Sample records for small mass differences

  1. Acoustic Radiation Force Impulse Technology in the Differential Diagnosis of Solid Breast Masses with Different Sizes: Which Features Are Most Efficient?

    PubMed

    Bai, Min; Zhang, Hui-Ping; Xing, Jin-Fang; Shi, Qiu-Sheng; Gu, Ji-Ying; Li, Fan; Chen, Hui-Li; Zhang, Xue-Mei; Fang, Yun; Du, Lian-Fang

    2015-01-01

    To evaluate diagnostic performance of acoustic radiation force impulse (ARFI) technology for solid breast masses with different sizes and determine which features are most efficient. 271 solid breast masses in 242 women were examined with ARFI, and their shear wave velocities (SWVs), Virtual Touch tissue imaging (VTI) patterns, and area ratios (ARs) were measured and compared with their histopathological outcomes. Receiver operating characteristic curves (ROC) were calculated to assess diagnostic performance of ARFI for small masses (6-14 mm) and big masses (15-30 mm). SWV of mass was shown to be positively associated with mass size (P < 0.001). For small masses, area under ROC (Az) of AR was larger than that of SWV (P < 0.001) and VTI pattern (P < 0.001); no significant difference was found between Az of SWV and that of VTI pattern (P = 0.906). For big masses, Az of VTI pattern was less than that of SWV (P = 0.008) and AR (P = 0.002); no significant difference was identified between Az of SWV and that of AR (P = 0.584). For big masses, SWV and AR are both efficient measures; nevertheless, for small masses, AR seems to be the best feature.

  2. Effect of dietary fat on the distribution of mucosal mass and cell proliferation along the small intestine.

    PubMed Central

    Jenkins, A P; Thompson, R P

    1992-01-01

    This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose. PMID:1541418

  3. Effect of dietary fat on the distribution of mucosal mass and cell proliferation along the small intestine.

    PubMed

    Jenkins, A P; Thompson, R P

    1992-02-01

    This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose.

  4. Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship

    USGS Publications Warehouse

    Buchinger, Tyler J.; Bussy, Ugo; Buchinger, Ethan G.; Fissette, Skye D.; Li, Weiming; Johnson, Nicholas

    2017-01-01

    Male body size affects access to mates in many animals. Attributes of sexual signals often correlate with body size due to physiological constraints on signal production. Larger males generally produce larger signals, but costs of being large or compensation by small males can result in smaller males producing signals of equal or greater magnitude. Female choice following multiple male traits with different relationships to size might further complicate the effect of male body size on access to mates. We report the relationship between male body size and pheromone signaling, and the effects on female mate search and courtship in the sea lamprey (Petromyzon marinus). We predicted that pheromone production in the liver and the liver mass to body mass ratio would remain constant across sizes, resulting in similar mass-adjusted pheromone release rates across sizes but a positive relationship between absolute pheromone release and body mass. Our results confirmed positive relationships between body mass and liver mass, and liver mass and the magnitude of the pheromone signal. Surprisingly, decreasing body mass was correlated with higher pheromone concentrations in the liver, liver mass to body mass ratios, and mass-adjusted pheromone release rates. In a natural stream, females more often entered nests treated with small versus large male odors. However, close-proximity courtship behaviors were similar in nests treated with small or large male odors. We conclude that small males exhibit increased release of the main pheromone component, but female discrimination of male pheromones follows several axes of variation with different relationships to size.

  5. [Spatial heterogeneity in body condition of small yellow croaker in Yellow Sea and East China Sea based on mixed-effects model and quantile regression analysis].

    PubMed

    Liu, Zun-Lei; Yuan, Xing-Wei; Yan, Li-Ping; Yang, Lin-Lin; Cheng, Jia-Hua

    2013-09-01

    By using the 2008-2010 investigation data about the body condition of small yellow croaker in the offshore waters of southern Yellow Sea (SYS), open waters of northern East China Sea (NECS), and offshore waters of middle East China Sea (MECS), this paper analyzed the spatial heterogeneity of body length-body mass of juvenile and adult small yellow croakers by the statistical approaches of mean regression model and quantile regression model. The results showed that the residual standard errors from the analysis of covariance (ANCOVA) and the linear mixed-effects model were similar, and those from the simple linear regression were the highest. For the juvenile small yellow croakers, their mean body mass in SYS and NECS estimated by the mixed-effects mean regression model was higher than the overall average mass across the three regions, while the mean body mass in MECS was below the overall average. For the adult small yellow croakers, their mean body mass in NECS was higher than the overall average, while the mean body mass in SYS and MECS was below the overall average. The results from quantile regression indicated the substantial differences in the allometric relationships of juvenile small yellow croakers between SYS, NECS, and MECS, with the estimated mean exponent of the allometric relationship in SYS being 2.85, and the interquartile range being from 2.63 to 2.96, which indicated the heterogeneity of body form. The results from ANCOVA showed that the allometric body length-body mass relationships were significantly different between the 25th and 75th percentile exponent values (F=6.38, df=1737, P<0.01) and the 25th percentile and median exponent values (F=2.35, df=1737, P=0.039). The relationship was marginally different between the median and 75th percentile exponent values (F=2.21, df=1737, P=0.051). The estimated body length-body mass exponent of adult small yellow croakers in SYS was 3.01 (10th and 95th percentiles = 2.77 and 3.1, respectively). The estimated body length-body mass relationships were significantly different from the lower and upper quantiles of the exponent (F=3.31, df=2793, P=0.01) and the median and upper quantiles (F=3.56, df=2793, P<0.01), while no significant difference was observed between the lower and median quantiles (F=0.98, df=2793, P=0.43).

  6. Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.

    PubMed

    Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol

    2013-02-01

    A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.

  7. Metabolic Differences between Dogs of Different Body Sizes

    PubMed Central

    Lacroix, Sebastien; Kennedy, Adam D.; Beloshapka, Alison; Kaput, Jim

    2017-01-01

    Introduction The domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs. Objectives This study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs. Methods Gas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study. Results 449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size. Conclusion Small dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function. PMID:29225968

  8. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  9. Design and Manufacturing of Extremely Low Mass Flight Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    2002-01-01

    Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.

  10. Evaluating morphometric body mass prediction equations with a juvenile human test sample: accuracy and applicability to small-bodied hominins.

    PubMed

    Walker, Christopher S; Yapuncich, Gabriel S; Sridhar, Shilpa; Cameron, Noël; Churchill, Steven E

    2018-02-01

    Body mass is an ecologically and biomechanically important variable in the study of hominin biology. Regression equations derived from recent human samples allow for the reasonable prediction of body mass of later, more human-like, and generally larger hominins from hip joint dimensions, but potential differences in hip biomechanics across hominin taxa render their use questionable with some earlier taxa (i.e., Australopithecus spp.). Morphometric prediction equations using stature and bi-iliac breadth avoid this problem, but their applicability to early hominins, some of which differ in both size and proportions from modern adult humans, has not been demonstrated. Here we use mean stature, bi-iliac breadth, and body mass from a global sample of human juveniles ranging in age from 6 to 12 years (n = 530 age- and sex-specific group annual means from 33 countries/regions) to evaluate the accuracy of several published morphometric prediction equations when applied to small humans. Though the body proportions of modern human juveniles likely differ from those of small-bodied early hominins, human juveniles (like fossil hominins) often differ in size and proportions from adult human reference samples and, accordingly, serve as a useful model for assessing the robustness of morphometric prediction equations. Morphometric equations based on adults systematically underpredict body mass in the youngest age groups and moderately overpredict body mass in the older groups, which fall in the body size range of adult Australopithecus (∼26-46 kg). Differences in body proportions, notably the ratio of lower limb length to stature, influence predictive accuracy. Ontogenetic changes in these body proportions likely influence the shift in prediction error (from under- to overprediction). However, because morphometric equations are reasonably accurate when applied to this juvenile test sample, we argue these equations may be used to predict body mass in small-bodied hominins, despite the potential for some error induced by differing body proportions and/or extrapolation beyond the original reference sample range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Equal-magnitude size-weight illusions experienced within and between object categories.

    PubMed

    Buckingham, Gavin; Goodale, Melvyn A; White, Justin A; Westwood, David A

    2016-01-01

    In the size-weight illusion (SWI), small objects feel heavier than larger objects of the same mass. This effect is typically thought to be a consequence of the lifter's expectation that the large object will outweigh the small object, because objects of the same type typically get heavier as they get larger. Here, we show that this perceptual effect can occur across object category, where there are no strong expectations about the correspondence between size and mass. One group of participants lifted same-colored large and small cubes with the same mass as one another, while another group lifted differently-colored large and small cubes with the same mass as one another. The group who lifted the same-colored cubes experienced a robust SWI and initially lifted the large object with more force than the small object. By contrast, the group who lifted the different-colored objects did so with equal initial forces on the first trial, but experienced just as strong an illusion as those who lifted the same-colored objects. These results demonstrate that color cues can selectively influence the application of fingertip force rates while not impacting at all upon the lifter's perception of object weight, highlighting a stark dissociation in how prior information affects perception and action.

  12. Uncovering mass segregation with galaxy analogues in dark-matter simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Gandhali D.; Parker, Laura C.; Wadsley, James

    2016-10-01

    We investigate mass segregation in group and cluster environments by identifying galaxy analogues in high-resolution dark-matter simulations. Subhaloes identified by the Amiga's Halo Finder (AHF) and ROCKSTAR halo finders have similar mass functions, independent of resolution, but different radial distributions due to significantly different subhalo hierarchies. We propose a simple way to classify subhaloes as galaxy analogues. The radial distributions of galaxy analogues agree well at large halocentric radii for both AHF and ROCKSTAR but disagree near parent halo centres where the phase-space information used by ROCKSTAR is essential. We see clear mass segregation at small radii (within 0.5 rvir) with average galaxy analogue mass decreasing with radius. Beyond the virial radius, we find a mild trend where the average galaxy analogue mass increases with radius. These mass segregation trends are strongest in small groups and dominated by the segregation of low-mass analogues. The lack of mass segregation in massive galaxy analogues suggests that the observed trends are driven by the complex accretion histories of the parent haloes rather than dynamical friction.

  13. How many stakes are required to measure the mass balance of a glacier?

    USGS Publications Warehouse

    Fountain, A.G.; Vecchia, A.

    1999-01-01

    Glacier mass balance is estimated for South Cascade Glacier and Maclure Glacier using a one-dimensional regression of mass balance with altitude as an alternative to the traditional approach of contouring mass balance values. One attractive feature of regression is that it can be applied to sparse data sets where contouring is not possible and can provide an objective error of the resulting estimate. Regression methods yielded mass balance values equivalent to contouring methods. The effect of the number of mass balance measurements on the final value for the glacier showed that sample sizes as small as five stakes provided reasonable estimates, although the error estimates were greater than for larger sample sizes. Different spatial patterns of measurement locations showed no appreciable influence on the final value as long as different surface altitudes were intermittently sampled over the altitude range of the glacier. Two different regression equations were examined, a quadratic, and a piecewise linear spline, and comparison of results showed little sensitivity to the type of equation. These results point to the dominant effect of the gradient of mass balance with altitude of alpine glaciers compared to transverse variations. The number of mass balance measurements required to determine the glacier balance appears to be scale invariant for small glaciers and five to ten stakes are sufficient.

  14. Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides

    NASA Astrophysics Data System (ADS)

    Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.

    2017-06-01

    Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.

  15. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation.

    PubMed

    Meyer, A M; Hess, B W; Paisley, S I; Du, M; Caton, J S

    2014-09-01

    We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.

  16. Determination of drugs and drug-like compounds in different samples with direct analysis in real time mass spectrometry.

    PubMed

    Chernetsova, Elena S; Morlock, Gertrud E

    2011-01-01

    Direct analysis in real time (DART), a relatively new ionization source for mass spectrometry, ionizes small-molecule components from different kinds of samples without any sample preparation and chromatographic separation. The current paper reviews the published data available on the determination of drugs and drug-like compounds in different matrices with DART-MS, including identification and quantitation issues. Parameters that affect ionization efficiency and mass spectra composition are also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  17. Geolocators on Golden-winged Warblers do not affect migratory ecology

    USGS Publications Warehouse

    Peterson, Sean M.; Streby, Henry M.; Kramer, Gunnar R.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.

    2015-01-01

    The use of light-level geolocators is increasingly common for connecting breeding and nonbreeding sites and identifying migration routes in birds. Until recently, the mass and size of geolocators precluded their use on songbird species weighing <12 g. Reducing the mass of geolocators, such as by shortening or eliminating the light stalk, may make their deployment on small birds feasible, but may also inhibit their ability to receive light reliably, because small geolocators can be shaded by feathers. Here we report geolocator effects on migratory ecology of Golden-winged Warblers (Vermivora chrysoptera) in Minnesota and Tennessee. We also evaluated whether stalk length influenced precision of location data for birds on the breeding grounds. At 8–10 g, Golden-winged Warblers are the smallest birds to be outfitted with geolocators to date. We found no differences in return rates, inter-annual territory fidelity, or body mass between geolocator-marked individuals and a control group of color-banded individuals. We observed no difference in return rates or variation in estimated breeding locations between birds marked with stalked geolocators and those with stalkless geolocators. Our results suggest that some small songbirds can be safely marked with geolocators. Light stalks appear to be unnecessary for Golden-winged Warblers; the added mass and drag of stalks can probably be eliminated on other small songbirds.

  18. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling.

    PubMed

    Forcisi, Sara; Moritz, Franco; Kanawati, Basem; Tziotis, Dimitrios; Lehmann, Rainer; Schmitt-Kopplin, Philippe

    2013-05-31

    The present review gives an introduction into the concept of metabolomics and provides an overview of the analytical tools applied in non-targeted metabolomics with a focus on liquid chromatography (LC). LC is a powerful analytical tool in the study of complex sample matrices. A further development and configuration employing Ultra-High Pressure Liquid Chromatography (UHPLC) is optimized to provide the largest known liquid chromatographic resolution and peak capacity. Reasonably UHPLC plays an important role in separation and consequent metabolite identification of complex molecular mixtures such as bio-fluids. The most sensitive detectors for these purposes are mass spectrometers. Almost any mass analyzer can be optimized to identify and quantify small pre-defined sets of targets; however, the number of analytes in metabolomics is far greater. Optimized protocols for quantification of large sets of targets may be rendered inapplicable. Results on small target set analyses on different sample matrices are easily comparable with each other. In non-targeted metabolomics there is almost no analytical method which is applicable to all different matrices due to limitations pertaining to mass analyzers and chromatographic tools. The specifications of the most important interfaces and mass analyzers are discussed. We additionally provide an exemplary application in order to demonstrate the level of complexity which remains intractable up to date. The potential of coupling a high field Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ICR-FT/MS), the mass analyzer with the largest known mass resolving power, to UHPLC is given with an example of one human pre-treated plasma sample. This experimental example illustrates one way of overcoming the necessity of faster scanning rates in the coupling with UHPLC. The experiment enabled the extraction of thousands of features (analytical signals). A small subset of this compositional space could be mapped into a mass difference network whose topology shows specificity toward putative metabolite classes and retention time. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  20. Theoretical considerations on maximum running speeds for large and small animals.

    PubMed

    Fuentes, Mauricio A

    2016-02-07

    Mechanical equations for fast running speeds are presented and analyzed. One of the equations and its associated model predict that animals tend to experience larger mechanical stresses in their limbs (muscles, tendons and bones) as a result of larger stride lengths, suggesting a structural restriction entailing the existence of an absolute maximum possible stride length. The consequence for big animals is that an increasingly larger body mass implies decreasing maximal speeds, given that the stride frequency generally decreases for increasingly larger animals. Another restriction, acting on small animals, is discussed only in preliminary terms, but it seems safe to assume from previous studies that for a given range of body masses of small animals, those which are bigger are faster. The difference between speed scaling trends for large and small animals implies the existence of a range of intermediate body masses corresponding to the fastest animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Screening of the binding of small molecules to proteins by desorption electrospray ionization mass spectrometry combined with protein microarray.

    PubMed

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.

  2. Multivariate Meta-Analysis of Brain-Mass Correlations in Eutherian Mammals

    PubMed Central

    Steinhausen, Charlene; Zehl, Lyuba; Haas-Rioth, Michaela; Morcinek, Kerstin; Walkowiak, Wolfgang; Huggenberger, Stefan

    2016-01-01

    The general assumption that brain size differences are an adequate proxy for subtler differences in brain organization turned neurobiologists toward the question why some groups of mammals such as primates, elephants, and whales have such remarkably large brains. In this meta-analysis, an extensive sample of eutherian mammals (115 species distributed in 14 orders) provided data about several different biological traits and measures of brain size such as absolute brain mass (AB), relative brain mass (RB; quotient from AB and body mass), and encephalization quotient (EQ). These data were analyzed by established multivariate statistics without taking specific phylogenetic information into account. Species with high AB tend to (1) feed on protein-rich nutrition, (2) have a long lifespan, (3) delayed sexual maturity, and (4) long and rare pregnancies with small litter sizes. Animals with high RB usually have (1) a short life span, (2) reach sexual maturity early, and (3) have short and frequent gestations. Moreover, males of species with high RB also have few potential sexual partners. In contrast, animals with high EQs have (1) a high number of potential sexual partners, (2) delayed sexual maturity, and (3) rare gestations with small litter sizes. Based on these correlations, we conclude that Eutheria with either high AB or high EQ occupy positions at the top of the network of food chains (high trophic levels). Eutheria of low trophic levels can develop a high RB only if they have small body masses. PMID:27746724

  3. Lesion size affects diagnostic performance of IOTA logistic regression models, IOTA simple rules and risk of malignancy index in discriminating between benign and malignant adnexal masses.

    PubMed

    Di Legge, A; Testa, A C; Ameye, L; Van Calster, B; Lissoni, A A; Leone, F P G; Savelli, L; Franchi, D; Czekierdowski, A; Trio, D; Van Holsbeke, C; Ferrazzi, E; Scambia, G; Timmerman, D; Valentin, L

    2012-09-01

    To estimate the ability to discriminate between benign and malignant adnexal masses of different size using: subjective assessment, two International Ovarian Tumor Analysis (IOTA) logistic regression models (LR1 and LR2), the IOTA simple rules and the risk of malignancy index (RMI). We used a multicenter IOTA database of 2445 patients with at least one adnexal mass, i.e. the database previously used to prospectively validate the diagnostic performance of LR1 and LR2. The masses were categorized into three subgroups according to their largest diameter: small tumors (diameter < 4 cm; n = 396), medium-sized tumors (diameter, 4-9.9 cm; n = 1457) and large tumors (diameter ≥ 10 cm, n = 592). Subjective assessment, LR1 and LR2, IOTA simple rules and the RMI were applied to each of the three groups. Sensitivity, specificity, positive and negative likelihood ratio (LR+, LR-), diagnostic odds ratio (DOR) and area under the receiver-operating characteristics curve (AUC) were used to describe diagnostic performance. A moving window technique was applied to estimate the effect of tumor size as a continuous variable on the AUC. The reference standard was the histological diagnosis of the surgically removed adnexal mass. The frequency of invasive malignancy was 10% in small tumors, 19% in medium-sized tumors and 40% in large tumors; 11% of the large tumors were borderline tumors vs 3% and 4%, respectively, of the small and medium-sized tumors. The type of benign histology also differed among the three subgroups. For all methods, sensitivity with regard to malignancy was lowest in small tumors (56-84% vs 67-93% in medium-sized tumors and 74-95% in large tumors) while specificity was lowest in large tumors (60-87%vs 83-95% in medium-sized tumors and 83-96% in small tumors ). The DOR and the AUC value were highest in medium-sized tumors and the AUC was largest in tumors with a largest diameter of 7-11 cm. Tumor size affects the performance of subjective assessment, LR1 and LR2, the IOTA simple rules and the RMI in discriminating correctly between benign and malignant adnexal masses. The likely explanation, at least in part, is the difference in histology among tumors of different size. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  4. Galaxy And Mass Assembly (GAMA): the connection between metals, specific SFR and H I gas in galaxies: the Z-SSFR relation

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; López-Sánchez, A. R.; Brough, S.; Colless, M.; Bland-Hawthorn, J.; Driver, S.; Foster, C.; Liske, J.; Loveday, J.; Robotham, A. S. G.; Sharp, R. G.; Steele, O.; Taylor, E. N.

