore be valuable to know the absorption sites of orally administered drugs and the influencing factors. Areas covered:In this review, the author summarizes the reported absorption sites of orally administered drugs, as well as, influencing factors and experimental techniques. Information on the main absorption sites and influencing factors can help to develop ideal drug delivery systems and more effective pharmacotherapies. Expert opinion: Various factors including: the solubility, lipophilicity, luminal concentration, pKa value, transporter substrate specificity, transporter expression, luminal fluid pH, gastrointestinal transit time, and intestinal metabolism determine the site-dependent intestinal absorption. However, most of the dissolved fraction of orally administered drugs including substrates for ABC and SLC transporters, except for some weakly basic drugs with higher pKa values, are considered to be absorbed sequentially from the proximal small intestine. Securing the solubility and stability of drugs prior to reaching to the main absorption sites and appropriate delivery rates of drugs at absorption sites are important goals for achieving effective pharmacotherapy.

  10. Cystic Fibrosis: Diet and Nutrition

    MedlinePlus

    ... strong bones. Milk, yogurt, cheese, and calcium-fortified juices are rich in calcium. Salt . Kids with CF ... small intestine (say: in-TES-tun). It makes juices containing enzymes that help the small intestine digest ...

  11. Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: impact of mucus structure and extracellular DNA.

    PubMed

    Macierzanka, Adam; Mackie, Alan R; Bajka, Balazs H; Rigby, Neil M; Nau, Françoise; Dupont, Didier

    2014-01-01

    The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake.

  12. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    PubMed

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  13. Early establishment of epithelial apoptosis in the developing human small intestine.

    PubMed

    Vachon, P H; Cardin, E; Harnois, C; Reed, J C; Vézina, A

    2000-12-01

    In the adult small intestine, the dynamic renewal of the epithelium is characterized by a sequence of cell production in the crypts, cell maturation and cell migration to the tip of villi, where apoptosis is undertaken. Little is known about enterocytic apoptosis during development. In man, intestinal architectural features and functions are acquired largely by mid-gestation (18-20 wks); the question whether the establishment of enterocytic apoptotic processes parallels or not the acquisition of other intestinal functional features remains open. In the present study, we approached this question by examining enterocytic apoptosis during development of the human jejunum (9-20 wks gestation), using the ISEL (in situ terminal uridine deoxynucleotidyl nick-end labelling) method. Between 9 and 17 wks, apoptotic enterocytes were not evidenced. However, beginning at the 18 wks stage, ISEL-positive enterocytes were regularly observed at the tip of villi. Since the Bcl-2 family of proteins constitutes a critical checkpoint in apoptosis, acting upstream of the apoptotic machinery, we investigated the expression of six Bcl-2 homologs (Bcl-2, Bcl-X(L), Mcl-1, Bax, Bak, Bad) and one non-homologous associated molecule (Bag-1). By immunofluorescence, we found that all homologs analyzed were expressed by enterocytes between 9 and 20 wks. However, Bcl-2 homologs underwent a gradual compartmentalization of epithelial expression along the maturing crypt-villus axis, to establish gradients of expression by 18-20 wks. Western blot analyses indicated that the expression levels of Bcl-2 homologs were modulated during morphogenesis of the crypt-villus axis, in parallel to their gradual compartmentalization of expression. Altogether, these data suggest that regulatory mechanisms of human enterocytic apoptosis become established by mid-gestation (18-20 wks) and coincide with the maturation of the crypt-villus axis of cell proliferation, differentiation and renewal.

  14. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia–reperfusion

    PubMed Central

    Wu, Bin; Qiu, Wei; Wang, Peng; Yu, Hui; Cheng, Tao; Zambetti, Gerard P; Zhang, Lin; Yu, Jian

    2007-01-01

    Background The small intestine is highly sensitive to ischaemia–reperfusion (I/R) induced injury which is associated with high morbidity and mortality. Apoptosis, or programmed cell death, is a major mode of cell death occurring during I/R induced injury. However, the mechanisms by which I/R cause apoptosis in the small intestine are poorly understood. p53 upregulated modulator of apoptosis (PUMA) is a p53 downstream target and a member of the BH3‐only group of Bcl‐2 family proteins. It has been shown that PUMA plays an essential role in apoptosis induced by a variety of stimuli in different tissues through a mitochondrial pathway. Aims The role of PUMA in I/R induced injury and apoptosis in the small intestine was investigated. The mechanisms by which PUMA is regulated in I/R induced intestinal apoptosis were also studied. Methods Ischaemia was induced by superior mesenteric artery occlusion in the mouse small intestine. Induction of PUMA in response to ischaemia alone, or ischaemia followed by reperfusion (I/R), was examined. I/R induced intestinal apoptosis and injury were compared between PUMA knockout and wild‐type mice. The mechanisms of I/R induced and PUMA mediated apoptosis were investigated through analysis of caspase activation, cytosolic release of mitochondrial cytochrome c and alterations of the proapoptotic Bcl‐2 family proteins Bax and Bak. To determine whether PUMA is induced by reactive oxygen species and/or reactive nitrogen species generated by I/R, superoxide dismutase (SOD) and N‐nitro‐L‐arginine methyl ester (L‐NAME) were used to treat animals before I/R. To determine whether p53 is involved in regulating PUMA during I/R induced apoptosis, PUMA induction and apoptosis in response to I/R were examined in p53 knockout mice. Results PUMA was markedly induced following I/R in the mucosa of the mouse small intestine. I/R induced intestinal apoptosis was significantly attenuated in PUMA knockout mice compared with that in wild‐type mice. I/R induced caspase 3 activation, cytochrome c release, Bax mitochondrial translocation and Bak multimerisation were also inhibited in PUMA knockout mice. SOD or L‐NAME significantly blunted I/R induced PUMA expression and apoptosis. Furthermore, I/R induced PUMA expression and apoptosis in the small intestine were not affected in the p53 knockout mice. Conclusions Our data demonstrated that PUMA is activated by oxidative stress in response to I/R to promote p53 independent apoptosis in the small intestine through the mitochondrial pathway. Inhibition of PUMA is potentially useful for protecting against I/R induced intestinal injury and apoptosis. PMID:17127703

  15. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes.

    PubMed

    Al-Gubory, Kaïs H; Blachier, François; Faure, Patrice; Garrel, Catherine

    2016-08-01

    Pomegranate peel extract (PPE) contains several compounds with antioxidative properties. PPE added to foods may interact with endogenous antioxidants and promote health. However, little is known about the biochemical mechanisms by which PPE exerts their actions on tissues of biological systems in vivo. The purpose of this study was to determine the effects of PPE on activities of antioxidant enzymes. Mice were used to investigate the effects of PPE on plasma levels of malondialdehyde (MDA), tissue MDA content and activities of superoxide dismutase 1 (SOD1), SOD2 and glutathione peroxidase (GPX) in the small intestine, liver and skeletal muscle - different tissues involved in the digestion, absorption and metabolism of dietary nutrients. Control mice were fed a standard diet, whereas treated mice were fed for 40 days with the standard diet containing 5% or 10% PPE. Mice fed the 10% PPE diet exhibited lower plasma MDA concentrations, reduced content of MDA in the small intestine and liver and higher levels of SOD1 and GPX activities in the small intestine compared to mice fed the control diet. These findings demonstrate that intake of PPE in diet attenuates small intestine lipid peroxidation and strengthens the first line of small intestine antioxidant defense by enhancing enzymatic antioxidative pathways. PPE is worthy of further study as a therapeutic approach to prevent peroxidative stress-induced gut pathogenesis. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Effect of dietary protein sources on the small intestine microbiome of weaned piglets based on high-throughput sequencing.

    PubMed

    Cao, K F; Zhang, H H; Han, H H; Song, Y; Bai, X L; Sun, H

    2016-05-01

    In this study, we comprehensively investigated the effect of dietary protein sources on the gut microbiome of weaned piglets with diets comprising different protein source using High-throughput 16SrRNA gene-based Illumina Miseq. A total of 48 healthy weaned piglets were allocated randomly to four treatments with 12 piglets in each group. The weaned piglets were fed with diets containing soybean meal (SBM), cottonseed meal (CSM), SBM and CSM (SC) or fish meal (FM). The intestinal content samples were taken from five segments of the small intestine. DNA was extracted from the samples and the V3-V4 regions of the 16SrRNA gene were amplified. The microbiota of the contents of the small intestine were very complex, including more than 4000 operational taxonomic units belonging to 32 different phyla. Four bacterial populations (i.e. Firmicutes, Proteobacteria, Bacteroidetes and Acidobacteria) were the most abundant bacterial groups. The genera Lactobacillus and Clostridium were found in slightly higher proportions in the groups with added CSM compared to the other groups. The proportion of reads assigned to the genus Escherichia/Shigella was much higher in the FM group. In conclusion, dietary protein source had significant effects on the small microbiome of weaned piglets. Dietary protein source have the potential to affect the small intestine microbiome of weaned piglets that will have a large impact on its metabolic capabilities and intestinal health. In this study, we successfully identified the microbiomes in the contents of the small intestine in the weaned piglets that were fed different protein source diets using high-throughput sequencing. The finding provided an evidence for the option of the appropriate protein source in the actual production. © 2016 The Society for Applied Microbiology.

  17. Skeletal Muscle Regeneration in a Rat (Rattus norvegicus) Model with CorMatrix and Adipose Derived Stem Cells

    DTIC Science & Technology

    2015-07-16

    outcome or training benefit the DoD/USAF? Yes. This study provided evidence that extracellular matrix made from swine small intestinal submucosa does...Isometric functional testing was implemented prior to euthanasia 2 FDGXXX at 10 months to further evaluate healing at later time points

  18. [Morphofunctional changes in the small intestine of children with food allergy].

    PubMed

    Balabolkin, I I; Karsybekova, L M; Gershman, G B; Shcherbakov, P L; Terekhina, N N; Bokser, V O; Reviakina, V A; Gmoshinskiĭ, I V

    1991-01-01

    Children with food allergy underwent allergologic and gastroenterologic examinations using esophagogastroduodenojejunoscopy. Impairment of the jejunum in the form of jejunitis associated with function abnormality as shown by the loading tests was revealed. It is concluded that the given patients: group should be examined for the morphofunctional status of the upper gastrointestinal tract.

  19. Transcriptome analysis reveals persistent effects of neonatal diet on small intestine gene expression profile in a porcine model

    USDA-ARS?s Scientific Manuscript database

    Breastfeeding is associated with several benefits affecting gut development and immune function. Compared to breast feeding, infant formula feeding is linked to a greater risk for gut dysfunction, ear and respiratory tract infections, and allergies. The beneficial effects appear to last at least thr...

  20. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair

    PubMed Central

    Liu, Zhengni; Feng, Xueyi; Wang, Huichun; Ma, Jun; Liu, Wei; Cui, Daxiang; Gu, Yan; Tang, Rui

    2014-01-01

    Insufficient early vascularization in biological meshes, resulting in limited host tissue incorporation, is thought to be the primary cause for the failure of abdominal wall defect repair after implantation. The sustained release of exogenous angiogenic factors from a biocompatible nanomaterial might be a way to overcome this limitation. In the study reported here, multiwalled carbon nanotubes (MWNT) were functionalized by plasma polymerization to deliver vascular endothelial growth factor165 (VEGF165). The novel VEGF165-controlled released system was incorporated into porcine small intestinal submucosa (PSIS) to construct a composite scaffold. Scaffolds incorporating varying amounts of VEGF165-loaded functionalized MWNT were characterized in vitro. At 5 weight percent MWNT, the scaffolds exhibited optimal properties and were implanted in rats to repair abdominal wall defects. PSIS scaffolds incorporating VEGF165-loaded MWNT (VEGF–MWNT–PSIS) contributed to early vascularization from 2–12 weeks postimplantation and obtained more effective collagen deposition and exhibited improved tensile strength at 24 weeks postimplantation compared to PSIS or PSIS scaffolds, incorporating MWNT without VEGF165 loading (MWNT–PSIS). PMID:24648727

  1. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres

    PubMed Central

    Reineke, Joshua J.; Cho, Daniel Y.; Dingle, Yu-Ting; Morello, A. Peter; Jacob, Jules; Thanos, Christopher G.; Mathiowitz, Edith

    2013-01-01

    Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine. PMID:23922388

  2. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice.

    PubMed

    Losada-Eaton, D M; Uzal, F A; Fernández Miyakawa, M E

    2008-06-01

    Clostridium perfringens epsilon toxin is a potent toxin responsible for a rapidly fatal enterotoxaemia in several animal species. The pathogenesis of epsilon toxin includes toxicity to endothelial cells and neurons. Although epsilon toxin is absorbed from the gastrointestinal tract, the intestinal regions where the toxin is absorbed and the conditions favoring epsilon toxin absorption are unknown. The aim of this paper was to determine the toxicity of epsilon toxin absorbed from different gastrointestinal segments of mice and to evaluate the influence of the intestinal environment in the absorption of this toxin. Epsilon toxin diluted in one of several different saline solutions was surgically introduced into ligated stomach or intestinal segments of mice. Comparison of the toxicity of epsilon toxin injected in different sections of the gastrointestinal tract showed that this toxin can be absorbed from the small and the large intestine but not from the stomach of mice. The lethality of epsilon toxin was higher when this toxin was injected in the colon than in the small intestine. Low pH, and Na(+) and glucose added to the saline solution increased the toxicity of epsilon toxin injected into the small intestine. This study shows that absorption of epsilon toxin can occur in any intestinal segment of mice and that the physicochemical characteristics of the intestinal content can affect the absorption of this toxin.

  3. Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy.

    PubMed

    Lambeau, Kellen V; McRorie, Johnson W

    2017-04-01

    Only 5% of adults consume the recommended level of dietary fiber. Fiber supplements appear to be a convenient and concentrated source of fiber, but most do not provide the health benefits associated with dietary fiber. This review will summarize the physical effects of isolated fibers in small and large intestines, which drive clinically meaningful health benefits. A comprehensive literature review was conducted (Scopus and PubMed) without limits to year of publication (latest date included: October 31, 2016). The physical effects of fiber in the small intestine drive metabolic health effects (e.g., cholesterol lowering, improved glycemic control), and efficacy is a function of the viscosity of gel-forming fibers (e.g., psyllium, β-glucan). In the large intestine, fiber can provide a laxative effect if (a) it resists fermentation to remain intact throughout the large intestine, and (b) it increases percentage of water content to soften/bulk stool (e.g., wheat bran and psyllium). It is important for nurse practitioners to understand the underlying mechanisms that drive specific fiber-related health benefits, and which fiber supplements have rigorous clinical data to support a recommendation. For most fiber-related beneficial effects, "Fiber needs to gel to keep your patients well." ©2017 The Authors. Journal of the American Association of Nurse Practitioners published by Wiley Periodicals, Inc. on behalf of American Association of Nurse Practitioners.

  4. Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy

    PubMed Central

    Lambeau, Kellen V.

    2017-01-01

    Abstract Background Only 5% of adults consume the recommended level of dietary fiber. Fiber supplements appear to be a convenient and concentrated source of fiber, but most do not provide the health benefits associated with dietary fiber. Purpose This review will summarize the physical effects of isolated fibers in small and large intestines, which drive clinically meaningful health benefits. Data sources A comprehensive literature review was conducted (Scopus and PubMed) without limits to year of publication (latest date included: October 31, 2016). Conclusions The physical effects of fiber in the small intestine drive metabolic health effects (e.g., cholesterol lowering, improved glycemic control), and efficacy is a function of the viscosity of gel‐forming fibers (e.g., psyllium, β‐glucan). In the large intestine, fiber can provide a laxative effect if (a) it resists fermentation to remain intact throughout the large intestine, and (b) it increases percentage of water content to soften/bulk stool (e.g., wheat bran and psyllium). Implications for practice It is important for nurse practitioners to understand the underlying mechanisms that drive specific fiber‐related health benefits, and which fiber supplements have rigorous clinical data to support a recommendation. Clinical pearl For most fiber‐related beneficial effects, “Fiber needs to gel to keep your patients well.” PMID:28252255

  5. Volvulus of the Small Intestine in Adults

    PubMed Central

    Talbot, C. H.

