Science.gov

Sample records for small mammal species

  1. Rickettsia species in fleas collected from small mammals in Slovakia.

    PubMed

    Špitalská, Eva; Boldiš, Vojtech; Mošanský, Ladislav; Sparagano, Olivier; Stanko, Michal

    2015-11-01

    Epidemiological and epizootiological studies of Rickettsia felis and other Rickettsia spp. are very important, because their natural cycle has not yet been established completely. In total, 315 fleas (Siphonaptera) of 11 species of Ceratophyllidae, Hystrichopsyllidae and Leptopsyllidae families were tested for the presence of Rickettsia species and Coxiella burnetii with conventional and specific quantitative real-time PCR assays. Fleas were collected from five rodent hosts (Myodes glareolus, Apodemus flavicollis, Apodemus agrarius, Microtus subterraneus, Microtus arvalis) and three shrew species (Sorex araneus, Neomys fodiens, Crocidura suaveolens) captured in Eastern and Southern Slovakia. Overall, Rickettsia spp. was found in 10.8% (34/315) of the tested fleas of Ctenophthalmus agyrtes, Ctenophthalmus solutus, Ctenophthalmus uncinatus and Nosopsyllus fasciatus species. Infected fleas were coming from A. flavicollis, A. agrarius, and M. glareolus captured in Eastern Slovakia. C. burnetii was not found in any fleas. R. felis, Rickettsia helvetica, unidentified Rickettsia, and rickettsial endosymbionts were identified in fleas infesting small mammals in the Košice region, Eastern Slovakia. This study is the first report of R. felis infection in C. solutus male flea collected from A. agrarius in Slovakia. PMID:26346455

  2. Rickettsia species in fleas collected from small mammals in Slovakia.

    PubMed

    Špitalská, Eva; Boldiš, Vojtech; Mošanský, Ladislav; Sparagano, Olivier; Stanko, Michal

    2015-11-01

    Epidemiological and epizootiological studies of Rickettsia felis and other Rickettsia spp. are very important, because their natural cycle has not yet been established completely. In total, 315 fleas (Siphonaptera) of 11 species of Ceratophyllidae, Hystrichopsyllidae and Leptopsyllidae families were tested for the presence of Rickettsia species and Coxiella burnetii with conventional and specific quantitative real-time PCR assays. Fleas were collected from five rodent hosts (Myodes glareolus, Apodemus flavicollis, Apodemus agrarius, Microtus subterraneus, Microtus arvalis) and three shrew species (Sorex araneus, Neomys fodiens, Crocidura suaveolens) captured in Eastern and Southern Slovakia. Overall, Rickettsia spp. was found in 10.8% (34/315) of the tested fleas of Ctenophthalmus agyrtes, Ctenophthalmus solutus, Ctenophthalmus uncinatus and Nosopsyllus fasciatus species. Infected fleas were coming from A. flavicollis, A. agrarius, and M. glareolus captured in Eastern Slovakia. C. burnetii was not found in any fleas. R. felis, Rickettsia helvetica, unidentified Rickettsia, and rickettsial endosymbionts were identified in fleas infesting small mammals in the Košice region, Eastern Slovakia. This study is the first report of R. felis infection in C. solutus male flea collected from A. agrarius in Slovakia.

  3. Effects of corridors on home range sizes and interpatch movements of three small mammal species.

    SciTech Connect

    Mabry, Karen, E.; Barrett, Gary, W.

    2002-04-30

    Mabry, K.E., and G.W. Barrett. 2002. Effects of corridors on home range sizes and interpatch movements of three small mammal species. Landscape Ecol. 17:629-636. Corridors are predicted to benefit populations in patchy habitats by promoting movement, which should increase population densities, gene flow, and recolonization of extinct patch populations. However, few investigators have considered use of the total landscape, particularly the possibility of interpatch movement through matrix habitat, by small mammals. This study compares home range sizes of 3 species of small mammals, the cotton mouse, old field mouse and cotton rat between patches with and without corridors. Corridor presence did not have a statistically significant influence on average home range size. Habitat specialization and sex influenced the probability of an individual moving between 2 patches without corridors. The results of this study suggest that small mammals may be more capable of interpatch movement without corridors than is frequently assumed.

  4. Influence of landscape elements on population densities and habitat use of three small-mammal species.

    SciTech Connect

    Mabry, Karen, E.; Dreelin, Erin, A.; Barrett, Gary, W.

    2003-01-01

    Mabry, K.E., E.A. Dreelin, and G.W. Barrett. 2003. Influence of landscape elements on population densities and habitat use of three small-mammal species. J. Mammology. 84(1):20-25. Corridor effects on population densities and habitat use of 3 small mammal species were assessed in an experimentally fragmented landscape. Corridor presence did not have a statistically significant effect on population densities of cotton rats or cotton mice; however, a significant effect was observed for old-field mice. The results suggest that landscape fragmentation and habitat structure may have varying effects on population densities of different species.

  5. Predator-induced synchrony in population oscillations of coexisting small mammal species

    PubMed Central

    Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero

    2005-01-01

    Comprehensive analyses of long-term (1977–2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5–3 km2) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase. PMID:15695211

  6. Borrelia Species in Host-Seeking Ticks and Small Mammals in Northern Florida

    PubMed Central

    Clark, Kerry

    2004-01-01

    The aim of this study was to improve understanding of several factors related to the ecology and environmental risk of Borrelia infection in northern Florida. Small mammals and host-seeking adult ticks were collected at several sites, and specimens were tested for the presence of Borrelia species, primarily by PCR amplification. Tissues from some vertebrates and ticks were initially cultured in BSK-H medium to isolate spirochetes, but none were recovered. However, comparison of partial flagellin (flaB), 66-kDa protein (p66), and outer surface protein A (ospA) gene sequences from DNAs amplified from small mammals and ticks confirmed the presence of several Borrelia species. Borrelia lonestari DNA was detected among lone star ticks (Amblyomma americanum) at four sites. Borrelia burgdorferi sensu stricto strains were detected in all small mammal species tested and in A. americanum, Ixodes affinis, and Ixodes scapularis ticks. Borrelia bissettii was found in a cotton mouse and cotton rats and in I. affinis ticks. The study findings extend the known geographic distributions of B. lonestari in A. americanum and of B. burgdorferi sensu lato in A. americanum, I. affinis, I. scapularis, and small mammals to new sites in Florida. The presence of B. burgdorferi sensu stricto strains in host-seeking lone star ticks at two sites in Florida suggests that A. americanum should still be considered a possible vector of B. burgdorferi sensu lato. PMID:15528699

  7. Natural infection of small mammal species in Minnesota with the agent of human granulocytic ehrlichiosis.

    PubMed

    Walls, J J; Greig, B; Neitzel, D F; Dumler, J S

    1997-04-01

    The natural reservoirs for the agent of human granulocytic ehrlichiosis (HGE) are suspected to be the small mammals that host immature stages of Ixodes scapularis ticks. To determine if such small mammals are naturally infected, we collected blood and serum samples from small mammal species in rural and suburban areas of Minneapolis and St. Paul, Minn. Samples were collected from white-footed mice (Peromyscus leucopus), eastern chipmunks (Tamias striatus), southern red-backed voles (Clethrionomys gapperi), and insectivorous shrews (Blarina brevicauda and Sorex cinereus). Blood samples were tested by PCR for active infection with the HGE agent, and sera from P. leucopus mice were tested for serologic evidence of infection by indirect immunofluorescence. PCR analyses revealed the presence of HGE agent DNA in 20 of the 190 samples (10.5%) tested. Of the 119 P. leucopus mouse serum samples that were analyzed, 12 (10.1%) contained Ehrlichia equi antibodies. In 3 of 119 (2.5%) P. leucopus mice from which both blood and serum were collected. HGE agent DNA and antibodies against E. equi were present. Animals with evidence of infection with the HGE agent are widely distributed around the Minneapolis-St. Paul area in regions with known I. scapularis tick activity. Small mammals that are frequent hosts for larval I. scapularis ticks and that are found in areas where HGE occurs are likely to be a major reservoir from which infected ticks that bite humans are derived. PMID:9157141

  8. Species diversity of ectoparasitic chigger mites (Acari: Prostigmata) on small mammals in Yunnan Province, China.

    PubMed

    Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu; Dong, Wen-Ge; Fan, Rong

    2016-09-01

    Chigger mites are a large group of arthropods and the larvae of mites are ectoparasites. Some species of ectoparasitic mites (larvae) can be the transmitting vectors of tsutsugamushi disease (scrub typhus). Yunnan Province is located in the southwest of China with complicated topographic landform and high biodiversity, where there are five zoogeographical subregions. Rodents and some other small mammals were trapped and examined for ectoparasitic chigger mites in 29 investigation sites in Yunnan during 2001-2013. From 13,760 individuals and 76 species of small mammal hosts, we collected 274 species of mites, which were identified as comprising 26 genera in two families. The species diversity of chigger mites (274 species) in the present study were not only much higher than that from other provinces of China but also largely exceeded that recorded from other regions and countries in the world. Of the five zoogeographical subregions, both the species diversity and Shannon-Weiner's diversity of mites were the highest in subregion II (southern subregion of Hengduan Mountains) with middle altitudes and middle latitude. Both the species diversity of mites and Shannon-Wiener diversity index showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3500 m) along the vertical gradients with the peak occurring in the middle-altitude regions (2000-2500 m). Of four dominant hosts, the species richness of mites was highest on Eothenomys miletus (S = 165) and Shannon-Wiener diversity index was highest on Rattus norvegicus (H = 3.13). Along latitude gradients, species richness of chigger mites increased first and then decreased, peaking at 25° to 26° N with 193 mite species. The geographical location, complex topography, and landscape with diverse small mammal hosts in Yunnan Province have contributed to the extremely high species diversity of mites in the province. The large sampling size of small mammal hosts in a wide geographical scope

  9. Species diversity of ectoparasitic chigger mites (Acari: Prostigmata) on small mammals in Yunnan Province, China.

    PubMed

    Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu; Dong, Wen-Ge; Fan, Rong

    2016-09-01

    Chigger mites are a large group of arthropods and the larvae of mites are ectoparasites. Some species of ectoparasitic mites (larvae) can be the transmitting vectors of tsutsugamushi disease (scrub typhus). Yunnan Province is located in the southwest of China with complicated topographic landform and high biodiversity, where there are five zoogeographical subregions. Rodents and some other small mammals were trapped and examined for ectoparasitic chigger mites in 29 investigation sites in Yunnan during 2001-2013. From 13,760 individuals and 76 species of small mammal hosts, we collected 274 species of mites, which were identified as comprising 26 genera in two families. The species diversity of chigger mites (274 species) in the present study were not only much higher than that from other provinces of China but also largely exceeded that recorded from other regions and countries in the world. Of the five zoogeographical subregions, both the species diversity and Shannon-Weiner's diversity of mites were the highest in subregion II (southern subregion of Hengduan Mountains) with middle altitudes and middle latitude. Both the species diversity of mites and Shannon-Wiener diversity index showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3500 m) along the vertical gradients with the peak occurring in the middle-altitude regions (2000-2500 m). Of four dominant hosts, the species richness of mites was highest on Eothenomys miletus (S = 165) and Shannon-Wiener diversity index was highest on Rattus norvegicus (H = 3.13). Along latitude gradients, species richness of chigger mites increased first and then decreased, peaking at 25° to 26° N with 193 mite species. The geographical location, complex topography, and landscape with diverse small mammal hosts in Yunnan Province have contributed to the extremely high species diversity of mites in the province. The large sampling size of small mammal hosts in a wide geographical scope

  10. Comparison of small mammal species diversity near wastewater outfalls, natural streams, and dry canyons

    SciTech Connect

    Raymer, D.F.; Biggs, J.R.

    1994-03-01

    A wide range of plant and wildlife species utilizes water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to compare nocturnal small mammal communities at wet areas created by wastewater outfalls with communities in naturally created wet and dry areas. Thirteen locations within LANL boundaries were selected for small mammal mark-recapture trapping. Three of these locations lacked surface water sources and were classified as {open_quotes}dry,{close_quotes} while seven sites were associated with wastewater outfalls ({open_quotes}outfall{close_quotes} sites), and three were located near natural sources of surface water ({open_quotes}natural{close_quotes} sites). Data was collected on site type (dry, outfall or natural), location, species trapped, and the tag number of each individual captured. This data was used to calculate mean number of species, percent capture rate, and species diversity at each type of site. When data from each type of site was pooled, there were no significant differences in these variables between dry, outfall, and natural types. However, when data from individual sites was compared, tests revealed significant differences. All sites in natural areas were significantly higher than dry areas in daily mean number of species, percent capture rate, and species diversity. Most outfall sites were significantly higher than dry areas in all three variables tested. When volume of water from each outfall site was considered, these data indicated that the number of species, percent capture rate, and species diversity of nocturnal small mammals were directly related to the volume of water at a given outfall.

  11. Prevalence and Genotype Allocation of Pathogenic Leptospira Species in Small Mammals from Various Habitat Types in Germany.

    PubMed

    Obiegala, Anna; Woll, Dietlinde; Karnath, Carolin; Silaghi, Cornelia; Schex, Susanne; Eßbauer, Sandra; Pfeffer, Martin

    2016-03-01

    Small mammals serve as most important reservoirs for Leptospira spp., the causative agents of Leptospirosis, which is one of the most neglected and widespread zoonotic diseases worldwide. The knowledge about Leptospira spp. occurring in small mammals from Germany is scarce. Thus, this study's objectives were to investigate the occurrence of Leptospira spp. and the inherent sequence types in small mammals from three different study sites: a forest in southern Germany (site B1); a National Park in south-eastern Germany (site B2) and a renaturalised area, in eastern Germany (site S) where small mammals were captured. DNA was extracted from kidneys of small mammals and tested for Leptospira spp. by real-time PCR. Positive samples were further analysed by duplex and conventional PCRs. For 14 positive samples, multi locus sequence typing (MLST) was performed. Altogether, 1213 small mammals were captured: 216 at site B1, 456 at site B2 and 541 at site S belonging to following species: Sorex (S.) araneus, S. coronatus, Apodemus (A.) flavicollis, Myodes glareolus, Microtus (Mi.) arvalis, Crocidura russula, Arvicola terrestris, A. agrarius, Mustela nivalis, Talpa europaea, and Mi. agrestis. DNA of Leptospira spp. was detected in 6% of all small mammals. At site B1, 25 small mammals (11.6%), at site B2, 15 small mammals (3.3%) and at site S, 33 small mammals (6.1%) were positive for Leptospira spp. Overall, 54 of the positive samples were further determined as L. kirschneri, nine as L. interrogans and four as L. borgpetersenii while five real-time PCR-positive samples could not be further determined by conventional PCR. MLST results revealed focal occurrence of L. interrogans and L. kirschneri sequence type (ST) 117 while L. kirschneri ST 110 was present in small mammals at all three sites. Further, this study provides evidence for a particular host association of L. borgpetersenii to mice of the genus Apodemus. PMID:27015596

  12. Prevalence and Genotype Allocation of Pathogenic Leptospira Species in Small Mammals from Various Habitat Types in Germany

    PubMed Central

    Karnath, Carolin; Silaghi, Cornelia; Schex, Susanne; Eßbauer, Sandra; Pfeffer, Martin

    2016-01-01

    Small mammals serve as most important reservoirs for Leptospira spp., the causative agents of Leptospirosis, which is one of the most neglected and widespread zoonotic diseases worldwide. The knowledge about Leptospira spp. occurring in small mammals from Germany is scarce. Thus, this study’s objectives were to investigate the occurrence of Leptospira spp. and the inherent sequence types in small mammals from three different study sites: a forest in southern Germany (site B1); a National Park in south-eastern Germany (site B2) and a renaturalised area, in eastern Germany (site S) where small mammals were captured. DNA was extracted from kidneys of small mammals and tested for Leptospira spp. by real-time PCR. Positive samples were further analysed by duplex and conventional PCRs. For 14 positive samples, multi locus sequence typing (MLST) was performed. Altogether, 1213 small mammals were captured: 216 at site B1, 456 at site B2 and 541 at site S belonging to following species: Sorex (S.) araneus, S. coronatus, Apodemus (A.) flavicollis, Myodes glareolus, Microtus (Mi.) arvalis, Crocidura russula, Arvicola terrestris, A. agrarius, Mustela nivalis, Talpa europaea, and Mi. agrestis. DNA of Leptospira spp. was detected in 6% of all small mammals. At site B1, 25 small mammals (11.6%), at site B2, 15 small mammals (3.3%) and at site S, 33 small mammals (6.1%) were positive for Leptospira spp. Overall, 54 of the positive samples were further determined as L. kirschneri, nine as L. interrogans and four as L. borgpetersenii while five real-time PCR-positive samples could not be further determined by conventional PCR. MLST results revealed focal occurrence of L. interrogans and L. kirschneri sequence type (ST) 117 while L. kirschneri ST 110 was present in small mammals at all three sites. Further, this study provides evidence for a particular host association of L. borgpetersenii to mice of the genus Apodemus. PMID:27015596

  13. Prevalence and Genotype Allocation of Pathogenic Leptospira Species in Small Mammals from Various Habitat Types in Germany.

    PubMed

    Obiegala, Anna; Woll, Dietlinde; Karnath, Carolin; Silaghi, Cornelia; Schex, Susanne; Eßbauer, Sandra; Pfeffer, Martin

    2016-03-01

    Small mammals serve as most important reservoirs for Leptospira spp., the causative agents of Leptospirosis, which is one of the most neglected and widespread zoonotic diseases worldwide. The knowledge about Leptospira spp. occurring in small mammals from Germany is scarce. Thus, this study's objectives were to investigate the occurrence of Leptospira spp. and the inherent sequence types in small mammals from three different study sites: a forest in southern Germany (site B1); a National Park in south-eastern Germany (site B2) and a renaturalised area, in eastern Germany (site S) where small mammals were captured. DNA was extracted from kidneys of small mammals and tested for Leptospira spp. by real-time PCR. Positive samples were further analysed by duplex and conventional PCRs. For 14 positive samples, multi locus sequence typing (MLST) was performed. Altogether, 1213 small mammals were captured: 216 at site B1, 456 at site B2 and 541 at site S belonging to following species: Sorex (S.) araneus, S. coronatus, Apodemus (A.) flavicollis, Myodes glareolus, Microtus (Mi.) arvalis, Crocidura russula, Arvicola terrestris, A. agrarius, Mustela nivalis, Talpa europaea, and Mi. agrestis. DNA of Leptospira spp. was detected in 6% of all small mammals. At site B1, 25 small mammals (11.6%), at site B2, 15 small mammals (3.3%) and at site S, 33 small mammals (6.1%) were positive for Leptospira spp. Overall, 54 of the positive samples were further determined as L. kirschneri, nine as L. interrogans and four as L. borgpetersenii while five real-time PCR-positive samples could not be further determined by conventional PCR. MLST results revealed focal occurrence of L. interrogans and L. kirschneri sequence type (ST) 117 while L. kirschneri ST 110 was present in small mammals at all three sites. Further, this study provides evidence for a particular host association of L. borgpetersenii to mice of the genus Apodemus.

  14. Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species

    PubMed Central

    Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian

    2010-01-01

    Background Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. Methodology/Principal Findings We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070–2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Conclusions/Significance Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to

  15. SMALL MAMMAL USE OF MICROHABITAT REVIEWED

    EPA Science Inventory

    Small mammal microhabitat research has greatly influenced vertebrate community ecologists. There exists a "microhabitat paradigm" that states that sympatry among small mammal species is enabled by differential use of microhabitat (i.e., microhabitat partitioning). However, seve...

  16. Species diversity, selectivity, and habitat associations of small mammals from coastal California

    USGS Publications Warehouse

    Fellers, Gary M.

    1994-01-01

    Species diversity and habitat associations were documented for small mammals along 16 transects in a semiarid part of coastal California. Peromyscus were the most abundant, comprising 45.3% of all captures, followed by Dipodomys (21.2%), Neotoma (15.1%), and Perognathus (15.0%). Five additional genera made up the remaining captures (3.4%). Peromyscus truei and Perognathus californicus were both common and widespread, accounting for 42.1% of all captures. Both species were found on all but one transect. Neotoma lepida, the third most common species, was captured on rock transects 96% of the time. Dipodomys elephantinus was the fifth most common species, and was found exclusively in chamise chaparral. Species diversity (H') averaged 1.22 and ranged from 0.33 on a chamise chaparral transect to 1.74 on another chamise chaparral transect which crossed the edge of a burn. Nearly all transects demonstrated this same trend for diversity to vary widely both within and between habitats, indicating that local conditions were more of an influence on diversity than broad habitat types. Selectivity, averaged across the ten most common species, was only 0.06, indicating that habitat selectivity was quite low. The most geographically widespread species, Peromyscus maniculatus, was the least selective (0.03), whereas the two species with the smallest geographic ranges, D. venustus and D. elephantinus, showed the greatest habitat selectivity (0.11 and 0.20, respectively). These values are much lower than those reported from short-term studies and suggest that, like species diversity, brief studies may not accurately reflect community-level interactions.

  17. Prevalence and diversity of small mammal-associated Bartonella species in rural and urban Kenya.

    PubMed

    Halliday, Jo E B; Knobel, Darryn L; Agwanda, Bernard; Bai, Ying; Breiman, Robert F; Cleaveland, Sarah; Njenga, M Kariuki; Kosoy, Michael

    2015-03-01

    Several rodent-associated Bartonella species are human pathogens but little is known about their epidemiology. We trapped rodents and shrews around human habitations at two sites in Kenya (rural Asembo and urban Kibera) to determine the prevalence of Bartonella infection. Bartonella were detected by culture in five of seven host species. In Kibera, 60% of Rattus rattus were positive, as compared to 13% in Asembo. Bartonella were also detected in C. olivieri (7%), Lemniscomys striatus (50%), Mastomys natalensis (43%) and R. norvegicus (50%). Partial sequencing of the citrate synthase (gltA) gene of isolates showed that Kibera strains were similar to reference isolates from Rattus trapped in Asia, America, and Europe, but that most strains from Asembo were less similar. Host species and trapping location were associated with differences in infection status but there was no evidence of associations between host age or sex and infection status. Acute febrile illness occurs at high incidence in both Asembo and Kibera but the etiology of many of these illnesses is unknown. Bartonella similar to known human pathogens were detected in small mammals at both sites and investigation of the ecological determinants of host infection status and of the public health significance of Bartonella infections at these locations is warranted. PMID:25781015

  18. Prevalence and diversity of small mammal-associated Bartonella species in rural and urban Kenya.

    PubMed

    Halliday, Jo E B; Knobel, Darryn L; Agwanda, Bernard; Bai, Ying; Breiman, Robert F; Cleaveland, Sarah; Njenga, M Kariuki; Kosoy, Michael

    2015-03-01

    Several rodent-associated Bartonella species are human pathogens but little is known about their epidemiology. We trapped rodents and shrews around human habitations at two sites in Kenya (rural Asembo and urban Kibera) to determine the prevalence of Bartonella infection. Bartonella were detected by culture in five of seven host species. In Kibera, 60% of Rattus rattus were positive, as compared to 13% in Asembo. Bartonella were also detected in C. olivieri (7%), Lemniscomys striatus (50%), Mastomys natalensis (43%) and R. norvegicus (50%). Partial sequencing of the citrate synthase (gltA) gene of isolates showed that Kibera strains were similar to reference isolates from Rattus trapped in Asia, America, and Europe, but that most strains from Asembo were less similar. Host species and trapping location were associated with differences in infection status but there was no evidence of associations between host age or sex and infection status. Acute febrile illness occurs at high incidence in both Asembo and Kibera but the etiology of many of these illnesses is unknown. Bartonella similar to known human pathogens were detected in small mammals at both sites and investigation of the ecological determinants of host infection status and of the public health significance of Bartonella infections at these locations is warranted.

  19. Detection of Bartonella species from ticks, mites and small mammals in Korea.

    PubMed

    Kim, Chul-Min; Kim, Ji-Young; Yi, Ying-Hua; Lee, Mi-Jin; Cho, Mae-rim; Shah, Devendra H; Klein, Terry A; Kim, Heung-Chul; Song, Jin-Won; Chong, Sung-Tae; O'Guinn, Monica L; Lee, John S; Lee, In-Yong; Park, Jin-Ho; Chae, Joon-Seok

    2005-12-01

    We investigated the prevalence of Bartonella infections in ticks, mites and small mammals (rodents, insectivores and weasels) collected during 2001 through 2004, from various military installations and training sites in Korea, using PCR and sequence analysis of 16S rRNA, 23S rRNA and groEL heat shock protein genes. The prevalence of Bartonella spp. was 5.2% (n = 1,305 sample pools) in ticks, 19.1% (n = 21) in mesostigmatid mites and 13.7% (n = 424 individuals) in small mammals. The prevalence within the family Ixodidae was, 4.4% (n = 1,173) in Haemaphysalis longicornis (scrub tick), 2.7% (n = 74) in H. flava, 5.0% (n = 20) in Ixodes nipponensis, 11.1% (n = 9) in I. turdus, 33.3% (n = 3) in I. persulcatus and 42.3% (n = 26) in Ixodes spp. ticks. In rodents, the prevalence rate was, 6.7% (n = 373) in Apodemus agrarius (striped field mouse) and 11.1% (n = 9) in Eothenomys regulus (Korean red-backed vole) and in an insectivore,Crocidura lasiura, 12.1% (n = 33). Neither of the two weasels were positive for Bartonella spp. Phylogenetic analysis based on amino acid sequence of a portion of the groEL gene amplified from one A. agrarius spleen was identical to B. elizabethae species. We demonstrated the presence of Bartonella DNA in H. longicornis, H. flava and I. nipponensis ticks, indicating that these ticks should be added to the growing list of potential tick vectors and warrants further detailed investigations to disclose their possible roles in Bartonella infection cycles.

  20. Comparative evaluation of several small mammal species as monitors of heavy metals, radionuclides, and selected organic compounds in the environment

    SciTech Connect

    Talmage, S.S. Oak Ridge National Lab., TN ); Walton, B.T. )

    1990-08-01

    The primary purpose of this study was to evaluate which small mammal species are the best monitors of specific environmental contaminants. The evaluation is based on the published literature and on an analysis of small mammals trapped at several sites on the Oak Ridge National Laboratory (ORNL) Reservation in Oak Ridge, Tennessee. Studies on the uptake of heavy metals, radionuclides, and organic chemicals are reviewed in Chapter II to evaluate several small mammal species for their capacity to serve as sentinels for the presence, accumulation, and effects of various contaminants. Where several species were present at a site, a comparative evaluation was made and species are ranked for their capacity to serve as monitors of specific contaminants. Food chain accumulation and food habits of the species are used to establish a relationship with suitability as a biomonitor. Tissue-specific concentration factors were noted in order to establish target tissues. Life histories, habitat, and food habits are reviewed in order to make generalizations concerning the ability of similar taxa to serve as biomonitor. Finally, the usefulness of several small mammal species as monitors of three contaminants -- benzo(a)pyrene, mercury, and strontium-90 -- present on or near the ORNL facilities was investigated. 133 refs., 5 figs., 20 tabs.

  1. [Keratinophilic fungal flora isolated from small wild mammals and rabbit-warren in France. Discussion on the fungal species found].

    PubMed

    Chabasse, D; Guiguen, C; Couatarmanac'h, A; Launay, H; Reecht, V; de Bièvre, C

    1987-01-01

    The occurrence of dermatophytes and other keratinophilic fungi was investigated in 237 small wild mammals and 125 european rabbit. The purpose of the investigation was to determine what were the species of fungi present in the these animals. Four species of dermatophytes were isolated: Trichophyton ajelloi, Trichophyton terrestre, Trichophyton mentagrophytes, Microsporum persicolor. Trichophyton terrestre was the most frequently isolated and it occurred more frequently than its presence could be explained by the contamination from soil. Members of the genus Chrysosporium were found in many animals: Chrysosporium keratinophilum, Chrysosporium tropicum, Chrysosporium multifidum, Chrysosporium pannorum, Chrysosporium georgii, Chrysosporium merdarium, Chrysosporium anamorph of Arthroderma curreyi, Chrysosporium anamorph of Arthroderma cuniculi, Anixiopsis stercoraria, Chrysosporium parvum. Wild small mammals and european rabbits in France, not only act as carrier of keratinophilic fungi and allied dermatophytes but also provide a suitable habitat for their survival as saprophytes. The recurrence of numerous species present on the coat, isolated fort the first time in France was remarkable.

  2. Responses of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants, Brazil

    PubMed Central

    Püttker, Thomas; Pardini, Renata; Meyer-Lucht, Yvonne; Sommer, Simone

    2008-01-01

    Background The Brazilian Atlantic Forest is highly endangered and only about 7% of the original forest remains, most of which consists of fragments of secondary forest. Small mammals in the Atlantic Forest have differential responses to this process of fragmentation and conversion of forest into anthropogenic habitats, and have varying abilities to occupy the surrounding altered habitats. We investigated the influence of vegetation structure on the micro-scale distribution of five small mammal species in six secondary forest remnants in a landscape of fragmented Atlantic Forest. We tested whether the occurrence of small mammal species is influenced by vegetation structure, aiming to ascertain whether species with different degrees of vulnerability to forest fragmentation (not vulnerable: A. montensis, O. nigripes and G. microtarsus; vulnerable: M. incanus and D. sublineatus; classification of vulnerability was based on the results of previous studies) are associated with distinct vegetation characteristics. Results Although vegetation structure differed among fragments, micro-scale distribution of most of the species was influenced by vegetation structure in a similar way in different fragments. Among the three species that were previously shown not to be vulnerable to forest fragmentation, A. montensis and G. microtarsus were present at locations with an open canopy and the occurrence of O. nigripes was associated to a low canopy and a dense understory. On the other hand, from the two species that were shown to be vulnerable to fragmentation, M. incanus was captured most often at locations with a closed canopy while the distribution of D. sublineatus was not clearly influenced by micro-scale variation in vegetation structure. Conclusion Results indicate the importance of micro-scale variation in vegetation structure for the distribution of small mammal species in secondary forest fragments. Species that are not vulnerable to fragmentation occurred at locations

  3. Habitat patterns in a small mammal community

    SciTech Connect

    Kitchings, J.T.; Levy, D.J.

    1981-11-01

    Microhabitat relationships between four sympatric small mammal species (Peromyscus leucopus, Ochrotomys nuttalli, Blarina brevicauda, and Tamias striatus) were examined to determine if their discriminant analysis of small mammal habitat represented a unique habitat utilization pattern for a specific small mammal community. The authors concluded that habitat is only one of many dimensions to be considered when studying the interactions of sympatric species. Reproductive strategy, activity patterns, and other factors make up the n-dimensional hyperspace of an animal's niche. Thus differences in habitat usage alone cannot be used to determine niche overlap and competition between species. (JMT)

  4. [Fleas of small mammals from the northeastern Russian Far East].

    PubMed

    Medvedev, S G; Dokuchaev, N E; Tret'iakov, K A; Iamborko, A V; Kiselev, S V

    2014-01-01

    Results of the study of fleas (Siphonaptera) collected from small mammals (insectivores and rodents) in the Russian Far East (Magadan Province, and Khabarovsk and Kamchatka Territories) are represented. Fourteen flea species were revealed in 17 species of small mammals.

  5. Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species- and location-specific characteristics.

    PubMed

    Wijnhoven, S; Leuven, R S E W; van der Velde, G; Jungheim, G; Koelemij, E I; de Vries, F T; Eijsackers, H J P; Smits, A J M

    2007-05-01

    The soil of several floodplain areas along large European rivers shows increased levels of heavy metals as a relict from past sedimentation of contaminants. These levels may pose risks of accumulation in food webs and toxicologic effects on flora and fauna. However, for floodplains, data on heavy-metal concentrations in vertebrates are scarce. Moreover, these environments are characterised by periodical flooding cycles influencing ecologic processes and patterns. To investigate whether the suggested differences in accumulation risks for insectivores and carnivores, omnivores, and herbivores are reflected in the actual heavy-metal concentrations in the species, we measured the current levels of Zn, Cu, Pb, and Cd in 199 specimens of 7 small mammal species (voles, mice, and shrews) and in their habitats in a diffusely polluted floodplain. The highest metal concentrations were found in the insectivorous and carnivorous shrew, Sorex araneus. Significant differences between the other shrew species, Crocidura russula, and the vole and mouse species was only found for Cd. The Cu concentration in Clethrionomys glareolus, however, was significantly higher than in several other vole and mouse species. To explain the metal concentrations found in the specimens, we related them to environmental variables at the trapping locations and to certain characteristics of the mammals. Variables taken into account were soil total and CaCl(2)-extractable metal concentrations at the trapping locations; whether locations were flooded or nonflooded; the trapping season; and the life stage; sex; and fresh weight of the specimens. Correlations between body and soil concentrations and location or specimen characteristics were weak. Therefore; we assumed that exposure of small mammals to heavy-metal contamination in floodplains is significantly influenced by exposure time, which is age related, as well as by dispersal and changes in foraging and feeding patterns under influence of periodic

  6. Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species- and location-specific characteristics.

    PubMed

    Wijnhoven, S; Leuven, R S E W; van der Velde, G; Jungheim, G; Koelemij, E I; de Vries, F T; Eijsackers, H J P; Smits, A J M

    2007-05-01

    The soil of several floodplain areas along large European rivers shows increased levels of heavy metals as a relict from past sedimentation of contaminants. These levels may pose risks of accumulation in food webs and toxicologic effects on flora and fauna. However, for floodplains, data on heavy-metal concentrations in vertebrates are scarce. Moreover, these environments are characterised by periodical flooding cycles influencing ecologic processes and patterns. To investigate whether the suggested differences in accumulation risks for insectivores and carnivores, omnivores, and herbivores are reflected in the actual heavy-metal concentrations in the species, we measured the current levels of Zn, Cu, Pb, and Cd in 199 specimens of 7 small mammal species (voles, mice, and shrews) and in their habitats in a diffusely polluted floodplain. The highest metal concentrations were found in the insectivorous and carnivorous shrew, Sorex araneus. Significant differences between the other shrew species, Crocidura russula, and the vole and mouse species was only found for Cd. The Cu concentration in Clethrionomys glareolus, however, was significantly higher than in several other vole and mouse species. To explain the metal concentrations found in the specimens, we related them to environmental variables at the trapping locations and to certain characteristics of the mammals. Variables taken into account were soil total and CaCl(2)-extractable metal concentrations at the trapping locations; whether locations were flooded or nonflooded; the trapping season; and the life stage; sex; and fresh weight of the specimens. Correlations between body and soil concentrations and location or specimen characteristics were weak. Therefore; we assumed that exposure of small mammals to heavy-metal contamination in floodplains is significantly influenced by exposure time, which is age related, as well as by dispersal and changes in foraging and feeding patterns under influence of periodic

  7. The Fleas of Endemic and Introduced Small Mammals in Central Highland Forests of Madagascar: Faunistics, Species Diversity, and Absence of Host Specificity.

    PubMed

    Goodman, Steven M; Randrenjarison Andriniaina, H Rico; Soarimalala, Voahangy; Beaucournu, Jean-Claude

    2015-09-01

    Data are presented on the flea species of the genera Paractenopsyllus (Ceratophyllidae, Leptopsyllinae) and Synopsyllus (Pulicidae, Xenopsyllinae) obtained from small mammals during two 2014 seasonal surveys at a montane humid forest site (Ambohitantely) in the Central Highlands of Madagascar. The mammal groups included the endemic family Tenrecidae (tenrecs) and subfamily Nesomyinae (rodents) and two introduced families Muridae (rodents) and Soricidae (shrews); no fleas were recovered from the latter family. The surveys were conducted at the end of the wet and dry seasons with 288 individual small mammals captured, including 12 endemic and four introduced species. These animals yielded 344 fleas, representing nine species endemic to Madagascar; no introduced species was collected. Some seasonal variation was found in the number of trapped small mammals, but no marked difference was found in species richness. For flea species represented by sufficient samples, no parasite-host specificity was found, and there is evidence for considerable lateral exchange in the local flea fauna between species of tenrecs and the two rodent families (endemic and introduced). The implications of these results are discussed with regards to small mammal species richness and community structure, as well as a possible mechanism for the maintenance of sylvatic cycles of bubonic plague in the montane forests of Madagascar.

  8. Small Mammal Investigation in Spotted Fever Focus with DNA-Barcoding and Taxonomic Implications on Rodents Species from Hainan of China

    PubMed Central

    Lu, Liang; Chesters, Douglas; Zhang, Wen; Li, Guichang; Ma, Ying; Ma, Huailei; Song, Xiuping; Wu, Haixia; Meng, Fengxia; Zhu, Chaodong; Liu, Qiyong

    2012-01-01

    Although mammals are a well-studied group of animals, making accurate field identification of small mammals is still complex because of morphological variation across developmental stages, color variation of pelages, and often damaged osteological and dental characteristics. In 2008, small mammals were collected for an epidemiological study of a spotted fever outbreak in Hainan, China. Ten species of small mammals were identified by morphological characters in the field, most using pelage color characters only. The study is extended here, in order to assess whether DNA barcoding would be suitable as an identification tool in these small mammals. Barcode clusters showed some incongruence with morphospecies, especially for some species of Rattus and Niviventer, so molecular delineation was carried out with an expanded dataset of combined cytochrome b (Cyt-b) and cytochrome c oxidase subunit I (COI) sequences. COI sequences were successfully amplified from 83% of collected mammals, but failed in all specimens of Suncus murinus, which were thus excluded in DNA barcoding analysis. Of note, ten molecular taxonomic units were found from samples of nine morphologically identified species. Accordingly, 11 species of small mammals were present in the investigated areas, including four Rattus species, three Niviventer species, Callosciurus erythraeus, Neohylomys hainanensis, Tupaia belangeri, and Suncus murinus. Based on the results of the phylogenetic and molecular delineation analyses, the systematic status of some rodent species should be redefined. R. rattus hainanicus and R. rattus sladeni are synonyms of R. andamanensis. R. losea from China and Southeast Asia comprises two independent species: R. losea and R. sakeratensis. Finally, the taxonomic status of three putative species of Niviventer should be further confirmed according to morphological, molecular and ecological characters. PMID:22952689

  9. Species longevity in North American fossil mammals.

    PubMed

    Prothero, Donald R

    2014-08-01

    Species longevity in the fossil record is related to many paleoecological variables and is important to macroevolutionary studies, yet there are very few reliable data on average species durations in Cenozoic fossil mammals. Many of the online databases (such as the Paleobiology Database) use only genera of North American Cenozoic mammals and there are severe problems because key groups (e.g. camels, oreodonts, pronghorns and proboscideans) have no reliable updated taxonomy, with many invalid genera and species and/or many undescribed genera and species. Most of the published datasets yield species duration estimates of approximately 2.3-4.3 Myr for larger mammals, with small mammals tending to have shorter species durations. My own compilation of all the valid species durations in families with updated taxonomy (39 families, containing 431 genera and 998 species, averaging 2.3 species per genus) yields a mean duration of 3.21 Myr for larger mammals. This breaks down to 4.10-4.39 Myr for artiodactyls, 3.14-3.31 Myr for perissodactyls and 2.63-2.95 Myr for carnivorous mammals (carnivorans plus creodonts). These averages are based on a much larger, more robust dataset than most previous estimates, so they should be more reliable for any studies that need species longevity to be accurately estimated.

  10. Effects of roads on small mammals

    USGS Publications Warehouse

    Adams, L.W.; Geis, A.D.

    1983-01-01

    (1) The study was designed to determine the effects of roads on the diversity, spatial distribution, and density of small mammals. (2) Forty species of small mammal (5859 individuals) were snap-trapped in the study. Data resulted from 144 360 trap-nights of effort for an average of 4.06 captures per 100 trap-nights. (3) Small mammal community structure and density were both influenced by roads. Community structure in right-of-way (ROW) habitat was different from that in adjacent habitat. Five species did not prefer ROW habitat: the golden mouse, dusky-footed woodrat, brush mouse, pinon mouse, and California red-backed vole. However, there were more species present in ROW habitat than in adjacent habitat. Grassland species generally preferred ROW habitat and many less habitat-specific species were distributed in ROW and adjacent habitat. (4) Small mammal density (all species combined) was greater in interstate ROW habitat than in adjacent habitat. This was also true individually for the eastern harvest mouse, white-footed mouse, meadow vole, prairie vole, vagrant shrew. Townsend's vole, and California vole. Small mammal density was less in county road ROWs than in adjacent habitat, probably because of the small size of these areas. The data indicate that ROW habitat and its accompanying edge are attractive no: only to grassland species but also to many less habitat-specific species that make use of the ROW-edge-adjacent habitat complex. (5) Mortality on interstate highways was greatest for those species with highest densities in ROW habitat, and did not appear to be detrimental to populations of these species.

  11. FEASIBILITY OF MICRONUCLEUS METHODS FOR MONITORING GENETIC DAMAGE IN TWO FERAL SPECIES OF SMALL MAMMALS

    EPA Science Inventory

    Peromyscus leucopus (white-footed mouse) and Cryptotis parva (least shrew) possess desirable attributes for biomonitoring contamination of terrestrial ecoystems, but few studies have examined the potential use of these species for monitoring exposure to genotoxic contaminants. Th...

  12. Muscularity as a function of species, sex and age in small mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1984-01-01

    Changes in the body skeletal muscle mass SMM (measured as a function of the ratio between the body creatine mass and the fat-free muscle creatine), and in muscularity (expressed as the ratio of SMM to fat-free body mass) were studied as functions of age, sex, and species in mouse, rat, hamster, guinea pig, and rabbit. Six animals of each sex were examined in eight age cohorts ranging from 1 to 24 months. Both species and age factors affect SMM. Strong sexual dimorphism in the SMM changes with age was displayed by mouse, rat, and guinea pig, whereas the hamster and rabbit were statistically monomorphic. The mouse, rat, and hamster attain a maximal SMM at about 1 year of age, whereas in the guinea pig and rabbit the decrease in SMM starts after 2 years. The value of muscularity reached a peak at age of 2-3 months in all animals of both sexes, with a pronounced difference among the species. The mouse emerged as the most muscular, while the guinea pig the least muscular, of all species.

  13. Effect of cold exposure on water requirements on three species of small mammals.

    PubMed

    Deavers, D R; Hudson, J W

    1977-07-01

    Water turnover rate (WTR) was determined from tritiated water (3H2O) loss in the short-tailed shrew (Blarina brevicauda), red-backed vole (Clethrionomys gapperi), and white-footed mouse (Peromyscus leucopus). When given ad libitum water at Ta of 20 degrees, B. brevicauda, C. gapperi, and P. leucopus turned over 16.2, 13.8, and 6.2 ml/day, respectively; minimum WTR was 9.9, 7.8, and 3.5 ml/day, respectively. When they were given ad libitum water at 5 degrees C, WTR was 1.4 to 1.6 times higher than at 20 degrees C. On minimum water rations, WTR at 5 degrees C was 1.7 to 1.9 times higher than at 20 degrees C. Since increases in VO2 at 5 degrees C and at 20 degrees C were of about the same magnitude, increased metabolic rates may have caused increased water requirements. Total body water (TBW) was calculated from 3H2O dilution. On minimum water rations, the three species at both Ta's showed decreases in TBW and body weight, but percent body H2O increased. PMID:330486

  14. Spatio-temporal variation in small mammal species richness, relative abundance and body mass reveal changes in a coastal wetland ecosystem in Ghana.

    PubMed

    Ofori, Benjamin Y; Attuquayefio, Daniel K; Owusu, Erasmus H; Musah, Yahaya; Ntiamoa-Baidu, Yaa

    2016-06-01

    Coastal wetlands in Ghana are under severe threat of anthropogenic drivers of habitat degradation and climate change, thereby increasing the need for assessment and monitoring to inform targeted and effective conservation of these ecosystems. Here, we assess small mammal species richness, relative abundance and body mass in three habitats at the Muni-Pomadze Ramsar site of Ghana, and compare these to baseline data gathered in 1997 to evaluate changes in the wetland ecosystem. Small mammals were live-trapped using Sherman collapsible and pitfall traps. We recorded 84 individuals of 10 species in 1485 trap-nights, whereas the baseline study recorded 45 individuals of seven species in 986 trap-nights. The overall trap-success was therefore greater in the present study (5.66 %) than the baseline study (4.56 %). The species richness increased from one to four in the forest, and from zero to eight in the thicket, but decreased from six to four in the grassland. The total number of individuals increased in all habitats, with the dominant species in the grassland shifting from Lemniscomys striatus to Mastomys erythroleucus. Three species, Malacomys edwardsi, Grammomys poensis and Praomys tullbergi are the first records for the Muni-Pomadze Ramsar site. Generally, the average body mass of individual species in the grassland was lower in the present study. The considerable changes in small mammal community structure suggest changes in the wetland ecosystem. The conservation implications of our findings are discussed. PMID:27154051

  15. Spatio-temporal variation in small mammal species richness, relative abundance and body mass reveal changes in a coastal wetland ecosystem in Ghana.

    PubMed

    Ofori, Benjamin Y; Attuquayefio, Daniel K; Owusu, Erasmus H; Musah, Yahaya; Ntiamoa-Baidu, Yaa

    2016-06-01

    Coastal wetlands in Ghana are under severe threat of anthropogenic drivers of habitat degradation and climate change, thereby increasing the need for assessment and monitoring to inform targeted and effective conservation of these ecosystems. Here, we assess small mammal species richness, relative abundance and body mass in three habitats at the Muni-Pomadze Ramsar site of Ghana, and compare these to baseline data gathered in 1997 to evaluate changes in the wetland ecosystem. Small mammals were live-trapped using Sherman collapsible and pitfall traps. We recorded 84 individuals of 10 species in 1485 trap-nights, whereas the baseline study recorded 45 individuals of seven species in 986 trap-nights. The overall trap-success was therefore greater in the present study (5.66 %) than the baseline study (4.56 %). The species richness increased from one to four in the forest, and from zero to eight in the thicket, but decreased from six to four in the grassland. The total number of individuals increased in all habitats, with the dominant species in the grassland shifting from Lemniscomys striatus to Mastomys erythroleucus. Three species, Malacomys edwardsi, Grammomys poensis and Praomys tullbergi are the first records for the Muni-Pomadze Ramsar site. Generally, the average body mass of individual species in the grassland was lower in the present study. The considerable changes in small mammal community structure suggest changes in the wetland ecosystem. The conservation implications of our findings are discussed.

  16. Bartonella spp. in Small Mammals, Benin.

    PubMed

    Martin-Alonso, Aarón; Houemenou, Gualbert; Abreu-Yanes, Estefanía; Valladares, Basilio; Feliu, Carlos; Foronda, Pilar

    2016-04-01

    This study aimed to investigate the prevalence and genetic diversity of Bartonella organisms in small mammals in Cotonou, Benin. We captured 163 rodents and 12 insectivores and successfully detected Bartonella DNA from 13 of the 175 small mammal individuals. Bartonella spp., identical or closely related to Bartonella elizabethae, Bartonella tribocorum, and Bartonella rochalimae, was detected. A potential new Bartonella species, proposed as Candidatus Bartonella mastomydis, was found in three Mastomys individuals and genetically characterized by targeting two housekeeping genes (rpoB and gltA) and the intergenic species region. However, 20.8% of gray rats were found to be infected with Bartonella spp., and none of the black rats analyzed was positive. This work may be important from a public health point of view due to the zoonotic nature of the Bartonella species detected and warrants further investigation on the unknown zoonotic potential of this newly proposed Bartonella species. PMID:26910412

  17. Bartonella spp. in Small Mammals, Benin.

    PubMed

    Martin-Alonso, Aarón; Houemenou, Gualbert; Abreu-Yanes, Estefanía; Valladares, Basilio; Feliu, Carlos; Foronda, Pilar

    2016-04-01

    This study aimed to investigate the prevalence and genetic diversity of Bartonella organisms in small mammals in Cotonou, Benin. We captured 163 rodents and 12 insectivores and successfully detected Bartonella DNA from 13 of the 175 small mammal individuals. Bartonella spp., identical or closely related to Bartonella elizabethae, Bartonella tribocorum, and Bartonella rochalimae, was detected. A potential new Bartonella species, proposed as Candidatus Bartonella mastomydis, was found in three Mastomys individuals and genetically characterized by targeting two housekeeping genes (rpoB and gltA) and the intergenic species region. However, 20.8% of gray rats were found to be infected with Bartonella spp., and none of the black rats analyzed was positive. This work may be important from a public health point of view due to the zoonotic nature of the Bartonella species detected and warrants further investigation on the unknown zoonotic potential of this newly proposed Bartonella species.

  18. Bartonella infection in small mammals and their ectoparasites in Lithuania.

    PubMed

    Lipatova, Indre; Paulauskas, Algimantas; Puraite, Irma; Radzijevskaja, Jana; Balciauskas, Linas; Gedminas, Vaclovas

    2015-01-01

    The Bartonella pathogen is an emerging zoonotic agent. Epidemiological studies worldwide have demonstrated that small mammals are reservoir hosts of Bartonella spp. and their ectoparasites are potential vectors. The aim of this study was to investigate the prevalence of Bartonella infections in small mammals (Rodentia, Insectivora) and their ectoparasites (fleas and ticks) in Lithuania. A total of 430 small mammals representing nine species were captured with live-traps in Lithuania during 2013-2014. A total of 151 fleas representing eight species were collected from 109 (25.8%) small mammals. Five hundred and seventy ticks (Ixodes ricinus) were collected from 68 (16.1%) small mammals. Bartonella DNA was detected in 102 (23.7%) small mammals, 44 (29.1%) fleas and five (3.7%) pooled tick samples. Sequence analysis of 16S-23S rRNA ITS region showed that sequences were identical or similar to Bartonella grahamii, Bartonella taylorii and Bartonella rochalimae. This study is the first investigating the distribution and diversity of Bartonella species in small mammals and their ectoparasites in Lithuania. B. grahamii, B. taylorii, and B. rochalimae were detected in small mammals and their fleas, and B. grahamii in ticks obtained from small mammals. PMID:26344603

  19. Bartonella infection in small mammals and their ectoparasites in Lithuania.

    PubMed

    Lipatova, Indre; Paulauskas, Algimantas; Puraite, Irma; Radzijevskaja, Jana; Balciauskas, Linas; Gedminas, Vaclovas

    2015-01-01

    The Bartonella pathogen is an emerging zoonotic agent. Epidemiological studies worldwide have demonstrated that small mammals are reservoir hosts of Bartonella spp. and their ectoparasites are potential vectors. The aim of this study was to investigate the prevalence of Bartonella infections in small mammals (Rodentia, Insectivora) and their ectoparasites (fleas and ticks) in Lithuania. A total of 430 small mammals representing nine species were captured with live-traps in Lithuania during 2013-2014. A total of 151 fleas representing eight species were collected from 109 (25.8%) small mammals. Five hundred and seventy ticks (Ixodes ricinus) were collected from 68 (16.1%) small mammals. Bartonella DNA was detected in 102 (23.7%) small mammals, 44 (29.1%) fleas and five (3.7%) pooled tick samples. Sequence analysis of 16S-23S rRNA ITS region showed that sequences were identical or similar to Bartonella grahamii, Bartonella taylorii and Bartonella rochalimae. This study is the first investigating the distribution and diversity of Bartonella species in small mammals and their ectoparasites in Lithuania. B. grahamii, B. taylorii, and B. rochalimae were detected in small mammals and their fleas, and B. grahamii in ticks obtained from small mammals.

  20. Small mammals as monitors of environmental contaminants.

    PubMed

    Talmage, S S; Walton, B T

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants. Based on information in these studies, each species' suitability as a monitor for a specific contaminant or type of contaminant was evaluated and subsequently ranked. A relationship between

  1. Small mammals as monitors of environmental contaminants.

    PubMed

    Talmage, S S; Walton, B T

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants. Based on information in these studies, each species' suitability as a monitor for a specific contaminant or type of contaminant was evaluated and subsequently ranked. A relationship between

  2. Dispersal, niche, and isolation processes jointly explain species turnover patterns of nonvolant small mammals in a large mountainous region of China.

    PubMed

    Wen, Zhixin; Quan, Qing; Du, Yuanbao; Xia, Lin; Ge, Deyan; Yang, Qisen

    2016-02-01

    Understanding the mechanisms that govern the spatial patterns of species turnover (beta diversity) has been one of the fundamental issues in biogeography. Species turnover is generally recognized as strong in mountainous regions, but the way in which different processes (dispersal, niche, and isolation) have shaped the spatial turnover patterns in mountainous regions remains largely unexplored. Here, we explore the directional and elevational patterns of species turnover for nonvolant small mammals in the Hengduan Mountains of southwest China and distinguish the relative roles of geographic distance, environmental distance, and geographic isolation on the patterns. The spatial turnover was assessed using the halving distance (km), which was the geographic distance that halved the similarity (Jaccard similarity) from its initial value. The halving distance was calculated for the linear, logarithmic, and exponential regression models between Jaccard similarity and geographic distance. We found that the east-west turnover is generally faster than the south-north turnover for high-latitudinal regions in the Hengduan Mountains and that this pattern corresponds to the geographic structure of the major mountain ranges and rivers that mainly extend in a south-north direction. There is an increasing trend of turnover toward the higher-elevation zones. Most of the variation in the Jaccard similarity could be explained by the pure effect of geographic distance and the joint effects of geographic distance, environmental distance, and average elevation difference. Our study indicates that dispersal, niche, and isolation processes are all important determinants of the spatial turnover patterns of nonvolant small mammals in the Hengduan Mountains. The spatial configuration of the landscape and geographic isolation can strongly influence the rate of species turnover in mountainous regions at multiple spatial scales. PMID:26941938

  3. Small mammals as monitors of environmental contaminants

    SciTech Connect

    Talmage, S.S.; Walton, B.T. )

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants.

  4. The transfer of (137)Cs, Pu isotopes and (90)Sr to bird, bat and ground-dwelling small mammal species within the Chernobyl exclusion zone.

    PubMed

    Beresford, N A; Gaschak, S; Maksimenko, Andrey; Wood, M D

    2016-03-01

    Protected species are the focus of many radiological environmental assessments. However, the lack of radioecological data for many protected species presents a significant international challenge. Furthermore, there are legislative restrictions on destructive sampling of protected species to obtain such data. Where data are not available, extrapolations are often made from 'similar' species but there has been little attempt to validate this approach. In this paper we present what, to our knowledge, is the first study purposefully designed to test the hypothesis that radioecological data for unprotected species can be used to estimate conservative radioecolgical parameters for protected species; conservatism being necessary to ensure that there is no significant impact. The study was conducted in the Chernobyl Exclusion Zone. Consequently, we are able to present data for Pu isotopes in terrestrial wildlife. There has been limited research on Pu transfer to terrestrial wildlife which contrasts with the need to assess radiation exposure of wildlife to Pu isotopes around many nuclear facilities internationally. Our results provide overall support for the hypothesis that data for unprotected species can be used to adequately assess the impacts for ionising radiation on protected species. This is demonstrated for a range of mammalian and avian species. However, we identify one case, the shrew, for which data from other ground-dwelling small mammals would not lead to an appropriately conservative assessment of radiation impact. This indicates the need to further test our hypothesis across a range of species and ecosystems, and/or ensure adequate conservatism within assessments. The data presented are of value to those trying to more accurately estimate the radiation dose to wildlife in the Chernobyl Exclusion Zone, helping to reduce the considerable uncertainty in studies reporting dose-effect relationships for wildlife. A video abstract for this paper is available from

  5. The transfer of (137)Cs, Pu isotopes and (90)Sr to bird, bat and ground-dwelling small mammal species within the Chernobyl exclusion zone.

    PubMed

    Beresford, N A; Gaschak, S; Maksimenko, Andrey; Wood, M D

    2016-03-01

    Protected species are the focus of many radiological environmental assessments. However, the lack of radioecological data for many protected species presents a significant international challenge. Furthermore, there are legislative restrictions on destructive sampling of protected species to obtain such data. Where data are not available, extrapolations are often made from 'similar' species but there has been little attempt to validate this approach. In this paper we present what, to our knowledge, is the first study purposefully designed to test the hypothesis that radioecological data for unprotected species can be used to estimate conservative radioecolgical parameters for protected species; conservatism being necessary to ensure that there is no significant impact. The study was conducted in the Chernobyl Exclusion Zone. Consequently, we are able to present data for Pu isotopes in terrestrial wildlife. There has been limited research on Pu transfer to terrestrial wildlife which contrasts with the need to assess radiation exposure of wildlife to Pu isotopes around many nuclear facilities internationally. Our results provide overall support for the hypothesis that data for unprotected species can be used to adequately assess the impacts for ionising radiation on protected species. This is demonstrated for a range of mammalian and avian species. However, we identify one case, the shrew, for which data from other ground-dwelling small mammals would not lead to an appropriately conservative assessment of radiation impact. This indicates the need to further test our hypothesis across a range of species and ecosystems, and/or ensure adequate conservatism within assessments. The data presented are of value to those trying to more accurately estimate the radiation dose to wildlife in the Chernobyl Exclusion Zone, helping to reduce the considerable uncertainty in studies reporting dose-effect relationships for wildlife. A video abstract for this paper is available from

  6. Optimising camera traps for monitoring small mammals.

    PubMed

    Glen, Alistair S; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea), feral cats (Felis catus) and hedgehogs (Erinaceuseuropaeus). Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  7. Paracoccidioides brasiliensis Infection in Small Wild Mammals.

    PubMed

    Sbeghen, Mônica Raquel; Zanata, Thais Bastos; Macagnan, Rafaela; de Abreu, Kaue Cachuba; da Cunha, Willian Luiz; Watanabe, Maria Angelica Ehara; de Camargo, Zoilo Pires; Ono, Mario Augusto

    2015-12-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis prevalent in Brazil and other Latin American countries. The etiological agents of PCM are the thermo-dimorphic fungi Paracoccidioides brasiliensis and P. lutzii. Taking into account that the natural habitat of Paracoccidioides spp. is still undefined, domestic and wild animals could be useful as indicators of Paracoccidioides spp. presence in endemic areas. The objective of this study was to evaluate the infection of small wild mammals by P. brasiliensis in an endemic area for human PCM. Samples from 38 wild mammals from different species such as Akodon sp., Thaptomys nigrita, Euryoryzomys russatus, Oligoryzomys nigripes, Monodelphis sp., Sooretamys angouya, Abrawayaomys angouya, Abrawayaomys ruschii and Akodontinae sp. were evaluated by ELISA, immunodiffusion, histopathology, nested PCR and culture. The overall positivity to gp43 observed in the ELISA was 23.7%. Samples from heart and liver of one O. nigripes were PCR positive, and the animal was also seropositive to gp43 in ELISA. This study showed that wild animals living in endemic areas for PCM are infected with P. brasiliensis and can be valuable epidemiological markers of the fungus presence in the environment. This is the first evidence of PCM infection in Akodon sp., E. russatus, T. nigrita and O. nigripes. PMID:26232125

  8. Paracoccidioides brasiliensis Infection in Small Wild Mammals.

    PubMed

    Sbeghen, Mônica Raquel; Zanata, Thais Bastos; Macagnan, Rafaela; de Abreu, Kaue Cachuba; da Cunha, Willian Luiz; Watanabe, Maria Angelica Ehara; de Camargo, Zoilo Pires; Ono, Mario Augusto

    2015-12-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis prevalent in Brazil and other Latin American countries. The etiological agents of PCM are the thermo-dimorphic fungi Paracoccidioides brasiliensis and P. lutzii. Taking into account that the natural habitat of Paracoccidioides spp. is still undefined, domestic and wild animals could be useful as indicators of Paracoccidioides spp. presence in endemic areas. The objective of this study was to evaluate the infection of small wild mammals by P. brasiliensis in an endemic area for human PCM. Samples from 38 wild mammals from different species such as Akodon sp., Thaptomys nigrita, Euryoryzomys russatus, Oligoryzomys nigripes, Monodelphis sp., Sooretamys angouya, Abrawayaomys angouya, Abrawayaomys ruschii and Akodontinae sp. were evaluated by ELISA, immunodiffusion, histopathology, nested PCR and culture. The overall positivity to gp43 observed in the ELISA was 23.7%. Samples from heart and liver of one O. nigripes were PCR positive, and the animal was also seropositive to gp43 in ELISA. This study showed that wild animals living in endemic areas for PCM are infected with P. brasiliensis and can be valuable epidemiological markers of the fungus presence in the environment. This is the first evidence of PCM infection in Akodon sp., E. russatus, T. nigrita and O. nigripes.

  9. Population dynamics of small mammals in semi-arid regions: a comparative study of demographic variability in two rodent species.