    2013-06-01

    We study the interplay between gas phase metallicity (Z), specific star formation rate (SSFR) and neutral hydrogen gas (H I) for galaxies of different stellar masses. Our study uses spectroscopic data from Galaxy and Mass Assembly and Sloan Digital Sky Survey (SDSS) star-forming galaxies, as well as H I detection from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) and Galex Arecibo SDSS Survey (GASS) public catalogues. We present a model based on the Z-SSFR relation that shows that at a given stellar mass, depending on the amount of gas, galaxies will follow opposite behaviours. Low-mass galaxies with a large amount of gas will show high SSFR and low metallicities, while low-mass galaxies with small amounts of gas will show lower SSFR and high metallicities. In contrast, massive galaxies with a large amount of gas will show moderate SSFR and high metallicities, while massive galaxies with small amounts of gas will show low SSFR and low metallicities. Using ALFALFA and GASS counterparts, we find that the amount of gas is related to those drastic differences in Z and SSFR for galaxies of a similar stellar mass.

  5. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  6. Triggering collective oscillations by three-flavor effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Basudeb; Raffelt, Georg G.; Tamborra, Irene

    2010-04-01

    Collective flavor transformations in supernovae, caused by neutrino-neutrino interactions, are essentially a two-flavor phenomenon driven by the atmospheric mass difference and the small mixing angle {theta}{sub 13}. In the two-flavor approximation, the initial evolution depends logarithmically on {theta}{sub 13} and the system remains trapped in an unstable fixed point for {theta}{sub 13}=0. However, any effect breaking exact {nu}{sub {mu}-{nu}{tau}}equivalence triggers the conversion. Such three-flavor perturbations include radiative corrections to weak interactions, small differences between the {nu}{sub {mu}}and {nu}{sub {tau}}fluxes, or nonstandard interactions. Therefore, extremely small values of {theta}{sub 13} are in practice equivalent, the fate of the system depending onlymore » on the neutrino spectra and their mass ordering.« less

  7. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand,more » double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.« less

  8. Big cat, small cat: reconstructing body size evolution in living and extinct Felidae.

    PubMed

    Cuff, A R; Randau, M; Head, J; Hutchinson, J R; Pierce, S E; Goswami, A

    2015-08-01

    The evolution of body mass is a fundamental topic in evolutionary biology, because it is closely linked to manifold life history and ecological traits and is readily estimable for many extinct taxa. In this study, we examine patterns of body mass evolution in Felidae (Placentalia, Carnivora) to assess the effects of phylogeny, mode of evolution, and the relationship between body mass and prey choice in this charismatic mammalian clade. Our data set includes 39 extant and 26 extinct taxa, with published body mass data supplemented by estimates based on condylobasal length. These data were run through 'SURFACE' and 'bayou' to test for patterns of body mass evolution and convergence between taxa. Body masses of felids are significantly different among prey choice groupings (small, mixed and large). We find that body mass evolution in cats is strongly influenced by phylogeny, but different patterns emerged depending on inclusion of extinct taxa and assumptions about branch lengths. A single Ornstein-Uhlenbeck optimum best explains the distribution of body masses when first-occurrence data were used for the fossil taxa. However, when mean occurrence dates or last known occurrence dates were used, two selective optima for felid body mass were recovered in most analyses: a small optimum around 5 kg and a large one around 100 kg. Across living and extinct cats, we infer repeated evolutionary convergences towards both of these optima, but, likely due to biased extinction of large taxa, our results shift to supporting a Brownian motion model when only extant taxa are included in analyses. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  9. Paternity of offspring in multiply-mated, female crickets: the effect of nuptial food gifts and the advantage of mating first

    PubMed Central

    Calos, J. B.; Sakaluk, S. K.

    1998-01-01

    The spermatophore transferred by male decorated crickets (Gryllodes sigillatus) includes a large gelatinous mass, the spermatophylax, that is consumed by the female after mating. This nuptial gift preoccupies the female while sperm are discharged from the remaining portion of the spermatophore, the sperm ampulla, into her reproductive tract. There is considerable variation in the mass of the spermatophylax, and about half of all males produce spermatophylaxes that are too small to ensure complete sperm transfer. We tested two hypotheses concerning the maintenance of this variation: (i) males trade-off investment in spermatophylaxes against copulation frequency; and (ii) males synthesize the largest spermatophylaxes of which they are physiologically capable. Males synthesizing large and small food gifts were permitted multiple mating opportunities with the same females, and allozyme markers were used to establish the paternity of offspring. There was a significant advantage to those males that mated first irrespective of gift size. This advantage probably arose, in part, because the sperm of first males would have had exclusive access to females' eggs during the first 24 hours of oviposition, and underscores the benefits of matings with virgin females. The paternity of 'small-gift' males increased with gift mass, but there was no such increase in 'large-gift' males. This difference probably stems from the relationship between gift mass and sperm transfer: most of the gifts of the large-gift males would have been above the threshold needed to achieve complete inseminations, whereas those of small-gift males would have been below the threshold. Within mating-order positions, there was no significant difference in the paternity of large-gift and small-gift males, a result seemingly consistent with the 'trade-off' hypothesis. However, there was no correlation between spermatophylax mass and male mating frequency, so that the mechanism by which small-gift males offset their fertilization disadvantage remains unknown.

  10. [Turner's syndrome: subjects with a normal body mass at birth grow taller than born small for gestational age].

    PubMed

    Wiśniewski, Andrzej; Stupnicki, Romuald; Milde, Katarzyna; Szufladowicz-Woźniak, Jolanta

    2006-01-01

    Body mass deficit at birth is one of the characteristic features observed in Turner's syndrome (TS). Body mass is lower than expected for gestational age in about 90% of TS-babies, and is below -2 SD (i.e. "small for gestational age") in about 20% of patients. The aim of the study was to compare the growth courses of TS-girls born with normal and deficient body mass. A group of 157 TS-girls, delivered at term (> or =38 weeks of gestation), were studied. Body mass of 80 girls ranged from -0.5 to +0.5 SD and body length was above -2 SD (AGA group); another 54 girls had body mass below -2 SD and body length above -2 SD (disproportional SGA group), and 23 girls had both body mass and length below -2 SD (proportional SGA group). Turner's syndrome was confirmed by chromosome analysis. Body mass at birth (BMB) was related to the norms for gestational age (GA) designed by Usher and McLean. Newborns, whose BMB was lower than -2 SD for GA, were considered small for gestational age (SGA). Postnatal body height and mass values were related to Polish norms for females with Turner's syndrome and to the norms for healthy female population. In the spontaneously growing TS-girls from the AGA group, a total of 275 measurements of body mass and height were carried out, the respective numbers for DSGA and PSGA groups were 176 and 100. Mean differences between the actual and expected body height for the AGA, DSGA and PSGA groups amounted to 0.40+/- 1.02, -0.21+/-0.88 and -0.95+/-0.80 SD TS, respectively, all means differing highly significantly (p<0.001) from each other. It may be concluded that spontaneously growing girls with Turner's syndrome, who had a normal (for gestational age) body mass at birth, attain a higher stature than girls with body mass deficit.

  11. Effects of an off-season conditioning program on the physical characteristics of adolescent rugby union players.

    PubMed

    Smart, Daniel J; Gill, Nicholas D

    2013-03-01

    The aims of the study were to determine if a supervised off-season conditioning program enhanced gains in physical characteristics compared with the same program performed in an unsupervised manner and to establish the persistence of the physical changes after a 6-month unsupervised competition period. Forty-four provincial representative adolescent rugby union players (age, mean ± SD, 15.3 ± 1.3 years) participated in a 15-week off-season conditioning program either under supervision from an experienced strength and conditioning coach or unsupervised. Measures of body composition, strength, vertical jump, speed, and anaerobic and aerobic running performance were taken, before, immediately after, and 6 months after the conditioning. Post conditioning program the supervised group had greater improvements in all strength measures than the unsupervised group, with small, moderate and large differences between the groups\\x{2019} changes for chin-ups (9.1%; ± 11.6%), bench-press (16.9%; ± 11.7%) and box-squat (50.4%; ± 20.9%) estimated 1RM respectively. Both groups showed trivial increases in mass; however increases in fat free mass were small and trivial for supervised and unsupervised players respectively. Strength declined in the supervised group while the unsupervised group had small increases during the competition phase, resulting in only a small difference between the long-term changes in box-squat 1RM (15.9%; ± 13.2%). The supervised group had further small increases in fat free mass resulting in a small difference (2.4%; ± 2.7%) in the long-term changes. The postconditioning differences between the 2 groups may have been a result of increased adherence and the attainment of higher training loads during supervised training. The lack of differences in strength after the competition period indicates that supervision should be maintained to reduce substantial decrements in performance.

  12. A flavor symmetry model for bilarge leptonic mixing and the lepton masses

    NASA Astrophysics Data System (ADS)

    Ohlsson, Tommy; Seidl, Gerhart

    2002-11-01

    We present a model for leptonic mixing and the lepton masses based on flavor symmetries and higher-dimensional mass operators. The model predicts bilarge leptonic mixing (i.e., the mixing angles θ12 and θ23 are large and the mixing angle θ13 is small) and an inverted hierarchical neutrino mass spectrum. Furthermore, it approximately yields the experimental hierarchical mass spectrum of the charged leptons. The obtained values for the leptonic mixing parameters and the neutrino mass squared differences are all in agreement with atmospheric neutrino data, the Mikheyev-Smirnov-Wolfenstein large mixing angle solution of the solar neutrino problem, and consistent with the upper bound on the reactor mixing angle. Thus, we have a large, but not close to maximal, solar mixing angle θ12, a nearly maximal atmospheric mixing angle θ23, and a small reactor mixing angle θ13. In addition, the model predicts θ 12≃ {π}/{4}-θ 13.

  13. Flavored leptogenesis with quasidegenerate neutrinos in a broken cyclic symmetric model

    NASA Astrophysics Data System (ADS)

    Adhikary, Biswajit; Chakraborty, Mainak; Ghosal, Ambar

    2016-06-01

    Cyclic symmetry in the neutrino sector with the type-I seesaw mechanism in the mass basis of charged leptons and right chiral neutrinos (Ni R, i =e , μ , τ ) generates a twofold degenerate light neutrino and a threefold degenerate heavy neutrino mass spectrum. Consequently, such a scheme produces vanishing one light neutrino mass squared difference and lepton asymmetry. To circumvent such an unphysical outcome, we break cyclic symmetry in the diagonal right chiral neutrino mass term by a small breaking parameter. Nonzero mass squared differences and mixing angles are generated with the help of the small breaking parameter. The smallness of the breaking parameter opens up the possibility of resonant leptogenesis. Assuming complex Yukawa couplings, we derive generalized expressions with flavor-dependent C P asymmetry parameters (ɛiα ) which are valid for the quasidegenerate as well as hierarchical mass spectrum of right-handed neutrinos. Thereafter, we set up the chain of coupled Boltzmann equations (which are flavor dependent too) which have to be solved in order to get the final lepton asymmetries. Depending upon the temperature regime, the C P asymmetries and the Boltzmann equations may also be flavor independent. As our goal is to study the enhancement of C P asymmetry due to the quasidegeneracy of right-handed neutrinos, we select only the lowest allowed (by neutrino oscillation data) value of the breaking parameter (and other corresponding Lagrangian parameters) and estimate the baryon asymmetry parameter YB. The experimental constraint of YB introduces a bound on right-handed neutrino mass which remained unrestricted by neutrino oscillation data.

  14. Collision safety of a hard-shell low-mass vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaeser, R.; Walz, F.H.; Brunner, A.

    1994-06-01

    Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural designmore » with a `hard-shell` car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSIDI-dummy well below current injury tolerance criteria.« less

  15. Collision safety of a hard-shell low-mass vehicle.

    PubMed

    Kaeser, R; Walz, F H; Brunner, A

    1994-06-01

    Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural design with a "hard-shell" car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSID1-dummy well below current injury tolerance criteria.

  16. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  17. The extra-atmospheric mass of small meteoroids of the Prairie and Canada bolide camera networks

    NASA Astrophysics Data System (ADS)

    Popelenskaya, N. V.; Stulov, V. P.

    2008-04-01

    The existing methods for determining the extra-atmospheric mass of meteor bodies from observations of their movement in the atmosphere allow a certain arbitrariness. Active attempts to overcome the discrepancy between the results of calculations based on different approaches often lead to physically incorrect conclusions. A way out is to laboriously accumulate the estimates and computation results and to consistently remove ambiguities. To correctly interpret the observed brightness of a meteor, one should use contemporary methods and the results of physical studies of the emitting gas. In the present work, the extra-atmospheric masses of small meteoroids of the Prairie and Canada bolide camera networks were calculated from the observed braking. It turned out that, in many cases, the conditions of movement of meteor bodies in the atmosphere corresponded to a free molecular airflow about a body. The so-called dynamic mass of the bodies was estimated from the real densities of the meteoroid material, which corresponded to monolithic water ice and stone, and for the proper values of the product of the drag coefficient and shape factor. When producing the trial function for the body trajectories in the "velocity-altitude" variables, we did not allow for fragmentation explicitly, since it is less probable for small meteoroids than for large ones. As before, our estimates differ substantially from the photometric masses published in the corresponding tables.

  18. Group specific internal standard technology (GSIST) for simultaneous identification and quantification of small molecules

    DOEpatents

    Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E

    2014-01-14

    Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.

  19. MS2Analyzer: A Software for Small Molecule Substructure Annotations from Accurate Tandem Mass Spectra

    PubMed Central

    2015-01-01

    Systematic analysis and interpretation of the large number of tandem mass spectra (MS/MS) obtained in metabolomics experiments is a bottleneck in discovery-driven research. MS/MS mass spectral libraries are small compared to all known small molecule structures and are often not freely available. MS2Analyzer was therefore developed to enable user-defined searches of thousands of spectra for mass spectral features such as neutral losses, m/z differences, and product and precursor ions from MS/MS spectra in MSP/MGF files. The software is freely available at http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/. As the reference query set, 147 literature-reported neutral losses and their corresponding substructures were collected. This set was tested for accuracy of linking neutral loss analysis to substructure annotations using 19 329 accurate mass tandem mass spectra of structurally known compounds from the NIST11 MS/MS library. Validation studies showed that 92.1 ± 6.4% of 13 typical neutral losses such as acetylations, cysteine conjugates, or glycosylations are correct annotating the associated substructures, while the absence of mass spectra features does not necessarily imply the absence of such substructures. Use of this tool has been successfully demonstrated for complex lipids in microalgae. PMID:25263576

  20. Gravitational waves with dark matter minispikes: The combined effect

    NASA Astrophysics Data System (ADS)

    Yue, Xiao-Jun; Han, Wen-Biao

    2018-03-01

    It was shown that the dark matter (DM) minihalo around an intermediate mass black hole (IMBH) can be redistributed into a cusp, called the DM minispike. We consider an intermediate-mass-ratio inspiral consisting of an IMBH harbored in a DM minispike with nonannihilating DM particles and a small black hole (BH) orbiting around it. We investigate gravitational waves (GWs) produced by this system and analyze the waveforms with the comprehensive consideration of gravitational pull, dynamical friction and accretion of the minispike and calculate the time difference and phase difference caused by it. We find that for a certain range of frequency, the inspiralling time of the system is dramatically reduced for smaller central IMBH and large density of DM. For the central IMBH with 105 M⊙ , the time of merger is ahead, which can be distinguished by LISA, Taiji and Tianqin. We focus on the effect of accretion and compare it with that of gravitational pull and friction. We find that the accretion mass is a small quantity compared to the initial mass of the small BH and the accretion effect is inconspicuous compared with friction. However, the accumulated phase shift caused by accretion is large enough to be detected by LISA, Taiji, and Tianqin, which indicate that the accretion effect can not be ignored in the detection of GWs.

  1. Flyby Characterization of Lower-Degree Spherical Harmonics Around Small Bodies

    NASA Technical Reports Server (NTRS)

    Takahashi, Yu; Broschart, Stephen; Lantoine, Gregory

    2014-01-01

    Interest in studying small bodies has grown significantly in the last two decades, and there are a number of past, present, and future missions. These small body missions challenge navigators with significantly different kinds of problems than the planets and moons do. The small bodies' shape is often irregular and their gravitational field significantly weak, which make the designing of a stable orbit a complex dynamical problem. In the initial phase of spacecraft rendezvous with a small body, the determination of the gravitational parameter and lower-degree spherical harmonics are of crucial importance for safe navigation purposes. This motivates studying how well one can determine the total mass and lower-degree spherical harmonics in a relatively short time in the initial phase of the spacecraft rendezvous via flybys. A quick turnaround for the gravity data is of high value since it will facilitate the subsequent mission design of the main scientific observation campaign. We will present how one can approach the problem to determine a desirable flyby geometry for a general small body. We will work in the non-dimensional formulation since it will generalize our results across different size/mass bodies and the rotation rate for a specific combination of gravitational coefficients.

  2. Open Source Software Tool Skyline Reaches Key Agreement with Mass Spectrometer Vendors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The full proteomics analysis of a small tumor sample (similar in mass to a few grains of rice) produces well over 500 megabytes of unprocessed "raw" data when analyzed on a mass spectrometer (MS). Thus, for every proteomics experiment there is a vast amount of raw data that must be analyzed and interrogated in order to extract biological information. Moreover, the raw data output from different MS vendors are generally in different formats inhibiting the ability of labs to productively work together.

  3. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT.

    PubMed

    McCollough, Cynthia H; Ulzheimer, Stefan; Halliburton, Sandra S; Shanneik, Kaiss; White, Richard D; Kalender, Willi A

    2007-05-01

    To develop a consensus standard for quantification of coronary artery calcium (CAC). A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size-specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size-based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comparable noise values. Calculation of the calcium mass score was standardized, and the variance in Agatston, volume, and mass scores was compared among CT systems. Use of the recommended scanning parameters resulted in similar noise for small, medium-size, and large phantoms with all multi-detector row CT scanners. Volume scores had greater interscanner variance than did Agatston and calcium mass scores. Use of a fixed calcium hydroxyapatite density threshold (100 mg/cm(3)), as compared with use of a fixed CT number threshold (130 HU), reduced interscanner variability in Agatston and calcium mass scores. With use of a density segmentation threshold, the calcium mass score had the smallest variance as a function of patient size. Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.

  4. What are the characteristics of breast cancers misclassified as benign by quantitative ultrasound shear wave elastography?