    1960-01-01

    Five cases of volvulus of varying lengths of the small intestine are described. The incidence and the aetiology of the condition are briefly discussed. Shock as a feature of extensive volvulus is stressed, and its cause in these cases is related to the previous animal experimental work of others. The other clinical features are briefly described. In the management of these cases the urgency for laparotomy is stressed and immediate delivery from the abdomen of the whole small bowel is advocated. Reference is made to the literature of massive resection of the small intestine to illustrate that the prognosis is not necessarily poor when resections are extensive. PMID:13836720

  6. Rare small intestinal volvulus from entrapment in hepato-diaphragmatic adhesions in a 45-year-old lady.

    PubMed

    Olaoye, Iyiade Olatunde; Adesina, Micheal Dapo

    2016-12-20

    Small intestinal volvulus is rare in adults and rarely caused by string adhesions between the liver and the diaphragm. Similar adhesions were described in Fitz-Hugh-Curtis syndrome. We report a 45-year-old lady with small intestinal volvulus from entrapment of a loop in string adhesions between the liver and the diaphragm. Her plain radiographs showed a significant shadow of the trapped loop. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  7. Differential Secretion of Satiety Hormones With Progression of Obesity in JCR: LA-corpulent Rats

    PubMed Central

    Parnell, Jill A.; Reimer, Raylene A.

    2013-01-01

    Objective To characterize the gastrointestinal tract at the onset and in well-established obesity. Methods and Procedures Lean (+/?) and obese (cp/cp) male JCR:LA-cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well-established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide-1 (GLP-1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity. PMID:18239578

  8. Thymine DNA Glycosylase (TDG) is involved in the pathogenesis of intestinal tumors with reduced APC expression.

    PubMed

    Xu, Jinfei; Cortellino, Salvatore; Tricarico, Rossella; Chang, Wen-Chi; Scher, Gabrielle; Devarajan, Karthik; Slifker, Michael; Moore, Robert; Bassi, Maria Rosaria; Caretti, Elena; Clapper, Margie; Cooper, Harry; Bellacosa, Alfonso

    2017-10-27

    Thymine DNA Glycosylase (TDG) is a base excision repair enzyme that acts as a thymine and uracil DNA N-glycosylase on G:T and G:U mismatches, thus protecting CpG sites in the genome from mutagenesis by deamination. In addition, TDG has an epigenomic function by removing the novel cytosine derivatives 5-formylcytosine and 5-carboxylcytosine (5caC) generated by Ten-Eleven Translocation (TET) enzymes during active DNA demethylation. We and others previously reported that TDG is essential for mammalian development. However, its involvement in tumor formation is unknown. To study the role of TDG in tumorigenesis, we analyzed the effects of its inactivation in a well-characterized model of tumor predisposition, the Apc Min mouse strain. Mice bearing a conditional Tdg flox allele were crossed with Fabpl ::Cre transgenic mice, in the context of the Apc Min mutation, in order to inactivate Tdg in the small intestinal and colonic epithelium. We observed an approximately 2-fold increase in the number of small intestinal adenomas in the test Tdg -mutant Apc Min mice in comparison to control genotypes (p=0.0001). This increase occurred in female mice, and is similar to the known increase in intestinal adenoma formation due to oophorectomy. In the human colorectal cancer (CRC) TCGA database, the subset of patients with TDG and APC expression in the lowest quartile exhibits an excess of female cases. We conclude that TDG inactivation plays a role in intestinal tumorigenesis initiated by mutation/underexpression of APC . Our results also indicate that TDG may be involved in sex-specific protection from CRC.

  9. Nutrient-intake-level-dependent regulation of intestinal development in newborn intrauterine growth-restricted piglets via glucagon-like peptide-2.

    PubMed

    Liu, J; Liu, Z; Gao, L; Chen, L; Zhang, H

    2016-10-01

    The objective of the present study was to investigate the intestinal development of newborn intrauterine growth-restricted (IUGR) piglets subjected to normal nutrient intake (NNI) or restricted nutrient intake (RNI). Newborn normal birth weight (NBW) and IUGR piglets were allotted to NNI or RNI levels for 4 weeks from day 8 postnatal. IUGR piglets receiving NNI had similar growth performance compared with that of NBW piglets. Small intestine length and villous height were greater in IUGR piglets fed the NNI than that of piglets fed the RNI. Lactase activity was increased in piglets fed the NNI compared with piglets fed the RNI. Absorptive function, represented by active glucose transport by the Ussing chamber method and messenger RNA (mRNA) expressions of two main intestinal glucose transporters, Na+-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), were greater in IUGR piglets fed the NNI compared with piglets fed the RNI regimen. The apoptotic process, characterized by caspase-3 activity (a sign of activated apoptotic cells) and mRNA expressions of p53 (pro-apoptotic), bcl-2-like protein 4 (Bax) (pro-apoptotic) and B-cell lymphoma-2 (Bcl-2) (anti-apoptotic), were improved in IUGR piglets fed the NNI regimen. To test the hypothesis that improvements in intestinal development of IUGR piglets fed NNI might be mediated through circulating glucagon-like peptide-2 (GLP-2), GLP-2 was injected subcutaneously to IUGR piglets fed the RNI from day 8 to day 15 postnatal. Although the intestinal development of IUGR piglets fed the RNI regimen was suppressed compared with those fed the NNI regimen, an exogenous injection of GLP-2 was able to bring intestinal development to similar levels as NNI-fed IUGR piglets. Collectively, our results demonstrate that IUGR neonates that have NNI levels could improve intestinal function via the regulation of GLP-2.

  10. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  11. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    PubMed

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  12. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction

    PubMed Central

    Namkung, Wan; Yao, Zhen; Finkbeiner, Walter E.; Verkman, A. S.

    2011-01-01

    TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch-clamp, N-aroylaminothiazole “activators” (Eact) strongly increased Cl− current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl− currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl− conductance comparable to that induced transiently by Ca2+-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl− conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. PMID:21836025

  13. Intestinal Leiomyositis: A Cause of Chronic Intestinal Pseudo-Obstruction in 6 Dogs.

    PubMed

    Zacuto, A C; Pesavento, P A; Hill, S; McAlister, A; Rosenthal, K; Cherbinsky, O; Marks, S L

    2016-01-01

    Intestinal leiomyositis is a suspected autoimmune disorder affecting the muscularis propria layer of the gastrointestinal tract and is a cause of chronic intestinal pseudo-obstruction in humans and animals. To characterize the clinical presentation, histopathologic features, and outcome of dogs with intestinal leiomyositis in an effort to optimize treatment and prognosis. Six client-owned dogs. Retrospective case series. Medical records were reviewed to describe signalment, clinicopathologic and imaging findings, histopathologic diagnoses, treatment, and outcome. All biopsy specimens were reviewed by a board-certified pathologist. Median age of dogs was 5.4 years (range, 15 months-9 years). Consistent clinical signs included vomiting (6/6), regurgitation (2/6), and small bowel diarrhea (3/6). Median duration of clinical signs before presentation was 13 days (range, 5-150 days). Diagnostic imaging showed marked gastric distension with dilated small intestines in 4/6 dogs. Full-thickness intestinal biopsies were obtained in all dogs by laparotomy. Histopathology of the stomach and intestines disclosed mononuclear inflammation, myofiber degeneration and necrosis, and fibrosis centered within the region of myofiber loss in the intestinal muscularis propria. All dogs received various combinations of immunomodulatory and prokinetic treatment, antimicrobial agents, antiemetics, and IV fluids, but none of the dogs showed a clinically relevant improvement with treatment. Median survival was 19 days after diagnosis (range, 3-270 days). Intestinal leiomyositis is a cause of intestinal pseudo-obstruction and must be diagnosed by full-thickness intestinal biopsy. This disease should be considered in dogs with acute and chronic vomiting, regurgitation, and small bowel diarrhea. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Intestinal obstruction due to migration of a thermometer from bladder to abdominal cavity: a case report.

    PubMed

    Nie, Jing; Zhang, Bo; Duan, Yan-Chao; Hu, Yue-Hua; Gao, Xin-Ying; Gong, Jian; Cheng, Ming; Li, Yan-Qing

    2014-03-07

    Intraperitoneal foreign bodies such as retained surgical instruments can cause intestinal obstruction. However, intestinal obstruction due to transmural migration of foreign bodies has rarely been reported. Here, we report a case of intestinal obstruction due to a clinical thermometer which migrated from the bladder into the abdominal cavity. A 45-year-old man was admitted to our hospital with a one-year history of recurrent lower abdominal cramps. Two days before admission, the abdominal cramps aggravated. Intestinal obstruction was confirmed with upright abdominal radiography and computerized tomography scan which showed dilation of the small intestines and a thermometer in the abdominal cavity. Then laparotomy was performed. A scar was observed at the fundus of the bladder and a thermometer was adhering to the small bowels and mesentery which resulted in intestinal obstruction. Abdominal cramps were eliminated and defecation and flatus recovered soon after removal of the thermometer.

  15. Alleviation by garlic of antitumor drug-induced damage to the intestine.

    PubMed

    Horie, T; Awazu, S; Itakura, Y; Fuwa, T

    2001-03-01

    Antitumour drugs such as methotrexate (MTX) and 5-fluorouracil (5-FU) induce intestinal damage. This is a serious side effect of cancer chemotherapy. The present studies examined whether or not aged garlic extract (AGE) protects against damage from these antitumor drugs. Both drugs were administered orally for 4 or 5 d to rats fed a standard laboratory diet with and without 2% AGE. The small intestinal absorption of the poorly absorbable compound, fluorescein isothiocyanate--labeled dextran (FD-4; average molecular weight, 4400) was used to evaluate the damage to the intestine using the in vitro everted intestine technique and the in situ intestinal loop technique. FD-4 absorption increased in the antitumour drug-treated rats fed the diet without garlic. Interestingly, FD-4 absorption was depressed in rats fed the diet containing AGE. These results suggest that AGE may protect the small intestine of rats from antitumour drug-induced damage.

  16. Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats.

    PubMed

    Pérez-Berezo, Teresa; Franch, Angels; Ramos-Romero, Sara; Castellote, Cristina; Pérez-Cano, Francisco J; Castell, Margarida

    2011-05-01

    Previous studies have shown that a highly enriched cocoa diet affects both intestinal and systemic immune function in young rats. The aim of this study was to elucidate whether diets containing lower amounts of cocoa could also influence the systemic and intestinal humoral immune response. Fecal and serum samples were collected during the study and, at the end, intestinal washes were obtained and mesenteric lymph nodes and small-intestine walls were excised for gene expression assessment. IgA, IgM, IgG1, IgG2a, IgG2b and IgG2c concentrations were quantified in serum whereas S-IgA and S-IgM were determined in feces and intestinal washes. Animals receiving 5 and 10% cocoa for 3 wk showed no age-related increase in serum IgG1 and IgG2a concentrations, and IgG2a values were significantly lower than those in reference animals. Serum IgM was also decreased by the 10% cocoa diet. The 5 and 10% cocoa diets dramatically reduced intestinal S-IgA concentration and modified the expression of several genes involved in IgA synthesis. A diet containing 2% cocoa had no effect on most of the studied variables. The results demonstrate the downregulatory effect of a 5% or higher cocoa diet on the systemic and intestinal humoral immune response in adult rats. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine.

    PubMed

    Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F

    2012-04-01

    Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  18. Diabetes regulates fructose absorption through thioredoxin-interacting protein.

    PubMed

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-10-11

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake.

  19. Butyric acid in functional constipation.

    PubMed

    Pituch, Aleksandra; Walkowiak, Jarosław; Banaszkiewicz, Aleksandra

    2013-01-01

    Butyric acid, a short-chain fatty acid, is a major energy source for colonocytes. It occurs in small quantities in some foods, and in the human body, it is produced in the large intestine by intestinalkacteria. This production can be reduced in some cases, for which butyric acid supplementation may be useful. So far, the use of butyric acid in the treatment of gastrointestinal disorders has been limited because of its specific characteristics such as its rancid smell and rapid absorption in the upper gastrointestinal tract. In the Polish market, sodium butyrate has been recently made available, produced by the modern technology of microencapsulation, which allows the active substance to reach the small and large intestines, where butyrate easily dissociates into butyric acid. This article presents the potential beneficial mechanisms of action of butyric acid in defecation disorders, which are primarily associated with reductions in pain during defecation and inflammation in the gut, among others.

  20. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors.

    PubMed

    How-Kit, Alexandre; Dejeux, Emelyne; Dousset, Bertrand; Renault, Victor; Baudry, Marion; Terris, Benoit; Tost, Jörg

    2015-01-01

    Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.

  1. Intestinal atresia and ectopia in a bovine fetus.

    PubMed

    Lejeune, B; Miclard, J; Stoffel, M H; Meylan, M

    2011-07-01

    A 2-year-old Red Holstein cow was presented with uterine torsion at 235 days of pregnancy. The fetus extracted by cesarean section had weak vital signs and marked abdominal distention. An edematous pouch that contained tubular structures with peristaltic activity was associated with the umbilical cord. Because of poor prognosis, both dam and fetus were euthanized. At necropsy, the fetus had severe distention of the forestomachs, abomasum, and proximal small intestine; absence of distal small intestine, cecum, and proximal colon; atresia of the 2 blind ends of the intestine; and atrophy of distal colon and rectum. The tubular structures associated with the umbilical cord were identified as the segments of intestine that were absent in the fetus. Intestinal atresia combined with ectopia may be caused by local ischemia during temporary herniation and rotation of the fetal gut into the extraembryonic coelom. The close connection between ectopic intestine and amniotic sheath of the umbilical cord in this case may have facilitated vascularization and allowed development and viability of the ectopic intestine. © The Authors 2011

  2. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity

    PubMed Central

    Cheng, Leo K; Komuro, Rie; Austin, Travis M; Buist, Martin L; Pullan, Andrew J

    2007-01-01

    One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach. PMID:17457969

  3. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine.

    PubMed

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-05-26

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.

  4. Anisakiasis presenting to the ED: clinical manifestations, time course, hematologic tests, computed tomographic findings, and treatment.

    PubMed

    Takabayashi, Takeshi; Mochizuki, Toshiaki; Otani, Norio; Nishiyama, Kei; Ishimatsu, Shinichi

    2014-12-01

    The prevalence of anisakiasis is rare in the United States and Europe compared with that in Japan, with few reports of its presentation in the emergency department (ED). This study describes the clinical, hematologic, computed tomographic (CT) characteristics, and treatment in gastric and small intestinal anisakiasis patients in the ED. We retrospectively reviewed the data of 83 consecutive anisakiasis presentations in our ED between 2003 and 2012. Gastric anisakiasis was endoscopically diagnosed with the Anisakis polypide. Small intestinal anisakiasis was diagnosed based on both hematologic (Anisakis antibody) and CT findings. Of the 83 cases, 39 had gastric anisakiasis and 44 had small intestinal anisakiasis based on our diagnostic criteria. Although all patients had abdominal pain, the gastric anisakiasis group developed symptoms significantly earlier (peaking within 6 hours) than the small intestinal anisakiasis group (peaking within 48 hours), and fewer patients with gastric anisakiasis needed admission therapy (5% vs 57%, P<.01). All patients in the gastric and 40 (91%) in the small intestinal anisakiasis group had a history of raw seafood ingestion. Computed tomographic findings revealed edematous wall thickening in all patients, and ascites and phlegmon of the mesenteric fat were more frequently observed in the small intestinal anisakiasis group. In the ED, early and accurate diagnosis of anisakiasis is important to treat and explain to the patient, and diagnosis can be facilitated by a history of raw seafood ingestion, evaluation of the time-to-symptom development, and classic CT findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes.

    PubMed

    Köhler, Eleonore S; Sankaranarayanan, Selvakumari; van Ginneken, Christa J; van Dijk, Paul; Vermeulen, Jacqueline L M; Ruijter, Jan M; Lamers, Wouter H; Bruder, Elisabeth

    2008-11-10

    Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS), ornithine aminotransferase (OAT), argininosuccinate synthetase (ASS), arginase-1 (ARG1), arginase-2 (ARG2), and nitric-oxide synthase (NOS) were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.