    PubMed Central

    Lima, Mauricio; Stenseth, Nils Chr; Leirs, Herwig; Jaksic, Fabián M

    2003-01-01

    The seasonally determined demographic structure of two semi-arid rodents, both agricultural pest species (the leaf-eared mouse (Phyllotis darwini) in Chile and the multimammate mouse (Mastomys natalensis) in Tanzania), is analysed using capture-mark-recapture (CMR) statistical models and measures for elasticity (the relative change in the growth rate due to a relative unit change in the parameter of concern) derived from projection linear matrix models. We demonstrate that reproduction and survival during the breeding season contribute approximately equally to population growth in the leaf-eared mouse, whereas the multimammate mouse is characterized by a more clearly defined seasonal structure into breeding and non-breeding seasons and that reproduction contributes far more than survival during the breeding season. On this basis, we discuss evolutionary and applied (pest control) issues. Regarding the evolution of life histories (leading to a maximization of the overall net annual growth rate), we suggest that for the leaf-eared mouse, features favouring survival throughout the year will provide selective value, but that during the main breeding season, features favouring reproduction and survival are about equally favourable. For the multimammate mouse, features favouring survival are particularly important outside the breeding season, whereas during the breeding season features favouring reproduction are more important. Regarding pest control (aiming at reducing the overall net annual growth rate), we suggest that (ignoring economic considerations) affecting survival outside the main breeding season is particularly effective for the leaf-eared mouse, a feature that is even more the case for the multimammate mouse. In sum, we demonstrate through this comparative study that much is to be learnt from studying the dynamics of fluctuating small rodents-a focal issue within much of population ecology. PMID:14561287

  10. Small mammal response to the introduction of cattle into a cottonwood floodplain

    USGS Publications Warehouse

    Samson, F.B.; Knopf, F.L.; Hass, L.B.

    1988-01-01

    Few differences between pastures in small mammal communities were evident prior to grazing, 1 month following grazing, and no differences in number or distribution of small mammals were observed 5 months following grazing. Each small mammal species exhibited different habitat use compared to availability and few habitat variables differed on grazed versus ungrazed pastures. Grazing at SCS recommendations in winter did not appear to have an initial effect on small mammal populations or their habitats in a Colorado floodplain.

  11. Helminth parasites of small mammals in Kerman province, southeastern Iran.

    PubMed

    Fasihi Harandi, Majid; Madjdzadeh, Seyed Massoud; Ahmadinejad, Mohammad

    2016-03-01

    Fifty-one specimens of small mammals were collected from different locations of Kerman province, southeastern Iran during 2007 and 2009. They constitute six species of rodents (Meriones persicus, Meriones libycus, Tatera indica, Dryomys nitedula and Mus musculus), one species of Erinaceomorpha (Paraechinus hypomelas) and one species of hare (Lepus europeus). The rate of helminthic infection was 45.1 % among all trapped specimens. In 28 out of 51 hunted specimens no intestinal helminth parasite was found. Of all mammals examined, 15 (29.4 %) had nematodes, 5 (9.8 %) had cestodes, and 3 (5.9 %) were infected with Acanthocephala. Five different species of parasites were isolated: Trichuris muris, Moniliformis moniliformis, Hymenolepis diminuta, Hymenolepis nana, and Mastophorus muris. Results of the present study indicate the potential of small mammals in the transmission of zoonotic helminthic infection.

  12. Helminth parasites of small mammals in Kerman province, southeastern Iran.

    PubMed

    Fasihi Harandi, Majid; Madjdzadeh, Seyed Massoud; Ahmadinejad, Mohammad

    2016-03-01

    Fifty-one specimens of small mammals were collected from different locations of Kerman province, southeastern Iran during 2007 and 2009. They constitute six species of rodents (Meriones persicus, Meriones libycus, Tatera indica, Dryomys nitedula and Mus musculus), one species of Erinaceomorpha (Paraechinus hypomelas) and one species of hare (Lepus europeus). The rate of helminthic infection was 45.1 % among all trapped specimens. In 28 out of 51 hunted specimens no intestinal helminth parasite was found. Of all mammals examined, 15 (29.4 %) had nematodes, 5 (9.8 %) had cestodes, and 3 (5.9 %) were infected with Acanthocephala. Five different species of parasites were isolated: Trichuris muris, Moniliformis moniliformis, Hymenolepis diminuta, Hymenolepis nana, and Mastophorus muris. Results of the present study indicate the potential of small mammals in the transmission of zoonotic helminthic infection. PMID:27065607

  13. Small mammals of a bitterbrush-cheatgrass community

    SciTech Connect

    Gano, K.A.; Rickard, W.H.

    1982-01-01

    Small mammals were live-trapped in burned and unburned segments of a bitterbrush-cheatgrass community during the years 1974-1979. Results indicate that the shrub-dominated unburned area supports about three times as many small mammals as the cheatgrass-dominated burned area. Species composition was similar in both areas with the exception of one ground squirrel (Spermophilus townsendii) captured on the unburned area. Other species caught were the Great Basin pocket mouse (Perognathus parvus), deer mouse (Peromyscus maniculatus), northern grasshopper mouse (Onychomys leucogaster), and the western harvest mouse (Reithrodontomys megalotis).

  14. Effects of Landscape Manipulation on Population Densities, Habitat Utilization, Home Ranges, and Movements of Three Small Mammal Species

    SciTech Connect

    Mabry, K.E.

    2001-07-01

    No significant differences were found in the population densities of any species in experimentally fragmented landscape. However, trends in population densities indicate that connected patches usually support higher densities of cotton rats, isolated patches supported higher densities of old-field mice. No significant trends in population densities were observed for cotton mice. Cotton mice were captured more often in corridors, while old-field mice were captured more frequently in the interior. Results suggest landscape fragmentation has less of an effect on cotton mice-a habitat generalist.

  15. Clinical pathology and sample collection of exotic small mammals.

    PubMed

    Ness, R D

    1999-09-01

    The clinical pathology of some of the less common and newly emerging small mammal species is detailed in this article. The species covered here include the chinchilla, prairie dog, African hedgehog, and sugar glider. Venipuncture sites and sampling techniques are discussed in general and for each species. Detailed information on the hematology and serum biochemistry values of these animals is presented in numerous tables. Specific information is also provided for urinalysis, fecal analysis, dermatologic sampling, and cytology. PMID:11229045

  16. Mesostigmatid mites of small mammals from the Hindu Kush (Afghanistan).

    PubMed

    Daniel, M

    1977-01-01

    During the First Czechoslovak mountaineering expedition to the Hindu Kush (1965) a material of mesostigmatid mites was collected from small mammals, yielding 16 species. Due to the fact that it is the first collection of these parasites studied in Afghanistan, a zoogeographic analysis, altitudinal stratification and epidemiological estimation are appended. PMID:342369

  17. Exotic Small Mammals as Potential Reservoirs of Zoonotic Bartonella spp.

    PubMed Central

    Inoue, Kai; Kabeya, Hidenori; Hagiya, Keiko; Izumi, Yasuhito; Une, Yumi; Yoshikawa, Yasuhiro

    2009-01-01

    To evaluate the risk for emerging human infections caused by zoonotic Bartonella spp. from exotic small mammals, we investigated the prevalence of Bartonella spp. in 546 small mammals (28 species) that had been imported into Japan as pets from Asia, North America, Europe, and the Middle and Near East. We obtained 407 Bartonella isolates and characterized them by molecular phylogenetic analysis of the citrate synthase gene, gltA. The animals examined carried 4 zoonotic Bartonella spp. that cause human endocarditis and neuroretinitis and 6 novel Bartonella spp. at a high prevalence (26.0%, 142/546). We conclude that exotic small mammals potentially serve as reservoirs of several zoonotic Bartonella spp. PMID:19331727

  18. Distribution and ecology of small mammals in Albania.

    PubMed

    Rogozi, Elton; Bego, Ferdinand; Papa, Anna; Mersini, Kujtim; Bino, Silvia

    2013-01-01

    In order to gain an insight into the population dynamics and habitat preferences of rodents in Albania, small mammals were collected during 2006-2009 in various districts of the country. Of the 15 species of small mammals captured (12 in Rodentia and 3 in Insectivora order), the yellow-necked mouse (Apodemus flavicollis) was the most frequently collected, representing 50% of the 325 small mammals captured, followed by the wood mouse (Apodemus sylvaticus) (20.62%). Apodemus flavicollis is the primary reservoir for Dobrava-Belgrade virus which causes to humans hemorrhagic fever with renal syndrome; the places with A. flavicollis abundance were those with records of the human disease. Knowledge of the reservoir ecology in a country facilitates risk assessments for rodent-borne diseases.

  19. Detection of diverse novel astroviruses from small mammals in China.

    PubMed

    Hu, Ben; Chmura, Aleksei A; Li, Jialu; Zhu, Guangjian; Desmond, James S; Zhang, Yunzhi; Zhang, Wei; Epstein, Jonathan H; Daszak, Peter; Shi, Zhengli

    2014-11-01

    Astroviruses infect humans and many animal species and cause gastroenteritis. To extensively understand the distribution and genetic diversity of astrovirus in small mammals, we tested 968 anal swabs from 39 animal species, most of which were bats and rodents. We detected diverse astroviruses in 10 bat species, including known bat astroviruses and a large number of novel viruses. Meanwhile, novel groups of astroviruses were identified in three wild rodent species and a remarkably high genetic diversity of astrovirus was revealed in Eothenomys cachinus. We detected astroviruses in captive-bred porcupines and a nearly full-length genome sequence was determined for one strain. Phylogenetic analysis of the complete ORF2 sequence suggested that this strain may share a common ancestor with porcine astrovirus type 2. Moreover, to our knowledge, this study reports the first discovery of astroviruses in shrews and pikas. Our results provide new insights for understanding these small mammals as natural reservoirs of astroviruses. PMID:25034867

  20. Effects of tillage practices and carbofuran exposure on small mammals

    USGS Publications Warehouse

    Albers, P.H.; Linder, G.; Nichols, J.D.

    1990-01-01

    We compared population estimates, body mass, movement, and blood chemistry of small mammals between conventionally tilled and no-till cornfields in Maryland and Pennsylvania to evaluate the effects of tillage practices and carbofuran exposure on small mammals.

  1. Two new species of Apoloniinae (Acari: Trombiculoidea: Leeuwenhoekiidae) from African small mammals, with a key to the species of the world.

    PubMed

    Brown, Wayne A

    2006-09-01

    The genus Liuella Wang et Bai, 1992 is transferred from Trombiculidae to Apoloniinae and a new species Liuella monosetosa sp. n. described from specimens taken in Morocco from the hosts Gerbillus sp. and Meriones libycus Lichtenstein. A new species of Straelensia Vercammen-Grandjean et Kolebinova, 1968, Straelensia variocula sp. n. is described from specimens taken in Morocco and Burkina Faso from the hosts Genetta thierryi Matschie, Gerbillus sp., M. libycus and Elephantulus rozeti (Duvernoy). A list of species, hosts and localities and a key to the species of the Apoloniinae of the world are presented.

  2. Future directions in training of veterinarians for small exotic mammal medicine: expectations, potential, opportunities, and mandates.

    PubMed

    Rosenthal, Karen

    2006-01-01

    Small exotic mammals have been companions to people for almost as long as dogs and cats have been. The challenge for veterinary medicine today is to decipher the tea leaves and determine whether small mammals are fad or transient pets or whether they will still be popular in 20 years. This article focuses on pet small-mammal medicine, as the concerns of the laboratory animal are better known and may differ profoundly from those of a pet. Dozens of species of small exotic mammals are kept as pets. These pet small-mammal species have historically served human purposes other than companionship: for hunting, for their pelts, or for meat. Now, they are common pets. At present, most veterinary schools lack courses in the medical care of these animals. Veterinary students need at least one required class to introduce them to these pets. Currently, there are no small-mammal-only residency programs. This does not correspond with current needs. The only way to judge current needs is by assessing what employers are looking for. In a recent JAVMA classified section, almost 30% of small-animal practices in suburban/urban areas were hiring veterinarians with knowledge of exotic pets. All veterinarians must recognize that pet exotic small mammals have changed the landscape of small-animal medicine. It is a reality that, today, many small-animal practices see pet exotic small mammals on a daily basis. PMID:17035210

  3. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    SciTech Connect

    Bennett, Kathy; Sherwood, Sherri; Robinson, Rhonda

    2006-08-15

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  4. Introduced species: domestic mammals are more significant transmitters of parasites to native mammals than are feral mammals.

    PubMed

    Landaeta-Aqueveque, Carlos; Henríquez, Analía; Cattan, Pedro E

    2014-03-01

    The study of parasitism related to biological invasion has focused on attributes and impacts of parasites as invaders and the impact of introduced hosts on endemic parasitism. Thus, there is currently no study of the attributes of hosts which influence the invasiveness of parasites. We aimed to determine whether the degree of domestication of introduced mammalian species - feral introduced mammals, livestock or pets, hereafter 'D' - is important in the spillover of introduced parasites. The literature on introduced parasites of mammals in Chile was reviewed. We designed an index for estimating the relevance of the introduced host species to parasite spillover and determined whether the D of introduced mammals predicted this index. A total of 223 introduced parasite species were found. Our results indicate that domestic mammals have a higher number of introduced parasites and spillover parasites, and the index indicates that these mammals, particularly pets, are more relevant introducers than introduced feral mammals. Further analyses indicated that the higher impact is due to higher parasite richness, a longer time since introduction and wider dispersal, as well as how these mammals are maintained. The greater relevance of domestic mammals is important given that they are basically the same species distributed worldwide and can become the main transmitters of parasites to native mammals elsewhere. This finding also underlines the feasibility of management in order to reduce the transmission of parasites to native fauna through anti-parasitic treatment of domestic mammals, animal-ownership education and the prevention of importing new parasite species.

  5. Influence of alternative silviculture on small mammals

    USGS Publications Warehouse

    Waldien, David L.; Hayes, John P.

    2006-01-01

    HIGHLIGHT: A variety of harvest methods promote diversity within forests while still generating income. For example, recent studies have shown that when dead wood is left on the forest floor during harvest, biodiversity increases. A new Cooperative Forest Ecosystem Research (CFER) program fact sheet summarizes how small mammals respond to dead wood in forests that are harvested with alternative methods. CFER is developing a series of fact sheets about responses to changes in young western Oregon forests. The fact sheets are designed to help resource managers balance management needs, including timber and wildlife. The USGS provides a primary source of financial support for CFER, a consortium of federal and state partners conducting research in support of the Northwest Forest Plan.

  6. Corridors and olfactory predator cues affect small mammal behavior.

    SciTech Connect

    Brinkerhoff, Robert Jory; Haddad, Nick M.; Orrock, John L.

    2005-03-30

    Abstract The behavior of prey individuals is influenced by a variety of factors including, but not limited to, habitat configuration, risk of predation, and availability of resources, and these habitat-dependent factors may have interactive effects. We studied the responses of mice to an increase in perceived predation risk in a patchy environment to understand how habitat corridors might affect interactions among species in a fragmented landscape. We used a replicated experiment to investigate corridor-mediated prey responses to predator cues in a network of open habitat patches surrounded by a matrix of planted pine forest. Some of the patches were connected by corridors. We used mark–recapture techniques and foraging trays to monitor the movement, behavior, and abundance of small mammals. Predation threat was manipulated in one-half of the replicates by applying an olfactory predator cue. Corridors synchronized small mammal foraging activity among connected patches. Foraging also was inhibited in the presence of an olfactory predator cue but apparently increased in adjacent connected patches. Small mammal abundance did not change as a result of the predator manipulation and was not influenced by the presence of corridors. This study is among the 1st to indicate combined effects of landscape configuration and predation risk on prey behavior. These changes in prey behavior may, in turn, have cascading effects on community dynamics where corridors and differential predation risk influence movement and patch use.

  7. The Celtic fringe of Britain: insights from small mammal phylogeography.

    PubMed

    Searle, Jeremy B; Kotlík, Petr; Rambau, Ramugondo V; Marková, Silvia; Herman, Jeremy S; McDevitt, Allan D

    2009-12-22

    Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people. We show that mtDNA lineages of three other small mammal species (bank vole Myodes glareolus, field vole Microtus agrestis and pygmy shrew Sorex minutus) also form a 'Celtic fringe'. We argue that these small mammals most reasonably colonized Britain in a two-phase process following the last glacial maximum (LGM), with climatically driven partial replacement of the first colonists by the second colonists, leaving a peripheral geographical distribution for the first colonists. We suggest that these natural Celtic fringes provide insight into the same phenomenon in humans and support its origin in processes following the end of the LGM.

  8. Evolutionary origins of hepatitis A virus in small mammals

    PubMed Central

    Drexler, Jan Felix; Corman, Victor M.; Lukashev, Alexander N.; van den Brand, Judith M. A.; Gmyl, Anatoly P.; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M.; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G.; Lemon, Stanley M.; Drosten, Christian

    2015-01-01

    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3Dpol sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses. PMID:26575627

  9. Small mammal study of Sandia Canyon, 1994 and 1995

    SciTech Connect

    Bennett, K.; Biggs, J.

    1996-11-01

    A wide range of plant and wildlife species utilize water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to gather baseline data of small mammal populations and compare small mammal characteristics within three areas of Sandia Canyon, which receives outfall effluents from multiple sources. Three small mammal trapping webs were placed in the upper portion of Sandia Canyon, the first two were centered in a cattail-dominated marsh with a ponderosa pine overstory and the third web was placed in a much drier transition area with a ponderosa pine overstory. Webs 1 and 2 had the highest species diversity indices with deer mice the most commonly captured species in all webs. However, at Web 1, voles, shrews, and harvest mice, species more commonly found in moist habitats, made up a much greater overall percentage (65.6%) than did deer mice and brush mice (34.5%). The highest densities and biomass of animals were found in Web 1 with a continual decrease in density estimates in each web downstream. There is no statistical difference between the mean body weights of deer mice and brush mice between sites. Mean body length was also determined not to be statistically different between the webs (GLM [deer mouse], F = 0.89, p = 0.4117; GLM [brush mouse], F = 2.49, p = 0.0999). Furthermore, no statistical difference between webs was found for the mean lean body masses of deer and brush mice (GLM [deer mouse], F = 2.54, p = 0.0838; GLM [brush mouse], F = 1.60, p = 0.2229). Additional monitoring studies should be conducted in Sandia Canyon so comparisons over time can be made. In addition, rodent tissues should be sampled for contaminants and then compared to background or control populations elsewhere at the Laboratory or at an off-site location.

  10. Evolutionary origins of hepatitis A virus in small mammals.

    PubMed

    Drexler, Jan Felix; Corman, Victor M; Lukashev, Alexander N; van den Brand, Judith M A; Gmyl, Anatoly P; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G; Lemon, Stanley M; Drosten, Christian

    2015-12-01

    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses. PMID:26575627

  11. Evolutionary origins of hepatitis A virus in small mammals.

    PubMed

    Drexler, Jan Felix; Corman, Victor M; Lukashev, Alexander N; van den Brand, Judith M A; Gmyl, Anatoly P; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G; Lemon, Stanley M; Drosten, Christian

    2015-12-01

    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses.

  12. Small mammal populations in a restored stream corridor

    SciTech Connect

    Wike, L.D.

    2000-03-13

    An opportunity to study the response of a small mammal community to restoration of a riparian wetland was provided by the Pen Branch project at the Savannah River Site (SRS). Live trapping of small mammals was conducted on six transects at Pen Branch in 1996 and 1998 and at three transects at Meyer's Branch, an unimpacted stream at SRS, in 1997 and 1998. Distributions of rates of capture of the four most common species were both spatially and temporally uneven. Kruskal-Wallis one-way analysis of variance found no significant differences in the relationship of capture rates between species and between treatment and both the within-stream control and Meyers Branch. Habitat use and movement within stream corridors appears to be dependent primarily on species, with age and sex perhaps contributing to preference and distance moved. The lack of differences in capture rates related to transect or treatment may be due to the close proximity of sample transects relative to the movement potential of the species sampled.

  13. Species identification key of Korean mammal hair.

    PubMed

    Lee, Eunok; Choi, Tae-Young; Woo, Donggul; Min, Mi-Sook; Sugita, Shoei; Lee, Hang

    2014-05-01

    The hair microstructures of Korean terrestrial mammals from 23 species (22 wild and one domestic) were analyzed using light and scanning electron microscopy (SEM) to construct a hair identification key. The hairs were examined using the medulla structures and cuticular scales of guard hairs from the dorsal regions of mature adult animals. All cuticular scale structures in the hair of Rodentia, Lagomorpha, Carnivora and Insectivora showed the petal pattern, and those of Artiodactyla and Chiroptera showed the wave pattern and coronal pattern, respectively. Rodentia, Lagomorpha and Carnivora showed multicellular, and Insectivora and Artiodactyla showed unicellular regular, mesh or columnar in the medulla structures, respectively. Chiroptera did not show the medulla structures in their hair. We found that it is possible to distinguish between species and order based on general appearance, medulla structures and cuticular scales. Thus, we constructed a hair identification key with morphological characteristics from each species. This study suggests that hair identification keys could be useful in fields, such as forensic science, food safety and foraging ecology.

  14. Species identification key of Korean mammal hair.

    PubMed

    Lee, Eunok; Choi, Tae-Young; Woo, Donggul; Min, Mi-Sook; Sugita, Shoei; Lee, Hang

    2014-05-01

    The hair microstructures of Korean terrestrial mammals from 23 species (22 wild and one domestic) were analyzed using light and scanning electron microscopy (SEM) to construct a hair identification key. The hairs were examined using the medulla structures and cuticular scales of guard hairs from the dorsal regions of mature adult animals. All cuticular scale structures in the hair of Rodentia, Lagomorpha, Carnivora and Insectivora showed the petal pattern, and those of Artiodactyla and Chiroptera showed the wave pattern and coronal pattern, respectively. Rodentia, Lagomorpha and Carnivora showed multicellular, and Insectivora and Artiodactyla showed unicellular regular, mesh or columnar in the medulla structures, respectively. Chiroptera did not show the medulla structures in their hair. We found that it is possible to distinguish between species and order based on general appearance, medulla structures and cuticular scales. Thus, we constructed a hair identification key with morphological characteristics from each species. This study suggests that hair identification keys could be useful in fields, such as forensic science, food safety and foraging ecology. PMID:24451929

  15. Effects of fire on small mammal communities in frequent-fire forests in California

    USGS Publications Warehouse

    Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.

    2015-01-01

    Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.

  16. Measurements of uranium in soils and small mammals

    SciTech Connect

    Miera, F.R. Jr.

    1980-12-01

    The objective of this study was to evaluate the bioavailability of uranium to a single species of small mammal, Peromyscus maniculatus rufinus (Merriam), white-footed deer mouse, from two different source terms: a Los Alamos National Laboratory dynamic weapons testing site in north central New Mexico, where an estimated 70,000 kg of uranium have been expended over a 31-y period; and an inactive uranium mill tailings pile located in west central New Mexico near Grants, which received wastes over a 5-y period from the milling of 2.7 x 10/sup 9/ kg of uranium ore.

  17. Elk herbivory alters small mammal assemblages in high elevation drainages

    USGS Publications Warehouse

    Parsons, Elliott W.R.; Maron, John L.; Martin, Thomas E.

    2012-01-01

    Together, our results show that relaxation of heavy herbivore pressure by a widespread native ungulate can lead to rapid changes in small mammal assemblages. Moreover, exclusion of large herbivores can yield rapid responses by vegetation that may enhance or maintain habitat quality for small mammal populations.

  18. A comparison of small-mammal communities in a desert riparian floodplain

    USGS Publications Warehouse

    Ellison, Laura E.; van Riper, Charles, III

    1998-01-01

    We compared small-mammal communities between inactive floodplain and actively flooded terraces of riparian habitat in the Verde Valley of central Arizona. We used species diversity, abundance, weight of adult males, number of juveniles, number of reproductively active individuals, longevity, residency status, and patterns of microhabitat use to compare the two communities. Although abundances of small mammals tended to be higher in the active floodplain, species diversity was greater in the inactive floodplain. Results were inconsistent with our initial prediction that actively flooded riparian habitat acts as a species source, whereas inactive floodplain acts as a sink or dispersal site for small mammals. Within each habitat type, we found evidence of significant microhabitat separation among the three most abundant small-mammal species (Peromyscus boylii, P. eremicus, and Neotoma albigula). Percent cover by annual and perennial grasses and shrubs, substrate, and frequency of shrubs, trees, and debris were significant determinants of small-mammal distribution within a habitat type. We found that the three most abundant species selected a nonrandom subset of available habitat. Nonrandom use of habitat and microhabitat separation were the two most important mechanisms structuring small-mammal communities in riparian habitat of central Arizona.

  19. Taphonomy for taxonomists: Implications of predation in small mammal studies

    NASA Astrophysics Data System (ADS)

    Fernández-Jalvo, Yolanda; Andrews, Peter; Denys, Christiane; Sesé, Carmen; Stoetzel, Emmanuelle; Marin-Monfort, Dolores; Pesquero, Dolores

    2016-05-01

    Predation is one of the most recurrent sources of bone accumulations. The influence of predation is widely studied for large mammal sites where humans, acting as predators, produce bone accumulations similar to carnivore accumulations. Similarly, small mammal fossil sites are mainly occupation levels of predators (nests or dens). In both cases, investigations of past events can be compared with present day equivalents or proxies. Chewing marks are sometimes present on large mammal predator accumulations, but digestion traits are the most direct indication of predation, and evidence for this is always present in small mammal (prey) fossil assemblages. Digestion grades and frequency indicates predator type and this is well established since the publication of Andrews (1990). The identification of the predator provides invaluable information for accurate interpretation of the palaeoenvironment. Traditionally, palaeoenvironmental interpretations are obtained from the taxonomic species identified in the site, but rather than providing direct interpretations of the surrounding palaeoenvironment, this procedure actually describes the dietary preferences of the predators and the type of occupation (nests, marking territory, dens, etc). This paper reviews the identification of traits produced by predators on arvicolins, murins and soricids using a method that may be used equally by taxonomists and taphonomists. It aims to provide the "tools" for taxonomists to identify the predator based on their methodology, which is examining the occlusal surfaces of teeth rather than their lateral aspects. This will greatly benefit both the work of taphonomists and taxonomists to recognize signs of predation and the improvement of subsequent palaeoecological interpretations of past organisms and sites by identifying both the prey and the predator.

  20. Small mammals as hosts of immature ixodid ticks.

    PubMed

    Horak, I G; Fourie, L J; Braack, L E O

    2005-09-01

    Two hundred and twenty-five small mammals belonging to 16 species were examined for ticks in Free State, Mpumalanga and Limpopo Provinces, South Africa, and 18 ixodid tick species, of which two could only be identified to genus level, were recovered. Scrub hares, Lepus saxatilis, and Cape hares, Lepus capensis, harboured the largest number of tick species. In Free State Province Namaqua rock mice, Aethomys namaquensis, and four-striped grass mice, Rhabdomys pumilio, were good hosts of the immature stages of Haemaphysalis leachi and Rhipicephalus gertrudae, while in Mpumalanga and Limpopo Provinces red veld rats, Aethomys chrysophilus, Namaqua rock mice and Natal multimammate mice, Mastomys natalensis were good hosts of H. leachi and Rhipicephalus simus. Haemaphysalis leachi was the only tick recovered from animals in all three provinces.

  1. Implications of invasion by Juniperus virginiana on small mammals in the southern Great Plains

    USGS Publications Warehouse

    Horncastle, V.J.; Hellgren, E.C.; Mayer, P.M.; Ganguli, A.C.; Engle, David M.; Leslie, David M.

    2005-01-01

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examined effects of invasion by eastern red cedar on small mammals in 3 plant communities (tallgrass prairie, old field, and cross-timbers forest) in the cross-timbers ecoregion in Oklahoma. We sampled small mammals seasonally from May 2001 to August 2002 by using Sherman live traps and mark-recapture techniques on 3.24-ha, 450-trap grids in each plant community. We sampled vegetation in two hundred twenty-five 12 x 12-m cells within each grid. The structure of the small-mammal community differed among the 3 habitat types, with higher species diversity and richness in the tallgrass-prairie and old-field sites. Overall, the small-mammal community shifted along a gradient of increasing eastern red cedar. In the old-field and tallgrass-prairie plots, occurrence of grassland mammals decreased with increasing red cedar, whereas only 1 woodland mammal species increased. In the cross-timbers forest site, percent woody cover (<1 m in height), rather than cover of red cedar, was the most important factor affecting woodland mammal species. Examination of our data suggests that an increase in overstory cover from 0% to 30% red cedar can change a species-rich prairie community to a depauperate community dominated by 1 species, Peromyscus leucopus. Losses in species diversity and changes in mammal distribution paralleled those seen in avian communities invaded by eastern red cedar. Our results highlight ecological effects of invasion by eastern red cedar on diversity and function at multiple trophic levels. ?? 2005 American Society of Mammalogists.

  2. Negative effects of an exotic grass invasion on small-mammal communities.

    PubMed

    Freeman, Eric D; Sharp, Tiffanny R; Larsen, Randy T; Knight, Robert N; Slater, Steven J; McMillan, Brock R

    2014-01-01

    Exotic invasive species can directly and indirectly influence natural ecological communities. Cheatgrass (Bromus tectorum) is non-native to the western United States and has invaded large areas of the Great Basin. Changes to the structure and composition of plant communities invaded by cheatgrass likely have effects at higher trophic levels. As a keystone guild in North American deserts, granivorous small mammals drive and maintain plant diversity. Our objective was to assess potential effects of invasion by cheatgrass on small-mammal communities. We sampled small-mammal and plant communities at 70 sites (Great Basin, Utah). We assessed abundance and diversity of the small-mammal community, diversity of the plant community, and the percentage of cheatgrass cover and shrub species. Abundance and diversity of the small-mammal community decreased with increasing abundance of cheatgrass. Similarly, cover of cheatgrass remained a significant predictor of small-mammal abundance even after accounting for the loss of the shrub layer and plant diversity, suggesting that there are direct and indirect effects of cheatgrass. The change in the small-mammal communities associated with invasion of cheatgrass likely has effects through higher and lower trophic levels and has the potential to cause major changes in ecosystem structure and function.

  3. Small mammal diversity loss in response to late-Pleistocene climatic change.

    PubMed

    Blois, Jessica L; McGuire, Jenny L; Hadly, Elizabeth A

    2010-06-10

    Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last 'natural' global warming event at the Pleistocene-Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native 'weedy' species.

  4. A small-scale survey of hantavirus in mammals from eastern Poland.

    PubMed

    Wójcik-Fatla, Angelina; Zając, Violetta; Knap, Józef P; Sroka, Jacek; Cisak, Ewa; Sawczyn, Anna; Dutkiewicz, Jacek

    2013-01-01

    Samples of 30 dead small mammals each were collected on area 'A' located in eastern Poland which is exposed to flooding by the Vistula river, and on the area 'B', also located in eastern Poland but not exposed to flooding. Kidneys and livers of the mammals were examined by the PCR and nested PCR methods for the presence of hantavirus RNA. Out of 7 species of small mammals examined, the presence of hantaviruses was detected in 4 of them. Hantavirus prevalence was low in Apodemus agrarius (2.6%), the most numerous mammal species, whereas in the remaining 3 positive species (Microtus agrestis, Myodes glareolus, Sorex araneus) this was 12.5-100%. The presence of hantaviruses was detected only in the animals found on area 'A' exposed to flooding, and their prevalence was statistically greater compared to area 'B' not exposed to flooding (16.7% vs. 0%, p=0.0345). The overall positivity of the examined small mammals population from the areas 'A' and 'B' was 8.3%. The sequence analysis of the samples positive for hantavirus proved that the amplified products showed 77-86% homology with the L segment sequence of hantavirus Fusong-Mf-731 isolated from Microtus fortis in China. The presented study is the first to demonstrate the occurrence of hantavirus infection in small mammals from eastern Poland, and the first to demonstrate the significant relationship between flooding and the prevalence of hantaviruses in small mammals.

  5. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    SciTech Connect

    West, E; Woollett, J

    2004-11-16

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grassland community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.

  6. Diversity and habitat association of small mammals in Aridtsy forest, Awi Zone, Ethiopia

    PubMed Central

    BANTIHUN, Getachew; BEKELE, Afework

    2015-01-01

    Here, we conducted a survey to examine the diversity, distribution and habitat association of small mammals from August 2011 to February 2012 incorporating both wet and dry seasons in Aridtsy forest, Awi Zone, Ethiopia. Using Sherman live traps and snap traps in four randomly selected trapping grids, namely, natural forest, bushland, grassland and farmland, a total of 468 individuals comprising eight species of small mammals (live traps) and 89 rodents of six species (snap traps) were trapped in 2352 and 1200 trap nights, respectively. The trapped small mammals included seven rodents and one insectivore: Lophuromys flavopuntatus (30.6%), Arvicanthis dembeensis (25.8%), Stenocephalemys albipes (20%), Mastomys natalensis (11.6%), Pelomys harringtoni (6.4%), Acomys cahirinus (4.3%), Lemniscomys zebra (0.2%) and the greater red musk shrew (Crocidura flavescens, 1.1%). Analysis showed statistically significant variations in the abundance and habitat preferences of small mammals between habitats during wet and dry seasons. PMID:25855227

  7. Diversity and habitat association of small mammals in Aridtsy forest, Awi Zone, Ethiopia.

    PubMed

    Bantihun, Getachew; Bekele, Afework

    2015-03-18

    Here, we conducted a survey to examine the diversity, distribution and habitat association of small mammals from August 2011 to February 2012 incorporating both wet and dry seasons in Aridtsy forest, Awi Zone, Ethiopia. Using Sherman live traps and snap traps in four randomly selected trapping grids, namely, natural forest, bushland, grassland and farmland, a total of 468 individuals comprising eight species of small mammals (live traps) and 89 rodents of six species (snap traps) were trapped in 2352 and 1200 trap nights, respectively. The trapped small mammals included seven rodents and one insectivore: Lophuromys flavopuntatus (30.6%), Arvicanthis dembeensis (25.8%), Stenocephalemys albipes (20%), Mastomys natalensis (11.6%), Pelomys harringtoni (6.4%), Acomys cahirinus (4.3%), Lemniscomys zebra (0.2%) and the greater red musk shrew (Crocidura flavescens, 1.1%). Analysis showed statistically significant variations in the abundance and habitat preferences of small mammals between habitats during wet and dry seasons.

  8. Anaplasma phagocytophilum Infection in Small Mammal Hosts of Ixodes Ticks, Western United States

    PubMed Central

    Nieto, Nathan C.; Adjemian, Jennifer; Dabritz, Haydee; Brown, Richard N.

    2008-01-01

    A total of 2,121 small mammals in California were assessed for Anaplasma phagocytophilum from 2006 through 2008. Odds ratios were >1 for 4 sciurids species and dusky-footed woodrats. High seroprevalence was observed in northern sites. Ten tick species were identified. Heavily infested rodent species included meadow voles, woodrats, deer mice, and redwood chipmunks. PMID:18598645

  9. Anaplasma phagocytophilum infection in small mammal hosts of Ixodes ticks, western United States.

    PubMed

    Foley, Janet E; Nieto, Nathan C; Adjemian, Jennifer; Dabritz, Haydee; Brown, Richard N

    2008-07-01

    A total of 2,121 small mammals in California were assessed for Anaplasma phagocytophilum from 2006 through 2008. Odds ratios were >1 for 4 sciurids species and dusky-footed woodrats. High seroprevalence was observed in northern sites. Ten tick species were identified. Heavily infested rodent species included meadow voles, woodrats, deer mice, and redwood chipmunks. PMID:18598645

  10. Spatial distribution of an infectious disease in a small mammal community.

    PubMed

    Correa, Juana P; Bacigalupo, Antonella; Fontúrbel, Francisco E; Oda, Esteban; Cattan, Pedro E; Solari, Aldo; Botto-Mahan, Carezza

    2015-10-01

    Chagas disease is a zoonosis caused by the parasite Trypanosoma cruzi and transmitted by insect vectors to several mammals, but little is known about its spatial epidemiology. We assessed the spatial distribution of T. cruzi infection in vectors and small mammals to test if mammal infection status is related to the proximity to vector colonies. During four consecutive years we captured and georeferenced the locations of mammal species and colonies of Mepraia spinolai, a restricted-movement vector. Infection status on mammals and vectors was evaluated by molecular techniques. To examine the effect of vector colonies on mammal infection status, we constructed an infection distance index using the distance between the location of each captured mammal to each vector colony and the average T. cruzi prevalence of each vector colony, weighted by the number of colonies assessed. We collected and evaluated T. cruzi infection in 944 mammals and 1976 M. spinolai. We found a significant effect of the infection distance index in explaining their infection status, when considering all mammal species together. By examining the most abundant species separately, we found this effect only for the diurnal and gregarious rodent Octodon degus. Spatially explicit models involving the prevalence and location of infected vectors and hosts had not been reported previously for a wild disease.

  11. Spatial distribution of an infectious disease in a small mammal community

    NASA Astrophysics Data System (ADS)

    Correa, Juana P.; Bacigalupo, Antonella; Fontúrbel, Francisco E.; Oda, Esteban; Cattan, Pedro E.; Solari, Aldo; Botto-Mahan, Carezza

    2015-10-01

    Chagas disease is a zoonosis caused by the parasite Trypanosoma cruzi and transmitted by insect vectors to several mammals, but little is known about its spatial epidemiology. We assessed the spatial distribution of T. cruzi infection in vectors and small mammals to test if mammal infection status is related to the proximity to vector colonies. During four consecutive years we captured and georeferenced the locations of mammal species and colonies of Mepraia spinolai, a restricted-movement vector. Infection status on mammals and vectors was evaluated by molecular techniques. To examine the effect of vector colonies on mammal infection status, we constructed an infection distance index using the distance between the location of each captured mammal to each vector colony and the average T. cruzi prevalence of each vector colony, weighted by the number of colonies assessed. We collected and evaluated T. cruzi infection in 944 mammals and 1976 M. spinolai. We found a significant effect of the infection distance index in explaining their infection status, when considering all mammal species together. By examining the most abundant species separately, we found this effect only for the diurnal and gregarious rodent Octodon degus. Spatially explicit models involving the prevalence and location of infected vectors and hosts had not been reported previously for a wild disease.

  12. Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe.

    PubMed

    Cao, Chan; Shuai, Ling-Ying; Xin, Xiao-Ping; Liu, Zhi-Tao; Song, Yan-Ling; Zeng, Zhi-Gao

    2016-01-01

    Small mammals play important roles in many ecosystems, and understanding their response to disturbances such as cattle grazing is fundamental for developing sustainable land use strategies. However, how small mammals respond to cattle grazing remains controversial. A potential cause is that most of previous studies adopt rather simple experimental designs based solely on the presence/absence of grazing, and are thus unable to detect any complex relationships between diversity and grazing intensity. In this study, we conducted manipulated experiments in the Hulunber meadow steppe to survey small mammal community structures under four levels of grazing intensities. We found dramatic changes in species composition in native small mammal communities when grazing intensity reached intermediate levels (0.46 animal unit/ha). As grazing intensity increased, Spermophilus dauricus gradually became the single dominant species. Species richness and diversity of small mammals in ungrazed and lightly grazed (0.23 animal unit/ha) area were much higher than in intermediately and heavily grazed area. We did not detect a humped relationship between small mammal diversity and disturbance levels predicted by the intermediate disturbance hypothesis (IDH). Our study highlighted the necessity of conducting manipulated experiments under multiple grazing intensities.

  13. Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe

    PubMed Central

    Xin, Xiao-Ping; Liu, Zhi-Tao; Song, Yan-Ling

    2016-01-01

    Small mammals play important roles in many ecosystems, and understanding their response to disturbances such as cattle grazing is fundamental for developing sustainable land use strategies. However, how small mammals respond to cattle grazing remains controversial. A potential cause is that most of previous studies adopt rather simple experimental designs based solely on the presence/absence of grazing, and are thus unable to detect any complex relationships between diversity and grazing intensity. In this study, we conducted manipulated experiments in the Hulunber meadow steppe to survey small mammal community structures under four levels of grazing intensities. We found dramatic changes in species composition in native small mammal communities when grazing intensity reached intermediate levels (0.46 animal unit/ha). As grazing intensity increased, Spermophilus dauricus gradually became the single dominant species. Species richness and diversity of small mammals in ungrazed and lightly grazed (0.23 animal unit/ha) area were much higher than in intermediately and heavily grazed area. We did not detect a humped relationship between small mammal diversity and disturbance levels predicted by the intermediate disturbance hypothesis (IDH). Our study highlighted the necessity of conducting manipulated experiments under multiple grazing intensities. PMID:27635323

  14. The impact of buffer strips and stream-side grazing on small mammals in southwestern Wisconsin

    USGS Publications Warehouse

    Chapman, Erik W.; Ribic, C.A.

    2002-01-01

    The practice of continuously grazing cattle along streams has caused extensive degradation of riparian habitats. Buffer strips and managed intensive rotational grazing (MIRG) have been proposed to protect and restore stream ecosystems in Wisconsin. However, the ecological implications of a switch from traditional livestock management to MIRG or buffer strip establishment have not been investigated. Differences in small mammal communities associated with riparian areas on continuously grazed and MIRG pastures, as well as vegetative buffer strips adjacent to row crops, were investigated in southwestern Wisconsin during May-September 1997 and 1998. More species (mean of 6-7) were found on the buffer sites than on the pasture sites (mean of 2-5). Total small mammal abundance on buffer sites was greater than on the pastures as well: there were 3-5 times as many animals on the buffer sites compared to the pasture sites, depending on year. There were no differences in species richness or total abundance between MIRG and continuously grazed pastures in either year. Total small mammal abundance was greater near the stream than away from the stream, regardless of farm management practice but there were no differences in species richness. Buffer strips appear to support a particularly rich and abundant small mammal community. Although results did not detect a difference in small mammal use between pasture types, farm-wide implications of a conversion from continuous to MIRG styles of grazing may benefit small mammals indirectly by causing an increase in the prevalence of pasture in the agricultural landscape.

  15. Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe.

    PubMed

    Cao, Chan; Shuai, Ling-Ying; Xin, Xiao-Ping; Liu, Zhi-Tao; Song, Yan-Ling; Zeng, Zhi-Gao

    2016-01-01

    Small mammals play important roles in many ecosystems, and understanding their response to disturbances such as cattle grazing is fundamental for developing sustainable land use strategies. However, how small mammals respond to cattle grazing remains controversial. A potential cause is that most of previous studies adopt rather simple experimental designs based solely on the presence/absence of grazing, and are thus unable to detect any complex relationships between diversity and grazing intensity. In this study, we conducted manipulated experiments in the Hulunber meadow steppe to survey small mammal community structures under four levels of grazing intensities. We found dramatic changes in species composition in native small mammal communities when grazing intensity reached intermediate levels (0.46 animal unit/ha). As grazing intensity increased, Spermophilus dauricus gradually became the single dominant species. Species richness and diversity of small mammals in ungrazed and lightly grazed (0.23 animal unit/ha) area were much higher than in intermediately and heavily grazed area. We did not detect a humped relationship between small mammal diversity and disturbance levels predicted by the intermediate disturbance hypothesis (IDH). Our study highlighted the necessity of conducting manipulated experiments under multiple grazing intensities. PMID:27635323

  16. Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe

    PubMed Central

    Xin, Xiao-Ping; Liu, Zhi-Tao; Song, Yan-Ling

    2016-01-01

    Small mammals play important roles in many ecosystems, and understanding their response to disturbances such as cattle grazing is fundamental for developing sustainable land use strategies. However, how small mammals respond to cattle grazing remains controversial. A potential cause is that most of previous studies adopt rather simple experimental designs based solely on the presence/absence of grazing, and are thus unable to detect any complex relationships between diversity and grazing intensity. In this study, we conducted manipulated experiments in the Hulunber meadow steppe to survey small mammal community structures under four levels of grazing intensities. We found dramatic changes in species composition in native small mammal communities when grazing intensity reached intermediate levels (0.46 animal unit/ha). As grazing intensity increased, Spermophilus dauricus gradually became the single dominant species. Species richness and diversity of small mammals in ungrazed and lightly grazed (0.23 animal unit/ha) area were much higher than in intermediately and heavily grazed area. We did not detect a humped relationship between small mammal diversity and disturbance levels predicted by the intermediate disturbance hypothesis (IDH). Our study highlighted the necessity of conducting manipulated experiments under multiple grazing intensities.

  17. Integrating small mammal community variables into aircraft-wildlife collision management plans at Namibian airports.

    PubMed

    Hauptfleisch, Morgan L; Avenant, Nico L

    2015-11-01

    Understanding ecosystems within and around airports can help to determine the causes and possible mitigation measures for collisions between aircraft and wildlife. Small mammal communities are an important component of the semi-arid savanna ecosystems of Namibia, its productivity and its ecosystem integrity. They are also a major direct attractant for raptors at airports. The present study compared the abundance and diversity of small mammals between Namibia's 2 main airport properties (Hosea Kutako International Airport and Eros Airport), and among areas of land used for various purposes surrounding the airports. A total of 2150 small mammals (3 orders, 11 species) were captured over 4 trapping seasons. Small mammal abundance was significantly higher at the end of the growing season than during the non-growing season. The grass mowing regimen in current management plans at the airports resulted in a significant reduction of small mammal abundance at Hosea Kutako during the non-growing season only, thus indicating that annual mowing is effective but insufficient to reduce the overall abundance of mammal prey species for raptors. Small mammal numbers were significantly higher at Hosea Kutako Airport compared to the cattle and game farming land surrounding the airport, while no differences in small mammal densities or diversity were found for areas with different land uses at and surrounding Eros. The study suggests that the fence around Hosea Kutako provides a refuge for small mammals, resulting in higher densities. It also indicates that different surrounding land use practices result in altered ecosystem function and productivity, an important consideration when identifying wildlife attractants at airports.

  18. Integrating small mammal community variables into aircraft-wildlife collision management plans at Namibian airports.

    PubMed

    Hauptfleisch, Morgan L; Avenant, Nico L

    2015-11-01

    Understanding ecosystems within and around airports can help to determine the causes and possible mitigation measures for collisions between aircraft and wildlife. Small mammal communities are an important component of the semi-arid savanna ecosystems of Namibia, its productivity and its ecosystem integrity. They are also a major direct attractant for raptors at airports. The present study compared the abundance and diversity of small mammals between Namibia's 2 main airport properties (Hosea Kutako International Airport and Eros Airport), and among areas of land used for various purposes surrounding the airports. A total of 2150 small mammals (3 orders, 11 species) were captured over 4 trapping seasons. Small mammal abundance was significantly higher at the end of the growing season than during the non-growing season. The grass mowing regimen in current management plans at the airports resulted in a significant reduction of small mammal abundance at Hosea Kutako during the non-growing season only, thus indicating that annual mowing is effective but insufficient to reduce the overall abundance of mammal prey species for raptors. Small mammal numbers were significantly higher at Hosea Kutako Airport compared to the cattle and game farming land surrounding the airport, while no differences in small mammal densities or diversity were found for areas with different land uses at and surrounding Eros. The study suggests that the fence around Hosea Kutako provides a refuge for small mammals, resulting in higher densities. It also indicates that different surrounding land use practices result in altered ecosystem function and productivity, an important consideration when identifying wildlife attractants at airports. PMID:26331534

  19. Land use and small mammal predation effects on shortgrass prairie birds

    USGS Publications Warehouse

    Stanley, T.R.

    2010-01-01

    Grassland birds endemic to the central shortgrass prairie ecoregion of the United States have experienced steep and widespread declines over the last 3 decades, and factors influencing reproductive success have been implicated. Nest predation is the major cause of nest failure in passerines, and nesting success for some shortgrass prairie birds is exceptionally low. The 3 primary land uses in the central shortgrass prairie ecoregion are native shortgrass prairie rangeland (62), irrigated and nonirrigated cropland (29), and Conservation Reserve Program (CRP, 8). Because shortgrasscropland edges and CRP may alter the community of small mammal predators of grassland bird nests, I sampled multiple sites on and near the Pawnee National Grasslands in northeast Colorado, USA, to evaluate 1) whether small mammal species richness and densities were greater in CRP fields and shortgrass prairiecropland edges compared to shortgrass prairie habitats, and 2) whether daily survival probabilities of ground-nesting grassland bird nests were negatively correlated with densities of small mammals. Small mammal species richness and densities, estimated using trapping webs, were generally greater along edges and on CRP sites compared to shortgrass sites. Vegetation did not differ among edges and shortgrass sites but did differ among CRP and shortgrass sites. Daily survival probabilities of artificial nests at edge and CRP sites and natural nests at edge sites did not differ from shortgrass sites, and for natural nests small mammal densities did not affect nest survival. However, estimated daily survival probability of artificial nests was inversely proportional to thirteen-lined ground squirrel (Spermophilus tridecemlineatus) densities. In conclusion, these data suggest that although land-use patterns on the shortgrass prairie area in my study have substantial effects on the small mammal community, insufficient data existed to determine whether land-use patterns or small mammal density

  20. Endocrine Function In Naturally Long-Living Small Mammals

    PubMed Central

    Buffenstein, Rochelle; Pinto, Mario

    2015-01-01

    The complex, highly integrative endocrine system regulates all aspects of somatic maintenance and reproduction and has been widely implicated as an important determinant of longevity in short-lived traditional model organisms of aging research. Genetic or experimental manipulation of hormone profiles in mice has been proven to definitively alter longevity. These hormonally induced lifespan extension mechanisms may not necessarily be relevant to humans and other long-lived organisms that naturally show successful slow aging. Long-lived species may have evolved novel anti-aging defenses germane to naturally retarding the aging process. Here we examine the available endocrine data associated with the vitamin D, insulin, grlucocorticoid and thyroid endocrine systems of naturally long-living small mammals. Generally, long-living rodents and bats maintain tightly regulated lower basal levels of these key pleiotropic hormones than shorter-lived rodents. Similarities with genetically manipulated suggest that evolutionarily wellconserved hormonal mechanisms are integrally involved in lifespan determination. PMID:18674586

  1. Isotopic partitioning by small mammals in the subnivium.

    PubMed

    Calandra, Ivan; Labonne, Gaëlle; Mathieu, Olivier; Henttonen, Heikki; Lévêque, Jean; Milloux, Marie-Jeanne; Renvoisé, Élodie; Montuire, Sophie; Navarro, Nicolas

    2015-09-01

    In the Arctic, food limitation is one of the driving factors behind small mammal population fluctuations. Active throughout the year, voles and lemmings (arvicoline rodents) are central prey in arctic food webs. Snow cover, however, makes the estimation of their winter diet challenging. We analyzed the isotopic composition of ever-growing incisors from species of voles and lemmings in northern Finland trapped in the spring and autumn. We found that resources appear to be reasonably partitioned and largely congruent with phylogeny. Our results reveal that winter resource use can be inferred from the tooth isotopic composition of rodents sampled in the spring, when trapping can be conducted, and that resources appear to be partitioned via competition under the snow. PMID:26445663

  2. Ecological risk assessment of small mammals at a zinc smelter

    SciTech Connect

    Mellott, R.S.; LaTier, A.J.; Garcia, P.; Pastorok, R.A.; Shields, W.; Chapin, M.

    1995-12-31

    A baseline ecological risk assessment (ERA) was conducted on a 200-acre prairie habitat (study area) immediately south of the National Zinc Site (NZS) in Bartlesville, OK, to evaluate the potential risk to small mammals from exposure to historical emissions of cadmium, lead, and zinc. The zinc facility was operated with horizontal retort smelters from 1907 until 1976 when the facility was converted to an electrolytic operation. Soil concentrations of cadmium on the study area ranged from 25 to 144 mg/kg (dw), lead from 84 to 485 mg/kg (dw), and zinc from 1,530 to 7,170 mg/kg (dw). Receptors species were the white-footed deer mouse and hispid cotton rat, common residents of the area that represent exposure through the ingestion pathways of vegetation, invertebrates, water, and soil. Assessment endpoints of this ERA were reproductive impairment and population reduction, with measurement endpoints being the mean number of embryos and implantation sites in females, reproductive condition of males, and population age structure and growth. No evidence of reproductive or growth impairment related to metals was found in either species, reproductive activity of hispid cotton rats on the study area was higher than on reference sites, and no difference in population age structure was detected. Receptor populations did show evidence of effects related to physical stressors (100-year flood event followed by record heat, drought and more flooding) that occurred prior to initiation of the study in September. Results of a food-web model of exposure for white-footed mice indicated no risk from metals concentrations in the diet. The results of this baseline ERA indicate that the concentrations of cadmium, lead, and zinc on the study area do not pose a significant risk to small mammal populations.

  3. Hantavirus testing in small mammal populations of northcentral New Mexico

    SciTech Connect

    Biggs, J.; Bennett, K.; Foxx, T.

    1995-07-01

    In 1993, an outbreak of a new strain of hantavirus in the southwestern US indicated that deer mice (Peromyscus maniculatus) was the primary carrier of the virus. In 1993 and 1994, the Ecological Studies Team (EST) at Los Alamos National Laboratory surveyed small mammal populations in Los Alamos County, New Mexico, primarily for ecological risk assessment (ecorisk) studies. At the request of the Centers for Disease Control (CDC) and the School of Medicine at the University of New Mexico, EST also collected blood samples from captured animals for use in determining seroprevalence of hantavirus in this region due to the recent outbreak of this virus in the four-comers region of the Southwest. The deer mouse was the most commonly captured species during the tripping sessions. Other species sampled included harvest mice (Reithrodontomys megalotis), least chipmunk (Eutamias minimus), long-tailed vole (Microtus longicaudus), Mexican woodrat (Neotoma mexicana), and brush mouse (Peromyscus boylii). The team collected blood samples from tripped animals following CDC`s suggested guidelines. Results of the 1993 and 1994 hantavirus testing identified a total overall seroprevalence of approximately 5.5% and 4.2%, respectively. The highest seroprevalence rates were found in deer mice seri (3--6%), but results on several species were inconclusive; further studies will be necessary, to quantify seroprevalence rates in those species. Seroprevalence rates for Los Alamos County were much lower than elsewhere in the region.

  4. Prioritizing conservation investments for mammal species globally

    PubMed Central

    Wilson, Kerrie A.; Evans, Megan C.; Di Marco, Moreno; Green, David C.; Boitani, Luigi; Possingham, Hugh P.; Chiozza, Federica; Rondinini, Carlo

    2011-01-01

    We need to set priorities for conservation because we cannot do everything, everywhere, at the same time. We determined priority areas for investment in threat abatement actions, in both a cost-effective and spatially and temporally explicit way, for the threatened mammals of the world. Our analysis presents the first fine-resolution prioritization analysis for mammals at a global scale that accounts for the risk of habitat loss, the actions required to abate this risk, the costs of these actions and the likelihood of investment success. We evaluated the likelihood of success of investments using information on the past frequency and duration of legislative effectiveness at a country scale. The establishment of new protected areas was the action receiving the greatest investment, while restoration was never chosen. The resolution of the analysis and the incorporation of likelihood of success made little difference to this result, but affected the spatial location of these investments. PMID:21844046

  5. Small mammal distribution and diversity in a plague endemic area in West Usambara Mountains, Tanzania.

    PubMed

    Ralaizafisoloarivony, Njaka A; Kimaro, Didas N; Kihupi, Nganga I; Mulungu, Loth S; Leirs, Herwig; Msanya, Balthazar M; Deckers, Jozef A; Gulinck, Hubert

    2014-07-01

    Small mammals play a role in plague transmission as hosts in all plague endemic areas. Information on distribution and diversity of small mammals is therefore important for plague surveillance and control in such areas. The objective of this study was to investigate small mammals' diversity and their distribution in plague endemic area in the West Usambara Mountains in north-eastern Tanzania. Landsat images and field surveys were used to select trapping locations in different landscapes. Three landscapes with different habitats were selected for trapping of small mammals. Three types of trap were used in order to maximise the number of species captured. In total, 188 animals and thirteen species were captured in 4,905 trap nights. Praomys delectorum and Mastomys natalensis both reported as plague hosts comprised 50% of all the animals trapped. Trap success increased with altitude. Species diversity was higher in plantation forest followed by shrub, compared to other habitats, regardless of landscape type. It would therefore seem that chances of plague transmission from small mammals to humans are much higher under shrub, natural and plantation forest habitats.

  6. Influence of physiography and vegetation on small mammals at the Naval Petroleum Reserves, California

    SciTech Connect

    Cypher, B.L.

    1995-02-13

    Influence of physiography and vegetation on small mammal abundance and species Composition was investigated at Naval Petroleum Reserve No. 1 in California to assess prey abundance for Federally endangered San Joaquin kit foxes (Vulpes macrotis mutica) and to assess the distribution of two Federal candidate species, San Joaquin antelope squirrels (Ammospermophilus nelsoni) and short-nosed kangaroo rats (Dinodomys nitratoides brevinasus). The specific objectives of this investigation were to determine whether small mammal abundance and community composition varied with north-south orientation, terrain, ground cover, and Cypher shrub density, and whether these factors influenced the distribution and abundance of San Joaquin antelope squirrels and short-nosed kangaroo rats.

  7. Avian ecosystem functions are influenced by small mammal ecosystem engineering

    PubMed Central

    2013-01-01

    Background Birds are important mobile link species that contribute to landscape-scale patterns by means of pollination, seed dispersal, and predation. Birds are often associated with habitats modified by small mammal ecosystem engineers. We investigated whether birds prefer to forage on degu (Octodon degus) runways by comparing their foraging effort across sites with a range of runway densities, including sites without runways. We measured granivory by granivorous and omnivorous birds at Rinconada de Maipú, central Chile. As a measure of potential bird foraging on insects, we sampled invertebrate prey richness and abundance across the same sites. We then quantified an index of plot-scale functional diversity due to avian foraging at the patch scale. Results We recorded that birds found food sources sooner and ate more at sites with higher densities of degu runways, cururo mounds, trees, and fewer shrubs. These sites also had higher invertebrate prey richness but lower invertebrate prey abundance. This implies that omnivorous birds, and possibly insectivorous birds, forage for invertebrates in the same plots with high degu runway densities where granivory takes place. In an exploratory analysis we also found that plot-scale functional diversity for four avian ecosystem functions were moderately to weakly correllated to expected ecosystem function outcomes at the plot scale. Conclusions Degu ecosystem engineering affects the behavior of avian mobile link species and is thus correlated with ecosystem functioning at relatively small spatial scales. PMID:24359802

  8. Serial population extinctions in a small mammal indicate Late Pleistocene ecosystem instability.

    PubMed

    Brace, Selina; Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M; Miller, Rebecca; Otte, Marcel; Germonpré, Mietje; Blockley, Simon P E; Stewart, John R; Barnes, Ian

    2012-12-11

    The Late Pleistocene global extinction of many terrestrial mammal species has been a subject of intensive scientific study for over a century, yet the relative contributions of environmental changes and the global expansion of humans remain unresolved. A defining component of these extinctions is a bias toward large species, with the majority of small-mammal taxa apparently surviving into the present. Here, we investigate the population-level history of a key tundra-specialist small mammal, the collared lemming (Dicrostonyx torquatus), to explore whether events during the Late Pleistocene had a discernible effect beyond the large mammal fauna. Using ancient DNA techniques to sample across three sites in North-West Europe, we observe a dramatic reduction in genetic diversity in this species over the last 50,000 y. We further identify a series of extinction-recolonization events, indicating a previously unrecognized instability in Late Pleistocene small-mammal populations, which we link with climatic fluctuations. Our results reveal climate-associated, repeated regional extinctions in a keystone prey species across the Late Pleistocene, a pattern likely to have had an impact on the wider steppe-tundra community, and one that is concordant with environmental change as a major force in structuring Late Pleistocene biodiversity.

  9. Elevational Distribution and Ecology of Small Mammals on Tanzania's Second Highest Mountain

    PubMed Central

    Kihaule, Philip M.