    PubMed

    Vinnicombe, S J; Whelehan, P; Thomson, K; McLean, D; Purdie, C A; Jordan, L B; Hubbard, S; Evans, A J

    2014-04-01

    Shear wave elastography (SWE) is a promising adjunct to greyscale ultrasound in differentiating benign from malignant breast masses. The purpose of this study was to characterise breast cancers which are not stiff on quantitative SWE, to elucidate potential sources of error in clinical application of SWE to evaluation of breast masses. Three hundred and two consecutive patients examined by SWE who underwent immediate surgery for breast cancer were included. Characteristics of 280 lesions with suspicious SWE values (mean stiffness >50 kPa) were compared with 22 lesions with benign SWE values (<50 kPa). Statistical significance of the differences was assessed using non-parametric goodness-of-fit tests. Pure ductal carcinoma in situ (DCIS) masses were more often soft on SWE than masses representing invasive breast cancer. Invasive cancers that were soft were more frequently: histological grade 1, tubular subtype, ≤10 mm invasive size and detected at screening mammography. No significant differences were found with respect to the presence of invasive lobular cancer, vascular invasion, hormone and HER-2 receptor status. Lymph node positivity was less common in soft cancers. Malignant breast masses classified as benign by quantitative SWE tend to have better prognostic features than those correctly classified as malignant. • Over 90 % of cancers assessable with ultrasound have a mean stiffness >50 kPa. • 'Soft' invasive cancers are frequently small (≤10 mm), low grade and screen-detected. • Pure DCIS masses are more often soft than invasive cancers (>40 %). • Large symptomatic masses are better evaluated with SWE than small clinically occult lesions. • When assessing small lesions, 'softness' should not raise the threshold for biopsy.

  5. Moderate temperature control technology for a lunar base

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Sridhar, K. R.; Gottmann, Matthias

    1993-01-01

    A parametric analysis is performed to compare different heat pump based thermal control systems for a Lunar Base. Rankine cycle and absorption cycle heat pumps are compared and optimized for a 100 kW cooling load. Variables include the use or lack of an interface heat exchanger, and different operating fluids. Optimization of system mass to radiator rejection temperature is performed. The results indicate a relatively small sensitivity of Rankine cycle system mass to these variables, with optimized system masses of about 6000 kg for the 100 kW thermal load. It is quantitaively demonstrated that absorption based systems are not mass competitive with Rankine systems.

  6. A 1 kg Mass Comparator Using Flexure-Strip Suspensions: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Quinn, T. J.; Speake, C. C.; Davis, R. S.

    1986-01-01

    This paper describes the design and construction of a novel form of equal-arm balance. The balance has been designed to study the performance of flexure strips for use as pivots in a 1 kg mass comparator working at the highest accuracy. The beam of the balance is servo controlled using optical detection of angular position and electromagnetic control. Small mass differences are measured in terms of the differences in the servo currents required to reproduce the same position of the beam. Preliminary results using this prototype balance indicate that an accuracy in mass comparison of about 5 parts in 1010 can be achieved.

  7. Non-axisymmetric flow characteristics in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce

    2015-06-01

    The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.

  8. Analysis of drift correction in different simulated weighing schemes

    NASA Astrophysics Data System (ADS)

    Beatrici, A.; Rebelo, A.; Quintão, D.; Cacais, F. L.; Loayza, V. M.

    2015-10-01

    In the calibration of high accuracy mass standards some weighing schemes are used to reduce or eliminate the zero drift effects in mass comparators. There are different sources for the drift and different methods for its treatment. By using numerical methods, drift functions were simulated and a random term was included in each function. The comparison between the results obtained from ABABAB and ABBA weighing series was carried out. The results show a better efficacy of ABABAB method for drift with smooth variation and small randomness.

  9. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE PAGES

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  10. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  11. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared with model output. Finally we use climate simulations forced with two different RCP scenarios to examine the likely future evolution of SMB over these small ice masses.

  12. Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessmer, Manuel

    This paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Koenigsdoerffer and Gopakumar [Phys. Rev. D 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasicircular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.

  13. The isospin strange asymmetry from the chiral effective theory

    NASA Astrophysics Data System (ADS)

    Trevisan, Luis Augusto; Mirez, Carlos

    2018-05-01

    The proposal of the present work is to study the difference between the strange quark-antiquark amount in the proton and neutron. For this purpose, the possible nucleon-hyperon-kaon fluctuations are analyzed with the effective chiral theory. The small difference of particle masses is shown to be in the origin of this isospin asymmetry. The dependence of the results on the mass cutoff parameter and with the coupling constants is analyzed.

  14. Microwave drying of wood strands

    Treesearch

    Guanben Du; Siqun Wang; Zhiyong Cai

    2005-01-01

    Characteristics of microwave drying of wood strands with different initial moisture contents and geometries were investigated using a commercial small microwave oven under different power inputs. Temperature and moisture changes along with the drying efficiency were examined at different drying scenarios. Extractives were analyzed using gas chromatography=mass...

  15. Host Star Dependence of Small Planet Mass–Radius Distributions

    NASA Astrophysics Data System (ADS)

    Neil, Andrew R.; Rogers, Leslie A.

    2018-05-01

    The planet formation environment around M dwarf stars is different than around G dwarf stars. The longer hot protostellar phase, activity levels and lower protoplanetary disk mass of M dwarfs all may leave imprints on the composition distribution of planets. We use hierarchical Bayesian modeling conditioned on the sample of transiting planets with radial velocity mass measurements to explore small planet mass–radius distributions that depend on host star mass. We find that the current mass–radius data set is consistent with no host star mass dependence. These models are then applied to the Kepler planet radius distribution to calculate the mass distribution of close-orbiting planets and how it varies with host star mass. We find that the average heavy element mass per star at short orbits is higher for M dwarfs compared to FGK dwarfs, in agreement with previous studies. This work will facilitate comparisons between microlensing planet surveys and Kepler, and will provide an analysis framework that can readily be updated as more M dwarf planets are discovered by ongoing and future surveys such as K2 and the Transiting Exoplanet Survey Satellite.

  16. Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Ahriche, Amine; Jueid, Adil; Nasri, Salah

    2018-05-01

    We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana singlet fermion plays the role of DM candidate and the model parameter space can be accommodated to avoid different experimental constraints such as lepton flavor violating processes and electroweak precision tests. The neutrino mass is generated at one-loop level a la Scotogenic model and its smallness is ensured by the degeneracy between the C P -odd and C P -even scalar members of the inert doublet. Interesting signatures at both leptonic and hadronic colliders are discussed.

  17. Physics of overarm throwing

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2004-03-01

    Measurements are presented of the speed at which objects of different mass can be projected by an overarm throw. Light objects can be thrown faster than heavy objects, although the difference in speed is not as large as one might expect. For a factor of 60 increase in the thrown mass, there was a decrease of only 2.4 in the throw speed. The relatively small change in throw speed is due to the fact that the force that can be applied to a thrown object increases with object mass. Estimates of the muscle forces involved indicate that the increase in force with mass is primarily an inertial rather than a physiological effect. The total kinetic energy of the mass, hand, and the forearm was found to be almost independent of the object mass, and the throw speed is almost independent of the mass of the upper arm.

  18. Effects of heavy sea quarks at low energies.

    PubMed

    Bruno, Mattia; Finkenrath, Jacob; Knechtli, Francesco; Leder, Björn; Sommer, Rainer

    2015-03-13

    We present a factorization formula for the dependence of light hadron masses and low energy hadronic scales on the mass M of a heavy quark: apart from an overall mass-independent factor Q, ratios such as r_{0}(M)/r_{0}(0) are computable in perturbation theory at large M. The perturbation theory part is stable concerning different loop orders. Our nonperturbative Monte Carlo results obtained in a model calculation, where a doublet of heavy quarks is decoupled, match quantitatively to the perturbative prediction. Upon taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios are given by the decoupled theory up to M^{-2} corrections. We verify-in the continuum limit-that the sea quark effects of quarks with masses around the charm mass are very small in such ratios.

  19. Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Zaidi, Habib

    2013-01-01

    In addition to being a powerful clinical tool, Positron emission tomography (PET) is also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. However, dosimetric characteristics in small animal PET imaging are usually overlooked, though the radiation dose may not be negligible. In this work, we constructed 17 mouse models of different body mass and size based on the realistic four-dimensional MOBY mouse model. Particle (photons, electrons and positrons) transport using the Monte Carlo method was performed to calculate the absorbed fractions and S-values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86 and I-124). Among these radionuclides, O-15 emits positrons with high energy and frequency and produces the highest self-absorbed S-values in each organ, while Y-86 emits γ-rays with high energy and frequency which results in the highest cross-absorbed S-values for non-neighbouring organs. Differences between S-values for self-irradiated organs were between 2% and 3%/g difference in body weight for most organs. For organs irradiating other organs outside the splanchnocoele (i.e. brain, testis and bladder), differences between S-values were lower than 1%/g. These appealing results can be used to assess variations in small animal dosimetry as a function of total-body mass. The generated database of S-values for various radionuclides can be used in the assessment of radiation dose to mice from different radiotracers in small animal PET experiments, thus offering quantitative figures for comparative dosimetry research in small animal models.

  20. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp ( Carassius carassius L.)

    NASA Astrophysics Data System (ADS)

    Vornanen, Matti; Asikainen, Juha; Haverinen, Jaakko

    2011-03-01

    Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp ( Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish ( p < 0.05). In fin and skin, size dependence was evident in winter, but not in summer, while in other tissues (ventricle, atrium, intestine, liver, muscle, and spleen), no size dependence was found. The liver was much bigger in small than large fish ( p < 0.001), and there was a prominent enlargement of the liver in winter irrespective of fish size. As a consequence, the whole body glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.

  1. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations

    NASA Astrophysics Data System (ADS)

    Pilipenko, Sergey V.; Sánchez-Conde, Miguel A.; Prada, Francisco; Yepes, Gustavo

    2017-12-01

    We introduce the Lomonosov suite of high-resolution N-body cosmological simulations covering a full box of size 32 h-1 Mpc with low-mass resolution particles (2 × 107 h-1 M⊙) and three zoom-in simulations of overdense, underdense and mean density regions at much higher particle resolution (4 × 104 h-1 M⊙). The main purpose of this simulation suite is to extend the concentration-mass relation of dark matter haloes down to masses below those typically available in large cosmological simulations. The three different density regions available at higher resolution provide a better understanding of the effect of the local environment on halo concentration, known to be potentially important for small simulation boxes and small halo masses. Yet, we find the correction to be small in comparison with the scatter of halo concentrations. We conclude that zoom simulations, despite their limited representativity of the volume of the Universe, can be effectively used for the measurement of halo concentrations at least at the halo masses probed by our simulations. In any case, after a precise characterization of this effect, we develop a robust technique to extrapolate the concentration values found in zoom simulations to larger volumes with greater accuracy. Altogether, Lomonosov provides a measure of the concentration-mass relation in the halo mass range 107-1010 h-1 M⊙ with superb halo statistics. This work represents a first important step to measure halo concentrations at intermediate, yet vastly unexplored halo mass scales, down to the smallest ones. All Lomonosov data and files are public for community's use.

  2. Effect of neutrino rest mass on ionization equilibrium freeze-out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  3. Neutrino masses in the minimal gauged (B -L ) supersymmetry

    NASA Astrophysics Data System (ADS)

    Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei

    2018-03-01

    We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.

  4. Quantification of free convection effects on 1 kg mass standards

    NASA Astrophysics Data System (ADS)

    Schreiber, M.; Emran, M. S.; Fröhlich, T.; Schumacher, J.; Thess, A.

    2015-12-01

    We determine the free-convection effects and the resulting mass differences in a high-precision mass comparator for cylindrical and spherical 1 kg mass standards at different air pressures. The temperature differences are chosen in the millikelvin range and lead to microgram updrafts. Our studies reveal a good agreement between the measurements and direct numerical simulations of the Boussinesq equations of free thermal convection. A higher sensitivity to the free convection effects is found for the spherical case compared to the cylindrical one. We also translate our results on the free convection effects into a form which is used in fluid mechanics: a dimensionless updraft coefficient as a function of the dimensionless Grashof number Gr that quantifies the thermal driving due to temperature differences. This relation displays a unique scaling behavior over nearly four decades in Gr and levels off into geometry-specific constants for the very small Grashof numbers. The obtained results provide a rational framework for estimating systematic errors in mass metrology due to the effects of free convection.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodrubetz, Daniel W.; Pietrulewicz, Piotr; Stewart, Iain W.

    To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production at the LHC which gives a complete description of the jet mass spectrum including realistic jet algorithms and jet vetoes. It factorizes the scales associated with m J , R, and the jet veto, enablingmore » in addition the systematic resummation of jet radius logarithms in the jet mass spectrum beyond leading logarithmic order. We discuss the factorization formulae for the peak and tail region of the jet mass spectrum and for small and large R, and the relations between the different regimes and how to combine them. Regions of experimental interest are classified which do not involve large nonglobal logarithms. We also present universal results for nonperturbative effects and discuss various jet vetoes.« less

  6. Trap-induced mass declines in small mammals: Mass as a population index

    Treesearch

    Dean E. Pearson; Yvette K. Ortega; Leonard F. Ruggiero

    2003-01-01

    Body mass is routinely used as an index of physical condition for comparing small-mammal populations. However, trapping effects on animals may undermine the effectiveness of body mass as an index of population health. We examined the effects of live-trapping on body mass of 3 small-mammal species: deer mice (Peromyscus maniculatus), southern red-...

  7. Agglomeration of dust in convective clouds initialized by nuclear bursts

    NASA Astrophysics Data System (ADS)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  8. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  9. Factorization for jet radius logarithms in jet mass spectra at the LHC

    DOE PAGES

    Kolodrubetz, Daniel W.; Pietrulewicz, Piotr; Stewart, Iain W.; ...

    2016-12-14

    To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production at the LHC which gives a complete description of the jet mass spectrum including realistic jet algorithms and jet vetoes. It factorizes the scales associated with m J , R, and the jet veto, enablingmore » in addition the systematic resummation of jet radius logarithms in the jet mass spectrum beyond leading logarithmic order. We discuss the factorization formulae for the peak and tail region of the jet mass spectrum and for small and large R, and the relations between the different regimes and how to combine them. Regions of experimental interest are classified which do not involve large nonglobal logarithms. We also present universal results for nonperturbative effects and discuss various jet vetoes.« less

  10. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules.

    PubMed

    Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei

    2017-04-21

    Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.

  11. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules

    PubMed Central

    Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei

    2017-01-01

    Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds. PMID:28430138

  12. Pair correlations in an expanding universe for a multicomponent system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandrup, H.E.

    Fall and Saslaw have derived an equation for the growth of pair correlations in an expanding universe of identical self-gravitating point masses which is correlation-free at some initial time. Their equation is rigorously true for the earliest stages of growth, assuming only that the system is spatially homogeneous and isotropic, and that it is characterized in the ''comoving frame'' by a Maxwellian distribution of velocities. This paper generalizes their analysis to the case of a multicomponent system of particles with different masses, each species of which is characterized by a Maxwellian distribution at the same temperature. Here there are twomore » types of pair correlations to consider, namely among members of the same species and among members of different species. The general behavior may be understood most readily by considering the covariance functions, which assume very simple forms. Thus one finds that the ''strength'' of the covariance scales, for sufficiently small radial separations, as the product of the masses, whereas the ''range'' of the covariance varies inversely as the square root of the reduced mass of the two constituents. This implies that, for two very different masses, the ''range'' will be set by the lighter constituent. Knowledge of the covariances also permits the calculation of such objects as the correlational energy densities of the various interactions. Consider, for example, a two-component system. Here one finds that even a very small contamination of heavy masses, which would have a negligible effect upon the total mass or kinetic energy densities, can increase the total correlational energy density, and hence decrease the time scale for the evolution of interesting structure, by orders of magnitude.« less

  13. Staying Alive: Measuring Intact Viable Microbes with Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Forsberg, Erica; Fang, Mingliang; Siuzdak, Gary

    2017-01-01

    Mass spectrometry has traditionally been the technology of choice for small molecule analysis, making significant inroads into metabolism, clinical diagnostics, and pharmacodynamics since the 1960s. In the mid-1980s, with the discovery of electrospray ionization (ESI) for biomolecule analysis, a new door opened for applications beyond small molecules. Initially, proteins were widely examined, followed by oligonucleotides and other nonvolatile molecules. Then in 1991, three intriguing studies reported using mass spectrometry to examine noncovalent protein complexes, results that have been expanded on for the last 25 years. Those experiments also raised the questions: How soft is ESI, and can it be used to examine even more complex interactions? Our lab addressed these questions with the analyses of viruses, which were initially tested for viability following electrospray ionization and their passage through a quadrupole mass analyzer by placing them on an active medium that would allow them to propagate. This observation has been replicated on multiple different systems, including experiments on an even bigger microbe, a spore. The question of analysis was also addressed in the early 2000s with charge detection mass spectrometry. This unique technology could simultaneously measure mass-to-charge and charge, allowing for the direct determination of the mass of a virus. More recent experiments on spores and enveloped viruses have given us insight into the range of mass spectrometry's capabilities (reaching 100 trillion Da), beginning to answer fundamental questions regarding the complexity of these organisms beyond proteins and genes, and how small molecules are integral to these supramolecular living structures.

  14. Use of a new ultra-long-range terrestrial LiDAR system to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2015-12-01

    Measuring glacier mass balance is important as it directly reflects the climatic forcing on the glacier surface. Today, repeated comparison of digital elevation models (DEMs) is a popular and widely used approach to derive surface elevation, volume and mass changes for a large number of glaciers. In high-mountain environments, airborne laser scanning (ALS) techniques currently provide the most accurate and highest resolution DEMs on the catchment scale, allowing the computation of glacier changes on an annual or even semi-annual basis. For monitoring individual glaciers though, terrestrial laser scanning (TLS) is easier and more cost-efficiently applied on the seasonal timescale compared to ALS. Since most recently, the application of the latest generation of ultra-long-range near infrared TLS systems allows the acquisition of surface elevation information over snow and ice of unprecedented quality and over larger zones than with previous near infrared TLS devices. Although very small glaciers represent the majority in number in most mountain ranges on Earth, their response to climatic changes is still not fully understood and field measurements are sparse. Therefore, a programme was set up in 2012 to monitor both the seasonal and annual surface mass balance of six very small glaciers across the Swiss Alps using the direct glaciological method. As often nearly the entire surface is visible from one single location, TLS is a highly promising technique to generate repeated high-resolution DEMs as well as to derive seasonal geodetic mass balances of very small ice masses. In this study, we present seasonal surface elevation, volume and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn and Pizolgletscher) derived from the comparison of seasonally repeated high-resolution DEMs acquired since autumn 2013 with the new ultra-long-range TLS device Riegl VZ-6000. We show the different processing steps necessary to derive geodetic glacier changes from the raw data (the TLS point clouds), comment on the accuracy of our results and compare them to very dense in-situ measurements, and thus investigate the potential of our approach to circumvent laborious and time consuming glaciological mass balance measurements of very small glaciers.

  15. Implications of (Less) Accurate Mass-Radius-Measurements for the Habitability of Extrasolar Terrestrial Planets: Why Do We Need PLATO?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.

    2012-04-01

    Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the expected number of potentially habitable exoplanets in the universe.