  6. The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes

    PubMed Central

    Köhler, Eleonore S; Sankaranarayanan, Selvakumari; van Ginneken, Christa J; van Dijk, Paul; Vermeulen, Jacqueline LM; Ruijter, Jan M; Lamers, Wouter H; Bruder, Elisabeth

    2008-01-01

    Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS), ornithine aminotransferase (OAT), argininosuccinate synthetase (ASS), arginase-1 (ARG1), arginase-2 (ARG2), and nitric-oxide synthase (NOS) were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants. PMID:19000307

  7. Detection of Clostridium difficile toxins from the small intestine and cecum of rabbits with naturally acquired enterotoxemia.

    PubMed

    Perkins, S E; Fox, J G; Taylor, N S; Green, D L; Lipman, N S

    1995-08-01

    Four specific-pathogen-free rabbits with anorexia died peracutely; decreased fecal output, nasal exudate, and labored breathing were the only other clinical abnormalities observed in two of the rabbits before death. The animals, three juveniles and one adult, were on a standard polyclonal antibody production regimen and had received immunizations approximately 2 weeks before presentation. External examination revealed distended abdomen and perineal fecal staining. At necropsy the small intestine was distended with fluid, and the cecum was distended with chyme. The small intestines and cecum had marked serosal hyperemia. Anaerobic bacterial culture techniques were used to isolate Clostridium difficile from the small intestine (3/4) and cecum (2/4). In all cases C. difficile toxin B was detected at high titers (10(2) to > 10(5)) in the small intestine by cytotoxicity assay with HeLa 229 cell culture. In two of the four rabbits C. difficile was isolated, and cytotoxin titers were detected at 10(1) and 10(4) in the cecum of affected rabbits. Toxin B was neutralized with C. sordellii antiserum but not C. spiroforme antiserum. In addition, toxin A was detected in each of the cytotoxin B-positive samples by a commercial toxin A enzyme immunosorbent assay. In vitro production of toxins A and B was detected from each culture isolate after incubation in chopped meat broth. These cases are noteworthy because spontaneous (nonantibiotic-associated) C. difficile enterotoxemia has not been previously reported in rabbits. Also the toxins of clostridial organisms are usually documented in the cecum, not the small intestine, of rabbits.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity.

    PubMed

    Satoh, Takashi; Igarashi, Masaki; Yamada, Shogo; Takahashi, Natsuko; Watanabe, Kazuhiro

    2015-02-23

    It is said that black tea is effective against type 2 diabetes mellitus because it can help modulate postprandial hyperglycemia. However, the mechanism underlying its therapeutic and preventive effects on type 2 diabetes mellitus is unclear. In this study, we focused on the effect of black tea on the carbohydrate digestion and absorption process in the gastrointestinal tract. We examined whether black tea can modulate postprandial hyperglycemia. The freeze-dried powder of the aqueous extract of black tea leaves (JAT) was used for in vitro studies of α-amylase activity, α-glucosidase activity, and glucose uptake by glucose transporters in Caco-2 cells; ex vivo studies of small intestinal α-glucosidase activity; and in vivo studies of oral sugar tolerance in GK rats, an animal model of nonobese type 2 diabetes mellitus. Half maximal inhibitory concentration values indicated that JAT significantly reduced α-glucosidase activity, but weakly reduced α-amylase activity. Kinetic studies of rat small intestinal α-glucosidase activity revealed that the combination of JAT and the α-glucosidase inhibitor, acarbose, showed a mixed-type inhibition. JAT had no effect on the uptake of 2'-deoxy-d-glucose by glucose transporter 2 (GLUT2) and the uptake of α-methyl-d-glucose by sodium-dependent glucose transporter 1 (SGLT1). In the oral sucrose tolerance test in GK rats, JAT reduced plasma glucose levels in a dose-dependent manner compared with the control group. The hypoglycemic action of JAT was also confirmed: JAT, in combination with acarbose, produced a synergistic inhibitory effect on plasma glucose levels in vivo. In contrast to the oral sucrose tolerance test, JAT showed no effect in the oral glucose tolerance test. JAT was demonstrated to inhibit the degradation of disaccharides into monosaccharides by α-glucosidase in the small intestine. Thereby indirectly preventing the absorption of the dietary source of glucose mediated by SGLT1 and GLUT2 transporters localized at the apical side of enterocytes in the small intestine. The results indicate that black tea could be useful as a functional food in the dietary therapy for borderline type 2 diabetes mellitus that could modulate postprandial hyperglycemia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. L-Theanine Administration Modulates the Absorption of Dietary Nutrients and Expression of Transporters and Receptors in the Intestinal Mucosa of Rats.

    PubMed

    Yan, Qiongxian; Tong, Haiou; Tang, Shaoxun; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe

    2017-01-01

    L-theanine has various advantageous functions for human health; whether or not it could mediate the nutrients absorption is unknown yet. The effects of L-theanine on intestinal nutrients absorption were investigated using rats ingesting L-theanine solution (0, 50, 200, and 400 mg/kg body weight) per day for two weeks. The decline of insulin secretion and glucose concentration in the serum was observed by L-theanine. Urea and high-density lipoprotein were also reduced by 50 mg/kg L-theanine. Jejunal and ileac basic amino acids transporters SLC7a1 and SLC7a9 , neutral SLC1a5 and SLC16a10 , and acidic SLC1a1 expression were upregulated. The expression of intestinal SGLT3 and GLUT5 responsible for carbohydrates uptake and GPR120 and FABP2 associated with fatty acids transport were inhibited. These results indicated that L-theanine could inhibit the glucose uptake by downregulating the related gene expression in the small intestine of rats. Intestinal gene expression of transporters responding to amino acids absorption was stimulated by L-theanine administration.

  10. Small Bowel Transplant

    PubMed Central

    2003-01-01

    EXECUTIVE SUMMARY Objective The Medical Advisory Secretariat undertook a review of the evidence on the effectiveness and cost-effectiveness of small bowel transplant in the treatment of intestinal failure. Small Bowel Transplantation Intestinal failure is the loss of absorptive capacity of the small intestine that results in an inability to meet the nutrient and fluid requirements of the body via the enteral route. Patients with intestinal failure usually receive nutrients intravenously, a procedure known as parenteral nutrition. However, long-term parenteral nutrition is associated with complications including liver failure and loss of venous access due to recurrent infections. Small bowel transplant is the transplantation of a cadaveric intestinal allograft for the purpose of restoring intestinal function in patients with irreversible intestinal failure. The transplant may involve the small intestine alone (isolated small bowel ISB), the small intestine and the liver (SB-L) when there is irreversible liver failure, or multiple organs including the small bowel (multivisceral MV or cluster). Although living related donor transplant is being investigated at a limited number of centres, cadaveric donors have been used in most small bowel transplants. The actual transplant procedure takes approximately 12-18 hours. After intestinal transplant, the patient is generally placed on prophylactic antibiotic medication and immunosuppressive regimen that, in the majority of cases, would include tacrolimus, corticosteroids and an induction agent. Close monitoring for infection and rejection are essential for early treatment. Medical Advisory Secretariat Review The Medical Advisory Secretariat undertook a review of 35 reports from 9 case series and 1 international registry. Sample size of the individual studies ranged from 9 to 155. As of May 2001, 651 patients had received small bowel transplant procedures worldwide. According to information from the Canadian Organ Replacement Register, a total of 27 small bowel transplants were performed in Canada from 1988 to 2002. Patient Outcomes The experience in small bowel transplant is still limited. International data showed that during the last decade, patient survival and graft survival rates from SBT have improved, mainly because of improved immunosuppression therapy and earlier detection and treatment of infection and rejection. The Intestinal Transplant Registry reported 1-year actuarial patient survival rates of 69% for isolated small bowel transplant, 66% for small bowel-liver transplant, and 63% for multivisceral transplant, and a graft survival rate of 55% for ISB and 63% for SB-L and MV. The range of 1-year patient survival rates reported ranged from 33%-87%. Reported 1-year graft survival rates ranged from 46-71%. Regression analysis performed by the International Transplant Registry in 1997 indicated that centres that have performed at least 10 small bowel transplants had better patient and graft survival rates than centres that performed less than 10 transplants. However, analysis of the data up to May 2001 suggests that the critical mass of 10 transplants no longer holds true for transplants after 1995, and that good results can be achieved at any multiorgan transplant program with moderate patient volumes. The largest Centre reported an overall 1-year patient and graft survival rate of 72% and 64% respectively, and 5-year patient and graft survival of 48% and 40% respectively. The overall 1-year patient survival rate reported for Ontario pediatric small bowel transplants was 61% with the highest survival rate of 83% for ISB. The majority (70% or higher) of surviving small bowel transplant recipients was able to wean from parenteral nutrition and meet all caloric needs enterally. Some may need enteral or parenteral supplementation during periods of illness. Growth and weight gain in children after ISB were reported by two studies while two other studies reported a decrease in growth velocity with no catch-up growth. The quality of life after SBT was reported to be comparable to that of patients on home enteral nutrition. A study found that while the parents of pediatric SBT recipients reported significant limitations in the physical and psychological well being of the children compared with normal school children, the pediatric SBT recipients themselves reported a quality of life similar to other school children. Survival was found to be better in transplants performed since 1991. Patient survival was associated with the type of organ transplanted with better survival in isolated small bowel recipients. Adverse Events Despite improvement in patient and graft survival rates, small bowel transplant is still associated with significant mortality and morbidity. Infection with subsequent sepsis is the leading cause of death (51.3%). Bacterial, fungal and viral infections have all been reported. The most common viral infections are cytomegalorvirus (18-40%) and Epstein-Barr virus. The latter often led to ß-cell post-transplant lymphoproliferative disease. Graft rejection is the second leading cause of death after SBT (10.4%) and is responsible for 57% of graft removal. Acute rejection rates ranged from 51% to 83% in the major programs. Most of the acute rejection episodes were mild and responded to steroids and OKT3. Antilymphocyte therapy was needed in up to 27% of patients. Isolated small bowel allograft and positive lymphocytotoxic cross-match were found to be risk factors for acute rejection. Post-transplant lymphoproliferative disease occurred in 21% of SBT recipients and accounted for 7% of post-transplant mortality. The frequency was higher in pediatric recipients (31%) and in adults receiving composite visceral allografts (25%). The allograft itself is often involved in post-transplant lymphoproliferative disease. The reported incidence of host versus graft disease varied widely among centers (0% - 14%). Surgical complications were reported to occur in 85% of SB-L transplants and 25% of ISB transplants. Reoperations were required in 45% - 66% of patients in a large series and the most common reason for reoperation was intra-abdominal abscess. The median cost of intestinal transplant in the US was reported to be approximately $275,000US (approximately CDN$429,000) per case. A US study concluded that based on the US cost of home parenteral nutrition, small bowel transplant could be cost-effective by the second year after the transplant. Conclusion There is evidence that small bowel transplant can prolong the life of some patients with irreversible intestinal failure who can no longer continue to be managed by parenteral nutrition therapy. Both patient survival and graft survival rates have improved with time. However, small bowel transplant is still associated with significant mortality and morbidity. The outcomes are inferior to those of total parenteral nutrition. Evidence suggests that this procedure should only be used when total parenteral nutrition is no longer feasible. PMID:23074441

  11. Allograft Fascia Lata as an Augmentation Device for Musculoskeletal Repairs

    DTIC Science & Technology

    2008-12-01

    TissueMend® ( fetal bovine dermis), Restore® (porcine small intestine submucosa), CuffPatch™ (crosslinked porcine small intestine submucosa) and...transfers, grafting lacerated muscles, periosteal coverage and wound healing. Providing an effective treatment for musculoskeletal conditions such

  12. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness.

    PubMed

    Miller, Asaf; Deane, Adam M; Plummer, Mark P; Cousins, Caroline E; Chapple, Lee-Anne S; Horowitz, Michael; Chapman, Marianne J

    2017-03-01

    To evaluate the effect of exogenous glucagonlike peptide-1 (GLP-1) on small intestinal glucose absorption and blood glucose concentrations during critical illness. A prospective, blinded, placebo-controlled, cross-over, randomised trial in a mixed medical-surgical adult intensive care unit, with 12 mechanically ventilated critically ill patients, who were suitable for receiving small intestinal nutrient. On consecutive days, in a randomised order, participants received intravenous GLP-1 (1.2 pmol/ kg/min) or placebo (0.9% saline) as a continuous infusion over 270 minutes. After 6 hours of fasting, intravenous infusions of GLP-1 or placebo began at T = -30 min (in which T = time), with the infusion maintained at a constant rate until study completion at T = 240 min. At T = 0 min, a 100 mL bolus of mixed liquid nutrient meal (1 kcal/mL) containing 3 g of 3-O-methyl-D-gluco-pyranose (3-OMG), a marker of glucose absorption, was administered directly into the small intestine, via a post-pyloric catheter, over 6 minutes. Blood samples were taken at regular intervals for the measurement of plasma glucose and 3-OMG concentrations. Intravenous GLP-1 attenuated initial small intestinal glucose absorption (mean area under the curve [AUC] 0-30 for 3-OMG: GLP-1 group, 4.4 mmol/L/min [SEM, 0.9 mmol/L/min] v placebo group, 6.5 mmol/L/min [SEM, 1.0 mmol/L/min]; P = 0.01), overall small intestinal glucose absorption (mean AUC 0-240 for 3-OMG: GLP-1, 68.2 mmol/L/ min [SEM, 4.7 mmol/L/min] v placebo, 77.7 mmol/L/min [SEM, 4.4 mmol/lLmin]; P = 0.02), small intestinal glucose absorption and overall blood glucose concentration (mean AUC 0-240 for blood glucose: GLP-1, 2062 mmol/L/min [SEM, 111 mmol/L/min] v placebo 2328 mmol/L/min [SEM, 145 mmol/L/min]; P = 0.005). Short-term administration of exogenous GLP-1 reduces small intestinal glucose absorption for up to 4 hours during critical illness. This is likely to be an additional mechanism for the glucose-lowering effect of this agent.

  13. Constipation (For Kids)

    MedlinePlus

    ... on to the small intestine (say: in-TES-tin), then the large intestine (or bowels), and finally ... doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours Foundation, iStock, Getty Images, ...

  14. Enteroendocrine K and L cells in healthy and type 2 diabetic individuals.

    PubMed

    Jorsal, Tina; Rhee, Nicolai A; Pedersen, Jens; Wahlgren, Camilla D; Mortensen, Brynjulf; Jepsen, Sara L; Jelsing, Jacob; Dalbøge, Louise S; Vilmann, Peter; Hassan, Hazem; Hendel, Jakob W; Poulsen, Steen S; Holst, Jens J; Vilsbøll, Tina; Knop, Filip K

    2018-02-01

    Enteroendocrine K and L cells are pivotal in regulating appetite and glucose homeostasis. Knowledge of their distribution in humans is sparse and it is unknown whether alterations occur in type 2 diabetes. We aimed to evaluate the distribution of enteroendocrine K and L cells and relevant prohormone-processing enzymes (using immunohistochemical staining), and to evaluate the mRNA expression of the corresponding genes along the entire intestinal tract in individuals with type 2 diabetes and healthy participants. In this cross-sectional study, 12 individuals with type 2 diabetes and 12 age- and BMI-matched healthy individuals underwent upper and lower double-balloon enteroscopy with mucosal biopsy retrieval from approximately every 30 cm of the small intestine and from seven specific anatomical locations in the large intestine. Significantly different densities for cells positive for chromogranin A (CgA), glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, peptide YY, prohormone convertase (PC) 1/3 and PC2 were observed along the intestinal tract. The expression of CHGA did not vary along the intestinal tract, but the mRNA expression of GCG, GIP, PYY, PCSK1 and PCSK2 differed along the intestinal tract. Lower counts of CgA-positive and PC1/3-positive cells, respectively, were observed in the small intestine of individuals with type 2 diabetes compared with healthy participants. In individuals with type 2 diabetes compared with healthy participants, the expression of GCG and PYY was greater in the colon, while the expression of GIP and PCSK1 was greater in the small intestine and colon, and the expression of PCSK2 was greater in the small intestine. Our findings provide a detailed description of the distribution of enteroendocrine K and L cells and the expression of their products in the human intestinal tract and demonstrate significant differences between individuals with type 2 diabetes and healthy participants. NCT03044860.