    2016-01-01

    Mt. Meru is Tanzania’s second highest mountain and the ninth highest in Africa. The distribution and abundance of small mammals on this massif are poorly known. Here we document the distribution of shrews and rodents along an elevational gradient on the southeastern versant of Mt. Meru. Five sites were sampled with elevational center points of 1950, 2300, 2650, 3000, and 3600 m, using a systematic methodology of standard traps and pitfall lines, to inventory the shrews and rodents of the slope. Ten species of mammal were recorded, comprising 2 shrew and 8 rodent species with the greatest diversity for each group at 2300 m. No species previously unrecorded on Mt. Meru was observed. Two rodent genera that occur in nearby Eastern Arc Mountains (Hylomyscus and Beamys) were not recorded. The rodent Lophuromys verhageni and a recently described species of shrew, Crocidura newmarki, are the only endemic mammals on Mt. Meru, and were widespread across the elevational gradient. As in similar small mammal surveys on other mountains of Tanzania, rainfall positively influenced trap success rates for shrews, but not for rodents. This study provides new information on the local small mammal fauna of the massif, but numerous other questions remain to be explored. Comparisons are made to similar surveys of other mountains in Tanzania. PMID:27653635

  10. Serial population extinctions in a small mammal indicate Late Pleistocene ecosystem instability

    PubMed Central

    Brace, Selina; Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Miller, Rebecca; Otte, Marcel; Germonpré, Mietje; Blockley, Simon P. E.; Stewart, John R.; Barnes, Ian

    2012-01-01

    The Late Pleistocene global extinction of many terrestrial mammal species has been a subject of intensive scientific study for over a century, yet the relative contributions of environmental changes and the global expansion of humans remain unresolved. A defining component of these extinctions is a bias toward large species, with the majority of small-mammal taxa apparently surviving into the present. Here, we investigate the population-level history of a key tundra-specialist small mammal, the collared lemming (Dicrostonyx torquatus), to explore whether events during the Late Pleistocene had a discernible effect beyond the large mammal fauna. Using ancient DNA techniques to sample across three sites in North-West Europe, we observe a dramatic reduction in genetic diversity in this species over the last 50,000 y. We further identify a series of extinction-recolonization events, indicating a previously unrecognized instability in Late Pleistocene small-mammal populations, which we link with climatic fluctuations. Our results reveal climate-associated, repeated regional extinctions in a keystone prey species across the Late Pleistocene, a pattern likely to have had an impact on the wider steppe-tundra community, and one that is concordant with environmental change as a major force in structuring Late Pleistocene biodiversity. PMID:23185018

  11. Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals

    PubMed Central

    Popadin, Konstantin; Polishchuk, Leonard V.; Mamirova, Leila; Knorre, Dmitry; Gunbin, Konstantin

    2007-01-01

    After the effective size of a population, Ne, declines, some slightly deleterious amino acid replacements which were initially suppressed by purifying selection become effectively neutral and can reach fixation. Here we investigate this phenomenon for a set of all 13 mitochondrial protein-coding genes from 110 mammalian species. By using body mass as a proxy for Ne, we show that large mammals (i.e., those with low Ne) as compared with small ones (in our sample these are, on average, 369.5 kg and 275 g, respectively) have a 43% higher rate of accumulation of nonsynonymous nucleotide substitutions relative to synonymous substitutions, and an 8–40% higher rate of accumulation of radical amino acid substitutions relative to conservative substitutions, depending on the type of amino acid classification. These higher rates result in a 6% greater amino acid dissimilarity between modern species and their most recent reconstructed ancestors in large versus small mammals. Because nonsynonymous substitutions are likely to be more harmful than synonymous substitutions, and radical amino acid substitutions are likely to be more harmful than conservative ones, our results suggest that large mammals experience less efficient purifying selection than small mammals. Furthermore, because in the course of mammalian evolution body size tends to increase and, consequently, Ne tends to decline, evolution of mammals toward large body size may involve accumulation of slightly deleterious mutations in mitochondrial protein-coding genes, which may contribute to decline or extinction of large mammals. PMID:17679693

  12. Small mammals as biomonitors of metal pollution: a case study in Slovenia.

    PubMed

    Al Sayegh Petkovšek, Samar; Kopušar, Nataša; Kryštufek, Boris

    2014-07-01

    The transfer of lead, cadmium, zinc, mercury, copper and molybdenum from soil to the tissues of small mammals inhabiting differently polluted areas in Slovenia was investigated. Metals were determined in soil samples and in the livers of 139 individuals of five small mammal species, collected in 2012 in the vicinity of a former lead smelter, the largest Slovenian thermal power plant, along a main road and in a control area. The area in the vicinity of former lead smelter differs considerably from other study areas. The soil from that area is heavily polluted with Pb and Cd. The mean metal concentrations in the liver, irrespective of species, varied in the following ranges-Pb: 0.40-7.40 mg/kg fw and Cd: 0.27-135 mg/kg fw and reached effect concentrations at which toxic effects can be expected in a significant proportion of the livers of the small mammal specimens (Pb 40 %, Cd 67 %). These findings indicate that the majority of small mammals trapped in the area of the former lead smelter are at risk of toxic effects due to the very high bioaccumulation of Pb and Cd in the organism. On the contrary, Pd and Cd concentrations in the livers of small mammals sampled in the vicinity of the thermal power plant and along the main road were comparable with reference values and considerably lower than effect concentrations. Additionally, the study suggests that Apodemus flavicollis and Myodes glareolus are very suitable biomonitors of metal pollution.

  13. Assessing small mammal abundance with track-tube indices and mark-recapture population estimates

    USGS Publications Warehouse

    Wiewel, A.S.; Clark, W.R.; Sovada, M.A.

    2007-01-01

    We compared track-tube sampling with mark-recapture livetrapping and evaluated a track-tube index, defined as the number of track tubes with identifiable small mammal tracks during a 4-night period, as a predictor of small mammal abundance estimates in North Dakota grasslands. Meadow voles (Microtus pennsylvanicus) were the most commonly recorded species by both methods, but were underrepresented in track-tube sampling, whereas 13-lined ground squirrels (Spermophilus tridecemlineatus) and Franklin's ground squirrels (S. franklinii) were overrepresented in track-tube sampling. Estimates of average species richness were lower from track tubes than from livetrapping. Regression models revealed that the track-tube index was at best a moderately good predictor of small mammal population estimates because both the form (linear versus curvilinear) and slope of the relationship varied between years. In addition, 95% prediction intervals indicated low precision when predicting population estimates from new track-tube index observations. Track tubes required less time and expense than mark-recapture and eliminated handling of small mammals. Using track tubes along with mark-recapture in a double sampling for regression framework would have potential value when attempting to estimate abundance of small mammals over large areas. ?? 2007 American Society of Mammalogists.

  14. Study of types of some species of “Filaria” (Nematoda) parasites of small mammals described by von Linstow and Molin

    PubMed Central

    Guerrero, R.; Bain, O.

    2011-01-01

    Parasitic nematodes from the Berlin (ZMB) and Vienna (NMW) Museum collections referred to the genus Filaria Mueller, 1787 by von Linstow or Molin were studied. Three samples were in good condition and the specimens redescribed. Litomosa hepatica (von Linstow, 1897) n. comb., sample ZMB Vermes Entozoa 3368, from the megachiropteran Pteropus neohibernicus, Bismarck Archipelago, resembles L. maki Tibayrenc, Bain & Ramanchandran, 1979, from Pteropus vampyrus, in Malaysia, but the buccal capsule differs. Both species display particular morphological characters which differ from species of Litomosa parasitic in microchiropterans. The remaining material originates from Brazil. The spicule morphology of Litomosoides circularis (von Linstow, 1899) Chandler, 1931, sample ZMB Vermes Entozoa 1059 from Hesperomys spec. (= Holochilus brasiliensis), Porto Alegre, confirms that it belongs to the sigmodontis group; the microfilaria presents characters of the genus Litomosoides, e.g. body attenuated at both extremities and salient cephalic hook. Taxonomic discussions by others confirm that species of Litomosoides belonging to the sigmodontis group and described subsequently are distinct from L. circularis. Litomosoides serpicula (Molin, 1858) Guerrero, Martin, Gardner & Bain, 2002, is redescribed, sample NMW 6323 from the bat Phyllostoma spiculatum (= Sturnira lilium), Ypanema. It is very close to L. brasiliensis Almeida, 1936, type host Moytis sp., but distinguished by a single ring in the buccal capsule, rather than two, supporting previous conclusions that the taxon L. brasiliensis, as generally regarded, may represent a complex of species. Samples NMW 6322 and NMW 6324, from other bats and also identified by Molin (1858) as Filaria serpicula, contain unidentifiable fragments of Litomosoides incertae sedis. Filaria hyalina von Linstow, 1890, sample ZMB Vermes Entozoa Q 3905 from Sorex vulgaris (= Sorex araneus), is incertae sedis because it contains two unidentifiable posterior

  15. Elk herbivory alters small mammal assemblages in high-elevation drainages.

    PubMed

    Parsons, Elliott W R; Maron, John L; Martin, Thomas E

    2013-03-01

    Heavy herbivory by ungulates can substantially alter habitat, but the indirect consequences of habitat modification for animal assemblages that rely on that habitat are not well studied. This is a particularly important topic given that climate change can alter plant-herbivore interactions. We explored short-term responses of small mammal communities to recent exclusion of Rocky Mountain elk (Cervus elaphus) in high-elevation riparian drainages in northern Arizona, where elk impacts on vegetation have increased over the past quarter century associated with climate change. We used 10-ha elk exclosures paired with unfenced control drainages to examine how browsing influenced the habitat use, relative abundance, richness and diversity of a small mammal assemblage. We found that the small mammal assemblage changed significantly after 5 years of elk exclusion. Relative abundance of voles (Microtus mexicanus) increased in exclosure drainages, likely due to an increase in habitat quality. The relative abundances of woodrats (Neotoma neomexicana) and two species of mice (Peromyscus maniculatus and P. boylii) decreased in the controls, while remaining stable in exclosures. The decline of mice in control drainages was likely due to the decline in shrub cover that they use. Thus, elk exclusion may have maintained or improved habitat for mice inside the exclosures while habitat quality and mouse abundance both declined outside the fences. Finally, small mammal species richness increased in the exclosures relative to the controls while species diversity showed no significant trends. Together, our results show that relaxation of heavy herbivore pressure by a widespread native ungulate can lead to rapid changes in small mammal assemblages. Moreover, exclusion of large herbivores can yield rapid responses by vegetation that may enhance or maintain habitat quality for small mammal populations. PMID:23163813

  16. Elk herbivory alters small mammal assemblages in high-elevation drainages.

    PubMed

    Parsons, Elliott W R; Maron, John L; Martin, Thomas E

    2013-03-01

    Heavy herbivory by ungulates can substantially alter habitat, but the indirect consequences of habitat modification for animal assemblages that rely on that habitat are not well studied. This is a particularly important topic given that climate change can alter plant-herbivore interactions. We explored short-term responses of small mammal communities to recent exclusion of Rocky Mountain elk (Cervus elaphus) in high-elevation riparian drainages in northern Arizona, where elk impacts on vegetation have increased over the past quarter century associated with climate change. We used 10-ha elk exclosures paired with unfenced control drainages to examine how browsing influenced the habitat use, relative abundance, richness and diversity of a small mammal assemblage. We found that the small mammal assemblage changed significantly after 5 years of elk exclusion. Relative abundance of voles (Microtus mexicanus) increased in exclosure drainages, likely due to an increase in habitat quality. The relative abundances of woodrats (Neotoma neomexicana) and two species of mice (Peromyscus maniculatus and P. boylii) decreased in the controls, while remaining stable in exclosures. The decline of mice in control drainages was likely due to the decline in shrub cover that they use. Thus, elk exclusion may have maintained or improved habitat for mice inside the exclosures while habitat quality and mouse abundance both declined outside the fences. Finally, small mammal species richness increased in the exclosures relative to the controls while species diversity showed no significant trends. Together, our results show that relaxation of heavy herbivore pressure by a widespread native ungulate can lead to rapid changes in small mammal assemblages. Moreover, exclusion of large herbivores can yield rapid responses by vegetation that may enhance or maintain habitat quality for small mammal populations.

  17. Spatial and temporal exposure patterns in non-target small mammals during brodifacoum rat control.

    PubMed

    Geduhn, Anke; Esther, Alexandra; Schenke, Detlef; Mattes, Hermann; Jacob, Jens

    2014-10-15

    Worldwide pest rodents on livestock farms are often regulated using anticoagulant rodenticides (ARs). Second generation ARs in particular can cause poisoning in non-target species due to their high toxicity and persistence. However, research on exposure of small mammals is rare. We systematically investigated spatial and temporal exposure patterns of non-target small mammals in a large-scale replicated study. Small mammals were trapped at different distances to bait stations on ten farms before, during and after brodifacoum (BR) bait application, and liver samples of 1178 non-target small mammals were analyzed for residues of eight ARs using liquid chromatography coupled with tandem mass spectrometry. BR residues were present in 23% out of 742 samples collected during and after baiting. We found clear spatial and temporal exposure patterns. High BR residue concentrations mainly occurred within 15m from bait stations. Occurrence and concentrations of residues significantly decreased with increasing distance. This pattern was found in almost all investigated taxa. After baiting, significantly more individuals contained residues than during baiting but concentrations were considerably lower. Residue occurrence and concentrations differed significantly among taxa, with the highest maximal residue concentrations in Apodemus species, which are protected in Germany. Although Sorex species are known to be insectivorous we regularly found residues in this genus. Residues of active agents other than brodifacoum were rare in all samples. The confirmation of substantial primary exposure in non-target small mammals close to the baiting area indicates considerable risk of secondary poisoning of predators, a pathway that was possibly underestimated until now. Our results will help to develop risk mitigation strategies to reduce risk for non-target small mammals, as well as their predators, in relation to biocidal AR usage.

  18. A hierarchical Bayesian model to estimate the unobservable predation rate on sawfly cocoons by small mammals

    PubMed Central

    Pinkantayong, Panisara; Suzuki, Satoshi; Kubo, Mamoru; Muramoto, Ken-ichiro; Kamata, Naoto

    2015-01-01

    Predation by small mammals has been reported as an important mortality factor for the cocoons of sawfly species. However, it is difficult to provide an accurate estimate of newly spun cocoons and subsequent predation rates by small mammals for several reasons. First, all larvae do not spin cocoons at the same time. Second, cocoons are exposed to small mammal predation immediately after being spun. Third, the cocoons of the current generation are indistinguishable from those of the previous generation. We developed a hierarchical Bayesian model to estimate these values from annual one-time soil sampling datasets. To apply this model to an actual data set, field surveys were conducted in eight stands of larch plantations in central Hokkaido (Japan) from 2009 to 2012. Ten 0.04-m2 soil samples were annually collected from each site in mid-October. The abundance of unopened cocoons (I), cocoons emptied by small-mammal predation (M), and empty cocoons caused by something other than small-mammal predation (H) were determined. The abundance of newly spun cocoons, the predation rate by small mammals before and after cocoon sampling, and the annual rate of empty cocoons that remained were estimated. A posterior predictive check yielded Bayesian P-values of 0.54, 0.48, and 0.07 for I, M, and H, respectively. Estimated predation rates showed a significant positive correlation with the number of trap captures of small mammals. Estimates of the number of newly spun cocoons had a significant positive correlation with defoliation intensity. These results indicate that our model showed an acceptable fit, with reasonable estimates. Our model is expected to be widely applicable to all hymenopteran and lepidopteran insects that spin cocoons in soil. PMID:25691994

  19. THE INTERACTION OF HABITAT FRAGMENTATION, PLANT, AND SMALL MAMMAL SUCCESSION IN AN OLD FIELD

    EPA Science Inventory

    We compared the density and spatial distribution of four small mammal species (Microtus ochrogaster, Peromyscus maniculatus, Sigmodon hispidus, and P. luecopus) along with general measures of an old field plant community across two successional phases (1984-1986 and 1994-1996) of...

  20. Effects of bridge construction on songbirds and small mammals at Blennerhassett Island, Ohio River, USA.

    PubMed

    Vance, Joshua A; Angus, Norse B; Anderson, James T

    2013-09-01

    Construction of man-made objects such as roads and bridges may have impacts on wildlife depending on species or location. We investigated songbirds and small mammals along the Ohio River, WV, USA at a new bridge both before and after construction and at a bridge crossing that was present throughout the study. Comparisons were made at each site over three time periods (1985-1987 [Phase I] and 1998-2000 [Phase II] [pre-construction], 2007-2009 [Phase III] [post-construction]) and at three distances (0, 100, 300 m) from the bridge or proposed bridge location. Overall, 70 songbirds and 10 small mammals were detected during the study. Cliff swallows (Petrochelidon pyrrhonota) and rock pigeons (Columba livia) showed high affinity for bridges (P < 0.05). Combined small mammal abundances increased between Phases I and II (P < 0.05), but did not differ between Phases II and III (P > 0.05). Species richness and diversity for songbirds and small mammals did not differ before and after bridge construction (P > 0.05). We found that most species sampled did not respond to the bridge crossing, and believe that the bridge is not causing any measurable negative density impacts to the species we investigated. The new bridge does provide habitat for exotic rock pigeons that are adjusted to man-made structures for nesting.

  1. Small mammals in saltcedar (Tamarix ramosissima) - invaded and native riparian habitats of the western Great Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive saltcedar species have replaced native riparian trees on numerous river systems throughout the western US, raising concerns about how this habitat conversion may affect wildlife. For periods ranging from 1-10 years, small mammal populations were monitored at six riparian sites impacted by s...

  2. Drivers of Echinococcus multilocularis Transmission in China: Small Mammal Diversity, Landscape or Climate?

    PubMed Central

    Giraudoux, Patrick; Raoul, Francis; Pleydell, David; Li, Tiaoying; Han, Xiuming; Qiu, Jiamin; Xie, Yan; Wang, Hu; Ito, Akira; Craig, Philip S.

    2013-01-01

    Background Human alveolar echinococcocosis (AE) is a highly pathogenic zoonotic disease caused by the larval stage of the cestode E. multilocularis. Its life-cycle includes more than 40 species of small mammal intermediate hosts. Therefore, host biodiversity losses could be expected to alter transmission. Climate may also have possible impacts on E. multilocularis egg survival. We examined the distribution of human AE across two spatial scales, (i) for continental China and (ii) over the eastern edge of the Tibetan plateau. We tested the hypotheses that human disease distribution can be explained by either the biodiversity of small mammal intermediate host species, or by environmental factors such as climate or landscape characteristics. Methodology/findings The distributions of 274 small mammal species were mapped to 967 point locations on a grid covering continental China. Land cover, elevation, monthly rainfall and temperature were mapped using remotely sensed imagery and compared to the distribution of human AE disease at continental scale and over the eastern Tibetan plateau. Infection status of 17,589 people screened by abdominal ultrasound in 2002–2008 in 94 villages of Tibetan areas of western Sichuan and Qinghai provinces was analyzed using generalized additive mixed models and related to epidemiological and environmental covariates. We found that human AE was not directly correlated with small mammal reservoir host species richness, but rather was spatially correlated with landscape features and climate which could confirm and predict human disease hotspots over a 200,000 km2 region. Conclusions/Significance E. multilocularis transmission and resultant human disease risk was better predicted from landscape features that could support increases of small mammal host species prone to population outbreaks, rather than host species richness. We anticipate that our study may be a starting point for further research wherein landscape management could be used

  3. Borrelia infection in small mammals in West Africa and its relationship with tick occurrence inside burrows.

    PubMed

    Diatta, Georges; Duplantier, Jean-Marc; Granjon, Laurent; Bâ, Khalilou; Chauvancy, Gilles; Ndiaye, Mady; Trape, Jean-François

    2015-12-01

    Tick-borne relapsing fever (TBRF) is a zoonotic disease caused by several Borrelia species transmitted to humans by Ornithodoros tick vectors. In West Africa, Borrelia crocidurae is a common cause of disease in many rural populations. Small mammals act as reservoirs of infection. We report here the results of surveys that investigated the occurrence of B. crocidurae infection in rodents and insectivores from eight countries of West and Central Africa. Animals were identified at the species level and tested for Borrelia either by examination of thick blood film, intra-peritoneal inoculation of blood or brain tissues into laboratory mice, or by molecular techniques. A total of 4358 small mammals belonging to 38 species and 7 families were collected, including 3225 specimens collected in areas where the occurrence of Ornithodoros sonrai tick in rodent burrows was documented, and 1133 in areas where this tick was absent. In areas with O. sonrai, Borrelia infection was demonstrated in 287 of 3109 (9.2%) small mammals tested, and none was documented in 1004 animals tested from other areas. There was no relationship between the occurrence of Rhipicephalus, Hyaloma and Argas ticks in burrows and the distribution of Borrelia infection in small mammals. The 287 specimens infected by Borrelia belonged to 15 rodent and shrew species, including three Saharo-Sahelian species - Gerbillus gerbillus, Gerbillus occiduus and Gerbillus tarabuli - identified as reservoirs for TBRF with a distribution restricted to this area. In Sudan and Sudano-Sahelian areas, Arvicanthis niloticus, Mastomys erythroleucus and Mastomys huberti were the main reservoir of infection. Although most small mammals species collected had a large distribution in West and Central Africa, the fact that only animals collected in areas with O. sonrai were found infected suggest that this tick is the only vector of TBRF in rodents and insectivores in this part of Africa. PMID:26327444

  4. A method of approximating range size of small mammals

    USGS Publications Warehouse

    Stickel, L.F.

    1965-01-01

    In summary, trap success trends appear to provide a useful approximation to range size of easily trapped small mammals such as Peromyscus. The scale of measurement can be adjusted as desired. Further explorations of the usefulness of the plan should be made and modifications possibly developed before adoption.

  5. A framework for assessment and monitoring of small mammals in a lowland tropical forest.

    PubMed

    Solari, Sergio; Rodriguez, Juan José; Vivar, Elena; Velazco, Paul M

    2002-05-01

    Development projects in tropical forests can impact biodiversity. Assessment and monitoring programs based on the principles of adaptive management assist managers to identify and reduce such impacts. The small mammal community is one important component of a forest ecosystem that may be impacted by development projects. In 1996, a natural gas exploration project was initiated in a Peruvian rainforest. The Smithsonian Institution's Monitoring and Assessment of Biodiversity program cooperated with Shell Prospecting and Development Peru to establish an adaptive management program to protect the region's biodiversity. In this article, we discuss the role of assessing and monitoring small mammals in relation to the natural gas project. We outline the conceptual issues involved in establishing an assessment and monitoring program, including setting objectives, evaluating the results and making appropriate decisions. We also summarize the steps taken to implement the small mammal assessment, provide results from the assessment and discuss protocols to identify appropriate species for monitoring. PMID:12125752

  6. Predicting small mammal and flea abundance using landform and soil properties in a plague endemic area in Lushoto District, Tanzania.

    PubMed

    Meliyo, Joel L; Kimaro, Didas N; Msanya, Balthazar M; Mulungu, Loth S; Hieronimo, Proches; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Small mammals particularly rodents, are considered the primary natural hosts of plague. Literature suggests that plague persistence in natural foci has a root cause in soils. The objective of this study was to investigate the relationship between on the one hand landforms and associated soil properties, and on the other hand small mammals and fleas in West Usambara Mountains in Tanzania, a plague endemic area. Standard field survey methods coupled with Geographical Information System (GIS) technique were used to examine landform and soils characteristics. Soil samples were analysed in the laboratory for physico-chemical properties. Small mammals were trapped on pre-established landform positions and identified to genus/species level. Fleas were removed from the trapped small mammals and counted. Exploration of landform and soil data was done using ArcGIS Toolbox functions and descriptive statistical analysis. The relationships between landforms, soils, small mammals and fleas were established by generalised linear regression model (GLM) operated in R statistics software. Results show that landforms and soils influence the abundance of small mammals and fleas and their spatial distribution. The abundance of small mammals and fleas increased with increase in elevation. Small mammal species richness also increases with elevation. A landform-soil model shows that available phosphorus, slope aspect and elevation were statistically significant predictors explaining richness and abundance of small mammals. Fleas' abundance and spatial distribution were influenced by hill-shade, available phosphorus and base saturation. The study suggests that landforms and soils have a strong influence on the richness and evenness of small mammals and their fleas' abundance hence could be used to explain plague dynamics in the area.

  7. Predicting small mammal and flea abundance using landform and soil properties in a plague endemic area in Lushoto District, Tanzania.

    PubMed

    Meliyo, Joel L; Kimaro, Didas N; Msanya, Balthazar M; Mulungu, Loth S; Hieronimo, Proches; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Small mammals particularly rodents, are considered the primary natural hosts of plague. Literature suggests that plague persistence in natural foci has a root cause in soils. The objective of this study was to investigate the relationship between on the one hand landforms and associated soil properties, and on the other hand small mammals and fleas in West Usambara Mountains in Tanzania, a plague endemic area. Standard field survey methods coupled with Geographical Information System (GIS) technique were used to examine landform and soils characteristics. Soil samples were analysed in the laboratory for physico-chemical properties. Small mammals were trapped on pre-established landform positions and identified to genus/species level. Fleas were removed from the trapped small mammals and counted. Exploration of landform and soil data was done using ArcGIS Toolbox functions and descriptive statistical analysis. The relationships between landforms, soils, small mammals and fleas were established by generalised linear regression model (GLM) operated in R statistics software. Results show that landforms and soils influence the abundance of small mammals and fleas and their spatial distribution. The abundance of small mammals and fleas increased with increase in elevation. Small mammal species richness also increases with elevation. A landform-soil model shows that available phosphorus, slope aspect and elevation were statistically significant predictors explaining richness and abundance of small mammals. Fleas' abundance and spatial distribution were influenced by hill-shade, available phosphorus and base saturation. The study suggests that landforms and soils have a strong influence on the richness and evenness of small mammals and their fleas' abundance hence could be used to explain plague dynamics in the area. PMID:26867276

  8. Patterns and determinants of mammal species occurrence in India

    USGS Publications Warehouse

    Karanth, K.K.; Nichols, J.D.; Hines, J.E.; Karanth, K.U.; Christensen, N.L.

    2009-01-01

    Many Indian mammals face range contraction and extinction, but assessments of their population status are hindered by the lack of reliable distribution data and range maps. 2. We estimated the current geographical ranges of 20 species of large mammals by applying occupancy models to data from country-wide expert. We modelled species in relation to ecological and social covariates (protected areas, landscape characteristics and human influences) based on a priori hypotheses about plausible determinants of mammalian distribution patterns. 3. We demonstrated that failure to incorporate detection probability in distribution survey methods underestimated habitat occupancy for all species. 4. Protected areas were important for the distribution of 16 species. However, for many species much of their current range remains unprotected. The availability of evergreen forests was important for the occurrence of 14 species, temperate forests for six species, deciduous forests for 15 species and higher altitude habitats for two species. Low human population density was critical for the occurrence of five species, while culturally based tolerance was important for the occurrence of nine other species. 5. Rhino Rhinoceros unicornis, gaur Bos gaurus and elephant Elephas maximus showed the most restricted ranges among herbivores, and sun bear Helarctos malayanus, brown bear Ursus arctos and tiger Panthera tigris were most restricted among carnivores. While cultural tolerance has helped the survival of some mammals, legal protection has been critically associated with occurrence of most species. 6. Synthesis and applications. Extent of range is an important determinant of species conservation status. Understanding the relationship of species occurrence with ecological and socio-cultural covariates is important for identification and management of key conservation areas. The combination of occupancy models with field data from country-wide experts enables reliable estimation of species

  9. Distribution, density, and biomass of introduced small mammals in the southern mariana islands

    USGS Publications Warehouse

    Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.

    2009-01-01

    Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely

  10. 76 FR 68206 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... date notice 773494 Florida Fish and 75 FR 62139; October October 20, 2011. Wildlife. 7, 2010... Fish and Wildlife Service Endangered Species; Marine Mammals; Issuance of Permits AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of issuance of permits. SUMMARY: We, the U.S. Fish and...

  11. 77 FR 43109 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Fish and Wildlife Service Endangered Species; Marine Mammals; Issuance of Permits AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of issuance of permits. SUMMARY: We, the U.S. Fish and Wildlife... Protection Act (MMPA). ADDRESSES: Brenda Tapia, Division of Management Authority, U.S. Fish and ]...

  12. Road network in an agrarian landscape: Potential habitat, corridor or barrier for small mammals?

    NASA Astrophysics Data System (ADS)

    Redon (de), Louis; Le Viol, Isabelle; Jiguet, Frédéric; Machon, Nathalie; Scher, Olivier; Kerbiriou, Christian

    2015-01-01

    If the negative effects of road networks on biodiversity are now recognized, their role as barriers, habitats or corridors remain to be clarified in human altered landscapes in which road verges often constitute the few semi-natural habitats where a part of biodiversity important for ecosystem functioning may maintain. In human-dominated landscape, their roles are crucial to precise in comparison to other habitats for small mammal species considered as major natural actors (pests (voles) or biological control agents (shrew)). We studied these roles through the comparison of small mammal abundance captured (418 individuals belonging to 8 species) using non-attractive pitfall traps (n = 813) in 176 sampled sites distributed in marginal zones of road and crop, in natural areas and in fields. We examined the effect of roadside width and isolation of sites. We found the higher small mammal abundances in roadside verges and an effect of width margins for shrews. The significant effect of the distance to the next adjacent natural habitat at the same side of the road on the relative abundance of Sorex coronatus, and the absence of a significant effect of distance to the next natural habitat at the opposite side of road, suggest that highway and road verges could be used as corridor for their dispersal, but have also a barrier effect for shrews. Our results show that in intensive agricultural landscapes roadside and highway verges may often serve as refuge, habitat and corridor for small mammals depending on species and margin characteristics.

  13. Isotope analyses of fossil small mammals in karstic sites

    NASA Astrophysics Data System (ADS)

    Garcia Alix, Antonio; Delgado Huertas, Antonio

    2016-04-01

    Fossil skeletal accumulations in kartstic complexes, such as caves, are quite common, especially during the Pliocene and Quaternary. These fossil assemblages are sometimes difficult to study, as specimens from different ages can be found together (time averaging). The traditional approach to study this kind of paleontological sites was taphonomic (understanding the origin and other factors affecting the bone accumulation) and/or taxonomic (systematic description of the remains). However, other kinds of analyses, such as biogeochemical techniques to reconstruct past diets and environments, are being more frequently used. Small-mammals have a wide geographical distribution, and their remains (bones and teeth) are extensively represented in the fossil record; therefore, isotopic analyses in fossil small-mammals are a powerful tool to reconstruct paleoenvironments. Field samples for small-mammal studies yield large amounts of sediment-residues that need to be reduced in the laboratory (usually by means of diluted hydrochloric or acetic acid). Therefore, samples of fossil small-mammal for isotopic analyses usually receive two different acid treatments: one to reduce the carbonate residue of the sediment, and afterwards another one to remove digenetic carbonates from the ground sample. Those treatments, along with the small size of the remains, may increase the probability of chemical fractionation during those pre-treatment stages. Those acid treatments are even more aggressive in kasrtic fossil localities, as limestone has to be dissolved to extract the small mammal remains. In this abstract, we present the results of two different treatments carried out in limestone from the Pliocene karstic locality of Moreda (Guadix Basin, Spain) and a control sample. One batch of samples were treated with a solution of 1M acetic acid-acetate calcium buffer (ph 4,5), and the rest with diluted acetic acid (at 15% concentration, Ph 2,2), which is the most used to reduce the sediments

  14. THE subfossil occurrence and paleoecological significance of small mammals at ankilitelo cave, southwestern Madagascar

    USGS Publications Warehouse

    Muldoon, K.M.; De Blieux, D. D.; Simons, E.L.; Chatrath, P.S.

    2009-01-01

    Small mammals are rarely reported from subfossil sites in Madagascar despite their importance for paleoenvironmental reconstruction, especially as it relates to recent ecological changes on the island. We describe the uniquely rich subfossil small mammal fauna from Ankilitelo Cave, southwestern Madagascar. The Ankilitelo fauna is dated to the late Holocene (???500 years ago), documenting the youngest appearances of the extinct giant lemur taxa Palaeopropithecus, Megaladapis, and Archaeolemur, in association with abundant remains of small vertebrates, including bats, tenrecs, carnivorans, rodents, and primates. The Ankilitelo fauna is composed of 34 mammalian species, making it one of the most diverse Holocene assemblages in Madagascar. The fauna comprises the 1 st report of the short-tailed shrew tenrec (Microgale brevicaudata) and the ring-tailed mongoose (Galidia elegans) in southwestern Madagascar. Further, Ankilitelo documents the presence of southwestern species that are rare or that have greatly restricted ranges today, such as Nasolo's shrew tenrec (M. nasoloi), Grandidier's mongoose (Galidictis grandidieri), the narrow-striped mongoose (Mungotictis decemlineata), and the giant jumping rat (Hypogeomys antimena). A simple cause for the unusual small mammal occurrences at Ankilitelo is not obvious. Synergistic interactions between climate change, recent fragmentation and human-initiated degradation of forested habitats, and community-level processes, such as predation, most likely explain the disjunct distributions of the small mammals documented at Ankilitelo. ?? 2009 American Society of Mammalogists.

  15. Marine mammals as sentinel species for oceans and human health.

    PubMed

    Bossart, G D

    2011-05-01

    The long-term consequences of climate change and potential environmental degradation are likely to include aspects of disease emergence in marine plants and animals. In turn, these emerging diseases may have epizootic potential, zoonotic implications, and a complex pathogenesis involving other cofactors such as anthropogenic contaminant burden, genetics, and immunologic dysfunction. The concept of marine sentinel organisms provides one approach to evaluating aquatic ecosystem health. Such sentinels are barometers for current or potential negative impacts on individual- and population-level animal health. In turn, using marine sentinels permits better characterization and management of impacts that ultimately affect animal and human health associated with the oceans. Marine mammals are prime sentinel species because many species have long life spans, are long-term coastal residents, feed at a high trophic level, and have unique fat stores that can serve as depots for anthropogenic toxins. Marine mammals may be exposed to environmental stressors such as chemical pollutants, harmful algal biotoxins, and emerging or resurging pathogens. Since many marine mammal species share the coastal environment with humans and consume the same food, they also may serve as effective sentinels for public health problems. Finally, marine mammals are charismatic megafauna that typically stimulate an exaggerated human behavioral response and are thus more likely to be observed.

  16. Marine mammals as sentinel species for oceans and human health.

    PubMed

    Bossart, G D

    2011-05-01

    The long-term consequences of climate change and potential environmental degradation are likely to include aspects of disease emergence in marine plants and animals. In turn, these emerging diseases may have epizootic potential, zoonotic implications, and a complex pathogenesis involving other cofactors such as anthropogenic contaminant burden, genetics, and immunologic dysfunction. The concept of marine sentinel organisms provides one approach to evaluating aquatic ecosystem health. Such sentinels are barometers for current or potential negative impacts on individual- and population-level animal health. In turn, using marine sentinels permits better characterization and management of impacts that ultimately affect animal and human health associated with the oceans. Marine mammals are prime sentinel species because many species have long life spans, are long-term coastal residents, feed at a high trophic level, and have unique fat stores that can serve as depots for anthropogenic toxins. Marine mammals may be exposed to environmental stressors such as chemical pollutants, harmful algal biotoxins, and emerging or resurging pathogens. Since many marine mammal species share the coastal environment with humans and consume the same food, they also may serve as effective sentinels for public health problems. Finally, marine mammals are charismatic megafauna that typically stimulate an exaggerated human behavioral response and are thus more likely to be observed. PMID:21160025

  17. Three new Jurassic euharamiyidan species reinforce early divergence of mammals.

    PubMed

    Bi, Shundong; Wang, Yuanqing; Guan, Jian; Sheng, Xia; Meng, Jin

    2014-10-30

    The phylogeny of Allotheria, including Multituberculata and Haramiyida, remains unsolved and has generated contentious views on the origin and earliest evolution of mammals. Here we report three new species of a new clade, Euharamiyida, based on six well-preserved fossils from the Jurassic period of China. These fossils reveal many craniodental and postcranial features of euharamiyidans and clarify several ambiguous structures that are currently the topic of debate. Our phylogenetic analyses recognize Euharamiyida as the sister group of Multituberculata, and place Allotheria within the Mammalia. The phylogeny suggests that allotherian mammals evolved from a Late Triassic (approximately 208 million years ago) Haramiyavia-like ancestor and diversified into euharamiyidans and multituberculates with a cosmopolitan distribution, implying homologous acquisition of many craniodental and postcranial features in the two groups. Our findings also favour a Late Triassic origin of mammals in Laurasia and two independent detachment events of the middle ear bones during mammalian evolution. PMID:25209669

  18. Three new Jurassic euharamiyidan species reinforce early divergence of mammals.

    PubMed

    Bi, Shundong; Wang, Yuanqing; Guan, Jian; Sheng, Xia; Meng, Jin

    2014-10-30

    The phylogeny of Allotheria, including Multituberculata and Haramiyida, remains unsolved and has generated contentious views on the origin and earliest evolution of mammals. Here we report three new species of a new clade, Euharamiyida, based on six well-preserved fossils from the Jurassic period of China. These fossils reveal many craniodental and postcranial features of euharamiyidans and clarify several ambiguous structures that are currently the topic of debate. Our phylogenetic analyses recognize Euharamiyida as the sister group of Multituberculata, and place Allotheria within the Mammalia. The phylogeny suggests that allotherian mammals evolved from a Late Triassic (approximately 208 million years ago) Haramiyavia-like ancestor and diversified into euharamiyidans and multituberculates with a cosmopolitan distribution, implying homologous acquisition of many craniodental and postcranial features in the two groups. Our findings also favour a Late Triassic origin of mammals in Laurasia and two independent detachment events of the middle ear bones during mammalian evolution.

  19. Challenges to natural resource monitoring in a small border park: terrestrial mammals at Coronado National Memorial, Cochise County, Arizona

    USGS Publications Warehouse

    Swann, Don E.; Bucci, Melanie; Kuenzi, Amy J.; Alberti, Barbara N.; Schwalbe, Cecil R.; Halvorson, William L.; van Riper, Charles; Schwalbe, Cecil R.

    2010-01-01

    Long-term monitoring in national parks is essential to meet National Park Service and other important public goals. Terrestrial mammals are often proposed for monitoring because large mammals are of interest to visitors and small mammals are important as prey. However, traditional monitoring strategies for mammals are often too expensive and complex to sustain for long periods, particularly in small parks. To evaluate potential strategies for long-term monitoring in small parks, we conducted an intensive one-year inventory of terrestrial mammals at Coronado National Memorial, located in Arizona on the U.S.-Mexico international border, then continued less-intensive monitoring at the site for 7 additional years. During 1996-2003 we confirmed 44 species of terrestrial mammals. Most species (40) were detected in the intensive first year of the study, but we continued to detect new species in later years. Mark-recapture data on small mammals indicated large inter-annual fluctuations in population size, but no significant trend over the 7-year period. Issues associated with the international border affected monitoring efforts and increased sampling costs. Our study confirms that sustained annual monitoring of mammals is probably not feasible in small park units like Coronado. However, comparisons of our data with past studies provide insight into important changes in the mammal community since the 1970s, including an increase in abundance and diversity of grassland rodents. Our results suggest that intensive inventories every 10-20 years may be a valuable and cost-effective approach for detecting long-term trends in terrestrial mammal communities in small natural areas.

  20. Small mammals and forest fuel reduction: national-scale responses to fire and fire surrogates.

    PubMed

    Converse, Sarah J; White, Gary C; Farris, Kerry L; Zack, Steve

    2006-10-01

    Forest fuel reduction treatments are increasingly used by managers to reduce the risk of high-severity wildfire and to manage changes in the ecological function of forests. However, comparative ecological effects of the various types of treatments are poorly understood. We examined short-term patterns in small-mammal responses to mechanical thinning, prescribed-fire, and mechanical thinning/prescribed-fire combination treatments at eight different study areas across the United States as a part of the National Fire and Fire Surrogate (FFS) Project. Research questions included: (1) do treatments differ in their effect on small mammal densities and biomass? and (2) are effects of treatments consistent across study areas? We modeled taxa-specific densities and total small-mammal biomass as functions of treatment types and study area effects and ranked models based on an information-theoretic model selection criterion. Small-mammal taxa examined, including deer mice (Peromyscus maniculatus), yellow-pine chipmunks (Tamias amoenus), and golden-mantled ground squirrels (Spermophilus lateralis), as well as all Peromyscus and Tamias species, had top-ranked models with responses varying both by treatment type and study area. In each of these cases, the top-ranked model carried between 69% and 99% of the total weight in the model set, indicating strong support for the top-ranked models. However, the top-ranked model of total small-mammal biomass was a model with biomass varying only with treatment (i.e., treated vs. untreated), not by treatment type or study area; again, this model had strong support, with 75% of the total model weight. Individual species and taxa appear to have variable responses to fuel reduction treatment types in different areas; however, total small-mammal biomass appears generally to increase after any type of fuel reduction. These results suggest that there is substantial variability in taxa-specific responses to treatments and indicate that adaptive

  1. Morphological and molecular analysis of Ornithonyssus spp. (Acari: Macronyssidae) from small terrestrial mammals in Brazil.

    PubMed

    Nieri-Bastos, Fernanda A; Labruna, Marcelo B; Marcili, Arlei; Durden, Lance A; Mendoza-Uribe, Leonardo; Barros-Battesti, Darci M

    2011-12-01

    Based on chaetotaxy of the dorsal shield, the taxonomic status of many species of Ornithonyssus has been considered invalid, resulting in the synonymy of all Brazilian Ornithonyssus from small terrestrial wild mammals into one of the following four species: Ornithonyssus bacoti (Hirst, 1913), Ornithonyssus matogrosso (Fonseca, 1954), Ornithonyssus pereirai (Fonseca, 1935) or Ornithonyssus wernecki (Fonseca, 1935). Despite the revision of this genus in 1980, including all known species worldwide, the knowledge of Ornithonyssus in Brazil has not progressed for more than 40 years. Considering the potential importance of these haematophagous mites in transmitting rickettsial disease agents to animals and humans, we have revised Ornithonyssus species collected from small mammals in Brazil by means of morphological and molecular studies. Types and other material deposited in the Acari Collection of the Instituto Butantan (IBSP) were examined in addition to recently collected specimens. Morphological and genetic analysis of the 16S rDNA mitochondrial gene revealed that small terrestrial mammals in Brazil are parasitized by six species of Ornithonyssus mites: Ornithonyssus brasiliensis (Fonseca, 1939), O. matogrosso, O. monteiroi (Fonseca, 1941), O. pereirai, O. vitzthumi (Fonseca, 1941), and O. wernecki. An illustrated key to females of the valid Brazilian species of Ornithonyssus is included, based on optical and scanning electron microscopy. PMID:21786041

  2. Diversification of an emerging pathogen in a biodiversity hotspot: Leptospira in endemic small mammals of Madagascar.

    PubMed

    Dietrich, Muriel; Wilkinson, David A; Soarimalala, Voahangy; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2014-06-01

    Biodiversity hotspots and associated endemism are ideal systems for the study of parasite diversity within host communities. Here, we investigated the ecological and evolutionary forces acting on the diversification of an emerging bacterial pathogen, Leptospira spp., in communities of endemic Malagasy small mammals. We determined the infection rate with pathogenic Leptospira in 20 species of sympatric rodents (subfamily Nesomyinae) and tenrecids (family Tenrecidae) at two eastern humid forest localities. A multilocus genotyping analysis allowed the characterization of bacterial diversity within small mammals and gave insights into their genetic relationships with Leptospira infecting endemic Malagasy bats (family Miniopteridae and Vespertilionidae). We report for the first time the presence of pathogenic Leptospira in Malagasy endemic small mammals, with an overall prevalence of 13%. In addition, these hosts harbour species of Leptospira (L. kirschneri, L. borgpetersenii and L. borgpetersenii group B) which are different from those reported in introduced rats (L. interrogans) on Madagascar. The diversification of Leptospira on Madagascar can be traced millions of years into evolutionary history, resulting in the divergence of endemic lineages and strong host specificity. These observations are discussed in relation to the relative roles of endemic vs. introduced mammal species in the evolution and epidemiology of Leptospira on Madagascar, specifically how biodiversity and biogeographical processes can shape community ecology of an emerging pathogen and lead to its diversification within native animal communities.

  3. High prevalence of Rickettsia spp. infections in small mammals in Taiwan.

    PubMed

    Kuo, Chi-Chien; Shu, Pei-Yun; Mu, Jung-Jung; Wang, Hsi-Chieh

    2015-01-01

    Surveillance for Rickettsia spp. is urgently needed due to the recent emergence of many novel rickettsioses around the globe, but previous studies in Taiwan have been limited to small areas and no investigation of infections in vertebrate hosts has ever been attempted. We surveyed rickettsial infections systematically in small-mammal hosts trapped between 2006 and 2010 throughout Taiwan. Fragments of ompB and gltA genes in the liver, spleen, and kidney of mammals were targeted by nested polymerase chain reaction. We trapped 1375 individuals of 10 species, among which Rattus losea was the most common (54.6%), followed by Suncus murinus (20.6%) and Mus caroli (10.6%). The overall rate of Rickettsia infections in the liver, spleen, or kidney of 309 assayed small mammals was 60.5%, with a rate of infection ≥50% for each mammal species. DNA nucleotide sequences of 184 successfully sequenced genes were most similar to nine Rickettsia species: Rickettsia conorii, R. felis, R. japonica, R. raoultii, R. rickettsii, Rickettsia sp. IG-1, Rickettsia sp. TwKM01, Rickettsia sp. TwKM02, and R. typhi. Our results suggest that several novel Rickettsia spp. are common and widespread across various habitats throughout Taiwan and suggest the need for further study of emerging rickettsioses in Taiwan.

  4. Effects of disturbance on small mammal community structure in the New Jersey Pinelands, USA.

    PubMed

    Shenko, Alicia N; Bien, Walter F; Spotila, James R; Avery, Harold W

    2012-03-01

    We compared small mammal community composition among undisturbed habitats and habitats disturbed by military operations on Warren Grove Gunnery Range (WGR) in the New Jersey Pinelands. WGR is one of the largest tracts of protected land within this globally rare ecosystem. Disturbance in the form of fire, mowing, soil disruption and logging has had a large effect on small mammal occurrence and distribution. Of the 14 small mammal species that occur in the Pinelands, 9 live on WGR, including large populations of the southern bog lemming (Synaptomys cooperi Baird, 1858) and meadow jumping mouse [Zapus hudsonius (Zimmermann, 1780)]. Simpson's Index of Diversity was 0 for most disturbed sites and was generally greater in wetlands than in uplands. White-footed mouse [Peromyscus leucopus (Rafinesque, 1818)] was the most common species on WGR and had a dominant effect on species diversity and community similarity indices. It dominated upland habitats and was the only species to occur in several disturbed habitats, whereas all 9 species occurred in wetlands. Principal components analysis indicated that most variation in species diversity was explained by disturbance and differences between upland and wetland habitats, due to presence of white-footed mice in disturbed and upland sites. Meadow jumping mice, southern bog lemmings and red-back voles [Myodes gapperi (Vigors, 1830)] were positively correlated with wetland habitats, and pine voles [Microtus pinetorum (Le Conte, 1830)], short-tail shrews [Blarina brevicauda (Say, 1823)] and eastern chipmunks [Tamias striatus (Linnaeus, 1758)] were associated with uplands. Habitat heterogeneity at WGR, including extensive undisturbed wetlands and uplands supported a rich diversity of small mammal species. PMID:22405445

  5. Estimation methodology in contemporary small mammal capture-recapture studies

    USGS Publications Warehouse

    Nichols, J.D.; Pollock, K.H.

    1983-01-01

    Estimators of population size and survival rate based on the Jolly-Seber capture-recapture model and the 'enumeration method' are described. Enumeration estimators are shown to estimate complicated functions of capture and survival probabilities and, in the case of the population size estimator, population size. Frequently-listed reasons for preferring enumeration estimators are discussed and the Jolly-Seber estimators are shown to be superior even in the case of heterogeneity and trap-happy response, the two sources of unequal capture probability most likely to occur in small mammal studies. New developments in probabilistic capture-recapture models are described, and these models are recommended for future small mammal capture-recapture studies.

  6. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic forest.

    PubMed

    Melo, Geruza L; Miotto, Barbara; Peres, Brisa; Cáceres, Nilton C

    2013-01-01

    Each animal species selects specific microhabitats for protection, foraging, or micro-climate. To understand the distribution patterns of small mammals on the ground and in the understorey, we investigated the use of microhabitats by small mammals in a deciduous forest of southern Brazil. Ten trap stations with seven capture points were used to sample the following microhabitats: liana, fallen log, ground litter, terrestrial ferns, simple-trunk tree, forked tree, and Piper sp. shrubs. Seven field phases were conducted, each for eight consecutive days, from September 2006 through January 2008. Four species of rodents (Akodon montensis, Sooretamys angouya, Oligoryzomys nigripes and Mus musculus) and two species of marsupials (Didelphis albiventris and Gracilinanus microtarsus) were captured. Captured species presented significant differences on their microhabitat use (ANOVA, p = 0.003), particularly between ground and understorey sites. Akodon montensis selected positively terrestrial ferns and trunks, S. angouya selected lianas, D. albiventris selected fallen trunks and Piper sp., and G. microtarsus choose tree trunks and lianas. We demonstrated that the local small-mammal assemblage does select microhabitats, with different types of associations between species and habitats. Besides, there is a strong evidence of habitat selection in order to diminish predation.

  7. Small mammal community succession on the beach of Dongting Lake, China after the Three Gorges Project.

    PubMed

    Zhang, Meiwen; Wang, Yong; Li, Bo; Guo, Cong; Huang, Guoxian; Shen, Guo; Zhou, Xunjun

    2014-06-01

    Although the Three Gorges Project (TGP) may have affected the population structure and distribution of plant and animal communities, few studies have analyzed the effect of this project on small mammal communities. Therefore, the present paper compares the small mammal communities inhabiting the beaches of Dongting Lake using field investigations spanning a 20-year period, both before and after the TGP was implemented. Snap traps were used throughout the census. The results indicate that the TGP caused major changes to the structure of the small mammal community at a lake downstream of the dam. First, species abundance on the beaches increased after the project commenced. The striped field mouse (Apodemus agrarius) and the Norway rat (Rattus norvegicus), which rarely inhabited the beach before the TGP, became abundant (with marked population growth) once water was impounded by the Three Gorges Reservoir. Second, dominant species concentration indices exhibited a stepwise decline, indicating that the community structure changed from a single dominant species to a more diverse species mix after TGP implementation. Third, the regulation of water discharge release by the TGP might have caused an increase in the species diversity of the animal community on the beaches. A significant difference in diversity indices was obtained before and after the TGP operation. Similarity indices also indicate a gradual increase in species numbers. Hence, a long-term project should be established to monitor the population fluctuations of the Yangtze vole (Microtus fortis), the striped field mouse and the Norway rat to safeguard against population outbreaks (similar to the Yangtze vole outbreak in 2007), which could cause crop damage to adjacent farmland, in addition to documenting the succession process of the small mammal community inhabiting the beaches of Dongting Lake.

  8. Small mammal community succession on the beach of Dongting Lake, China after the Three Gorges Project.

    PubMed

    Zhang, Meiwen; Wang, Yong; Li, Bo; Guo, Cong; Huang, Guoxian; Shen, Guo; Zhou, Xunjun

    2014-06-01

    Although the Three Gorges Project (TGP) may have affected the population structure and distribution of plant and animal communities, few studies have analyzed the effect of this project on small mammal communities. Therefore, the present paper compares the small mammal communities inhabiting the beaches of Dongting Lake using field investigations spanning a 20-year period, both before and after the TGP was implemented. Snap traps were used throughout the census. The results indicate that the TGP caused major changes to the structure of the small mammal community at a lake downstream of the dam. First, species abundance on the beaches increased after the project commenced. The striped field mouse (Apodemus agrarius) and the Norway rat (Rattus norvegicus), which rarely inhabited the beach before the TGP, became abundant (with marked population growth) once water was impounded by the Three Gorges Reservoir. Second, dominant species concentration indices exhibited a stepwise decline, indicating that the community structure changed from a single dominant species to a more diverse species mix after TGP implementation. Third, the regulation of water discharge release by the TGP might have caused an increase in the species diversity of the animal community on the beaches. A significant difference in diversity indices was obtained before and after the TGP operation. Similarity indices also indicate a gradual increase in species numbers. Hence, a long-term project should be established to monitor the population fluctuations of the Yangtze vole (Microtus fortis), the striped field mouse and the Norway rat to safeguard against population outbreaks (similar to the Yangtze vole outbreak in 2007), which could cause crop damage to adjacent farmland, in addition to documenting the succession process of the small mammal community inhabiting the beaches of Dongting Lake. PMID:24148252

  9. Improving ungulate habitat in a region undergoing rapid energy development: Consequences for songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Bombaci, Sara Petrita

    Habitat manipulation intended to mitigate the impact of energy development on game animals is well underway in the western U.S. Yet, the consequences of these actions for other species are not well understood. A habitat manipulation experiment was established in the Piceance Basin, a region of Colorado undergoing rapid energy development, to evaluate alternative methods (i.e. chaining, hydro-axe, and roller-chop treatments) for reducing pinyon-juniper woodlands to promote mule deer habitat. I use this experimental design to additionally test the initial effects of these treatments on birds and small mammals, and to evaluate selection of habitat components in treatments by birds and small mammals. I found lower bird species occupancy in all treatment plots compared to control plots; however the strength of this response varied by bird guild. I found a positive relationship between bird species occupancy and percent tree cover and a negative relationship between bird species occupancy and percent grass and forb cover. I found no evidence of differences in small mammal species occupancy or density between controls and treatments. I found a positive relationship between small mammal species occupancy and percent grass and forb cover. Species richness did not significantly differ between control and treatment plots for birds or small mammals. My approach and research findings can be used to inform habitat management and multiple-species conservation objectives in pinyon-juniper and sage-steppe ecosystems undergoing energy development. Specifically, I have identified that recently developed roller-chop and hydro-axe treatments have similar impacts to woodland bird guilds as traditional chaining treatments. I have also identified species that are sensitive to habitat mitigation treatments, and thus should be monitored if woodland reduction continues to be used as a habitat mitigation strategy. Since all bird guilds were positively associated with tree cover, woodland

  10. The Grinnell Project; Small Mammal Responses to Climate in California

    NASA Astrophysics Data System (ADS)

    Conroy, C. C.; Koo, M.; Monahan, B.; Parra, J.; Moritz, C.

    2006-12-01

    Between 1915 and 1920, Joseph Grinnell and colleagues investigated the diversity of mammals, reptiles, amphibians and birds across what they termed the Yosemite Transect, an area spanning portions of the San Joaquin Valley, the Sierra Nevada, including about 1/3 of Yosemite National Park, and ending at Mono Lake. Their data collection included preservation of series of specimens at a large number of locations, point counts of birds, photography and extensive natural history notes, all of which are still archived at the Museum of Vertebrate Zoology at UC Berkeley. Beginning in 2003, researchers from the MVZ began retracing this work, collecting specimens, using point counts, and retaking some photographs. The comparison of the two periods indicates that some mammals have shifted their ranges greatly. Most taxa show an elevation increase, either an increase at the top for middle elevation species, or a retraction at the bottom for higher elevation species. However, not all species moved, and one high elevation species moved down. To further investigate how changes observed in Yosemite might also apply to larger spatial scales, our group has been using historic climate surfaces, historic specimen localities, and a variety of modeling methods to predict statewide changes in species' distributions. Other potential sites to be revisited include the Lassen Transect in Northern California, the Colorado River, and the San Bernardino Mountains.

  11. Small mammals as biomonitors of metal pollution: a case study in Slovenia.

    PubMed

    Al Sayegh Petkovšek, Samar; Kopušar, Nataša; Kryštufek, Boris

    2014-07-01

    The transfer of lead, cadmium, zinc, mercury, copper and molybdenum from soil to the tissues of small mammals inhabiting differently polluted areas in Slovenia was investigated. Metals were determined in soil samples and in the livers of 139 individuals of five small mammal species, collected in 2012 in the vicinity of a former lead smelter, the largest Slovenian thermal power plant, along a main road and in a control area. The area in the vicinity of former lead smelter differs considerably from other study areas. The soil from that area is heavily polluted with Pb and Cd. The mean metal concentrations in the liver, irrespective of species, varied in the following ranges-Pb: 0.40-7.40 mg/kg fw and Cd: 0.27-135 mg/kg fw and reached effect concentrations at which toxic effects can be expected in a significant proportion of the livers of the small mammal specimens (Pb 40 %, Cd 67 %). These findings indicate that the majority of small mammals trapped in the area of the former lead smelter are at risk of toxic effects due to the very high bioaccumulation of Pb and Cd in the organism. On the contrary, Pd and Cd concentrations in the livers of small mammals sampled in the vicinity of the thermal power plant and along the main road were comparable with reference values and considerably lower than effect concentrations. Additionally, the study suggests that Apodemus flavicollis and Myodes glareolus are very suitable biomonitors of metal pollution. PMID:24619365

  12. Hantavirus infection among wild small mammals in Vellore, south India.

    PubMed

    Chandy, S; Ulrich, R G; Schlegel, M; Petraityte, R; Sasnauskas, K; Prakash, D J; Balraj, V; Abraham, P; Sridharan, G

    2013-08-01

    Wild indigenous small mammals including 83 rodents (bandicoot and black rats, and house mice) and a shrew captured from multiple sites in Vellore, south India, were tested for serological and molecular evidence of hantavirus infection. Indirect immunofluorescence assay (IFA) using Hantaan virus (HTNV) antigen indicated hantavirus-reactive antibodies in 16 (19.3%) of 83 rodents (bandicoot and black rats). Western blot (WB) using Thailand virus (THAIV) antigen confirmed hantavirus-reactive antibodies in nine of the 16 HTNV IFA-positive rodents. Reverse transcription polymerase chain reaction (RT-PCR) of lung and kidney tissue of captured mammals resulted in the detection of partial S segment sequence in a bandicoot rat. This study complements our earlier reports on hantavirus epidemiology in south India and documents first laboratory evidence for rodent-associated hantaviruses in south India.

  13. Hantavirus infection among wild small mammals in Vellore, south India.

    PubMed

    Chandy, S; Ulrich, R G; Schlegel, M; Petraityte, R; Sasnauskas, K; Prakash, D J; Balraj, V; Abraham, P; Sridharan, G

    2013-08-01

    Wild indigenous small mammals including 83 rodents (bandicoot and black rats, and house mice) and a shrew captured from multiple sites in Vellore, south India, were tested for serological and molecular evidence of hantavirus infection. Indirect immunofluorescence assay (IFA) using Hantaan virus (HTNV) antigen indicated hantavirus-reactive antibodies in 16 (19.3%) of 83 rodents (bandicoot and black rats). Western blot (WB) using Thailand virus (THAIV) antigen confirmed hantavirus-reactive antibodies in nine of the 16 HTNV IFA-positive rodents. Reverse transcription polymerase chain reaction (RT-PCR) of lung and kidney tissue of captured mammals resulted in the detection of partial S segment sequence in a bandicoot rat. This study complements our earlier reports on hantavirus epidemiology in south India and documents first laboratory evidence for rodent-associated hantaviruses in south India. PMID:22856552

  14. Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in Cerrado fragments, western Brazil.

    PubMed

    Sponchiado, Jonas; Melo, Geruza L; Landulfo, Gabriel A; Jacinavicius, Fernando C; Barros-Battesti, Darci M; Cáceres, Nilton C

    2015-07-01

    We describe ectoparasite fauna associated with small mammals in fragments of Cerrado biome, central-western Brazil. We analyzed the level of associations and the aggregation patterns according to seasonal and host variations. Small mammals were systematically captured in 54 woodland fragments from February 2012 to July 2013. A total of 1040 animals belonging to eight marsupial and 12 rodent species were sampled; 354 individuals were parasitized by 33 ectoparasite species (twenty five Mesostigmata, seven Phthiraptera and one Siphonaptera). A total of 49 ecological relationships between ectoparasites and small mammals were observed, 24 being new association records. The overall specialization index of all ectoparasites and host species was 0.91 with significant deviation from a random host-parasite association, suggesting a high host-parasite specialization in this system. Specialization indices for ectoparasites ranged from moderate to high, while among host was high, for most species. Contrary to the overall pattern, some ectoparasites had higher prevalence and mean intensity of infestation in the dry season. Overall, ectoparasite prevalence and mean intensity of infestation were not significantly associated with host gender. This study provides significant information about the ectoparasites ecology in relation to specificity, seasonality and hosts gender, contributing to the understanding of host-parasite relationships in Brazilian savannah.

  15. The taste system of small fish species.

    PubMed

    Okada, Shinji

    2015-01-01

    Small fish species such as the zebrafish (Danio rerio) and medaka fish (Oryzias latipes) are advantageous animal models and have been used as model organisms in many research areas. However, they have not been utilized for studying the taste system, primarily because of a dearth of molecular biological knowledge. Quantitative methods for analyzing the taste preferences of fish species have also been lacking. Recent progress of the fish genome project has enabled the elucidation of the molecular mechanisms of taste sensation. Taste receptors and a number of signal transduction molecules have been identified. Additionally, the development of quantitative methods of feeding using fluorescently labeled artificial foods has demonstrated taste preferences in small fish species. Comparisons between these results in fish and reports on mammals have proposed a general logic and evolution of vertebrate taste systems. Analysis on the transsynaptic tracer-expressing transgenic medaka fish also suggests the usefulness of small fish in the research of neural circuits for taste.

  16. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  17. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  18. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  19. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially...

  20. Vegetation habitats and small mammals in a plague endemic area in Western Usambara Mountains, Tanzania.

    PubMed

    Ralaizafisoloarivony, Njaka A; Kimaro, Didas N; Kihupi, Nganga I; Mulungu, Loth S; Leirs, Herwig; Msanya, Balthazar M; Deckers, Jozef A; Gulinck, Hubert

    2014-07-01

    Human plague still exists in different parts of the world, including some landscapes in north-eastern Tanzania. Wherever the hotspot of plague, small mammals seem to play a key role as host. The objective of this study was to investigate the relationship between vegetation habitats types and small mammals in a plague endemic area of Lushoto District in Tanzania. A combination of field survey and Landsat images was used to identify the vegetation habitats. Small mammals were trapped in the mapped vegetation units, and identified. In total, six main types of vegetation habitats were investigated. A total of 13 small mammal species, potentially related to plague were trapped. Results show that annual cultivated crops habitat accounted for 80% of Mastomys natalensis while natural forest accounted for 60% of Praomys delectorum. These findings have shed new light on the diversity of rodents in different habitats of natural and semi-natural vegetations, and agricultural crops in the study area, which is an important intermediate step in unravelling the complex human plague system.

  1. Trends in North American small mammals found in common barn-owl (Tyto alba) dietary studies

    USGS Publications Warehouse

    Clark, D.R.; Bunck, C.M.

    1991-01-01

    Data on mammals were compiled from published studies of common barn-owl (Tyto alba) pellets. Mammalian composition of pellet samples was analyzed within geographic regions in regard to year, mean annual precipitation, latitude, and number of individual mammals in the sample. Percentages of individuals in pellets that were shrews increased whereas the percentages of rodents decreased with greater mean annual precipitation, especially in northern and western areas of North America. From the 1920s through 1980s, in northern and eastern areas the percentage of species that was shrews decreased, and in northern and central areas the percentage of individuals that was murid rats and mice increased. Human alterations of habitats during these seven decades are postulated to have caused changes in available small mammals, leading to changes in the barn-owl diet.