  16. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  17. The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses

    NASA Astrophysics Data System (ADS)

    Morishita, Takahiro; Abramson, Louis E.; Treu, Tommaso; Vulcani, Benedetta; Schmidt, Kasper B.; Dressler, Alan; Poggianti, Bianca M.; Malkan, Matthew A.; Wang, Xin; Huang, Kuang-Han; Trenti, Michele; Bradač, Maruša; Hoag, Austin

    2017-02-01

    Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Survey from Space, we study 2200 cluster and 1748 field galaxies at 0.2≤slant z≤slant 0.7 to determine the impact of environment on galaxy size and structure at stellar masses {log}{M}* /{M}⊙ > 7.8, an unprecedented limit at these redshifts. Based on simple assumptions—{r}e=f({M}* )—we find no significant differences in half-light radii (re) between equal-mass cluster or field systems. More complex analyses—{r}e=f({M}* ,U-V,n,z,{{Σ }})—reveal local density (Σ) to induce only a 7% ± 3% (95% confidence) reduction in re beyond what can be accounted for by U - V color, Sérsic index (n), and redshift (z) effects. Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-re correlation in low-mass passive cluster galaxies ({log}{M}* /{M}⊙ < 9.8) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-re low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation). Conversely, ˜20% of small-re low-mass passive cluster galaxies appear to have been in place since z≳ 3. Given the consistency of the small-re galaxies’ stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms mainly restricted to the lowest masses.

  18. Hanging angles of two electrostatically repelling pith balls of different masses

    NASA Astrophysics Data System (ADS)

    Tran, Phuc G.; Mungan, Carl E.

    2011-09-01

    An analytic solution can be derived for the angles of two mutually repelling charged pith balls of unequal mass hanging from strings from a common point of attachment. Just as in the equal-mass case, a cubic equation is found for the square of the sine of either angle, and an approximation can be used to avoid Cardano's formula for small angles. These results extend a standard problem treated in introductory undergraduate courses in electricity and magnetism.

  19. The Origin of Mass and the Feebleness of Gravity

    ScienceCinema

    Wilczek, Frank

    2017-12-09

    BSA Distinguished Lecture presented by Frank Wilczek, co-winner of the 2004 Nobel Prize in Physics. Einstein's famous equation E=mc^2 asserts that energy and mass are different aspects of the same reality. The general public usually associates the equation with the idea that small amounts of mass can be converted into large amounts of energy, as in nuclear reactors and bombs. For physicists who study the basic nature of matter, however, the more important idea is just the opposite.

  20. Predator size and the suitability of a common prey.

    PubMed

    Erickson, Kristin S; Morse, D H

    1997-02-01

     Although a predator's mass should influence the suitability of its prey, this subject has received little direct attention. We studied the capture and processing of an abundant syrphid fly Toxomerus marginatus (c. 4 mg) by 0.6- to 40-mg juvenile crab spiders Misumena vatia (Thomisidae) to determine how profitability, relative profitability (profitability/predator mass), overall gain in mass, and relative gain in mass differed with predator mass, and whether foraging changed concurrently. In multi-prey experiments, the smallest successful spiders (0.6-3.0 mg) extracted less mass from flies, and did so more slowly, than large spiders. This gain was proportionately similar to that of 10- to 40-mg spiders with access to many Toxomerus. However, many small spiders failed to capture flies. When we gave spiders only a single Toxomerus, the smallest ones again extracted mass more slowly than the large ones and increased in mass less than the large ones, but increased in mass proportionately more than large ones. Relative gain in mass from a single prey decreased with increasing spider mass. Spiders larger than 10 mg all extracted similar amounts of mass from a single Toxomerus at similar rates, but varied in time spent between captures. Thus, Toxomerus changes with spider mass from a large, hard-to-capture bonanza to a small, easy-to-capture item of low per capita value. However, Toxomerus is common enough that large spiders can capture it en masse, thereby compensating for its decline in per capita value.

  1. Internal velocity and mass distributions in simulated clusters of galaxies for a variety of cosmogonic models

    NASA Technical Reports Server (NTRS)

    Cen, Renyue

    1994-01-01

    The mass and velocity distributions in the outskirts (0.5-3.0/h Mpc) of simulated clusters of galaxies are examined for a suite of cosmogonic models (two Omega(sub 0) = 1 and two Omega(sub 0) = 0.2 models) utilizing large-scale particle-mesh (PM) simulations. Through a series of model computations, designed to isolate the different effects, we find that both Omega(sub 0) and P(sub k) (lambda less than or = 16/h Mpc) are important to the mass distributions in clusters of galaxies. There is a correlation between power, P(sub k), and density profiles of massive clusters; more power tends to point to the direction of a stronger correlation between alpha and M(r less than 1.5/h Mpc); i.e., massive clusters being relatively extended and small mass clusters being relatively concentrated. A lower Omega(sub 0) universe tends to produce relatively concentrated massive clusters and relatively extended small mass clusters compared to their counterparts in a higher Omega(sub 0) model with the same power. Models with little (initial) small-scale power, such as the hot dark matter (HDM) model, produce more extended mass distributions than the isothermal distribution for most of the mass clusters. But the cold dark matter (CDM) models show mass distributions of most of the clusters more concentrated than the isothermal distribution. X-ray and gravitational lensing observations are beginning providing useful information on the mass distribution in and around clusters; some interesting constraints on Omega(sub 0) and/or the (initial) power of the density fluctuations on scales lambda less than or = 16/h Mpc (where linear extrapolation is invalid) can be obtained when larger observational data sets, such as the Sloan Digital Sky Survey, become available.

  2. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  4. An exploration of differences in the scaling of life history traits with body mass within reptiles and between amniotes.

    PubMed

    Hallmann, Konstantin; Griebeler, Eva Maria

    2018-06-01

    Allometric relationships linking species characteristics to body size or mass (scaling) are important in biology. However, studies on the scaling of life history traits in the reptiles (the nonavian Reptilia) are rather scarce, especially for the clades Crocodilia, Testudines, and Rhynchocephalia (single extant species, the tuatara). Previous studies on the scaling of reptilian life history traits indicated that they differ from those seen in the other amniotes (mammals and birds), but so far most comparative studies used small species samples and also not phylogenetically informed analyses. Here, we analyzed the scaling of nine life history traits with adult body mass for crocodiles ( n  =   22), squamates ( n  =   294), turtles ( n  =   52), and reptiles ( n  =   369). We used for the first time a phylogenetically informed approach for crocodiles, turtles, and the whole group of reptiles. We explored differences in scaling relationships between the reptilian clades Crocodilia, Squamata, and Testudines as well as differences between reptiles, mammals, and birds. Finally, we applied our scaling relationships, in order to gain new insights into the degree of the exceptionality of the tuatara's life history within reptiles. We observed for none of the life history traits studied any difference in their scaling with body mass between squamates, crocodiles, and turtles, except for clutch size and egg weight showing small differences between these groups. Compared to birds and mammals, scaling relationships of reptiles were similar for time-related traits, but they differed for reproductive traits. The tuatara's life history is more similar to that of a similar-sized turtle or crocodile than to a squamate.

  5. Relation of the fractal structure of organic pigments to their performance

    NASA Astrophysics Data System (ADS)

    Skillas, G.; Agashe, N.; Kohls, D. J.; Ilavsky, J.; Jemian, P.; Clapp, L.; Schwartz, R. J.; Beaucage, G.

    2002-05-01

    Different pigments embedded in polymer matrices were examined by small angle scattering of x- rays over 3 wave number decades. The scattering intensities show differences both in the mass fractal dimension (varying between 1.4 and 2.67) and the size of the particles. The differences are pronounced between dry pigment powders and the same powders in a polymer matrix as well as between the pigments themselves. Further, a correlation of pigment geometrical configuration and pigment performance, as perceived by the human eye, shows how pigments with a maximum color brightness per pigment mass can be created.

  6. Life-history and ecological correlates of geographic variation in egg and clutch mass among passerine species

    USGS Publications Warehouse

    Martin, T.E.; Bassar, R.D.; Bassar, S.K.; Fontaine, J.J.; Lloyd, P.; Mathewson, Heather A.; Niklison, Alina M.; Chalfoun, A.

    2006-01-01

    Broad geographic patterns in egg and clutch mass are poorly described, and potential causes of variation remain largely unexamined. We describe interspecific variation in avian egg and clutch mass within and among diverse geographic regions and explore hypotheses related to allometry, clutch size, nest predation, adult mortality, and parental care as correlates and possible explanations of variation. We studied 74 species of Passeriformes at four latitudes on three continents: the north temperate United States, tropical Venezuela, subtropical Argentina, and south temperate South Africa. Egg and clutch mass increased with adult body mass in all locations, but differed among locations for the same body mass, demonstrating that egg and clutch mass have evolved to some extent independent of body mass among regions. A major portion of egg mass variation was explained by an inverse relationship with clutch size within and among regions, as predicted by life-history theory. However, clutch size did not explain all geographic differences in egg mass; eggs were smallest in South Africa despite small clutch sizes. These small eggs might be explained by high nest predation rates in South Africa; life-history theory predicts reduced reproductive effort under high risk of offspring mortality. This prediction was supported for clutch mass, which was inversely related to nest predation but not for egg mass. Nevertheless, clutch mass variation was not fully explained by nest predation, possibly reflecting interacting effects of adult mortality. Tests of the possible effects of nest predation on egg mass were compromised by limited power and by counterposing direct and indirect effects. Finally, components of parental investment, defined as effort per offspring, might be expected to positively coevolve. Indeed, egg mass, but not clutch mass, was greater in species that shared incubation by males and females compared with species in which only females incubate eggs. However, egg and clutch mass were not related to effort of parental care as measured by incubation attentiveness. Ecological and life-history correlates of egg and clutch mass variation found here follow from theory, but possible evolutionary causes deserve further study. ?? 2006 The Society for the Study of Evolution. All rights reserved.

  7. Compact configurations within small evolving groups of galaxies

    NASA Astrophysics Data System (ADS)

    Mamon, G. A.

    Small virialized groups of galaxies are evolved with a gravitational N-body code, where the galaxies and a diffuse background are treated as single particles, but with mass and luminosity profiles attached, which enbles the estimation of parameters such as internal energies, half-mass radii, and the softened potential energies of interaction. The numerical treatment includes mergers, collisional stripping, tidal limitation by the mean-field of the background (evaluated using a combination of instantaneous and impulsive formulations), galaxy heating from collisons, and background heating from dynamical friction. The groups start out either as dense as appear the groups in Hickson's (1982) catalog, or as loose as appear those in Turner and Gott's (1976a) catalog, and they are simulated many times (usually 20) with different initial positions and velocities. Dense groups of galaxies with massive dark haloes coalesce into a single galaxy and lose their compact group appearance in approximately 3 group half-mass crossing times, while dense groups of galaxies without massive haloes survive the merger instability for 15 half-mass crossing times (in a more massive background to keep the same total group mass).

  8. Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Paquin, Mathieu; Fréchette, Luc G.

    An analysis of water management in air breathing small polymer electrolyte membrane fuel cells (PEMFCs) is presented. Comprehensive understanding of flooding and dry-out limiting phenomena is presented through a combination of analytical modeling and experimental investigations using a small PEMFC prototype. Configurations of the fuel cell with different heat and mass transfer properties are experimentally evaluated to assess the impact of thermal resistance and mass transport resistance on water balance. Manifestation of dry-out and flooding problems, as limiting phenomena, are explained through a ratio between these two resistances. Main conclusions are that decreasing the ratio between thermal and mass transport resistance under a certain point leads to flooding problems in air breathing PEMFC. Increasing this ratio leads to dry-out of the polymer electrolyte membrane. However, too high thermal resistance or too low mass transport resistance reduces the limiting current by pushing forward the dry-out problem. This work provides a framework to achieve the proper balance between thermal rejection and mass transport to optimize the maximum current density of free convection fuel cells.

  9. [Small renal mass].

    PubMed

    Prokofiev, D; Kreutzer, N; Kress, A; Wissing, F; Pfeifer, H; Stolzenburg, J-U; Dietel, A; Schwalenberg, T; Do, M; Truß, M C

    2012-10-01

    The frequent application of ultrasound and radiological imaging for non-urological indications in recent years has resulted in an increase in the diagnosis of small renal masses. The treatment options for patients with a small renal mass include active surveillance, surgery (both open and minimally invasive) as well as ablative techniques. As there is a risk for metastatic spread even in small renal masses surgical extirpation remains the treatment of choice in most patients. Ablative procedures, such as cryoablation and radiofrequency ablation are appropriate for old and multi-morbid patients who require active treatment of a small renal mass. Active surveillance is an alternative for high-risk patients. Meticulous patient selection by the urologist and patient preference will determine the choice of treatment option in the future.

  10. Scaling of metabolic rate on body mass in small laboratory mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1980-01-01

    The scaling of metabolic heat production rate on body mass is investigated for five species of small laboratory mammal in order to define selection of animals of metabolic rates and size range appropriate for the measurement of changes in the scaling relationship upon exposure to weightlessness in Shuttle/Spacelab experiment. Metabolic rates were measured according to oxygen consumption and carbon dioxide production for individual male and female Swiss-Webster mice, Syrian hamsters, Simonsen albino rats, Hartley guinea pigs and New Zealand white rabbits, which range in mass from 0.05 to 5 kg mature body size, at ages of 1, 2, 3, 5, 8, 12, 18 and 24 months. The metabolic intensity, defined as the heat produced per hour per kg body mass, is found to decrease dramatically with age until the animals are 6 to 8 months old, with little or no sex difference. When plotted on a logarithmic graph, the relation of metabolic rate to total body mass is found to obey a power law of index 0.676, which differs significantly from the classical value of 0.75. When the values for the mice are removed, however, an index of 0.749 is obtained. It is thus proposed that six male animals, 8 months of age, of each of the four remaining species be used to study the effects of gravitational loading on the metabolic energy requirements of terrestrial animals.

  11. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    PubMed

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  12. Post-Newtonian Jeans Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, Elham; Kazemi, Ali; Roshan, Mahmood

    The Jeans analysis is studied in the first post-Newtonian limit. In other words, the relativistic effects on local gravitational instability are considered for systems whose characteristic velocities and corresponding gravitational fields are higher than those permitted in the Newtonian limit. The dispersion relation for the propagation of small perturbations is found in the post-Newtonian approximation using two different techniques. A new Jeans mass is derived and compared to the standard Jeans mass. In this limit, the relativistic effects make the new Jeans mass smaller than the Newtonian Jeans mass. Furthermore, the fractional difference between these two masses increases when themore » temperature/pressure of the system increases. Interestingly, in this limit, pressure can enhance gravitational instability instead of preventing it. Finally, the results are applied to high-temperature astrophysical systems, and the possibility of local fragmentation in some relativistic systems is investigated.« less

  13. Isospin splittings in the light-baryon octet from lattice QCD and QED.

    PubMed

    Borsanyi, Sz; Dürr, S; Fodor, Z; Frison, J; Hoelbling, C; Katz, S D; Krieg, S; Kurth, Th; Lellouch, L; Lippert, Th; Portelli, A; Ramos, A; Sastre, A; Szabo, K

    2013-12-20

    While electromagnetic and up-down quark mass difference effects on octet baryon masses are very small, they have important consequences. The stability of the hydrogen atom against beta decay is a prominent example. Here, we include these effects by adding them to valence quarks in a lattice QCD calculation based on Nf=2+1 simulations with five lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. This allows us to gain control over all systematic errors, except for the one associated with neglecting electromagnetism in the sea. We compute the octet baryon isomultiplet mass splittings, as well as the individual contributions from electromagnetism and the up-down quark mass difference. Our results for the total splittings are in good agreement with experiment.

  14. Isospin Splittings in the Light-Baryon Octet from Lattice QCD and QED

    NASA Astrophysics Data System (ADS)

    Borsanyi, Sz.; Dürr, S.; Fodor, Z.; Frison, J.; Hoelbling, C.; Katz, S. D.; Krieg, S.; Kurth, Th.; Lellouch, L.; Lippert, Th.; Portelli, A.; Ramos, A.; Sastre, A.; Szabo, K.; Budapest-Marseille-Wuppertal Collaboration

    2013-12-01

    While electromagnetic and up-down quark mass difference effects on octet baryon masses are very small, they have important consequences. The stability of the hydrogen atom against beta decay is a prominent example. Here, we include these effects by adding them to valence quarks in a lattice QCD calculation based on Nf=2+1 simulations with five lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. This allows us to gain control over all systematic errors, except for the one associated with neglecting electromagnetism in the sea. We compute the octet baryon isomultiplet mass splittings, as well as the individual contributions from electromagnetism and the up-down quark mass difference. Our results for the total splittings are in good agreement with experiment.

  15. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.

    PubMed

    Hu, Jichao; Chang, Juntao; Bao, Wen

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  16. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    PubMed Central

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes. PMID:24578655

  17. First constraints on the stellar mass function of star-forming clumps at the peak of cosmic star formation

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Adamo, Angela

    2018-06-01

    Star-forming clumps dominate the rest-frame ultraviolet morphology of galaxies at the peak of cosmic star formation. If turbulence driven fragmentation is the mechanism responsible for their formation, we expect their stellar mass function to follow a power-law of slope close to -2. We test this hypothesis performing the first analysis of the stellar mass function of clumps hosted in galaxies at z ˜ 1 - 3.5. The sample is gathered from the literature with similar detection thresholds and stellar masses determined in a homogeneous way. To overcome the small number statistics per galaxy (each galaxy hosts up to a few tens of clumps only), we combine all high-redshift clumps. The resulting clump mass function follows a power-law of slope ˜-1.7 and flattens at masses below 2 × 107 M⊙. By means of randomly sampled clump populations, drawn out of a power-law mass function of slope -2, we test the effect of combining small clump populations, detection limits of the surveys, and blending on the mass function. Our numerical exercise reproduces all the features observed in the real clump mass function confirming that it is consistent with a power-law of slope ≃ -2. This result supports the high-redshift clump formation through fragmentation in a similar fashion as in local galaxies, but under different gas conditions.

  18. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    NASA Astrophysics Data System (ADS)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  19. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  20. Mass, height of burst, and source–receiver distance constraints on the acoustic coda phase delay method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Sarah; Bowman, Daniel; Rodgers, Arthur

    Here, this research uses the acoustic coda phase delay method to estimate relative changes in air temperature between explosions with varying event masses and heights of burst. It also places a bound on source–receiver distance for the method. Previous studies used events with different shapes, height of bursts, and masses and recorded the acoustic codas at source–receiver distances less than 1 km. This research further explores the method using explosions that differ in mass (by up to an order of magnitude) and are placed at varying heights. Source–receiver distances also cover an area out to 7 km. Relative air temperaturemore » change estimates are compared to complementary meteorological observations. Results show that two explosions that differ by an order of magnitude cannot be used with this method because their propagation times in the near field and their fundamental frequencies are different. These differences are expressed as inaccuracies in the relative air temperature change estimates. An order of magnitude difference in mass is also shown to bias estimates higher. Small differences in height of burst do not affect the accuracy of the method. Finally, an upper bound of 1 km on source–receiver distance is provided based on the standard deviation characteristics of the estimates.« less

  1. Mass, height of burst, and source–receiver distance constraints on the acoustic coda phase delay method

    DOE PAGES

    Albert, Sarah; Bowman, Daniel; Rodgers, Arthur; ...