  15. Tachykinin receptors in the small intestine of the cane toad (Bufo marinus): a radioligand binding and functional study.

    PubMed

    Burcher, E; Warner, F J

    1998-06-01

    In this study, we have used radioligand binding and functional techniques to investigate tachykinin receptors in the small intestine of the cane toad Bufo marinus. The radioligand [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P (selective at mammalian NK-1 receptors) showed no specific binding. Specific binding of [125I]Bolton-Hunter substance P ([125I]BHSP) was saturable, of high affinity (Kd 0.3 nM) and was inhibited by SP (IC50 0.64 nM) > ranakinin approximately neurokinin A (NKA) > or = SP(5-11) > or = neuropeptide gamma > or = scyliorhinin II > scyliorhinin I > or = [Sar9]-SP > or = neurokinin B approximately physalaemin approximately carassin > SP(7-11) approximately eledoisin > or = SP(4-11) approximately SP(6-11). Binding was also inhibited by Gpp[NH]p > or = GTPgammaS > App[NH]p, indicating a G-protein coupled receptor. The order of potency of tachykinins and analogues in contracting the isolated lower small intestine was carassin (EC50 1.4 nM) > eledoisin approximately SP > or = physalaemin > or = ranakinin > SP(6-11) > scyliorhinin II > or = neuropeptide gamma > neurokinin B approximately NKA approximately scyliorhinin I > or = SP(4-11) > or = SP(5-11) > [Sar9]SP > SP(7-11). In both studies, the selective mammalian NK-1, NK-2 and NK-3 receptor agonists [Sar9,Met(O2)11]SP, [Lys5,Me-Leu9,Nle10]NKA(4-10) and senktide were weak or ineffective. There was a strong positive correlation between the pD2 and pIC50 values for mammalian tachykinins and analogues (r = 0.907), but not for the non-mammalian tachykinins, which were all full agonists but variable binding competitors. [Sar9,Met(O2)11]-SP(pD2 5.7) was approximately 25-fold less potent as an agonist than [Sar9]SP, which was itself 25-fold weaker than SP. Responses to SP were significantly reduced (n = 8, P<0.001) by the antagonist [D-Arg1,D-Trp7,9,Leu11]-SP (spantide; 1 microM). Highly selective NK-1 receptor antagonists including CP 99994 and GR 82334 (both 1 microM) were ineffective in both functional and binding studies. Tetrodotoxin (1 microM) did not inhibit contractile responses to SP, NKA and senktide. In summary, this study has shown the presence of one or more tachykinin receptor in the toad intestine. The binding site recognised by [125I]BHSP prefers SP and ranakinin. This toad "NK-1-like receptor" differs from the mammalian NK-1 receptor in having a low affinity for all mammalian NK-1 selective ligands, including antagonists. For some non-mammalian peptides, their high potency as contractile agonists relative to their poor binding affinity suggests the existence of other tachykinin receptors in the toad small intestine.

  16. Protective effect of lafutidine, a histamine H2 receptor antagonist, against loxoprofen-induced small intestinal lesions in rats.

    PubMed

    Amagase, Kikuko; Ochi, Akimu; Sugihara, Tetsuya; Kato, Shinichi; Takeuchi, Koji

    2010-05-01

    We examined the effect of lafutidine, a histamine H(2) receptor antagonist with a mucosal protective action mediated by capsaicin-sensitive sensory neurons (CSN), on intestinal lesions produced by loxoprofen administration in rats. Animals were given loxoprofen (10-100 mg/kg p.o.) and killed 24 h later. Lafutidine (10 and 30 mg/kg), cimetidine (100 mg/kg) or famotidine (30 mg/kg) was given twice p.o. at 0.5 h before and 6 h after loxoprofen. Omeprazole (100 mg/kg) was given p.o. once 0.5 h before. Ampicillin (800 mg/kg) was given p.o. twice at 24 h and 0.5 h before loxoprofen, while 16,16-dimethyl prostaglandin E(2) (dmPGE(2); 0.01 mg/kg) was given i.v. twice at 5 min before and 6 h after. Loxoprofen dose-dependently produced hemorrhagic lesions in the small intestine, accompanied by invasion of enterobacteria and increased inducible nitric oxide synthase (iNOS) expression as well as myeloperoxidase activity in the mucosa. The ulcerogenic response to loxoprofen (60 mg/kg) was significantly prevented by lafutidine (30 mg/kg), similar to dmPGE(2) and ampicillin, and the effect of lafutidine was totally attenuated by ablation of CSN. Neither cimetidine, famotidine nor omeprazole had a significant effect against these lesions. Lafutidine alone increased mucus secretion and reverted the decreased mucus response to loxoprofen, resulting in suppression of bacterial invasion and iNOS expression. In addition, loxoprofen downregulated Muc2 expression, and this response was totally reversed by lafutidine mediated by CSN. Lafutidine protects the small intestine against loxoprofen-induced lesions, essentially mediated by the CSN, and this effect may be functionally associated with increased Muc2 expression/mucus secretion, an important factor in the suppression of bacterial invasion.

  17. Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation.

    PubMed

    Couturier-Maillard, A; Froux, N; Piotet-Morin, J; Michaudel, C; Brault, L; Le Bérichel, J; Sénéchal, A; Robinet, P; Chenuet, P; Jejou, S; Dumoutier, L; Renauld, J C; Iovanna, J; Huber, S; Quesniaux, Vfj; Sokol, H; Ryffel, B

    2018-05-04

    Upon oral infection with Toxoplasma gondii cysts (76 K strain) tachyzoites are released into the intestinal lumen and cross the epithelial barrier causing damage and acute intestinal inflammation in C57BL/6 (B6) mice. Here we investigated the role of microbiota and IL-22 in T.gondii-induced small intestinal inflammation. Oral T.gondii infection in B6 mice causes inflammation with IFNγ and IL-22 production. In IL-22-deficient mice, T.gondii infection augments the Th1 driven inflammation. Deficiency in either IL-22bp, the soluble IL-22 receptor or Reg3γ, an IL-22-dependent antimicrobial lectin/peptide, did not reduce inflammation. Under germ-free conditions, T.gondii-induced inflammation was reduced in correlation with parasite load. But intestinal inflammation is still present in germ-free mice, at low level, in the lamina propria, independently of IL-22 expression. Exacerbated intestinal inflammation driven by absence of IL-22 appears to be independent of IL-22 deficiency associated-dysbiosis as similar inflammation was observed after fecal transplantation of IL-22 -/- or WT microbiota to germ-free-WT mice. Our results suggest cooperation between parasite and intestinal microbiota in small intestine inflammation development and endogenous IL-22 seems to exert a protective role independently of its effect on the microbiota. In conclusion, IL-22 participates in T.gondii induced acute small intestinal inflammation independently of microbiota and Reg3γ.

  18. Intrauterine growth retardation promotes fetal intestinal autophagy in rats via the mechanistic target of rapamycin pathway

    PubMed Central

    WANG, Chao; ZHANG, Ruiming; ZHOU, Le; HE, Jintian; HUANG, Qiang; SIYAL, Farman A; ZHANG, Lili; ZHONG, Xiang; WANG, Tian

    2017-01-01

    Intrauterine growth retardation (IUGR) impairs fetal intestinal development, and is associated with high perinatal morbidity and mortality. However, the mechanism underlying this intestinal injury is largely unknown. We aimed to investigate this mechanism through analysis of intestinal autophagy and related signaling pathways in a rat model of IUGR. Normal weight (NW) and IUGR fetuses were obtained from primiparous rats via ad libitum food intake and 50% food restriction, respectively. Maternal serum parameters, fetal body weight, organ weights, and fetal blood glucose were determined. Intestinal apoptosis, autophagy, and the mechanistic target of rapamycin (mTOR) signaling pathway were analyzed. The results indicated that maternal 50% food restriction reduced maternal serum glucose, bilirubin, and total cholesterol and produced IUGR fetuses, which had decreased body weight; blood glucose; and weights of the small intestine, stomach, spleen, pancreas, and kidney. Decreased Bcl-2 and increased Casp9 mRNA expression was observed in IUGR fetal intestines. Analysis of intestinal autophagy showed that the mRNA expression of WIPI1, MAP1LC3B, Atg5, and Atg14 was also increased, while the protein levels of p62 were decreased in IUGR fetuses. Compared to NW fetuses, IUGR fetuses showed decreased mTOR protein levels and enhanced mRNA expression of ULK1 and Beclin1 in the small intestine. In summary, the results indicated that maternal 50% food restriction on gestational days 10–21 reduced maternal serum glucose, bilirubin, and total cholesterol contents, and produced IUGR fetuses that had low blood glucose and reduced small intestine weight. Intestinal injury of IUGR fetuses caused by maternal food restriction might be due to enhanced apoptosis and autophagy via the mTOR signaling pathway. PMID:28855439

  19. Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features.

    PubMed

    Margolskee, Elizabeth; Jobanputra, Vaidehi; Lewis, Suzanne K; Alobeid, Bachir; Green, Peter H R; Bhagat, Govind

    2013-01-01

    Enteropathy-associated T-cell lymphomas (EATL) are rare and generally aggressive types of peripheral T-cell lymphomas. Rare cases of primary, small intestinal CD4+ T-cell lymphomas with indolent behavior have been described, but are not well characterized. We describe morphologic, phenotypic, genomic and clinical features of 3 cases of indolent primary small intestinal CD4+ T-cell lymphomas. All patients presented with diarrhea and weight loss and were diagnosed with celiac disease refractory to a gluten free diet at referring institutions. Small intestinal biopsies showed crypt hyperplasia, villous atrophy and a dense lamina propria infiltrate of small-sized CD4+ T-cells often with CD7 downregulation or loss. Gastric and colonic involvement was also detected (n = 2 each). Persistent, clonal TCRβ gene rearrangement products were detected at multiple sites. SNP array analysis showed relative genomic stability, early in disease course, and non-recurrent genetic abnormalities, but complex changes were seen at disease transformation (n = 1). Two patients are alive with persistent disease (4.6 and 2.5 years post-diagnosis), despite immunomodulatory therapy; one died due to bowel perforation related to large cell transformation 11 years post-diagnosis. Unique pathobiologic features warrant designation of indolent small intestinal CD4+ T-cell lymphoma as a distinct entity, greater awareness of which would avoid misdiagnosis as EATL or an inflammatory disorder, especially celiac disease.

  20. THE EFFECT OF IONIZING RADIATION ON ACETYLCHOLINE METABOLISM IN MACACA- RHESUS MONKEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, N.N.; Korneeva, N.V.; Shaternikov, V.A.

    1961-11-01

    In macaca-rhesus monkeys the normal content of free acetylcholine in the mucosa of the small intestine was higher, as it was in brain and liver, than bound acetyl choline. The total cholinesterase activity and, particularly, the activity of acetylcholinesterase and non-specific cholinesterase in control monkeys is highest in brain, followed by intestinal mucosa and liver. One to three days after gamma -irradiation of the monkey at a dose of 600 r the amount of free and bound acetylcholine in the mucosa of the small intestine increased, while it decreased in liver. The total cholinesterase activity in the mucosa of themore » small intestine during this period increased, in general because of the increase in the activity of non-specific cholinesterase. In the liver the increase in total cholinesterase activity also occurred because of an increase in non-specific cholinesterase activity, but was less clear-cut and occurred later (the third day after irradiation). In animals irradiated 2 to 3 years before the investigation, an increased concentration of free acetylcholine in brain, liver, and mucosa of the small intestine was noted; but there were no ehanges in bound acetylcholine. The total cholinesterase activity increased in liver as a result of acetyl cholinesterase increase and non-specific enzymes, and in mucosa of the small intestine only as a result of acetylcholinesterase activity. In brain the total cholinesterase activity decreased as a consequence of a decrease in acetylcholinesterase activity. (auth)« less

  1. Ginger Extract and [6]-Gingerol Inhibit Contraction of Rat Entire Small Intestine.

    PubMed

    Chatturong, Usana; Kajsongkram, Tanwarat; Tunsophon, Sakara; Chanasong, Rachanee; Chootip, Krongkarn

    2018-01-01

    This study aims to investigate the effect of oral administration and the direct action of ginger extract or [6]-gingerol on small intestinal contractility. The direct effect of 10 minutes preincubation of ginger ethanolic extract (10, 100 and 300 μg/mL) or [6]-gingerol (1, 30, and 100 μM) on 0.01 to 30 μM ACh-induced contractions of all parts of the small intestine isolated from normal rats was investigated using the organ bath technique. For in vivo study, the rats were orally administered with extract (10, 20, and 100 mg/kg/d) or [6]-gingerol (2 mg/kg/d) for 7 days, followed by determining the contractile responses to ACh of rat isolated duodenum, jejunum, and ileum and their histology were assessed. Direct application of the extract or [6]-gingerol attenuated ACh-induced contractions in each small intestinal segment, E max was reduced by 40% to 80%, while EC 50 increased 3- to 8-fold from control. Similarly, in the in vivo study ACh-induced contractions were reduced in all parts of the small intestine isolated from rats orally treated with ginger extract (20 and 100 mg/kg/d) or [6]-gingerol (2 mg/kg/d). E max decreased 15% to 30%, while EC 50 increased 1- to 3-fold compared to control. No discernable changes in the histology of intestinal segments were detectable. Thus, the results support the clinical application of ginger for disorders of gastrointestinal motility.

  2. Expression and regulation of the chemokine CXCL16 in Crohn’s disease and models of intestinal inflammation

    PubMed Central

    Diegelmann, Julia; Seiderer, Julia; Niess, Jan-Hendrik; Haller, Dirk; Göke, Burkhard; Reinecker, Hans-Christian; Brand, Stephan

    2010-01-01

    Background/Aims CXCL16 mediates adhesion and phagocytosis of both Gram-negative and Gram-positive bacteria and is a strong chemoattractant for CXCR6+ T cells. In this study, we determined the so far unknown expression and signal transduction of the novel CXCL16-CXCR6 chemokine-ligand receptor system in intestinal inflammation in vivo and in vitro. Methods CXCL16 mRNA was measured by quantitative PCR in human colonic biopsies of patients with Crohn’s disease (CD) as well as in the TNFΔARE mouse model of ileitis and in murine cytomegalovirus (MCMV)-induced colitis. CXCL16 serum levels were analyzed by ELISA. CXCL16-induced signal transduction was analyzed in IEC with phospho-specific antibodies for MAP kinases and Akt. Results We found an inverse expression pattern of CXCL16 and CXCR6 with highest CXCL16 mRNA levels in the proximal murine small intestine and highest CXCR6 mRNA expression in the distal colon. CXCL16 and CXCR6 mRNA were expressed in colorectal cancer (CRC)-derived IEC lines. CRC-expressed CXCR6 was functional as demonstrated by CXCL16-induced MAP kinase and Akt activation. Intestinal CXCL16 expression was elevated in the TNFΔARE mouse model of ileitis and in MCMV-induced colitis (p<0.05) and in the sera and colons of patients with CD (p<0.05), where its expression correlated highly with CXCR6 and IL-8 levels (r=0.85 and 0.89, respectively). Conclusion CRC-derived IEC express the functional CXCL16 receptor CXCR6. CXCL16 mRNA and protein expression is up-regulated in intestinal inflammation in vitro and in CD patients, suggesting an important role for this chemokine in intestinal inflammation. PMID:20848509

  3. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents

    PubMed Central

    Wehner, Sven; Behrendt, Florian F; Lyutenski, Boris N; Lysson, Mariola; Bauer, Anthony J; Hirner, Andreas; Kalff, Jörg C

    2007-01-01

    Background Abdominal surgery results in a molecular and cellular inflammatory response in the intestine, leading to postoperative ileus. It was hypothesised that resident macrophages within the intestinal muscularis have an important role in this local inflammation. Aims To investigate whether chemical or genetic depletion of resident muscularis macrophages would lead to a reduction in the local inflammation and smooth‐muscle dysfunction. Methods Two rodent models were used to deplete and inactivate macrophages: (1) a rat model in which resident macrophages were depleted by chlodronate liposomes; (2) a model of mice with osteopetrosis mice, completely lacking the resident muscularis macrophages, used as an additional genetic approach. Animals with normal or altered intestinal macrophages underwent surgical intestinal manipulation. The inflammatory response was investigated by quantitative reverse transcriptase‐polymerase chain reaction for mRNA of MIP‐1α, interleukin (IL)1β, IL6, intracellular adhesion molecule 1 (ICAM‐1) and monocyte chemotractant protein 1 (MCP)‐1 in the isolated small bowel muscularis. In addition, muscularis whole mounts were used for histochemical and immunohistochemical analysis to quantify leucocyte infiltration and detect cytokine expression. Subsequently, in vitro muscle contractility and in vivo gastrointestinal transit were measured. Results Both models resulted in markedly decreased expression of MIP‐1α, IL1β, IL6, ICAM‐1 and MCP‐1 after manipulation compared with controls. In addition to this decrease in inflammatory mediators, recruitment of leucocytes into the muscularis was also diminished. Macrophage‐altered animals had near normal in vitro jejunal circular muscle function and gastrointestinal transit despite surgical manipulation. Conclusions Resident intestinal muscularis macrophages are initially involved in inflammatory responses resulting in postoperative ileus. Depletion and inactivation of the muscularis macrophage network prevents postoperative ileus. PMID:16809419

  4. A Celiac Diasease Associated lncRNA Named HCG14 Regulates NOD1 Expression in Intestinal Cells.

    PubMed

    Santin, Izortze; Jauregi-Miguel, Amaia; Velayos, Teresa; Castellanos-Rubio, Ainara; Garcia-Etxebarria, Koldo; Romero-Garmendia, Irati; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Castaño, Luis; Bilbao, Jose Ramón

    2018-03-29

    To identify additional celiac disease associated loci in the Major Histocompatibility Complex independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level. We performed a high resolution SNP genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84. MHC genotyping revealed two associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells. We have sucessfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HGC14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.