  2. Ancient DNA from marine mammals: studying long-lived species over ecological and evolutionary timescales.

    PubMed

    Foote, Andrew D; Hofreiter, Michael; Morin, Phillip A

    2012-01-20

    Marine mammals have long generation times and broad, difficult to sample distributions, which makes inferring evolutionary and demographic changes using field studies of extant populations challenging. However, molecular analyses from sub-fossil or historical materials of marine mammals such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an opportunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes in distribution and range of marine mammal species; we review these studies and discuss the limitations of such 'presence only' studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also discuss studies reconstructing inter- and intra-specific phylogenies from aDNA sequences and discuss how aDNA sequences could be used to estimate mutation rates. Finally, we highlight some of the problems of aDNA studies on marine mammals, such as obtaining sufficient sample sizes and calibrating for the marine reservoir effect when radiocarbon-dating such wide-ranging species. PMID:21652193

  3. Ancient DNA from marine mammals: studying long-lived species over ecological and evolutionary timescales.

    PubMed

    Foote, Andrew D; Hofreiter, Michael; Morin, Phillip A

    2012-01-20

    Marine mammals have long generation times and broad, difficult to sample distributions, which makes inferring evolutionary and demographic changes using field studies of extant populations challenging. However, molecular analyses from sub-fossil or historical materials of marine mammals such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an opportunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes in distribution and range of marine mammal species; we review these studies and discuss the limitations of such 'presence only' studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also discuss studies reconstructing inter- and intra-specific phylogenies from aDNA sequences and discuss how aDNA sequences could be used to estimate mutation rates. Finally, we highlight some of the problems of aDNA studies on marine mammals, such as obtaining sufficient sample sizes and calibrating for the marine reservoir effect when radiocarbon-dating such wide-ranging species.

  4. Intestinal Nematodes from Small Mammals Captured near the Demilitarized Zone, Gyeonggi Province, Republic of Korea

    PubMed Central

    Kim, Deok-Gyu; Park, Jae-Hwan; Kim, Jae-Lip; Jung, Bong-Kwang; Jeon, Sarah Jiyoun; Lim, Hyemi; Lee, Mi Youn; Shin, Eun-Hee; Klein, Terry A.; Kim, Heung-Chul; Chong, Sung-Tae; Song, Jin-Won; Baek, Luck-Ju; Chai, Jong-Yil

    2015-01-01

    A total of 1,708 small mammals (1,617 rodents and 91 soricomorphs), including Apodemus agrarius (n = 1,400), Microtus fortis (167), Crocidura lasiura (91), Mus musculus (32), Myodes (= Eothenomys) regulus (9), Micromys minutus (6), and Tscherskia (= Cricetulus) triton (3), were live-trapped at US/Republic of Korea (ROK) military training sites near the demilitarized zone (DMZ) of Paju, Pocheon, and Yeoncheon, Gyeonggi Province from December 2004 to December 2009. Small mammals were examined for their intestinal nematodes by necropsy. A total of 1,617 rodents (100%) and 91 (100%) soricomorphs were infected with at least 1 nematode species, including Nippostrongylus brasiliensis, Heligmosomoides polygyrus, Syphacia obvelata, Heterakis spumosa, Protospirura muris, Capillaria spp., Trichuris muris, Rictularia affinis, and an unidentified species. N. brasiliensis was the most common species infecting small mammals (1,060; 62.1%) followed by H. polygyrus (617; 36.1%), S. obvelata (370; 21.7%), H. spumosa (314; 18.4%), P. muris (123; 7.2%), and Capillaria spp. (59; 3.5%). Low infection rates (0.1-0.8%) were observed for T. muris, R. affinis, and an unidentified species. The number of recovered worms was highest for N. brasiliensis (21,623 worms; mean 20.4 worms/infected specimen) followed by S. obvelata (9,235; 25.0 worms), H. polygyrus (4,122; 6.7 worms), and H. spumosa (1,160; 3.7 worms). A. agrarius demonstrated the highest prevalence for N. brasiliensis (70.9%), followed by M. minutus (50.0%), T. triton (33.3%), M. fortis (28.1%), M. musculus (15.6%), C. lasiura (13.2%), and M. regulus (0%). This is the first report of nematode infections in small mammals captured near the DMZ in ROK. PMID:25748722

  5. Intestinal nematodes from small mammals captured near the demilitarized zone, Gyeonggi province, Republic of Korea.

    PubMed

    Kim, Deok-Gyu; Park, Jae-Hwan; Kim, Jae-Lip; Jung, Bong-Kwang; Jeon, Sarah Jiyoun; Lim, Hyemi; Lee, Mi Youn; Shin, Eun-Hee; Klein, Terry A; Kim, Heung-Chul; Chong, Sung-Tae; Song, Jin-Won; Baek, Luck-Ju; Chai, Jong-Yil

    2015-02-01

    A total of 1,708 small mammals (1,617 rodents and 91 soricomorphs), including Apodemus agrarius (n = 1,400), Microtus fortis (167), Crocidura lasiura (91), Mus musculus (32), Myodes (= Eothenomys) regulus (9), Micromys minutus (6), and Tscherskia (= Cricetulus) triton (3), were live-trapped at US/Republic of Korea (ROK) military training sites near the demilitarized zone (DMZ) of Paju, Pocheon, and Yeoncheon, Gyeonggi Province from December 2004 to December 2009. Small mammals were examined for their intestinal nematodes by necropsy. A total of 1,617 rodents (100%) and 91 (100%) soricomorphs were infected with at least 1 nematode species, including Nippostrongylus brasiliensis, Heligmosomoides polygyrus, Syphacia obvelata, Heterakis spumosa, Protospirura muris, Capillaria spp., Trichuris muris, Rictularia affinis, and an unidentified species. N. brasiliensis was the most common species infecting small mammals (1,060; 62.1%) followed by H. polygyrus (617; 36.1%), S. obvelata (370; 21.7%), H. spumosa (314; 18.4%), P. muris (123; 7.2%), and Capillaria spp. (59; 3.5%). Low infection rates (0.1-0.8%) were observed for T. muris, R. affinis, and an unidentified species. The number of recovered worms was highest for N. brasiliensis (21,623 worms; mean 20.4 worms/infected specimen) followed by S. obvelata (9,235; 25.0 worms), H. polygyrus (4,122; 6.7 worms), and H. spumosa (1,160; 3.7 worms). A. agrarius demonstrated the highest prevalence for N. brasiliensis (70.9%), followed by M. minutus (50.0%), T. triton (33.3%), M. fortis (28.1%), M. musculus (15.6%), C. lasiura (13.2%), and M. regulus (0%). This is the first report of nematode infections in small mammals captured near the DMZ in ROK.

  6. Predation selectively culls medium-sized species from island mammal faunas.

    PubMed

    Hanna, Emily; Cardillo, Marcel

    2014-01-01

    Globally, elevated extinction risk in mammals is strongly associated with large body size. However, in regions where introduced predators exert strong top-down pressure on mammal populations, the selectivity of extinctions may be skewed towards species of intermediate body size, leading to a hump-shaped relationship between size and extinction risk. The existence of this kind of extinction pattern, and its link to predation, has been contentious and difficult to demonstrate. Here, we test the hypothesis of a hump-shaped body size-extinction relationship, using a database of 927 island mammal populations. We show that the size-selectivity of extinctions on many islands has exceeded that expected under null models. On islands with introduced predators, extinctions are biased towards intermediate body sizes, but this bias does not occur on islands without predators. Hence, on islands with a large-bodied mammal fauna, predators are selectively culling species from the lower end of the size distribution, and on islands with a small-bodied fauna they are culling species from the upper end. These findings suggest that it will be difficult to use predictable generalizations about extinction patterns, such as a positive body size-extinction risk association, to anticipate future species declines and plan conservation strategies accordingly.

  7. Predation selectively culls medium-sized species from island mammal faunas

    PubMed Central

    Hanna, Emily; Cardillo, Marcel

    2014-01-01

    Globally, elevated extinction risk in mammals is strongly associated with large body size. However, in regions where introduced predators exert strong top-down pressure on mammal populations, the selectivity of extinctions may be skewed towards species of intermediate body size, leading to a hump-shaped relationship between size and extinction risk. The existence of this kind of extinction pattern, and its link to predation, has been contentious and difficult to demonstrate. Here, we test the hypothesis of a hump-shaped body size–extinction relationship, using a database of 927 island mammal populations. We show that the size-selectivity of extinctions on many islands has exceeded that expected under null models. On islands with introduced predators, extinctions are biased towards intermediate body sizes, but this bias does not occur on islands without predators. Hence, on islands with a large-bodied mammal fauna, predators are selectively culling species from the lower end of the size distribution, and on islands with a small-bodied fauna they are culling species from the upper end. These findings suggest that it will be difficult to use predictable generalizations about extinction patterns, such as a positive body size–extinction risk association, to anticipate future species declines and plan conservation strategies accordingly. PMID:24694691

  8. Small mammals from the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala

    USGS Publications Warehouse

    Matson, Jason O.; Ordóñez-Garza, Nicté; Woodman, Neal; Bulmer, Walter; Eckerlin, Ralph P.; Hanson, J. Delton

    2014-01-01

    We surveyed the small mammals of remnant mixed hardwood-coniferous cloud forest at elevations ranging from 2,100–2,300 m in the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala. Removal-trapping using a combination of live traps, snap traps, and pitfall traps for 6 days in January 2007 resulted in 175 captures of 15 species of marsupials, shrews, and rodents. This diversity of small mammals is the highest that we have recorded from a single locality of the 10 visited during eight field seasons in the highlands of Guatemala. Based on captures, the most abundant species in the community of small mammals is Peromyscus grandis (n = 50), followed by Handleyomys rhabdops (n = 27), Heteromys desmarestianus(n = 18), Reithrodontomys mexicanus (n = 17), Handleyomys saturatior (n = 16), Sorex veraepacis (n = 15), and Scotinomys teguina (n = 13). The remaining eight species were represented by one to five individuals.

  9. Ecological characteristics of small mammals on a radioactive waste disposal area in southeastern Idaho

    SciTech Connect

    Groves, C.R.; Keller, B.L.

    1983-01-01

    Species composition, diversity, biomass and densities of small mammal populations were examined in crested wheatgrass (Agropyron cristatum) and Russian thistle (Salsola kali) habitats on a solid radioactive waste disposal area and in native sagebrush (Artemisia tridentala) habitat surrounding the disposal area. The 15-month live-trapping study resulted in the marketing of 2384 individuals representing 10 species of small mammals. The deer mouse (Peromyscus maniculatus) was the most common rodent in both disposal area habitats and the adjacent sagebrush habitat; Ord's kangaroo rat (Dipodomys ordii) was also an abundant rodent in all vegetation types. The montane vole (Microtus montanus) was common only in crested wheatgrass stands on the disposal area. Although the adjacent native sagebrush habitat had the highest species diversity and the Russian thistle habitat on the disposal area had the lowest, the total rodent density was not significantly different among the three vegetation types. Crested wheatgrass within the disposal area contained the largest rodent biomass throughout the study, in part due to an increasing M. montanus population. The peak small mammal biomass of 5000 g/ha in creasted wheatgrass and sagebrush habitats was considerably higher than previously reported for similar habitats. Differences in diversity and biomass between the disposal area and surrounding native habitat are most likely related to differences in soil compaction and vegetation between these two areas.

  10. A noninvasive hair sampling technique to obtain high quality DNA from elusive small mammals.

    PubMed

    Henry, Philippe; Henry, Alison; Russello, Michael A

    2011-03-13

    Noninvasive genetic sampling approaches are becoming increasingly important to study wildlife populations. A number of studies have reported using noninvasive sampling techniques to investigate population genetics and demography of wild populations. This approach has proven to be especially useful when dealing with rare or elusive species. While a number of these methods have been developed to sample hair, feces and other biological material from carnivores and medium-sized mammals, they have largely remained untested in elusive small mammals. In this video, we present a novel, inexpensive and noninvasive hair snare targeted at an elusive small mammal, the American pika (Ochotona princeps). We describe the general set-up of the hair snare, which consists of strips of packing tape arranged in a web-like fashion and placed along travelling routes in the pikas' habitat. We illustrate the efficiency of the snare at collecting a large quantity of hair that can then be collected and brought back to the lab. We then demonstrate the use of the DNA IQ system (Promega) to isolate DNA and showcase the utility of this method to amplify commonly used molecular markers including nuclear microsatellites, amplified fragment length polymorphisms (AFLPs), mitochondrial sequences (800bp) as well as a molecular sexing marker. Overall, we demonstrate the utility of this novel noninvasive hair snare as a sampling technique for wildlife population biologists. We anticipate that this approach will be applicable to a variety of small mammals, opening up areas of investigation within natural populations, while minimizing impact to study organisms.

  11. Last glacial maximum environments in northwestern Patagonia revealed by fossil small mammals

    NASA Astrophysics Data System (ADS)

    Tammone, Mauro N.; Hajduk, Adan; Arias, Pablo; Teta, Pablo; Lacey, Eileen A.; Pardiñas, Ulyses F. J.

    2014-07-01

    Comparisons of historical and modern assemblages of mammals can yield important insights into patterns and processes of environmental change. Here, we present the first analyses of small mammal assemblages present in northern Patagonia during the last glacial maximum (LGM). Using remains obtained from owl pellets excavated from an archeological cave site (Arroyo Corral I, levels VII-V, carbon dates of 22,400-21,530 cal yr BP), we generate estimates of the minimum number of individuals for all species detected; these estimates, in turn are used to determine relative species abundances. Comparisons of these data with similar analyses of small mammal remains obtained from a second archeological site (ACoII, levels IV-V, carbon dates of 10,010-9220 cal yr BP) as well as from modern owl pellets reveal pronounced changes in relative species abundance since the LGM. In particular, Euneomys chinchilloides and Ctenomys sociabilis - the predominant species during the LGM - declined markedly, suggesting a change from open, bare habitat punctuated by patches of wet meadows and shrubs to the more densely vegetated mosaic of ecotone habitats found in this region today. These data provide important new insights into the environmental changes that have occurred in northern Patagonia over the last 20,000 years.

  12. Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change

    PubMed Central

    Terry, Rebecca C.; Rowe, Rebecca J.

    2015-01-01

    Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities—particularly the spread of nonnative annual grasslands—has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management. PMID:26170294

  13. Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change.

    PubMed

    Terry, Rebecca C; Rowe, Rebecca J

    2015-08-01

    Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities--particularly the spread of nonnative annual grasslands--has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management. PMID:26170294

  14. 76 FR 10623 - Endangered Species; Marine Mammals; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... Fish and Wildlife Service Endangered Species; Marine Mammals; Receipt of Applications for Permit AGENCY... the Federal Register, we are forwarding copies of the above application to the Marine Mammal... conduct certain activities with endangered species, marine mammals, or both. With some exceptions,...

  15. The trap line as a measure of small mammal populations

    USGS Publications Warehouse

    Stickel, L.F.

    1948-01-01

    SUMMARY: The value of a line of traps as a measure of relative abundance of small mammals was studied by field trials on Peromyscus leucopus populations. Comparisons were made between the numbers of mice captured by a line of live traps and the numbers captured in intensive live trapping of a larger area surrounding the line. Trials were made in bottomland woods where mice were numerous and in upland woods where mice were less common. It was found that wood mice living in upland woods had significantly larger cruising ranges than those living in bottomland woods. Consequently, a line of traps in the bottomlands captured mice from a smaller surrounding territory than in the uplands. Therefore, comparisons of relative size of the mouse population in these two areas on the basis of line-trapping showed an erroneously large number for the upland woods. As a result of these trials and the studies of other workers, it is concluded that lines of traps are not fully reliable means of measuring relative abundance of small mammals.

  16. Spatial variation in keystone effects: Small mammal diversity associated with black-tailed prairie dog colonies

    USGS Publications Warehouse

    Cully, J.F.; Collinge, S.K.; Van Nimwegen, R. E.; Ray, C.; Johnson, W.C.; Thiagarajan, B.; Conlin, D.B.; Holmes, B.E.

    2010-01-01

    Species with extensive geographic ranges may interact with different species assemblages at distant locations, with the result that the nature of the interactions may vary spatially. Black-tailed prairie dogs Cynomys ludovicianus occur from Canada to Mexico in grasslands of the western Great Plains of North America. Black-tailed prairie dogs alter vegetation and dig extensive burrow systems that alter grassland habitats for plants and other animal species. These alterations of habitat justify the descriptor " ecological engineer," and the resulting changes in species composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs on small mammal assemblages by trapping at on- and off-colony locations at eight study areas across the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species for other rodent species; and 2) the keystone role varies spatially. Assuming that it does, we asked what are the sources of the variation? Black-tailed prairie dogs consistently functioned as a keystone species in that there were strong statistically significant differences in community composition on versus off prairie dog colonies across the species range in prairie grassland. Small mammal species composition varied along both latitudinal and longitudinal gradients, and species richness varied from 4 to 11. Assemblages closer together were more similar; such correlations approximately doubled when including only on- or off-colony grids. Black-tailed prairie dogs had a significant effect on associated rodent assemblages that varied regionally, dependent upon the composition of the local rodent species pool. Over the range of the black-tailed prairie dog, on-colony rodent richness and evenness were less variable, and species composition was more consistent than off-colony assemblages. ?? 2010 The Authors.

  17. Behavioral Ecology of Captive Species: Using Bibliographic Information to Assess Pet Suitability of Mammal Species

    PubMed Central

    Koene, Paul; de Mol, Rudi M.; Ipema, Bert

    2016-01-01

    Which mammal species are suitable to be kept as pet? For answering this question many factors have to be considered. Animals have many adaptations to their natural environment in which they have evolved that may cause adaptation problems and/or risks in captivity. Problems may be visible in behavior, welfare, health, and/or human–animal interaction, resulting, for example, in stereotypies, disease, and fear. A framework is developed in which bibliographic information of mammal species from the wild and captive environment is collected and assessed by three teams of animal scientists. Oneliners from literature about behavioral ecology, health, and welfare and human–animal relationship of 90 mammal species are collected by team 1 in a database and strength of behavioral needs and risks is assessed by team 2. Based on summaries of those strengths the suitability of the mammal species is assessed by team 3. Involvement of stakeholders for supplying bibliographic information and assessments was propagated. Combining the individual and subjective assessments of the scientists using statistical methods makes the final assessment of a rank order of suitability as pet of those species less biased and more objective. The framework is dynamic and produces an initial rank ordered list of the pet suitability of 90 mammal species, methods to add new mammal species to the list or remove animals from the list and a method to incorporate stakeholder assessments. A model is developed that allows for provisional classification of pet suitability. Periodical update of the pet suitability framework is expected to produce an updated list with increased reliability and accuracy. Furthermore, the framework could be further developed to assess the pet suitability of additional species of other animal groups, e.g., birds, reptiles, and amphibians. PMID:27243023

  18. Behavioral Ecology of Captive Species: Using Bibliographic Information to Assess Pet Suitability of Mammal Species.

    PubMed

    Koene, Paul; de Mol, Rudi M; Ipema, Bert

    2016-01-01

    Which mammal species are suitable to be kept as pet? For answering this question many factors have to be considered. Animals have many adaptations to their natural environment in which they have evolved that may cause adaptation problems and/or risks in captivity. Problems may be visible in behavior, welfare, health, and/or human-animal interaction, resulting, for example, in stereotypies, disease, and fear. A framework is developed in which bibliographic information of mammal species from the wild and captive environment is collected and assessed by three teams of animal scientists. Oneliners from literature about behavioral ecology, health, and welfare and human-animal relationship of 90 mammal species are collected by team 1 in a database and strength of behavioral needs and risks is assessed by team 2. Based on summaries of those strengths the suitability of the mammal species is assessed by team 3. Involvement of stakeholders for supplying bibliographic information and assessments was propagated. Combining the individual and subjective assessments of the scientists using statistical methods makes the final assessment of a rank order of suitability as pet of those species less biased and more objective. The framework is dynamic and produces an initial rank ordered list of the pet suitability of 90 mammal species, methods to add new mammal species to the list or remove animals from the list and a method to incorporate stakeholder assessments. A model is developed that allows for provisional classification of pet suitability. Periodical update of the pet suitability framework is expected to produce an updated list with increased reliability and accuracy. Furthermore, the framework could be further developed to assess the pet suitability of additional species of other animal groups, e.g., birds, reptiles, and amphibians. PMID:27243023

  19. Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals.

    PubMed

    Mason, Matthew J

    2016-02-01

    Many species of small desert mammals are known to have expanded auditory bullae. The ears of gerbils and heteromyids have been well described, but much less is known about the middle ear anatomy of other desert mammals. In this study, the middle ears of three gerbils (Meriones, Desmodillus and Gerbillurus), two jerboas (Jaculus) and two sengis (elephant-shrews: Macroscelides and Elephantulus) were examined and compared, using micro-computed tomography and light microscopy. Middle ear cavity expansion has occurred in members of all three groups, apparently in association with an essentially 'freely mobile' ossicular morphology and the development of bony tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small desert mammals have been proposed. However, while Macroscelides was found here to have middle ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are considerably smaller. Why middle ear cavities are enlarged in some desert species but not others remains unclear, but it may relate to microhabitat.

  20. Environmental enrichment for a mixed-species nocturnal mammal exhibit.

    PubMed

    Clark, Fay E; Melfi, Vicky A

    2012-01-01

    Environmental enrichment (EE) is an integral aspect of modern zoo animal management but, empirical evaluation of it is biased toward species housed in single-species groups. Nocturnal houses, where several nocturnal species are housed together, are particularly overlooked. This study investigated whether three species (nine-banded armadillos, Dasypus novemcinctus; Senegal bush babies, Galago senegalensis; two-toed sloths, Choloepus didactylus) in the nocturnal house at Paignton Zoo Environmental Park, UK could be enriched using food-based and sensory EE. Subjects were an adult male and female of each species. EE was deemed effective if it promoted target species-typical behaviors, behavioral diversity, and increased use of enriched exhibit zones. Results from generalized linear mixed models demonstrated that food-based EE elicited the most positive behavioral effects across species. One set of food-based EEs (Kong®, termite mound and hanging food) presented together was associated with a significant increase in species-typical behaviors, increased behavioral diversity, and increased use of enriched exhibit zones in armadillos and bush babies. Although one type of sensory EE (scented pine cones) increased overall exhibit use in all species, the other (rainforest sounds) was linked to a significant decrease in species-typical behavior in bush babies and sloths. There were no intra or interspecies conflicts over EE, and commensalism occurred between armadillos and bush babies. Our data demonstrate that simple food-based and sensory EE can promote positive behavioral changes in a mixed-species nocturnal mammal exhibit. We suggest that both food and sensory EE presented concurrently will maximize opportunities for naturalistic activity in all species.

  1. Environmental enrichment for a mixed-species nocturnal mammal exhibit.

    PubMed

    Clark, Fay E; Melfi, Vicky A

    2012-01-01

    Environmental enrichment (EE) is an integral aspect of modern zoo animal management but, empirical evaluation of it is biased toward species housed in single-species groups. Nocturnal houses, where several nocturnal species are housed together, are particularly overlooked. This study investigated whether three species (nine-banded armadillos, Dasypus novemcinctus; Senegal bush babies, Galago senegalensis; two-toed sloths, Choloepus didactylus) in the nocturnal house at Paignton Zoo Environmental Park, UK could be enriched using food-based and sensory EE. Subjects were an adult male and female of each species. EE was deemed effective if it promoted target species-typical behaviors, behavioral diversity, and increased use of enriched exhibit zones. Results from generalized linear mixed models demonstrated that food-based EE elicited the most positive behavioral effects across species. One set of food-based EEs (Kong®, termite mound and hanging food) presented together was associated with a significant increase in species-typical behaviors, increased behavioral diversity, and increased use of enriched exhibit zones in armadillos and bush babies. Although one type of sensory EE (scented pine cones) increased overall exhibit use in all species, the other (rainforest sounds) was linked to a significant decrease in species-typical behavior in bush babies and sloths. There were no intra or interspecies conflicts over EE, and commensalism occurred between armadillos and bush babies. Our data demonstrate that simple food-based and sensory EE can promote positive behavioral changes in a mixed-species nocturnal mammal exhibit. We suggest that both food and sensory EE presented concurrently will maximize opportunities for naturalistic activity in all species. PMID:21387395

  2. Small mammal abundance and habitat relationships on deciduous forested sites with different susceptibility to gypsy moth defoliation

    NASA Astrophysics Data System (ADS)

    Yahner, Richard H.; Smith, Harvey R.

    1991-01-01

    Small mammals are important predators of gypsy moths ( Lymantria dispar L.), which are major defoliators of deciduous forests in the northeastern United States. Abundance and habitat relationships of small mammals were studied during summers 1984 and 1985 on forested sites at Moshannon and Rothrock state forests in two physiographic regions of Pennsylvania (Allegheny High Plateaus Province and Valley and Ridge Province, respectively) that varied in potential susceptibility to defoliation. The white-footed mouse ( Peromyscus leucopus), which is a major vertebrate predator of gypsy moths, was the most common small mammal on all sites. Of the four common species, northern short-tailed shrews ( Blarina brevicauda), southern red-backed voles ( Clethrionomys gapperi), and white-footed mice were more abundant at Moshannon compared to Rothrock State Forest, but masked shrews ( Sorex cinereus) were more abundant at Rothrock. Elevation was a major factor affecting abundance and distribution of small mammals. Because of the greater abundance of small mammals and more suitable physiographic features at Moshannon compared to Rothrock State Forest, small mammals may be more effective as predators on gypsy moths in the Allegheny High Plateaus than the Valley and Ridge Province of Pennsylvania.

  3. Elevational Distribution and Ecology of Small Mammals on Africa’s Highest Mountain

    PubMed Central

    Stanley, William T.; Rogers, Mary Anne; Kihaule, Philip M.; Munissi, Maiko J.

    2014-01-01

    Mt Kilimanjaro is Africa’s highest mountain, and an icon for a country famous for its mammalian fauna. The distribution and abundance of small mammals on the mountain are poorly known. Here we document the distribution of shrews and rodents along an elevational gradient on the southeastern versant of Kilimanjaro. Five sites were sampled with elevational center points of 2000, 2500, 3000, 3500 and 4000 m, using a systematic methodology of standard traps and pitfall lines, to inventory the shrews and rodents of the slope. Sixteen species of mammal were recorded, including 6 shrew and 10 rodent species, and the greatest diversity of both was found at 3000 m, the elevational midpoint of the transect. No species previously unrecorded on Kilimanjaro were observed. Two genera of rodents that occur in nearby mountains (Hylomyscus and Beamys) were not recorded. Myosorex zinki, the only mammal endemic to Mt. Kilimanjaro, which previously was known by only a few specimens collected in the ericaceous or moorland habitat, was found in all but one (the lowest) of the sites sampled, and was one of the most widespread species of small mammal along the gradient. Two shrews (Crocidura allex and Sylvisorex granti) and one rodent (Dendromus insignis) were found throughout the entire transect, with Dendromus being observed at our highest trap point (4240 m). As in similar faunal surveys on other mountains of Tanzania, rainfall influenced the sample success of shrews, but not rodents. Trap success for rodents at 3500 m was notably low. This study contributes further justification for the conservation of the forest habitat of Mt. Kilimanjaro. PMID:25372387

  4. Drivers of Intensity and Prevalence of Flea Parasitism on Small Mammals in East African Savanna Ecosystems.

    PubMed

    Young, Hillary S; Dirzo, Rodolfo; McCauley, Douglas J; Agwanda, Bernard; Cattaneo, Lia; Dittmar, Katharina; Eckerlin, Ralph P; Fleischer, Robert C; Helgen, Lauren E; Hintz, Ashley; Montinieri, John; Zhao, Serena; Helgen, Kristofer M

    2015-06-01

    The relative importance of environmental factors and host factors in explaining variation in prevalence and intensity of flea parasitism in small mammal communities is poorly established. We examined these relationships in an East African savanna landscape, considering multiple host levels: across individuals within a local population, across populations within species, and across species within a landscape. We sampled fleas from 2,672 small mammals of 27 species. This included a total of 8,283 fleas, with 5 genera and 12 species identified. Across individual hosts within a site, both rodent body mass and season affected total intensity of flea infestation, although the explanatory power of these factors was generally modest (<10%). Across host populations in the landscape, we found consistently positive effects of host density and negative effects of vegetation cover on the intensity of flea infestation. Other factors explored (host diversity, annual rainfall, anthropogenic disturbance, and soil properties) tended to have lower and less consistent explanatory power. Across host species in the landscape, we found that host body mass was strongly positively correlated with both prevalence and intensity of flea parasitism, while average robustness of a host species to disturbance was not correlated with flea parasitism. Cumulatively, these results provide insight into the intricate roles of both host and environmental factors in explaining complex patterns of flea parasitism across landscape mosaics.

  5. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    SciTech Connect

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  6. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    PubMed

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers.

  7. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    PubMed

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers. PMID:26818016

  8. Small Mammals: Common Surgical Procedures of Rodents, Ferrets, Hedgehogs, and Sugar Gliders.

    PubMed

    Miwa, Yasutsugu; Sladky, Kurt K

    2016-01-01

    Small mammal surgical procedures are a part of clinical veterinary practice and are performed with regularity. Anesthetic and analgesic techniques are important components of any successful small mammal surgical procedure. Many basic surgical principles used in dogs and cats can be directly applied to small mammals, but tissues tend to be smaller and thinner, and hemostasis is critical with small patients due to risk of death with minimal blood loss. Common surgical procedures in small mammals include integumentary mass and abscess excision, reproductive procedures, gastrointestinal foreign body removal, urolith removal, prolapsed tissues associated with the gastrointestinal tract, intra-abdominal mass excision, and hepatic surgery. PMID:26611930

  9. Hardwood energy crops and wildlife diversity: Investigating potential benefits for breeding birds and small mammals

    SciTech Connect

    Schiller, A.; Tolbert, V.R.

    1996-08-01

    Hardwood energy crops have the potential to provide a profit to growers as well as environmental benefits (for water quality, soil stabilization, chemical runoff, and wildlife habitat). Environmental considerations are important for both sustainable development of bioenergy technologies on agricultural lands, and for public support. The Environmental Task of the US DOE`s Biofuels feedstock Development Program (BFDP) is working with industry, universities and others to determine how to plant, manage and harvest these crops to maximize environmental advantages and minimize impacts while economically meeting production needs. One research objective is to define and improve wildlife habitat value of these energy crops by exploring how breeding birds and small mammals use them. The authors have found increased diversity of birds in tree plantings compared to row crops. However, fewer bird and small mammal species use the tree plantings than use natural forest. Bird species composition on hardwood crops studied to date is a mixture of openland and forest bird species. Restricted research site availability to date has limited research to small acreage sites of several years of age, or to a few larger acreage but young (1--2 year) plantings. Through industry collaboration, research began this season on bird use of diverse hardwood plantings (different ages, acreages, tree species) in the southeast. Together with results of previous studies, this research will help define practical energy crop guidelines to integrate native wildlife benefits with productive energy crops.

  10. Long-term effects of precommercial thinning on small mammals in northern Maine

    USGS Publications Warehouse

    Homyack, J.A.; Harrison, D.J.; Krohn, W.B.

    2005-01-01

    Precommercial thinning (PCT) is being practiced increasingly throughout the Acadian forest of eastern North America to meet silvicultural objectives; however, effects of this practice on wildlife, both immediately and several years post-treatment are not well understood. Forest dependent small mammals have ecological roles as prey for numerous avian and mammalian predators, dispersers of seeds, fruit, and spores, and contribute to nutrient cycling. Researchers in the northwestern USA have suggested that thinning of young, regenerating clearcuts may increase the abundance and diversity of some forest-dependent small mammals by increasing rates of forest development and enhancing the ecological representation of mid-successional stands across managed landscapes. We examined the effects of PCT within conifer-dominated forest stands 1-, 6-, 11-, and 16-years post-treatment, on abundances of mice, voles, and shrews, and on within-stand structure in the commercially managed, Acadian forests of northern Maine. We live-trapped small mammals on 24 herbicide-treated clearcuts treated with PCT and on 13 similar, unthinned stands during summers of 2000 and 2001. Thinning of mid-successional conifer stands resulted in increased abundances, (red-backed voles, Clethrionomys gapperi, P = 0.008; masked shrews, Sorex cinereus, P < 0.001) or had no detectable effect on (deer mice, Peromyscus maniculatus, P = 0.544; short-tailed shrews, Blarina brevicauda, P = 0.517) the 4 most common species of Muridae and Soricidae in northern Maine. In general, abundance of deer mice responded more positively to increasing development class and to the number of years since thinning than other species of small mammals. Several within-stand habitat characteristics associated with stand maturity, such as larger stem diameters and a partially open canopy, occurred in thinned stands. Thus, PCT may accelerate the development of habitat attributes typical of mid-successional conifer stands in intensively

  11. Small mammals cause non-trophic effects on habitat and associated snails in a native system.

    PubMed

    Huntzinger, Mikaela; Karban, Richard; Maron, John L

    2011-12-01

    Legacy effects occur when particular species or their interactions with others have long-lasting impacts, and they are increasingly recognized as important determinants of ecological processes. However, when such legacy effects have been explicitly explored, they most often involve the long-term direct effects of species on systems, as opposed to the indirect effects. Here, we explore how a legacy of small mammal exclusion on the abundance of a shrub, bush lupine (Lupinus arboreus), influences the abundance of a native land snail (Helminthoglypta arrosa) in coastal prairie and dune habitats in central California. The factors that limit populations of land snails are very poorly known despite the threats to the persistence of this group of species. In grasslands, prior vole (Microtus californicus) exclusion created long-lasting gains in bush lupine abundance, mediated through the seedbank, and was associated with increased snail numbers (10×) compared to control plots where mammals were never excluded. Similar plots in dune habitat showed no difference in snail numbers due to previous mammal exclusion. We tested whether increased competition for food, increased predation, and/or lower desiccation explained the decline in snail numbers in plots with reduced lupine cover. Tethering experiments supported the hypothesis that voles can have long-lasting impacts as ecosystem engineers, reducing woody lupine habitat required for successful aestivation by snails. These results add to a growing list of studies that have found that non-trophic interactions can be limiting to invertebrate consumers. PMID:21691854

  12. Small mammals associated with colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the Southern High Plains

    USGS Publications Warehouse

    Pruett, A.L.; Boal, C.W.; Wallace, M.C.; Whitlaw, H.A.; Ray, J.D.

    2010-01-01

    We compared diversity and abundance of small mammals at colonies of black-tailed prairie dogs (Cynomys ludovicianus) and paired non-colony sites. Of colonies of black-tailed prairie dogs in our study area, >80 were on slopes of playa lakes; thus, we used sites of colonies and non-colonies that were on slopes of playa lakes. We trapped small mammals on 29 pairs of sites. Overall abundance did not differ between types of sites, but some taxa exhibited associations with colonies (Onychomys leucogaster) or non-colonies (Chaetodipus hispidus, Reithrodontomys, Sigmodon hispidus). Diversity and evenness of small mammals did not differ between colonies and non-colonies in 2002, but were higher on non-colonies in 2003. Although we may not have detected some rare or infrequently occurring species, our data reveal differences in diversity and evenness of more common species among the types of sites. Prairie dogs are touted as a keystone species with their colonies associated with a greater faunal diversity than adjacent lands. Our findings contradict several studies reporting greater diversity and abundance of small mammals at colonies of prairie dogs. We suggest that additional research across a wider landscape and incorporating landscape variables beyond the immediate trapping plot may further elucidate interspecific associations between black-tailed prairie dogs and species of small rodents.

  13. Molecular Identification of Echinococcus multilocularis Infection in Small Mammals from Northeast, Iran

    PubMed Central

    Beiromvand, Molouk; Akhlaghi, Lame; Fattahi Massom, Seyed Hossein; Meamar, Ahmad Reza; Darvish, Jamshid; Razmjou, Elham

    2013-01-01

    Background Alveolar echinococcosis is a zoonotic disease caused by the metacestode of Echinococcus multilocularis. Many species of small mammals, including arvicolid rodents or Ochotona spp., are natural intermediate hosts of the cestode. The main aim of this study was to identify natural intermediate hosts of E. multilocularis in Chenaran County, Razavi Khorasan Province, northeastern Iran, where the prevalence of infected wild and domestic carnivores is high. Methodology/Principal Findings A program of trapping was carried out in five villages in which this cestode was reported in carnivores. The livers of 85 small mammals were investigated for the presence of E. multilocularis infection using multiplex PCR of mitochondrial genes. Infections were identified in 30 specimens: 23 Microtus transcaspicus, three Ochotona rufescens, two Mus musculus, one Crocidura gmelini, and one Apodemus witherbyi. Conclusions/Significance A range of small mammals therefore act as natural intermediate hosts for the transmission of E. multilocularis in Chenaran County, and the prevalence suggested that E. multilocularis infection is endemic in this region. The existence of the life cycle of this potentially lethal cestode in the vicinity of human habitats provides a significant risk of human infection. PMID:23875048

  14. Nidicolous ticks of small mammals in Anaplasma phagocytophilum-enzootic sites in northern California

    PubMed Central

    Foley, Janet; Rejmanek, Daniel; Fleer, Katryna; Nieto, Nathan

    2011-01-01

    Ixodes spp. tick-borne zoonotic diseases are present across the Holarctic in humans, domestic animals, and wildlife. Small mammals are reservoirs for the rickettsial pathogen Anaplasma phagocytophilum and tick vectors may include catholic-feeding bridge vectors as well as host-specialist or nidicolous ticks. Far western North American communities in which A. phagocytophilum is maintained are complex ecologically, with multiple reservoir host and tick species, multiple strains of the bacterial pathogen A. phagocytophilum and differences in dynamics of hosts and vectors across heterogeneous landscapes. We evaluated sites in northern California in order to identify primarily nidicolous ticks and the hosts they infest. A total of 667 ticks was found in 11 study sites, including 288 on flags and 379 attached to small mammals. Larvae were over-represented among attached ticks and adults on flags. The most abundant species was I. pacificus. Two-hundred fourteen nidicolous ticks were found, most abundantly I. angustus and I. spinipalpis. All adult I. ochotonae, I. auritulus, I. angustus, I. jellisoni, and I. woodi were female, while the male:female ratio of I. spinipalpis was 1.2:1 and 1:1 for I. pacificus. The greatest number of ticks was obtained from Tamias ochrogenys, Peromyscus spp., and Neotoma fuscipes. Of 234 small mammal individuals that were infested with Ixodes spp., only 81 (34.6%) were infested with I. pacificus. The remaining infested small mammals hosted nidicolous tick species. Eight ticks were PCR-positive, including 6 I. pacificus (one adult, one larva, and 6 nymphs), and 2 adult I. ochotonae and high PCR prevalences of 18% and 9% were detected in woodrats and chipmunks, respectively. Nymphal I. angustus ticks were active year-long with a possible increase in August while larval activity was only observed in December and spring months and adults only during spring and fall. Overall, we show high tick species richness and year-round high levels of

  15. Composition and abundance of small mammal communities in forest fragments and vegetation corridors in Southern Minas Gerais, Brazil.

    PubMed

    Mesquita, Andréa O; Passamani, Marcelo

    2012-09-01

    Habitat fragmentation leads to isolation and reduce habitat areas, in addition to a series of negative effects on natural populations, affecting richness, abundance and distribution of animal species. In such a context, habitat corridors serve as an alternative for connectivity in fragmented landscapes, minimizing the effects of structural isolation of different habitat areas. This study evaluated the richness, composition and abundance of small mammal communities in forest fragments and in the relevant vegetation corridors that connect these fragments, located in Southern Minas Gerais, Southeastern Brazil. Ten sites were sampled (five forest fragments and five vegetation corridors) using the capture-mark-recapture method, from April 2007-March 2008. A total sampling effort of 6 300 trapnights resulted in 656 captures of 249 individuals. Across the 10 sites sampled, 11 small mammal species were recorded. Multidimensional scaling (MDS) ordinations and ANOSIM based on the composition of small mammal communities within the corridor and fragment revealed a qualitative difference between the two environments. Regarding abundance, there was no significant difference between corridors and fragments. In comparing mean values of abundance per species in each environment, only Cerradomys subflavus showed a significant difference, being more abundant in the corridor environment. Results suggest that the presence of several small mammal species in the corridor environment, in relatively high abundances, could indicate corridors use as habitat, though they might also facilitate and/or allow the movement of individuals using different habitat patches (fragments).

  16. Dynamic edge effects in small mammal communities across a conservation-agricultural interface in Swaziland.

    PubMed

    Hurst, Zachary M; McCleery, Robert A; Collier, Bret A; Fletcher, Robert J; Silvy, Nova J; Taylor, Peter J; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics.

  17. Tick-Borne Rickettsial Pathogens in Ticks and Small Mammals in Korea

    PubMed Central

    Kim, Chul-Min; Yi, Ying-Hua; Yu, Do-Hyeon; Lee, Mi-Jin; Cho, Mae-Rim; Desai, Atul R.; Shringi, Smriti; Klein, Terry A.; Kim, Heung-Chul; Song, Jin-Won; Baek, Luck-Ju; Chong, Sung-Tae; O'Guinn, Monica L.; Lee, John S.; Lee, In-Yong; Park, Jin-Ho; Foley, Janet; Chae, Joon-Seok

    2006-01-01

    In order to investigate the prevalence of tick-borne infectious agents among ticks, ticks comprising five species from two genera (Hemaphysalis spp. and Ixodes spp.) were screened using molecular techniques. Ticks (3,135) were collected from small wild-caught mammals or by dragging/flagging in the Republic of Korea (ROK) and were pooled into a total of 1,638 samples (1 to 27 ticks per pool). From the 1,638 tick samples, species-specific fragments of Anaplasma phagocytophilum (1 sample), Anaplasma platys (52 samples), Ehrlichia chaffeensis (29 samples), Ehrlichia ewingii (2 samples), Ehrlichia canis (18 samples), and Rickettsia rickettsii (28 samples) were amplified by PCR assay. Twenty-one pooled and individual tick samples had mixed infections of two (15 samples) or three (6 samples) pathogens. In addition, 424 spleen samples from small captured mammals (389 rodents, 33 insectivores, and 2 weasels) were screened for selected zoonotic pathogens. Species-specific DNA fragments of A. phagocytophilum (110 samples), A. platys (68 samples), E. chaffeensis (8 samples), E. ewingii (26 samples), E. canis (51 samples), and Rickettsia sp. (22 samples) were amplified by PCR assay. One hundred thirty small mammals had single infections, while 4, 14, and 21 striped field mice (Apodemus agrarius) had mixed infections of four, three, and two pathogens, respectively. Phylogenetic analysis based on nucleotide sequence comparison also revealed that Korean strains of E. chaffeensis clustered closely with those from China and the United States, while the Rickettsia (rOmpA) sequences clustered within a clade together with a Chinese strain. These results suggest that these agents should be considered in differential diagnosis while examining cases of acute febrile illnesses in humans as well as animals in the ROK. PMID:16957192

  18. Tick-borne rickettsial pathogens in ticks and small mammals in Korea.

    PubMed

    Kim, Chul-Min; Yi, Ying-Hua; Yu, Do-Hyeon; Lee, Mi-Jin; Cho, Mae-Rim; Desai, Atul R; Shringi, Smriti; Klein, Terry A; Kim, Heung-Chul; Song, Jin-Won; Baek, Luck-Ju; Chong, Sung-Tae; O'guinn, Monica L; Lee, John S; Lee, In-Yong; Park, Jin-Ho; Foley, Janet; Chae, Joon-Seok

    2006-09-01

    In order to investigate the prevalence of tick-borne infectious agents among ticks, ticks comprising five species from two genera (Hemaphysalis spp. and Ixodes spp.) were screened using molecular techniques. Ticks (3,135) were collected from small wild-caught mammals or by dragging/flagging in the Republic of Korea (ROK) and were pooled into a total of 1,638 samples (1 to 27 ticks per pool). From the 1,638 tick samples, species-specific fragments of Anaplasma phagocytophilum (1 sample), Anaplasma platys (52 samples), Ehrlichia chaffeensis (29 samples), Ehrlichia ewingii (2 samples), Ehrlichia canis (18 samples), and Rickettsia rickettsii (28 samples) were amplified by PCR assay. Twenty-one pooled and individual tick samples had mixed infections of two (15 samples) or three (6 samples) pathogens. In addition, 424 spleen samples from small captured mammals (389 rodents, 33 insectivores, and 2 weasels) were screened for selected zoonotic pathogens. Species-specific DNA fragments of A. phagocytophilum (110 samples), A. platys (68 samples), E. chaffeensis (8 samples), E. ewingii (26 samples), E. canis (51 samples), and Rickettsia sp. (22 samples) were amplified by PCR assay. One hundred thirty small mammals had single infections, while 4, 14, and 21 striped field mice (Apodemus agrarius) had mixed infections of four, three, and two pathogens, respectively. Phylogenetic analysis based on nucleotide sequence comparison also revealed that Korean strains of E. chaffeensis clustered closely with those from China and the United States, while the Rickettsia (rOmpA) sequences clustered within a clade together with a Chinese strain. These results suggest that these agents should be considered in differential diagnosis while examining cases of acute febrile illnesses in humans as well as animals in the ROK.

  19. Dynamic Edge Effects in Small Mammal Communities across a Conservation-Agricultural Interface in Swaziland

    PubMed Central

    Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  20. A Noninvasive Hair Sampling Technique to Obtain High Quality DNA from Elusive Small Mammals

    PubMed Central

    Henry, Philippe; Henry, Alison; Russello, Michael A.

    2011-01-01

    Noninvasive genetic sampling approaches are becoming increasingly important to study wildlife populations. A number of studies have reported using noninvasive sampling techniques to investigate population genetics and demography of wild populations1. This approach has proven to be especially useful when dealing with rare or elusive species2. While a number of these methods have been developed to sample hair, feces and other biological material from carnivores and medium-sized mammals, they have largely remained untested in elusive small mammals. In this video, we present a novel, inexpensive and noninvasive hair snare targeted at an elusive small mammal, the American pika (Ochotona princeps). We describe the general set-up of the hair snare, which consists of strips of packing tape arranged in a web-like fashion and placed along travelling routes in the pikas’ habitat. We illustrate the efficiency of the snare at collecting a large quantity of hair that can then be collected and brought back to the lab. We then demonstrate the use of the DNA IQ system (Promega) to isolate DNA and showcase the utility of this method to amplify commonly used molecular markers including nuclear microsatellites, amplified fragment length polymorphisms (AFLPs), mitochondrial sequences (800bp) as well as a molecular sexing marker. Overall, we demonstrate the utility of this novel noninvasive hair snare as a sampling technique for wildlife population biologists. We anticipate that this approach will be applicable to a variety of small mammals, opening up areas of investigation within natural populations, while minimizing impact to study organisms. PMID:21445038

  1. Detection of Clostridium difficile in small and medium-sized wild Mammals in Southern Ontario, Canada.

    PubMed

    Jardine, Claire M; Reid-Smith, Richard J; Rousseau, Joyce; Weese, J Scott

    2013-04-01

    We sampled 325 small and medium-sized wild mammals in Ontario, Canada in 2007 and 2010 to determine the prevalence and characteristics of Clostridium difficile in wild mammals living in proximity to captive wildlife and livestock. Clostridium difficile was isolated from five of 109 animals (4.6%) on four of 25 farms (16%), but was not isolated from any of the 216 samples from raccoons (Procyon lotor) living on the grounds of the Toronto Zoo. The positive animals included two raccoons from one beef farm, one raccoon from a different beef farm, one raccoon from a swine farm, and a shrew (Blarina brevicauda) from a dairy farm. None had evidence of gastrointestinal disease. Three of the five isolates were toxinotype variants (II, IV, and XIII) that are rarely identified in humans and domestic animals. The other two were toxinotype 0, a common toxinotype in humans and animals; however, all five isolates were of different ribotypes. None of the recovered ribotypes were recognized as ribotypes present in the authors' reference library of over 3,000 human and domestic animal C. difficile isolates. Neither the public health nor the animal health relevance of these findings is clear. It is not known whether C. difficile is a pathogen of small and medium-sized wild mammals, although the susceptibility of various laboratory species suggests it could cause disease. PMID:23568920

  2. Sampling Small Mammals in Southeastern Forests: The Importance of Trapping in Trees

    SciTech Connect

    Loeb, S.C.; Chapman, G.L.; Ridley, T.R.

    1999-01-01

    We investigated the effect of sampling methodology on the richness and abundance of small mammal communities in loblolly pine forests. Trapping in trees using Sherman live traps was included along with routine ground trapping using the same device. Estimates of species richness did not differ among samples in which tree traps were included or excluded. However, diversity indeces (Shannon-Wiener, Simpson, Shannon and Brillouin) were strongly effected. The indeces were significantly greater than if tree samples were included primarily the result of flying squirrel captures. Without tree traps, the results suggested that cotton mince dominated the community. We recommend that tree traps we included in sampling.

  3. The crouching of the shrew: Mechanical consequences of limb posture in small mammals.

    PubMed

    Riskin, Daniel K; Kendall, Corinne J; Hermanson, John W

    2016-01-01

    An important trend in the early evolution of mammals was the shift from a sprawling stance, whereby the legs are held in a more abducted position, to a parasagittal one, in which the legs extend more downward. After that transition, many mammals shifted from a crouching stance to a more upright one. It is hypothesized that one consequence of these transitions was a decrease in the total mechanical power required for locomotion, because side-to-side accelerations of the body have become smaller, and thus less costly with changes in limb orientation. To test this hypothesis we compared the kinetics of locomotion in two mammals of body size close to those of early mammals (< 40 g), both with parasagittally oriented limbs: a crouching shrew (Blarina brevicauda; 5 animals, 17 trials) and a more upright vole (Microtus pennsylvanicus; 4 animals, 22 trials). As predicted, voles used less mechanical power per unit body mass to perform steady locomotion than shrews did (P = 0.03). However, while lateral forces were indeed smaller in voles (15.6 ± 2.0% body weight) than in shrews (26.4 ± 10.9%; P = 0.046), the power used to move the body from side-to-side was negligible, making up less than 5% of total power in both shrews and voles. The most power consumed for both species was that used to accelerate the body in the direction of travel, and this was much larger for shrews than for voles (P = 0.01). We conclude that side-to-side accelerations are negligible for small mammals-whether crouching or more upright-compared to their sprawling ancestors, and that a more upright posture further decreases the cost of locomotion compared to crouching by helping to maintain the body's momentum in the direction of travel. PMID:27413633

  4. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns.

    PubMed

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species' responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals.

  5. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns.

    PubMed

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species' responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals. PMID:26978779

  6. Comparative dynamics of small mammal populations in treefall gaps and surrounding understorey within Amazonian rainforest

    USGS Publications Warehouse

    Beck, H.; Gaines, M.S.; Hines, J.E.; Nichols, J.D.

    2004-01-01

    Variation in food resource availability can have profound effects on habitat selection and dynamics of populations. Previous studies reported higher food resource availability and fruit removal in treefall gaps than in the understorey. Therefore, gaps have been considered 'keystone habitat' for Neotropical frugivore birds. Here we test if this prediction would also hold for terrestrial small mammals. In the Amazon, we quantified food resource availability in eleven treefall gaps and paired understorey habitats and used feeding experiments to test if two common terrestrial rodents (Oryzomys megacephalus and Proechimys spp.) would perceive differences between habitats. We live-trapped small mammals in eleven gaps and understorey sites for two years, and compared abundance, fitness components (survival and per capita recruitment) and dispersal of these two rodent species across gaps and understorey and seasons (rainy and dry). Our data indicated no differences in resource availability and consumption rate between habitats. Treefall gaps may represent a sink habitat for Oryzomys where individuals had lower fitness, apparently because of habitat-specific ant predation on early life stages, than in the understorey, the source habitat. Conversely, gaps may be source habitat for Proechimys where individuals had higher fitness, than in the understorey, the sink habitat. Our results suggest the presence of source-sink dynamics in a tropical gap-understorey landscape, where two rodent species perceive habitats differently. This may be a mechanism for their coexistence in a heterogeneous and species-diverse system.

  7. Phylogenetic and morphological relationships between nonvolant small mammals reveal assembly processes at different spatial scales

    PubMed Central

    Luza, André Luís; Gonçalves, Gislene Lopes; Hartz, Sandra Maria

    2015-01-01

    The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter- and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland-forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species-trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co-occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community

  8. Seroepidemiological Survey of Zoonotic Diseases in Small Mammals with PCR Detection of Orientia tsutsugamushi in Chiggers, Gwangju, Korea

    PubMed Central

    Park, Jung Wook; Chung, Jae Keun; Kim, Sun Hee; Cho, Sun Ju; Ha, Yi Deun; Jung, So Hyang; Park, Hye Jung; Song, Hyun Jae; Lee, Jung Yoon; Kim, Dong Min; Pyus, Jah; Ha, Dong Ryong; Kim, Eun Sun; Lee, Jae Il

    2016-01-01

    Serosurveillance for zoonotic diseases in small mammals and detection of chiggers, the vector of Orientia tsutsugamushi, were conducted from September 2014 to August 2015 in Gwangju Metropolitan Area. Apodemus agrarius was the most commonly collected small mammals (158; 91.8%), followed by Myodes regulus (8; 4.6%), and Crocidura lasiura (6; 3.5%). The highest seroprevalence of small mammals for O. tsutsugamushi (41; 26.3%) was followed by hantaviruses (24; 15.4%), Rickettsia spp. (22; 14.1%), and Leptospira (2; 1.3%). A total of 3,194 chiggers were collected from small mammals, and 1,236 of 3,194 chiggers were identified with 7 species of 3 genera: Leptotrombidium scutellare was the most commonly collected species (585; 47.3%), followed by L. orientale (422; 34.1%), Euchoengastia koreaensis (99; 8.0%), L. palpale (58; 4.7%), L. pallidum (36; 2.9%), Neotrombicula gardellai (28; 2.3%), and L. zetum (8; 0.6%). L. scutellare was the predominant species. Three of 1,236 chigger mites were positive for O. tsutsugamushi by PCR. As a result of phylogenetic analysis, the O. tsutsugamushi strain of chigger mites had sequence homology of 90.1-98.2% with Boryong. This study provides baseline data on the distribution of zoonotic diseases and potential vectors for the development of prevention strategies of vector borne diseases in Gwangju metropolitan area. PMID:27417085

  9. Seroepidemiological Survey of Zoonotic Diseases in Small Mammals with PCR Detection of Orientia tsutsugamushi in Chiggers, Gwangju, Korea.

    PubMed

    Park, Jung Wook; Chung, Jae Keun; Kim, Sun Hee; Cho, Sun Ju; Ha, Yi Deun; Jung, So Hyang; Park, Hye Jung; Song, Hyun Jae; Lee, Jung Yoon; Kim, Dong Min; Pyus, Jah; Ha, Dong Ryong; Kim, Eun Sun; Lee, Jae Il

    2016-06-01

    Serosurveillance for zoonotic diseases in small mammals and detection of chiggers, the vector of Orientia tsutsugamushi, were conducted from September 2014 to August 2015 in Gwangju Metropolitan Area. Apodemus agrarius was the most commonly collected small mammals (158; 91.8%), followed by Myodes regulus (8; 4.6%), and Crocidura lasiura (6; 3.5%). The highest seroprevalence of small mammals for O. tsutsugamushi (41; 26.3%) was followed by hantaviruses (24; 15.4%), Rickettsia spp. (22; 14.1%), and Leptospira (2; 1.3%). A total of 3,194 chiggers were collected from small mammals, and 1,236 of 3,194 chiggers were identified with 7 species of 3 genera: Leptotrombidium scutellare was the most commonly collected species (585; 47.3%), followed by L. orientale (422; 34.1%), Euchoengastia koreaensis (99; 8.0%), L. palpale (58; 4.7%), L. pallidum (36; 2.9%), Neotrombicula gardellai (28; 2.3%), and L. zetum (8; 0.6%). L. scutellare was the predominant species. Three of 1,236 chigger mites were positive for O. tsutsugamushi by PCR. As a result of phylogenetic analysis, the O. tsutsugamushi strain of chigger mites had sequence homology of 90.1-98.2% with Boryong. This study provides baseline data on the distribution of zoonotic diseases and potential vectors for the development of prevention strategies of vector borne diseases in Gwangju metropolitan area. PMID:27417085

  10. Experimental analysis of methods for measuring small mammal populations

    USGS Publications Warehouse

    Stickel, L.F.

    1946-01-01

    SUMMARY: The Peromyscus leucopus on a 17-acre study area were live-trapped, marked, and released over a seven-day period. On the three following nights intensive snap-trapping was done on the central acre of the study plot. The animals caught by snap traps in the central acre represented the population of the central acre and several surrounding acres. By the currently accepted methods of interpreting snap-trap data, the population per acre would be considered to be 23 adults. The live-trap data show that the true population was between six and seven adults per acre. Modern methods of live-trapping are shown to be valid for population studies. Two methods are presented for the conversion of live-trap data into per acre figures. Errors involved in the current use of snap-trap data are discussed and snap-trap methods are shown to be invalid for determining actual population numbers. It should be practical to use a snap-trap quadrant technique to obtain a relative measure or index figure for small mammal populations.

  11. Vector biodiversity did not associate with tick-borne pathogen prevalence in small mammal communities in northern and central California.

    PubMed

    Foley, Janet; Piovia-Scott, Jonah

    2014-04-01

    Vector and host abundance affect infection transmission rates, prevalence, and persistence in communities. Biological diversity in hosts and vectors may provide "rescue" hosts which buffer against pathogen extinction and "dilution" hosts which reduce the force of infection in communities. Anaplasma phagocytophilum is a tick-transmitted zoonotic pathogen that circulates in small mammal and tick communities characterized by varying levels of biological diversity. We examined the prevalence of A. phagocytophilum in Ixodes spp. ticks in 11 communities in northern and central California. A total of 1020 ticks of 8 species was evaluated. Five percent of ticks (5 species) were PCR-positive, with the highest prevalence (6-7%) in I. pacificus and I. ochotonae. In most species, adults had a higher prevalence than nymphs or larvae. PCR prevalence varied between 0% and 40% across sites; the infection probability in ticks increased with infestation load and prevalence in small mammals, but not tick species richness, diversity, evenness, or small mammal species richness. No particular tick species was likely to "rescue" infection in the community; rather the risk of A. phagocytophilum infection is related to exposure to particular tick species and life stages, and overall tick abundance.

  12. Selected marine mammals of Alaska: species accounts with research and management recommendations

    SciTech Connect

    Lentfer, J.W.

    1988-01-01

    This book is the result of a need seen by the Marine Mammal Commission for a current summary of the biology and status of ten species of Alaskan marine mammals, including recommendations for research and management. Its purpose is to serve as a reference and working document as conservation and management plans are developed and implemented for the ten species.

  13. Spatially heterogeneous impact of climate change on small mammals of montane California.

    PubMed

    Rowe, Kevin C; Rowe, Karen M C; Tingley, Morgan W; Koo, Michelle S; Patton, James L; Conroy, Chris J; Perrine, John D; Beissinger, Steven R; Moritz, Craig

    2015-01-22

    Resurveys of historical collecting localities have revealed range shifts, primarily leading edge expansions, which have been attributed to global warming. However, there have been few spatially replicated community-scale resurveys testing whether species' responses are spatially consistent. Here we repeated early twentieth century surveys of small mammals along elevational gradients in northern, central and southern regions of montane California. Of the 34 species we analysed, 25 shifted their ranges upslope or downslope in at least one region. However, two-thirds of ranges in the three regions remained stable at one or both elevational limits and none of the 22 species found in all three regions shifted both their upper and lower limits in the same direction in all regions. When shifts occurred, high-elevation species typically contracted their lower limits upslope, whereas low-elevation species had heterogeneous responses. For high-elevation species, site-specific change in temperature better predicted the direction of shifts than change in precipitation, whereas the direction of shifts by low-elevation species was unpredictable by temperature or precipitation. While our results support previous findings of primarily upslope shifts in montane species, they also highlight the degree to which the responses of individual species vary across geographically replicated landscapes.

  14. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    ERIC Educational Resources Information Center

    Taylor, Tamra Faris

    This publication contains a detailed list of the birds, mammals, fish, amphibians, reptiles, and invertebrates found in Alaska. Part I lists the species by geographical regions. Part II lists the species by the ecological regions of the state. (CO)

  15. Changes in Trap Temperature as a Method to Determine Timing of Capture of Small Mammals

    PubMed Central

    Orrock, John L.; Connolly, Brian M.

    2016-01-01

    Patterns of animal activity provide important insight into hypotheses in animal behavior, physiological ecology, behavioral ecology, as well as population and community ecology. Understanding patterns of animal activity in field settings is often complicated by the need for expensive equipment and time-intensive methods that limit data collection. Because animals must be active to be detected, the timing of detection (e.g., the timing of capture) may be a useful proxy for estimation of activity time. In this paper, we describe a new method for determining timing of capture for small mammals. In our method, two small temperature loggers are positioned in each trap so that one logger registers the internal temperature of a live-trap at set intervals while the other logger simultaneously records external trap temperature. We illustrate the utility of this technique using field data from live-trapping of deer mice, Peromyscus maniculatus, one of the most ubiquitous, widely distributed small mammals in North America. Traps with animals inside registered consistent increases in internal trap temperature, creating a clear, characteristic temperature deviation between the two data loggers that can determine trap entry time within a very narrow time window (e.g., 10 minutes). We also present pilot data to demonstrate the usefulness of the method for two other small-mammal species. This new method is relatively inexpensive, robust to field conditions, and does not require modification of traps or wiring of new devices. It can be deployed as part of common live-trapping methods, making it possible to assay the timing of capture for a large number of animals in many different ecological contexts. In addition to quantifying timing of capture, this approach may also collect meaningful temperature data and provide insight into the thermal costs of animal activity and relationships between environmental conditions and the time of an animal’s capture. PMID:27792770

  16. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns

    PubMed Central

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E.; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P.; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species’ responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals. PMID:26978779

  17. Community- and landscape-level responses of reptiles and small mammals to feral-horse grazing in the Great Basin

    USGS Publications Warehouse

    Beever, Erik A.; Brussard, P.F.