    2018-04-23

    Here, this research uses the acoustic coda phase delay method to estimate relative changes in air temperature between explosions with varying event masses and heights of burst. It also places a bound on source–receiver distance for the method. Previous studies used events with different shapes, height of bursts, and masses and recorded the acoustic codas at source–receiver distances less than 1 km. This research further explores the method using explosions that differ in mass (by up to an order of magnitude) and are placed at varying heights. Source–receiver distances also cover an area out to 7 km. Relative air temperaturemore » change estimates are compared to complementary meteorological observations. Results show that two explosions that differ by an order of magnitude cannot be used with this method because their propagation times in the near field and their fundamental frequencies are different. These differences are expressed as inaccuracies in the relative air temperature change estimates. An order of magnitude difference in mass is also shown to bias estimates higher. Small differences in height of burst do not affect the accuracy of the method. Finally, an upper bound of 1 km on source–receiver distance is provided based on the standard deviation characteristics of the estimates.« less

  2. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    PubMed

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.

  3. Neutrino footprint in large scale structure

    NASA Astrophysics Data System (ADS)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  4. Micro-machined calorimetric biosensors

    DOEpatents

    Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  5. Ultrafast, efficient separations of large-sized dsDNA in a blended polymer matrix by microfluidic chip electrophoresis: A Design of Experiments approach

    PubMed Central

    Sun, Mingyun; Lin, Jennifer S.

    2012-01-01

    Double-stranded (ds) DNA fragments over a wide size range were successfully separated in blended polymer matrices by microfluidic chip electrophoresis. Novel blended polymer matrices composed of two types of polymers with three different molar masses were developed to provide improved separations of large dsDNA without negatively impacting the separation of small dsDNA. Hydroxyethyl celluloses (HECs) with average molar masses of ~27 kDa and ~1 MDa were blended with a second class of polymer, high-molar mass (~7 MDa) linear polyacrylamide (LPA). Fast and highly efficient separations of commercially available DNA ladders were achieved on a borosilicate glass microchip. A distinct separation of a 1 Kb DNA extension ladder (200 bp to 40,000 bp) was completed in 2 minutes. An orthogonal Design of Experiments (DOE) was used to optimize experimental parameters for DNA separations over a wide size range. We find that the two dominant factors are the applied electric field strength and the inclusion of a high concentration of low-molar mass polymer in the matrix solution. These two factors exerted different effects on the separations of small dsDNA fragments below 1 kbp, medium dsDNA fragments between 1 kbp and 10 kbp, and large dsDNA fragments above 10 kbp. PMID:22009451

  6. Equivalence principle implications of modified gravity models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Lam; Nicolis, Alberto; Stubbs, Christopher W.

    2009-11-15

    Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We demonstrate that if such screening occurs via the chameleon mechanism, such as in f(R) theory, it is possible to have order unity violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge formore » large objects but not for small ones (large/small is defined by the depth of the gravitational potential and is controlled by the scalar coupling). This leads to order one fluctuations in the ratio of the inertial mass to gravitational mass. We provide derivations in both Einstein and Jordan frames. In Jordan frame, it is no longer true that all objects move on geodesics; only unscreened ones, such as test particles, do. In contrast, if the scalar screening occurs via strong coupling, such as in the Dvali-Gabadadze-Porrati braneworld model, equivalence principle violation occurs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should accelerate faster than large galaxies, even in environments where dynamical friction is negligible; 2. voids defined by small galaxies would appear larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even if they are on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where the mass estimate from HI rotational velocity could exceed that from stars by 30% or more. To avoid blanket screening of all objects, the most promising place to look is in voids.« less

  7. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  8. A Generalized Exosphere Model Across the Solar System

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Hurley, D.; Farrell, W. M.; Burger, M. H.

    2016-12-01

    We have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, mass of the exospheric species, heliocentric distance, rotation rate of the primary, and composition of the body. These parameters will be useful for mission planning as well as quick look data to determine the size and location of bodies likely to retain their exospheres, the observability of exospheric species, and differences among bodies based on size, composition, rotation rate and other parameters. We will also consider the sizes of small clusters of atoms, and small dust particles that may be gravitationally bound to low mass bodies such as Phobos and asteroids. In addition, it is of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements, and the effect on the measurements of outgassing in the instruments.

  9. Seasonal thermoregulatory responses in mammals.

    PubMed

    Lovegrove, Barry G

    2005-05-01

    This study examined the proportional seasonal winter adjustments of total and mass-specific basal power (watts and watts g-1, respectively), thermal conductance (watts g-1 degrees C-1), non-shivering thermogenesis capacity (ratio of NST/basal power), body temperature ( degrees C), and body mass (g) of mammals. The responses are best summarized for three different body size classes; small mammals (<100 g), intermediate-sized mammals (0.1-10 kg), and large mammals (>10 kg). The principal adjustments of the small mammals center on energy conservation, especially the Dehnel Effect, the winter reduction in body size of as much as 50%, accompanied by reductions in mass-specific basal power. On average, these reductions reduce the total basal power approximately in direct proportion to the mass reductions. Reductions in mass-specific basal power are matched by concomitant reductions in conductance to maintain the setpoint body temperature during winter. The overall thermoregulatory adjustments in small mammals serve to (a) lower overall winter power consumption, (b) maintain the setpoint body temperature, and (c) lower the lower critical limit of thermoneutrality and hence thermoregulatory costs. In intermediate-size mammals, the seasonal response is centered more on increasing thermogenic capacity by increasing basal power and NST capacity, accompanied by predictable and large reductions in conductance. The Dehnel effect is negligible. Very large mammals undergo the largest reductions in total and mass-specific basal power and conductance. However, there are too few data to resolve whether the reductions in total basal power can be attributed to the Dehnel effect, because the moderate decreases in body mass may also be caused by nutritional stress. Apart from the seasonal changes in basal power, these observations are consistent with the predictions of Heldmaier's seasonal acclimatization model.

  10. Identification and imaging of modern paints using Secondary Ion Mass Spectrometry with MeV ions

    NASA Astrophysics Data System (ADS)

    Bogdanović Radović, Iva; Siketić, Zdravko; Jembrih-Simbürger, Dubravka; Marković, Nikola; Anghelone, Marta; Stoytschew, Valentin; Jakšić, Milko

    2017-09-01

    Secondary Ion Mass Spectrometry using MeV ion excitation was applied to analyse modern paint materials containing synthetic organic pigments and binders. It was demonstrated that synthetic organic pigments and binder components with molecular masses in the m/z range from 1 to 1200 could be identified in different paint samples with a high efficiency and in a single measurement. Different ways of mounting of mostly insulating paint samples were tested prior to the analysis in order to achieve the highest possible yield of pigment main molecular ions. As Time-of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry is attached to the heavy ion microprobe, molecular imaging on cross-sections of small paint fragments was performed using focused ions. Due to the fact that molecules are extracted from the uppermost layer of the sample and to avoid surface contamination, the paint samples were not embedded in the resin as is usually done when imaging of paint samples using different techniques in the field of cultural heritage.

  11. Small bowel adenocarcinoma in Crohn disease: CT-enterography features with pathological correlation.

    PubMed

    Soyer, Philippe; Hristova, Lora; Boudghène, Frank; Hoeffel, Christine; Dray, Xavier; Laurent, Valérie; Fishman, Elliot K; Boudiaf, Mourad

    2012-06-01

    The aim of this study was to analyze the clinical, pathological, and CT-enterography findings of small bowel adenocarcinomas in Crohn disease patients. Clinical, histopathological, and imaging findings were retrospectively evaluated in seven Crohn disease patients with small bowel adenocarcinoma. CT-enterography examinations were reviewed for morphologic features and location of tumor, presence of stratification, luminal stenosis, proximal dilatation, adjacent lymph nodes, and correlated with findings at histological examination. The tumor was located in the terminal (n = 6) or distal (n = 1) ileum. On CT-enterography, the tumor was visible in five patients, whereas two patients had no visible tumor. Four different patterns were individualized including small bowel mass (n = 2), long stenosis with heterogeneous submucosal layer (n = 2), short and severe stenosis with proximal small bowel dilatation (n = 2), and sacculated small bowel loop with irregular and asymmetric circumferential thickening (n = 1). Stratification, fat stranding, and comb sign were present in two, two, and one patients, respectively. Identification of a mass being clearly visible suggests strongly the presence of small bowel adenocarcinoma in Crohn disease patients but adenocarcinoma may be completely indistinguishable from benign fibrotic or acute inflammatory stricture. Knowledge of these findings is critical to help suggest the diagnosis of this rare but severe complication of Crohn disease.

  12. Mass Energy Equivalence Formula Must Include Rotational and Vibrational Kinetuic Energies as Well As Potential Energies

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-11-01

    Originally Einstein proposed the the mass-energy equivalence at low speeds as E=mc^2 + 1/2 mv^2. However, a mass may also be rotating and vibrating as well as moving linearly. Although small, these kinetic energies must be included in formulating a true mathematical statement of the mass-energy equivalence. Also, gravitational, electromagneic and magnetic potential energies must be included in the mass-energy equivalence mathematical statement. While the kinetic energy factors may differ in each physical situation such as types of vibrations and rotations, the basic equation for the mass- energy equivalence is therefore E = m0c^2 + 1/2m0v^2 + 1/2I2̂+ 1/2kx^2 + WG+ WE+ WM.

  13. Connecting Fermion Masses and Mixings to BSM Physics - Quarks

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2015-10-01

    The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com

  14. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  15. Are Binary Separations related to their System Mass?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.

    2004-08-01

    We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.

  16. Needle and stem wood production in Scots pine (Pinus sylvestris) trees of different age, size and competitive status.

    PubMed

    Vanninen, Petteri; Mäkelä, Annikki

    2000-04-01

    We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.

  17. Identification of carbohydrate anomers using ion mobility-mass spectrometry.

    PubMed

    Hofmann, J; Hahm, H S; Seeberger, P H; Pagel, K

    2015-10-08

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  18. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  19. Tracing Low-Mass Star Formation in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Petr-Gotzens, Monika; Zivkov, V.; Oliveira, J.

    2017-06-01

    Star formation in low metallicity environments is evidently occurring under different conditions than in our Milky Way. Lower metallicity implies a lower dust to gas ratio, most likely leading to less cooling efficiency at high density molecular cores where low mass stars are expected to form. We outline a project that aims to identify the low mass pre-main sequence populations within the Large and Small Magellanic Cloud. We developed an automatic detection algorithm that systematically analyses near-infrared colour-magnitude diagrammes constructed from the VMC (VISTA Magellanic Clouds) public survey data. In this poster we present our first results that show that we are able to detect significant numbers of PMS stars with masses down to 1.5 solar mass.

  20. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    PubMed

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.

  1. Core-powered mass-loss and the radius distribution of small exoplanets

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re'em

    2018-05-01

    Recent observations identify a valley in the radius distribution of small exoplanets, with planets in the range 1.5-2.0 R⊕ significantly less common than somewhat smaller or larger planets. This valley may suggest a bimodal population of rocky planets that are either engulfed by massive gas envelopes that significantly enlarge their radius, or do not have detectable atmospheres at all. One explanation of such a bimodal distribution is atmospheric erosion by high-energy stellar photons. We investigate an alternative mechanism: the luminosity of the cooling rocky core, which can completely erode light envelopes while preserving heavy ones, produces a deficit of intermediate sized planets. We evolve planetary populations that are derived from observations using a simple analytical prescription, accounting self-consistently for envelope accretion, cooling and mass-loss, and demonstrate that core-powered mass-loss naturally reproduces the observed radius distribution, regardless of the high-energy incident flux. Observations of planets around different stellar types may distinguish between photoevaporation, which is powered by the high-energy tail of the stellar radiation, and core-powered mass-loss, which depends on the bolometric flux through the planet's equilibrium temperature that sets both its cooling and mass-loss rates.

  2. Long-term patterns of body mass and stature evolution within the hominin lineage.

    PubMed

    Will, Manuel; Pablos, Adrián; Stock, Jay T

    2017-11-01

    Body size is a central determinant of a species' biology and adaptive strategy, but the number of reliable estimates of hominin body mass and stature have been insufficient to determine long-term patterns and subtle interactions in these size components within our lineage. Here, we analyse 254 body mass and 204 stature estimates from a total of 311 hominin specimens dating from 4.4 Ma to the Holocene using multi-level chronological and taxonomic analytical categories. The results demonstrate complex temporal patterns of body size variation with phases of relative stasis intermitted by periods of rapid increases. The observed trajectories could result from punctuated increases at speciation events, but also differential proliferation of large-bodied taxa or the extinction of small-bodied populations. Combined taxonomic and temporal analyses show that in relation to australopithecines, early Homo is characterized by significantly larger average body mass and stature but retains considerable diversity, including small body sizes. Within later Homo , stature and body mass evolution follow different trajectories: average modern stature is maintained from ca 1.6 Ma, while consistently higher body masses are not established until the Middle Pleistocene at ca 0.5-0.4 Ma, likely caused by directional selection related to colonizing higher latitudes. Selection against small-bodied individuals (less than 40 kg; less than 140 cm) after 1.4 Ma is associated with a decrease in relative size variability in later Homo species compared with earlier Homo and australopithecines. The isolated small-bodied individuals of Homo naledi ( ca 0.3 Ma) and Homo floresiensis ( ca 100-60 ka) constitute important exceptions to these general patterns, adding further layers of complexity to the evolution of body size within the genus Homo . At the end of the Late Pleistocene and Holocene, body size in Homo sapiens declines on average, but also extends to lower limits not seen in comparable frequency since early Homo .

  3. Long-term patterns of body mass and stature evolution within the hominin lineage

    PubMed Central

    Pablos, Adrián; Stock, Jay T.

    2017-01-01

    Body size is a central determinant of a species' biology and adaptive strategy, but the number of reliable estimates of hominin body mass and stature have been insufficient to determine long-term patterns and subtle interactions in these size components within our lineage. Here, we analyse 254 body mass and 204 stature estimates from a total of 311 hominin specimens dating from 4.4 Ma to the Holocene using multi-level chronological and taxonomic analytical categories. The results demonstrate complex temporal patterns of body size variation with phases of relative stasis intermitted by periods of rapid increases. The observed trajectories could result from punctuated increases at speciation events, but also differential proliferation of large-bodied taxa or the extinction of small-bodied populations. Combined taxonomic and temporal analyses show that in relation to australopithecines, early Homo is characterized by significantly larger average body mass and stature but retains considerable diversity, including small body sizes. Within later Homo, stature and body mass evolution follow different trajectories: average modern stature is maintained from ca 1.6 Ma, while consistently higher body masses are not established until the Middle Pleistocene at ca 0.5–0.4 Ma, likely caused by directional selection related to colonizing higher latitudes. Selection against small-bodied individuals (less than 40 kg; less than 140 cm) after 1.4 Ma is associated with a decrease in relative size variability in later Homo species compared with earlier Homo and australopithecines. The isolated small-bodied individuals of Homo naledi (ca 0.3 Ma) and Homo floresiensis (ca 100–60 ka) constitute important exceptions to these general patterns, adding further layers of complexity to the evolution of body size within the genus Homo. At the end of the Late Pleistocene and Holocene, body size in Homo sapiens declines on average, but also extends to lower limits not seen in comparable frequency since early Homo. PMID:29291118

  4. SUSY’s Ladder: Reframing sequestering at Large Volume

    DOE PAGES

    Reece, Matthew; Xue, Wei

    2016-04-07

    Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague othermore » supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.« less

  5. Eggs in the Freezer: Energetic Consequences of Nest Site and Nest Design in Arctic Breeding Shorebirds

    PubMed Central

    Tulp, Ingrid; Schekkerman, Hans; de Leeuw, Joep

    2012-01-01

    Birds construct nests for several reasons. For species that breed in the Arctic, the insulative properties of nests are very important. Incubation is costly there and due to an increasing surface to volume ratio, more so in smaller species. Small species are therefore more likely to place their nests in thermally favourable microhabitats and/or to invest more in nest insulation than large species. To test this hypothesis, we examined characteristics of nests of six Arctic breeding shorebird species. All species chose thermally favourable nesting sites in a higher proportion than expected on the basis of habitat availability. Site choice did not differ between species. Depth to frozen ground, measured near the nests, decreased in the course of the season at similar non-species-specific speeds, but this depth increased with species size. Nest cup depth and nest scrape depth (nest cup without the lining) were unrelated to body mass (we applied an exponent of 0.73, to account for metabolic activity of the differently sized species). Cup depth divided by diameter2 was used as a measure of nest cup shape. Small species had narrow and deep nests, while large species had wide shallow nests. The thickness of nest lining varied between 0.1 cm and 7.6 cm, and decreased significantly with body mass. We reconstruct the combined effect of different nest properties on the egg cooling coefficient using previously published quantitative relationships. The predicted effect of nest cup depth and lining depth on heat loss to the frozen ground did not correlate with body mass, but the sheltering effect of nest cup diameter against wind and the effects of lining material on the cooling coefficient increased with body mass. Our results suggest that small arctic shorebirds invest more in the insulation of their nests than large species. PMID:22701596

  6. Rapid mass segregation in small stellar clusters

    NASA Astrophysics Data System (ADS)

    Spera, Mario; Capuzzo-Dolcetta, Roberto

    2017-12-01

    In this paper we focus our attention on small-to-intermediate N-body systems that are, initially, distributed uniformly in space and dynamically `cool' (virial ratios Q=2T/|Ω| below ˜0.3). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N-body simulations of isolated clusters by means of HiGPUs, our direct summation N-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N (128 ≤ N ≤1,024) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.

  7. Intercomparison of fog water samplers

    NASA Astrophysics Data System (ADS)

    Schell, Dieter; Georgii, Hans-Walter; Maser, Rolf; Jaeschke, Wolfgang; Arends, Beate G.; Kos, Gerard P. A.; Winkler, Peter; Schneider, Thomas; Berner, Axel; Kruisz, Christian

    1992-11-01

    During the Po Valley Fog Experiment 1989, two fogwater collectors were operated simultaneously at the ground and the results were compared to each other. The chemical analyses of the samples as well as the collection efficiencies showed remarkable differences between both collectors. Some differences in the solute concentrations in the samples of both collectors could be expected due to small differences in the 50-percent cut-off diameters. The large differences in the collection efficiencies however cannot be explained by these small variations of d sub 50, because normally only a small fraction of the water mass is concentrated in the size range of 5-7-micron droplets. It is shown that it is not sufficient to characterize a fogwater collector only by its cut-off diameter. The results of several wind tunnel calibration tests show that the collection efficiencies of the fogwater collectors are a function of windspeed and shape of the droplet spectra.

  8. Angiomyolipoma with Minimal Fat: Can It Be Differentiated from Clear Cell Renal Cell Carcinoma by Using Standard MR Techniques?

    PubMed Central

    Hindman, Nicole; Ngo, Long; Genega, Elizabeth M.; Melamed, Jonathan; Wei, Jesse; Braza, Julia M.; Rofsky, Neil M.