  5. Unraveling the Rat Intestine, Spleen and Liver Genome-Wide Transcriptome after the Oral Administration of Lavender Oil by a Two-Color Dye-Swap DNA Microarray Approach

    PubMed Central

    Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Rakwal, Randeep; Shioda, Seiji

    2015-01-01

    The use of lavender oil (LO) – a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate – in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans) followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham), a total of 156 and 154 up (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, 174 and 66 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, and 222 and 322 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR) validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA), differentially expressed genes were functionally categorized by their Gene Ontology (GO) and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules) and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules), to be influenced by LO treatment in the small intestine, spleen and liver, respectively. These results are the first such inventory of genes that are affected by lavender essential oil (LO) in an animal model, forming the basis for further in-depth bioinformatics and functional analyses and investigation. PMID:26161641

  6. Depletion of enteric bacteria diminishes leukocyte infiltration following doxorubicin-induced small intestinal damage in mice.

    PubMed

    Carr, Jacquelyn S; King, Stephanie; Dekaney, Christopher M

    2017-01-01

    While enteric bacteria have been shown to play a critical role in other forms of intestinal damage, their role in mediating the response to the chemotherapeutic drug Doxorubicin (Doxo) is unclear. In this study, we used a mouse model of intestinal bacterial depletion to evaluate the role enteric bacteria play in mediating Doxo-induced small intestinal damage and, more specifically, in mediating chemokine expression and leukocyte infiltration following Doxo treatment. An understanding of this pathway may allow for development of intervention strategies to reduce chemotherapy-induced small intestinal damage. Mice were treated with (Abx) or without (NoAbx) oral antibiotics in drinking water for four weeks and then with Doxo. Jejunal tissues were collected at various time points following Doxo treatment and stained and analyzed for apoptosis, crypt damage and restitution, and macrophage and neutrophil number. In addition, RNA expression of inflammatory markers (TNFα, IL1-β, IL-10) and cytokines (CCL2, CC7, KC) was assessed by qRT-PCR. In NoAbx mice Doxo-induced damage was associated with rapid induction of apoptosis in jejunal crypt epithelium and an increase weight loss and crypt loss. In addition, we observed an increase in immune-modulating chemokines CCL2, CCL7 and KC and infiltration of macrophages and neutrophils. In contrast, while still positive for induction of apoptosis following Doxo treatment, Abx mice showed neither the overall weight loss nor crypt loss seen in NoAbx mice nor the increased chemokine expression and leukocyte infiltration. Enteric bacteria play a critical role in Doxo-induced small intestinal damage and are associated with an increase in immune-modulating chemokines and cells. Manipulation of enteric bacteria or the damage pathway may allow for prevention or treatment of chemotherapy-induced small intestinal damage.

  7. The occurance of Pterygodermatites nycticebi (Nematoda: Rictulariidae) in a captive slow loris, Nycticebus coucang

    USGS Publications Warehouse

    Tuggle, B.N.; Beehler, B.A.

    1984-01-01

    Adult and immature rictulariid nematodes were recovered at necropsy from the small intestine of an adult slow loris, Nycticebus coucang, from the Milwaukee County Zoo in Wisconsin. The lumen of the entire small intestine was packed with more than 100 nematodes, the intestinal wall appeared thickened and the mucosal surface contained numerous petechial hemorrhagic foci. The cause of death was diagnosed as a septicemia and possible lupus erythematosis.

  8. Mucosal flora of the small intestine and the effect of preoperative antibiotics.

    PubMed Central

    Elmes, M E; Howells, C H; Lowe, G H

    1984-01-01

    Samples of mucosa from the small intestines of 100 patients undergoing intestinal surgery were examined bacteriologically. Sixty four patients had received chemotherapy, 12 for more than 24 h before operation. Most of the jejunal samples were sterile unless there was a carcinoma, previous surgery, or potential intestinal stasis. Ileal mucosa was more likely to contain intestinal organisms. Most of the strains isolated were sensitive in vitro to the antibiotics given in vivo, but short term treatment may not have allowed sufficient time for the treatment to have become effective. The findings suggest that antibiotics are not needed for most operations on the duodenum or jejunum but may be required for operations on the ileum. PMID:6501588

  9. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    PubMed

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. [Use of esophageal small balloon or papillary sphincter knife in the treatment of stent implantation 
for colorectal malignant obstruction].

    PubMed

    Xiao, Dinghua; Liu, Shaojun; Yan, Hanguang; Wang, Xiaoyan

    2018-05-28

    To explore the function of esophageal small balloon or papillary sphincter knife in the treatment of stent implantation for colorectal malignant obstruction, and to improve the success rate of colonic stent placement in such patients.
 Methods: A total of 49 patients with colorectal cancer complicated with almost complete obstruction or colorectal cancer were enrolled for this study. The esophageal small balloon or papillary sphincter knife was used in the guide wires. The guide wires gradually crossed the tumor gap and they were placed in the contralateral intestinal cavity with balloon progression. X-ray was then used to confirm whether the guide wire was inserted in the lesion intestinal cavity, and then the metal bare stent was inserted.
 Results: The guide wires was successfully inserted with conventional methods in these 49 cases, while they were also successfully placed the guide wire and the stent in the new way.
 Conclusion: For the patients with colorectal cancer complicated with complete obstruction or colorectal cancer located in obviously angled location, the use of esophageal small balloon or papillary sphincter knife can help the guide wire insert. They greatly improve the success rate of stent implantation.

  11. Intestinal adaptations to a combination of different diets with and without endurance exercise.

    PubMed

    Daniels, Janice L; Bloomer, Richard J; van der Merwe, Marie; Davis, Samantha L; Buddington, Karyl K; Buddington, Randal K

    2016-01-01

    Endurance athletes search for diet regimens that will improve performance and decrease gastrointestinal disturbances during training and events. Although the intestine can adapt to changes in the amount and composition of dietary inputs, the responses to the combination of endurance exercise and diet are poorly understood. We evaluated small intestinal dimensions and mucosal architecture and calculated the capacities of the entire small intestine to digest maltose and maltodextrin and absorb glucose in response to two different diet types; a western human diet and the Daniel Fast, a vegan style diet, and with moderate intensity endurance training or a no-exercise sedentary lifestyle for a 13 week period (n = 7 per group). The influences of diet and exercise, alone and in combination, were analyzed by analysis of variation. Rats fed the western diet gained more weight (P < 0.05) due to more fat mass (P < 0.05), with a similar response for the sedentary compared with the exercised rats in each diet group (P < 0.05). The Daniel Fast rats had longer and heavier intestines with deeper crypts with villi that were wider (P < 0.05), but not taller. Despite increased energetic demands, the exercised rats had shorter and lighter intestines with shorter villi (P < 0.05). Yet, the percentage of mucosa did not differ among groups. Total small intestinal activities for maltase and α-glucoamylase, and capacities for glucose absorption were similar regardless of diet or exercise. These findings indicate the structural responses of the small intestine to a vegan style diet are modified by exercise, but without altering the capacities of the brush border membrane to digest and absorb carbohydrates.

  12. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality.

    PubMed

    Lemme-Dumit, J M; Polti, M A; Perdigón, G; Galdeano, C Maldonado

    2018-01-29

    The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.

  13. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka

    2015-01-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  14. The absorption and first-pass metabolism of [14C]-1,3-dinitrobenzene in the isolated vascularly perfused rat small intestine.

    PubMed

    Adams, P C; Rickert, D E

    1996-11-01

    We tested the hypothesis that the small intestine is capable of the first-pass, reductive metabolism of xenobiotics. A simplified version of the isolated vascularly perfused rat small intestine was developed to test this hypothesis with 1,3-dinitrobenzene (1,3-DNB) as a model xenobiotic. Both 3-nitroaniline (3-NA) and 3-nitroacetanilide (3-NAA) were formed and absorbed following intralumenal doses of 1,3-DNB (1.8 or 4.2 mumol) to isolated vascularly perfused rat small intestine. Dose, fasting, or antibiotic pretreatment had no effect on the absorption and metabolism of 1,3-DNB in this model system. The failure of antibiotic pretreatment to alter the metabolism of 1,3-DNA indicated that 1,3-DNB metabolism was mammalian rather than microfloral in origin. All data from experiments initiated with lumenal 1,3-DNB were fit to a pharmacokinetic model (model A). ANOVA analysis revealed that dose, fasting, or antibiotic pretreatment had no statistically significant effect on the model-dependent parameters. 3-NA (1.5 mumol) was administered to the lumen of isolated vascularly perfused rat small intestine to evaluate model A predictions for the absorption and metabolism of this metabolite. All data from experiments initiated with 3-NA were fit to a pharmacokinetic model (model B). Comparison of corresponding model-dependent pharmacokinetic parameters (i.e. those parameters which describe the same processes in models A and B) revealed quantitative differences. Evidence for significant quantitative differences in the pharmacokinetics or metabolism of formed versus preformed 3-NA in rat small intestine may require better definition of the rate constants used to describe tissue and lumenal processes or identification and incorporation of the remaining unidentified metabolites into the models.

  15. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides.

    PubMed

    Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu

    2016-01-01

    Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.

  16. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.

    PubMed

    Chegeni, Mohammad; Amiri, Mahdi; Nichols, Buford L; Naim, Hassan Y; Hamaker, Bruce R

    2018-02-20

    Dietary starch is finally converted to glucose for absorption by the small intestine mucosal α-glucosidases (sucrase-isomaltase [SI] and maltase-glucoamylase), and control of this process has health implications. Here, the molecular mechanisms were analyzed associated with starch-triggered maturation and transport of SI. Biosynthetic pulse-chase in Caco-2 cells revealed that the high MW SI species (265 kDa) induced by maltose (an α-amylase starch digestion product) had a higher rate of early trafficking and maturation compared with a glucose-induced SI (245 kDa). The maltose-induced SI was found to have higher affinity to lipid rafts, which are associated with enhanced targeting to the apical membrane and higher activity. Accordingly, in situ maltose-hydrolyzing action was enhanced in the maltose-treated cells. Thus, starch digestion products at the luminal surface of small intestinal enterocytes are sensed and accelerate the intracellular processing of SI to enhance starch digestion capacity in the intestinal lumen.-Chegeni, M., Amiri, M., Nichols, B. L., Naim, H. Y., Hamaker, B. R. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.

  17. Characterization of naturally developing small intestinal bacterial overgrowth in 16 German shepherd dogs.

    PubMed

    Willard, M D; Simpson, R B; Fossum, T W; Cohen, N D; Delles, E K; Kolp, D L; Carey, D P; Reinhart, G A

    1994-04-15

    Sixteen German Shepherd Dogs were found, via quantitative microbial culture of intestinal fluid samples, to have small intestinal bacterial overgrowth (IBO) over an 11-month period. All dogs were deficient in serum IgA. Consistent clinical signs suggestive of an alimentary tract disorder were not observed. Serum cobalamin determinations were not helpful in detecting IBO. Serum folate concentrations had variable sensitivity and specificity for detecting dogs from which we could culture > or = 1 x 10(5) bacterial/ml from intestinal fluid samples in the nonfed state. Histologic and intestinal mucosal cytologic examinations were not useful in detecting IBO. Substantial within-dog and between-dog variation was found in the numbers and species of bacteria in the intestines. The difficulty in diagnosing IBO, the variability in organisms found in individual dogs on repeated sampling, the likelihood that intestinal fluid microbial cultures failed to diagnose IBO in some dogs, and the potential of IBO to be clinically inapparent were the most important findings in this study.

  18. [Morphological changes of the intestine in experimental acute intestinal infection in the treatment of colloidal silver].

    PubMed

    Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N

    2012-06-01

    At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.

  19. Crossed-clip strangulation for the management of small intestinal polyps in patients with Peutz-Jeghers syndrome.

    PubMed

    Yano, Tomonori; Shinozaki, Satoshi; Yamamoto, Hironori

    2018-05-19

    Peutz-Jeghers syndrome is an autosomal dominant disorder with multiple hamartomatous polyps throughout the gastrointestinal tract. The clinical history of patients with Peutz-Jeghers syndrome usually includes multiple laparotomies to treat intestinal obstruction caused by polyps. The development of double-balloon enteroscopy enables endoscopic resection of polyps, even in the distal small intestine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection

    PubMed Central

    Yang, Bin; Feng, Lu; Wang, Fang; Wang, Lei

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective colonization of the large intestine. The presence of this pathway in all nine EHEC serotypes tested indicates that it is an important evolutionary strategy for EHEC. The pathway is incomplete in closely related small-intestinal enteropathogenic E. coli due to the lack of the Fur response to BirA. Mice fed with a biotin-rich diet show significantly reduced EHEC adherence, indicating that biotin might be useful to prevent EHEC infection in humans. PMID:25791315

  1. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

    PubMed

    Bevins, Charles L; Salzman, Nita H

    2011-05-01

    Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.

  2. Use of Methacrylic Acid-Containing Hydrogels to Increase Protein Transport Across the Intestinal Epithelium

    NASA Astrophysics Data System (ADS)

    Blanchette, James; Lopez, Jennifer; Park, Kinam; Peppas, Nicholas

    2002-03-01

    Oral protein delivery requires protection from the harsh environment of the stomach, release in the small intestine and passage from the intestinal lumen into the circulation. Hydrogels that swell in response to the pH change when passing from the stomach to the small intestine can accomplish the first two points. The ability to enhance the permeability of intestinal epithelial cells is currently under investigation. Methacrylic acid-containing hydrogels have shown the ability to bind calcium ions that decreases the concentration of free extracellular calcium for these epithelial cells. This change triggers a number of intracellular events including rearrangement of the cytoskeleton leading to increased permeability. Studies done on Caco-2 cells (human colon adenocarcinoma) measuring changes in transepithelial resistance are used to assess the effect of the polymer-cell interactions on the integrity of intestinal epithelial cell monolayers.