    2004-01-01

    We investigated species- and community-level responses of squamate reptiles and granivorous small mammals to feral-horse grazing in two elevational strata across nine mountain ranges of the western Great Basin, USA. Although mammal species richness did not differ between horse-occupied and horse-removed sites, occupied sites possessed less community completeness (biotic integrity) and 1.1–7.4 times greater deer mice (Peromyscus maniculatus) than removed sites. In opposite fashion, horse-removed sites possessed greater reptile species richness and tended towards greater abundance for seven of nine species, yet unequal species pools across sites dictated that community completeness did not differ statistically between horse-removed and -occupied sites.

  18. A long-lasting wireless stimulator for small mammals.

    PubMed

    Hentall, Ian D

    2013-01-01

    The chronic effects of electrical stimulation in unrestrained awake rodents are best studied with a wireless neural stimulator that can operate unsupervised for several weeks or more. A robust, inexpensive, easily built, cranially implantable stimulator was developed to explore the restorative effects of brainstem stimulation after neurotrauma. Its connectorless electrodes directly protrude from a cuboid epoxy capsule containing all circuitry and power sources. This physical arrangement prevents fluid leaks or wire breakage and also simplifies and speeds implantation. Constant-current pulses of high compliance (34 volts) are delivered from a step-up voltage regulator under microprocessor control. A slowly pulsed magnetic field controls activation state and stimulation parameters. Program status is signaled to a remote reader by interval-modulated infrared pulses. Capsule size is limited by the two batteries. Silver oxide batteries rated at 8 mA-h were used routinely in 8 mm wide, 15 mm long and 4 mm high capsules. Devices of smaller contact area (5 by 12 mm) but taller (6 mm) were created for mice. Microstimulation of the rat's raphe nuclei with intermittent 5-min (50% duty cycle) trains of 30 μA, 1 ms pulses at 8 or 24 Hz frequency during 12 daylight hours lasted 21.1 days ±0.8 (mean ± standard error, Kaplan-Meir censored estimate, n = 128). Extended lifetimes (>6 weeks, no failures, n = 16) were achieved with larger batteries (44 mA-h) in longer (18 mm), taller (6 mm) capsules. The circuit and electrode design are versatile; simple modifications allowed durable constant-voltage stimulation of the rat's sciatic nerve through a cylindrical cathode from a subcutaneous pelvic capsule. Devices with these general features can address in small mammals many of the biological and technical questions arising neurosurgically with prolonged peripheral or deep brain stimulation.

  19. A long-lasting wireless stimulator for small mammals

    PubMed Central

    Hentall, Ian D.

    2013-01-01

    The chronic effects of electrical stimulation in unrestrained awake rodents are best studied with a wireless neural stimulator that can operate unsupervised for several weeks or more. A robust, inexpensive, easily built, cranially implantable stimulator was developed to explore the restorative effects of brainstem stimulation after neurotrauma. Its connectorless electrodes directly protrude from a cuboid epoxy capsule containing all circuitry and power sources. This physical arrangement prevents fluid leaks or wire breakage and also simplifies and speeds implantation. Constant-current pulses of high compliance (34 volts) are delivered from a step-up voltage regulator under microprocessor control. A slowly pulsed magnetic field controls activation state and stimulation parameters. Program status is signaled to a remote reader by interval-modulated infrared pulses. Capsule size is limited by the two batteries. Silver oxide batteries rated at 8 mA-h were used routinely in 8 mm wide, 15 mm long and 4 mm high capsules. Devices of smaller contact area (5 by 12 mm) but taller (6 mm) were created for mice. Microstimulation of the rat's raphe nuclei with intermittent 5-min (50% duty cycle) trains of 30 μA, 1 ms pulses at 8 or 24 Hz frequency during 12 daylight hours lasted 21.1 days ±0.8 (mean ± standard error, Kaplan-Meir censored estimate, n = 128). Extended lifetimes (>6 weeks, no failures, n = 16) were achieved with larger batteries (44 mA-h) in longer (18 mm), taller (6 mm) capsules. The circuit and electrode design are versatile; simple modifications allowed durable constant-voltage stimulation of the rat's sciatic nerve through a cylindrical cathode from a subcutaneous pelvic capsule. Devices with these general features can address in small mammals many of the biological and technical questions arising neurosurgically with prolonged peripheral or deep brain stimulation. PMID:24130527

  20. Decreased small mammal and on-host tick abundance in association with invasive red imported fire ants (Solenopsis invicta).

    PubMed

    Castellanos, Adrian A; Medeiros, Matthew C I; Hamer, Gabriel L; Morrow, Michael E; Eubanks, Micky D; Teel, Pete D; Hamer, Sarah A; Light, Jessica E

    2016-09-01

    Invasive species may impact pathogen transmission by altering the distributions and interactions among native vertebrate reservoir hosts and arthropod vectors. Here, we examined the direct and indirect effects of the red imported fire ant (Solenopsis invicta) on the native tick, small mammal and pathogen community in southeast Texas. Using a replicated large-scale field manipulation study, we show that small mammals were more abundant on treatment plots where S. invicta populations were experimentally reduced. Our analysis of ticks on small mammal hosts demonstrated a threefold increase in the ticks caught per unit effort on treatment relative to control plots, and elevated tick loads (a 27-fold increase) on one common rodent species. We detected only one known human pathogen (Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host Amblyomma maculatum samples but with no significant difference between treatment and control plots. Given that host and vector population dynamics are key drivers of pathogen transmission, the reduced small mammal and tick abundance associated with S. invicta may alter pathogen transmission dynamics over broader spatial scales. PMID:27651533

  1. Responses of small mammals to habitat fragmentation: epidemiological considerations for rodent-borne hantaviruses in the Americas.

    PubMed

    Rubio, André V; Ávila-Flores, Rafael; Suzán, Gerardo

    2014-12-01

    Rodent-borne hantaviruses are a group of zoonotic agents that cause hemorrhagic fever in humans. The transmission of hantaviruses among rodent hosts may be higher with the increase of reservoir host abundance in a given area (density-dependent transmission) and with the decrease of small mammal diversity (dilution effect phenomenon). These population and community parameters may be modified by habitat fragmentation; however, studies that focus on fragmentation and its effect on hantavirus infection risk are scarce. To further understanding of this issue, we assessed some population and community responses of rodents that may increase the risk for hantavirus transmission among wildlife hosts in the Americas. We conducted a meta-analysis of published studies to assess the responses of small mammals to fragmentation of native habitats, relative to patch size. Our analyses included five countries and 14 case studies for abundance of reservoir hosts (8 species) and 15 case studies for species richness. We found that a reduction of patch area due to habitat fragmentation is associated with increased reservoir host abundances and decreased small mammal richness, which is mainly due to the loss of non-host small mammals. According to these results, habitat fragmentation in the Americas should be considered as an epidemiological risk factor for hantavirus transmission to humans. These findings are important to assess potential risk of infection when fragmentation of native habitats occurs.

  2. Decreased small mammal and on-host tick abundance in association with invasive red imported fire ants (Solenopsis invicta)

    PubMed Central

    Medeiros, Matthew C. I.; Hamer, Gabriel L.; Morrow, Michael E.; Eubanks, Micky D.; Teel, Pete D.

    2016-01-01

    Invasive species may impact pathogen transmission by altering the distributions and interactions among native vertebrate reservoir hosts and arthropod vectors. Here, we examined the direct and indirect effects of the red imported fire ant (Solenopsis invicta) on the native tick, small mammal and pathogen community in southeast Texas. Using a replicated large-scale field manipulation study, we show that small mammals were more abundant on treatment plots where S. invicta populations were experimentally reduced. Our analysis of ticks on small mammal hosts demonstrated a threefold increase in the ticks caught per unit effort on treatment relative to control plots, and elevated tick loads (a 27-fold increase) on one common rodent species. We detected only one known human pathogen (Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host Amblyomma maculatum samples but with no significant difference between treatment and control plots. Given that host and vector population dynamics are key drivers of pathogen transmission, the reduced small mammal and tick abundance associated with S. invicta may alter pathogen transmission dynamics over broader spatial scales. PMID:27651533

  3. Decreased small mammal and on-host tick abundance in association with invasive red imported fire ants (Solenopsis invicta).

    PubMed

    Castellanos, Adrian A; Medeiros, Matthew C I; Hamer, Gabriel L; Morrow, Michael E; Eubanks, Micky D; Teel, Pete D; Hamer, Sarah A; Light, Jessica E

    2016-09-01

    Invasive species may impact pathogen transmission by altering the distributions and interactions among native vertebrate reservoir hosts and arthropod vectors. Here, we examined the direct and indirect effects of the red imported fire ant (Solenopsis invicta) on the native tick, small mammal and pathogen community in southeast Texas. Using a replicated large-scale field manipulation study, we show that small mammals were more abundant on treatment plots where S. invicta populations were experimentally reduced. Our analysis of ticks on small mammal hosts demonstrated a threefold increase in the ticks caught per unit effort on treatment relative to control plots, and elevated tick loads (a 27-fold increase) on one common rodent species. We detected only one known human pathogen (Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host Amblyomma maculatum samples but with no significant difference between treatment and control plots. Given that host and vector population dynamics are key drivers of pathogen transmission, the reduced small mammal and tick abundance associated with S. invicta may alter pathogen transmission dynamics over broader spatial scales.

  4. Responses of small mammals to habitat fragmentation: epidemiological considerations for rodent-borne hantaviruses in the Americas.

    PubMed

    Rubio, André V; Ávila-Flores, Rafael; Suzán, Gerardo

    2014-12-01

    Rodent-borne hantaviruses are a group of zoonotic agents that cause hemorrhagic fever in humans. The transmission of hantaviruses among rodent hosts may be higher with the increase of reservoir host abundance in a given area (density-dependent transmission) and with the decrease of small mammal diversity (dilution effect phenomenon). These population and community parameters may be modified by habitat fragmentation; however, studies that focus on fragmentation and its effect on hantavirus infection risk are scarce. To further understanding of this issue, we assessed some population and community responses of rodents that may increase the risk for hantavirus transmission among wildlife hosts in the Americas. We conducted a meta-analysis of published studies to assess the responses of small mammals to fragmentation of native habitats, relative to patch size. Our analyses included five countries and 14 case studies for abundance of reservoir hosts (8 species) and 15 case studies for species richness. We found that a reduction of patch area due to habitat fragmentation is associated with increased reservoir host abundances and decreased small mammal richness, which is mainly due to the loss of non-host small mammals. According to these results, habitat fragmentation in the Americas should be considered as an epidemiological risk factor for hantavirus transmission to humans. These findings are important to assess potential risk of infection when fragmentation of native habitats occurs. PMID:24845575

  5. Long term variations in small mammal composition of a snake diet do not mirror climate change trends

    NASA Astrophysics Data System (ADS)

    Rugiero, Lorenzo; Milana, Giuliano; Capula, Massimo; Amori, Giovanni; Luiselli, Luca

    2012-08-01

    The study of the dietary changes which have intervened over the years in generalist and opportunist predators may provide useful information on the temporal modifications of their prey communities, especially under a climate change scenario. In this study, we analysed the quantitative changes in the small mammal portion of the diet of a generalist and opportunist predator, the asp viper (Vipera aspis) at a forest zone in central Italy, for the period 1987-2010. In addition, small mammals were trapped in five of these years. Apodemus spp., Mus musculus, and Myodes glareolus were the main prey for vipers. Among the various taxa eaten by vipers, only two showed significantly consistent trends over the years, with M. glareolus increasing and Sorex spp. declining in the viper diet. There were no significant relationships between the number of years passed after the first year of sampling and the diversity and dominance indexes of prey composition. We also found a significantly positive relationship between small mammal abundance in the field and their relative frequency of occurrence in the viper's diet, thus demonstrating that vipers really sampled the small mammal species in relation to their local availability. Despite being temperate-zone forest-associated species, hence likely adversed by global warming, Sorex spp. and M. glareolus showed opposite trends over the years, thus suggesting that such trends may reflect more local scale perturbations (local forest overgrowth and diminution of logging).

  6. Fleas of Small Mammals on Reunion Island: Diversity, Distribution and Epidemiological Consequences

    PubMed Central

    Guernier, Vanina; Lagadec, Erwan; LeMinter, Gildas; Licciardi, Séverine; Balleydier, Elsa; Pagès, Frédéric; Laudisoit, Anne; Dellagi, Koussay; Tortosa, Pablo

    2014-01-01

    The diversity and geographical distribution of fleas parasitizing small mammals have been poorly investigated on Indian Ocean islands with the exception of Madagascar where endemic plague has stimulated extensive research on these arthropod vectors. In the context of an emerging flea-borne murine typhus outbreak that occurred recently in Reunion Island, we explored fleas' diversity, distribution and host specificity on Reunion Island. Small mammal hosts belonging to five introduced species were trapped from November 2012 to November 2013 along two altitudinal transects, one on the windward eastern and one on the leeward western sides of the island. A total of 960 animals were trapped, and 286 fleas were morphologically and molecularly identified. Four species were reported: (i) two cosmopolitan Xenopsylla species which appeared by far as the prominent species, X. cheopis and X. brasiliensis; (ii) fewer fleas belonging to Echidnophaga gallinacea and Leptopsylla segnis. Rattus rattus was found to be the most abundant host species in our sample, and also the most parasitized host, predominantly by X. cheopis. A marked decrease in flea abundance was observed during the cool-dry season, which indicates seasonal fluctuation in infestation. Importantly, our data reveal that flea abundance was strongly biased on the island, with 81% of all collected fleas coming from the western dry side and no Xenopsylla flea collected on almost four hundred rodents trapped along the windward humid eastern side. The possible consequences of this sharp spatio-temporal pattern are discussed in terms of flea-borne disease risks in Reunion Island, particularly with regard to plague and the currently emerging murine typhus outbreak. PMID:25188026

  7. Small mammal populations in Maryland meadows during four years of herbicide (Brominal? ) applications

    USGS Publications Warehouse

    Clark, D.R.; Moulton, C.A.; Hines, J.E.; Hoffman, D.J.

    1996-01-01

    The herbicide Brominal? was applied at the recommended rate to one plot in each of three paired 0.6-ha plots; the other three plots were used as controls. Plots were sprayed once in the fall of 1988 and 1989 and twice in the spring of 1990 and 1991. Small mammals were trapped three times during each activity season (April?October) to obtain population estimates before and after spraying and in the spring preceding fall spraying or the fall following spring spraying. Population estimates immediately after spraying gave no evidence of direct mortality. By 1991, dicot vegetation on treated plots was suppressed and mean numbers of meadow voles (Microtus pennsylvanicus) were less than on control plots. Because meadow voles favor dicots over monocots in their diet, reduced availability of dicots may have been related to the smaller vole population estimates. Species diversity of small mammals was negatively correlated with size of vole populations, but was not different between treated and control plots. Brominal apparently induced opaque corneas in nine voles. The condition was found in two voles too small to have been conceived at the time of the last previous spray nearly 8 months earlier, suggesting exposure to residue alone.

  8. The crouching of the shrew: Mechanical consequences of limb posture in small mammals

    PubMed Central

    Kendall, Corinne J.; Hermanson, John W.

    2016-01-01

    An important trend in the early evolution of mammals was the shift from a sprawling stance, whereby the legs are held in a more abducted position, to a parasagittal one, in which the legs extend more downward. After that transition, many mammals shifted from a crouching stance to a more upright one. It is hypothesized that one consequence of these transitions was a decrease in the total mechanical power required for locomotion, because side-to-side accelerations of the body have become smaller, and thus less costly with changes in limb orientation. To test this hypothesis we compared the kinetics of locomotion in two mammals of body size close to those of early mammals (< 40 g), both with parasagittally oriented limbs: a crouching shrew (Blarina brevicauda; 5 animals, 17 trials) and a more upright vole (Microtus pennsylvanicus; 4 animals, 22 trials). As predicted, voles used less mechanical power per unit body mass to perform steady locomotion than shrews did (P = 0.03). However, while lateral forces were indeed smaller in voles (15.6 ± 2.0% body weight) than in shrews (26.4 ± 10.9%; P = 0.046), the power used to move the body from side-to-side was negligible, making up less than 5% of total power in both shrews and voles. The most power consumed for both species was that used to accelerate the body in the direction of travel, and this was much larger for shrews than for voles (P = 0.01). We conclude that side-to-side accelerations are negligible for small mammals–whether crouching or more upright–compared to their sprawling ancestors, and that a more upright posture further decreases the cost of locomotion compared to crouching by helping to maintain the body’s momentum in the direction of travel. PMID:27413633

  9. 76 FR 60863 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ..... 76 FR 51051; August September 22, 2011. 17, 2011. 48645A Valley Zoological 76 FR 51051; August September 22, 2011. Society dba Gladys 17, 2011. Porter Zoo. Marine Mammals 48293A Red Rock Films 76...

  10. Environmental Survey Report for ORNL: Small Mammal Abundance and Distribution Survey Oak Ridge National Environmental Research Park 2009 - 2010

    SciTech Connect

    Giffen, Neil R; Reasor, R. Scott; Campbell, Claire L.

    2009-12-01

    This report summarizes a 1-year small mammal biodiversity survey conducted on the Oak Ridge National Environmental Research Park (OR Research Park). The task was implemented through the Oak Ridge National Laboratory (ORNL) Natural Resources Management Program and included researchers from the ORNL Environmental Sciences Division, interns in the Oak Ridge Institute for Science and Education Higher Education Research Experiences Program, and ORNL Environmental Protection Services staff. Eight sites were surveyed reservation wide. The survey was conducted in an effort to determine species abundance and diversity of small mammal populations throughout the reservation and to continue the historical inventory of small mammal presence for biodiversity records. This data collection effort was in support of the approved Wildlife Management Plan for the Oak Ridge Reservation, a major goal of which is to maintain and enhance wildlife biodiversity on the Reservation. Three of the sites (Poplar Creek, McNew Hollow, and Deer Check Station Field) were previously surveyed during a major natural resources inventory conducted in 1996. Five new sites were included in this study: Bearden Creek, Rainy Knob (Natural Area 21), Gum Hollow, White Oak Creek and Melton Branch. The 2009-2010 small mammal surveys were conducted from June 2009 to July 2010 on the Oak Ridge National Environmental Research Park (OR Research Park). The survey had two main goals: (1) to determine species abundance and diversity and (2) to update historical records on the OR Research Park. The park is located on the Department of Energy-owned Oak Ridge Reservation, which encompasses 13,580 ha. The primary focus of the study was riparian zones. In addition to small mammal sampling, vegetation and coarse woody debris samples were taken at certain sites to determine any correlations between habitat and species presence. During the survey all specimens were captured and released using live trapping techniques including

  11. A survey of hantavirus antibody in small-mammal populations in selected United States National Parks.

    PubMed

    Mills, J N; Johnson, J M; Ksiazek, T G; Ellis, B A; Rollin, P E; Yates, T L; Mann, M O; Johnson, M R; Campbell, M L; Miyashiro, J; Patrick, M; Zyzak, M; Lavender, D; Novak, M G; Schmidt, K; Peters, C J; Childs, J E

    1998-04-01

    Hantavirus activity in 39 National Parks in the eastern and central United States was surveyed by testing 1,815 small mammals of 38 species for antibody reactive to Sin Nombre virus. Antibody-positive rodents were found throughout the area sampled, and in most biotic communities. Antibody was detected in 7% of 647 deer mice (Peromyscus maniculatus), 2% of 590 white-footed mice (P. leucopus), 17% of 12 rice rats (Oryzomys palustris), 3% of 31 cotton rats (Sigmodon hispidus), and 33% of 18 western harvest mice (Reithrodontomys megalotis). Antibody was also found in three of six species of voles, and in one of 33 chipmunks (Tamias minimus). Prevalence among Peromyscus was highest in the northeast. Although few cases of hantavirus pulmonary syndrome have been identified from the eastern and central regions, widespread infection in reservoir populations indicates that potential exists for human infection throughout much of the United States.

  12. Mass Extinction and the Disappearance of Unknown Mammal Species: Scenario and Perspectives of a Biodiversity Hotspot's Hotspot.

    PubMed

    Mendes Pontes, Antonio Rossano; Beltrão, Antonio Carlos Mariz; Normande, Iran Campello; Malta, Alexandre de Jesus Rodrigues; Silva Júnior, Antonio Paulo da; Santos, André Maurício Melo

    2016-01-01

    We aimed to determine the conservation status of medium- and large-sized mammals and evaluate the impact of 500 years of forest fragmentation on this group of animals in the Pernambuco Endemism Center, in the biogeographical zone of the Atlantic forest north of the São Francisco River in northeastern Brazil. Line transect surveys were performed in 21 forest fragments, resulting in a checklist of the mammals of the entire Pernambuco Endemism Center area. We ran a generalized linear model (Factorial ANCOVA) to analyze to what extent the vegetation type, fragment area, isolation, sampling effort (as total kilometers walked), or higher-order interactions predicted (a) richness and (b) sighting rates. To determine if the distribution of the species within the forest fragments exhibited a nested pattern, we used the NODF metric. Subsequently, we performed a Binomial Logistic Regression to predict the probability of encountering each species according to fragment size. Out of 38 medium- and large-sized mammal species formerly occurring in the study area, only 53.8% (n = 21) were sighted. No fragment hosted the entire remaining mammal community, and only four species (19%) occurred in very small fragments (73.3% of the remaining forest fragments, with a mean size of 2.8 ha). The mammalian community was highly simplified, with all large mammals being regionally extinct. Neither the species richness nor sighting rate was controlled by the vegetation type, the area of the forest fragments, isolation or any higher-order interaction. Although a highly significant nested subset pattern was detected, it was not related to the ranking of the area of forest fragments or isolation. The probability of the occurrence of a mammal species in a given forest patch varied unpredictably, and the probability of detecting larger species was even observed to decrease with increasing patch size. In an ongoing process of mass extinction, half of the studied mammals have gone extinct. The

  13. Mass Extinction and the Disappearance of Unknown Mammal Species: Scenario and Perspectives of a Biodiversity Hotspot’s Hotspot

    PubMed Central

    Mendes Pontes, Antonio Rossano; Beltrão, Antonio Carlos Mariz; Normande, Iran Campello; Malta, Alexandre de Jesus Rodrigues; da Silva Júnior, Antonio Paulo; Santos, André Maurício Melo

    2016-01-01

    We aimed to determine the conservation status of medium- and large-sized mammals and evaluate the impact of 500 years of forest fragmentation on this group of animals in the Pernambuco Endemism Center, in the biogeographical zone of the Atlantic forest north of the São Francisco River in northeastern Brazil. Line transect surveys were performed in 21 forest fragments, resulting in a checklist of the mammals of the entire Pernambuco Endemism Center area. We ran a generalized linear model (Factorial ANCOVA) to analyze to what extent the vegetation type, fragment area, isolation, sampling effort (as total kilometers walked), or higher-order interactions predicted (a) richness and (b) sighting rates. To determine if the distribution of the species within the forest fragments exhibited a nested pattern, we used the NODF metric. Subsequently, we performed a Binomial Logistic Regression to predict the probability of encountering each species according to fragment size. Out of 38 medium- and large-sized mammal species formerly occurring in the study area, only 53.8% (n = 21) were sighted. No fragment hosted the entire remaining mammal community, and only four species (19%) occurred in very small fragments (73.3% of the remaining forest fragments, with a mean size of 2.8 ha). The mammalian community was highly simplified, with all large mammals being regionally extinct. Neither the species richness nor sighting rate was controlled by the vegetation type, the area of the forest fragments, isolation or any higher-order interaction. Although a highly significant nested subset pattern was detected, it was not related to the ranking of the area of forest fragments or isolation. The probability of the occurrence of a mammal species in a given forest patch varied unpredictably, and the probability of detecting larger species was even observed to decrease with increasing patch size. In an ongoing process of mass extinction, half of the studied mammals have gone extinct. The

  14. Mass Extinction and the Disappearance of Unknown Mammal Species: Scenario and Perspectives of a Biodiversity Hotspot's Hotspot.

    PubMed

    Mendes Pontes, Antonio Rossano; Beltrão, Antonio Carlos Mariz; Normande, Iran Campello; Malta, Alexandre de Jesus Rodrigues; Silva Júnior, Antonio Paulo da; Santos, André Maurício Melo

    2016-01-01

    We aimed to determine the conservation status of medium- and large-sized mammals and evaluate the impact of 500 years of forest fragmentation on this group of animals in the Pernambuco Endemism Center, in the biogeographical zone of the Atlantic forest north of the São Francisco River in northeastern Brazil. Line transect surveys were performed in 21 forest fragments, resulting in a checklist of the mammals of the entire Pernambuco Endemism Center area. We ran a generalized linear model (Factorial ANCOVA) to analyze to what extent the vegetation type, fragment area, isolation, sampling effort (as total kilometers walked), or higher-order interactions predicted (a) richness and (b) sighting rates. To determine if the distribution of the species within the forest fragments exhibited a nested pattern, we used the NODF metric. Subsequently, we performed a Binomial Logistic Regression to predict the probability of encountering each species according to fragment size. Out of 38 medium- and large-sized mammal species formerly occurring in the study area, only 53.8% (n = 21) were sighted. No fragment hosted the entire remaining mammal community, and only four species (19%) occurred in very small fragments (73.3% of the remaining forest fragments, with a mean size of 2.8 ha). The mammalian community was highly simplified, with all large mammals being regionally extinct. Neither the species richness nor sighting rate was controlled by the vegetation type, the area of the forest fragments, isolation or any higher-order interaction. Although a highly significant nested subset pattern was detected, it was not related to the ranking of the area of forest fragments or isolation. The probability of the occurrence of a mammal species in a given forest patch varied unpredictably, and the probability of detecting larger species was even observed to decrease with increasing patch size. In an ongoing process of mass extinction, half of the studied mammals have gone extinct. The

  15. Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations.

    PubMed

    Grilo, Clara; Del Cerro, Irene; Centeno-Cuadros, Alejandro; Ramiro, Victor; Román, Jacinto; Molina-Vacas, Guillem; Fernández-Aguilar, Xavier; Rodríguez, Juan; Porto-Peter, Flávia; Fonseca, Carlos; Revilla, Eloy; Godoy, José A

    2016-09-15

    Roads are widely recognized to represent a barrier to individual movements and, conversely, verges can act as potential corridors for the dispersal of many small mammals. Both barrier and corridor effects should generate a clear spatial pattern in genetic structure. Nevertheless, the effect of roads on the genetic structure of small mammal populations still remains unclear. In this study, we examine the barrier effect that different road types (4-lane highway, 2-lane roads and single-lane unpaved roads) may have on the population genetic structure of three species differing in relevant life history traits: southern water vole Arvicola sapidus, the Mediterranean pine vole Microtus duodecimcostatus and the Algerian mouse Mus spretus. We also examine the corridor effect of highway verges on the Mediterranean pine vole and the Algerian mouse. We analysed the population structure through pairwise estimates of FST among subpopulations bisected by roads, identified genetic clusters through Bayesian assignment approaches, and used simple and partial Mantel tests to evaluate the relative barrier or corridor effect of roads. No strong evidences were found for an effect of roads on population structure of these three species. The barrier effect of roads seems to be site-specific and no corridor effect of verges was found for the pine vole and Algerian mouse populations. The lack of consistent results among species and for each road type lead us to believe that the ability of individual dispersers to use those crossing structures or the habitat quality in the highway verges may have a relatively higher influence on gene flow among populations than the presence of crossing structures per se. Further research should include microhabitat analysis and the estimates of species abundance to understand the mechanisms that underlie the genetic structure observed at some sites. PMID:27219505

  16. Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations.

    PubMed

    Grilo, Clara; Del Cerro, Irene; Centeno-Cuadros, Alejandro; Ramiro, Victor; Román, Jacinto; Molina-Vacas, Guillem; Fernández-Aguilar, Xavier; Rodríguez, Juan; Porto-Peter, Flávia; Fonseca, Carlos; Revilla, Eloy; Godoy, José A

    2016-09-15

    Roads are widely recognized to represent a barrier to individual movements and, conversely, verges can act as potential corridors for the dispersal of many small mammals. Both barrier and corridor effects should generate a clear spatial pattern in genetic structure. Nevertheless, the effect of roads on the genetic structure of small mammal populations still remains unclear. In this study, we examine the barrier effect that different road types (4-lane highway, 2-lane roads and single-lane unpaved roads) may have on the population genetic structure of three species differing in relevant life history traits: southern water vole Arvicola sapidus, the Mediterranean pine vole Microtus duodecimcostatus and the Algerian mouse Mus spretus. We also examine the corridor effect of highway verges on the Mediterranean pine vole and the Algerian mouse. We analysed the population structure through pairwise estimates of FST among subpopulations bisected by roads, identified genetic clusters through Bayesian assignment approaches, and used simple and partial Mantel tests to evaluate the relative barrier or corridor effect of roads. No strong evidences were found for an effect of roads on population structure of these three species. The barrier effect of roads seems to be site-specific and no corridor effect of verges was found for the pine vole and Algerian mouse populations. The lack of consistent results among species and for each road type lead us to believe that the ability of individual dispersers to use those crossing structures or the habitat quality in the highway verges may have a relatively higher influence on gene flow among populations than the presence of crossing structures per se. Further research should include microhabitat analysis and the estimates of species abundance to understand the mechanisms that underlie the genetic structure observed at some sites.

  17. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903

  18. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903

  19. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity.

  20. Small mammal community composition in cornfields, roadside ditches, and prairies in eastern Nebraska

    USGS Publications Warehouse

    Kirsch, E.M.

    1997-01-01

    Community composition of small mammals was examined in prairies, cornfields, and their adjacent roadside ditches in eastern Nebraska. Western harvest mice (Reithrodontomys megalotis) and meadow voles (Microtus pennsylvanicus) were associated with prairie habitat, were common in ditches, but avoided cornfields. Prairie voles (M. Ochrogaster) and white-footed mice (Peromyscus leucopus) were associated with ditch habitat, were common in prairies, but avoided cornfields. Short-tailed shrews (Blarina brevicauda) avoided cornfields, were associated with ditches next to cornfields, but were common in prairies and ditches next to prairies. Deer mice (P. Maniculatus) were associated with cornfields but were relatively common in prairies and ditches. House mice (Mus musculus) were most common in ditches next to cornfields, occurred in cornfields and ditches next to prairies, but were not captured in prairies. Although community composition appears to differ among prairies, ditches, and cornfields, ditches support a more complete suite of the native small mammal species in large and relatively even numbers, whereas cornfields only support deer mice in large numbers.

  1. Patterns of small mammal microhabitat utilization in cedar glade and deciduous forest habitats

    SciTech Connect

    Seagle, S.W.

    1985-01-01

    Differential microhabitat use by the small mammals inhabiting a cedar glade and a deciduous forest was investigated using discriminant function analysis of 30 structural parameters measured around the capture site of each animal. Ochrotomys nuttalli and Peromyscus leucopus utilize different microhabitats in the cedar glade, as do Blarina brevicauda and P. leucopus in the deciduous forest. P. leucopus was found to be a microhabitat generalist in the deciduous forest and a specialist in the cedar glade, whereas O. nuttalli and B. bravicauda were a microhabitat generalist and specialist, respectively. The sexes of P. leucopus were found to occupy different microhabitats in the deciduous forest but not in the cedar glade. Female P. leucopus occupied microhabitat with better protective cover in the deciduous forest. Comparisons of microhabitats used by the two species captured in each habitat with a random microhabitat sample and trap sites at which no animals were captured indicate that each habitat is a complex matrix of microhabitats, some of which are used by small mammals and some of which are not. 24 references, 5 figures, 5 tables.

  2. Small mammal populations of an agroecosystem in the Atlantic Forest domain, southeastern Brazil.

    PubMed

    D'Andrea, P S; Gentile, R; Maroja, L S; Fernandes, F A; Coura, R; Cerqueira, R

    2007-02-01

    This study reports 2 years of the population dynamics and reproduction of a small mammal community using the removal method. The study was conducted in a rural area of the Atlantic Forest, in Sumidouro, Rio de Janeiro State, Brazil. The population sizes, age structure and reproduction were studied for the four most common species in the study area. The overall diversity was 1.67 and ranged between 0.8 to 1.67. The species richness was 13 considering the whole study. The most abundant species were the rodents Nectomys squamipes (n = 133), Akodon cursor (n = 74), Oligoryzomys nigripes (n = 25) and the marsupials Didelphis aurita (n = 58) and Philander frenatus (n = 50). Seven other rodents were captured once: Necromys lasiurus, Akodon montensis, Sooretamys angouya, Oecomys catherine, Oxymycterus judex, Euryzygomatomys spinosus and Trinomys iheringi. There were higher peaks for diversity and species richness during the winter (dry) months, probably due to higher food availability. The marsupials had a seasonal reproduction with highest population sizes at the end of the rainy seasons. Nectomys squamipes reproduced mostly during rainy periods. Akodon cursor reproduced predominantly in the winter with the highest population peaks occurring during this season. The analysis of the population dynamics of the rodent species indicated that no species behaved as an agricultural pest, probably due to the heterogeneous landscape of high rotativity of vegetable cultivation. Rodent populations were more susceptible to the removal procedure than marsupial ones.

  3. How-to-Do-It: Tracing Small Mammal Movements with Fluorescent Pigments.

    ERIC Educational Resources Information Center

    Mullican, Tim R.; Streubel, Donald P.

    1989-01-01

    Discussed is an activity designed to teach small mammal ecology and the scientific method using fluorescent dyes and pigments. Procedures for analyzing home ranges and social organizations are described. A list of 16 references is included. (CW)

  4. NITROGEN OUTPUTS OF SMALL MAMMALS FROM FECAL AND URINE DEPOSITION: IMPLICATIONS FOR NITROGEN CYCLING

    EPA Science Inventory

    The contribution of small mammals in nitrogen cycling is poorly understood and could have reverberations back to the producer community by maintaining or even magnifying increased nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) ...

  5. A small-scale survey of hantavirus in mammals from Indiana.

    PubMed

    Dietrich, N; Pruden, S; Ksiazek, T G; Morzunov, S P; Camp, J W

    1997-10-01

    In order to determine if hantaviruses were present in mice and other small mammals in Indiana (USA), small mammals were trapped in Brown, LaPorte, Tippecanoe and Whitley counties. Sixty-seven small mammals were trapped during August and September 1994. Sixty-three Peromyscus leucopus, one Microtus pennsylvanicus, one Zapus hudsonius and two Blarina brevicauda were captured and tested for hantaviruses. Six P. leucopus were found to have antibody to Sin Nombre virus (SN) by IgG ELISA, and a 139 bp fragment of SN-like hantavirus was amplified from five of them. All six of the positive P. leucopus were from LaPorte County. No other small mammals had evidence of infection with SN virus. This study presents the first report of Sin Nombre-like hantavirus in P. leucopus from Indiana. PMID:9391967

  6. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals.

    PubMed

    Balčiauskas, Linas; Skipitytė, Raminta; Jasiulionis, Marius; Trakimas, Giedrius; Balčiauskienė, Laima; Remeikis, Vidmantas

    2016-09-15

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ(13)C and δ(15)N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ(13)C and δ(15)N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ(15)N (16.31±3.01‰ and 17.86±2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ(15)N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ(13)C values, age-dependent differences were not registered. δ(15)N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. PMID:27179319

  7. 76 FR 16442 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... FR 62139; October March 10, 2011. Wildlife. 07, 2010. 781606 Wildlife Conservation 75 FR 82409; December March 8, 2011. Society. 30, 2010. 25983A Mote Marine Laboratory. 75 FR 82409; December March 11... 76 FR 7580; February March 17, 2011. 10, 2011. Marine Mammals 046081 U.S. Fish and Wildlife 75...

  8. 75 FR 57979 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ...; May 21, July 30, 2010 Alaska Science Center. 2010. 134907 North Slope Borough 75 FR 44987; July 30... application Permit number Applicant Federal Register notice Permit issuance date 00588A Frank Pohl 75 FR 34766... Alvin Filpula 75 FR 34767; June 18, August 19, 2010 2010. ] Marine Mammals Receipt of application...

  9. 75 FR 75490 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... Kevin Slaughter....... 75 FR 62139; October 7, November 9, 2010. 2010. Marine Mammals 107933 EcoHealth... Service, 4401 North Fairfax Drive, Room 212, Arlington, VA 22203; fax (703) 558-7725; or e-mail DMAFR@fws... FR 62139; October 7, November 9, 2010. 2010. 21605A Steven Louis 75 FR 57977; September 23,...

  10. Radiation exposure and dose to small mammals in radon-rich soils.

    PubMed

    Macdonald, C R; Laverock, M J

    1998-07-01

    Protection of the environment from radionuclide releases requires knowledge of the normal background levels of radiation exposure in the exposed biotic community and an estimate of the detriment caused by additional exposure. This study modeled the background exposure and dose to the lungs of small burrowing mammals from 222Rn in artificial burrows in radon-rich soils at a site in southeastern Manitoba. E-PERM chambers used to measure 222Rn in soil showed good reproducibility of measurement, with an average coefficient of variance (CV) of about 10%. Geometric mean (GM) 222Rn concentrations at nine randomly selected sites ranged from 5,490 Bq/m3 (GSD = 1.57, n = 7) to 41,000 Bq/m3 (GSD = 1.02, n = 5). Long-term monitoring of 222Rn concentrations in artificial burrows showed large variation within and between burrows and did not show consistent variation with season, orientation of the burrow opening, or levels of 226Ra in the soil. Annual GM concentrations in individual burrows ranged from 7,480 Bq/m3 (GSD = 1.60) to 18,930 Bq/m3 (GSD = 1.81) in burrows several meters apart. A grand GM of 9,990 Bq/m3 (GSD = 1.81, n = 214) was measured over the site for the year. An exposure model was constructed for five small mammal species based on their respiration rates and the number of hours spent in the burrow, active or hibernating, exposed to soil gas 222Rn, and the time spent out of the burrow exposed to atmospheric 222Rn. A background dose of 0.9 mGy/a from atmospheric 222Rn (40 Bq/m3) was estimated for a large-bodied (80 kg), nonburrowing animal living on the soil surface. The highest exposures (mJ/a) in burrowing mammals occurred in those species with the highest respiration rates. Hibernation accounted for a small fraction of total annual exposure (<5%) because of very low respiration rates during this period. Absorbed dose to lung (mGy/a) was highest in the pocket gopher and decreased in the larger animals because of larger lung mass. Using mean 222Rn concentrations

  11. Radiation exposure and dose to small mammals in radon-rich soils.

    PubMed

    Macdonald, C R; Laverock, M J

    1998-07-01

    Protection of the environment from radionuclide releases requires knowledge of the normal background levels of radiation exposure in the exposed biotic community and an estimate of the detriment caused by additional exposure. This study modeled the background exposure and dose to the lungs of small burrowing mammals from 222Rn in artificial burrows in radon-rich soils at a site in southeastern Manitoba. E-PERM chambers used to measure 222Rn in soil showed good reproducibility of measurement, with an average coefficient of variance (CV) of about 10%. Geometric mean (GM) 222Rn concentrations at nine randomly selected sites ranged from 5,490 Bq/m3 (GSD = 1.57, n = 7) to 41,000 Bq/m3 (GSD = 1.02, n = 5). Long-term monitoring of 222Rn concentrations in artificial burrows showed large variation within and between burrows and did not show consistent variation with season, orientation of the burrow opening, or levels of 226Ra in the soil. Annual GM concentrations in individual burrows ranged from 7,480 Bq/m3 (GSD = 1.60) to 18,930 Bq/m3 (GSD = 1.81) in burrows several meters apart. A grand GM of 9,990 Bq/m3 (GSD = 1.81, n = 214) was measured over the site for the year. An exposure model was constructed for five small mammal species based on their respiration rates and the number of hours spent in the burrow, active or hibernating, exposed to soil gas 222Rn, and the time spent out of the burrow exposed to atmospheric 222Rn. A background dose of 0.9 mGy/a from atmospheric 222Rn (40 Bq/m3) was estimated for a large-bodied (80 kg), nonburrowing animal living on the soil surface. The highest exposures (mJ/a) in burrowing mammals occurred in those species with the highest respiration rates. Hibernation accounted for a small fraction of total annual exposure (<5%) because of very low respiration rates during this period. Absorbed dose to lung (mGy/a) was highest in the pocket gopher and decreased in the larger animals because of larger lung mass. Using mean 222Rn concentrations

  12. Small mammals from the early Pleistocene of the Granada Basin, southern Spain

    NASA Astrophysics Data System (ADS)

    García-Alix, Antonio; Minwer-Barakat, Raef; Suárez, Elvira Martín; Freudenthal, Matthijs

    2009-09-01

    The Pliocene and Pleistocene continental sedimentary records of the western sector of the Granada Basin, southern Spain, consist of alternating fluvial and lacustrine/palustrine sediments. Two Quaternary sections from this sector have been sampled: Huétor Tájar and Tojaire. They have yielded remains of rodents, insectivores and lagomorphs. The presence in the Huétor Tájar and Tojaire sections of Mimomys, Apodemus atavus, Castillomys rivas and two different species of Allophaiomys, indicates an Early Pleistocene age. These deposits, which are related to a fluvio-lacustrine system, can be differentiated from an older (Pliocene) braided fluvial system. Their dating has important repercussions on the paleogeographic reconstruction of the basin. The conditions inferred from the ecological preferences of the small mammal associations are wet and cold. These associations suggest a predominance of open herbaceous habitats, followed by forested habitats; semiaquatic habitats are the least represented.

  13. Context-dependent effects of large-wildlife declines on small-mammal communities in central Kenya.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Dirzo, Rodolfo; Goheen, Jacob R; Agwanda, Bernard; Brook, Cara; Otarola-Castillo, Erik; Ferguson, Adam W; Kinyua, Stephen N; McDonough, Molly M; Palmer, Todd M; Pringle, Robert M; Young, Truman P; Helgen, Kristofer M

    2015-03-01

    Many species of large wildlife have declined drastically worldwide. These reductions often lead to profound shifts in the ecology of entire communities and ecosystems. However, the effects of these large-wildlife declines on other taxa likely hinge upon both underlying abiotic properties of these systems and on the types of secondary anthropogenic changes associated with wildlife loss, making impacts difficult to predict. To better understand how these important contextual factors determine the consequences of large-wildlife declines on other animals in a community, we examined the effects of three common forms of large-wildlife loss (removal without replacement [using fences], removal followed by replacement with domestic stock, and removal accompanied by crop agricultural use) on small-mammal abundance, diversity, and community composition, in landscapes that varied in several abiotic attributes (rainfall, soil fertility, land-use intensity) in central Kenya. We found that small-mammal communities were indeed heavily impacted by all forms of large-wildlife decline, showing, on average: (1) higher densities, (2) lower species richness per site, and (3) different species assemblages in sites from which large wildlife were removed. However, the nature and magnitude of these effects were strongly context dependent. Rainfall, type of land-use change, and the interaction of these two factors were key predictors of both the magnitude and type of responses of small mammals. The strongest effects, particularly abundance responses, tended to be observed in low-rainfall areas. Whereas isolated wildlife removal primarily led to increased small-mammal abundance, wildlife removal associated with secondary uses (agriculture, domestic stock) had much more variable effects on abundance and stronger impacts on diversity and composition. Collectively, these results (1) highlight the importance of context in determining the impacts of large-wildlife decline on small-mammal

  14. Predictors for presence and abundance of small mammals in households of villages endemic for commensal rodent plague in Yunnan Province, China

    PubMed Central

    Yin, Jia-Xiang; Geater, Alan; Chongsuvivatwong, Virasakdi; Dong, Xing-Qi; Du, Chun-Hong; Zhong, You-Hong; McNeil, Edward

    2008-01-01

    Background Ninety-one rodent plague epidemics have occurred in Lianghe county, Yunnan Province, China, between 1990 and 2006. This study aimed to identify predictors for the presence and abundance of small mammals in households of villages endemic for rodent plague in Lianghe county. Results Rattus flavipectus and Suncus murinus were the two species captured in 110 households. Keeping cats decreased the number of captures of R. flavipectus by one to two thirds and the chance of reported small mammal sightings in houses by 60 to 80%. Food availability was associated with fewer captures. Keeping food in sacks decreased the small mammal captures, especially of S. murinus 4- to 8-fold. Vegetables grown around house and maize grown in the village reduced the captures of S. murinus and R. flavipectus by 73 and 45%, respectively. An outside toilet and garbage piles near the house each reduced R. flavipectus captures by 39 and 37%, respectively, while raising dogs and the presence of communal latrines in the village increased R. flavipectus captures by 76 and 110% but were without detectable effect on small mammal sightings. Location adjacent to other houses increased captures 2-fold but reduced the chance of sightings to about half. In addition, raising ducks increased the chance of sighting small mammals 2.7-fold. Even after adjusting for these variables, households of the Dai had higher captures than those of the Han and other ethnic groups. Conclusion Both species captures were reduced by availability of species-specific foods in the environment, whereas other predictors for capture of the two species differed. Other than the beneficial effect of cats, there were also discrepancies between the effects on small mammal captures and those on sightings. These differences should be considered during the implementation and interpretation of small mammal surveys. PMID:19068139

  15. Ecological surveillance of small mammals at Firing Points 10 and 60, Gyeonggi Province, Republic of Korea, 2001-2005.

    PubMed

    O'Guinn, Monica L; Klein, Terry A; Lee, John S; Kim, Heung-Chul; Baek, Luck-Ju; Chong, Sung-Tae; Turell, Michael J; Burkett, Douglas A; Schuster, Anthony; Lee, In-Yong; Yi, Suk-Hee; Sames, William J; Song, Ki-Joon; Song, Jin-Won

    2008-12-01

    Throughout Korea, small mammals are hosts to a number of disease-causing agents that pose a health threat to U.S. and Korean military forces while they conduct field-training exercises. A seasonal rodent-borne disease surveillance program was established at two firing points (FP), FP-10, and FP-60, and conducted over five years from 2001 through 2005 in response to hantavirus cases among U.S. soldiers. The ecology of these sites consisted primarily of tall grasses associated with semi-permanent and temporary water sources (drainage ditches and a small stream) and dry-land agriculture farming. Eight species of rodents and one species of insectivore were collected, including Apodemus agrarius, Micromys minutus, Mus musculus, Rattus norvegicus, Tscherskia triton, Microtus fortis, Myodes regulus, and Crocidura lasiura. The striped field mouse, A. agrarius, (primary reservoir for Hantaan virus, the causative agent of Korean hemorrhagic fever), was the most frequently collected, representing 90.6% of the 1,288 small mammals captured at both sites. Reported herein are the ecological parameters, seasonal population densities, and seasonal population characteristics associated with small mammals collected at two military training sites in the Republic of Korea. PMID:19263858

  16. Ecological surveillance of small mammals at Firing Points 10 and 60, Gyeonggi Province, Republic of Korea, 2001-2005.

    PubMed

    O'Guinn, Monica L; Klein, Terry A; Lee, John S; Kim, Heung-Chul; Baek, Luck-Ju; Chong, Sung-Tae; Turell, Michael J; Burkett, Douglas A; Schuster, Anthony; Lee, In-Yong; Yi, Suk-Hee; Sames, William J; Song, Ki-Joon; Song, Jin-Won

    2008-12-01

    Throughout Korea, small mammals are hosts to a number of disease-causing agents that pose a health threat to U.S. and Korean military forces while they conduct field-training exercises. A seasonal rodent-borne disease surveillance program was established at two firing points (FP), FP-10, and FP-60, and conducted over five years from 2001 through 2005 in response to hantavirus cases among U.S. soldiers. The ecology of these sites consisted primarily of tall grasses associated with semi-permanent and temporary water sources (drainage ditches and a small stream) and dry-land agriculture farming. Eight species of rodents and one species of insectivore were collected, including Apodemus agrarius, Micromys minutus, Mus musculus, Rattus norvegicus, Tscherskia triton, Microtus fortis, Myodes regulus, and Crocidura lasiura. The striped field mouse, A. agrarius, (primary reservoir for Hantaan virus, the causative agent of Korean hemorrhagic fever), was the most frequently collected, representing 90.6% of the 1,288 small mammals captured at both sites. Reported herein are the ecological parameters, seasonal population densities, and seasonal population characteristics associated with small mammals collected at two military training sites in the Republic of Korea.

  17. Physiological and behavioural responses of a small heterothermic mammal to fire stimuli.

    PubMed

    Stawski, Clare; Matthews, Jaya K; Körtner, Gerhard; Geiser, Fritz

    2015-11-01

    The predicted increase of the frequency and intensity of wildfires as a result of climate change could have a devastating impact on many species and ecosystems. However, the particular physiological and behavioural adaptions of animals to survive fires are poorly understood. We aimed to provide the first quantitative data on physiological and behavioural mechanisms used by a small heterothermic marsupial mammal, the fat-tailed dunnart (Sminthopsis crassicaudata), that may be crucial for survival during and immediately after a fire. Specifically, we aimed to determine (i) whether captive torpid animals are able to respond to fire stimuli and (ii) which energy saving mechanisms are used in response to fires. The initial response of torpid dunnarts to smoke exposure was to arouse immediately and therefore express shorter and shallower torpor bouts. Dunnarts also increased activity after smoke exposure when food was provided, but not when food was withheld. A charcoal/ash substrate, imitating post-fire conditions, resulted in a decrease in torpor use and activity, but only when food was available. Our novel data suggests that heterothermic mammals are able to respond to fire stimuli, such as smoke, to arouse from torpor as an initial response to fire and adjust torpor use and activity levels according to food availability modulated by fire cues.

  18. Small mammals as indicators of short-term and long-term disturbance in mixed prairie.

    PubMed

    Leis, Sherry A; Leslie, David M; Engle, David M; Fehmi, Jeffrey S

    2008-02-01

    Disturbance by military maneuvers over short and long time scales may have differential effects on grassland communities. We assessed small mammals as indicators of disturbance by military maneuvers in a mixed prairie in southern Oklahoma USA. We examined sites on two soil series, Foard and Lawton, across a gradient of disturbance intensity. A MANOVA showed that abundance of small mammals was associated (p = 0.03) with short-term (cover of vehicle tracks) disturbance but was not associated (p = 0.12) with long-term (loss of soil organic carbon, SOC) disturbance intensity. At the individual species level, Sigmodon hispidus (cotton rat) and Peromyscus maniculatus (deer mouse) occurred across all levels of disturbance and in both soil types. Only P. maniculatus abundance changed (p < 0.01) with short-term disturbance and increased by about one individual per 5% of additional track-cover. Abundance of P. maniculatus also increased (p = 0.04) by about three individuals per 1% increase in soil carbon. Chaetodipus hispidus (hispid pocket mouse) and Reithrodontomys fulvescens (fulvous harvest mouse) only occurred in single soil types limiting their potential as more general indicators. Abundance of P. maniculatus was positively related to shifts in plant species composition and likely reflected changes in vegetation structure (i.e. litter depth) and forage availability resulting from disturbance. Peromyscus maniculatus may be a useful biological indicator of ecosystem change because it responded predictably to both long-term and short-term disturbance and, when coupled with soil, plant, and disturbance history variables, can reveal land condition trends. PMID:17458511

  19. Small mammals as indicators of short-term and long-term disturbance in mixed prairie

    USGS Publications Warehouse

    Leis, S.A.; Leslie, David M.; Engle, David M.; Fehmi, J.S.

    2008-01-01

    Disturbance by military maneuvers over short and long time scales may have differential effects on grassland communities. We assessed small mammals as indicators of disturbance by military maneuvers in a mixed prairie in southern Oklahoma USA. We examined sites on two soil series, Foard and Lawton, across a gradient of disturbance intensity. A MANOVA showed that abundance of small mammals was associated (p = 0.03) with short-term (cover of vehicle tracks) disturbance but was not associated (p = 0.12) with long-term (loss of soil organic carbon, SOC) disturbance intensity. At the individual species level, Sigmodon hispidus (cotton rat) and Peromyscus maniculatus (deer mouse) occurred across all levels of disturbance and in both soil types. Only P. maniculatus abundance changed (p < 0.01) with short-term disturbance and increased by about one individual per 5% of additional track-cover. Abundance of P. maniculatus also increased (p = 0.04) by about three individuals per 1% increase in soil carbon. Chaetodipus hispidus (hispid pocket mouse) and Reithrodontomys fulvescens (fulvous harvest mouse) only occurred in single soil types limiting their potential as more general indicators. Abundance of P. maniculatus was positively related to shifts in plant species composition and likely reflected changes in vegetation structure (i.e. litter depth) and forage availability resulting from disturbance. Peromyscus maniculatus may be a useful biological indicator of ecosystem change because it responded predictably to both long-term and short-term disturbance and, when coupled with soil, plant, and disturbance history variables, can reveal land condition trends. ?? Springer Science+Business Media B.V. 2007.

  20. Responses of a small-mammal community to habitat management through controlled burning in a protected Mediterranean area

    NASA Astrophysics Data System (ADS)

    Moreno, Sacramento; Rouco, Carlos

    2013-05-01

    Fire is widely used as a management tool to achieve conservation goals. However, the consequences of such management on non-target species are frequently neglected and unknown. This study examines the effects of traditional management practices of scrubland clearance by controlled burning to improve menaced carnivores on non-target species: rodent and insectivores in Doñana National Park (SW of Iberian Peninsula). We used capture-recapture methods to examine changes in abundance in areas that were burnt one and three years ago, compared with unburnt areas. Results showed that burnt areas had higher species abundances, but mainly on the ecotonal boundaries. Species abundances showed dramatic seasonal differences with high abundances in autumn and winter, and very low abundance in summer. Our study revealed that scrubland management by controlled fires increases the abundance of small mammal species, mainly Mus spretus and Apodemus sylvaticus. We found only four small mammal species between the different treatments. However, some species that were formerly abundant in Doñana, such as Elyomis quercinus, were found only in burnt areas. Our results suggest that controlled burning is not contributing to the current loss of biotic diversity in this community.

  1. Anthropogenic soils and land use patterns in relation to small mammal and flea abundance in plague endemic area of Western Usambara Mountains, Tanzania.

    PubMed

    Kimaro, Didas N; Msanya, Balthazar M; Meliyo, Joel; Hieronimo, Proches; Mwango, Sibaway; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Heterogeneity in the landscapes of West Usambara Mountains on land use and human activities has been reported. However, the interface of land use patterns and human modified soils with small mammal and flea abundance for possible explanation of plague has not been explored. This study was carried out to determine the link between anthropogenic soils and land use patterns on small mammal and flea abundance and the occurrence of reported plague in the Western Usambara Mountains in Tanzania. Standard soil survey methods were used to identify and describe soils and land use patterns on lower slopes and valley bottoms on which the surrounding villages are reported to have high and medium plague frequencies. The identified soils were characterised in terms of their morphological and physico-chemical properties and classified according to FAO-World Reference Base for Soil Resources. Small mammals were trapped on the same landscape positions and identified to genus/species level. Fleas were removed from the trapped small mammals, counted and identified to species level. In total 57 small mammals were captured from which 32 fleas were collected. Results show that human settlements and mixed cultivation on lower slopes and continuous vegetable cropping in the valley bottoms are dominant land use types. Intensive use of forest soils, manuring and irrigation on farms in the studied landscapes have contributed to the development of uniquely human modified soils namely Hortic Anthrosols in the lower slopes and Plaggic Irragric Hortic Anthrosols in valley bottoms. The identified anthropogenic soils and land use patterns are associated with high abundance of small mammals (Mastomys natalensis) and flea species (Xenopsylla brasiliensis and Dinopsyllus lypusus). This phenomenon is vividly apparent in the villages with medium to high plague frequencies. The study suggests that plague surveillance programmes should consider the existing relationship between anthropogenic soils, land

  2. Lead concentrations: Bats vs. terrestrial small mammals collected near a major highway

    USGS Publications Warehouse

    Clark, D.R.

    1979-01-01

    Wholebody lead concentrations of two species of bats (big brown and little brown) and three species of terrestrial mammals (meadow voles, white-footed mice, and short-tailed shrews) trapped along the Baltimore-Washington Parkway in 1976 are compared, including embryo lead concentration. These data are also compared to those of previous studies conducted in Illinois and Virginia within 20 miles of highways with high traffic volumes. Minimum dosages of various lead compounds that cause mortality or reproductive impairment in six species of domestic mammals (horses, cattle, sheep, dogs, rats, and mice) are noted.

  3. Cutaneous wound healing in aging small mammals: a systematic review.

    PubMed

    Kim, Dong Joo; Mustoe, Thomas; Clark, Richard A F

    2015-01-01

    As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.

  4. Status and challenges for conservation of small mammal assemblages in South America.

    PubMed

    Kelt, Douglas A; Meserve, Peter L

    2014-08-01

    South America spans about 44° latitude, covers almost 18 million km(2) , and is second only to Africa in continental mammal species richness. In spite of this richness, research on the status of this fauna and on the nature and magnitude of contemporary threats remains limited. Distilling threats to this diverse fauna at a continental scale is challenging, in part because of the limited availability of rigorous studies. Recognizing this constraint, we summarize key threats to small mammals in South America, emphasizing the roles of habitat loss and degradation, direct persecution, and the increasing threat of climate change. We focus on three regional 'case studies': the tropical Andes, Amazonia and adjacent lowland regions, and the southern temperate region. We close with a brief summary of recent findings at our long-term research site in north-central Chile as they pertain to projected threats to this fauna. Habitat alteration is a pervasive threat that has been magnified by market forces and globalization (e.g. extensive agricultural development in Amazonia), and threatens increasing numbers of populations and species. Climate change poses even greater threats, from changes in rainfall and runoff regimes and resulting changes in vegetative structure and composition to secondary influences on fire dynamics. It is likely that many changes have yet to be recognized, but existing threats suggest that the future may bring dramatic changes in the distribution of many mammal taxa, although it is not clear if key habitat elements (vegetation) will respond as rapidly as climatic factors, leading to substantial uncertainty. Climate change is likely to result in 'winners' and 'losers' but available information precludes detailed assessment of which species are likely to fall into which category. In the absence of long-term monitoring and applied research to characterize these threats more accurately, and to develop strategies to reduce their impacts, managers already are

  5. A molecular forensic method for identifying species composition of processed marine mammal meats.

    PubMed

    Chang, Chia-Hao; Yao, Chiou-Ju; Yu, Hsin-Yi; Liao, Yun-Chih; Jang-Liaw, Nian-Hong; Tsai, Chi-Li; Shao, Kwang-Tsao

    2014-03-01

    We used universal primers designed for the cytochrome oxidase I (CO I) sequence of the order Cetacea and the family Phocidae to prove that meat fritters sold in Taiwan contained meat from two seal, six cetacean, and one pig species. The sequence information for CO I obtained in this study was limited and population genetics data for the eight sampled marine mammalian species was insufficient to deduce where these marine mammals were hunted. Regardless of the geographic origins of the marine mammal flesh, sale and consumption of marine mammals in Taiwan violates the Wildlife Conservation Act. This study provides PCR primers that could enable government testing of suspect meats to curtail the illegal trade in marine mammal products.

  6. Identification multiplex assay of 19 terrestrial mammal species present in New Zealand.

    PubMed

    Ramón-Laca, Ana; Linacre, Adrian M T; Gleeson, Dianne M; Tobe, Shanan S

    2013-12-01

    An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species-specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species-specific fragments, making the assay self-confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost-effective manner.

  7. Effect of downed woody debris on small mammal anti-predator behavior.

    SciTech Connect

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.