    2012-01-01

    Purpose: To retrospectively assess whether magnetic resonance (MR) imaging with opposed-phase and in-phase gradient-echo (GRE) sequences and MR feature analysis can differentiate angiomyolipomas (AMLs) that contain minimal fat from clear cell renal cell carcinomas (RCCs), with particular emphasis on small (<3-cm) masses. Materials and Methods: Institutional review board approval and a waiver of informed consent were obtained for this HIPAA-compliant study. MR images from 108 pathologically proved renal masses (88 clear cell RCCs and 20 minimal fat AMLs from 64 men and 44 women) at two academic institutions were evaluated. The signal intensity (SI) of each renal mass and spleen on opposed-phase and in-phase GRE images was used to calculate an SI index and tumor-to-spleen SI ratio. Two radiologists who were blinded to the pathologic results independently assessed the subjective presence of intravoxel fat (ie, decreased SI on opposed-phase images compared with that on in-phase images), SI on T1-weighted and T2-weighted images, cystic degeneration, necrosis, hemorrhage, retroperitoneal collaterals, and renal vein thrombosis. Results were analyzed by using the Wilcoxon rank sum test, two-tailed Fisher exact test, and multivariate logistic regression analysis for all renal masses and for small masses. A P value of less than .05 was considered to indicate a statistically significant difference. Results: There were no differences between minimal fat AMLs and clear cell RCCs for the SI index (8.05% ± 14.46 vs 14.99% ± 19.9; P = .146) or tumor-to-spleen ratio (−8.96% ± 16.6 and −15.8% ± 22.4; P = .227) when all masses or small masses were analyzed. Diagnostic accuracy (area under receiver operating characteristic curve) for the SI index and tumor-to-spleen ratio was 0.59. Intratumoral necrosis and larger size were predictive of clear cell RCC (P < .001) for all lesions, whereas low SI (relative to renal parenchyma SI) on T2-weighted images, smaller size, and female sex correlated with minimal fat AML (P < .001) for all lesions. Conclusion: The diagnostic accuracy of opposed-phase and in-phase GRE MR imaging for the differentiation of minimal fat AML and clear cell RCC is poor. In this cohort, low SI on T2-weighted images relative to renal parenchyma and small size suggested minimal fat AML, whereas intratumoral necrosis and large size argued against this diagnosis. © RSNA, 2012 PMID:23012463

  9. Current state of the art in small mass and force metrology within the International System of Units

    NASA Astrophysics Data System (ADS)

    Shaw, Gordon A.

    2018-07-01

    This review article summarizes new scientific trends in research for metrology of small mass (1 mg and lower) and small force (10 micronewtons and lower). After a brief introduction to the field, this paper provides an overview of recent developments in methods that demonstrate traceability to the International System of Units (SI) with emphasis on the implications of redefining the kilogram in terms of Planck’s constant. Specific research applications include new metrology facilities, calibration of small mass and force references such as milligram to submilligram masses or atomic force microscope (AFM) cantilevers, and laser power measurement using radiation pressure forces. Also discussed are recent scientific developments that may impact the field moving forward in the study of ultrasmall forces present in trapped and cooled quantum mechanical systems, resonant micro- and nanomechanical mass sensors, and other areas that are potentially well suited for SI metrology. The work reviewed is not intended as a comprehensive review of all research in which small forces are measured, but rather as an overview of a field in which the accurate measurement of small mass and force with quantified uncertainty is the primary goal.

  10. Effect of puberty on body composition.

    PubMed

    Loomba-Albrecht, Lindsey A; Styne, Dennis M

    2009-02-01

    Here we examine the effect of puberty on components of human body composition, including adiposity (total body fat, percentage body fat and fat distribution), lean body mass and bone mineral content and density. New methods and longitudinal studies have expended our knowledge of these remarkable changes. Human differences in adiposity, fat free mass and bone mass reflect differences in endocrine status (particularly with respect to estrogens, androgens, growth hormone and IGF-1), genetic factors, ethnicity and the environment. During puberty, males gain greater amounts of fat free mass and skeletal mass, whereas females acquire significantly more fat mass. Both genders reach peak bone accretion during the pubertal years, though males develop a greater skeletal mass. Body proportions and fat distribution change during the pubertal years as well, with males assuming a more android body shape and females assuming a more gynecoid shape. Pubertal body composition may predict adult body composition and affects both pubertal timing and future health. Sexual dimorphism exists to a small degree at birth, but striking differences develop during the pubertal years. The development of this dimorphism in body composition is largely regulated by endocrine factors, with critical roles played by growth hormone and gonadal steroids. It is important for clinicians and researchers to know the normal changes in order to address pathologic findings in disease states.

  11. Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.

    PubMed

    Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick

    2012-06-01

    Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.

  12. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  13. On relativistic motion of a pair of particles having opposite signs of masses

    NASA Astrophysics Data System (ADS)

    Ivanov, Pavel B.

    2012-12-01

    In this methodological note, we consider, in a weak-fleld limit, the relativistic linear motion of two particles with masses of opposite signs and a small difference between their absolute values: m_{1,2}=+/- (\\mu+/- \\Delta \\mu) , \\mu \\gt 0, \\vert\\Delta \\mu \\vert \\ll\\mu. In 1957, H Bondi showed in the framework of both Newtonian analysis and General Relativity that, when the relative motion of particles is absent, such a pair can be accelerated indefinitely. We generalize the results of his paper to account for the small nonzero difference between the velocities of the particles. Assuming that the weak-field limit holds and the dynamical system is conservative, an elementary treatment of the problem based on the laws of energy and momentum conservation shows that the system can be accelerated indefinitely, or attain very large asymptotic values of the Lorentz factor \\gamma. The system experiences indefinite acceleration when its energy-momentum vector is null and the mass difference \\Delta \\mu \\le 0. When the modulus of the square of the norm of the energy-momentum vector, \\vert N^{\\,2}\\vert, is sufficiently small, the system can be accelerated to very large \\gamma \\propto \\vert N^{\\,2}\\vert^{-1}. It is stressed that, when only leading terms in the ratio of a characteristic gravitational radius to the distance between the particles are retained, our elementary analysis leads to equations of motion equivalent to those derived from relativistic weak-field equations of motion by Havas and Goldberg in 1962. Thus, in the weak-field approximation it is possible to bring the system to the state with extremely high values of \\gamma. The positive energy carried by the particle with positive mass may be conveyed to other physical bodies, say by intercepting this particle with a target. If we suppose that there is a process of production of such pairs and the particles with positive mass are intercepted, while the negative mass particles are expelled from the region of space occupied by the physical bodies of interest, this scheme could provide a persistent transfer of positive energy to the bodies, which may be classified as `perpetual motion of the third kind'. Additionally, we critically evaluate some recent claims regarding the problem.

  14. Deconstructed transverse mass variables

    DOE PAGES

    Ismail, Ahmed; Schwienhorst, Reinhard; Virzi, Joseph S.; ...

    2015-04-02

    Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. Here, we demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton,more » jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. In addition, we also discuss how these variables allow for novel searches of single stop production, in order to directly probe unconstrained stealth stops in the small stop-and neutralino-mass regime. We also demonstrate the utility of these variables for generic gluino and stop searches in all-hadronic final states. Overall, we demonstrate that deconstructed transverse variables are essential to any search wanting to maximize signal separation from the background when the signal has undetected particles in the final state.« less

  15. CALCOM: a software for calculating the center of mass of proteins.

    PubMed

    Costantini, Susan; Paladino, Antonella; Facchiano, Angelo M

    2008-02-09

    The center of mass of a protein is an artificial point useful for detecting important and simple features of proteins structure, shape and association.CALCOM is a software which calculates the center of mass of a protein, starting from PDB protein structure files. In the case of protein complexes and of protein-small ligand complexes, the position of protein residues or of ligand atoms respect to each protein subunit can be evaluated, as well as the distance among the center of mass of the protein subunits, in order to compare different conformations and evaluate the relative motion of subunits. THE SERVICE IS AVAILABLE AT THE URL: http://bioinformatica.isa.cnr.it/CALCOM/.

  16. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  17. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Wu, Qian; Wang, Yan; Gu, Xue; Zhou, Junyi; Zhang, Huiping; Lv, Wang; Chen, Zhe; Yan, Chao

    2014-07-01

    Metabolic profiles from human urine reveal the significant difference of carnitine and acylcarnitines levels between non-small cell lung carcinoma patients and healthy controls. Urine samples from cancer patients and healthy individuals were assayed in this metabolomic study using ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The data were normalized by the sum of all intensities and creatinine calibration, respectively, before orthogonal partial least squares discriminant analysis. Twenty differential metabolites were identified based on standard compounds or tandem mass spectrometry fragments. Among them, some medium-/long-chain acylcarnitines, for example, cis-3,4-methylene heptanoylcarnitine, were found to be downregulated while carnitine was upregulated in urine samples from the cancer group compared to the control group. Receiver operating characteristic analysis of the two groups showed that the area under curve for the combination of carnitine and 11 selected acylcarnitines was 0.958. This study suggests that the developed carnitine and acylcarnitines profiling method has the potential to be used for screening non-small cell lung carcinoma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-interacting inelastic dark matter: a viable solution to the small scale structure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au

    2017-03-01

    Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less

  19. The Cluster Environment of Two High-mass Protostars

    NASA Astrophysics Data System (ADS)

    Montes, Virginie; Hofner, Peter

    2017-06-01

    Characterizing the environment and stellar population in which high-mass stars form is an important step to decide between the main massive star formation theories. In the monolithic collapse model, the mass of the core will determine the final stellar mass (e.g., McKee & Tan 2003). In contrast, in the competitive accretion model (e.g., Bonnell & Bate 2006), the mass of the high-mass star is related to the properties of the cluster. As dynamical processes substantially affect the appearance of a cluster, we study early stages of high-mass star formation. These regions often show extended emission from hot dust at infrared wavelengths, which can cause difficulties to define the cluster. We use a multi-wavelength technique to study nearby high-mass star clusters, based on X-ray observations with the Chandra X-Ray Telescope, in conjunction with infrared data and VLA data. The technique relies on the fact that YSOs are particularly bright in X-ray and that contamination is relatively small. X-ray observations allow us to determine the cluster size. The cluster membership and YSOs classification is established using infrared identification of the X-ray sources, and color-color and color-magnitude diagrams.In this talk, I will present our findings on the cluster study of two high-mass star forming regions: IRAS 20126+4104 and IRAS 16562-3959. While most massive stars appear to be formed in rich a cluster environment, those two sources are candidates for the formation of massive stars in a relatively poor cluster. In contrast to what was found in previous studies (Qiu et al. 2008), the dominant B0-type protostar in IRAS 20126+4104 is associated with a small cluster of low-mass stars. I will also show our current work on IRAS 16562-3959, which contains one of the most luminous O-type protostars in the Galaxy. In the vicinity of this particularly interesting region there is a multitude of small clusters, for which I will present how their stellar population differ from the high-mass star-forming cluster IRAS 16562-3959.

  20. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.

    PubMed

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W

    2015-08-21

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  1. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  2. Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference

    NASA Astrophysics Data System (ADS)

    Daylan, Tansu; Cyr-Racine, Francis-Yan; Diaz Rivero, Ana; Dvorkin, Cora; Finkbeiner, Douglas P.

    2018-02-01

    Strong lensing is a sensitive probe of the small-scale density fluctuations in the Universe. We implement a pipeline to model strongly lensed systems using probabilistic cataloging, which is a transdimensional, hierarchical, and Bayesian framework to sample from a metamodel (union of models with different dimensionality) consistent with observed photon count maps. Probabilistic cataloging allows one to robustly characterize modeling covariances within and across lens models with different numbers of subhalos. Unlike traditional cataloging of subhalos, it does not require model subhalos to improve the goodness of fit above the detection threshold. Instead, it allows the exploitation of all information contained in the photon count maps—for instance, when constraining the subhalo mass function. We further show that, by not including these small subhalos in the lens model, fixed-dimensional inference methods can significantly mismodel the data. Using a simulated Hubble Space Telescope data set, we show that the subhalo mass function can be probed even when many subhalos in the sample catalogs are individually below the detection threshold and would be absent in a traditional catalog. The implemented software, Probabilistic Cataloger (PCAT) is made publicly available at https://github.com/tdaylan/pcat.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed finalmore » $${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.« less

  4. The connection between the host halo and the satellite galaxies of the Milky Way

    DOE PAGES

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; ...

    2016-10-11

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed finalmore » $${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.« less

  5. Channeling, channel density and mass recovery in aquifer transport, with application to the MADE experiment

    NASA Astrophysics Data System (ADS)

    Fiori, A.

    2014-12-01

    Channeling effects in heterogeneous formations are studied through a new quantity denoted as channel density a(x,t). Focusing on advection only, a(x,t) is defined as the relative number of streamtubes (or channels) containing solute between x and x + dx at a given time t, regardless of the mass that they carry. The channel density generally differs from the widely employed longitudinal mass distribution m(x,t), and their difference increases with time and the degree of heterogeneity. The difference between a and m reflects the nonuniformity of mass distribution relative to the plume geometry. In particular, the "fast" channels typically carry a larger fraction of mass than their share in their relative volume, which in turn can be rather small. Detecting such channels by a network of monitoring wells may be a challenging task, which might explain the poor solute recovery of some field experiments at increasing times. After application of the proposed concepts to the simple case of stratified formations, we model the channel density and mass distribution pertaining to the MADE experiment, which exhibited poor mass recovery at large times. The results presented in this study emphasize the possible channeling effects at MADE and the general difficulty in sampling the leading edge of the plume, which in turn may contain a significant fraction of the plume mass.

  6. Large and Small Cars in Real-World Crashes -Patterns of Use, Collision Types and Injury Outcomes

    PubMed Central

    Thomas, Pete; Frampton, Richard

    1999-01-01

    Previous work examining the effect of vehicle mass has demonstrated the link with occupant injury severity. The principal factor has been related to Newtonian mechanics. This paper analyses data from the UK Co-operative Crash Injury Study and identifies other factors associated with car size. The mass of the car is found to have a predominant effect on injury outcome in frontal collisions only where the effect is seen most in injuries to the head, face and chest. Most fatal casualties in small cars die when in collision with another car in front or side collisions while the key group for large cars is frontal collisions with road-side objects. There are several characteristics of small car occupants that differ from those in large cars including gender, age and vehicle occupancy. New information in the analysis concerns the priorities in casualty reduction between small and large car occupants and the paper argues that vehicle design should take account of this variation to produce vehicles optimised for the complete range of crashes and car occupants.

  7. Flexible optical metrology strategies for the control and quality assurance of small series production

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Pavim, A.

    2009-06-01

    The demand for achieving smaller and more flexible production series with a considerable diversity of products complicates the control of the manufacturing tasks, leading to big challenges for the quality assurance systems. The quality assurance strategy that is nowadays used for mass production is unable to cope with the inspection flexibility needed among automated small series production, because the measuring strategy is totally dependent on the fixed features of the few manufactured object variants and on process parameters that can be controlled/compensated during production time. The major challenge faced by a quality assurance system applied to small series production facilities is to guarantee the needed quality level already at the first run, and therefore, the quality assurance system has to adapt itself constantly to the new manufacturing conditions. The small series production culture requires a change of paradigms, because its strategies are totally different from mass production. This work discusses the tight inspection requirements of small series production and presents flexible metrology strategies based on optical sensor data fusion techniques, agent-based systems as well as cognitive and self-optimised systems for assuring the needed quality level of flexible small series. Examples of application scenarios are provided among the automated assembly of solid state lasers and the flexible inspection of automotive headlights.

  8. Accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors.

    PubMed

    Gruter, Gert-Jan M; Sipos, Laszlo; Adrianus Dam, Matheus

    2012-02-01

    High Throughput experimentation has been well established as a tool in early stage catalyst development and catalyst and process scale-up today. One of the more challenging areas of catalytic research is polymer catalysis. The main difference with most non-polymer catalytic conversions is the fact that the product is not a well defined molecule and the catalytic performance cannot be easily expressed only in terms of catalyst activity and selectivity. In polymerization reactions, polymer chains are formed that can have various lengths (resulting in a molecular weight distribution rather than a defined molecular weight), that can have different compositions (when random or block co-polymers are produced), that can have cross-linking (often significantly affecting physical properties), that can have different endgroups (often affecting subsequent processing steps) and several other variations. In addition, for polyolefins, mass and heat transfer, oxygen and moisture sensitivity, stereoregularity and many other intrinsic features make relevant high throughput screening in this field an incredible challenge. For polycondensation reactions performed in the melt often the viscosity becomes already high at modest molecular weights, which greatly influences mass transfer of the condensation product (often water or methanol). When reactions become mass transfer limited, catalyst performance comparison is often no longer relevant. This however does not mean that relevant experiments for these application areas cannot be performed on small scale. Relevant catalyst screening experiments for polycondensation reactions can be performed in very efficient small scale parallel equipment. Both transesterification and polycondensation as well as post condensation through solid-stating in parallel equipment have been developed. Next to polymer synthesis, polymer characterization also needs to be accelerated without making concessions to quality in order to draw relevant conclusions.

  9. The evolution of massive stars including mass loss - Presupernova models and explosion

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.

    1993-01-01

    The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.

  10. Pathways to naturally small Dirac neutrino masses

    DOE PAGES

    Ma, Ernest; Popov, Oleg

    2016-11-18

    If neutrinos are truly Dirac fermions, the smallness of their masses may still be natural if certain symmetries exist beyond those of the standard model of quarks and leptons. We perform a systematic study of how this may occur at tree level and in one loop. As a result, we also propose a scotogenic version of the left-right gauge model with naturally small Dirac neutrino masses in one loop.

  11. Artisanal cheese

    USDA-ARS?s Scientific Manuscript database

    Artisanal cheese, which is handmade in small batches, differs from mass-produced cheese because of the milk and procedures used. Artisanal cheese is made from the milk of pasture-fed cows, sheep, or goats instead of conventionally-fed cows, and is affected by plants eaten, stage of lactation, and s...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Rakesh K.; Poppenhaeger, Katja; Wolk, Scott J.

    Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scalemore » fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.« less

  13. Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2017-05-01

    We use the scatter in the stellar-to-halo mass relation to constrain galaxy evolution models. If the efficiency of converting accreted baryons into stars varies with time, haloes of the same present-day mass but different formation histories will have different z = 0 galaxy stellar mass. This is one of the sources of scatter in stellar mass at fixed halo mass, σlog M*. For massive haloes that undergo rapid quenching of star formation at z ˜ 2, different mechanisms that trigger this quenching yield different values of σlog M*. We use this framework to test various models in which quenching begins after a galaxy crosses a threshold in one of the following physical quantities: redshift, halo mass, stellar mass and stellar-to-halo mass ratio. Our model is highly idealized, with other sources of scatter likely to arise as more physics is included. Thus, our test is whether a model can produce scatter lower than observational bounds, leaving room for other sources. Recent measurements find σlog M* = 0.16 dex for 1011 M⊙ galaxies. Under the assumption that the threshold is constant with time, such a low value of σlog M* rules out all of these models with the exception of quenching by a stellar mass threshold. Most physical quantities, such as metallicity, will increase scatter if they are uncorrelated with halo formation history. Thus, to decrease the scatter of a given model, galaxy properties would correlate tightly with formation history, creating testable predictions for their clustering. Understanding why σlog M* is so small may be key to understanding the physics of galaxy formation.