  3. Hepatic Adaptation Compensates Inactivation of Intestinal Arginine Biosynthesis in Suckling Mice

    PubMed Central

    Marion, Vincent; Sankaranarayanan, Selvakumari; de Theije, Chiel; van Dijk, Paul; Hakvoort, Theo B. M.; Lamers, Wouter H.; Köhler, Eleonore S.

    2013-01-01

    Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass) gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass fl and Villin-Cre mice. Unexpectedly, Ass fl/fl /VilCre tg/- mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice). Relative to control mice, citrulline production in the splanchnic region of Ass fl/fl /VilCre tg/- mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass fl/fl /VilCre tg/- mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2) and transport (Slc25a13, Slc25a15, and Slc3a2), whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver. PMID:23785515

  4. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Turley, Stephen D

    2017-07-01

    Esterified cholesterol (EC) and triglycerides, contained within lipoproteins taken up by cells, are hydrolysed by lysosomal acid lipase (LAL) in the late endosomal/lysosomal (E/L) compartment. The resulting unesterified cholesterol (UC) is transported via Niemann-Pick type C2 and C1 into the cytosolic compartment where it enters a putative pool of metabolically active cholesterol that is utilized in accordance with cellular needs. Loss-of-function mutations in LIPA, the gene encoding LAL, result in dramatic increases in tissue concentrations of EC, a hallmark feature of Wolman disease and cholesteryl ester storage disease (CESD). The lysosomal sequestration of EC causes cells to respond to a perceived deficit of sterol by increasing their rate of cholesterol synthesis, particularly in the liver. A similar compensatory response occurs with treatments that disrupt the enterohepatic movement of cholesterol or bile acids. Here we measured rates of cholesterol synthesis in vivo in the liver and small intestine of a mouse model for CESD given the cholesterol absorption inhibitor ezetimibe from weaning until early adulthood. Consistent with previous findings, this treatment significantly reduced the amount of EC sequestered in the liver (from 132.43±7.35 to 70.07±6.04mg/organ) and small intestine (from 2.78±0.21 to 1.34±0.09mg/organ) in the LAL-deficient mice even though their rates of hepatic and intestinal cholesterol synthesis were either comparable to, or exceeded those in matching untreated Lal -/- mice. These data reveal the role of intestinal cholesterol absorption in driving the expansion of tissue EC content and disease progression in LAL deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs

    PubMed Central

    Bauchart-Thevret, Caroline; Stoll, Barbara; Chacko, Shaji; Burrin, Douglas G.

    2009-01-01

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pigs were enterally fed a control or an SAA-free diet for 7 days, and then whole body methionine and cysteine kinetics were measured using an intravenous infusion of [1-13C;methyl-2H3]methionine and [15N]cysteine. Body weight gain and plasma methionine, cysteine, homocysteine, and taurine and total erythrocyte glutathione concentrations were markedly decreased (−46% to −85%) in SAA-free compared with control pigs. Whole body methionine and cysteine fluxes were reduced, yet methionine utilization for protein synthesis and methionine remethylation were relatively preserved at the expense of methionine transsulfuration, in response to SAA deficiency. Intestinal tissue concentrations of methionine and cysteine were markedly reduced and hepatic levels were maintained in SAA-free compared with control pigs. SAA deficiency increased the activity of methionine metabolic enzymes, i.e., methionine adenosyltransferase, methionine synthase, and cystathionine β-synthase, and S-adenosylmethionine concentration in the jejunum, whereas methionine synthase activity increased and S-adenosylmethionine level decreased in the liver. Small intestine weight and protein and DNA mass were lower, whereas liver weight and DNA mass were unchanged, in SAA-free compared with control pigs. Dietary SAA deficiency induced small intestinal villus atrophy, lower goblet cell numbers, and Ki-67-positive proliferative crypt cells in association with lower tissue glutathione, especially in the jejunum. We conclude that SAA deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. PMID:19293331

  6. Inhibitory effect and mechanism of acarbose combined with gymnemic acid on maltose absorption in rat intestine

    PubMed Central

    Luo, Hong; Wang, Le Feng; Imoto, Toshiaki; Hiji, Yasutake

    2001-01-01

    AIM: To compare the combinative and individual effect of acarbose and gymnemic acid (GA) on maltose absorption and hydrolysis in small intestine to determine whether nutrient control in diabetic care can be improved by combination of them. METHODS: The absorption and hydrolysis of maltose were studied by cyclic perfusion of intestinal loops in situ and motility of the intestine was recorded with the intestinal ring in vitro using Wistar rats. RESULTS: The total inhibitory rate of maltose absorption was improved by the combination of GA (0.1 g/L-1.0 g/L) and acarbose (0.1 mmol/L-2.0 mmol/L) throughout their effective duration (P < 0.05, U test of Mann-Whitney), although the improvement only could be seen at a low dosage during the first hour. With the combination, inhibitory duration of acarbose on maltose absorption was prolonged to 3 h and the inhibitory effect onset of GA was fastened to 15 min. GA suppressed the intestinal mobility with a good correlation (r = 0.98) to the inhibitory effect of GA on maltose absorption and the inhibitory effect of 2 mmol/L (high dose) acarbose on maltose hydrolysis was dual modulated by 1 g/L GA in vivo indicating that the combined effects involved the functional alteration of intestinal barriers. CONCLUSION: There are augmented effects of acarbose and GA, which involve pre-cellular and paracellular barriers. Diabetic care can be improved by employing the combination. PMID:11819725

  7. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    PubMed Central

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  8. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish.

  9. Milk diets influence doxorubicin-induced intestinal toxicity in piglets.

    PubMed

    Shen, Rene L; Pontoppidan, Peter E L; Rathe, Mathias; Jiang, Pingping; Hansen, Carl Frederik; Buddington, Randal K; Heegaard, Peter M H; Müller, Klaus; Sangild, Per T

    2016-08-01

    Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated with doxorubicin (DOX) treatment. Five-day-old pigs were administered DOX (1 × 100 mg/m(2)) or an equivalent volume of saline (SAL) and either fed formula (DOX-Form, n = 9, or SAL-Form, n = 7) or bovine colostrum (DOX-Colos, n = 9, or SAL-Colos, n = 7). Pigs were euthanized 5 days after initiation of chemotherapy to assess markers of small intestinal function and inflammation. All DOX-treated animals developed diarrhea, growth deficits, and leukopenia. However, the intestines of DOX-Colos pigs had lower intestinal permeability, longer intestinal villi with higher activities of brush border enzymes, and lower tissue IL-8 levels compared with DOX-Form (all P < 0.05). DOX-Form pigs, but not DOX-Colos pigs, had significantly higher plasma C-reactive protein, compared with SAL-Form. Plasma citrulline was not affected by DOX treatment or diet. Thus a single dose of DOX induces intestinal toxicity in preweaned pigs and may lead to a systemic inflammatory response. The toxicity is affected by type of enteral nutrition with more pronounced GI toxicity when formula is fed compared with bovine colostrum. The results indicate that bovine colostrum may be a beneficial supplementary diet for children subjected to chemotherapy and subsequent intestinal toxicity. Copyright © 2016 the American Physiological Society.

  10. Proliferative enteritis in leopard geckos (Eublepharis macularius) associated with Cryptosporidium sp. infection.

    PubMed

    Terrell, Scott P; Uhl, Elizabeth W; Funk, Richard S

    2003-03-01

    Twenty-three leopard geckos (Eublepharis macularius) with various clinical histories of weight loss, anorexia, lethargy, and diarrhea were submitted either intact or as biopsy specimens to the University of Florida Anatomic Pathology Service. Gross necropsy findings in the intact geckos included marked reduction of subcutaneous adipose tissue stores at the tail base and mild thickening and reddening of the small intestine. Histologic examination revealed Cryptosporidium sp. infection associated with hyperplasia and mononuclear inflammation of the small intestine in all geckos. Parasites and lesions were only rarely observed in the stomach and large intestine of geckos. The histologic and ultrastructural lesions in the small intestine of leopard geckos infected with Cryptosporidium sp. have not been well characterized previously. This report implicates Cryptosporidium sp. as the cause of disease in the geckos and describes the range of histologic lesions observed.

  11. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi

    PubMed Central

    Parker, Aimee; Maclaren, Oliver J.; Fletcher, Alexander G.; Muraro, Daniele; Kreuzaler, Peter A.; Byrne, Helen M.; Maini, Philip K.; Watson, Alastair J. M.; Pin, Carmen

    2017-01-01

    The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. PMID:27811059

  12. Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2004-03-01

    Glutamine is an important energy source in intestinal mucosa, the small intestine is the major organ of glutamine uptake and metabolism and plays an important role in the maintenance of whole body glutamine homeostasis. The purpose of this clinical study is to observe the protection effects of enteral supplement with glutamine granules on intestinal mucosal barrier function in severe burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-85%) were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). Glutamine granules 0.5 g/kg were supplied orally for 14 days in Gln group, and the same dosage of placebo were given for 14 days in B group. The plasma level of glutamine, endotoxin and the activity of diamine oxidase (DAO), as well as intestinal mucosal permeability were determined. The results showed that the levels of plasma endotoxin, activity and urinary lactulose and mannitol (L/M) ratio in all patients were significant higher than that of normal control. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 microM/l versus 447.63 +/- 132.28 microM/l, P < 0.01). On the other hand, the levels of plasma DAO activity and urinary L/M ratio in Gln group were lower than those in B group. In addition, the wound healing was better and hospital stay days were reduced in the Gln group (46.59 +/- 12.98 days versus 55.68 +/- 17.36 days, P < 0.05). These results indicated that glutamine granules taken orally could abate the degree of intestine injury, lessen intestinal mucosal permeability, ameliorate wound healing and reduce hospital stay.

  13. A unique role for autophagy and Atg16L1 in Paneth cells in murine and human intestine

    PubMed Central

    Cadwell, Ken; Liu, John; Brown, Sarah L.; Miyoshi, Hiroyuki; Loh, Joy; Lennerz, Jochen; Kishi, Chieko; KC, Wumesh; Carrero, Javier A.; Hunt, Steven; Stone, Christian; Brunt, Elizabeth M.; Xavier, Ramnik J.; Sleckman, Barry P.; Li, Ellen; Mizushima, Noboru; Stappenbeck, Thaddeus S.; Virgin, Herbert W.

    2008-01-01

    Susceptibility to Crohn's disease (CD), a complex inflammatory disease involving the small intestine, is controlled by up to 32 loci1. One CD risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG162. It is not known how Atg16L1 or autophagy contributes to intestinal biology or CD pathogenesis. To address these questions we generated and characterized mice that are hypomorphic for Atg16L1 protein expression, and validated conclusions based on studies in these mice by analyzing intestinal tissues that we collected from CD patients carrying the CD risk allele of ATG16L1. We show that Atg16L1 is a bona fide autophagy protein. Within the ileal epithelium, both Atg16L1 and a second essential autophagy protein Atg5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell which functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment3. Atg16L1 and Atg5-deficient Paneth cells exhibited striking abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to Atg16L1-deficient Paneth cells including increased expression of genes involved in PPAR signaling and lipid metabolism, acute phase reactants, as well as two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, CD patients homozygous for the ATG16L1 CD risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy protein-deficient mice and expressed increased levels of leptin protein. Thus, Atg16L1, and likely the process of autophagy, play their role within the intestinal epithelium of mice and CD patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells. PMID:18849966

  14. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    PubMed Central

    2012-01-01

    Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question. PMID:22726358

  15. Diabetes regulates fructose absorption through thioredoxin-interacting protein

    PubMed Central

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-01-01

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake. DOI: http://dx.doi.org/10.7554/eLife.18313.001 PMID:27725089

  16. Diagnosis and management of small intestinal bacterial overgrowth.

    PubMed

    Bohm, Matthew; Siwiec, Robert M; Wo, John M

    2013-06-01

    Small intestinal bacterial overgrowth (SIBO) can result from failure of the gastric acid barrier, failure of small intestinal motility, anatomic alterations, or impairment of systemic and local immunity. The current accepted criteria for the diagnosis of SIBO is the presence of coliform bacteria isolated from the proximal jejunum with >10(5) colony-forming units/mL. A major concern with luminal aspiration is that it is only one random sampling of the small intestine and may not always be representative of the underlying microbiota. A new approach to examine the underlying microbiota uses rapid molecular sequencing, but its clinical utilization is still under active investigation. Clinical manifestations of SIBO are variable and include bloating, flatulence, abdominal distention, abdominal pain, and diarrhea. Severe cases may present with nutrition deficiencies due to malabsorption of micro- and macronutrients. The current management strategies for SIBO center on identifying and correcting underlying causes, addressing nutrition deficiencies, and judicious utilization of antibiotics to treat symptomatic SIBO.

  17. Culture-Independent Analysis of Indomethacin-Induced Alterations in the Rat Gastrointestinal Microbiota

    PubMed Central

    Dalby, Andrew B.; Frank, Daniel N.; St. Amand, Allison L.; Bendele, Alison M.; Pace, Norman R.

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for a variety of inflammatory conditions; however, the benefits of this class of drugs are accompanied by deleterious side effects, most commonly gastric irritation and ulceration. NSAID-induced ulceration is thought to be exacerbated by intestinal microbiota, but previous studies have not identified specific microbes that contribute to these adverse effects. In this study, we conducted a culture-independent analysis of ∼1,400 bacterial small-subunit rRNA genes associated with the small intestines and mesenteric lymph nodes of rats treated with the NSAID indomethacin. This is the first molecular analysis of the microbiota of the rat small intestine. A comparison of clone libraries and species-specific quantitative PCR results from rats treated with indomethacin and untreated rats revealed that organisms closely related to Enterococcus faecalis were heavily enriched in the small intestine and mesenteric lymph nodes of the treated rats. These data suggest that treatment of NSAID-induced ulceration may be facilitated by addressing the microbiological imbalances. PMID:17021222

  18. Effect of biopolymer encapsulation on the digestibility of lipid and cholesterol oxidation products in beef during in vitro human digestion.

    PubMed

    Hur, Sun Jin; Lee, Seung Yuan; Lee, Seung-Jae

    2015-01-01

    In this study, beef patties were encapsulated with 3% chitosan, pectin, onion powder, or green tea powder and the beef patties were then passed through an in vitro human digestion model. The total lipid digestibility was lowest (p<0.05) in beef patties encapsulated with chitosan and pectin after digestion in the small intestine. Thiobarbituric acid reactive substance (TBARS) values were significantly lower (p<0.05) for beef patties encapsulated with chitosan and pectin, when compared with the control, after digestion in the small intestine. In contrast, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity was highest (p<0.05) in beef patties encapsulated with onion powder and green tea powder after digestion in the small intestine. The total cholesterol oxidation product (COP) content was significantly lower (p<0.05) in beef patties encapsulated with biopolymers than in the control after digestion in the small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids

    PubMed Central

    Di Rienzi, Sara C; Jacobson, Juliet; Kennedy, Elizabeth A; Bell, Mary E; Shi, Qiaojuan; Waters, Jillian L; Lawrence, Peter; Brenna, J Thomas; Britton, Robert A; Walter, Jens

    2018-01-01

    Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance. PMID:29580380

  20. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    PubMed

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  1. SipA Activation of Caspase-3 Is a Decisive Mediator of Host Cell Survival at Early Stages of Salmonella enterica Serovar Typhimurium Infection

    PubMed Central

    McIntosh, Anne; Meikle, Lynsey M.; Ormsby, Michael J.; McCormick, Beth A.; Christie, John M.; Brewer, James M.; Roberts, Mark

    2017-01-01

    ABSTRACT Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased caspase-3 activation early in infection. This activation required a threshold level of SipA linked to multiplicity of infection and may be a limiting factor controlling bacterial numbers in infected macrophages. In polymorphonuclear leukocytes, SipA or other Salmonella pathogenicity island 1 effectors had no effect on induction of caspase-3 activation either alone or in the presence of whole bacteria. Tagging of SipA with the small fluorescent phiLOV tag, which can pass through the type three secretion system, allowed visualization and quantification of caspase-3 activation by SipA-phiLOV in macrophages. Additionally, SipA-phiLOV activation of caspase-3 could be tracked in the intestine through multiphoton laser scanning microscopy in an ex vivo intestinal model. This allowed visualization of areas where the intestinal epithelium had been compromised and demonstrated the potential use of this fluorescent tag for in vivo tracking of individual effectors. PMID:28630067

  2. Mucosal protective agents prevent exacerbation of NSAID-induced small intestinal lesions caused by antisecretory drugs in rats.