  8. Toxoplasma gondii and Neospora caninum in wild small mammals: Seroprevalence, DNA detection and genotyping.

    PubMed

    Machačová, Tereza; Ajzenberg, Daniel; Žákovská, Alena; Sedlák, Kamil; Bártová, Eva

    2016-06-15

    Generally, rodents and other small mammals are considered as one of the sources of Toxoplasma gondii or Neospora caninum infection for cats and dogs as the definitive hosts of these two parasites, respectively. The aim of the study was to find out the prevalence of these two parasites in wild small mammals from the Czech Republic and to characterize T. gondii isolates by methods of molecular biology. A total of 621 wild small mammals were caught in the Czech Republic during years 2002-2014. Antibodies to T. gondii were detected by latex agglutination test in six (2.5%) of 240 small mammals (in two A. agrarius and four A. flavicollis). Antibodies to N. caninum were detected by commercially available competitive-inhibition enzyme-linked immunosorbent assay in one A. flavicolis (0.4%). Three of 427 (0.7%) liver samples were positive for T. gondii by PCR while negative for N. caninum. All embryo samples (n=102) were negative for both T. gondii and N. caninum. The three liver samples positive for T. gondii DNA (two from A. flavicollis and one from A. sylvaticus) were genotyped by 15 microsatellite markers and characterized as type II. To our knowledge, this is the first information about genetic characterization of T. gondii isolates in small mammals from Europe and the first detection of N. caninum antibodies in wild rodents from the Czech Republic. PMID:27198782

  9. How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes?

    NASA Astrophysics Data System (ADS)

    Michel, Nadia; Burel, Françoise; Butet, Alain

    2006-07-01

    Over the last decades, profound changes in agricultural practices in the world have led to modifications of land-use as well as landscape structure and composition. Major changes resulted in enlargement of parcel size, increase of cultivated areas and drastic reduction of permanent elements such as woods, hedges or natural meadows. In this context we chose to investigate the composition and structure of small mammal communities in the hedgerow networks of three landscape units of Western France (Brittany) differing by their level of agricultural land-use intensity and hedgerow network density: a slightly intensified dense hedgerow network landscape unit (BOC1), a moderately intensified and fragmented hedgerow network landscape unit (BOC2) and a highly intensified landscape unit on an area reclaimed from the sea (POL). Characterization of small mammal communities was performed using live trapping on permanent habitats (eight hedges per landscape unit). In each of the 24 trapping units, a standardized method was used consisting of a baited 100-m trap-line. Diversity indices were used to compare the three communities. Species richness didn't vary across landscapes whereas Shannon's index of diversity underlined a clear difference between, on the one hand, the most intensified landscape unit (POL) which displayed the lowest diversity and, on the other hand, the two other less intensified units. The abundance of small mammals differed between the three sites: they were significantly more numerous in the hedges of the most intensified site than in hedges of the two other sites. Differences between species also appeared: for example, the Bank vole ( Clethrionomys glareolus) was very characteristic of POL, whereas the Pygmy shrew ( Sorex minutus) was much more associated with BOC sites. Within hedges, like for abundance, small mammal biomass was the highest in the most intensified site (POL > BOC2 = BOC1). On the contrary, at the landscape scale, biomass was the lowest in

  10. Effectiveness of protected areas for representing species and populations of terrestrial mammals in Costa Rica.

    PubMed

    González-Maya, José F; Víquez-R, Luis R; Belant, Jerrold L; Ceballos, Gerardo

    2015-01-01

    Costa Rica has one of the greatest percentages (26%) of protected land in the world. The National Protected Areas System (NPAS) of Costa Rica was established in 1976 and currently includes >190 protected areas within seven different protection categories. The effectiveness of the NPAS to represent species, populations, and areas with high species richness has not been properly evaluated. Such evaluations are fundamental to understand what is necessary to strengthen the NPAS and better protect biodiversity. We present a novel assessment of NPAS effectiveness in protecting mammal species. We compiled the geographical ranges of all terrestrial Costa Rican mammals then determined species lists for all protected areas and the estimated proportion of each species' geographic range protected. We also classified mammal species according to their conservation status using the IUCN Red List of Threatened Species. We found almost complete representation of mammal species (98.5%) in protected areas, but low relative coverage (28.3% on average) of their geographic ranges in Costa Rica and 25% of the species were classified as underprotected according to a priori representation targets. Interestingly, many species-rich areas are not protected, and at least 43% of cells covering the entire country are not included in protected areas. Though protected areas in Costa Rica represent species richness well, strategic planning for future protected areas to improve species complementarity and range protection is necessary. Our results can help to define sites where new protected areas can have a greater impact on mammal conservation, both in terms of species richness and range protection. PMID:25970293

  11. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?

    PubMed

    Lovegrove, Barry G; Canale, Cindy; Levesque, Danielle; Fluch, Gerhard; Reháková-Petrů, Milada; Ruf, Thomas

    2014-01-01

    There is some urgency in the necessity to incorporate physiological data into mechanistic, trait-based, demographic climate change models. Physiological responses at the individual level provide the mechanistic link between environmental changes and individual performances and hence population dynamics. Here we consider the causal relationship between ambient temperature (Ta) and metabolic rate (MR), namely, the Arrhenius effect, which is directly affected by global warming through increases in average global air temperatures and the increase in the frequency and intensity of extreme climate events. We measured and collated data for several small, free-ranging tropical arboreal mammals and evaluated their vulnerability to Arrhenius effects and putative heat stress associated with climate change. Skin temperatures (Tskin) were obtained from free-ranging tarsiers (Tarsius syrichta) on Bohol Island, Philippines. Core body temperature (Tb) was obtained from the greater hedgehog tenrec (Setifer setosus) and the gray brown mouse lemur (Microcebus ravelobensis) from Ankarafantsika, Madagascar. Tskin for another mouse lemur, Microcebus griseorufus, was obtained from the literature. All four species showed evidence of hyperthermia during the daytime rest phase in the form of either Tskin or Tb that was higher than the normothermic Tb during the nighttime active phase. Potentially, tropical arboreal mammals with the lowest MRs and Tb, such as tarsiers, are the most vulnerable to sustained heat stress because their Tb is already close to Ta. Climate change may involve increases in MRs due to Arrhenius effects, especially during the rest phase or during torpor and hibernation. The most likely outcome of increased Arrhenius effects with climate change will be an increase in energy expenditure at the expense of other critical functions such as reproduction or growth and will thus affect fitness. However, we propose that these hypothetical Arrhenius costs can be, and in some

  12. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?

    PubMed

    Lovegrove, Barry G; Canale, Cindy; Levesque, Danielle; Fluch, Gerhard; Reháková-Petrů, Milada; Ruf, Thomas

    2014-01-01

    There is some urgency in the necessity to incorporate physiological data into mechanistic, trait-based, demographic climate change models. Physiological responses at the individual level provide the mechanistic link between environmental changes and individual performances and hence population dynamics. Here we consider the causal relationship between ambient temperature (Ta) and metabolic rate (MR), namely, the Arrhenius effect, which is directly affected by global warming through increases in average global air temperatures and the increase in the frequency and intensity of extreme climate events. We measured and collated data for several small, free-ranging tropical arboreal mammals and evaluated their vulnerability to Arrhenius effects and putative heat stress associated with climate change. Skin temperatures (Tskin) were obtained from free-ranging tarsiers (Tarsius syrichta) on Bohol Island, Philippines. Core body temperature (Tb) was obtained from the greater hedgehog tenrec (Setifer setosus) and the gray brown mouse lemur (Microcebus ravelobensis) from Ankarafantsika, Madagascar. Tskin for another mouse lemur, Microcebus griseorufus, was obtained from the literature. All four species showed evidence of hyperthermia during the daytime rest phase in the form of either Tskin or Tb that was higher than the normothermic Tb during the nighttime active phase. Potentially, tropical arboreal mammals with the lowest MRs and Tb, such as tarsiers, are the most vulnerable to sustained heat stress because their Tb is already close to Ta. Climate change may involve increases in MRs due to Arrhenius effects, especially during the rest phase or during torpor and hibernation. The most likely outcome of increased Arrhenius effects with climate change will be an increase in energy expenditure at the expense of other critical functions such as reproduction or growth and will thus affect fitness. However, we propose that these hypothetical Arrhenius costs can be, and in some

  13. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria)

    PubMed Central

    Kilpatrick, C. William; Agnarsson, Ingi

    2015-01-01

    Marsupials or metatherians are a group of mammals that are distinct in giving birth to young at early stages of development and in having a prolonged investment in lactation. The group consists of nearly 350 extant species, including kangaroos, koala, possums, and their relatives. Marsupials are an old lineage thought to have diverged from early therian mammals some 160 million years ago in the Jurassic, and have a remarkable evolutionary and biogeographical history, with extant species restricted to the Americas, mostly South America, and to Australasia. Although the group has been the subject of decades of phylogenetic research, the marsupial tree of life remains controversial, with most studies focusing on only a fraction of the species diversity within the infraclass. Here we present the first Methaterian species-level phylogeny to include 80% of the extant marsupial species and five nuclear and five mitochondrial markers obtained from Genbank and a recently published retroposon matrix. Our primary goal is to provide a summary phylogeny that will serve as a tool for comparative research. We evaluate the extent to which the phylogeny recovers current phylogenetic knowledge based on the recovery of “benchmark clades” from prior studies—unambiguously supported key clades and undisputed traditional taxonomic groups. The Bayesian phylogenetic analyses recovered nearly all benchmark clades but failed to find support for the suborder Phalagiformes. The most significant difference with previous published topologies is the support for Australidelphia as a group containing Microbiotheriidae, nested within American marsupials. However, a likelihood ratio test shows that alternative topologies with monophyletic Australidelphia and Ameridelphia are not significantly different than the preferred tree. Although further data are needed to solidify understanding of Methateria phylogeny, the new phylogenetic hypothesis provided here offers a well resolved and detailed tool

  14. Mammals from 'down under': a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria).

    PubMed

    May-Collado, Laura J; Kilpatrick, C William; Agnarsson, Ingi

    2015-01-01

    Marsupials or metatherians are a group of mammals that are distinct in giving birth to young at early stages of development and in having a prolonged investment in lactation. The group consists of nearly 350 extant species, including kangaroos, koala, possums, and their relatives. Marsupials are an old lineage thought to have diverged from early therian mammals some 160 million years ago in the Jurassic, and have a remarkable evolutionary and biogeographical history, with extant species restricted to the Americas, mostly South America, and to Australasia. Although the group has been the subject of decades of phylogenetic research, the marsupial tree of life remains controversial, with most studies focusing on only a fraction of the species diversity within the infraclass. Here we present the first Methaterian species-level phylogeny to include 80% of the extant marsupial species and five nuclear and five mitochondrial markers obtained from Genbank and a recently published retroposon matrix. Our primary goal is to provide a summary phylogeny that will serve as a tool for comparative research. We evaluate the extent to which the phylogeny recovers current phylogenetic knowledge based on the recovery of "benchmark clades" from prior studies-unambiguously supported key clades and undisputed traditional taxonomic groups. The Bayesian phylogenetic analyses recovered nearly all benchmark clades but failed to find support for the suborder Phalagiformes. The most significant difference with previous published topologies is the support for Australidelphia as a group containing Microbiotheriidae, nested within American marsupials. However, a likelihood ratio test shows that alternative topologies with monophyletic Australidelphia and Ameridelphia are not significantly different than the preferred tree. Although further data are needed to solidify understanding of Methateria phylogeny, the new phylogenetic hypothesis provided here offers a well resolved and detailed tool for

  15. Uptake of environmental contaminants by small mammals in pickleweed habitats at San Francisco Bay, California

    USGS Publications Warehouse

    Clark, D.R.; Foerster, K.S.; Marn, C.M.; Hothem, R.L.

    1992-01-01

    Small mammals were livetrapped in pickleweed (Salicornia virginica) habitats near San Francisco Bay, California in order to measure the uptake of several contaminants and to evaluate the potential effects of these contaminants on the endangered salt marsh harvest mouse (Reithrodontomys raviventris). Tissues of house mice (Mus musculus), deer mice (Peromyscus maniculatus), and California voles (Microtus californicus) from nine sites were analyzed for chemical contaminants including mercury, selenium, cadmium, lead, and polychlorinated biphenyls (PCBs). Concentrations of contaminants differed significantly among sites and species. Mean concentrations at sites where uptake was greatest were less than maximum means for the same or similar species recorded elsewhere. Harvest mice (Reithrodontomys spp.) were captured only at sites where concentrations of mercury or PCBs were below specific levels in house mice. Additional studies aimed at the protection of the salt marsh harvest mouse are suggested. These include contaminant feeding studies in the laboratory as well as field monitoring of surrogate species and community structure in salt marsh harvest mouse habitats.

  16. Uptake of environmental contaminants by small mammals in pickleweed habitats at San Francisco Bay, California.

    PubMed

    Clark, D R; Foerster, K S; Marn, C M; Hothem, R L

    1992-05-01

    Small mammals were live-trapped in pickleweed (Salicornia virginica) habitats near San Francisco Bay, California in order to measure the uptake of several contaminants and to evaluate the potential effects of these contaminants on the endangered salt marsh harvest mouse (Reithrodontomys raviventris). Tissues of house mice (Mus musculus), deer mice (Peromyscus maniculatus), and California voles (Microtus californicus) from nine sites were analyzed for chemical contaminants including mercury, selenium, cadmium, lead, and polychlorinated biphenyls (PCBs). Concentrations of contaminants differed significantly among sites and species. Mean concentrations at sites where uptake was greatest were less than maximum means for the same or similar species recorded elsewhere. Harvest mice (Reithrodontomys spp.) were captured only at sites where concentrations of mercury or PCBs were below specific levels in house mice. Additional studies aimed at the protection of the salt marsh harvest mouse are suggested. These include contaminant feeding studies in the laboratory as well as field monitoring of surrogate species and community structure in salt marsh harvest mouse habitats. PMID:1586203

  17. ASSOCIATIONS OF EASTERN REDCEDAR AND COMMUNITY STRUCTURE OF SMALL MAMMALS

    EPA Science Inventory

    Increased abundance of eastern redcedar (Juniperus virginianas), a native but invasive species in the Great Plains, has been associated with several changes in ecosystem function. It can lead to a reduction in herbaceous biomass in the canopy zone, alter species composition, and...

  18. Ticks of small mammals from the Hindu Kush (Afghanistan).

    PubMed

    Cerný, V; Daniel, M

    1977-01-01

    During the First Czechoslovak expedition to the East Hindu Kush in June-September 1965 a total of 193 hosts belonging to 12 species was examined on the presence of ticks. Specimens of the genera Ixodes, Haemaphysalis, Dermacentor and Rhipicephalus were found. Data and comments are given for the species collected. PMID:342370

  19. Effectiveness of Protected Areas for Representing Species and Populations of Terrestrial Mammals in Costa Rica

    PubMed Central

    González-Maya, José F.; Víquez-R, Luis R.; Belant, Jerrold L.; Ceballos, Gerardo

    2015-01-01

    Costa Rica has one of the greatest percentages (26%) of protected land in the world. The National Protected Areas System (NPAS) of Costa Rica was established in 1976 and currently includes >190 protected areas within seven different protection categories. The effectiveness of the NPAS to represent species, populations, and areas with high species richness has not been properly evaluated. Such evaluations are fundamental to understand what is necessary to strengthen the NPAS and better protect biodiversity. We present a novel assessment of NPAS effectiveness in protecting mammal species. We compiled the geographical ranges of all terrestrial Costa Rican mammals then determined species lists for all protected areas and the estimated proportion of each species’ geographic range protected. We also classified mammal species according to their conservation status using the IUCN Red List of Threatened Species. We found almost complete representation of mammal species (98.5%) in protected areas, but low relative coverage (28.3% on average) of their geographic ranges in Costa Rica and 25% of the species were classified as underprotected according to a priori representation targets. Interestingly, many species-rich areas are not protected, and at least 43% of cells covering the entire country are not included in protected areas. Though protected areas in Costa Rica represent species richness well, strategic planning for future protected areas to improve species complementarity and range protection is necessary. Our results can help to define sites where new protected areas can have a greater impact on mammal conservation, both in terms of species richness and range protection. PMID:25970293

  20. C-values of seven marine mammal species determined by flow cytometry.

    PubMed

    Du, Bo; Wang, Ding

    2006-11-01

    C-values, which estimate genome size, have puzzled geneticists for years because they bear no relationship to organismal complexity. Though C-values have been estimated for thousands of species, considerably more data are required in order to better understanding genome evolution. This is particularly true for mammals, in which C-values are known for less than 8% of the total number of mammalian species. Among marine mammals, a C-value has been estimated only for the bottlenose dolphin (Tursiops truncatus). Thus examination of additional species of marine mammals is necessary for comparative purposes. It will enable a better understanding of marine mammal genome evolution, and it is also relevant to conservation, because larger genome size has been linked to increased likelihood of extinction in some plant and animal groups. Our study presents C-values of seven marine mammal species, including five cetacean species that are endangered to varying degrees. Similarly to the results for other groups, our results suggest that larger genome size in cetaceans is related to an increased likelihood of extinction. PMID:17189914

  1. Control of small mammal damage in the Alberta oil sands reclamation and afforestation program

    SciTech Connect

    Radvanyi, A.

    1980-12-01

    Open-pit mining procedures being conducted in the oil sands of northeast Alberta greatly disrupt many acres of the environment. The reclamation and afforestation program intended to restore the forest habitat encountered an unanticipated problem when a large percentage of young nursery-raised trees planted on a tailings pond dyke and on overburden dump sites were found to have been girdled by a population of meadow voles which had become established in the dense grass habitat created to stabilize steep sandy slopes of the spoil piles. The study monitored small mammal populations through a high, low, and a second high level commensurate with the 3- to 4-year population cycle of small mammals. A control technique utilizing grain treated with an anticoagulant rodenticide made available to the mice in poisoned bait feeder stations effectively reduced small mammal numbers to very low levels and reduced girdling damage from an average of 50% to 1-2%.

  2. Small-mammal data on early and middle Holocene climates and biotic communities in the Bonneville Basin, USA

    USGS Publications Warehouse

    Schmitt, D.N.; Madsen, D.B.; Lupo, K.D.

    2002-01-01

    Archaeological investigations in Camels Back Cave, western Utah, recovered a series of small-mammal bone assemblages from stratified deposits dating between ca. 12,000 and 500 14C yr B.P. The cave's early Holocene fauna includes a number of species adapted to montane or mesic habitats containing grasses and/or sagebrush (e.g., Lepus townsendii, Marmota flaviventris, Reithrodontomys megalotis, and Brachylagus idahoensis) which suggest that the region was relatively cool and moist until after 8800 14C yr B.P. Between ca. 8600 and 8100 14C yr B.P. these mammals became locally extinct, taxonomic diversity declined, and there was an increase in species well-adapted to xeric, low-elevation habitats, including ground squirrels, Lepus californicus and Neotoma lepida. The early small-mammal record from Camels Back Cave is similar to the 11,300-6000 14C yr B.P. mammalian sequence from Homestead Cave, northwestern Utah, and provides corroborative data on Bonneville Basin paleoenvironments and mammalian responses to middle Holocene desertification. ?? 2002 University of Washington.

  3. Molecular Characterization of Various Trichomonad Species Isolated from Humans and Related Mammals in Indonesia

    PubMed Central

    Kamaruddin, Mudyawati; Rahman, Md. Moshiur; Arayama, Shunsuke; Hidayati, Anggi P.N.; Syafruddin, Din; Asih, Puji B.S.; Yoshikawa, Hisao; Kawahara, Ei

    2014-01-01

    Trichomonad species inhabit a variety of vertebrate hosts; however, their potential zoonotic transmission has not been clearly addressed, especially with regard to human infection. Twenty-one strains of trichomonads isolated from humans (5 isolates), pigs (6 isolates), rodents (6 isolates), a water buffalo (1 isolate), a cow (1 isolate), a goat (1 isolate), and a dog (1 isolate) were collected in Indonesia and molecularly characterized. The DNA sequences of the partial 18S small subunit ribosomal RNA (rRNA) gene or 5.8S rRNA gene locus with its flanking regions (internal transcribed spacer region, ITS1 and ITS2) were identified in various trichomonads; Simplicimonas sp., Hexamastix mitis, and Hypotrichomonas sp. from rodents, and Tetratrichomonas sp. and Trichomonas sp. from pigs. All of these species were not detected in humans, whereas Pentatrichomonas hominis was identified in humans, pigs, the dog, the water buffalo, the cow, and the goat. Even when using the high-resolution gene locus of the ITS regions, all P. hominis strains were genetically identical; thus zoonotic transmission between humans and these closely related mammals may be occurring in the area investigated. The detection of Simplicimonas sp. in rodents (Rattus exulans) and P. hominis in water buffalo in this study revealed newly recognized host adaptations and suggested the existence of remaining unrevealed ranges of hosts in the trichomonad species. PMID:25352694

  4. Molecular characterization of various trichomonad species isolated from humans and related mammals in Indonesia.

    PubMed

    Kamaruddin, Mudyawati; Tokoro, Masaharu; Rahman, Md Moshiur; Arayama, Shunsuke; Hidayati, Anggi P N; Syafruddin, Din; Asih, Puji B S; Yoshikawa, Hisao; Kawahara, Ei

    2014-10-01

    Trichomonad species inhabit a variety of vertebrate hosts; however, their potential zoonotic transmission has not been clearly addressed, especially with regard to human infection. Twenty-one strains of trichomonads isolated from humans (5 isolates), pigs (6 isolates), rodents (6 isolates), a water buffalo (1 isolate), a cow (1 isolate), a goat (1 isolate), and a dog (1 isolate) were collected in Indonesia and molecularly characterized. The DNA sequences of the partial 18S small subunit ribosomal RNA (rRNA) gene or 5.8S rRNA gene locus with its flanking regions (internal transcribed spacer region, ITS1 and ITS2) were identified in various trichomonads; Simplicimonas sp., Hexamastix mitis, and Hypotrichomonas sp. from rodents, and Tetratrichomonas sp. and Trichomonas sp. from pigs. All of these species were not detected in humans, whereas Pentatrichomonas hominis was identified in humans, pigs, the dog, the water buffalo, the cow, and the goat. Even when using the high-resolution gene locus of the ITS regions, all P. hominis strains were genetically identical; thus zoonotic transmission between humans and these closely related mammals may be occurring in the area investigated. The detection of Simplicimonas sp. in rodents (Rattus exulans) and P. hominis in water buffalo in this study revealed newly recognized host adaptations and suggested the existence of remaining unrevealed ranges of hosts in the trichomonad species. PMID:25352694

  5. Molecular characterization of various trichomonad species isolated from humans and related mammals in Indonesia.

    PubMed

    Kamaruddin, Mudyawati; Tokoro, Masaharu; Rahman, Md Moshiur; Arayama, Shunsuke; Hidayati, Anggi P N; Syafruddin, Din; Asih, Puji B S; Yoshikawa, Hisao; Kawahara, Ei

    2014-10-01

    Trichomonad species inhabit a variety of vertebrate hosts; however, their potential zoonotic transmission has not been clearly addressed, especially with regard to human infection. Twenty-one strains of trichomonads isolated from humans (5 isolates), pigs (6 isolates), rodents (6 isolates), a water buffalo (1 isolate), a cow (1 isolate), a goat (1 isolate), and a dog (1 isolate) were collected in Indonesia and molecularly characterized. The DNA sequences of the partial 18S small subunit ribosomal RNA (rRNA) gene or 5.8S rRNA gene locus with its flanking regions (internal transcribed spacer region, ITS1 and ITS2) were identified in various trichomonads; Simplicimonas sp., Hexamastix mitis, and Hypotrichomonas sp. from rodents, and Tetratrichomonas sp. and Trichomonas sp. from pigs. All of these species were not detected in humans, whereas Pentatrichomonas hominis was identified in humans, pigs, the dog, the water buffalo, the cow, and the goat. Even when using the high-resolution gene locus of the ITS regions, all P. hominis strains were genetically identical; thus zoonotic transmission between humans and these closely related mammals may be occurring in the area investigated. The detection of Simplicimonas sp. in rodents (Rattus exulans) and P. hominis in water buffalo in this study revealed newly recognized host adaptations and suggested the existence of remaining unrevealed ranges of hosts in the trichomonad species.

  6. Ancient urban ecology reconstructed from archaeozoological remains of small mammals in the Near East.

    PubMed

    Weissbrod, Lior; Malkinson, Dan; Cucchi, Thomas; Gadot, Yuval; Finkelstein, Israel; Bar-Oz, Guy

    2014-01-01

    Modern rapidly expanding cities generate intricate patterns of species diversity owing to immense complexity in urban spatial structure and current growth trajectories. We propose to identify and uncouple the drivers that give rise to these patterns by looking at the effect of urbanism on species diversity over a previously unexplored long temporal frame that covers early developments in urbanism. To provide this historical perspective we analyzed archaeozoological remains of small mammals from ancient urban and rural sites in the Near East from the 2nd to the 1st millennium BCE, and compared them to observations from modern urban areas. Our data show that ancient urban assemblages consistently comprised two main taxa (Mus musculus domesticus and Crocidura sp.), whereas assemblages of contemporaneous rural sites were significantly richer. Low species diversity also characterizes high-density core areas of modern cities, suggesting that similar ecological drivers have continued to operate in urban areas despite the vast growth in their size and population densities, as well as in the complexity of their technologies and social organization. Research in urban ecology has tended to emphasize the relatively high species diversity observed in low-density areas located on the outskirts of cities, where open and vegetated patches are abundant. The fact that over several millennia urban evolution did not significantly alter species diversity suggests that low diversity is an attribute of densely-populated settlements. The possibility that high diversity in peripheral urban areas arose only recently as a short-term phenomenon in urban ecology merits further research based on long-term data.

  7. Ancient Urban Ecology Reconstructed from Archaeozoological Remains of Small Mammals in the Near East

    PubMed Central

    Weissbrod, Lior; Malkinson, Dan; Cucchi, Thomas; Gadot, Yuval; Finkelstein, Israel; Bar-Oz, Guy

    2014-01-01

    Modern rapidly expanding cities generate intricate patterns of species diversity owing to immense complexity in urban spatial structure and current growth trajectories. We propose to identify and uncouple the drivers that give rise to these patterns by looking at the effect of urbanism on species diversity over a previously unexplored long temporal frame that covers early developments in urbanism. To provide this historical perspective we analyzed archaeozoological remains of small mammals from ancient urban and rural sites in the Near East from the 2nd to the 1st millennium BCE, and compared them to observations from modern urban areas. Our data show that ancient urban assemblages consistently comprised two main taxa (Mus musculus domesticus and Crocidura sp.), whereas assemblages of contemporaneous rural sites were significantly richer. Low species diversity also characterizes high-density core areas of modern cities, suggesting that similar ecological drivers have continued to operate in urban areas despite the vast growth in their size and population densities, as well as in the complexity of their technologies and social organization. Research in urban ecology has tended to emphasize the relatively high species diversity observed in low-density areas located on the outskirts of cities, where open and vegetated patches are abundant. The fact that over several millennia urban evolution did not significantly alter species diversity suggests that low diversity is an attribute of densely-populated settlements. The possibility that high diversity in peripheral urban areas arose only recently as a short-term phenomenon in urban ecology merits further research based on long-term data. PMID:24622726

  8. Using of Synchrotron radiation for study of multielement composition of the small mammals diet and tissues

    NASA Astrophysics Data System (ADS)

    Bezel, V. S.; Koutzenogii, K. P.; Mukhacheva, S. V.; Chankina, O. V.; Savchenko, T. I.

    2007-05-01

    The Synchrotron radiation X-ray Fluorescence analysis (SRXRF) was used for estimation of "geochemical selection" of elements by small mammals, which belong to different trophic groups and inhabit polluted and background areas (the Middle Ural). The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Cd, Pb in the diet and into hepar of a herbivorous ( bank vole) and carnivorous ( Laxmann's shrew) small mammals were compared. Herbivores play a particular role in chemical elements translocation between trophic levels, limiting element transition to consumers of the consequent levels. Whereas, insectivores concentrate most elements in their tissues under the same conditions.

  9. Climate and species richness predict the phylogenetic structure of African mammal communities.

    PubMed

    Kamilar, Jason M; Beaudrot, Lydia; Reed, Kaye E

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.

  10. Climate and Species Richness Predict the Phylogenetic Structure of African Mammal Communities

    PubMed Central

    Kamilar, Jason M.; Beaudrot, Lydia; Reed, Kaye E.

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change. PMID:25875361

  11. Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity

    PubMed Central

    Redding, David W.; Mooers, Arne O.

    2015-01-01

    The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort. PMID:26630179

  12. Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity.

    PubMed

    Redding, David W; Mooers, Arne O

    2015-01-01

    The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort.

  13. Ecological surveillance of small mammals at Dagmar North Training Area, Gyeonggi Province, Republic of Korea, 2001-2005.

    PubMed

    Kim, Heung Chul; Klein, Terry A; Kang, Hae Ji; Gu, Se Hun; Moon, Sung Sil; Baek, Luck Ju; Chong, Sung Tae; O'Guinn, Monica L; Lee, John S; Turell, Michael J; Song, Jin-Won

    2011-06-01

    A seasonal rodent-borne disease surveillance program was established at Dagmar North Training Area located near the demilitarized zone, Republic of Korea, from 2001 through 2005. Selected habitats surveyed included earthen banks separating rice paddies, fighting positions along a 5 m rock-faced earthen berm, and extensive tall grasses with various degrees of herbaceous and scrub vegetation associated with dirt roads, rice paddies, ditches, ponds, or the Imjin River. Of the nine species of small mammals captured, the striped field mouse (Apodemus agrarius), the primary reservoir for Hantaan virus, was the most frequently collected, representing 92.5% of the 1,848 small mammals captured. Males were captured similarly to females during the spring and summer seasons but were captured less frequently during the fall and winter seasons. Gravid rates were highest in the fall (25.5-57.3%) with the lowest rates during the summer (0.0-2.2%). Capture rates were the lowest along earthen banks separating rice paddies (5.5%) and highest in unmanaged tall grasses and crawling vegetation (15.3-43.5%). An increased knowledge of ecological factors that impact the abundance and distribution of small mammals and the associated ectoparasites and pathogens they harbor is critical for developing accurate disease risk assessments and mitigation strategies for preventing vector- and rodent-borne diseases among soldiers training in field environments.

  14. Small mammal tooth enamel carbon isotope record of C4 grasses in late Neogene China

    NASA Astrophysics Data System (ADS)

    Arppe, Laura; Kaakinen, Anu; Passey, Benjamin H.; Zhang, Zhaoqun; Fortelius, Mikael

    2015-10-01

    The spatiotemporal pattern of the late Cenozoic spread of C4 vegetation is an important indicator of environmental change that is intertwined with the uplift of the Himalaya and Tibetan Plateau, and the development of the East Asian monsoons. To explore the spread of C4 vegetation in China and shed new light on regional climatic evolution, we measured δ13C values of more than 200 small mammal teeth (primarily rodents and lagomorphs) using a laser ablation isotope ratio mass spectrometry approach. Small mammals are highly sensitive indicators of their environment because they have limited spatial ranges and because they have minimal time-averaging of carbon isotope signatures of dietary components. The specimens originate from four classic Late Miocene fossil localities, Lufeng, Yuanmou, Lingtai, and Ertemte, along a southwest-northeast transect from Yunnan Province to Inner Mongolia. In Yunnan (Lufeng, Yuanmou) and on the Loess Plateau (Lingtai), the small mammal δ13C values record nearly pure C3 ecosystems, and mixed but C3-based ecosystems, respectively, in agreement with previous studies based on carbon isotopes of large herbivores and soil carbonates. In Inner Mongolia, the micromammalian tooth enamel δ13C record picks up the presence of C4 vegetation where large mammal samples do not, indicating a mixed yet C3-dominated ecosystem at ~ 6 Ma. As a whole, the results support a scenario of northward increasing C4 grass abundance in a pattern that mirrors northward decreasing precipitation of the summer monsoon system. The results highlight differences between large and small mammals as indicators of C4 vegetation in ancient ecosystems, particularly the ability of small mammal δ13C values to detect the presence of minor components of the vegetation structure.

  15. A GPS logger and software for analysis of homing in pigeons and small mammals.

    PubMed

    Steiner, I; Bürgi, C; Werffeli, S; Dell'Omo, G; Valenti, P; Tröster, G; Wolfer, D P; Lipp, H P

    2000-12-01

    A detailed analysis of homing in pigeons and small mammals has remained difficult because the paths of the animals could not be reconstructed precisely. Here, we describe a lightweight global position system (GPS) data logger (35 g including battery and casing; 40 x 68 x 18 mm) that records the flight of pigeons and the path of dogs with an accuracy of +/-12 m. With one battery, the logger runs in continuous mode (1 fix/s) for 3.5 h and in power-saving mode (1 fix/5 s) for about 16 h, and stores a maximum of 100,000 data points that are downloaded to a PC. A module of our public domain software WINTRACK permits a detailed numerical and graphical analysis of path geometry, phases of resting and moving, and path similarity. The device can be adapted to different species provided that satellite signals can be received reliably and that the loggers can be recovered. We expect it to be useful for testing hypotheses about pigeon homing, assessing natural spatial behavior and orientation of many species, and anticipate further miniaturization.

  16. Scaling of metabolic rate on body mass in small laboratory mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1980-01-01

    The scaling of metabolic heat production rate on body mass is investigated for five species of small laboratory mammal in order to define selection of animals of metabolic rates and size range appropriate for the measurement of changes in the scaling relationship upon exposure to weightlessness in Shuttle/Spacelab experiment. Metabolic rates were measured according to oxygen consumption and carbon dioxide production for individual male and female Swiss-Webster mice, Syrian hamsters, Simonsen albino rats, Hartley guinea pigs and New Zealand white rabbits, which range in mass from 0.05 to 5 kg mature body size, at ages of 1, 2, 3, 5, 8, 12, 18 and 24 months. The metabolic intensity, defined as the heat produced per hour per kg body mass, is found to decrease dramatically with age until the animals are 6 to 8 months old, with little or no sex difference. When plotted on a logarithmic graph, the relation of metabolic rate to total body mass is found to obey a power law of index 0.676, which differs significantly from the classical value of 0.75. When the values for the mice are removed, however, an index of 0.749 is obtained. It is thus proposed that six male animals, 8 months of age, of each of the four remaining species be used to study the effects of gravitational loading on the metabolic energy requirements of terrestrial animals.

  17. Estimating species richness and modelling habitat preferences of tropical forest mammals from camera trap data.

    PubMed

    Rovero, Francesco; Martin, Emanuel; Rosa, Melissa; Ahumada, Jorge A; Spitale, Daniel

    2014-01-01

    Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species' richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species' occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as 'montane forest dwellers', e.g. the endemic Sanje mangabey (Cercocebus sanjei), and 'lowland forest dwellers', e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites. PMID:25054806

  18. A population accounting approach to assess tourism contributions to conservation of IUCN-redlisted mammal species.

    PubMed

    Buckley, Ralf C; Castley, J Guy; Pegas, Fernanda de Vasconcellos; Mossaz, Alexa C; Steven, Rochelle

    2012-01-01

    Over 1,000 mammal species are red-listed by IUCN, as Critically Endangered, Endangered or Vulnerable. Conservation of many threatened mammal species, even inside protected areas, depends on costly active day-to-day defence against poaching, bushmeat hunting, invasive species and habitat encroachment. Many parks agencies worldwide now rely heavily on tourism for routine operational funding: >50% in some cases. This puts rare mammals at a new risk, from downturns in tourism driven by external socioeconomic factors. Using the survival of individual animals as a metric or currency of successful conservation, we calculate here what proportions of remaining populations of IUCN-redlisted mammal species are currently supported by funds from tourism. This proportion is ≥ 5% for over half of the species where relevant data exist, ≥ 15% for one fifth, and up to 66% in a few cases. Many of these species, especially the most endangered, survive only in one single remaining subpopulation. These proportions are not correlated either with global population sizes or recognition as wildlife tourism icons. Most of the more heavily tourism-dependent species, however, are medium sized (>7.5 kg) or larger. Historically, biological concern over the growth of tourism in protected areas has centered on direct disturbance to wildlife. These results show that conservation of threatened mammal species has become reliant on revenue from tourism to a previously unsuspected degree. On the one hand, this provides new opportunities for conservation funding; but on the other, dependence on such an uncertain source of funding is a new, large and growing threat to red-listed species.

  19. A Population Accounting Approach to Assess Tourism Contributions to Conservation of IUCN-Redlisted Mammal Species

    PubMed Central

    Buckley, Ralf C.; Castley, J. Guy; Pegas, Fernanda de Vasconcellos; Mossaz, Alexa C.; Steven, Rochelle

    2012-01-01

    Over 1,000 mammal species are red-listed by IUCN, as Critically Endangered, Endangered or Vulnerable. Conservation of many threatened mammal species, even inside protected areas, depends on costly active day-to-day defence against poaching, bushmeat hunting, invasive species and habitat encroachment. Many parks agencies worldwide now rely heavily on tourism for routine operational funding: >50% in some cases. This puts rare mammals at a new risk, from downturns in tourism driven by external socioeconomic factors. Using the survival of individual animals as a metric or currency of successful conservation, we calculate here what proportions of remaining populations of IUCN-redlisted mammal species are currently supported by funds from tourism. This proportion is ≥5% for over half of the species where relevant data exist, ≥15% for one fifth, and up to 66% in a few cases. Many of these species, especially the most endangered, survive only in one single remaining subpopulation. These proportions are not correlated either with global population sizes or recognition as wildlife tourism icons. Most of the more heavily tourism-dependent species, however, are medium sized (>7.5 kg) or larger. Historically, biological concern over the growth of tourism in protected areas has centered on direct disturbance to wildlife. These results show that conservation of threatened mammal species has become reliant on revenue from tourism to a previously unsuspected degree. On the one hand, this provides new opportunities for conservation funding; but on the other, dependence on such an uncertain source of funding is a new, large and growing threat to red-listed species. PMID:22984467

  20. A population accounting approach to assess tourism contributions to conservation of IUCN-redlisted mammal species.

    PubMed

    Buckley, Ralf C; Castley, J Guy; Pegas, Fernanda de Vasconcellos; Mossaz, Alexa C; Steven, Rochelle

    2012-01-01

    Over 1,000 mammal species are red-listed by IUCN, as Critically Endangered, Endangered or Vulnerable. Conservation of many threatened mammal species, even inside protected areas, depends on costly active day-to-day defence against poaching, bushmeat hunting, invasive species and habitat encroachment. Many parks agencies worldwide now rely heavily on tourism for routine operational funding: >50% in some cases. This puts rare mammals at a new risk, from downturns in tourism driven by external socioeconomic factors. Using the survival of individual animals as a metric or currency of successful conservation, we calculate here what proportions of remaining populations of IUCN-redlisted mammal species are currently supported by funds from tourism. This proportion is ≥ 5% for over half of the species where relevant data exist, ≥ 15% for one fifth, and up to 66% in a few cases. Many of these species, especially the most endangered, survive only in one single remaining subpopulation. These proportions are not correlated either with global population sizes or recognition as wildlife tourism icons. Most of the more heavily tourism-dependent species, however, are medium sized (>7.5 kg) or larger. Historically, biological concern over the growth of tourism in protected areas has centered on direct disturbance to wildlife. These results show that conservation of threatened mammal species has become reliant on revenue from tourism to a previously unsuspected degree. On the one hand, this provides new opportunities for conservation funding; but on the other, dependence on such an uncertain source of funding is a new, large and growing threat to red-listed species. PMID:22984467

  1. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-02-23

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness.

  2. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  3. Origin of British and Irish mammals: disparate post-glacial colonisation and species introductions

    NASA Astrophysics Data System (ADS)

    Montgomery, W. Ian; Provan, Jim; McCabe, A. Marshal; Yalden, Derek W.

    2014-08-01

    Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions. There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock' will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and

  4. A Small Mammal Community in a Forest Fragment, Vegetation Corridor and Coffee Matrix System in the Brazilian Atlantic Forest

    PubMed Central

    Rocha, Mariana Ferreira; Passamani, Marcelo; Louzada, Júlio

    2011-01-01

    The objective of our work was to verify the value of the vegetation corridor in the conservation of small mammals in fragmented tropical landscapes, using a model system in the southeastern Minas Gerais. We evaluated and compared the composition and structure of small mammals in a vegetation corridor, forest fragments and a coffee matrix. A total of 15 species were recorded, and the highest species richness was observed in the vegetation corridor (13 species), followed by the forest fragments (10) and the coffee matrix (6). The absolute abundance was similar between the vegetation corridor and fragments (F = 22.94; p = 0.064), and the greatest differences occurred between the vegetation corridor and the matrix (F = 22.94; p = 0.001) and the forest fragments and the matrix (F = 22.94; p = 0.007). Six species showed significant habitat preference possibly related to the sensitivity of the species to the forest disturbance. Marmosops incanus was the species most sensitive to disturbance; Akodon montensis, Cerradomys subflavus, Gracilinanus microtarsus and Rhipidomys sp. displayed little sensitivity to disturbance, with a high relative abundance in the vegetation corridor. Calomys sp. was the species least affected by habitat disturbance, displaying a high relative abundance in the coffee matrix. Although the vegetation corridors are narrow (4 m width), our results support the hypothesis in which they work as a forest extension, share most species with the forest fragment and support species richness and abundance closer to forest fragments than to the coffee matrix. Our work highlights the importance and cost-effectiveness of these corridors to biodiversity management in the fragmented Atlantic Forest landscapes and at the regional level. PMID:21912591

  5. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective.

    PubMed

    Baltensperger, A P; Huettmann, F

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future.

  6. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective

    PubMed Central

    Baltensperger, A. P.; Huettmann, F.

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828

  7. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective.

    PubMed

    Baltensperger, A P; Huettmann, F

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828

  8. Life history dictates fluorosis risk in a small mammal community

    SciTech Connect

    Rafferty, D.P.; Faulkner, B.; Lochmiller, R.L.; Qualls, C.W. Jr.; McBee, K.

    1995-12-31

    Dental lesions, due to fluorosis, previously have been reported in wild, male cotton rats (Sigmodon hispidus) on an abandoned oil refinery located at the Oklahoma Refining Company in Cyril, Oklahoma. This study was expanded to include examinations of the fulvous harvest mouse (Reithrodontomys fulvescens), house mouse (Mus musculus), prairie vole (Microtus ochrogaster), plains pocket gopher (Geomys bursarius), least shrew (Cryptotis parva), shorttailed shrew (Blarina brevicauda), and deer mouse (Peromyscus spp.) at this same site. A sample of each species was collected form the contaminated refining site and a reference site with no known contamination. The authors grossly scored dentition of lower and upper incisors, microscopically examined cellular aberrations in ameloblasts and ondontoblasts, and quantified femur fluoride levels. Alterations in the lower and upper incisors were common in prairie voles, whose incisors possessed striations and erosion of the enamel and appeared chalky white. Incisors of animals taken from the reference site were normal. Patterns in occurrence of fluorosis and degree of enamel erosion was examined relative to the life history characteristics of the species.

  9. IMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We exam...

  10. IIMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examin...

  11. NITROGEN OUTPUTS FROM FECAL AND URINE DEPOSITION OF SMALL MAMMALS: IMPLICATIONS FOR NITROGEN CYCLING

    EPA Science Inventory

    The contribution of small mammals to nitrogen cycling is poorly understood, but it could have reverberations back to the producer community by maintaining or perhaps magnifying nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) of ...

  12. Cattle grazing and small mammals on the Sheldon National Wildlife Refuge, Nevada

    USGS Publications Warehouse

    Oldemeyer, John L.; Allen-Johnson, L. R.

    1988-01-01

    We studied effects of cattle grazing on small mammal microhabitat and abundance in northwestern Nevada. Abundance, diversity, and microhabitat were compared between a 375-ha cattle exclosure and a deferred-rotation grazing allotment which had a three-year history of light to moderate use. No consistent differences were found in abundance, diversity, or microhabitat between the two areas.

  13. Estimating Species Richness and Modelling Habitat Preferences of Tropical Forest Mammals from Camera Trap Data

    PubMed Central

    Rovero, Francesco; Martin, Emanuel; Rosa, Melissa; Ahumada, Jorge A.; Spitale, Daniel

    2014-01-01

    Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species’ richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species’ occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as ‘montane forest dwellers’, e.g. the endemic Sanje mangabey (Cercocebus sanjei), and ‘lowland forest dwellers’, e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites. PMID:25054806

  14. Discoveries of new mammal species and their implications for conservation and ecosystem services

    PubMed Central

    Ceballos, Gerardo; Ehrlich, Paul R.

    2009-01-01

    In light of recent discoveries of many new species of poorly-studied organisms, we examine the biodiversity of mammals, a well known “charismatic” group. Many assume that nearly all mammal species are known to scientists. We demonstrate that this assumption is incorrect. Since 1993, 408 new mammalian species have been described, ≈10% of the previously known fauna. Some 60% of these are “cryptic” species, but 40% are large and distinctive. A substantial number persist only in areas undergoing rapid habitat destruction. Our findings suggest global animal and plant species diversity is badly underestimated even in well studied taxa. This implies even greater threats to ecosystem services and human well-being than previously assumed, and an increased need to explore, understand, and conserve Earth's living resources. PMID:19228946

  15. 78 FR 62648 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    .... Graham Worthy, 78 FR 30325; May 22, 2013 September 30, 2013. University of Central Florida. 067925 U.S..., New College 78 FR 37563; June 21, September 30, 2013. of Florida. 2013. 19806A Thomas Postel 78 FR.... Applicant Federal Register notice Permit issuance date Endangered Species 10814B Larry Bell 78 FR...

  16. 78 FR 113 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... FR 46514; August December 21, 2012. Aquarium. 3, 2012. Availability of Documents Documents and other... application Federal Permit issuance date Register notice Endangered Species 75492A John Farham......... 77 FR 34059; June 8, August 27, 2012. 2012. 75399A Eric Moore 77 FR 34059; June 8, August 15, 2012....

  17. 77 FR 38653 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    .... 58210A Point Defiance Zoo & 77 FR 9687; February May 4, 2012. Aquarium. 17, 2012. 65782A, 65783A, 65785A.... Applicant Federal Register Permit issuance date notice Endangered Species 51599A Kurt Wille 76 FR 61733; October November 16, 2011. 5, 2011. 57058A Hahn Laboratory, 77 FR 298; January 4, April 12,...

  18. Response to enrichment, type and timing: small mammals vary in their response to a springtime cicada but not a carbohydrate pulse.

    PubMed

    Vandegrift, Kurt J; Hudson, Peter J

    2009-01-01

    1. Masting events in the autumn provide a carbohydrate-rich pulse of resources that can influence the dynamics of small mammals and their natural enemies. Similar patterns are observed with the periodical cicada emergence which provides a protein-rich pulse in the spring, but comparisons are confounded by timing and food type. 2. We compared the influence of a naturally occurring spring pulse of cicadas with an experimental spring pulse of carbohydrate-rich seeds. We used a replicated population level field experiment and capture-mark-recapture techniques to record the vital rates, demographics, and abundance of Peromyscus leucopus (the white-footed mouse), as well as other small mammals and their parasites. 3. The density of P. leucopus on grids where cicadas emerged was 55% higher than controls as a consequence of early breeding. This was followed by an increase in the prevalence of the nematode Pterygodermatities peromysci, reduced breeding and decreased recruitment rates. Other small mammals including Tamias striatus (eastern chipmunk) and Blarina brevicauda (short-tailed shrew), increased in density, but there was no affect on Sorex cinereus (masked shrew). 4. In contrast to the presence of cicadas, there was no influence of sunflower seed supplementation on small mammal density, vital rates, or reproduction with the exception of an increase in B. brevicauda density. The response of small mammals to seasonal pulses depends on timing, food type, and species. PMID:18684131

  19. Habitat associations of small mammals in southern Brazil and use of regurgitated pellets of birds of prey for inventorying a local fauna.

    PubMed

    Scheibler, D R; Christoff, A U

    2007-11-01

    We inventoried terrestrial small mammals in an agricultural area in southern Brazil by using trapping and prey consumed by Barn Owls (Tyto alba) and White-tailed Kites (Elanus leucurus). Small mammals were trapped in three habitat types: corn fields, uncultivated fields ("capoeiras"), and native forest fragments. A total of 1,975 small mammal specimens were trapped, another 2,062 identified from the diet of Barn Owls, and 2,066 from the diet of White-tailed Kites. Both trapping and prey in the predators' diet yielded 18 small mammal species: three marsupials (Didelphis albiventris, Gracilinanus agilis, and Monodelphis dimidiata) and 15 rodents (Akodon paranaensis, Bruceppatersonius iheringi, Calomys sp., Cavia aperea, Euryzygomatomys spinosus, Holochilus brasiliensis, Mus musculus, Necromys lasiurus, Nectomys squamipes, Oligoryzomys nigripes, Oryzomys angouya, Oxymycterus sp.1, Oxymycterus sp.2, Rattus norvegicus, and Rattus rattus (Linnaeus, 1758)). The greatest richness was found in the uncultivated habitat. We concluded that the three methods studied for inventorying small mammals (prey in the diet of Barn Owls, White-tailed Kites, and trapping) were complementary, since together, rather than separately, they produced a better picture of local richness. PMID:18278312

  20. Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    PubMed

    Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas

    2013-06-01

    According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the

  1. Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    PubMed

    Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas

    2013-06-01

    According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the

  2. Collapse of a Marine Mammal Species Driven by Human Impacts

    PubMed Central

    Harkonen, Tero; Harding, Karin C.; Wilson, Susan; Baimukanov, Mirgaliy; Dmitrieva, Lilia; Svensson, Carl Johan; Goodman, Simon J.

    2012-01-01

    Understanding historical roles of species in ecosystems can be crucial for assessing long term human impacts on environments, providing context for management or restoration objectives, and making conservation evaluations of species status. In most cases limited historical abundance data impedes quantitative investigations, but harvested species may have long-term data accessible from hunting records. Here we make use of annual hunting records for Caspian seals (Pusa caspica) dating back to the mid-19th century, and current census data from aerial surveys, to reconstruct historical abundance using a hind-casting model. We estimate the minimum numbers of seals in 1867 to have been 1–1.6 million, but the population declined by at least 90% to around 100,000 individuals by 2005, primarily due to unsustainable hunting throughout the 20th century. This collapse is part of a broader picture of catastrophic ecological change in the Caspian over the 20th Century. Our results combined with fisheries data show that the current biomass of top predators in the Caspian is much reduced compared to historical conditions. The potential for the Caspian and other similar perturbed ecosystems to sustain natural resources of much greater biological and economic value than at present depends on the extent to which a number of anthropogenic impacts can be harnessed. PMID:23028446

  3. Metabolic profile of the perivertebral muscles in small therian mammals: implications for the evolution of the mammalian trunk musculature.

    PubMed

    Schilling, Nadja

    2009-01-01

    In order to gain a better understanding of the ancestral properties of the perivertebral muscles of mammals, this study investigated the fiber type composition of these muscles in six small, extant therians (two metatherians and four eutherians) similar in body shape to early mammals. Despite a few species-specific differences, the investigated species were very similar in their overall distribution of fiber types indicating similar functional demands on the back muscles in mammals of this body size and shape. Deep and short, mono- or multisegmental muscles (i.e., mm. interspinales, intermammillares, rotatores et intertransversarii) consistently showed the highest percentage of slow, oxidative fibers implying a function as local stabilizers of the vertebral column. Superficial and large, polysegmental muscles (i.e., mm. multifidus, sacrospinalis, iliopsoas et psoas minor) were predominantly composed of fast, glycolytic fibers suggesting they function to both globally stabilize and mobilize the spine during rapid non-locomotor and locomotor activities. Some muscles contained striking accumulations of oxidative fibers in specific regions (mm. longissimus et quadratus lumborum). These regions are hypothesized to function independently from the rest of the muscle belly and may be comparable in their functionality to regionalized limb muscles. The deep, central oxidative region in the m. longissimus lumborum appears to be a general feature of mammals and likely serves a proprioceptive function to control the postural equilibrium of the pelvic girdle and lumbar spine. The potential functions of the m. quadratus lumborum during ventilation and ventral stabilization of the vertebral column are discussed. Because representatives of the stem lineage of mammals were comparable in their body proportions and probably also locomotor parameters to the species investigated here, I suggest that the described fiber type distribution is representative of the ancestral condition in

  4. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis.

    PubMed

    Patzke, Nina; Spocter, Muhammad A; Karlsson, Karl Æ; Bertelsen, Mads F; Haagensen, Mark; Chawana, Richard; Streicher, Sonja; Kaswera, Consolate; Gilissen, Emmanuel; Alagaili, Abdulaziz N; Mohammed, Osama B; Reep, Roger L; Bennett, Nigel C; Siegel, Jerry M; Ihunwo, Amadi O; Manger, Paul R

    2015-01-01

    The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis. PMID:24178679

  5. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis.

    PubMed

    Patzke, Nina; Spocter, Muhammad A; Karlsson, Karl Æ; Bertelsen, Mads F; Haagensen, Mark; Chawana, Richard; Streicher, Sonja; Kaswera, Consolate; Gilissen, Emmanuel; Alagaili, Abdulaziz N; Mohammed, Osama B; Reep, Roger L; Bennett, Nigel C; Siegel, Jerry M; Ihunwo, Amadi O; Manger, Paul R

    2015-01-01

    The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis.

  6. Radionuclides in small mammals of the Saskatchewan prairie, including implications for the boreal forest and Arctic tundra

    SciTech Connect

    Thomas, P.A.

    1995-12-31

    The focus of the study reported was to collect and examine baseline data on radionuclides in small prairie mammal food chains and to assess the feasibility of using small mammals as radionuclide monitors in terrestrial ecosystems, in anticipation of possible future nuclear developments in northern Saskatchewan and the Northwest Territories. The study report begins with a literature review that summarizes existing data on radionuclides in small mammals, their food, the ambient environment in Canadian terrestrial ecosystems, principles of terrestrial radioecology, soil and vegetation studies, and food chain studies. It then describes a field study conducted to investigate small mammal food chains at three southwestern Saskatchewan prairie sites. Activities included collection and analysis of water, soil, grains, and foliage samples; trapping of small mammals such as mice and voles, and analysis of gastrointestinal tract samples; and determination of food chain transfer of selected radionuclides from soil to plants and to small mammals. Recommendations are made for future analyses and monitoring of small mammals. Appendices include information on radiochemical methods, soil/vegetation studies and small mammal studies conducted at northern Saskatchewan mine sites, and analyses of variance.

  7. Role of edge effect on small mammal populations in a forest fragment

    SciTech Connect

    Wike, L.D.

    2000-06-27

    In many cases, edge effect may determine the distribution and densities of small mammal populations. In 1995 and 1998, a mark and recapture study was conducted at the Savannah River Site (SRS), Aiken, SC, to evaluate the role of forest edge habitat. The area studied was an abandoned home site that had been recently isolated by a timber harvest. Harvest activities left a distinct edge of old field and planted pine contrasting with a relatively xeric, mixed hardwood stand. Trapping was conducted for 17 days in 1995 and 14 days in 1998. Three 30 m by 150 m grids were placed in the clear-cut, edge, and hardwood interior habitats. For both years the principal species captured were Peromyscus gossypinus, P. polionotus, and Neotoma floridana. The edge habitat accounted for approximately 55 percent of all captures and nearly four times as many recaptures as the interior and clear-cut habitats. In 1998, greater numbers of N. floridana were trapped than in 1995. The results indicate that the use of edge habitat can be pronounced even within simple communities. Stewards of managed or restored habitats need to carefully consider the role of edge in these systems. In managed areas such as waste sites, movement of material within the food chain could be reduced by minimizing edge habitat around the points of contamination.

  8. Landscape structure in a managed forest mosaic of the Southern Appalachian Mountains and its influence on songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Leimgruber, Peter

    Forests in the Appalachian Mountains have been severely affected by logging in the past and little old-growth is left. The remaining forests form a heterogeneous mosaic of different forest successions. A concern for conservation is how additional logging will alter the mosaic and its fauna. I studied the effects of logging on the landscape mosaic and how changes in the landscape structure influence small mammals and birds in the George Washington National Forest, Virginia. My dissertation also included research on how to improve techniques for landscape ecological studies, such as roadside monitoring of birds and mapping of forest resources using remote sensing and Geographic Information Systems (GIS). Because of the scale dependency of landscape-ecological relationships, I investigated how landscape structure in the forest mosaic changes with increasing scales. I determined threshold scales at which structure changed markedly. After establishing a baseline, I examined how logging affected the intensity and location of such thresholds. I found thresholds in landscape structure exist at 400-, 500-, and 800-m intervals from the outer edge of the cut. While logging did not change threshold location and intensity for global landscape indices, such as dominance and contagion, thresholds for focal indices, such as mean patch size and percent cover for early-successional forest, changed markedly. Using GIS, I determined how logging affected small mammals and birds at the landscape scale. I divided the landscape into three zones (zone 1, inside logged areas; zone 2, 20--400 m from logged areas; zone 3, 1000--1500 m from logged areas). Logging changed species presence and richness more drastically in close proximity of cuts than on the landscape and influenced birds more strongly than mammals. In the cuts, edge-adapted birds, such as the indigo bunting (Passerina cyanea), replaced forest interior species, such as the Acadian flycatcher (Empidonax virescens). Most

  9. Dynamics, co-infections and characteristics of zoonotic tick-borne pathogens in Hokkaido small mammals, Japan.

    PubMed

    Moustafa, Mohamed Abdallah Mohamed; Taylor, Kyle; Nakao, Ryo; Shimozuru, Michito; Sashika, Mariko; Rosà, Roberto; Thu, May June; Rizzoli, Annapaola; Tsubota, Toshio

    2016-07-01

    Many of the emerging infectious diseases originate in wildlife and many of them are caused by vector-borne pathogens. In Japan, zoonotic tick-borne pathogens (TBPs) are frequently detected in both ticks and wildlife. Here, we studied the infection rates of potentially zoonotic species, including Anaplasma, Ehrlichia, Neoehrlichia and Babesia spp., in Hokkaido's most abundant small mammals as they relate to variable extrinsic factors that might affect the infection rates of these pathogens. A total of 412 small mammals including 64 Apodemus argenteus, 219 Apodemus speciosus, 78 Myodes rufocanus, 41 Myodes rutilus, 6 Myodes rex and 4 Sorex unguiculatus were collected from Furano and Shari sites in Hokkaido, Japan, in 2010 and 2011 and were examined by multiplex PCR for TBPs. A reverse line blot hybridization (RLB) was then developed for the specific detection of 13 potentially zoonotic TBPs. A total of 4 TBPs were detected: Anaplasma sp. AP-sd, Ehrlichia muris, Candidatus Neoehrlichia mikurensis and Babesia microti. The infection rates were 4.4% (18/412), 1.2% (5/412), 13.1% (54/412) and 17.2% (71/412), respectively. The infection rates of each of the detected TBPs were significantly correlated with host small mammal species. A total of 22 (two triple and 20 double) co-infection cases were detected (5.3%). The most frequent co-infection cases occurred between Candidatus N. mikurensis and B. microti 68.2% (15/22). Further studies are required to examine human exposure to these zoonotic TBPs in Hokkaido. PMID:27166277

  10. Origin of British and Irish mammals: disparate post-glacial colonisation and species introductions

    NASA Astrophysics Data System (ADS)

    Montgomery, W. Ian; Provan, Jim; McCabe, A. Marshal; Yalden, Derek W.

    2014-08-01

    Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions. There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock' will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and

  11. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species

    NASA Astrophysics Data System (ADS)

    Camargo-Sanabria, Angela A.; Mendoza, Eduardo

    2016-05-01

    Mammalian frugivory is a distinctive biotic interaction of tropical forests; however, most efforts in the Neotropics have focused on cases of animals foraging in the forest canopy, in particular primates and bats. In contrast much less is known about this interaction when it involves fruits deposited on the forest floor and terrestrial mammals. We conducted a camera-trapping survey to analyze the characteristics of the mammalian ensembles visiting fruits of Licania platypus and Pouteria sapota deposited on the forest floor in a well preserved tropical rainforest of Mexico. Both tree species produce large fruits but contrast in their population densities and fruit chemical composition. In particular, we expected that more species of terrestrial mammals would consume P. sapota fruits due to its higher pulp:seed ratio, lower availability and greater carbohydrate content. We monitored fruits at the base of 13 trees (P. sapota, n = 4 and L. platypus, n = 9) using camera-traps. We recorded 13 mammal species from which we had evidence of 8 consuming or removing fruits. These eight species accounted for 70% of the species of mammalian frugivores active in the forest floor of our study area. The ensemble of frugivores associated with L. platypus (6 spp.) was a subset of that associated with P. sapota (8 spp). Large body-sized species such as Tapirus bairdii, Pecari tajacu and Cuniculus paca were the mammals more frequently interacting with fruits of the focal species. Our results further our understanding of the characteristics of the interaction between terrestrial mammalian frugivores and large-sized fruits, helping to gain a more balanced view of its importance across different tropical forests and providing a baseline to compare against defaunated forests.

  12. Evaluating abundance estimate precision and the assumptions of a count-based index for small mammals

    USGS Publications Warehouse

    Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.

    2009-01-01

    Conservation and management of small mammals requires reliable knowledge of population size. We investigated precision of markrecapture and removal abundance estimates generated from live-trapping and snap-trapping data collected at sites on Guam (n 7), Rota (n 4), Saipan (n 5), and Tinian (n 3), in the Mariana Islands. We also evaluated a common index, captures per unit effort (CPUE), as a predictor of abundance. In addition, we evaluated cost and time associated with implementing live-trapping and snap-trapping and compared species-specific capture rates of selected live- and snap-traps. For all species, markrecapture estimates were consistently more precise than removal estimates based on coefficients of variation and 95 confidence intervals. The predictive utility of CPUE was poor but improved with increasing sampling duration. Nonetheless, modeling of sampling data revealed that underlying assumptions critical to application of an index of abundance, such as constant capture probability across space, time, and individuals, were not met. Although snap-trapping was cheaper and faster than live-trapping, the time difference was negligible when site preparation time was considered. Rattus diardii spp. captures were greatest in Haguruma live-traps (Standard Trading Co., Honolulu, HI) and Victor snap-traps (Woodstream Corporation, Lititz, PA), whereas Suncus murinus and Mus musculus captures were greatest in Sherman live-traps (H. B. Sherman Traps, Inc., Tallahassee, FL) and Museum Special snap-traps (Woodstream Corporation). Although snap-trapping and CPUE may have utility after validation against more rigorous methods, validation should occur across the full range of study conditions. Resources required for this level of validation would likely be better allocated towards implementing rigorous and robust methods.