  14. Establishment and analysis of coupled dynamic model for dual-mass silicon micro-gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Zhanghui; Qiu, Anping; Shi, Qin; Zhang, Taoyuan

    2017-12-01

    This paper presents a coupled dynamic model for a dual-mass silicon micro-gyroscope (DMSG). It can quantitatively analyze the influence of left-right stiffness difference on the natural frequencies, modal matrix and modal coupling coefficient of the DMSG. The analytic results are verified by using the finite element method (FEM) simulation. The model shows that with the left-right stiffness difference of 1%, the modal coupling coefficient is 12% in the driving direction and 31% in the sensing direction. It also shows that in order to achieve good separation, the stiffness of base beam should be small enough in both the driving and sensing direction.

  15. Clockwork seesaw mechanisms

    NASA Astrophysics Data System (ADS)

    Park, Seong Chan; Shin, Chang Sub

    2018-01-01

    We propose new mechanisms for small neutrino masses based on clockwork mechanism. The Standard Model neutrinos and lepton number violating operators communicate through the zero mode of clockwork gears, one of the two couplings of the zero mode is exponentially suppressed by clockwork mechanism. Including all known examples for the clockwork realization of the neutrino masses, different types of models are realized depending on the profile and chirality of the zero mode fermion. Each type of realization would have phenomenologically distinctive features with the accompanying heavy neutrinos.

  16. New narrow baryons and dibaryons observed in inelastic pp scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatischeff, B.; Willis, N.; Comets, M. P.

    Several narrow exotic baryonic states have been recently observed at 1004, 1044, and possibly at 1094 MeV, from the study of pp{yields}p{pi}{sup +}X reaction at different energies (T{sub p}=1520, 1805 and 2100 MeV) and angles from 0 deg. up to 17 deg. (lab.). The small widths: a few MeV, indicate a possible interpretation within multiquark baryons or baryonic resonances. A phenomonological mass formula for two clusters of quarks, predicts masses, quite close to the experimental ones.

  17. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  18. Reliability of upper and lower extremity anthropometric measurements and the effect on tissue mass predictions.

    PubMed

    Burkhart, Timothy A; Arthurs, Katherine L; Andrews, David M

    2008-01-01

    Accurate modeling of soft tissue motion effects relative to bone during impact requires knowledge of the mass of soft and rigid tissues in living people. Holmes et al., [2005. Predicting in vivo soft tissue masses of the lower extremity using segment anthropometric measures and DXA. Journal of Applied Biomechanics, 21, 371-382] developed and validated regression equations to predict the individual tissue masses of lower extremity segments of young healthy adults, based on simple anthropometric measurements. However, the reliability of these measurements and the effect on predicted tissue mass estimates from the equations has yet to be determined. In the current study, two measurers were responsible for collecting two sets of unilateral measurements (25 male and 25 female subjects) for the right upper and lower extremities. These included 6 lengths, 6 circumferences, 8 breadths, and 4 skinfold thicknesses. Significant differences were found between measurers and between sexes, but these differences were relatively small in general (75-80% of between-measurer differences were <1cm). Within-measurer measurement differences were smaller and more consistent than those between measurers in most cases. Good to excellent reliability was demonstrated for all measurement types, with intra-class correlation coefficients of 0.79, 0.86, 0.85 and 0.86 for lengths, circumferences, breadth and skinfolds, respectively. Predicted tissue mass magnitudes were moderately affected by the measurement differences. The maximum mean errors between measurers ranged from 3.2% to 24.2% for bone mineral content and fat mass, for the leg and foot, and the leg segments, respectively.

  19. Accelerator mass spectrometry of small biological samples.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  20. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  1. Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots.

    PubMed

    Abdelhamid, Hani Nasser; Chen, Zhen-Yu; Wu, Hui-Fen

    2017-08-01

    In most applications of quantum dots (QDs) for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), one side of QDs is supported by a solid substrate (stainless - steel plate), whereas the other side is in contact with the target analytes. Therefore, the surface capping agent of QDs is a key parameter for laser desorption/ionization mass spectrometry (LDI-MS). Cadmium telluride quantum dots (CdTe QDs) modified with different capping agents are synthesized, characterized, and applied for surface tuning laser desorption/ionization mass spectrometry (STLDI-MS). Data shows that CdTe quantum dot modified cysteine (cys@CdTe QDs) has an absorption that matches with the wavelength of the N 2 laser (337 nm). The synergistic effect of large surface area and absorption of the laser irradiation of cys@CdTe QDs enhances the LDI-MS process for small - molecule analysis, including α-, β-, and γ-cyclodextrin, gramicidin D, perylene, pyrene, and triphenylphosphine. Cys@CdTe QDs are also applied using Al foils as substrates. Aluminum foil combined with cys@CdTe QDs enhances the ionization efficiency and is cheap compared to traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with a stainless - steel plate.

  2. Power and weight considerations in small, agile quadrotors

    NASA Astrophysics Data System (ADS)

    Mulgaonkar, Yash; Whitzer, Michael; Morgan, Brian; Kroninger, Christopher M.; Harrington, Aaron M.; Kumar, Vijay

    2014-06-01

    The development of autonomous Micro Aerial Vehicles (MAVs) is significantly constrained by their size, weight and power consumption. In this paper, we explore the energetics of quadrotor platforms and study the scaling of mass, inertia, lift and drag with their characteristic length. The effects of length scale on masses and inertias associated with various components are also investigated. Additionally, a study of Lithium Polymer battery performance is presented in terms of specific power and specific energy. Finally, we describe the power and energy consumption for different quadrotors and explore the dependence on size and mass for static hover tests as well as representative maneuvers.

  3. Assessment of fat and lean mass by quantitative magnetic resonance: a future technology of body composition research?

    PubMed

    Bosy-Westphal, Anja; Müller, Manfred J

    2015-09-01

    For the assessment of energy balance or monitoring of therapeutic interventions, there is a need for noninvasive and highly precise methods of body composition analysis that are able to accurately measure small changes in fat and fat-free mass (FFM). The use of quantitative magnetic resonance (QMR) for measurement of body composition has long been established in animal studies. There are, however, only a few human studies that examine the validity of this method. These studies have consistently shown a high precision of QMR and only a small underestimation of fat mass by QMR when compared with a 4-compartment model as a reference. An underestimation of fat mass by QMR is also supported by the comparison between measured energy balance (as a difference between energy intake and energy expenditure) and energy balance predicted from changes in fat mass and FFM. Fewer calories were lost and gained as fat mass compared with the value expected from measured energy balance. Current evidence in healthy humans has shown that QMR is a valid and precise method for noninvasive measurement of body composition. Contrary to standard reference methods, such as densitometry and dual X-ray absorptiometry, QMR results are independent of FFM hydration. However, despite a high accuracy and a low minimal detectable change, underestimation of fat mass by QMR is possible and limits the use of this method for quantification of energy balance.

  4. Stochastic and compensatory effects limit persistence of variation in body mass of young caribou

    USGS Publications Warehouse

    Dale, Bruce W.; Adams, Layne G.; Collins, William B.; Joly, Kyle; Valkenburg, Patrick; Tobey, Robert

    2008-01-01

    Nutritional restriction during growth can have short- and long-term effects on fitness; however, animals inhabiting uncertain environments may exhibit adaptations to cope with variation in food availability. We examined changes in body mass in free-ranging female caribou (Rangifer tarandus) by measuring mass at birth and at 4, 11, and 16 months of age to evaluate the relative importance of seasonal nutrition to growth, the persistence of cohort-specific variation in body mass through time, and compensatory growth of individuals. Relative mean body mass of cohorts did not persist through time. Compensatory growth of smaller individuals was not observed in summer; however, small calves exhibited more positive change in body mass than did large calves. Compensation occurred during periods of nutritional restriction (winter) rather than during periods of rapid growth (summer) thus differing from the conventional view of compensatory growth.

  5. Broken flavor 2↔3 symmetry and phenomenological approach for universal quark and lepton mass matrices

    NASA Astrophysics Data System (ADS)

    Matsuda, Koichi; Nishiura, Hiroyuki

    2006-01-01

    A phenomenological approach for the universal mass matrix model with a broken flavor 2↔3 symmetry is explored by introducing the 2↔3 antisymmetric parts of mass matrices for quarks and charged leptons. We present explicit texture components of the mass matrices, which are consistent with all the neutrino oscillation experiments and quark mixing data. The mass matrices have a common structure for quarks and leptons, while the large lepton mixings and the small quark mixings are derived with no fine-tuning due to the difference of the phase factors. The model predicts a value 2.4×10-3 for the lepton mixing matrix element square |U13|2, and also ⟨mν⟩=(0.89-1.4)×10-4eV for the averaged neutrino mass which appears in the neutrinoless double beta decay.

  6. Metal oxide nanoparticles for latent fingerprint visualization and analysis of small drug molecules using surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Amin, Mohamed O; Madkour, Metwally; Al-Hetlani, Entesar

    2018-05-17

    We explored the applicability of different metal oxide nanoparticles (NPs; ZnO, TiO 2 , Fe 2 O 3 , and CeO 2 ) for the optical imaging and mass spectrometric determination of small drug molecules in latent fingerprints (LFPs). Optical imaging was achieved using a dry method-simply dusting the LFPs with a minute amount of NP powder-and still images were captured using a digital microscope and a smartphone camera. Mass spectrometric determination was performed using the NPs as substrates for surface-assisted laser desorption ionization/mass spectrometry (SALDI-MS), which enabled the detection of small drug molecules with high signal intensities. The reproducibility of the results was studied by calculating the % error, SD, and RSD in the results obtained with the various metal oxide NPs. Collectively, the findings showed that using NPs can boost the intensity of the detected signal while minimizing background noise which is an issue predominantly associated with conventional organic matrices of MALDI-MS. Among the four metal oxide NPs, utilization of the Fe 2 O 3 NPs led to the best SALDI performance and the highest detection sensitivity for the analytes of interest. The study was then extended by investigating the influence of time elapsed since the generation of the LFP on the detection of drug molecules in the LFP. The results demonstrated that this method allows the analysis of drug molecules after as long as one week at low and intermediate temperatures (0 and 25 °C). Therefore, the SALDI analysis of small molecules using inorganic NPs, which can be implemented in forensic laboratories for screening and detection purposes, as a powerful alternative to the use of organic matrices. Graphical abstract ᅟ.

  7. THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.

    2013-04-10

    In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, thesemore » differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.« less

  8. Mergers in ΛCDM: Uncertainties in Theoretical Predictions and Interpretations of the Merger Rate

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Croton, Darren; Bundy, Kevin; Khochfar, Sadegh; van den Bosch, Frank; Somerville, Rachel S.; Wetzel, Andrew; Keres, Dusan; Hernquist, Lars; Stewart, Kyle; Younger, Joshua D.; Genel, Shy; Ma, Chung-Pei

    2010-12-01

    Different theoretical methodologies lead to order-of-magnitude variations in predicted galaxy-galaxy merger rates. We examine how this arises and quantify the dominant uncertainties. Modeling of dark matter and galaxy inspiral/merger times contribute factor of ~2 uncertainties. Different estimates of the halo-halo merger rate, the subhalo "destruction" rate, and the halo merger rate with some dynamical friction time delay for galaxy-galaxy mergers, agree to within this factor of ~2, provided proper care is taken to define mergers consistently. There are some caveats: if halo/subhalo masses are not appropriately defined the major-merger rate can be dramatically suppressed, and in models with "orphan" galaxies and under-resolved subhalos the merger timescale can be severely over-estimated. The dominant differences in galaxy-galaxy merger rates between models owe to the treatment of the baryonic physics. Cosmological hydrodynamic simulations without strong feedback and some older semi-analytic models (SAMs), with known discrepancies in mass functions, can be biased by large factors (~5) in predicted merger rates. However, provided that models yield a reasonable match to the total galaxy mass function, the differences in properties of central galaxies are sufficiently small to alone contribute small (factor of ~1.5) additional systematics to merger rate predictions. But variations in the baryonic physics of satellite galaxies in models can also have a dramatic effect on merger rates. The well-known problem of satellite "over-quenching" in most current SAMs—whereby SAM satellite populations are too efficiently stripped of their gas—could lead to order-of-magnitude under-estimates of merger rates for low-mass, gas-rich galaxies. Models in which the masses of satellites are fixed by observations (or SAMs adjusted to resolve this "over-quenching") tend to predict higher merger rates, but with factor of ~2 uncertainties stemming from the uncertainty in those observations. The choice of mass used to define "major" and "minor" mergers also matters: stellar-stellar major mergers can be more or less abundant than halo-halo major mergers by an order of magnitude. At low masses, most true major mergers (mass ratio defined in terms of their baryonic or dynamical mass) will appear to be minor mergers in their stellar mass ratio—observations and models using just stellar criteria could underestimate major-merger rates by factors of ~3-5. We discuss the uncertainties in relating any merger rate to spheroid formation (in observations or theory): in order to achieve better than factor of ~3 accuracy, it is necessary to account for the distribution of merger orbital parameters, gas fractions, and the full efficiency of merger-induced effects as a function of mass ratio.

  9. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas

    PubMed Central

    2013-01-01

    Backgound The venom of the Cuban scorpion Rhopalurus junceus is poorly study from the point of view of their components at molecular level and the functions associated. The purpose of this article was to conduct a proteomic analysis of venom components from scorpions collected in different geographical areas of the country. Results Venom from the blue scorpion, as it is called, was collected separately from specimens of five distinct Cuban towns (Moa, La Poa, Limonar, El Chote and Farallones) of the Nipe-Sagua-Baracoa mountain massif and fractionated by high performance liquid chromatography (HPLC); the molecular masses of each fraction were ascertained by mass spectrometry analysis. At least 153 different molecular mass components were identified among the five samples analyzed. Molecular masses varied from 466 to 19755 Da. Scorpion HPLC profiles differed among these different geographical locations and the predominant molecular masses of their components. The most evident differences are in the relative concentration of the venom components. The most abundant components presented molecular weights around 4 kDa, known to be K+-channel specific peptides, and 7 kDa, known to be Na+-channel specific peptides, but with small molecular weight differences. Approximately 30 peptides found in venom samples from the different geographical areas are identical, supporting the idea that they all probably belong to the same species, with some interpopulational variations. Differences were also found in the presence of phospholipase, found in venoms from the Poa area (molecular weights on the order of 14 to 19 kDa). The only ubiquitous enzyme identified in the venoms from all five localities studied (hyaluronidase) presented the same 45 kD molecular mass, identified by gel electrophoresis analysis. Conclusions The venom of these scorpions from different geographical areas seem to be similar, and are rich in peptides that have of the same molecular masses of the peptides purified from other scorpions that affect ion-channel functions. PMID:23849540

  10. Micro-mass standards to calibrate the sensitivity of mass comparators

    NASA Astrophysics Data System (ADS)

    Madec, Tanguy; Mann, Gaëlle; Meury, Paul-André; Rabault, Thierry

    2007-10-01

    In mass metrology, the standards currently used are calibrated by a chain of comparisons, performed using mass comparators, that extends ultimately from the international prototype (which is the definition of the unit of mass) to the standards in routine use. The differences measured in the course of these comparisons become smaller and smaller as the standards approach the definitions of their units, precisely because of how accurately they have been adjusted. One source of uncertainty in the determination of the difference of mass between the mass compared and the reference mass is the sensitivity error of the comparator used. Unfortunately, in the market there are no mass standards small enough (of the order of a few hundreds of micrograms) for a valid evaluation of this source of uncertainty. The users of these comparators therefore have no choice but to rely on the characteristics claimed by the makers of the comparators, or else to determine this sensitivity error at higher values (at least 1 mg) and interpolate from this result to smaller differences of mass. For this reason, the LNE decided to produce and calibrate micro-mass standards having nominal values between 100 µg and 900 µg. These standards were developed, then tested in multiple comparisons on an A5 type automatic comparator. They have since been qualified and calibrated in a weighing design, repeatedly and over an extended period of time, to establish their stability with respect to oxidation and the harmlessness of the handling and storage procedure associated with their use. Finally, the micro-standards so qualified were used to characterize the sensitivity errors of two of the LNE's mass comparators, including the one used to tie France's Platinum reference standard (Pt 35) to stainless steel and superalloy standards.

  11. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell; Di Stefano, Rosanne

    2017-06-01

    We compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, common proper motion, etc. Each observational technique is sensitive to companions across a narrow parameter space of orbital periods P and mass ratios q = {M}{comp}/M 1. After combining the samples from the various surveys and correcting for their respective selection effects, we find that the properties of companions to O-type and B-type main-sequence (MS) stars differ among three regimes. First, at short orbital periods P ≲ 20 days (separations a ≲ 0.4 au), the binaries have small eccentricities e ≲ 0.4, favor modest mass ratios < q> ≈ 0.5, and exhibit a small excess of twins q > 0.95. Second, the companion frequency peaks at intermediate periods log P (days) ≈ 3.5 (a ≈ 10 au), where the binaries have mass ratios weighted toward small values q ≈ 0.2-0.3 and follow a Maxwellian “thermal” eccentricity distribution. Finally, companions with long orbital periods log P (days) ≈ 5.5-7.5 (a ≈ 200-5000 au) are outer tertiary components in hierarchical triples and have a mass ratio distribution across q ≈ 0.1-1.0 that is nearly consistent with random pairings drawn from the initial mass function. We discuss these companion distributions and properties in the context of binary-star formation and evolution. We also reanalyze the binary statistics of solar-type MS primaries, taking into account that 30% ± 10% of single-lined spectroscopic binaries likely contain white dwarf companions instead of low-mass stellar secondaries. The mean frequency of stellar companions with q > 0.1 and log P (days) < 8.0 per primary increases from 0.50 ± 0.04 for solar-type MS primaries to 2.1 ± 0.3 for O-type MS primaries. We fit joint probability density functions f({M}1,q,P,e)\

  12. Model test study on propagation law of plane stress wave in jointed rock mass under different in-situ stresses

    NASA Astrophysics Data System (ADS)

    Dong, Qian

    2017-12-01

    The study of propagation law of plane stress wave in jointed rock mass under in-situ stress has important significance for safety excavation of underground rock mass engineering. A model test of the blasting stress waves propagating in the intact rock and jointed rock mass under different in-situ stresses was carried out, and the influencing factors on the propagation law, such as the scale of static loads and the number of joints were studied respectively. The results show that the transmission coefficient of intact rock is larger than that of jointed rock mass under the same loading condition. With the increase of confining pressure, the transmission coefficients of intact rock and jointed rock mass both show an trend of increasing first and then decreasing, and the variation of transmission coefficients in intact rock is smaller than that of jointed rock mass. Transmission coefficient of jointed rock mass decreases with the increase of the number of joints under the same loading condition, when the confining pressure is relatively small, the reduction of transmission coefficients decreases with the increasing of the number of joints, and the variation law of the reduction of transmission coefficients is contrary when the confining pressure is large.

  13. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future.

    PubMed

    Dixit, Sugyan M; Polasky, Daniel A; Ruotolo, Brandon T

    2018-02-01

    Rapidly characterizing the three-dimensional structures of proteins and the multimeric machines they form remains one of the great challenges facing modern biological and medical sciences. Ion mobility-mass spectrometry based techniques are playing an expanding role in characterizing these functional complexes, especially in drug discovery and development workflows. Despite this expansion, ion mobility-mass spectrometry faces many challenges, especially in the context of detecting small differences in protein tertiary structure that bear functional consequences. Collision induced unfolding is an ion mobility-mass spectrometry method that enables the rapid differentiation of subtly-different protein isoforms based on their unfolding patterns and stabilities. In this review, we summarize the modern implementation of such gas-phase unfolding experiments and provide an overview of recent developments in both methods and applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. From Galaxies to the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.