    PubMed

    Satoh, Hiroshi; Amagase, Kikuko; Takeuchi, Koji

    2014-02-01

    Antisecretory drugs such as histamine H₂-receptor antagonists and proton pump inhibitors are commonly used for the treatment of upper gastrointestinal mucosal lesions induced by nonsteroidal anti-inflammatory drugs (NSAIDs). However, it has recently been reported that these drugs exacerbate NSAID-induced small intestinal lesions in rats. Unfortunately, there are few effective agents for the treatment of this complication. We examined the effects of mucosal protective agents (MPAs) (misoprostol, irsogladine, and rebamipide) and mucin of porcine stomach on diclofenac-induced intestinal lesions and the exacerbation of the lesions by ranitidine or omeprazole. The effects of the drugs on intestinal motility and mucus distribution/content were also examined. Male Wistar rats (180-220 g) were used. Each drug was administered orally under fed conditions. Diclofenac (1-10 mg/kg) produced multiple lesions in the small intestine dose-dependently. Both ranitidine (30 mg/kg) and omeprazole (100 mg/kg) significantly increased the intestinal lesions induced by low doses (3 and 6 mg/kg) of diclofenac. Misoprostol (0.03-0.3 mg/kg), irsogladine (3-30 mg/kg), and rebamipide (30-300 mg/kg), as well as mucin (30-300 mg/kg) inhibited the formation of intestinal lesions caused by a high dose (10 mg/kg) of diclofenac alone and prevented the exacerbation of diclofenac-induced lesions by antisecretory drugs. Diclofenac (10 mg/kg) markedly increased the intestinal motility and decreased the mucosal mucus, and the decrease of mucus was significantly inhibited by the MPAs. These results indicate the usefulness of the MPAs for the treatment of intestinal lesions induced by NSAIDs alone or by coadministration with antisecretory drugs, and suggest that mucus plays an important role in the protection of intestinal mucosa by the MPAs.

  3. Bile Acid-regulated Peroxisome Proliferator-activated Receptor-α (PPARα) Activity Underlies Circadian Expression of Intestinal Peptide Absorption Transporter PepT1/Slc15a1*

    PubMed Central

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-01-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  4. Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs

    PubMed Central

    Paim, Francine C.; Kandasamy, Sukumar; Alhamo, Moyasar A.; Fischer, David D.; Langel, Stephanie N.; Deblais, Loic; Kumar, Anand; Chepngeno, Juliet; Shao, Lulu; Huang, Huang-Chi; Candelero-Rueda, Rosario A.; Rajashekara, Gireesh

    2017-01-01

    ABSTRACT Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children. PMID:28261667

  5. Intestinal disposition of quercetin and its phase-II metabolites after oral administration in healthy volunteers.

    PubMed

    Chalet, Clément; Rubbens, Jari; Tack, Jan; Duchateau, Guus S; Augustijns, Patrick

    2018-05-15

    Quercetin is one of the main dietary flavonoids and undergoes a substantial intestinal phase-II metabolism. Quercetin conjugates have been detected in plasma and in urine, but their presence in the small intestine has not been assessed. This study aimed to investigate the intestinal metabolism and metabolite excretion of quercetin by the human small intestinal wall after oral dosing. Six healthy volunteers were given a capsule of 500 mg of quercetin with 240 ml of water. Duodenal fluids were collected using the intraluminal sampling technique for 4 h and analysed by LC-MS/MS. Phase-II metabolites of quercetin were detected and quantified in aspirated intestinal fluids. Metabolites appeared almost immediately after administration, indicating an intestinal metabolism and apical excretion into the lumen. Quercetin-3'-O-glucuronide was found to be the main intestinal metabolite. Our results could not conclude on the enterohepatic recycling of quercetin or its metabolites, although several individual profiles showed distinctive peaks. This study highlights the intestinal metabolism and excretion of quercetin and its conjugates in humans and gives insights into the relevant concentrations which should be used to investigate potential food-drug interactions in vitro. © 2018 Royal Pharmaceutical Society.

  6. Breast Milk Enhances Growth of Enteroids: An Ex Vivo Model of Cell Proliferation.

    PubMed

    Lanik, Wyatt E; Xu, Lily; Luke, Cliff J; Hu, Elise Z; Agrawal, Pranjal; Liu, Victoria S; Kumar, Rajesh; Bolock, Alexa M; Ma, Congrong; Good, Misty

    2018-02-15

    Human small intestinal enteroids are derived from the crypts and when grown in a stem cell niche contain all of the epithelial cell types. The ability to establish human enteroid ex vivo culture systems are important to model intestinal pathophysiology and to study the particular cellular responses involved. In recent years, enteroids from mice and humans are being cultured, passaged, and banked away for future use in several laboratories across the world. This enteroid platform can be used to test the effects of various treatments and drugs and what effects are exerted on different cell types in the intestine. Here, a protocol for establishing primary stem cell-derived small intestinal enteroids derived from neonatal mice and premature human intestine is provided. Moreover, this enteroid culture system was utilized to test the effects of species-specific breast milk. Mouse breast milk can be obtained efficiently using a modified human breast pump and expressed mouse milk can then be used for further research experiments. We now demonstrate the effects of expressed mouse, human, and donor breast milk on the growth and proliferation of enteroids derived from neonatal mice or premature human small intestine.

  7. Distribution of immunoglobulin G antibody secretory cells in small intestine of Bactrian camels (Camelus bactrianus).

    PubMed

    Zhang, Wang-Dong; Wang, Wen-Hui; Jia, Shuai

    2015-08-25

    To explore the morphological evidence of immunoglobulin G (IgG) participating in intestinal mucosal immunity, 8 healthy adult Bactrian camels used. First, IgG was successfully isolated from their serum and rabbit antibody against Bactrian camels IgG was prepared. The IgG antibody secretory cells (ASCs) in small intestine were particularly observed through immumohistochemical staining, then after were analyzed by statistical methods. The results showed that the IgG ASCs were scattered in the lamina propria (LP) and some of them aggregated around of the intestinal glands. The IgG ASCs density was the highest from middle segment of duodenum to middle segment of jejunum, and then in ended segment of jejunum and initial segment of ileum, the lowest was in initial segment of duodenum, in middle and ended segment of ileum. It was demonstrated that the IgG ASCs mainly scattered in the effector sites of the mucosal immunity, though the density of IgG ASCs was different in different segment of small intestine. Moreover, this scatted distribution characteristic would provide a morphology basis for research whether IgG form a full-protection and immune surveillance in mucosal immunity homeostasis of integral intestine.

  8. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging.

    PubMed

    Schiller, C; Fröhlich, C-P; Giessmann, T; Siegmund, W; Mönnikes, H; Hosten, N; Weitschies, W

    2005-11-15

    The gastrointestinal transit of sequentially administered capsules was investigated in relation to the availability of fluid along the intestinal lumen by magnetic resonance imaging. Water-sensitive magnetic resonance imaging was performed on 12 healthy subjects during fasting and 1 h after a meal. Specifiable non-disintegrating capsules were administered at 7, 4 and 1 h prior to imaging. While food intake reduced the mean fluid volumes in the small intestine (105 +/- 72 mL vs. 54 +/- 41 mL, P < 0.01) it had no significant effect on the mean fluid volumes in the colon (13 +/- 12 mL vs. 18 +/- 26 mL). The mean number of separated fluid pockets increased in both organs after meal (small intestine: 4 vs. 6, P < 0.05; large intestine: 4 vs. 6, P < 0.05). The distribution of capsules between the small and large intestine was strongly influenced by food (colon: 3 vs. 17 capsules, P < 0.01). The results show that fluid is not homogeneously distributed along the gut, which likely contributes to the individual variability of drug absorption. Furthermore, transport of fluid and solids through the ileocaecal valve is obviously initiated by a meal-induced gastro-ileocaecal reflex.

  9. Effect of prostaglandin on indomethacin-induced increased intestinal permeability in man.

    PubMed

    Bjarnason, I; Smethurst, P; Clark, P; Menzies, I; Levi, J; Peters, T

    1989-01-01

    This study examines whether NSAID induced disruption of small intestinal integrity is preventable by concomitant prostaglandin administration, and whether prostaglandins themselves interfere with intestinal permeability and absorption. Twelve subjects underwent testing following treatment as indicated: baseline, no treatment rioprostil, 300 micrograms, at -9 and -1 h indomethacin, 75 mg and 50 mg, at -9 and -1 h respectively rioprostil plus indomethacin, regimen as above. At 0800 h (0 h) subjects drink a solution containing 51CrEDTA 100 microCi, L-rhamnose 0.5 g, D-xylose 0.5 g and 3-O-methyl-glucose 0.2 g; this is followed by a 5-h urine collection. The amount of test substance in the urine reflects non-mediated intercellular and transcellular permeability, and passive and active carrier mediated transport systems, respectively. Permeation of L-rhamnose, D-xylose and 3-O-methyl-glucose is unaffected by rioprostil and/or indomethacin. Indomethacin significantly increases intestinal permeability to 51CrEDTA; coadministration of rioprostil, however, significantly decreases this detrimental effect of indomethacin. These findings suggest that prostaglandins are essential for maintaining small intestinal integrity in man and lend further support to the suggestion that NSAIDs damage the small intestine by reducing mucosal prostaglandin synthesis.

  10. Identification of cells expressing OLFM4 and LGR5 mRNA by in situ hybridization in the yolk sac and small intestine of embryonic and early post-hatch chicks.

    PubMed

    Zhang, H; Wong, E A

    2018-02-01

    The chicken yolk sac (YS) and small intestine are essential for nutrient absorption during the pre-hatch and post-hatch periods, respectively. Absorptive enterocytes and secretory cells line the intestinal villi and originate from stem cells located in the intestinal crypts. Similarly, in the YS, there are absorptive and secretory cells that presumably originate from a stem cell population. Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) and olfactomedin 4 (Olfm4) are 2 widely used markers for intestinal stem cells. The objective of this study was to map the distribution of putative stem cells expressing LGR5 and OLFM4 mRNA in the chicken small intestine from the late embryonic period to early post hatch and the YS during embryogenesis. At embryonic d 11, 13, 15, 17, and 19, the YS was collected (n = 3), and small intestine was collected at embryonic d 19, d of hatch (doh), and d 1, 4, and 7 post hatch (n = 3). Cells expressing OLFM4 and LGR5 mRNA were identified by in situ hybridization. In the YS, cells expressing only LGR5 and not OLFM4 mRNA were localized to the vascular endothelial cells lining the blood vessels. In the small intestine, cells in the intestinal crypt expressed both LGR5 and OLFM4 mRNA. Staining for OLFM4 mRNA was more intense than LGR5 mRNA, demonstrating that Olfm4 is a more robust marker for stem cells than Lgr5. At embryonic d 19 and doh, cells staining for OLFM4 mRNA were already present in the rudimentary crypts, with the greatest staining in the duodenal crypts. The intensity of OLFM4 mRNA staining increased from doh to d 7 post hatch. Dual label staining at doh for the peptide transporter PepT1 and Olfm4 revealed a population of cells above the crypts that did not express Olfm4 or PepT1 mRNA. These cells are likely progenitor transit amplifying cells. Thus, avians and mammals share similarity in the ontogeny of stem cells in the intestinal crypts. © 2017 Poultry Science Association Inc.

  11. Transmural Intestinal Wall Permeability in Severe Ischemia after Enteral Protease Inhibition

    PubMed Central

    Altshuler, Angelina E.; Lamadrid, Itze; Li, Diana; Ma, Stephanie R.; Kurre, Leena; Schmid-Schönbein, Geert W.; Penn, Alexander H.

    2014-01-01

    In intestinal ischemia, inflammatory mediators in the small intestine's lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases) and apoptosis contribute to the increased transmural permeability of the intestine's wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein) in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP) inhibitors (doxycycline, GM 6001), and serine protease inhibitor (tranexamic acid) in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation) for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid) did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen across the wall and enteral proteolytic inhibition attenuates tissue breakdown. These combined interventions ameliorate lesion formation in the small intestine after hemorrhagic shock. PMID:24805256

  12. Structural Studies of the Intestinal α-Glucosidases, Maltase-glucoamylase and Sucrase-isomaltase.

    PubMed

    Rose, David R; Chaudet, Marcia M; Jones, Kyra

    2018-06-01

    Maltase-glucoamylase and sucrase-isomaltase are enzymes in the brush-border membrane of the small intestinal lumen responsible for the breakdown of postamylase starch polysaccharides to release monomeric glucose. As such, they are critical players in healthy nutrition and their malfunction can lead to severe disorders. This review covers investigations of the structures and functions of these enzymes. Each consists of 2 enzyme domains of the glycoside hydrolase family GH31 classification, yet with somewhat differing enzymatic properties. Crystallographic structures of 3 of the domains have been published. Insights into substrate binding and specificity will be discussed, along with future lines of inquiry related to the enzymes' roles in disease and potential avenues for therapeutics.

  13. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats

    PubMed Central

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-01

    AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463

  14. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats.

    PubMed

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-14

    To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14(th) day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.

  15. Post-transcriptional regulation of breast cancer resistance protein after intestinal ischemia-reperfusion.

    PubMed

    Ogura, Jiro; Kobayashi, Masaki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2008-05-01

    Breast cancer resistance protein (BCRP), the product of the ABCG2 gene, is a recently identified ATP binding cassette half-transporter. BCRP is expressed in a variety of tumor cells and many normal human tissues. In the small intestine, BCRP can limit the influx and facilitate the efflux to prevent intracellular accumulation of BCRP substrates. Ischemia-reperfusion (I/R) induces the release of reactive oxygen species, and organs are severely damaged by I/R. It has been shown that the expression of transporters was altered in the organ after I/R. The present study was undertaken to clarify the expression of BCRP after intestinal I/R. We showed that the expression level of Bcrp was significantly decreased at 1 h after I/R. Bcrp mRNA level was not altered at 1 h after I/R. These results suggest that Bcrp expression was regulated by a post-transcriptional regulation mechanism after intestinal I/R. Bcrp mRNA level was increased at 24 h after I/R, and the expression level of Bcrp protein was of the same level or slightly increased compared with sham operated-rats. Bcrp was slightly located at the intestinal membrane at 24 h after intestinal I/R. These results suggested that Bcrp was not translocated to the intestinal membrane after intestinal I/R. There is little information on post-transcriptional regulation compared with information on transcriptional regulation. In this study, it was shown that Bcrp expression is regulated by post-transcriptional regulation after intestinal I/R. These results of this study may provide important information for further studies aimed at revealing the biological function of Bcrp.

  16. Functional amino acids in nutrition and health.

    PubMed

    Wu, Guoyao

    2013-09-01

    The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

  17. L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats.

    PubMed

    Vanhaecke, T; Aubert, P; Grohard, P-A; Durand, T; Hulin, P; Paul-Gilloteaux, P; Fournier, A; Docagne, F; Ligneul, A; Fressange-Mazda, C; Naveilhan, P; Boudin, H; Le Ruyet, P; Neunlist, M

    2017-08-01

    Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn. © 2017 John Wiley & Sons Ltd.

  18. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.

    PubMed

    Li, Li; Somerset, Shawn

    2014-10-01

    Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  19. Prophylactic probiotics reduce cow's milk protein intolerance in neonates after small intestine surgery and antibiotic treatment presenting symptoms that mimics postoperative infection.