  13. Small mammal carbon isotope ecology across the Miocene-Pliocene boundary, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Hynek, Scott A.; Passey, Benjamin H.; Prado, José Luis; Brown, Francis H.; Cerling, Thure E.; Quade, Jay

    2012-03-01

    The late Miocene expansion of plants using the C4 photosynthetic pathway in South America has been documented by tooth enamel carbon isotope ratios (δ13Cen). However, a more detailed understanding of this ecological event is hampered by poor chronological control on the widespread fossil localities from which isotopic data are derived. This study develops a δ13Cen record from a single 2500 m-thick stratigraphic section in subtropical South America. Strata at Puerta de Corral Quemado (PCQ), northwestern Argentina, span 9 to 3.5 Ma in age, and existing paleosol carbonate data (δ13Cpc) document C4 expansion across the Miocene-Pliocene boundary. Comparison of δ13Cen data with δ13Cpc data at high stratigraphic resolution refines understanding of this ecological event in South America. Small mammal δ13Cen data in particular are complementary to that of large mammal and paleosol δ13C data. Small mammal teeth integrate isotopic data over much shorter temporal and spatial scales than large mammal teeth, providing a sensitive measure of local vegetation and placing constraints on the landscape distribution of C3 and C4 plants. Explicit consideration of the distinctive carbon isotope enrichment factor between enamel and diet for rodents (ɛ*en-diet = 11‰, as opposed to 14‰ for large mammals) allows for unequivocal inference of C4 vegetation ~ 1 Ma prior to that inferred from large mammal δ13Cen data, and ~ 2 Ma prior to δ13Cpc data. This multiproxy record demonstrates that C4 plants were a stable component of the ecosystem hundreds of thousands of years prior to their major ecological expansion, and that the expansion of C4 plants was pulsed at PCQ. Two periods of ecological change are demonstrated by δ13C and δ18O data at ~ 7 Ma and 5.3 Ma (coincident with the Miocene-Pliocene boundary). Development of small mammal δ13Cen records on other continents may provide similar insight into the early stages of the global C4 event.

  14. Seasonal patterns of mixed species groups in large East African mammals.

    PubMed

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.

  15. Australian and New Zealand mammal species considered to be pests or problems.

    PubMed

    Cowan, P E; Tyndale-Biscoe, C H

    1997-01-01

    In New Zealand and Australia, 25 and 16 introduced mammals are viewed as pests, respectively, as well as a further 17 native mammals in Australia. Most introductions were deliberate and the deleterious effects became apparent later. These pests affect primary production, act as a sylvatic reservoir of disease, cause degradation of natural ecosystems, or threaten rare or endangered native animals and plants. Many species have multiple impacts. In Australia, some native mammals, particularly kangaroos and wallabies, are also controlled because of their adverse impacts on primary production. In both countries, current control depends largely on the use of poisons, shooting, the spread of disease (in the case of rabbits), trapping, habitat alteration, and commercial or recreational hunting. Methods of control by interfering with fertility (immunocontraception) are currently being investigated for rabbits, house mice, foxes, and kangaroos in Australia, and for the brushtail possum in New Zealand. If these methods prove effective, they may be applied to other mammal pests, but the need to tailor the particular approach to the ecology and behaviour of the species means that there will be a necessarily long lead time. PMID:9109192

  16. In situ (mesocosm) assessment of immunotoxicity risks to small mammals inhabiting petrochemical waste sites.

    PubMed

    Propst, T L; Lochmiller, R L; Qualls, C W; McBee, K

    1999-02-01

    Oil refineries inadvertently deposit a variety of complex mixtures of organic hydrocarbons and heavy metals in the soil, many of which are thought to be potent immunotoxicants. Terrestrial ecosystems such as this have not been adequately investigated with respect to wild rodent populations. The primary objective of this study was to use mesocosms to assess the immunotoxicity risks to feral small mammal populations associated with soils contaminated with petroleum refinery wastes. A series of 4-week and 8-week exposure trials using laboratory raised cotton rats (Sigmodon hispidus) were conducted in situ on three contaminated and three reference sites on the Oklahoma Refining Company Superfund Waste Site, Cyril, Oklahoma. Cotton rats exposed to these soils showed significant alterations in selected morphological traits, in vivo humoral immune responses, complement activity, and macrophage activity. However, immune alterations were not great, suggesting that resident small mammals may be a better biomonitoring choice than using mesocosms.

  17. Radionuclide contaminant analysis of small mammals at Area G, TA-54, Los Alamos National Laboratory, 1995

    SciTech Connect

    Bennett, K.; Biggs, J.; Fresquez, P.

    1997-01-01

    At Los Alamos National Laboratory, small mammals were sampled at two waste burial sites (Site 1-recently disturbed and Site 2-partially disturbed) at Area G, Technical Area 54 and a control site on Frijoles Mesa (Site 4) in 1995. Our objectives were (1) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, (2) to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and (3) to identify if the primary mode of contamination to small mammals is by surface contact or ingestion/inhalation. Three composite samples of at least rive animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for {sup 241}Am, {sup 90}Sr , {sup 238}Pu, {sup 239}Pu, total U, {sup 137}Cs, and {sup 3}H. Significantly higher (parametric West at p=0.05) levels of total U, {sup 241}Am, {sup 238}Pu and {sup 239}Pu were detected in pelts than in carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. Our results show higher concentrations in pelts compared to carcasses, which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had a significantly higher (alpha=0.05, P=0.0125) mean tritium concentration in carcasses than Site 2 or Site 4. In addition Site 1 also had a significantly higher (alpha=0.05, p=0.0024) mean tritium concentration in pelts than Site 2 or Site 4. Site 2 had a significantly higher (alpha=0.05, P=0.0499) mean {sup 239}Pu concentration in carcasses than either Site 1 or Site 4.

  18. Radionuclide contaminant analysis of small mammals at Area G, TA-54, 1994

    SciTech Connect

    Biggs, J.; Bennett, K.; Fresquez, P.

    1995-09-01

    Small mammals were sampled at two waste burial sites (1 and 2) at Area G, TA-54 and a control site outside Area G (Site 3) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, total U, and gamma spectroscopy (including {sup 137}Cs). Significantly higher (parametric t-test at p = 0.05) levels of total U, {sup 241}Am, {sup 238}Pu, {sup 239}Pu, and {sup 40}K were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. The authors results show higher concentrations in pelts compared to carcasses which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had significantly higher (alpha = 0.05, F = 0.0095) total U concentrations in carcasses than Sites 2 and 3. Site 2 had significantly higher (alpha = 0.05, F = 0.0195) {sup 239}Pu concentrations in carcasses than either Site 1 or Site 3. A significant difference in {sup 90}Sr concentration existed between Sites 1 and 2 (alpha = 0.05, F = 0.0681) and concentrations of {sup 40}K at Site 1 were significantly different from Site 3.

  19. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals

    USGS Publications Warehouse

    Hope, Andrew G.; Takebayashi, Naoki; Galbreath, Kurt E.; Talbot, Sandra L.; Cook, Joseph A.

    2013-01-01

    Quaternary climate cycles played an important role in promoting diversification across the Northern Hemisphere, although details of the mechanisms driving evolutionary change are still poorly resolved. In a comparative phylogeographical framework, we investigate temporal, spatial and ecological components of evolution within a suite of Holarctic small mammals. We test a hypothesis of simultaneous divergence among multiple taxon pairs, investigating time to coalescence and demographic change for each taxon in response to a combination of climate and geography.

  20. Thermochemistry of small iodine species

    NASA Astrophysics Data System (ADS)

    Šulková, K.; Federič, J.; Louis, F.; Cantrel, L.; Demovič, L.; Černušák, I.

    2013-11-01

    We present a systematic study of the thermochemistry for a set of iodine species relevant to atmospheric chemistry. The reactions include H, O and I atoms and H2, OH, HI, I2, iodine monoxide, hypoiodous acid (HOI) and H2O species. The calculations presented were performed using completely renormalized coupled cluster theory including single, double and non-iterative triple substitutions in conjunction with the ANO-RCC basis sets developed for scalar relativistic calculations. The second-order spin-free Douglas-Kroll-Hess Hamiltonian was used to account for the scalar relativistic effects. The calculations also included spin-orbit corrections and semi-core correlation contributions. The resulting reaction enthalpies and Gibbs energies at 298 K have been compared with the experimental data. On the basis of a set of selected reactions we suggest an updated value for Δ f H298K° of HOI based on the set of isogyric reactions: -69.0 ± 3.7 kJ mol-1.

  1. Scaling the relative dominance of exogenous drivers in structuring desert small mammal assemblages

    NASA Astrophysics Data System (ADS)

    Rodríguez, Daniela; Ojeda, Ricardo A.

    2015-11-01

    Assemblage patterns could be primarily generated by two types of drivers: exogenous (such as environmental and climatic factors) and endogenous (interactions such as competition, predation, mutualism or herbivory). The most widely accepted hypothesis states that at smaller scales (such as patch scale), interspecific interactions are the major drivers structuring communities, whereas at larger regional scales, factors such as climate, topography and soil act as ecological filters that determine assemblage composition. The general aim of this paper is to compare different exogenous drivers in terms of their relative dominance in structuring desert small mammal communities across a range of spatial scales, from patch to regional, and compare them with previous results on endogenous drivers. Our results show that as spatial scale increases, the explanatory power of exogenous factors also increases, e.g. from 17% at the patch scale (i.e. abundance) to 99% at the regional scale (i.e. diversity). Moreover, environmental drivers vary in type and strength depending on the community estimator across several spatial scales. On the other hand, endogenous drivers such as interspecific interactions are more important at the patch scale, diminishing in importance towards the regional scale. Therefore, the relative importance of exogenous versus endogenous drivers affects small mammal assemblage structure at different spatial scales. Our results fill up a knowledge gap concerning ecological drivers of assemblage structure at intermediate spatial scales for Monte desert small mammals, and highlight the importance of dealing with multi-causal factors in explaining ecological patterns of assemblages.

  2. Land use determinants of small mammal abundance and distribution in a plague endemic area of Lushoto District, Tanzania.

    PubMed

    Hieronimo, Proches; Kimaro, Didas N; Kihupi, Nganga I; Gulinck, Hubert; Mulungu, Loth S; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Small mammals are considered to be involved in the transmission cycle of bubonic plague, still occurring in different parts of the world, including the Lushoto District in Tanzania. The objective of this study was to determine the relationship between land use types and practices and small mammal abundance and distribution. A field survey was used to collect data in three landscapes differing in plague incidences. Data collection was done both in the wet season (April-June 2012) and dry season (August-October 2012). Analysis of variance and Boosted Regression Trees (BRT) modelling technique were used to establish the relationship between land use and small mammal abundance and distribution. Significant variations (p ≤ 0.05) of small mammal abundance among land use types were identified. Plantation forest with farming, natural forest and fallow had higher populations of small mammals than the other aggregated land use types. The influence of individual land use types on small mammal abundance level showed that, in both dry and wet seasons, miraba and fallow tended to favour small mammals' habitation whereas land tillage practices had the opposite effect. In addition, during the wet season crop types such as potato and maize appeared to positively influence the distribution and abundance of small mammals which was attributed to both shelter and food availability. Based on the findings from this study it is recommended that future efforts to predict and map spatial and temporal human plague infection risk at fine scale should consider the role played by land use and associated human activities on small mammal abundance and distribution.

  3. Land use determinants of small mammal abundance and distribution in a plague endemic area of Lushoto District, Tanzania.

    PubMed

    Hieronimo, Proches; Kimaro, Didas N; Kihupi, Nganga I; Gulinck, Hubert; Mulungu, Loth S; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Small mammals are considered to be involved in the transmission cycle of bubonic plague, still occurring in different parts of the world, including the Lushoto District in Tanzania. The objective of this study was to determine the relationship between land use types and practices and small mammal abundance and distribution. A field survey was used to collect data in three landscapes differing in plague incidences. Data collection was done both in the wet season (April-June 2012) and dry season (August-October 2012). Analysis of variance and Boosted Regression Trees (BRT) modelling technique were used to establish the relationship between land use and small mammal abundance and distribution. Significant variations (p ≤ 0.05) of small mammal abundance among land use types were identified. Plantation forest with farming, natural forest and fallow had higher populations of small mammals than the other aggregated land use types. The influence of individual land use types on small mammal abundance level showed that, in both dry and wet seasons, miraba and fallow tended to favour small mammals' habitation whereas land tillage practices had the opposite effect. In addition, during the wet season crop types such as potato and maize appeared to positively influence the distribution and abundance of small mammals which was attributed to both shelter and food availability. Based on the findings from this study it is recommended that future efforts to predict and map spatial and temporal human plague infection risk at fine scale should consider the role played by land use and associated human activities on small mammal abundance and distribution. PMID:26867281

  4. Description of three novel Lagenidium (Oomycota) species causing infection in mammals

    PubMed Central

    Mendoza, Leonel; Taylor, John W.; Walker, Edward D.; Vilela, Raquel

    2016-01-01

    Background Recent molecular phylogenetic analysis of Lagenidium strains recovered from subcutaneous lesions in cats, dogs, and a human with lagenidiosis resolved into four clades, one of them was Lagenidium giganteum, but three others were novel. Aims Due to the recent increase in L. giganteum infections from mammals, we studied 21 Lagenidium strains isolated from dogs and a human available in our collection. Methods Molecular phylogenetic studies and phenotypic characteristics were used to characterize strains. Results We report the finding of three novel species, herein designated as: Lagenidium ajelloi, sp. nov., Lagenidium albertoi sp. nov, and Lagenidium vilelae sp. nov. Their morphological and growth features are also presented. Conclusions Our study revealed the presence of three novel Lagenidium species infecting mammals. PMID:26924580

  5. Long-term data set of small mammals from owl pellets in the Atlantic-Mediterranean transition area

    PubMed Central

    Escribano, Nora; Galicia, David; Ariño, Arturo H.; Escala, Carmen

    2016-01-01

    We describe the pellet sampling data set from the Vertebrate Collection of the Museum of Zoology of the University of Navarra. This data set compiles all information about small mammals obtained from the analysis of owl pellets. The collection consists on skulls, mandibles, and some skeletons of 36 species of more than 72,000 georeferenced specimens. These specimens come from the Iberian Peninsula although most samples were collected in Navarra, a highly diverse transitional area of 10,000 kilometre square sitting across three biogeographical regions. The collection spans more than forty years and is still growing as a result of the establishment of a barn owl pellet monitoring network in 2015. The program will provide critical information about the evolution of the small mammals’ community in this transition zone as it changes over time. PMID:27676217

  6. Diversity lost: are all Holarctic large mammal species just relict populations?

    PubMed Central

    2010-01-01

    Population genetic analyses of Eurasian wolves published recently in BMC Evolutionary Biology suggest that a major genetic turnover took place in Eurasian wolves after the Pleistocene. These results add to the growing evidence that large mammal species surviving the late Pleistocene extinctions nevertheless lost a large share of their genetic diversity. See research article http://www.biomedcentral.com/1471-2148/10/104 PMID:20409351

  7. Expected time-invariant effects of biological traits on mammal species duration.

    PubMed

    Smits, Peter D

    2015-10-20

    Determining which biological traits influence differences in extinction risk is vital for understanding the differential diversification of life and for making predictions about species' vulnerability to anthropogenic impacts. Here I present a hierarchical Bayesian survival model of North American Cenozoic mammal species durations in relation to species-level ecological factors, time of origination, and phylogenetic relationships. I find support for the survival of the unspecialized as a time-invariant generalization of trait-based extinction risk. Furthermore, I find that phylogenetic and temporal effects are both substantial factors associated with differences in species durations. Finally, I find that the estimated effects of these factors are partially incongruous with how these factors are correlated with extinction risk of the extant species. These findings parallel previous observations that background extinction is a poor predictor of mass extinction events and suggest that attention should be focused on mass extinctions to gain insight into modern species loss.

  8. Expected time-invariant effects of biological traits on mammal species duration.

    PubMed

    Smits, Peter D

    2015-10-20

    Determining which biological traits influence differences in extinction risk is vital for understanding the differential diversification of life and for making predictions about species' vulnerability to anthropogenic impacts. Here I present a hierarchical Bayesian survival model of North American Cenozoic mammal species durations in relation to species-level ecological factors, time of origination, and phylogenetic relationships. I find support for the survival of the unspecialized as a time-invariant generalization of trait-based extinction risk. Furthermore, I find that phylogenetic and temporal effects are both substantial factors associated with differences in species durations. Finally, I find that the estimated effects of these factors are partially incongruous with how these factors are correlated with extinction risk of the extant species. These findings parallel previous observations that background extinction is a poor predictor of mass extinction events and suggest that attention should be focused on mass extinctions to gain insight into modern species loss. PMID:26438873

  9. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    PubMed

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts. PMID:23930975

  10. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    PubMed

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts.

  11. Silvicolous on a small scale: possibilities and limitations of habitat suitability models for small, elusive mammals in conservation management and landscape planning.

    PubMed

    Becker, Nina I; Encarnação, Jorge A

    2015-01-01

    Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species presence data, absences are rarely recorded. Therefore, many studies generate pseudo-absence data for modelling. However, in this study model quality was higher with null samples collected in the field. Next to species data the choice of landscape data is crucial for suitability modelling. Landscape data with high resolution and ecological relevance for the study species improve model reliability and quality for small elusive mammals like Muscardinus avellanarius. For large scale assessment of species distribution, models with low-detailed data are sufficient. For regional site-specific conservation issues like a conflict-free site for new wind turbines, high-detailed regional models are needed. Even though the overlap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants can pose a threat due to habitat loss and fragmentation. To conclude, modellers should clearly state the purpose of their models and choose the according level of detail for species and environmental data. PMID:25781894

  12. Silvicolous on a Small Scale: Possibilities and Limitations of Habitat Suitability Models for Small, Elusive Mammals in Conservation Management and Landscape Planning

    PubMed Central

    2015-01-01

    Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species presence data, absences are rarely recorded. Therefore, many studies generate pseudo-absence data for modelling. However, in this study model quality was higher with null samples collected in the field. Next to species data the choice of landscape data is crucial for suitability modelling. Landscape data with high resolution and ecological relevance for the study species improve model reliability and quality for small elusive mammals like Muscardinus avellanarius. For large scale assessment of species distribution, models with low-detailed data are sufficient. For regional site-specific conservation issues like a conflict-free site for new wind turbines, high-detailed regional models are needed. Even though the overlap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants can pose a threat due to habitat loss and fragmentation. To conclude, modellers should clearly state the purpose of their models and choose the according level of detail for species and environmental data. PMID:25781894

  13. Silvicolous on a small scale: possibilities and limitations of habitat suitability models for small, elusive mammals in conservation management and landscape planning.

    PubMed

    Becker, Nina I; Encarnação, Jorge A

    2015-01-01

    Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species presence data, absences are rarely recorded. Therefore, many studies generate pseudo-absence data for modelling. However, in this study model quality was higher with null samples collected in the field. Next to species data the choice of landscape data is crucial for suitability modelling. Landscape data with high resolution and ecological relevance for the study species improve model reliability and quality for small elusive mammals like Muscardinus avellanarius. For large scale assessment of species distribution, models with low-detailed data are sufficient. For regional site-specific conservation issues like a conflict-free site for new wind turbines, high-detailed regional models are needed. Even though the overlap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants can pose a threat due to habitat loss and fragmentation. To conclude, modellers should clearly state the purpose of their models and choose the according level of detail for species and environmental data.

  14. Legacies of land use and recent climatic change: the small mammal fauna in the mountains of Utah.

    PubMed

    Rowe, Rebecca J

    2007-08-01

    Climate warming will continue alongside human modification of the landscape. Therefore, studying systems modified by land use may highlight factors that mitigate or exacerbate predicted biological responses to ongoing climate warming. Using historical museum specimen records and recent field surveys, I examine temporal patterns in the ecological dynamics of the small mammal fauna on five mountain ranges in central Utah over time intervals of 27-53 years during the past century. This landscape was heavily modified by livestock grazing early in the twentieth century and since then has witnessed a steady decline in grazing intensity. In general, at regional and landscape scales, species preferring mesic habitats increased in percent abundance, rank abundance, and rank occurrence over time. This result is opposite that predicted from regional climate trends and probably represents the recovery of forest conditions following a release over time from earlier periods of severe overgrazing. Decreased grazing intensity may thus mitigate the predicted biological effects of climatically driven environmental change for small mammals. This work also illustrates that abundance data gleaned from natural history collections can be an appropriate tool for assessing temporal changes in composition, especially when comparisons are drawn using time- and space-averaged data sets. PMID:17874375

  15. New and already known acanthocephalans mostly from mammals in Vietnam, with descriptions of two new genera and species in Archiacanthocephala.

    PubMed

    Amin, Omar M; Ha, Ngyuen Van; Heckmann, Richard A

    2008-02-01

    Adults of 2 new species and 2 new genera of acanthocephalans in class Archiacanthocephala, collected between 1998 and 2004 in Vietnam from the intestines of mammals, are described, i.e., Cucullanorhynchus constrictruncatus n. gen., n. sp. (Oligacanthorhynchidae) from a leopard Panthera pardus (Linnaeus) (Mammalia: Felidae) and Paraprosthenorchis ornatus n. gen. n. sp. (Oligacanthorhynchidae) from the Chinese pangolin Manis pentadactyla (Linnaeus) (Mammalia: Manidae). Adult Sphaerechinorhynchus macropisthospinus Amin, Wongsawad, Marayong, Saehoong, Suwattanacoupt, and Sey, 1998 (Plagiorhynchidae) are described for the first time from 2 females collected from a tiger Panthera tigris (Linnaeus) (Mammalia: Felidae) and from 1 male from a water monitor Varanus salvator Laurenti (Reptilia: Varanidae). Characteristic features distinguishing the new species or genera from related taxa are as follows. The trunk of C. constrictruncatus has an anterior hood in both sexes and a posterior constriction in females. The anterior trunk of P. ornatus has many small festoons and proboscis hooks are inserted in elevated papillae separated by beady, near hexagonal, ornate grids.

  16. Mycophagy by small mammals in the coniferous forests of North America: nutritional value of sporocarps of Rhizopogon vinicolor, a common hypogeous fungus.

    PubMed

    Claridge, A W; Trappe, J M; Cork, S J; Claridge, D L

    1999-04-01

    We evaluated the nutritional value of sporocarps of Rhizopogon vinicolor, a common hypogeous fungus in the coniferous forests of North America, for two small mammal species: the Californian red-backed vole (Clethrionomys californicus) and the northern flying squirrel (Glaucomys sabrinus). Although the nitrogen concentration of sporocarps was high, much of it was in non-protein form or associated with cell walls, suggesting that it may be of low nutritional value or protected from mammalian digestive enzymes. Sporocarps also had high concentrations of cell wall constituents, indicating low availability of digestible energy. When fed a diet of this fungus alone in a controlled feeding experiment both mammal species lost a small amount of body mass. Digestibilities of dry matter, nitrogen, cell wall constituents and energy from sporocarps by both species were lower than the digestibilities of other food types by other similarly sized small mammals. Red-backed voles digested the various components of sporocarps at least as well as the flying squirrels, even though they were almost six-fold smaller in body mass. This observation supports the notion that red-backed voles, like other microtine rodents, have morphological and physiological adaptations of the digestive system that are postulated to permit greater digestion of fibrous diets than predicted on the basis of body size. Despite this, our results re-affirm previous conclusions that hypogeous fungi are only of moderate nutritional value for most small, hindgut-fermenting mammals. Future studies should focus on the importance of mixed-species of fungi in the diet of small mammalian mycophagists. PMID:10335615

  17. Expected time-invariant effects of biological traits on mammal species duration

    PubMed Central

    Smits, Peter D.

    2015-01-01

    Determining which biological traits influence differences in extinction risk is vital for understanding the differential diversification of life and for making predictions about species’ vulnerability to anthropogenic impacts. Here I present a hierarchical Bayesian survival model of North American Cenozoic mammal species durations in relation to species-level ecological factors, time of origination, and phylogenetic relationships. I find support for the survival of the unspecialized as a time-invariant generalization of trait-based extinction risk. Furthermore, I find that phylogenetic and temporal effects are both substantial factors associated with differences in species durations. Finally, I find that the estimated effects of these factors are partially incongruous with how these factors are correlated with extinction risk of the extant species. These findings parallel previous observations that background extinction is a poor predictor of mass extinction events and suggest that attention should be focused on mass extinctions to gain insight into modern species loss. PMID:26438873

  18. Modeling the effects of fire severity and spatial complexity on Small Mammals in Yosemite National Park, California

    USGS Publications Warehouse

    Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.

    2008-01-01

    We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.

  19. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    PubMed Central

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  20. Are most species small? Not within species-level phylogenies.

    PubMed

    Orme, C David L; Isaac, Nick J B; Purvis, Andy

    2002-06-22

    The robust macro-ecological observation that there are more small-bodied species implies that small-bodied organisms have experienced elevated net rates of diversification. We investigate the role of body size in creating non-random differences in rates of cladogenesis using a set of 38 species-level phylogenies drawn from a range of animal groups. We use independent contrasts to explore the relationship between body size and species richness within individual phylogenies and across related sets of phylogenies. We also carry out a meta-analysis looking for associations between body size and species richness across the taxa. We find little evidence for increased cladogenesis among small-bodied organisms within taxa, and no evidence for any consistent differences between taxa. We explore possible explanations for the inconsistency of our findings with macro-ecological patterns.

  1. Seasonal patterns of mixed species groups in large East African mammals.

    PubMed

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups. PMID:25470495

  2. Seasonal Patterns of Mixed Species Groups in Large East African Mammals

    PubMed Central

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups. PMID:25470495

  3. An annotated catalogue of the gamasid mites associated with small mammals in Asiatic Russia. The family Laelapidae s. str. (Acari: Mesostigmata: Gamasina).

    PubMed

    Vinarski, Maxim V; Korallo-Vinarskaya, Natalia P

    2016-01-01

    Twenty-nine species of mites of the family Laelapidae s. str. have been recorded as associated with small mammals (rodents, insectivores) in Asiatic Russia (Siberia and the Russian Far East). These species belong to two subfamilies (Laelapinae, Myonyssinae) and six genera: Androlaelaps Berlese, 1903, Dipolaelaps Zemskaya & Piontkovskaya, 1960, Laelaps C.L. Koch, 1836, Hyperlaelaps Zakhvatkin, 1948, Myonyssus Tiraboschi, 1904, Oryctolaelaps Lange, 1955. A list of the species, with data on synonymy, geographic ranges, and relationships with mammal hosts is provided. Some considerations concerning patterns of distribution of the parasitic Laelaptidae of Asiatic Russia are presented as well as their classifications from the point of view of known host association records. PMID:27395087

  4. Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals.

    PubMed

    van der Vinne, Vincent; Gorter, Jenke A; Riede, Sjaak J; Hut, Roelof A

    2015-08-01

    Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The circadian thermo-energetics (CTE) hypothesis predicts that diurnal activity patterns reduce daily energy expenditure (DEE) compared with nocturnal activity patterns. Here, we tested the CTE hypothesis by quantifying the energetic consequences of relevant environmental factors in mice. Under natural conditions, diurnality reduces DEE by 6-10% in energetically challenged mice. Combined with night-time torpor, as observed in mice under prolonged food scarcity, DEE can be reduced by ∼20%. The dominant factor determining the energetic benefit of diurnality is thermal buffering provided by a sheltered resting location. Compared with nocturnal animals, diurnal animals encounter higher ambient temperatures during both day and night, leading to reduced thermogenesis costs in temperate climates. Analysis of weather station data shows that diurnality is energetically beneficial on almost all days of the year in a temperate climate region. Furthermore, diurnality provides energetic benefits at all investigated geographical locations on European longitudinal and latitudinal transects. The reduction of DEE by diurnality provides an ultimate explanation for temporal niche switching observed in typically nocturnal small mammals under energetically challenging conditions. Diurnality allows mammals to compensate for reductions in food availability and temperature as it reduces energetic needs. The optimal circadian organization of an animal ultimately depends on the balance between energetic consequences and other fitness consequences of the selected temporal niche.

  5. Regulation of forest defoliating insects through small mammal predation: reconsidering the mechanisms.

    PubMed

    Kollberg, Ida; Bylund, Helena; Huitu, Otso; Björkman, Christer

    2014-12-01

    Population densities of forest defoliating insects may be regulated by small mammal predation on the pupae. When outbreaks do occur, they often coincide with warm, dry weather and at barren forest sites. A proposed reason for this is that weather and habitat affect small mammal population density (numerical response) and hence pupal predation. We propose an alternative explanation: weather and habitat affect small mammal feeding behaviour (functional response) and hence the outbreak risks of forest pest insects. We report results from laboratory and field-enclosure experiments estimating rates of pupal predation by bank voles (Myodes glareolus) on an outbreak insect, the European pine sawfly (Neodiprion sertifer), at different temperatures (15 and 20 °C), in different microhabitats (sheltered and non-sheltered), and with or without access to alternative food (sunflower seeds). We found that the probability of a single pupa being eaten at 20 °C was lower than at 15 °C (0.49 and 0.72, respectively). Pupal predation was higher in the sheltered microhabitat than in the open one, and the behaviour of the voles differed between microhabitats. More pupae were eaten in situ in the sheltered microhabitat whereas in the open area more pupae were removed and eaten elsewhere. Access to alternative food did not affect pupal predation. The results suggest that predation rates on pine sawfly pupae by voles are influenced by temperature- and habitat-induced variation in the physiology and behaviour of the predator, and not necessarily solely through effects on predator densities as previously proposed.

  6. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    SciTech Connect

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated that plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.

  7. Identification of novel cytochrome P450 1A genes from five marine mammal species.

    PubMed

    Teramitsu, I; Yamamoto, Y; Chiba, I; Iwata, H; Tanabe, S; Fujise, Y; Kazusaka, A; Akahori, F; Fujita, S

    2000-12-01

    Marine mammals, being endangered by the chronic exposure of hydrophobic environmental contaminants as an assorting result of global pollution, are especially focused as indicators for organochlorine pollution. The use of contaminant-induced xenobiotic metabolizers, particularly P450 (CYP) 1A, in marine mammals can be effective as potential biomarkers of the contaminant exposure and/or toxic effects. In this study, we identified the first marine mammalian CYPs. Six novel CYP1A cDNA fragments were cloned from the livers of marine mammal species, minke whale (Balaenoptera acutorostrata), dall's porpoise (Phocoenoides dalli), steller sea lion (Eumetopias jubatus), largha seal (Phoca largha), and ribbon seal (Phoca fasciata) by the method of reverse transcription/polymerase chain reaction (RT/PCR); two distinct fragments were from steller sea lion and one fragment each was obtained from the other species. Five of the fragments, one from each species, were classified in the subfamily of CYP1A1, and the other fragment cloned from steller sea lion was designated CYP1A2. Degenerate PCR primers were used to amplify the fragments from liver cDNAs. The deduced amino acid sequences of these fragment CYP1As showed identities ranging from 50.0 to 94.3% with other known vertebrate CYPs in the subfamily of CYP1A, including those from fish, chicken, and terrestrial mammals. The isolated fragments were used to construct a molecular phylogeny, along with other vertebrate CYP1A cDNAs cut down in size to the corresponding region of 265 bp in which those newly determined fragments were cloned. This phylogenetic analysis by the maximum parsimony method using the PHYLIP program suggests two distinct evolutional pathways for aquatic mammalian CYP1As, compatible to a conservative taxonomy. Pinniped genes are clustered together with dog gene, forming a carnivore group, and cetaceans form another branch. Identification of CYP1A genes in marine mammals will be an introductory step to provide

  8. Spatial capture-recapture model performance with known small-mammal densities.

    PubMed

    Gerber, Brian D; Parmenter, Robert R

    2015-04-01

    Abundance and density of wild animals are important ecological metrics. However, estimating either is fraught with challenges; spatial capture-recapture (SCR) models are a relatively new class of models that attempt to ameliorate common challenges, providing a statistically coherent framework to estimate abundance and density. SCR models are increasingly being used in ecological and conservation studies of mammals worldwide, but have received little testing with empirical field data. We use data collected via a web and grid sampling design to evaluate the basic SCR model where small-mammal abundance (N) and density (D) are known (via exhaustive sampling). We fit the basic SCR model with and without a behavioral effect to 11 small-mammal populations for each sampling design using a Bayesian and likelihood SCR modeling approach. We compare SCR and ad hoc density estimators using frequentist performance measures. We found Bayesian and likelihood SCR estimates of density (D) and abundance (N) to be similar. We also found SCR models to have moderately poor frequentist coverage of D and N (45-73%), high deviation from truth (i.e., accuracy; D, 17-29%; N, 16-29%), and consistent negative bias across inferential paradigms, sampling designs, and models. With the trapping grid data, the basic SCR model generally performed more poorly than the best ad hoc estimator (behavior CR super-population estimate divided by the full mean maximum distance moved estimate of the effective trapping area), whereas with the trapping web data, the best-performing SCR model (null) was comparable to the best distance model. Relatively poor frequentist SCR coverage resulted from higher precision (SCR coefficients of variation [CVs] < ad hoc CVs); however D and D were fairly well correlated (r2 range of 0.77-0.96). SCR's negative relative bias (i.e., average underestimation of the true density) suggests additional heterogeneity in detection and/or that small mammals maintained asymmetric home

  9. Spatial capture-recapture model performance with known small-mammal densities.

    PubMed

    Gerber, Brian D; Parmenter, Robert R

    2015-04-01

    Abundance and density of wild animals are important ecological metrics. However, estimating either is fraught with challenges; spatial capture-recapture (SCR) models are a relatively new class of models that attempt to ameliorate common challenges, providing a statistically coherent framework to estimate abundance and density. SCR models are increasingly being used in ecological and conservation studies of mammals worldwide, but have received little testing with empirical field data. We use data collected via a web and grid sampling design to evaluate the basic SCR model where small-mammal abundance (N) and density (D) are known (via exhaustive sampling). We fit the basic SCR model with and without a behavioral effect to 11 small-mammal populations for each sampling design using a Bayesian and likelihood SCR modeling approach. We compare SCR and ad hoc density estimators using frequentist performance measures. We found Bayesian and likelihood SCR estimates of density (D) and abundance (N) to be similar. We also found SCR models to have moderately poor frequentist coverage of D and N (45-73%), high deviation from truth (i.e., accuracy; D, 17-29%; N, 16-29%), and consistent negative bias across inferential paradigms, sampling designs, and models. With the trapping grid data, the basic SCR model generally performed more poorly than the best ad hoc estimator (behavior CR super-population estimate divided by the full mean maximum distance moved estimate of the effective trapping area), whereas with the trapping web data, the best-performing SCR model (null) was comparable to the best distance model. Relatively poor frequentist SCR coverage resulted from higher precision (SCR coefficients of variation [CVs] < ad hoc CVs); however D and D were fairly well correlated (r2 range of 0.77-0.96). SCR's negative relative bias (i.e., average underestimation of the true density) suggests additional heterogeneity in detection and/or that small mammals maintained asymmetric home

  10. Reinvasion of small mammals, reptiles, amphibians and insects on a reclaimed coal strip-mine

    SciTech Connect

    Ireland, T.T.; Schemnitz, S.D.; Wolters, G.L.

    1990-12-31

    We conducted wildlife and vegetation sampling on sites reclaimed in 1979, 1982, and 1986, as well as unmined sites, on The Pittsburgh & Midway (P&M) Coal Mining Co.`s McKinley Mine in McKinley County, New Mexico. In June, July, and August 1988 and 1989 we samples small mammals, reptiles, amphibians and insects. Soil and vegetation sampling was conducted in July and September 1988, respectively. We found several significant differences (P < 0.05) among plant and animal data that may have suggested differences between study sites. Recent reclamation procedures conducted or proposed by P&M promise increased wildlife value of reclaimed sites.

  11. Population responses of small mammals to food supply and predators: a global meta-analysis.

    PubMed

    Prevedello, Jayme A; Dickman, Chris R; Vieira, Marcus V; Vieira, Emerson M

    2013-09-01

    1. The relative importance of food supply and predation as determinants of animal population density is a topic of enduring debate among ecologists. To address it, many studies have tested the potential effects of food on population density by experimentally supplementing natural populations, with much focus on terrestrial vertebrates, especially small mammals. 2. Here we perform a meta-analysis of such experiments, testing two complementary hypotheses: (i) small mammal populations are bottom-up limited and (ii) population increases in response to food supplementation are constrained by predation, a top-down limitation. 3. In the 148 experiments recorded, food supplementation had an overall positive and significant effect, increasing population densities by 1.5-fold. Larger population increases occurred when predation was reduced and populations were open to immigration. Predation appeared to be unimportant when populations were closed to immigration. Immigration was the major mechanism underlying increases in abundance by increasing local population density and crowding. Contributions of increased reproductive rate could be detected, but were minor compared to immigration, and no effects were detected from survival. 4. Our analyses support the view that animal population density is determined by both bottom-up and top-down forces. They also suggest the possibility that food supplementation experiments might unintentionally create ecological traps by aggregating both prey and predators in small areas of the landscape. We suggest an alternative experimental design to increase the contribution that food supplementation experiments can make in future.

  12. Effects of Large and Small-Source Seismic Surveys on Marine Mammals and Sea Turtles

    NASA Astrophysics Data System (ADS)

    Holst, M.; Richardson, W. J.; Koski, W. R.; Smultea, M. A.; Haley, B.; Fitzgerald, M. W.; Rawson, M.

    2006-05-01

    L-DEO implements a marine mammal and sea turtle monitoring and mitigation program during its seismic surveys. The program consists of visual observations, mitigation, and/or passive acoustic monitoring (PAM). Mitigation includes ramp ups, powerdowns, and shutdowns of the seismic source if marine mammals or turtles are detected in or about to enter designated safety radii. Visual observations for marine mammals and turtles have taken place during all 11 L-DEO surveys since 2003, and PAM was done during five of those. Large sources were used during six cruises (10 to 20 airguns; 3050 to 8760 in3; PAM during four cruises). For two interpretable large-source surveys, densities of marine mammals were lower during seismic than non- seismic periods. During a shallow-water survey off Yucatán, delphinid densities during non-seismic periods were 19x higher than during seismic; however, this number is based on only 3 sightings during seismic and 11 sightings during non-seismic. During a Caribbean survey, densities were 1.4x higher during non-seismic. The mean closest point of approach (CPA) for delphinids for both cruises was significantly farther during seismic (1043 m) than during non-seismic (151 m) periods (Mann-Whitney U test, P < 0.001). Large whales were only seen during the Caribbean survey; mean CPA during seismic was 1722 m compared to 1539 m during non-seismic, but sample sizes were small. Acoustic detection rates with and without seismic were variable for three large-source surveys with PAM, with rates during seismic ranging from 1/3 to 6x those without seismic (n = 0 for fourth survey). The mean CPA for turtles was closer during non-seismic (139 m) than seismic (228 m) periods (P < 0.01). Small-source surveys used up to 6 airguns or 3 GI guns (75 to 1350 in3). During a Northwest Atlantic survey, delphinid densities during seismic and non-seismic were similar. However, in the Eastern Tropical Pacific, delphinid densities during non-seismic were 2x those during

  13. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals

    PubMed Central

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  14. Epizootiological survey of small mammals as Leptospira spp. reservoirs in Eastern Croatia.

    PubMed

    Stritof Majetic, Zrinka; Galloway, Renee; Ruzic Sabljic, Eva; Milas, Zoran; Mojcec Perko, Vesna; Habus, Josipa; Margaletic, Josip; Pernar, Renata; Turk, Nenad

    2014-03-01

    In this survey we investigated a population of small mammals in Eastern Croatia in order to determine Leptospira carriage rates and identify circulating serovars. Out of 67 trapped animals, 20 (29.9%) isolates were obtained. Identification of isolates using microscopic agglutination test, pulsed field gel electrophoresis and multi locus sequence typing revealed that 10 (50.0%) isolates belong to serogroup Pomona, serovar Mozdok, 6 (30.0%) isolates to serogroup Australis, serovar Jalna, 2 (10.0%) isolates to serogroup Sejroe, serovar Saxkoebing, and 1 (5.0%) isolate to serogroup Grippotyphosa, serovar Grippotyphosa. One isolate from serogroup Bataviae was unable to be identified to the serovar level. Amplification of a 331-bp region of the locus LA0322 using real-time polymerase chain reaction determined that 12 (60.0%) isolates belong to L. kirschneri, 6 (30.0%) isolates to L. interrogans, and 2 (10.0%) isolates to L. borgpetersenii. Leptospira carriage rate was high (29.9%), which corresponds to a high incidence of human and domestic animal leptospirosis in Eastern Croatia. Furthermore, 90.0% of the isolates belong to serogroups Pomona, Australis and Sejroe which are also the most prevalent serogroups in humans in this area. These findings suggest that small mammals might be an important source of Leptospira spp. infection in Eastern Croatia.

  15. The influence of small mammal burrowing activity on water storage at the Hanford Site

    SciTech Connect

    Landeen, D.S.

    1994-09-01

    The amount and rate at which water may penetrate a protective barrier and come into contact with buried radioactive waste is a major concern. Because burrowing animals eventually will reside on the surface of any protective barrier, the effect these burrow systems may have on the loss or retention of water needs to be determined. The first section of this document summarizes the known literature relative to small mammals and the effects that burrowing activities have on water distribution, infiltration, and the overall impact of burrows on the ecosystem. Topics that are summarized include burrow air pressures, airflow, burrow humidity, microtopography, mounding, infiltration, climate, soil evaporation, and discussions of large pores relative to water distribution. The second section of this document provides the results of the study that was conducted at the Hanford Site to determine what effect small mammal burrows have on water storage. This Biointrusion task is identified in the Permanent Isolation Surface Barrier Development Plan in support of protective barriers. This particular animal intrusion task is one part of the overall animal intrusion task identified in Animal Intrusion Test Plan.

  16. Barn owl (Tyto alba) predation on small mammals and its role in the control of hantavirus natural reservoirs in a periurban area in southeastern Brazil.

    PubMed

    Magrini, L; Facure, K G

    2008-11-01

    The aim of this study was to inventory the species of small mammals in Uberlândia, Minas Gerais, Brazil, based on regurgitated pellets of the barn owl and to compare the frequency of rodent species in the diet and in the environment. Since in the region there is a high incidence of hantavirus infection, we also evaluate the importance of the barn owl in the control of rodents that transmit the hantavirus. Data on richness and relative abundance of rodents in the municipality were provided by the Centro de Controle de Zoonoses, from three half-yearly samplings with live traps. In total, 736 food items were found from the analysis of 214 pellets and fragments. Mammals corresponded to 86.0% of food items and were represented by one species of marsupial (Gracilinanus agilis) and seven species of rodents, with Calomys tener (70.9%) and Necromys lasiurus (6.7%) being the most frequent. The proportion of rodent species in barn owl pellets differed from that observed in trap samplings, with Calomys expulsus, C. tener and Oligoryzomys nigripes being consumed more frequently than expected. Although restricted to a single place and based on few individuals, the present study allowed the inventory of eight species of small mammals in Uberlândia. The comparison of the relative frequencies of rodent species in the diet and in the environment indicated selectivity. The second most preyed upon species was N. lasiurus, the main hantavirus reservoir in the Cerrado biome. In this way, the barn owl might play an important role in the control of this rodent in the region, contributing to the avoidance of a higher number of cases of hantavirus infection. PMID:19197490

  17. Barn owl (Tyto alba) predation on small mammals and its role in the control of hantavirus natural reservoirs in a periurban area in southeastern Brazil.

    PubMed

    Magrini, L; Facure, K G

    2008-11-01

    The aim of this study was to inventory the species of small mammals in Uberlândia, Minas Gerais, Brazil, based on regurgitated pellets of the barn owl and to compare the frequency of rodent species in the diet and in the environment. Since in the region there is a high incidence of hantavirus infection, we also evaluate the importance of the barn owl in the control of rodents that transmit the hantavirus. Data on richness and relative abundance of rodents in the municipality were provided by the Centro de Controle de Zoonoses, from three half-yearly samplings with live traps. In total, 736 food items were found from the analysis of 214 pellets and fragments. Mammals corresponded to 86.0% of food items and were represented by one species of marsupial (Gracilinanus agilis) and seven species of rodents, with Calomys tener (70.9%) and Necromys lasiurus (6.7%) being the most frequent. The proportion of rodent species in barn owl pellets differed from that observed in trap samplings, with Calomys expulsus, C. tener and Oligoryzomys nigripes being consumed more frequently than expected. Although restricted to a single place and based on few individuals, the present study allowed the inventory of eight species of small mammals in Uberlândia. The comparison of the relative frequencies of rodent species in the diet and in the environment indicated selectivity. The second most preyed upon species was N. lasiurus, the main hantavirus reservoir in the Cerrado biome. In this way, the barn owl might play an important role in the control of this rodent in the region, contributing to the avoidance of a higher number of cases of hantavirus infection.

  18. RESILIENCE TO DROUGHTS IN MAMMALS: A CONCEPTUAL FRAMEWORK FOR ESTIMATING VULNERABILITY OF A SINGLE SPECIES.

    PubMed

    Rymer, Tasmin L; Pillay, Neville; Schradin, Carsten

    2016-06-01

    ABSTRACT The frequency and severity of droughts in certain areas is increasing as a consequence of climate change. The associated environmental challenges, including high temperatures, low food, and water availability, have affected, and will affect, many populations. Our aims are to review the behavioral, physiological, and morphological adaptations of mammals to arid environments, and to aid research- ers and nature conservationists about which traits they should study to assess whether or not their study species will be able to cope with droughts. We provide a suite of traits that should be considered when making predictions about species resilience to drought. We define and differentiate between general adaptations, specialized adaptations, and exaptations, and argue that specialized adaptations are of little interest in establishing how nondesert specialists will cope with droughts. Attention should be placed on general adaptations of semidesert species and assess whether these exist as exaptations in nondesert species. We conclude that phenotypic flexibility is the most important general adaptation that may promote species resilience. Thus, to assess whether a species will be able to cope with increasing aridity, it is important to establish the degree offlexibility of traits identified in semidesert species that confer afitness advantage under drying conditions. PMID:27405222

  19. RESILIENCE TO DROUGHTS IN MAMMALS: A CONCEPTUAL FRAMEWORK FOR ESTIMATING VULNERABILITY OF A SINGLE SPECIES.

    PubMed

    Rymer, Tasmin L; Pillay, Neville; Schradin, Carsten

    2016-06-01

    ABSTRACT The frequency and severity of droughts in certain areas is increasing as a consequence of climate change. The associated environmental challenges, including high temperatures, low food, and water availability, have affected, and will affect, many populations. Our aims are to review the behavioral, physiological, and morphological adaptations of mammals to arid environments, and to aid research- ers and nature conservationists about which traits they should study to assess whether or not their study species will be able to cope with droughts. We provide a suite of traits that should be considered when making predictions about species resilience to drought. We define and differentiate between general adaptations, specialized adaptations, and exaptations, and argue that specialized adaptations are of little interest in establishing how nondesert specialists will cope with droughts. Attention should be placed on general adaptations of semidesert species and assess whether these exist as exaptations in nondesert species. We conclude that phenotypic flexibility is the most important general adaptation that may promote species resilience. Thus, to assess whether a species will be able to cope with increasing aridity, it is important to establish the degree offlexibility of traits identified in semidesert species that confer afitness advantage under drying conditions.

  20. Allometric scaling of orbifloxacin disposition in nine mammal species: a retrospective analysis.

    PubMed

    Gebru, Elias; Lee, Seung-Jin; Kim, Jong-Choon; Park, Seung-Chun

    2011-06-01

    The objective of this study was to analyze the relationship between pharmacokinetic parameters and body weight (W) for orbifloxacin using reported pharmacokinetic data. The parameters of interest: clearance (Cl), volume of distribution at steady state (Vss) and elimination half-life were correlated across nine mammal species, including cattle, dog, rat, rabbit, goat, camel, horse, cat and sheep as a function of W using the conventional allometric equation Y = aW(b), where Y is the pharmacokinetic parameter, W is the body weight, a is the allometric coefficient (intercept) and b is the exponent that describes the relationship between the pharmacokinetic parameter and W. Our estimates (Cl=4.40 W(1.03); Vss=1.10W(1.05)) indicated that the increase in these parameters with W approximates a linear power relationship with slopes being very close to one. Overall, the results of this study indicated that it is possible to use allometry to predict pharmacokinetic variables of orbifloxacin based on W of mammal species.

  1. Role of small mammals in the ecology of Borrelia burgdorferi in a peri-urban park in north coastal California.

    PubMed

    Peavy, C A; Lane, R S; Kleinjan, J E

    1997-08-01

    The role of small mammals other than woodrats in the enzootiology of the Lyme disease spirochete, Borrelia burgorferi, was assessed in the peri-urban park. Mammals were collected monthly from September through to April. Following tick removal, the animals were tested for B. burgdorferi by culture of ear-punch biopsies. Larvae and nymphs that were intermediate in morphology between Ixodes spinipalpis and Ixodes neotomae occurred on several species of rodents (Peromyscus truei, Peromyscus californicus, Microtus californicus, Rattus rattus and Reithrodontomys megalotis) and the brush rabbit (Sylvilagus bachmani). Morphometric analyses of these I. spinipalpis-like ticks and the offspring from two I. neotomae females from the site suggest that I. neotomae may bo conspecific with I. spinipalpis. Borrelia burgdorferi was isolated from eight out of 109 (7.3%), three out of 16 (18.8%), two out of 38 (5.3%) and two out of six (33.3%) P. truei, P. maniculatus, M. californicus and R. rattus, respectively. One bush rabbit yielded the first isolate of B. burgdorferi from a lagomorph in western North America. This isolate and three others derived from unfed I. spinipalpis-like nymphs failed to produce infection when inoculated intradermally into 11-12 P. maniculatus each. Likewise, no spirochetes were detected in 420 Ixodes pacificus nymphs derived from larvae fed on animals inoculated with these isolates. An additional isolate, derived from an I. spinipalpis-like nymph, was recovered by ear-punch biopsies from five our of 12 (42%) needle-inoculated P. maniculatus. However, spirochetes were not detected in 20 I. pacificus nymphs fed as larvae on each of five mice (two infected and three uninfected) inoculated with this isolate. We conclude that brush rabbits and several species of rodents besides woodrats may contribute to the maintenance of B. burgdorferi because they harbour the spirochete and are fed upon by competent enzootic vectors. PMID:9291589

  2. Douglas-fir forests in the Cascade Mountains of Oregon and Washington: is the abundance of small mammals related to stand age and moisture?

    USGS Publications Warehouse

    Coen, P.S.; Bury, R.B.; Spies, T.A.

    1988-01-01

    Red tree voles (Arborimus longicaudus) were the only small mammal strongly associated with old-growth forests, whereas vagrant shrews (Sorex vagrans) were most abundant in young forests. Pacific marsh shrews (S. bendirii) were most abundant in wet old-growth forests, but abundance of this species in young (wet) forests needs further study. Clearcuts had a mammalian fauna distinct from young forest stands. Abundance of several species was correlated to habitat features unique to naturally regenerated forests, indicated an urgent need to study the long-term effects of forest management to nongame wildlife.

  3. Hantaan virus surveillance in small mammals at firing points 10 and 60, Yeoncheon, Gyeonggi Province, Republic of Korea.

    PubMed

    Klein, Terry A; Kim, Heung-Chul; Chong, Sung-Tae; O'Guinn, Monica L; Lee, John S; Turell, Michael J; Sames, William J; Gu, Se Hun; Kang, Hae Ji; Moon, Sungsil; Lee, Sook-Young; Chun, YuJin; Song, Jin-Won

    2012-08-01

    We used epidemiological data and indirect fluorescent antibody tests to determine the Hantaan virus (HTNV) antibody-positive (Ab+) prevalence in small mammals captured at firing point 10 (FP-10) and firing point 60 (FP-60), Gyeonggi Province, near the demilitarized zone, Republic of Korea (ROK), from 2001 to 2005. We used these data, combined with the partial M segment amplified from HTNV recovered from lung tissues of Apodemus agrarius, to clarify the genetic diversity and phylogenetic relationships among HTNV strains in the ROK. Of the eight species of rodents and one insectivore species captured, A. agrarius accounted for 93.4% and 88.5% at FP-10 and FP-60, respectively. Only two species of rodents, A. agrarius and Micromys minutus, were HTNV Ab+. The overall HTNV Ab+ prevalence for A. agrarius captured at FP-10 and FP-60 was 23.3% (121/520) and 14.5% (94/647), respectively. The hantaviral reverse transcription-polymerase chain reaction-positive rate of Ab+ A. agrarius was 74.2% (167/215), and the phylogenetic trees, based on the 269-nucleotide G2-encoding M segment, demonstrated that HTNV strains from FP-10 and FP-60 were distantly segregated from HTNV of other geographic regions in Korea and China. These data are useful in the development of risk reduction strategies for the prevention of hantavirus infections among military personnel, especially during training or the event of hostilities, and civilian populations.

  4. Hantaan virus surveillance targeting small mammals at nightmare range, a high elevation military training area, Gyeonggi Province, Republic of Korea.

    PubMed

    Klein, Terry A; Kim, Heung-Chul; Chong, Sung-Tae; Kim, Jeong-Ah; Lee, Sook-Young; Kim, Won-Keun; Nunn, Peter V; Song, Jin-Won

    2015-01-01

    Rodent-borne disease surveillance was conducted at Nightmare Range (NM-R), near the demilitarized zone in northeast Gyeonggi Province, Republic of Korea, to identify hemorrhagic fever with renal syndrome (HFRS) risks for a mountainous high-elevation (500 m) military training site. Monthly surveys were conducted from January 2008-December 2009. A total of 1,720 small mammals were captured belonging to the Orders Rodentia [Families, Sciuridae (1 species) and Muridae (7 species)] and Soricomorpha [Family, Soricidae (1species)]. Apodemus agrarius, the primary reservoir for Hantaan virus (HTNV), accounted for 89.9% (1,546) of all small mammals captured, followed by Myodes regulus (4.0%), Crocidura lasiura (3.9%), Micromys minutus (1.4%), Mus musculus (0.3%), Microtus fortis (0.2%), Apodemus peninsulae (0.2%), Tamias sibiricus (0.1%), and Rattus norvegicus (<0.1%). Three species were antibody-positive (Ab+) for hantaviruses: A. agrarius (8.2%), M. minutus (4.2%), and C. lasiura (1.5%). HTNV specific RNA was detected in 93/127 Ab+ A. agrarius, while Imjin virus specific RNA was detected in 1/1 Ab+ C. lasiura. Overall, hantavirus Ab+ rates for A. agrarius increased with weight (age) and were significantly higher among males (10.9%) than females (5.1%) (P<0.0001). High A. agrarius gravid rates during the fall (August-September) were associated with peak numbers of HFRS cases in Korea that followed high gravid rates. From 79 RT-PCR positive A. agrarius, 12 HTNV RNA samples were sequenced and compared phylogenetically based on a 320 nt sequence from the GC glycoprotein-encoding M segment. These results demonstrate that the HTNV isolates from NM-R are distinctly separated from HTNV isolated from the People's Republic of China. These studies provide for improved disease risk assessments that identify military activities, rodent HTNV rates, and other factors associated with the transmission of hantaviruses during field training exercises.

  5. Hantaan Virus Surveillance Targeting Small Mammals at Nightmare Range, a High Elevation Military Training Area, Gyeonggi Province, Republic of Korea

    PubMed Central

    Klein, Terry A.; Kim, Heung-Chul; Chong, Sung-Tae; Kim, Jeong-Ah; Lee, Sook-Young; Kim, Won-Keun; Nunn, Peter V.; Song, Jin-Won

    2015-01-01

    Rodent-borne disease surveillance was conducted at Nightmare Range (NM-R), near the demilitarized zone in northeast Gyeonggi Province, Republic of Korea, to identify hemorrhagic fever with renal syndrome (HFRS) risks for a mountainous high-elevation (500 m) military training site. Monthly surveys were conducted from January 2008-December 2009. A total of 1,720 small mammals were captured belonging to the Orders Rodentia [Families, Sciuridae (1 species) and Muridae (7 species)] and Soricomorpha [Family, Soricidae (1species)]. Apodemus agrarius, the primary reservoir for Hantaan virus (HTNV), accounted for 89.9% (1,546) of all small mammals captured, followed by Myodes regulus (4.0%), Crocidura lasiura (3.9%), Micromys minutus (1.4%), Mus musculus (0.3%), Microtus fortis (0.2%), Apodemus peninsulae (0.2%), Tamias sibiricus (0.1%), and Rattus norvegicus (<0.1%). Three species were antibody-positive (Ab+) for hantaviruses: A. agrarius (8.2%), M. minutus (4.2%), and C. lasiura (1.5%). HTNV specific RNA was detected in 93/127 Ab+ A. agrarius, while Imjin virus specific RNA was detected in 1/1 Ab+ C. lasiura. Overall, hantavirus Ab+ rates for A. agrarius increased with weight (age) and were significantly higher among males (10.9%) than females (5.1%) (P<0.0001). High A. agrarius gravid rates during the fall (August-September) were associated with peak numbers of HFRS cases in Korea that followed high gravid rates. From 79 RT-PCR positive A. agrarius, 12 HTNV RNA samples were sequenced and compared phylogenetically based on a 320 nt sequence from the GC glycoprotein-encoding M segment. These results demonstrate that the HTNV isolates from NM-R are distinctly separated from HTNV isolated from the People’s Republic of China. These studies provide for improved disease risk assessments that identify military activities, rodent HTNV rates, and other factors associated with the transmission of hantaviruses during field training exercises. PMID:25874643

  6. U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals.

    PubMed Central

    Nicoloso, M; Caizergues-Ferrer, M; Michot, B; Azum, M C; Bachellerie, J P

    1994-01-01

    We have found that intron 11 of the nucleolin gene in humans and rodents encodes a previously unidentified small nucleolar RNA, termed U20. The single-copy U20 sequence is located on the same DNA strand as the nucleolin mRNA. U20 RNA, which does not possess a trimethyl cap, appears to result from intronic RNA processing and not from transcription of an independent gene. In mammals, U20 RNA is an 80-nucleotide-long, metabolically stable species, present at about 7 x 10(3) molecules per exponentially growing HeLa cell. It has a nucleolar localization, as indicated by fluorescence microscopy following in situ hybridization with digoxigenin-labeled oligonucleotides. U20 RNA contains the box C and box D sequence motifs, hallmarks of most small nucleolar RNAs reported to date, and is immunoprecipitated by antifibrillarin antibodies. It also exhibits a 5'-3' terminal stem bracketing the box C-box D motifs like U14, U15, U16, or Y RNA. A U20 homolog of similar size has been detected in all vertebrate classes by Northern (RNA) hybridization with mammalian oligonucleotide probes. U20 RNA contains an extended region (21 nucleotides) of perfect complementarity with a phylogenetically conserved sequence in 18S rRNA. This complementarity is strongly preserved among distant vertebrates, suggesting that U20 RNA may be involved in the formation of the small ribosomal subunit like nucleolin, the product of its host gene. Images PMID:8065311

  7. DNA Microarray Platform for Detection and Surveillance of Viruses Transmitted by Small Mammals and Arthropods

    PubMed Central

    Khan, Mohd Jaseem; Trabuco, Amanda Cristina; Alfonso, Helda Liz; Figueiredo, Mario Luis; Batista, Weber Cheli; Badra, Soraya Jabur; Figueiredo, Luiz Tadeu; Lavrador, Marco Aurélio

    2016-01-01

    Viruses transmitted by small mammals and arthropods serve as global threats to humans. Most emergent and re-emergent viral agents are transmitted by these groups; therefore, the development of high-throughput screening methods for the detection and surveillance of such viruses is of great interest. In this study, we describe a DNA microarray platform that can be used for screening all viruses transmitted by small mammals and arthropods (SMAvirusChip) with nucleotide sequences that have been deposited in the GenBank. SMAvirusChip was designed with more than 15,000 oligonucleotide probes (60-mers), including viral and control probes. Two SMAvirusChip versions were designed: SMAvirusChip v1 contains 4209 viral probes for the detection of 409 viruses, while SMAvirusChip v2 contains 4943 probes for the detection of 416 viruses. SMAvirusChip was evaluated with 20 laboratory reference-strain viruses. These viruses could be specifically detected when alone in a sample or when artificially mixed within a single sample. The sensitivity of SMAvirusChip was evaluated using 10-fold serial dilutions of dengue virus (DENV). The results showed a detection limit as low as 2.6E3 RNA copies/mL. Additionally, the sensitivity was one log10 lower (2.6E2 RNA copies/mL) than quantitative real-time RT-PCR and sufficient to detect viral genomes in clinical samples. The detection of DENV in serum samples of DENV-infected patients (n = 6) and in a whole blood sample spiked with DENV confirmed the applicability of SMAvirusChip for the detection of viruses in clinical samples. In addition, in a pool of mosquito samples spiked with DENV, the virus was also detectable. SMAvirusChip was able to specifically detect viruses in cell cultures, serum samples, total blood samples and a pool of mosquitoes, confirming that cellular RNA/DNA did not interfere with the assay. Therefore, SMAvirusChip may represent an innovative surveillance method for the rapid identification of viruses transmitted by small

  8. Selective herbivory by mammals on 19 species planted at two densities

    NASA Astrophysics Data System (ADS)

    Rafferty, Christine; Lamont, Byron B.

    2007-07-01

    The impact of mammalian herbivory, particularly macropods, upon seedling establishment in a post-fire environment was studied experimentally at Whiteman Park Reserve, Perth, Western Australia. Nineteen plant species of contrasting morphology and chemistry were established at low and high densities in protective exclosures, and half of the plants later exposed to herbivores. After one year of exposure, 16 species showed evidence of greater mortality and/or reduced shoot mass due to mammal herbivory. Two species had reduced shoot mass at high density (competition) and two had the reverse (facilitation), both annulled in the presence of herbivores due to poor growth at both densities. There was no preference by herbivores for high over low density plots. A general preference (high percentage plants eaten, large difference between biomass inside and outside exclosures) for species high in K, N or P and leaf mass: area, and low in initial shoot mass, spinescence, moisture and height was evident from principal components and canonical variates analyses. Grass-like species were more vulnerable to herbivory than seedlings of shrubs.

  9. Hepatozoon and Theileria species detected in ticks collected from mammals and snakes in Thailand.

    PubMed

    Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2015-04-01

    We report the detection of Hepatozoon and Theileria in 103 ticks from mammals and snakes in Thailand. By using a genus-specific 18S rRNA PCR, Hepatozoon and Theileria spp. were detected in 8% and 18%, respectively, of ticks (n=79) removed from mammals. Of the ticks removed from snakes (n=24), 96% were infected with Hepatozoon spp., but none were infected with Theileria. Phylogenetic analysis revealed that Hepatozoon spp. detected from Dermacentor astrosignatus and Dermacentor auratus ticks from Wild boar (Sus scrofa) formed a phylogenetic group with many isolates of Hepatozoon felis that were distantly related to a species group containing Hepatozoon canis and Hepatozoon americanum. In contrast, a phylogenetic analysis of the Hepatozoon sequences of snake ticks revealed that Hepatozoon spp. from Amblyomma varanense from King cobra (Ophiophagus hannah) and Amblyomma helvolum ticks from Indochinese rat snake (Ptyas korros), and Asiatic water snake (Xenochrophis piscator) are grouped with Hepatozoon spp. recently isolated from Monocellate cobras, Reticulated pythons and Burmese pythons, all of Thai origin, and with Hepatozoon sp. 774c that has been detected from a tick species obtained from Argus monitors in Australia. A phylogenetic analysis demonstrated that Theileria spp. from Rhipicephalus (Boophilus) microplus, Haemaphysalis obesa, and Haemaphysalis lagrangei ticks from Sambar deer (Cervus unicolor) cluster with the Theileria cervi isolates WU11 and 239, and Theileria sp. Iwate 141. We report for the first time a Hepatozoon species that shares genetic similarity with Hepatozoon felis found in Dermacentor astrosignatus and Dermacentor auratus ticks collected from Wild boars in Thailand. In addition, we found the presence of a Theileria cervi-like sp. which suggests the potential role of Haemaphysalis lagrangei as a Theileria vector in Thailand. PMID:25736475

  10. Hepatozoon and Theileria species detected in ticks collected from mammals and snakes in Thailand.

    PubMed

    Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2015-04-01

    We report the detection of Hepatozoon and Theileria in 103 ticks from mammals and snakes in Thailand. By using a genus-specific 18S rRNA PCR, Hepatozoon and Theileria spp. were detected in 8% and 18%, respectively, of ticks (n=79) removed from mammals. Of the ticks removed from snakes (n=24), 96% were infected with Hepatozoon spp., but none were infected with Theileria. Phylogenetic analysis revealed that Hepatozoon spp. detected from Dermacentor astrosignatus and Dermacentor auratus ticks from Wild boar (Sus scrofa) formed a phylogenetic group with many isolates of Hepatozoon felis that were distantly related to a species group containing Hepatozoon canis and Hepatozoon americanum. In contrast, a phylogenetic analysis of the Hepatozoon sequences of snake ticks revealed that Hepatozoon spp. from Amblyomma varanense from King cobra (Ophiophagus hannah) and Amblyomma helvolum ticks from Indochinese rat snake (Ptyas korros), and Asiatic water snake (Xenochrophis piscator) are grouped with Hepatozoon spp. recently isolated from Monocellate cobras, Reticulated pythons and Burmese pythons, all of Thai origin, and with Hepatozoon sp. 774c that has been detected from a tick species obtained from Argus monitors in Australia. A phylogenetic analysis demonstrated that Theileria spp. from Rhipicephalus (Boophilus) microplus, Haemaphysalis obesa, and Haemaphysalis lagrangei ticks from Sambar deer (Cervus unicolor) cluster with the Theileria cervi isolates WU11 and 239, and Theileria sp. Iwate 141. We report for the first time a Hepatozoon species that shares genetic similarity with Hepatozoon felis found in Dermacentor astrosignatus and Dermacentor auratus ticks collected from Wild boars in Thailand. In addition, we found the presence of a Theileria cervi-like sp. which suggests the potential role of Haemaphysalis lagrangei as a Theileria vector in Thailand.

  11. Vast assembly of vocal marine mammals from diverse species on fish spawning ground.

    PubMed

    Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima

    2016-03-17

    Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species. PMID:26934221

  12. Vast assembly of vocal marine mammals from diverse species on fish spawning ground.

    PubMed

    Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima

    2016-03-17

    Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.

  13. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    PubMed

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  14. Effects of aerial applications of esfenvalerate on small mammals and birds in Douglas-fir seed orchards

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Rice, C.P.; Grove, R.A.

    1992-01-01

    Although no adverse effects were documented, this study did not provide data sufficient to adequately test for effects of aerial spraying of esfenvalerate on small mammal populations or nesting of birds in Douglas-fir seed orchards. Small mammal trapping data were too sparse to provide statistical testing with reasonable power. Residues of the R and S forms of fenvalerate were low with maxima of 0.56 and 1.72 ?g/g, respectively in pelage of a deer mouse. No diagnostic residue data are available to interpret our results.

  15. 76 FR 7580 - Endangered Species; Marine Mammals; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... sport- hunted trophy of one male bontebok (Damaliscus pygargus pygargus) culled from a captive herd... Mammals and Marine Mammals Applicant: U.S. Geological Survey, Alaska Science Center, Anchorage, AK;...

  16. Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk.

    PubMed

    Verde Arregoitia, Luis Darcy; Blomberg, Simon P; Fisher, Diana O

    2013-08-22

    Phylogenetic information is becoming a recognized basis for evaluating conservation priorities, but associations between extinction risk and properties of a phylogeny such as diversification rates and phylogenetic lineage ages remain unclear. Limited taxon-specific analyses suggest that species in older lineages are at greater risk. We calculate quantitative properties of the mammalian phylogeny and model extinction risk as an ordinal index based on International Union for Conservation of Nature Red List categories. We test for associations between lineage age, clade size, evolutionary distinctiveness and extinction risk for 3308 species of terrestrial mammals. We show no significant global or regional associations, and three significant relationships within taxonomic groups. Extinction risk increases for evolutionarily distinctive primates and decreases with lineage age when lemurs are excluded. Lagomorph species (rabbits, hares and pikas) that have more close relatives are less threatened. We examine the relationship between net diversification rates and extinction risk for 173 genera and find no pattern. We conclude that despite being under-represented in the frequency distribution of lineage ages, species in older, slower evolving and distinct lineages are not more threatened or extinction-prone. Their extinction, however, would represent a disproportionate loss of unique evolutionary history.

  17. Paleoenvironmental reconstruction of the early Neolithic to middle Bronze Age Peña Larga rock shelter (Álava, Spain) from the small mammal record

    NASA Astrophysics Data System (ADS)

    Rofes, Juan; Zuluaga, Mari Cruz; Murelaga, Xabier; Fernández-Eraso, Javier; Bailon, Salvador; Iriarte, María José; Ortega, Luis Ángel; Alonso-Olazabal, Ainhoa

    2013-03-01

    The Peña Larga site, a rock shelter on the southern slopes of the Cantabrian cordillera (north Spain), is an archeological deposit covering nearly 4000 years, from the early Neolithic to the middle Bronze Age (Atlantic/Subboreal chronozones). It was used both as a household and as a stable, with a hiatus in the Chalcolithic when it was used as a collective sepulcher. Nearly twenty-eight thousand small vertebrate elements were recovered from its seven stratigraphic units, of which 2553 items were identified to the genus and/or species levels. The assemblage is composed of mammals, birds, reptiles, and amphibians. Of these, small mammals were used for paleoenvironmental reconstruction since they are very sensitive to climatic conditions, the sample sizes are large, and their preservation is good. Their distributions over time, measured in terms of relative abundance, serve as reliable proxies of habitat and climate change. The reconstruction of Peña Larga's past environments based on small mammals roughly coincides with the pollen and the amphibian/reptile records on the local scale, and with that of an ice core from Central Greenland on the global scale. This makes it a valuable tool for comparative purposes both in the regional and continental scales.

  18. Chromosomal aberrations in resident small mammals at a petrochemical waste dump site: a natural model for analysis of environmental mutagenesis. [Peromyscus leucopus; Sigmodon hispidus

    SciTech Connect

    McBee, K.

    1985-01-01

    Small mammals of two species (Peromyscus leucopus and Sigmodon hispidus) were trapped at a locality polluted with a complex mixture of petrochemical waste products, heavy metals, and PCB's, and from two matched, uncontaminated localities. Three cytogenetic techniques were employed to evaluate the use of these resident small mammals as indicators of environmental mutagenesis. Each technique also was assessed for its power of resolution in characterizing the action of environmental mutagens. Standard karyological analysis of flow cytometric analysis clearly indicated significant differences in chromosomal aberrancy between animals collected at the polluted site and the uncontaminated sites. Examination of flow DNA histograms of Peromyscus from the polluted site revealed broadened and flattened G/sub 1/ peaks and increases in CVs (coefficients of variation) for DNA content. CVs in animals from the polluted site consistently fell outside confidence limits set around values from animals collected at the uncontaminated site. These patterns are characteristically seen in laboratory animals challenged with powerful clastogens which suggests that individuals at the polluted site may be experiencing similar clastogenic events. This study demonstrates that small mammals are a feasible test model for evaluating environmental mutagenesis. Evaluation of different cytogenetic techniques suggests that a battery of several assays will provide the most accurate characterization of the action of environmental mutagenesis.

  19. Influence of continental history on the ecological specialization and macroevolutionary processes in the mammalian assemblage of South America: Differences between small and large mammals

    PubMed Central

    2008-01-01

    Background This paper tests Vrba's resource-use hypothesis, which predicts that generalist species have lower specialization and extinction rates than specialists, using the 879 species of South American mammals. We tested several predictions about this hypothesis using the biomic specialization index (BSI) for each species, which is based on its geographical range within different climate-zones. The four predictions tested are: (1) there is a high frequency of species restricted to a single biome, which henceforth are referred to as stenobiomic species, (2) certain clades are more stenobiomic than others, (3) there is a higher proportion of biomic specialists in biomes that underwent through major expansion-contraction alternation due to the glacial-interglacial cycles, (4) certain combinations of inhabited biomes occur more frequently among species than do others. Results Our results are consistent with these predictions. (1) We found that 42 % of the species inhabit only one biome. (2) There are more generalists among species of Carnivora than in clades of herbivores. However, Artiodactyla, shows a distribution along the specialization gradient different from the one expected. (3) Biomic specialists are predominant in tropical rainforest and desert biomes. Nevertheless, we found some differences between small and large mammals in relation to these results. Stenobiomic species of micromammalian clades are more abundant in most biomes than expected by chance, while in the case of macromammalian clades stenobiomic species are more frequent than expected in tropical rainforest, tropical deciduous woodland and desert biomes only. (4) The most frequent combinations of inhabited biomes among the South American mammals are those with few biomes, i.e., the ones that suffered a higher rate of vicariance due to climatic cycles. Conclusion Our results agree with the resource-use hypothesis and, therefore, with a major role of the past climatic changes as drivers of

  20. Untangling human and environmental effects on geographical gradients of mammal species richness: a global and regional evaluation.

    PubMed

    Torres-Romero, Erik Joaquín; Olalla-Tárraga, Miguel Á

    2015-05-01

    Different hypotheses (geographical, ecological, evolutionary or a combination of them) have been suggested to account for the spatial variation in species richness. However, the relative importance of environment and human impacts in explaining these patterns, either globally or at the biogeographical region level, remains largely unexplored. Here, we jointly evaluate how current environmental conditions and human impacts shape global and regional gradients of species richness in terrestrial mammals. We processed IUCN global distributional data for 3939 mammal species and a set of seven environmental and two human impact variables at a spatial resolution of 96.5 × 96.5 km. We used simple, multiple and partial regression techniques to evaluate environmental and human effects on species richness. Actual evapotranspiration (AET) is the main driver of mammal species richness globally. Together with our results at the biogeographical realm level, this lends strong support for the water-energy hypothesis (i.e. global diversity gradients are best explained by the interaction of water and energy, with a latitudinal shift in the relative importance of ambient energy vs. water availability as we move from the poles to the equator). While human effects on species richness are not easily detected at a global scale due to the large proportion of shared variance with the environment, these effects significantly emerge at the regional level. In the Nearctic, Palearctic and Oriental regions, the independent contribution of human impacts is almost as important as current environmental conditions in explaining richness patterns. The intersection of human impacts with climate drives the geographical variation in mammal species richness in the Palearctic, Nearctic and Oriental regions. Using a human accessibility variable, we show, for the first time, that the zones most accessible to humans are often those where we find lower mammal species richness. PMID:25355656

  1. Untangling human and environmental effects on geographical gradients of mammal species richness: a global and regional evaluation.

    PubMed

    Torres-Romero, Erik Joaquín; Olalla-Tárraga, Miguel Á

    2015-05-01

    Different hypotheses (geographical, ecological, evolutionary or a combination of them) have been suggested to account for the spatial variation in species richness. However, the relative importance of environment and human impacts in explaining these patterns, either globally or at the biogeographical region level, remains largely unexplored. Here, we jointly evaluate how current environmental conditions and human impacts shape global and regional gradients of species richness in terrestrial mammals. We processed IUCN global distributional data for 3939 mammal species and a set of seven environmental and two human impact variables at a spatial resolution of 96.5 × 96.5 km. We used simple, multiple and partial regression techniques to evaluate environmental and human effects on species richness. Actual evapotranspiration (AET) is the main driver of mammal species richness globally. Together with our results at the biogeographical realm level, this lends strong support for the water-energy hypothesis (i.e. global diversity gradients are best explained by the interaction of water and energy, with a latitudinal shift in the relative importance of ambient energy vs. water availability as we move from the poles to the equator). While human effects on species richness are not easily detected at a global scale due to the large proportion of shared variance with the environment, these effects significantly emerge at the regional level. In the Nearctic, Palearctic and Oriental regions, the independent contribution of human impacts is almost as important as current environmental conditions in explaining richness patterns. The intersection of human impacts with climate drives the geographical variation in mammal species richness in the Palearctic, Nearctic and Oriental regions. Using a human accessibility variable, we show, for the first time, that the zones most accessible to humans are often those where we find lower mammal species richness.

  2. The influence of small-mammal burrowing activity on water storage at the Hanford Site

    SciTech Connect

    Landeen, D.S.

    1994-12-31

    This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator). Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil.

  3. New and already known acanthocephalans mostly from mammals in Vietnam, with descriptions of two new genera and species in Archiacanthocephala.

    PubMed

    Amin, Omar M; Ha, Ngyuen Van; Heckmann, Richard A

    2008-02-01

    Adults of 2 new species and 2 new genera of acanthocephalans in class Archiacanthocephala, collected between 1998 and 2004 in Vietnam from the intestines of mammals, are described, i.e., Cucullanorhynchus constrictruncatus n. gen., n. sp. (Oligacanthorhynchidae) from a leopard Panthera pardus (Linnaeus) (Mammalia: Felidae) and Paraprosthenorchis ornatus n. gen. n. sp. (Oligacanthorhynchidae) from the Chinese pangolin Manis pentadactyla (Linnaeus) (Mammalia: Manidae). Adult Sphaerechinorhynchus macropisthospinus Amin, Wongsawad, Marayong, Saehoong, Suwattanacoupt, and Sey, 1998 (Plagiorhynchidae) are described for the first time from 2 females collected from a tiger Panthera tigris (Linnaeus) (Mammalia: Felidae) and from 1 male from a water monitor Varanus salvator Laurenti (Reptilia: Varanidae). Characteristic features distinguishing the new species or genera from related taxa are as follows. The trunk of C. constrictruncatus has an anterior hood in both sexes and a posterior constriction in females. The anterior trunk of P. ornatus has many small festoons and proboscis hooks are inserted in elevated papillae separated by beady, near hexagonal, ornate grids. PMID:18372641

  4. Radionuclide contaminant analysis of small mammals at Area G, Technical Area 54, 1996 (with cumulative summary for 1994--1996)

    SciTech Connect

    Biggs, J.R.; Bennett, K.D.; Fresquez, P.R.

    1997-07-01

    Small mammals were sampled at two waste burial sites at Area G, Technical Area (TA) 54 and a control site within the proposed Area G expansion area in 1996 to (1) identify radionuclides that are present within rodent tissues at waste burial sites, (2) to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and (3) to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of approximately five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, total U, {sup 137}Cs, and {sup 3}H. Higher levels of total U, {sup 241}Am, {sup 238}Pu, and {sup 239}Pu were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. Due to low sample sizes in total number of animals captured, statistical analysis to compare site to site could not be conducted. However, mean concentrations of total U, {sup 238}Pu, {sup 239}Pu, and {sup 137}Cs in rodent carcasses were higher at Site 1 than site 2 or the Control Site and {sup 241}Am was higher at Site 2 than Site 1 or the Control Site.

  5. Small Mammal Jointed Models to Make, Description Cards, and a Menu of Follow-on Activities in Different Intelligence Areas

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Vander Zanden, Sarah

    2012-01-01

    Instilling an appreciation of nature in our youth is an important precursor to environmental protection and support for sustainability. Research has shown that involving students in environmental projects improves their motivation, skills, and achievement on standardized tests, This document contains images of the body parts of small mammals with…

  6. The dead do not lie: using skeletal remains for rapid assessment of historical small-mammal community baselines

    PubMed Central

    Terry, Rebecca C.

    2010-01-01

    Conservation and restoration efforts are often hindered by a lack of historical baselines that pre-date intense anthropogenic environmental change. In this paper I document that natural accumulations of skeletal remains represent a potential source of high-quality data on the historical composition and structure of small-mammal communities. I do so by assessing the fidelity of modern, decadal and centennial-scale time-averaged samples of skeletal remains (concentrated by raptor predation) to the living small-mammal communities from which they are derived. To test the power of skeletal remains to reveal baseline shifts, I employ the design of a natural experiment, comparing two taphonomically similar Great Basin cave localities in areas where anthropogenic land-use practices have diverged within the last century. I find relative stasis at the undisturbed site, but document rapid restructuring of the small-mammal community at the site subjected to recent disturbance. I independently validate this result using historical trapping records to show that dead remains accurately capture both the magnitude and direction of this baseline shift. Surveys of skeletal remains therefore provide a simple, powerful and rapid alternative approach for gaining insight into the historical structure and dynamics of modern small-mammal communities. PMID:20031992

  7. SMALL MAMMALS: CONSEQUENCES OF STOCHASTIC DATA VARIATION FOR MODELING INDICATORS OF HABITAT SUITABILITY FOR A WELL-STUDIED RESOURCE

    EPA Science Inventory

    Increasingly, models of physical habitat variables (i.e. vegetation, soil) are utilized as indicators of small mammal habitat suitability or quality. Presumably, use of physical habitat models indicating habitat suitability or quality would be improved and enhanced by the extens...

  8. Radionuclide Contaminant Analysis of Small Mammals at Area G, Technical Area 54, 1997 (with cumulative summary 1994-1997)

    SciTech Connect

    James R. Biggs; Kathryn D. Bennett; P. R. Fresquez

    1998-12-01

    In 1997, small mammals were sampled at four locations at Area G, Technical Area 54, a control site within the proposed Area G expansion area, and a background site on Frijoles Mesa. The purpose of the sampling was to (1) identify radionuclides that are present within rodent tissues at waste burial sites, (2) compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and (3) identifi the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of approximately five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for 241Am, 90Sr, 238Pu, 239Pu, total U, 137Cs, and 3H. Higher levels of total U and 137CS were detected in pelts as compared to the carcasses of small mammals, and 90Sr was found to be higher in carcasses. Concentrations of other measured radionuclides in carcasses were not found to be statistically different (p< 0.05) from that measured in pelts. However, pelts generally had higher concentrations than carcasses, indicating surface contamination may be the primary contamination mode. Low sample sizes in total number of animals captured during 1997 prevented statistical analysis to compare site to site to all but four sites. Mean concentrations of 241Am, 238Pu, 239Pu, and 3H in small mammal carcasses were found to be statistically greater at the transuranic (TRU) waste pad #2. In addition, mean concentrations of total U, ~lAm, and 3H in pelts of small mammals were also statistically greater. The Control Site and Background Site consistently had the lowest mean concentrations of radionuclides. Year to year comparison of mean radionuclide concentrations was conducted where suftlcient sample size existed. We found 241Am, 238Pu, 239Pu, and 3H mean concentrations in carcasses to be statistically greater in 1997 than previous years at TRU waste pad #2

  9. Blood parasites, total plasma protein and packed cell volume of small wild mammals trapped in three mountain ranges of the Atlantic Forest in Southeastern Brazil.

    PubMed

    Silva, M A M L; Ronconi, A; Cordeiro, N; Bossi, D E P; Bergallo, H G; Costa, M C C; Balieiro, J C C; Varzim, F L S B

    2007-08-01

    A study of blood parasites in small wild non-flying mammals was undertaken in three areas of the Atlantic Forest in Southeastern Brazil: Serra de Itatiaia, RJ, Serra da Bocaina, SP and Serra da Fartura, SP, from June 1999 to May 2001. A total of 450 animals (15 species) were captured in traps and it was observed in 15.5% of the blood smears the presence of Haemobartonella sp. and Babesia sp. in red blood cells. There was no statistically significant difference between parasited and non-parasited specimens regarding total plasma protein, packed cell volume and body weight, which strongly suggests that these specimens might be parasite reservoirs.

  10. Effects of Precommercial Thinning and Midstory Control on Avian and Small Mammal Communities during Longleaf Pine Savanna Restoration.

    SciTech Connect

    Lane, Vanessa R; Kilgo, John C

    2015-01-01

    Abstract - Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf pine restoration with plantation silviculture on avian and small mammal communities using four treatments in four 8- to 11- year-old plantations within the Savannah River Site in South Carolina. Treatments included prescribed burning every 3 to 5 years, plus: (1) no additional treatment (burn-only control); (2) precommercial thinning; (3) non-pine woody control with herbicides; and (4) combined thinning and woody control. We surveyed birds (1996-2003) using 50-m point counts and small mammals with removal trapping. Thinning and woody control alone had short-lived effects on avian communities, and the combination treatment increased avian parameters over the burn-only control in all years. Small mammal abundance showed similar trends as avian abundance for all three treatments when compared with the burn-only control, but only for 2 years post-treatment. Both avian and small mammal communities were temporarily enhanced by controlling woody vegetation with chemicals in addition to prescribed fire and thinning. Therefore, precommercial thinning in longleaf plantations, particularly when combined with woody control and prescribed fire, may benefit early-successional avian and small mammal communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire.

  11. Response to Edwards' comments on Origin of British and Irish mammals: disparate post-glacial colonisation and species introductions

    NASA Astrophysics Data System (ADS)

    Montgomery, W. I.; Provan, J.

    2014-12-01

    We are most grateful to Dr Edwards for her lucid summary of recent, calibrated dates for giant Irish deer, red deer, reindeer and brown bear in Irish deposits during the period before and after the Last Glacial Maximum (LGM). Montgomery et al. (2014) dealt largely with the period after the LGM because the physical evidence suggests Ireland was completely covered by ice for at least part of the period between 28 ka and 23 ka (Clark et al., 2012; O'Cofaigh et al., 2012) when Ireland would not have supported any terrestrial mammals. The earliest it was possible for re-colonisation of these species to occur after LGM was probably during the rapid retreat of ice after 23 ka and before 15 ka when the Irish Sea became a complete barrier to terrestrial mammals between Britain and Ireland. There are no dates for any of the four species during the LGM and only one for giant Irish deer (BM-1794, date 18,761-18,034 cal. BP) which is from a site close to the present coast just south of Dublin, between LGM and completion of the Irish Sea, suggesting that conditions generally remained unsuitable for even cold-adapted mammals for many millennia after LGM. Edwards (2014) indicates clearly that all four species are well represented after Ireland became an island although giant Irish deer struggle to make it into the Holocene and the red deer record is broken and perhaps influenced by people (Carden et al., 2012). The sudden reappearance of large mammals around 13-15 ka is consistent with re-colonisation from cryptic refugia lying to the south and west of present day Ireland. The relatively short periods of warming and cooling during the Older and Younger Dryas respectively, followed by warming in the Holocene and the arrival of Mesolithic and Neolithic people remain the major events in the history of Irish mammals until the late 19th Century to the present during which many mammals species have been introduced (Montgomery et al., 2014). Whilst events prior to the LGM are important

  12. 75 FR 17382 - Small Takes of Marine Mammals Incidental to Specified Activities; Russian River Estuary Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Federal Register (74 FR 58248) for the take of marine mammals incidental to Estuary water level management... notice (74 FR 58248). In summary, harbor seals are the most abundant marine mammal found at the mouth of... published on November 12, 2009 (74 FR 58248). During the 30-day public comment period, six members of...

  13. Hantaan virus surveillance targeting small mammals at Dagmar North Training Area, Gyeonggi Province, Republic of Korea, 2001-2005.

    PubMed

    Klein, Terry A; Kang, Hae Ji; Gu, Se Hun; Moon, Sungsil; Shim, So-Hee; Park, Yon Mi; Lee, Sook-Young; Kim, Heung-Chul; Chong, Sung-Tae; O'Guinn, Monica; Lee, John S; Turell, Michael J; Song, Jin-Won

    2011-12-01

    In response to a hemorrhagic fever with renal syndrome case in November 2000, a seasonal rodent-borne disease surveillance program was initiated at Dagmar North Training Area (DNTA), Gyeonggi Province, Republic of Korea. From April 2001-December 2005, 1,848 small mammals were captured. Apodemus agrarius accounted for 92.5%, followed by Mus musculus (3.6%), Crocidura lasiura (2.1%), and Microtus fortis (1.1%). Three species of rodents were found to be antibody-positive (Ab+) for Hantaan virus (HTNV): A. agrarius (22.3%), M. musculus (9.1%), and M. fortis (5.0%). Ab+ rates for A. agrarius increased with increasing weight (age), except for those weighing <10 g. The peak HTNV transmission period in Korea coincided with the peak reproductive potential of A. agrarius during the fall (August/September) surveys. HTNV strains from DNTA were distinct from HTNV strains from the People's Republic of China. From these studies, more accurate risk assessments can be developed to better protect personnel from rodent-borne diseases.

  14. Detecting and modelling delayed density-dependence in abundance time series of a small mammal (Didelphis aurita)

    PubMed Central

    Brigatti, E.; Vieira, M. V.; Kajin, M.; Almeida, P. J. A. L.; de Menezes, M. A.; Cerqueira, R.

    2016-01-01

    We study the population size time series of a Neotropical small mammal with the intent of detecting and modelling population regulation processes generated by density-dependent factors and their possible delayed effects. The application of analysis tools based on principles of statistical generality are nowadays a common practice for describing these phenomena, but, in general, they are more capable of generating clear diagnosis rather than granting valuable modelling. For this reason, in our approach, we detect the principal temporal structures on the bases of different correlation measures, and from these results we build an ad-hoc minimalist autoregressive model that incorporates the main drivers of the dynamics. Surprisingly our model is capable of reproducing very well the time patterns of the empirical series and, for the first time, clearly outlines the importance of the time of attaining sexual maturity as a central temporal scale for the dynamics of this species. In fact, an important advantage of this analysis scheme is that all the model parameters are directly biologically interpretable and potentially measurable, allowing a consistency check between model outputs and independent measurements. PMID:26865413

  15. Trophic cascades linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals

    USGS Publications Warehouse

    Miller, B.J.; Harlow, H.J.; Harlow, T.S.; Biggins, D.; Ripple, W.J.

    2012-01-01

    When large carnivores are extirpated from ecosystems that evolved with apex predators, these systems can change at the herbivore and plant trophic levels. Such changes across trophic levels are called cascading effects and they are very important to conservation. Studies on the effects of reintroduced wolves in Yellowstone National Park have examined the interaction pathway of wolves (Canis lupus L., 1758) to ungulates to plants. This study examines the interaction effects of wolves to coyotes to rodents (reversing mesopredator release in the absence of wolves). Coyotes (Canis latrans Say, 1823) generally avoided areas near a wolf den. However, when in the proximity of a den, they used woody habitats (pine or sage) compared with herbaceous habitats (grass or forb or sedge)- when they were away from the wolf den. Our data suggested a significant increase in rodent numbers, particularly voles (genus Microtus Schrank, 1798), during the 3-year study on plots that were within 3 km of the wolf den, but we did not detect a significant change in rodent numbers over time for more distant plots. Predation by coyotes may have depressed numbers of small mammals in areas away from the wolf den. These factors indicate a top-down effect by wolves on coyotes and subsequently on the rodents of the area. Restoration of wolves could be a powerful tool for regulating predation at lower trophic levels.

  16. Preliminary small mammal taphonomy of FLK NW level 20 (Olduvai Gorge, Tanzania)

    NASA Astrophysics Data System (ADS)

    Arcos, Saleta; Sevilla, Paloma; Fernández-Jalvo, Yolanda

    2010-11-01

    The Bed-I series of Olduvai Gorge (Tanzania) is a reference site in human evolution, having yielded the holotypes of Paranthropus boisei and Homo habilis, together with manufactured artefacts and abundant large and micro-fauna. Excavations in Olduvai Gorge have been recently resumed, with new aims and new results. This paper presents the results of the taphonomic analysis carried out on a fossil small-mammal assemblage recovered from FLK NW level 20, a layer overlying Tuff C, dated from 1.84 Ma. The analysis provides good evidence of a category 1 predator, most likely a barn owl, as the predator of the bone assemblage. Trampling and sediment compression might influence postdepositional breakage of the bones. This study is especially relevant since previous taphonomic analyses carried out at levels above and below this sample led to inconclusive results due to a low number of fossils ( Fernández-Jalvo et al., 1998). The new sample provides new information to reconstruct the paleoenvironmental context in which early hominins inhabited.

  17. Recognition of non-harmonic natural sounds by small mammals using competitive training.

    PubMed

    Ojima, Hisayuki; Taira, Masato; Kubota, Michinori; Horikawa, Junsei

    2012-01-01

    Animals recognize biologically relevant sounds, such as the non-harmonic sounds made by some predators, and respond with adaptive behaviors, such as escaping. To clarify which acoustic parameters are used for identifying non-harmonic, noise-like, broadband sounds, guinea pigs were conditioned to a natural target sound by introducing a novel training procedure in which 2 or 3 guinea pigs in a group competed for food. A set of distinct behavioral reactions was reliably induced almost exclusively to the target sound in a 2-week operant training. When fully conditioned, individual animals were separately tested for recognition of a set of target-like sounds that had been modified from the target sound, with spectral ranges eliminated or with fine or coarse temporal structures altered. The results show that guinea pigs are able to identify the noise-like non-harmonic natural sounds by relying on gross spectral compositions and/or fine temporal structures, just as birds are thought to do in the recognition of harmonic birdsongs. These findings are discussed with regard to similarities and dissimilarities to harmonic sound recognition. The results suggest that similar but not identical processing that requires different time scales might be used to recognize harmonic and non-harmonic sounds, at least in small mammals.

  18. Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia.

    PubMed

    Tadin, Ante; Tokarz, Rafal; Markotić, Alemka; Margaletić, Josip; Turk, Nenad; Habuš, Josipa; Svoboda, Petra; Vucelja, Marko; Desai, Aaloki; Jain, Komal; Lipkin, W Ian

    2016-02-01

    Croatia is a focus for many rodent-borne zoonosis. Here, we report a survey of 242 rodents and small mammals, including 43 Myodes glareolus, 131 Apodemus flavicollis, 53 Apodemus agrarius, three Apodemus sylvaticus, six Sorex araneus, four Microtus arvalis, one Microtus agrestis, and one Muscardinus avellanarius, collected at eight sites in Croatia over an 8-year period. Multiplex MassTag polymerase chain reaction (PCR) was used for detection of Borrelia, Rickettsia, Bartonella, Babesia, Ehrlichia, Anaplasma, Francisella tularensis, and Coxiella burnetii. Individual PCR assays were used for detection of Leptospira, lymphocytic choriomeningitis virus, orthopoxviruses, flaviviruses, hantaviruses, and Toxoplasma gondii. Of the rodents, 52 (21.5%) were infected with Leptospira, 9 (3.7%) with Borrelia miyamotoi, 5 (2%) with Borrelia afzelii, 29 (12.0%) with Bartonella, 8 (3.3%) with Babesia microti, 2 (0.8%) with Ehrlichia, 4 (1.7%) with Anaplasma, 2 (0.8%) with F. tularensis, 43 (17.8%) with hantaviruses, and 1 (0.4%) with an orthopoxvirus. Other agents were not detected. Multiple infections were found in 32 rodents (13.2%): dual infections in 26 rodents (10.7%), triple infections in four rodents (2.9%), and quadruple infections in two rodents (0.8%). Our findings indicate that rodents in Croatia harbor a wide range of bacteria and viruses that are pathogenic to humans.

  19. Recognition of Non-Harmonic Natural Sounds by Small Mammals Using Competitive Training

    PubMed Central

    Ojima, Hisayuki; Taira, Masato; Kubota, Michinori; Horikawa, Junsei

    2012-01-01

    Animals recognize biologically relevant sounds, such as the non-harmonic sounds made by some predators, and respond with adaptive behaviors, such as escaping. To clarify which acoustic parameters are used for identifying non-harmonic, noise-like, broadband sounds, guinea pigs were conditioned to a natural target sound by introducing a novel training procedure in which 2 or 3 guinea pigs in a group competed for food. A set of distinct behavioral reactions was reliably induced almost exclusively to the target sound in a 2-week operant training. When fully conditioned, individual animals were separately tested for recognition of a set of target-like sounds that had been modified from the target sound, with spectral ranges eliminated or with fine or coarse temporal structures altered. The results show that guinea pigs are able to identify the noise-like non-harmonic natural sounds by relying on gross spectral compositions and/or fine temporal structures, just as birds are thought to do in the recognition of harmonic birdsongs. These findings are discussed with regard to similarities and dissimilarities to harmonic sound recognition. The results suggest that similar but not identical processing that requires different time scales might be used to recognize harmonic and non-harmonic sounds, at least in small mammals. PMID:23251497

  20. Recognition of non-harmonic natural sounds by small mammals using competitive training.

    PubMed

    Ojima, Hisayuki; Taira, Masato; Kubota, Michinori; Horikawa, Junsei

    2012-01-01

    Animals recognize biologically relevant sounds, such as the non-harmonic sounds made by some predators, and respond with adaptive behaviors, such as escaping. To clarify which acoustic parameters are used for identifying non-harmonic, noise-like, broadband sounds, guinea pigs were conditioned to a natural target sound by introducing a novel training procedure in which 2 or 3 guinea pigs in a group competed for food. A set of distinct behavioral reactions was reliably induced almost exclusively to the target sound in a 2-week operant training. When fully conditioned, individual animals were separately tested for recognition of a set of target-like sounds that had been modified from the target sound, with spectral ranges eliminated or with fine or coarse temporal structures altered. The results show that guinea pigs are able to identify the noise-like non-harmonic natural sounds by relying on gross spectral compositions and/or fine temporal structures, just as birds are thought to do in the recognition of harmonic birdsongs. These findings are discussed with regard to similarities and dissimilarities to harmonic sound recognition. The results suggest that similar but not identical processing that requires different time scales might be used to recognize harmonic and non-harmonic sounds, at least in small mammals. PMID:23251497

  1. Comparative sensitivity of small mammals to micronucleus induction in bone marrow cells by clastogenic compounds

    SciTech Connect

    Meier, J.R.; Wernsing, P.; Daniel, F.B.; Torsella, J.

    1995-12-31

    The bone marrow micronucleus assay is the most widely used method for detecting genetic damage in vivo, but this assay has received little attention for its possible application to biomonitoring terrestrial environments. The present study compared the responsiveness of three small mammalian species, Cryptotus parva (least shrew), Peromyscus leucopus (white-footed mouse), and strain CD-1 Mus musculus (house mouse), to the clastogen, methylmethanesulfonate (MMS). Five animals of each sex of each species were exposed for 24 h to four concentrations of MMS ranging from 0 to 50 mg/kg. Bone marrow cells were flushed from the femurs, and smears were stained with acridine orange and examined using fluorescence microscopy. The slides were scored for evidence of acute bone marrow toxicity (polychromatic to normochromatic erythrocyte ratio, PCE:NCE) and frequency of micronucleated PCE. PCE:NCE was depressed at 50 mg/kg in P. leucopus, but not in the other species. Dose-related increases in micronucleated PCE were observed in all three species, with males being more sensitive for P. leucopus and M. musculus, and females being more sensitive for C. parva. For both sexes, the two feral species, P. leucopus and C. parva, were more sensitive than M. musculus. These studies demonstrate the successful application of the bone marrow micronucleus assay to species other than standard laboratory strains of mice. The results also demonstrate heretofore unrecognized species differences in responsiveness.

  2. Permeability of roads to movement of scrubland lizards and small mammals.

    PubMed

    Brehme, Cheryl S; Tracey, Jeff A; McClenaghan, Leroy R; Fisher, Robert N

    2013-08-01

    A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads, but roads with heavy traffic may deter movement of a much wider range of small animal

  3. Permeability of roads to movement of scrubland lizards and small mammals.

    PubMed

    Brehme, Cheryl S; Tracey, Jeff A; McClenaghan, Leroy R; Fisher, Robert N

    2013-08-01

    A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads, but roads with heavy traffic may deter movement of a much wider range of small animal

  4. Permeability of roads to movement of scrubland lizards and small mammals

    USGS Publications Warehouse

    Brehme, Cheryl S.; Tracey, Jeff A.; McClenaghan, Leroy R.; Fisher, Robert N.

    2013-01-01

    A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoidpaved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads,but roads with heavy traffic may deter movement of a much wider range of small animal

  5. Small mammals as sentinels of oil sands related contaminants and health effects in northeastern Alberta, Canada.

    PubMed

    Rodríguez-Estival, Jaime; Smits, Judit E G

    2016-02-01

    The extraction of bitumen in areas of northeastern Alberta (Canada) has been associated with the release of complex mixtures of metals, metalloids, and polycyclic aromatic compounds (PACs) to the environment. To mitigate effects on ecosystems, Canadian legislation mandates that disturbed areas be reclaimed to an ecologically sustainable state after active operations. However, as part of reclamation activities, exposure to, and effects on wildlife living in these areas is not generally assessed. To support successful reclamation, the development of efficient methods to assess exposure and health effects in potentially exposed wildlife is required. In the present study, we investigated the usefulness of two native mammalian species (deer mouse Peromyscus maniculatus, and meadow vole Microtus pennsylvanicus) as sentinels of oil sands related contaminants by examining biomarkers of exposure and indicators of biological costs. Tissue residues of 31 metals and metalloids in kidneys and muscle, activity of the hepatic detoxification enzyme EROD (as a biomarker of exposure to organic contaminants), body condition, and the relative mass of liver, kidney, spleen, and testes were compared in animals from one reclaimed area and a reference site. Deer mice from the reclaimed site had higher renal levels of Co, Se and Tl compared to animals from the reference site, which was associated with reduced body condition. Lower testis mass was another feature that distinguished mice from the reclaimed site in comparison to those from the reference site. One mouse and one vole from the reclaimed site also showed increased hepatic EROD activity. In marked contrast, no changes were evident for these variables in meadow voles. Our results show that deer mouse is a sensitive sentinel species and that the biomarkers and indicators used here are efficient means to detect local contamination and associated biological effects in native mammals inhabiting reclaimed areas on active oil sands mine

  6. Small mammals as sentinels of oil sands related contaminants and health effects in northeastern Alberta, Canada.

    PubMed

    Rodríguez-Estival, Jaime; Smits, Judit E G

    2016-02-01

    The extraction of bitumen in areas of northeastern Alberta (Canada) has been associated with the release of complex mixtures of metals, metalloids, and polycyclic aromatic compounds (PACs) to the environment. To mitigate effects on ecosystems, Canadian legislation mandates that disturbed areas be reclaimed to an ecologically sustainable state after active operations. However, as part of reclamation activities, exposure to, and effects on wildlife living in these areas is not generally assessed. To support successful reclamation, the development of efficient methods to assess exposure and health effects in potentially exposed wildlife is required. In the present study, we investigated the usefulness of two native mammalian species (deer mouse Peromyscus maniculatus, and meadow vole Microtus pennsylvanicus) as sentinels of oil sands related contaminants by examining biomarkers of exposure and indicators of biological costs. Tissue residues of 31 metals and metalloids in kidneys and muscle, activity of the hepatic detoxification enzyme EROD (as a biomarker of exposure to organic contaminants), body condition, and the relative mass of liver, kidney, spleen, and testes were compared in animals from one reclaimed area and a reference site. Deer mice from the reclaimed site had higher renal levels of Co, Se and Tl compared to animals from the reference site, which was associated with reduced body condition. Lower testis mass was another feature that distinguished mice from the reclaimed site in comparison to those from the reference site. One mouse and one vole from the reclaimed site also showed increased hepatic EROD activity. In marked contrast, no changes were evident for these variables in meadow voles. Our results show that deer mouse is a sensitive sentinel species and that the biomarkers and indicators used here are efficient means to detect local contamination and associated biological effects in native mammals inhabiting reclaimed areas on active oil sands mine

  7. Novel Babesia and Hepatozoon agents infecting non-volant small mammals in the Brazilian Pantanal, with the first record of the tick Ornithodoros guaporensis in Brazil.

    PubMed

    Wolf, Rafael William; Aragona, Mônica; Muñoz-Leal, Sebastián; Pinto, Leticia Borges; Melo, Andréia Lima Tomé; Braga, Isis Assis; Costa, Jackeliny dos Santos; Martins, Thiago Fernandes; Marcili, Arlei; Pacheco, Richard de Campos; Labruna, Marcelo B; Aguiar, Daniel Moura

    2016-04-01

    Taking into account the diversity of small terrestrial mammals of the Pantanal, the present study aimed to verify the occurrence of infection by Ehrlichia spp., Anaplasma spp., Rickettsia spp., Hepatozoon spp., Babesia spp. and parasitism by ticks in non-volant small mammals collected in the Brazilian Pantanal. Samples of blood, liver and spleen were collected from 64 captured animals, 22 marsupials and 42 rodents. Pathogen detection was performed by the use of genus-specific Polymerase Chain Reaction (PCR) assays. Ticks collected from the animals consisted of Amblyomma sculptum and Amblyomma triste nymphs, and Ornithodoros guaporensis larvae. None of the vertebrate samples (blood, liver, or spleen) yielded detectable DNA of Rickettsia spp. or Ehrlichia spp. The blood of the rodent Hylaeamys megacephalus yielded an Anaplasma sp. genotype (partial 16S rRNA gene) 99% similar to multiple Anaplasma spp. genotypes around the world. The blood of three rodents of the species Calomys callosus were positive for a novel Hepatozoon sp. agent, phylogenetically related (18S rDNA gene) to distinct Hepatozoon genotypes that have been detected in rodents from different parts of the world. One marsupial (Monodelphis domestica) and three rodents (Thrichomys pachyurus) were positive to novel piroplasmid genotypes, phylogenetically (18S rDNA gene) related to Theileria bicornis, Cytauxzoon manul, and Cytauxzoon felis. The present study provides the first molecular detection of Hepatozoon sp. and piroplasmids in small mammals in Brazil. Additionally, we expanded the distribution of O. guaporensis to Brazil, since this tick species was previously known to occur only in Bolivia. PMID:26782931

  8. Intra-phylum and inter-phyla associations among gastrointestinal parasites in two wild mammal species.

    PubMed

    Moreno, P G; Eberhardt, M A T; Lamattina, D; Previtali, M A; Beldomenico, P M

    2013-09-01

    A growing body of literature reveals that the interactions among the parasite community may be strong and significant for parasite dynamics. There may be inter-specific antagonistic interactions as a result of competition and cross-effective immune response, or synergistic interactions where infection by one parasite is facilitated by another one, either by an impoverishment of the host's defenses, parasite-induced selective immunosuppression, or trade-offs within the immune system. The nature of these interactions may depend on how related are the parasite species involved. Here we explored the presence of associations among gastrointestinal parasites (coccidia and helminths) in natural populations of two wild mammal species, the capybara (Hydrochoerus hydrochaeris) and the guanaco (Lama guanicoe). The associations explored were between the oocyst outputs of a selected Eimeria species and the other coccidia of that parasite community, and between Eimeria spp. and the predominant nematodes. The statistical analysis included adjustment for potential confounders or effect modifiers. In guanacos, the prevailing interactions were synergistic among the coccidia and between coccidia and nematodes (Nematodirus spp.). However, in capybaras, the interaction between nematodes (Viannaiidae) and Eimeria spp. depended on environmental and host factors. The relationship was positive in some circumstances (depending on season, year, sex, or animal size), but it appeared to become antagonistic under different scenarios. These antagonist interactions did not follow a particular seasonal pattern (they occurred in autumn, spring, and summer), but they were predominantly found in females (when they depended on sex) or in 2010 and 2011 (when they depended on the sampling year). These results suggest that the relationship between coccidia and nematodes in capybaras may be context dependent. We propose that the context-dependent immune investment documented in capybaras may be the cause

  9. Small non-flying mammals from conserved and altered areas of Atlantic forest and Cerrado: comments on their potential use for monitoring environment.

    PubMed

    Bonvicino, C R; Lindbergh, S M; Maroja, L S

    2002-11-01

    Two Atlantic Forests and two Cerrado areas in Brazil were sampled for non-flying small mammal fauna. In each biome one area with altered and another with almost unaltered vegetation (national parks), were chosen to investigate these fauna. Species richness of Atlantic Forest and Cerrado was comparable in the conserved as well as in the altered areas. Data suggested that species could be divided into different ecological categories according to distribution, use of altered and/or relatively unaltered vegetation and habitat specificity. Within these ecological categories some species are appropriate indicators for monitoring environmental quality and degradation. Useful guidelines for wildlife management planning, including selecting areas for conservation units and their better boundary delimitation can ensue.

  10. Small-mammal populations of a Maryland woodlot, 1949-1954

    USGS Publications Warehouse

    Stickel, L.F.; Warbach, O.

    1960-01-01

    SUMMARY: Small-mammal populations of a 4.4-acre farm woodlot on the Patuxent Research Center, Mary land were studied by periodic live trapping for nearly 5 years, I949-54: The woodlot is a mixed stand of pine and deciduous trees, most of which began to grow in an abandoned farm field in the decade 1914-24. Traps were set in a 60-foot grid at intervals of approximately 2 months. Peromyscus leucopus, Microtus pennsylvanicus, and Pitymys pinetorum were the principal species. Peromyscus were most numerous. They fluctuated seasonally from a high in December to a low in April. Numbers increased to a low midsummer peak, declined slightly, then increased again to the high for the year in December. Seasonal trends in the numbers were intermediate between seasonal cycles in the north and those in the south. They were similar to the pattern in Michigan, although population peaks in fall were about a month later in Maryland. Our December populations varied from 3.9 to 8.6 Peromyscus per acre, April populations from 0 to 3.6 per acre. High numbers were present through most of 1951 and 1953. One Peromyscus was trapped in the woodlot for a period of 38 months, and several others for a year or more. The average expectancy of residence was about 3 months. No seasonal differences in persistence in the woodlot were noted. Most Peromyscus maintained home ranges in the same. general area from month to month. A few made trips away from their usual ranges, or gradually shifted their ranges. Several mice ranged over the entire woodlot at some times, but occupied more limited parts of it at other times. The history of the travels of a mouse that lived there 38 mouths is discussed in detail. The greatest distance between capture sites was taken as an indication of range size. Distances, measured for mice trapped 14 or more times apiece, averaged 280 feet for females, 378 feet for males. These were long-term records and so included any shifts of range or trips that occurred. True home ranges

  11. First accelerator mass spectrometry {sup 14}C dates documenting contemporaneity of nonanalog species in late Pleistocene mammal communities

    SciTech Connect

    Stafford, T.W. Jr.; Semken, H.A. Jr.; Graham, R.W.; Klippel, W.F.; Markova, A.; Smirnov, N.G.; Southon, J.

    1999-10-01

    Worldwide late Pleistocene terrestrial mammal faunas are characterized by stratigraphic associations of species that now have exclusive geographic ranges. These have been interpreted as either taphonomically mixed or representative of communities that no longer exist. Accelerator mass spectrometry {sup 14}C dates (n = 60) on single bones of stratigraphically associated fossil micromammals from two American and two Russian sites document for the first time that currently allopatric mammals occurred together between 12,000 and 22,000 yr B.P. on two continents. The existence of mammal communities without modern analogs demonstrates that Northern Hemisphere biological communities are ephemeral and that many modern biomes are younger than 12 ka. Future climate change may result in new nonanalog communities.

  12. A nonlethal sampling method to obtain, generate and assemble whole blood transcriptomes from small, wild mammals.

    PubMed

    Huang, Zixia; Gallot, Aurore; Lao, Nga T; Puechmaille, Sébastien J; Foley, Nicole M; Jebb, David; Bekaert, Michaël; Teeling, Emma C

    2016-01-01

    The acquisition of tissue samples from wild populations is a constant challenge in conservation biology, especially for endangered species and protected species where nonlethal sampling is the only option. Whole blood has been suggested as a nonlethal sample type that contains a high percentage of bodywide and genomewide transcripts and therefore can be used to assess the transcriptional status of an individual, and to infer a high percentage of the genome. However, only limited quantities of blood can be nonlethally sampled from small species and it is not known if enough genetic material is contained in only a few drops of blood, which represents the upper limit of sample collection for some small species. In this study, we developed a nonlethal sampling method, the laboratory protocols and a bioinformatic pipeline to sequence and assemble the whole blood transcriptome, using Illumina RNA-Seq, from wild greater mouse-eared bats (Myotis myotis). For optimal results, both ribosomal and globin RNAs must be removed before library construction. Treatment of DNase is recommended but not required enabling the use of smaller amounts of starting RNA. A large proportion of protein-coding genes (61%) in the genome were expressed in the blood transcriptome, comparable to brain (65%), kidney (63%) and liver (58%) transcriptomes, and up to 99% of the mitogenome (excluding D-loop) was recovered in the RNA-Seq data. In conclusion, this nonlethal blood sampling method provides an opportunity for a genomewide transcriptomic study of small, endangered or critically protected species, without sacrificing any individuals. PMID:26186236

  13. Antioxidant properties of UCP1 are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species.

    PubMed

    Oelkrug, Rebecca; Goetze, Nadja; Meyer, Carola W; Jastroch, Martin

    2014-12-01

    Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of "mild uncoupling". Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.

  14. Serological surveillance of scrub typhus, murine typhus, and leptospirosis in small mammals captured at firing points 10 and 60, Gyeonggi province, Republic of Korea, 2001-2005.

    PubMed

    O'Guinn, Monica L; Klein, Terry A; Lee, John S; Richards, Allen L; Kim, Heung-Chul; Ha, Si Jung; Shim, So Hee; Baek, Luck Ju; Song, Ki-Joon; Chong, Sung-Tae; Turell, Michael J; Burkett, Douglas A; Schuster, Anthony; Lee, In-Yong; Yi, Suk-Hee; Sames, William J; Song, Jin-Won

    2010-03-01

    Soldiers from the Republic of Korea and the United States conducting peacetime military operations at various training sites and multiple range complexes located near the demilitarized zone separating North and South Korea are exposed to rodents and their potentially disease-carrying ectoparasites. These diseases include scrub typhus, murine typhus, and leptospirosis. Many of the training sites are rural or semi-rural, surrounded or co-located with various forms of agriculture, and are infested with rodents and insectivores (as well as their ectoparasites), which are commonly found in association with unmanaged tall grasses, scrub, and crawling vegetation habitats. For 5 years, rodents and insectivores were collected seasonally (spring, summer, fall, and winter) at firing points 10 and 60 near the demilitarized zone and serologically tested for the presence of scrub typhus, murine typhus, and leptospirosis antibodies. Of the nine species of small mammals collected, Apodemus agrarius, the common striped field mouse and known reservoir of scrub typhus, was the most frequently collected (90.6%). Only four of the nine species captured, A. agrarius (60.9%), Micromys minutus (100%), Mus musculus (55.6%), and Rattus norvegicus (46.7%), were positive for scrub typhus. Of all the small mammals captured, only A. agrarius was positive for murine typhus (0.3%) and leptospirosis (1.3%). Seasonal and annual prevalence rates based on weight and sex are presented.

  15. 75 FR 80471 - Takes of Marine Mammals Incidental to Specified Activities; St. George Reef Light Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...), for an Incidental Harassment Authorization (IHA) to take marine mammals, by harassment incidental to... incidentally harass, by Level B harassment only, four species of marine mammals during the specified activity... intentional, taking by harassment of small numbers of marine mammals of a species or population stock,...

  16. Processes driving short-term temporal dynamics of small mammal distribution in human-disturbed environments.

    PubMed

    Martineau, Julie; Pothier, David; Fortin, Daniel

    2016-07-01

    As the impact of anthropogenic activities intensifies worldwide, an increasing proportion of landscape is converted to early successional stages every year. To understand and anticipate the global effects of the human footprint on wildlife, assessing short-term changes in animal populations in response to disturbance events is becoming increasingly important. We used isodar habitat selection theory to reveal the consequences of timber harvesting on the ecological processes that control the distribution dynamics of a small mammal, the red-backed vole (Myodes gapperi). The abundance of voles was estimated in pairs of cut and uncut forest stands, prior to logging and up to 2 years afterwards. A week after logging, voles did not display any preference between cut and uncut stands, and a non-significant isodar indicated that their distribution was not driven by density-dependent habitat selection. One month after harvesting, however, juvenile abundance increased in cut stands, whereas the highest proportions of reproductive females were observed in uncut stands. This distribution pattern appears to result from interference competition, with juveniles moving into cuts where there was weaker competition with adults. In fact, the emergence of source-sink dynamics between uncut and cut stands, driven by interference competition, could explain why the abundance of red-backed voles became lower in cut (the sink) than uncut (the source) stands 1-2 years after logging. Our study demonstrates that the influences of density-dependent habitat selection and interference competition in shaping animal distribution can vary frequently, and for several months, following anthropogenic disturbance. PMID:27003700

  17. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  18. Serological surveillance of scrub typhus, murine typhus, and leptospirosis in small mammals captured at Twin Bridges Training Area, Gyeonggi Province, Republic of Korea, 2005-2007.

    PubMed

    Sames, William J; Klein, Terry A; Kim, Heung-Chul; Gu, Se Hun; Kang, Hae-Ji; Shim, So-Hee; Ha, Si-Jung; Chong, Sung-Tae; Lee, In-Yong; Richards, Allen L; Yi, Suk-Hee; Song, Jin-Won

    2010-01-01

    Soldiers from the Republic of Korea and the United States conduct armistice military operations at Twin Bridges Training Area (TBTA) located near the demilitarized zone (DMZ) and are exposed to zoonotic disease pathogens that small mammals and their potentially disease-carrying ectoparasites transmit. TBTA is a 36 km2 rural training site with small villages and various forms of agriculture along its boundary. At TBTA, rodents, insectivores, and their ectoparasites are commonly found in association with unmanaged habitats of various densities of tall grasses, herbaceous plants, shrubs, briars, and crawling vegetation. Rodents and insectivores were collected during the winter (November-December 2005 and December 2006) and early spring (March 2007), and serologically tested for the presence of scrub typhus, murine typhus, and leptospirosis antibodies. Of the six species of small mammals collected, Apodemus agrarius, the common striped field mouse and known reservoir of scrub typhus, was the most frequently collected (96.1%), followed by Crocidura lasiura (2.5%), Micromys minutus (0.5%), Myodes regulus (0.5%), Mus musculus (0.3%), and Rattus rattus (0.1%). A. agrarius (56.1%), M. musculus (66.7%), M. minutus (25%), and R. rattus (100%) were positive for scrub typhus antibodies. Only A. agrarius (14.7%) and C. lasiura (4.5%) were positive for murine typhus antibodies, whereas only A. agrarius (1.5%) was seropositive for leptospirosis. Seroprevalence rates of scrub typhus and murine typhus based on weight and sex of A. agrarius are presented. PMID:20108842

  19. Comparison of small mammal prevalence of Leishmania (Leishmania) mexicana in five foci of cutaneous leishmaniasis in the State of Campeche, Mexico.

    PubMed

    Van Wynsberghe, N R; Canto-Lara, S B; Sosa-Bibiano, E I; Rivero-Cárdenas, N A; Andrade-Narváez, F J

    2009-01-01

    In the Yucatan Peninsula of Mexico, 95% of the human cases of Cutaneous Leishmaniasis are caused by Leishmania (Leishmania) mexicana with an incidence rate of 5.08 per 100,000 inhabitants. Transmission is limited to the winter months (November to March). One study on wild rodents has incriminated Ototylomys phyllotis and Peromyscus yucatanicus as primary reservoirs of L. (L.) mexicana in the focus of La Libertad, Campeche. In the present study, the prevalence of both infection and disease caused by L. (L.) mexicana in small terrestrial mammals were documented during five transmission seasons (1994-2004) in five foci of Leishmaniasis in the state of Campeche. Foci separated by only 100 km, with similar relative abundances of small mammals, were found to differ significantly in their prevalence of both symptoms and infection. Transmission rates and reservoir species seemed to change in space as well as in time which limited the implementation of effective control measures of the disease even in a small endemic area such as the south of the Yucatan Peninsula.

  20. Occurrence and genotypic analysis of Trichinella species in Alaska marine-associated mammals of the Bering and Chukchi seas.

    PubMed

    Seymour, J; Horstmann-Dehn, L; Rosa, C; Lopez, J A

    2014-02-24

    The zoonotic parasite Trichinella is the causative agent of trichinellosis outbreaks in the circumpolar Arctic. Subsistence communities are particularly prone to trichinellosis due to traditional meat preparation methods and regional presence of a freeze-tolerant Trichinella species (Trichinella nativa). This study is the first application of a validated artificial digestion method in determining incidence of Trichinella sp. in Alaskan mammals. Infection incidence in pinniped species (Erignathus barbatus, Eumetopias jubatus, Odobenus rosmarus divergens, and Pusa hispida) was low, with only 1/57 ringed seals infected. Polymerase Chain Reaction assays indicate T. nativa as the only species present in northern Alaska. Analysis of an archived polar bear (Ursus maritimus) muscle sample shows freeze-tolerance and longevity for T. nativa to -20°C for 10 years and short-term freeze resistance to -80°C when morphology was used to determine presence of live larvae. However, larval motility suggests 0% survival. An approach that combines artificial digestion with PCR based species identification has excellent potential for Trichinella sp. detection and identification of archived tissues. Overall, Trichinella in Alaskan mammals, particularly marine mammals of subsistence importance, appears to be a minor problem. These modern diagnostic techniques provide accurate insight into the presence of Trichinella in the Alaskan marine environment. PMID:24373515

  1. Determinants of loss of mammal species during the Late Quaternary 'megafauna' extinctions: life history and ecology, but not body size.

    PubMed Central

    Johnson, C N

    2002-01-01

    Extinctions of megafauna species during the Late Quaternary dramatically reduced the global diversity of mammals. There is intense debate over the causes of these extinctions, especially regarding the extent to which humans were involved. Most previous analyses of this question have focused on chronologies of extinction and on the archaeological evidence for human-megafauna interaction. Here, I take an alternative approach: comparison of the biological traits of extinct species with those of survivors. I use this to demonstrate two general features of the selectivity of Late Quaternary mammal extinctions in Australia, Eurasia, the Americas and Madagascar. First, large size was not directly related to risk of extinction; rather, species with slow reproductive rates were at high risk regardless of their body size. This finding rejects the 'blitzkrieg' model of overkill, in which extinctions were completed during brief intervals of selective hunting of large-bodied prey. Second, species that survived despite having low reproductive rates typically occurred in closed habitats and many were arboreal or nocturnal. Such traits would have reduced their exposure to direct interaction with people. Therefore, although this analysis rejects blitzkrieg as a general scenario for the mammal megafauna extinctions, it is consistent with extinctions being due to interaction with human populations. PMID:12427315

  2. Chemical composition of the small mammal reproductive system as an indicator of enterprise technogenic impact on the environment

    NASA Astrophysics Data System (ADS)

    Baranovskaya, N.; Belyanovskaya, A.; Bezel, V.; Mukhacheva, S.; Anufrieva, M.

    2016-09-01

    In this paper we consider the indicative role of chemical composition of the small mammal (specifically, the bank vole, or Myodes glareolus) reproductive system with the purpose of studying the impact of a large-scale nonferrous metal-processing enterprise on living organisms through the expample of Middle Ural copper-smelting plant OJSC. We have analysed the chemical composition of the placenta-embryo system in the areas which are 2 km and 30 km away from the plant.

  3. Efficiency of small mammal trapping in an Atlantic Forest fragmented landscape: the effects of trap type and position, seasonality and habitat.

    PubMed

    Vieira, A L M; Pires, A S; Nunes-Freitas, A F; Oliveira, N M; Resende, A S; Campello, E F C

    2014-08-01

    Trapping methods can strongly influence the sampling of mammal communities. This study compared the efficiency of the capture of small mammals in Sherman traps in two positions (at ground level and in trees) and pitfall traps in a fragmented landscape. Trapping sessions were carried out between October 2008 and October