    PubMed

    Ezaki, Shoichi; Itoh, Kanako; Kunikata, Tetsuya; Suzuki, Keiji; Sobajima, Hisanori; Tamura, Masanori

    2012-03-01

    To examine occurrence of cow's milk protein intolerance (CMPI) in newborns that underwent small intestine surgery and the clinical profiles of those newborns with postoperative CMPI, and to evaluate the preventive effects of probiotics on CMPI. We retrospectively reviewed from 2000 to 2009, a total of 30 newborns required surgery on their small intestines. All of these patients had received antibiotics to prevent postoperative infection. Since 2005 we adopted a protocol of targeted probiotic therapy prophylaxis. Eighteen patients received probiotic therapy, while twelve did not. One infant among those eighteen patients and eight patients among those twelve developed CMPI, a significantly lower rate for the group with probiotic therapy than that without it (p < 0.001). Patients with positive cultures for gram positive and gram negative organisms increased in number before and after surgery but then decreased after probiotics treatment. Poor weight gain, gastrointestinal symptoms, and rise in C reactive protein (CRP) levels were observed in all of those nine CMPI patients. Specific IgE antibodies were elevated in four of the nine subjects, and total IgE levels were elevated in seven of them. All CMPI patients had increased level of CRP without proven infections. CMPI was induced in newborns after surgery on their small intestines and antibiotics treatment with presentation of symptoms that mimic postoperative infection. Development of CMPI in this population possibly involves disruption of intestinal flora. Administration of probiotics can reduce the incidence of CMPI after small intestine surgery. The elevated CRP level may be useful in the diagnosis of CMPI.

  20. Rehabilitative therapy of short bowel syndrome: experimental study and clinical trial.

    PubMed

    Li, N; Zhu, W; Guo, F; Ren, J; Li, Y; Wang, X; Li, J

    2000-08-01

    To investigate the effect of growth hormone on proliferative activity of the residual small intestinal mucosa after massive small intestinal resection and to evaluate the clinical efficacy of bowel rehabilitative therapy for short bowel syndrome. Small intestinal mucosa proliferative activity were compared in rats from control group (sham operation), short bowel group (80% small bowel resection) and growth hormone treatment group (80% small bowel resection + growth hormone 1 U x kg(-1) x d(-1) for 28 days) with the aid of histology image analysis, flow cytometric assay, immunohistochemistry analysis and RT-PCR assay. The nutritional status, D-xylose absorption and stool nitrogen output were observed in 9 consecutive parenteral nutrition dependent patients with short bowel syndrome after intestinal rehabilitative therapy (growth hormone 8 - 12 U x kg(-1) x d(-1) im + glutamine 0.6 g x kg(-1) x d(-1) iv + special diet) for 21 continuous days. Growth hormone administration significantly increased rat small intestinal mucosal villous height, mucosal thickness, proliferative index, and the expression of proliferating cell nuclear antigen and c-jun mRNA. Rehabilitative therapy increased the body weight, serum total protein and album in concentrations in patients. Their D-xylose absorption indices increased and fecal nitrogen losses decreased. Follow-up data showed that 6 of the 9 patients sustained on enteral nutrition. Growth hormone enhances the proliferative activity of the mucosal epithelium and bowel rehabilitative therapy may benefit the patients with short bowel syndrome.

  1. Effect of hypokinesia on invertase activity of the mucosa of the small intestine

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.

    1980-01-01

    The effect of prolonged hypokinesia on the enzyme activity of the middle portion of the small intestine was investigated. Eighty-four mongrel white male rats weighing 170-180 g were divided into two equal groups. The experimental group were maintained in single cages under 30 days of hypokinetic conditions and the control animals were maintained under ordinary laboratory conditions. It is concluded that rates of invertase formation and its inclusion in the composition if the cellular membrane, if judged by the enzyme activity studied in sections of the small intestine, are subject to phase changes in the course of prolonged hypokinesia.

  2. [Videocapsule endoscopy as a useful tool to diagnose primary intestinal lymphangiectasia].

    PubMed

    Vignes, S; Bellanger, J

    2007-03-01

    Primary intestinal lymphangiectasia (Waldmann's disease) lead to a protein-losing enteropathy due to lymph leak into intestinal tract. A 28-year-old woman presented a bilateral lower limb lymphedema. Laboratory examination showing lymphopenia, hypoalbuminemia, hypogammaglobulinemia suggested the diagnosis of primary intestinal lymphangiectasia. Gastroscopy was normal and second duodenum biopsies were negative. Videocapsule endoscopy gave evidence of intestinal lymphangiectasia of the small bowel. Videocapsule endoscopy may be proposed to confirm intestinal lymphangiectasia and to precise their localization when gastroscopy is not conclusive.

  3. Diagnosis, treatment and prognosis of small bowel volvulus in adults: A monocentric summary of a rare small intestinal obstruction.

    PubMed

    Li, Xiaohang; Zhang, Jialin; Li, Baifeng; Yi, Dehui; Zhang, Chengshuo; Sun, Ning; Lv, Wu; Jiao, Ao

    2017-01-01

    Small bowel volvulus is a rare disease, which is also challenging to diagnose. The aims of this study were to characterize the clinical and radiological features associated with small bowel volvulus and treatment and to identify risk factors for associated small bowel necrosis. Patients with small bowel volvulus who underwent operations from January 2001 to December 2015 at the First Affiliated Hospital of China Medical University (Shenyang, China) were reviewed. Clinical, surgical and postsurgical data were registered and analyzed. Thirty-one patients were included for analysis. Fifteen patients were female (48.4%), with an average age of 47.7 years (18-79 years). The clinical signs and symptoms were unspecific and resembled intestinal obstruction. Clinical examination revealed abdominal distension and/or diffuse tenderness with or without signs of peritonitis. The use of CT scans, X-rays or ultrasound did not differ significantly between patients. In 9 of 20 patients that received abdominal CT scans, "whirlpool sign" on the CT scan was present. Secondary small bowel volvulus was present in 58.1% of patients, and causes included bands (3), adhesion (7), congenital anomalies (7) and stromal tumor (1). Out of the 31 patients, 15 with gangrenous small bowel had to undergo intestinal resection. Intestinal gangrene was present with higher neutrophils count (p<0.0001) and the presence of bloody ascites (p = 0.004). Three patients died of septic shock (9.68%), and the recurrence rate was 3.23%. To complete an early and accurate diagnosis, a CT scan plus physical exam seems to be the best plan. After diagnosis, an urgent laparotomy must be performed to avoid intestinal necrosis and perforation. After surgery, more than 90% of the patients can expect to have a favorable prognosis.

  4. The application of polymerized porcine hemoglobin (pPolyHb) in the rat small bowel preservation.

    PubMed

    Huang, He; Ma, Jun; Zhu, Wenjin; Sun, Jinghui; Yan, Kunping; Song, Bo; Xue, Yuejin; Xin, Jianguo; Pan, Wencan; Zhu, Hongli; Chen, Chao

    2014-10-01

    Small bowel transplantation (SBTx) has become a standard clinical treatment for short bowel syndrome or irreversible intestinal function failure. Optimum preservation of the organ is essential for the success of transplantation. In this study, pPolyHb was used as an additive to hypertonic citrate adenine solution (HCA) to provide oxygen for rat small bowel transplant. Rat small bowels were preserved in HCA, HCA with pPolyHb, and University of Wisconsin solution (UW) for 12, 24, and 36 h, respectively. The results suggested that the preservation effect of HCA with pPolyHb was comparable with the UW solution, and more effective than the HCA solution.

  5. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity. © The Author(s) 2014.

  6. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

    PubMed

    Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans

    2011-11-01

    We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Redefining the functional roles of the gastrointestinal migrating motor complex and motilin in small bacterial overgrowth and hunger signaling.

    PubMed

    Deloose, Eveline; Tack, Jan

    2016-02-15

    During the fasting state the upper gastrointestinal tract exhibits a specific periodic migrating contraction pattern that is known as the migrating motor complex (MMC). Three different phases can be distinguished during the MMC. Phase III of the MMC is the most active of the three and can start either in the stomach or small intestine. Historically this pattern was designated to be the housekeeper of the gut since disturbances in the pattern were associated with small intestinal bacterial overgrowth; however, its role in the involvement of hunger sensations was already hinted in the beginning of the 20th century by both Cannon (Cannon W, Washburn A. Am J Physiol 29: 441-454, 1912) and Carlson (Carlson A. The Control of Hunger in Health and Disease. Chicago, IL: Univ. of Chicago Press, 1916). The discovery of motilin in 1973 shed more light on the control mechanisms of the MMC. Motilin plasma levels fluctuate together with the phases of the MMC and induce phase III contractions with a gastric onset. Recent research suggests that these motilin-induced phase III contractions signal hunger in healthy subjects and that this system is disturbed in morbidly obese patients. This minireview describes the functions of the MMC in the gut and its regulatory role in controlling hunger sensations. Copyright © 2016 the American Physiological Society.

  8. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    PubMed Central

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-01-01

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093

  9. Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation.

    PubMed

    Emgård, Johanna; Kammoun, Hana; García-Cassani, Bethania; Chesné, Julie; Parigi, Sara M; Jacob, Jean-Marie; Cheng, Hung-Wei; Evren, Elza; Das, Srustidhar; Czarnewski, Paulo; Sleiers, Natalie; Melo-Gonzalez, Felipe; Kvedaraite, Egle; Svensson, Mattias; Scandella, Elke; Hepworth, Matthew R; Huber, Samuel; Ludewig, Burkhard; Peduto, Lucie; Villablanca, Eduardo J; Veiga-Fernandes, Henrique; Pereira, João P; Flavell, Richard A; Willinger, Tim

    2018-01-16

    Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. [Impact of high-fat diet induced obesity on glucose absorption in small intestinal mucose in rats].

    PubMed

    Huang, Wei; Liu, Rui; Guo, Wei; Wei, Na; Qiang, Ou; Li, Xian; Ou, Yan; Tang, Chengwei

    2012-11-01

    To investigate whether high-fat diet induced obesity was associated with variation of glucose absorption in small intestinal mucosa of rats. 46 male SD rats were randomly divided into high-fat diet group (n = 31) and control group (n = 15), fed with high-fat diet and normal diet for 24 weeks, respectively. After 24 weeks, the rats were divided into obese (n = 16) and obesity-resistant group (n = 10) according to their body weight. Rats' body weight, abdominal fat weight, plasma glucose level, maltase, sucrase activity in small intestinal mucosa were measured. SGLT-1 expression in intestinal mucosa was detected by immunohistochemistry, RT-PCR and Western blot. Mean body weight, abdominal fat weight, fast plasma glucose levels, maltase activities and SGLT-1 protein expression in intestinal mucosa of obese rats were significantly higher than those in the control and obesity-resistant rats (P < 0.05). Sucrase activities in intestinal mucosa showed no statistical difference among the three groups (P > 0.05). The SGLT-1 mRNA expression in obese group was increased by 12.5% and 23% when compare with the control and obesity-resistant group, respectively. But the difference was not statistical significant (P > 0.05). High-fat diet induced obesity was associated with the increased intestinal maltase activity and expression of SGLT-1 in rats, the key molecule in glucose absorption.

  11. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats.

    PubMed

    Goldstein, Jorge; Morris, Winston E; Loidl, César Fabián; Tironi-Farinati, Carla; Tironi-Farinatti, Carla; McClane, Bruce A; Uzal, Francisco A; Fernandez Miyakawa, Mariano E

    2009-09-18

    Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.

  12. A new in vitro model using small intestinal epithelial cells to enhance infection of Cryptosporidium parvum

    EPA Science Inventory

    To better understand and study the infection of the protozoan parasite Cryptosporidium parvum, a more sensitive in vitro assay is required. In vivo, this parasite infects the epithelial cells of the microvilli layer in the small intestine. While cell infection models using colon,...

  13. Early postnatal diets affect the bioregional small intestine microbiome and ileal metabolome in neonatal piglets

    USDA-ARS?s Scientific Manuscript database

    Exclusive breastfeeding is known to be protective against gastrointestinal disorders and may modify gut development. Although the gut microbiome has been implicated, little is known about how early diet impacts the small intestinal microbiome, and how microbial shifts impact gut metabolic physiology...

  14. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment

    USDA-ARS?s Scientific Manuscript database

    UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...

  15. Identification of the Slow Wave of Small Bowel Myoelectrical Activity by Surface Recording

    DTIC Science & Technology

    2001-10-25

    recording of myoelectrical activity (Fig. 1), which underlies intestinal smooth muscle contraction . In effect, the relation between intestinal mechanical...Martínez-de-Juan, J. Saiz, M. Meseguer, J.L. Ponce “Small bowel motility: relationship between smooth muscle contraction and electroenterogram signal”, Med

  16. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis

    USDA-ARS?s Scientific Manuscript database

    Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two ma...

  17. Designing food structures for nutrition and health benefits.

    PubMed

    Norton, Jennifer E; Wallis, Gareth A; Spyropoulos, Fotis; Lillford, Peter J; Norton, Ian T

    2014-01-01

    In addition to providing specific sensory properties (e.g., flavor or textures), there is a need to produce foods that also provide functionality within the gastrointestinal (GI) tract, over and above simple nutrition. As such, there is a need to understand the physical and chemical processes occurring in the mouth, stomach, small intestine, and large intestine, in addition to the food structure-physiology interactions. In vivo techniques and in vitro models have allowed us to study and simulate these processes, which aids us in the design of food microstructures that can provide functionality within the human body. Furthermore, it is important to be aware of the health or nutritional needs of different groups of consumers when designing food structures, to provide targeted functionality. Examples of three groups of consumers (elderly, obese, and athletes) are given to demonstrate their differing nutritional requirements and the formulation engineering approaches that can be utilized to improve the health of these individuals. Eating is a pleasurable process, but foods of the future will be required to provide much more in terms of functionality for health and nutrition.

  18. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux[S

    PubMed Central

    Meriwether, David; Sulaiman, Dawoud; Wagner, Alan; Grijalva, Victor; Kaji, Izumi; Williams, Kevin J.; Yu, Liqing; Fogelman, Spencer; Volpe, Carmen; Bensinger, Steven J.; Anantharamaiah, G. M.; Shechter, Ishaiahu; Fogelman, Alan M.; Reddy, Srinivasa T.

    2016-01-01

    The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol. PMID:27199144

  19. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    PubMed

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA expression. Exposure of IECs to interleukin (IL) 22 increased levels of H19 lncRNA with time and dose, which required STAT3 and protein kinase A activity. IL22 induced expression of H19 in mouse intestinal epithelial organoids within 6 hours. Exposure to IL22 increased growth of intestinal epithelial organoids derived from control mice, but not H19 ΔEx1/+ mice. Overexpression of H19 in HT-29 cells increased their proliferation. Intestinal mucosa healed more slowly after withdrawal of DSS from H19 ΔEx1/+ mice vs control mice. Crypt epithelial cells from H19 ΔEx1/+ mice proliferated more slowly than those from control mice after exposure to LPS. H19 lncRNA bound to p53 and microRNAs that inhibit cell proliferation, including microRNA 34a and let-7; H19 lncRNA binding blocked their function, leading to increased expression of genes that promote regeneration of the epithelium. The level of lncRNA H19 is increased in inflamed intestinal tissues from mice and patients. The inflammatory cytokine IL22 induces expression of H19 in IECs, which is required for intestinal epithelial proliferation and mucosal healing. H19 lncRNA appears to inhibit p53 protein and microRNA 34a and let-7 to promote proliferation of IECs and epithelial regeneration. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Gene expression of Lactobacillus plantarum and the commensal microbiota in the ileum of healthy and early SIV-infected rhesus macaques

    PubMed Central

    Golomb, Benjamin L.; Hirao, Lauren A.; Dandekar, Satya; Marco, Maria L.

    2016-01-01

    Chronic HIV infection results in impairment of gut-associated lymphoid tissue leading to systemic immune activation. We previously showed that in early SIV-infected rhesus macaques intestinal dysfunction is initiated with the induction of the IL-1β pathway in the small intestine and reversed by treatment with an exogenous Lactobacillus plantarum strain. Here, we provide evidence that the transcriptomes of L. plantarum and ileal microbiota are not altered shortly after SIV infection. L. plantarum adapts to the small intestine by expressing genes required for tolerating oxidative stress, modifying cell surface composition, and consumption of host glycans. The ileal microbiota of L. plantarum-containing healthy and SIV+ rhesus macaques also transcribed genes for host glycan metabolism as well as for cobalamin biosynthesis. Expression of these pathways by bacteria were proposed but not previously demonstrated in the mammalian small intestine. PMID:27102350

Top