    2010-07-01

    Deep in dark matter halos, galaxies are large factories that convert gas into stars. Gas is accreted from the expansive intergalactic medium (IGM); stars process this gas by fusing lighter elements into heavier ones. In this Dissertation, I combine both observations and theories from a variety of subfields of astrophysics with analytic and numerical models in an aim for a comprehensive understanding of the underlying physics of star formation feedback, galaxy chemical evolution, and the IGM. The mass-metallicity relation is an observed tight correlation between the stellar masses and gas-phase oxygen abundances of star-forming galaxies. I show that while the intrinsic scatter in this relation is small, extreme outliers do exist; I argue that these outliers have unusual metallicities for their masses because they have unusual gas fractions for their masses. The low-mass high-metallicity galaxies appear to be nearing the end of their star formation, and thus should have abnormally small gas reservoirs with which to dilute their metals. On the other hand, the high-mass low-metallicity galaxies appear to be undergoing gas-rich galaxy mergers, implying that they have larger-than-normal amounts of gas diluting their metals. I then show through analytic arguments that while gas fractions can have a large impact on observed metallicities, the low-redshift mass-metallicity relation is dominated by outflow properties because typical galaxies have relatively small gas fractions. Specifically, the mass-metallicity relation implies that the efficiency with which galaxies expel metals should scale steeply with galaxy mass. Combining this model with reasonable models for star formation feedback, I show that the outflow metallicity should likewise vary with galaxy mass; future measurements of wind metallicity can therefore inform models of the physics underlying galaxy winds. The high-redshift IGM is primarily observed through the Lyman-alpha absorption of neutral hydrogen along the line of sight to a distant quasar. As samples of close quasar pairs increase, so does the amount of potential information in the Lya forest transverse to the line-of-sight. Using two cosmological hydrodynamic simulations with different photoionization heating rates and thus different IGM temperature-density relations, I show that the small-scale structure in the Lya forest along the line of sight is dominated by the current thermal state of the gas. On the other hand, the transverse signal is sensitive to - and thus could be used to place unique constraints on - the thermal history of the gas. Finally, I investigate how a two-phase medium is treated in a suite of idealized smoothed particle hydrodynamic (SPH) simulations. I show that cold, dense spherical blobs become over-pressured relative to their hot, tenuous surroundings, arguing that this is because of an effective numerical surface tension owing to the un-resolveable density discontinuity. I then test one proposed modification to how pressure gradients are calculated in SPH, the so-called "relative pressure SPH" (rpSPH); while rpSPH leads to a more uniform pressure across the simulation, I show that it is ultimately unstable because of its lack of momentum conservation.

  15. Fermion masses and mixing in general warped extra dimensional models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  16. Low-Mass Inflation Systems for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Webster, Mark S.; Engelbrecht, Carl S.

    1995-01-01

    The use of inflatable space structures has often been proposed for aerospace and planetary applications. Communication, power generation, and very-long-baseline interferometry are just three potential applications of inflatable technology. The success of inflatable structures depends on the development of an applications of inflatable technology. This paper describes two design studies performed to develop a low mass inflation system. The first study takes advantage of existing onboard propulsion gases to reduce the overall system mass. The second study assumes that there is no onboard propulsion system. Both studies employ advanced components developed for the Pluto fast flyby spacecraft to further reduce mass. The study examined four different types of systems: hydrazine, nitrogen and water, nitrogen, and xenon. This study shows that all of these systems can be built for a small space structure with masses lower than 0.5 kilograms.

  17. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE PAGES

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; ...

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with smallmore » mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  18. The community-level effect of light on germination timing in relation to seed mass: a source of regeneration niche differentiation.

    PubMed

    Zhang, Chunhui; Willis, Charles G; Burghardt, Liana T; Qi, Wei; Liu, Kun; Souza-Filho, Paulo Roberto de Moura; Ma, Zhen; Du, Guozhen

    2014-11-01

    Within a community, species may germinate at different times so as to mitigate competition and to take advantage of different aspects of the seasonal environment (temporal niche differentiation). We illustrated a hypothesis of the combined effects of abiotic and biotic competitive factors on germination timing and the subsequent upscale effects on community assembly. We estimated the germination timing (GT) for 476 angiosperm species of the eastern Tibetan Plateau grasslands under two light treatments in the field: high (i.e. natural) light and low light. We also measured the shift in germination timing (SGT) across treatments for all species. Furthermore, we used phylogenetic comparative methods to test if GT and SGT were associated with seed mass, an important factor in competitive interactions. We found a significant positive correlation between GT and seed mass in both light treatments. Additionally, small seeds (early germinating seeds) tended to germinate later and large seeds (late germinating seeds) tended to germinate earlier under low light vs high light conditions. Low light availability can reduce temporal niche differentiation by increasing the overlap in germination time between small and large seeds. In turn, reduced temporal niche differentiation may increase competition in the process of community assembly. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. The Late-Time Formation and Dynamical Signatures of Small Planets

    NASA Astrophysics Data System (ADS)

    Lee, Eve Jihyun

    The riddle posed by super-Earths is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. In this thesis, I demonstrate that this puzzle is solved if super-Earths formed late, in the inner cavities of transitional disks. Super-puffs present the inverse problem of being too voluminous for their small masses. I show that super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside 1 AU, and then migrate in just after super-Earths appear. Super-Earths and Earth-sized planets around FGKM dwarfs are evenly distributed in log orbital period down to 10 days, but dwindle in number at shorter periods. I demonstrate that both the break at 10 days and the slope of the occurrence rate down to 1 day can be reproduced if planets form in disks that are truncated by their host star magnetospheres at co-rotation. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Small planets may remain ubiquitous out to large orbital distances. I demonstrate that the variety of debris disk morphologies revealed by scattered light images can be explained by viewing an eccentric disk, secularly forced by a planet of just a few Earth masses, from different observing angles. The farthest reaches of planetary systems may be perturbed by eccentric super-Earths.

  20. Measurement of Size-dependent Dynamic Shape Factors of Quartz Particles in Two Flow Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Jennifer M.; Bell, David M.; Imre, D.

    2016-08-02

    Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particles properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility, aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, themore » dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (d < 200 nm) particles is 1.25, while χv of larger particles (d ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast χt, of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.« less

  1. A comparison of approaches for estimating bottom-sediment mass in large reservoirs

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    Estimates of sediment and sediment-associated constituent loads and yields from drainage basins are necessary for the management of reservoir-basin systems to address important issues such as reservoir sedimentation and eutrophication. One method for the estimation of loads and yields requires a determination of the total mass of sediment deposited in a reservoir. This method involves a sediment volume-to-mass conversion using bulk-density information. A comparison of four computational approaches (partition, mean, midpoint, strategic) for using bulk-density information to estimate total bottom-sediment mass in four large reservoirs indicated that the differences among the approaches were not statistically significant. However, the lack of statistical significance may be a result of the small sample size. Compared to the partition approach, which was presumed to provide the most accurate estimates of bottom-sediment mass, the results achieved using the strategic, mean, and midpoint approaches differed by as much as ?4, ?20, and ?44 percent, respectively. It was concluded that the strategic approach may merit further investigation as a less time consuming and less costly alternative to the partition approach.

  2. Chaotic component obscured by strong periodicity in voice production system

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2008-06-01

    The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity.

  3. Chaotic component obscured by strong periodicity in voice production system

    PubMed Central

    Tao, Chao; Jiang, Jack J.

    2010-01-01

    The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity. PMID:18643315

  4. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    NASA Astrophysics Data System (ADS)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  5. A Small-Scale Flux Rope and its Associated CME and Shock.

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ying, B.; Lu, L.; Zhang, J.

    2016-12-01

    A magnetic flux rope (MFR) is thought be a key ingredient of a coronal mass ejection (CME). It has been extensively explored after the Solar Dynamics Observatory (SDO) mission was launched. Previous studies are often concentrated on large-scale MFRs whose size are comparable to the active regions they reside. In this paper, we investigate the properties of a small-scale magnetic flux rope (SMFR) of a limb event observed by Atmospheric Imaging Assembly (AIA) . This SMFR originated from a very small and compact region at the edge of the active region and appeared mainly in the AIA 94 Å passband. It drove a coronal mass ejection (CME) and a type II burst was associated with the CME-driven shock. The type II burst started with a very high frequency. We obtain the compression ratio of the shock from the band splitting of the type II emissions and further derive the Alfvénic Mach number and the coronal magnetic field strength. On the other hand,we study the CME structure in LASCO coronagraph images and address its characteristics through measuring its mass and energy. Compared to the nature of the standard model of the CME, this CME triggered by the SMF are found to be different in some aspects.

  6. Black hole binaries dynamically formed in globular clusters

    NASA Astrophysics Data System (ADS)

    Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof

    2017-08-01

    We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.

  7. A Deep Hydrographic Section Across the Tasman Sea.

    DTIC Science & Technology

    1985-09-01

    the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and

  8. Coulomb Friction Damper

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  9. Differences and changes in the physical characteristics of professional and amateur rugby union players.

    PubMed

    Smart, Daniel J; Hopkins, Will G; Gill, Nicholas D

    2013-11-01

    Numerous studies have highlighted differences between playing levels and positions in rugby union; however, few studies have investigated longitudinal progressions of body composition and physical performance. Between-player differences and within-player changes in body composition, strength, power, speed, and repeated sprint ability, from 1,161 New Zealand rugby union players from 2004 to 2007, were estimated using a mixed modeling procedure. Props had the highest mass, percent body fat, strength, and slowest speed times compared with the other positions, whereas outside backs had the fastest speed time and lowest percent body fat. For most measures, there were small-to-moderate differences (range, 1.1-14%) between players selected and not selected for provincial teams and small-to-large differences (range, 1.8-15%) between provincial and Super Rugby (professional) players. The faster 20-m sprint times in international compared with Super Rugby players was small in magnitude for both the forwards (1.9%) and backs (2.2%). The average annual improvements were small to moderate for strength (range, 2.1-15%) and small for repeated sprint ability within the lower playing levels (~1.5%). Small increases occurred in lower body strength (~7.0%) as players moved from Super Rugby to provincial competition. Small decreases in sprint time (~1.6%) and small increases in strength (~6.3%) occurred as players moved from Super Rugby to midyear international competition. The differences between levels in performance provide level-specific characteristics from Super Rugby and below, but international players may be selected because of greater skill and experience. Changes in physical performance between competitions may be a result of reduced training loads because of regular high-intensity matches and greater travel involved in the Super Rugby competition.

  10. Relic neutralino surface at a 100 TeV collider

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Martin, Adam; ...

    2015-03-11

    We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeVmore » hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.« less

  11. On the association between synoptic circulation and wildfires in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Papadopoulos, A.; Paschalidou, A. K.; Kassomenos, P. A.; McGregor, G.

    2014-02-01

    In the present paper cluster analysis of 2-month air mass back-trajectories for three contrasting fire and non-fire events is conducted (high, low, and zero burnt area). The large fire event displays an air mass history dissimilar to other events whereby a 39-day period of warm and dry chiefly northerly anticyclonic conditions is evident, before a week of warmer predominantly southwesterly cyclonic activity, immediately prior to ignition. The pressure level of these anticyclonic air masses is above 800 hPa for more than 75 % of the trajectory length; this region is above the principal moisture transport regime of 800 hPa altitude. Analysis of variance on the mean rate of change of potential temperature identified weak statistically significant differences between two air mass pairs regarding the large fire: anticyclonic and cyclonic air masses in both cases ( p = 0.038 and p = 0.020). Such regularity of type and occurrence, approach pressure levels and statistically significant differences are not evident for the small and non-fire event air masses. Such understanding is expected to permit appropriate steps to be undertaken including superior prediction and improved suppression strategy.

  12. Identification and Quantification of N-Acyl Homoserine Lactones Involved in Bacterial Communication by Small-Scale Synthesis of Internal Standards and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Leipert, Jan; Treitz, Christian; Leippe, Matthias; Tholey, Andreas

    2017-12-01

    N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. Graphical abstract ᅟ.

  13. Identification and Quantification of N-Acyl Homoserine Lactones Involved in Bacterial Communication by Small-Scale Synthesis of Internal Standards and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Leipert, Jan; Treitz, Christian; Leippe, Matthias; Tholey, Andreas

    2017-12-01

    N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. [Figure not available: see fulltext.

  14. The limited role of galaxy mergers in driving stellar mass growth over cosmic time

    NASA Astrophysics Data System (ADS)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Laigle, C.; Pichon, C.

    2017-11-01

    A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of 'major' mergers (mass ratios ≳ 1 : 4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of today's stellar mass was assembled. However, the heterogeneity and relatively small size of today's data sets, coupled with the difficulty in identifying genuine mergers, makes it challenging to empirically quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. ∼35 and ∼20 per cent at z ∼ 3 and z ∼ 1, respectively) and (3) only ∼25 per cent of today's stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.

  15. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    NASA Astrophysics Data System (ADS)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  16. Liquid chromatography-mass spectrometry platform for both small neurotransmitters and neuropeptides in blood, with automatic and robust solid phase extraction

    NASA Astrophysics Data System (ADS)

    Johnsen, Elin; Leknes, Siri; Wilson, Steven Ray; Lundanes, Elsa

    2015-03-01

    Neurons communicate via chemical signals called neurotransmitters (NTs). The numerous identified NTs can have very different physiochemical properties (solubility, charge, size etc.), so quantification of the various NT classes traditionally requires several analytical platforms/methodologies. We here report that a diverse range of NTs, e.g. peptides oxytocin and vasopressin, monoamines adrenaline and serotonin, and amino acid GABA, can be simultaneously identified/measured in small samples, using an analytical platform based on liquid chromatography and high-resolution mass spectrometry (LC-MS). The automated platform is cost-efficient as manual sample preparation steps and one-time-use equipment are kept to a minimum. Zwitter-ionic HILIC stationary phases were used for both on-line solid phase extraction (SPE) and liquid chromatography (capillary format, cLC). This approach enabled compounds from all NT classes to elute in small volumes producing sharp and symmetric signals, and allowing precise quantifications of small samples, demonstrated with whole blood (100 microliters per sample). An additional robustness-enhancing feature is automatic filtration/filter back-flushing (AFFL), allowing hundreds of samples to be analyzed without any parts needing replacement. The platform can be installed by simple modification of a conventional LC-MS system.

  17. Properties and rotation of molecular clouds in M 33

    NASA Astrophysics Data System (ADS)

    Braine, J.; Rosolowsky, E.; Gratier, P.; Corbelli, E.; Schuster, K.-F.

    2018-04-01

    The sample of 566 molecular clouds identified in the CO(2-1) IRAM survey covering the disk of M 33 is explored in detail. The clouds were found using CPROPS and were subsequently catalogued in terms of their star-forming properties as non-star-forming (A), with embedded star formation (B), or with exposed star formation (C, e.g., presence of Hα emission). We find that the size-linewidth relation among the M 33 clouds is quite weak but, when comparing with clouds in other nearby galaxies, the linewidth scales with average metallicity. The linewidth and particularly the line brightness decrease with galactocentric distance. The large number of clouds makes it possible to calculate well-sampled cloud mass spectra and mass spectra of subsamples. As noted earlier, but considerably better defined here, the mass spectrum steepens (i.e., higher fraction of small clouds) with galactocentric distance. A new finding is that the mass spectrum of A clouds is much steeper than that of the star-forming clouds. Further dividing the sample, this difference is strong at both large and small galactocentric distances and the A vs. C difference is a stronger effect than the inner vs. outer disk difference in mass spectra. Velocity gradients are identified in the clouds using standard techniques. The gradients are weak and are dominated by prograde rotation; the effect is stronger for the high signal-to-noise clouds. A discussion of the uncertainties is presented. The angular momenta are low but compatible with at least some simulations. Finally, the cloud velocity gradients are compared with the gradient of disk rotation. The cloud and galactic gradients are similar; the cloud rotation periods are much longer than cloud lifetimes and comparable to the galactic rotation period. The rotational kinetic energy is 1-2% of the gravitational potential energy and the cloud edge velocity is well below the escape velocity, such that cloud-scale rotation probably has little influence on the evolution of molecular clouds.

  18. Measurement of the phase difference between short- and long-distance amplitudes in the {{B} ^+} → {{{K}} ^+} {μ ^+μ ^-} decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zucchelli, S.

    2017-03-01

    A measurement of the phase difference between the short- and long-distance contributions to the {{B} ^+} → {{{K}} ^+} {μ ^+μ ^-} decay is performed by analysing the dimuon mass distribution. The analysis is based on pp collision data corresponding to an integrated luminosity of 3 fb^{-1} collected by the LHCb experiment in 2011 and 2012. The long-distance contribution to the {{B} ^+} → {{{K}} ^+} {μ ^+μ ^-} decay is modelled as a sum of relativistic Breit-Wigner amplitudes representing different vector meson resonances decaying to muon pairs, each with their own magnitude and phase. The measured phases of the {{J}/ψ } and ψ {(2S)} resonances are such that the interference with the short-distance component in dimuon mass regions far from their pole masses is small. In addition, constraints are placed on the Wilson coefficients, C9 and C_{10}, and the branching fraction of the short-distance component is measured.

  19. Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Filippeschi, Sauro

    2012-06-01

    A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.

  20. Measurement of the phase difference between short- and long-distance amplitudes in the [Formula: see text] decay.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    A measurement of the phase difference between the short- and long-distance contributions to the [Formula: see text] decay is performed by analysing the dimuon mass distribution. The analysis is based on pp collision data corresponding to an integrated luminosity of 3[Formula: see text] collected by the LHCb experiment in 2011 and 2012. The long-distance contribution to the [Formula: see text] decay is modelled as a sum of relativistic Breit-Wigner amplitudes representing different vector meson resonances decaying to muon pairs, each with their own magnitude and phase. The measured phases of the [Formula: see text] and [Formula: see text] resonances are such that the interference with the short-distance component in dimuon mass regions far from their pole masses is small. In addition, constraints are placed on the Wilson coefficients, [Formula: see text] and [Formula: see text], and the branching fraction of the short-distance component is measured.

  1. How do binary separations depend on cloud initial conditions?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.

    2003-11-01

    We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.

  2. The Physique of Elite Female Artistic Gymnasts: A Systematic Review.

    PubMed

    Bacciotti, Sarita; Baxter-Jones, Adam; Gaya, Adroaldo; Maia, José

    2017-09-01

    It has been suggested that successful young gymnasts are a highly select group in terms of the physique. This review summarizes the available literature on elite female gymnasts' anthropometric characteristics, somatotype, body composition and biological maturation. The main aims were to identify: (i) a common physique and (ii) the differences, if any, among competitive/performance levels. A systematic search was conducted online using five different databases. Of 407 putative papers, 17 fulfilled all criteria and were included in the review. Most studies identified similar physiques based on: physical traits (small size and low body mass), a body type (predominance of ecto-mesomorphy), body composition (low fat mass), and maturity status (late skeletal maturity as well as late age-at-menarche). However, there was no consensus as to whether these features predicted competitive performance, or even differentiated between gymnasts within distinctive competitive levels. In conclusion, gymnasts, as a group, have unique pronounced characteristics. These characteristics are likely due to selection for naturally-occurring inherited traits. However, data available for world class competitions were mostly outdated and sample sizes were small. Thus, it was difficult to make any conclusions about whether physiques differed between particular competitive levels.

  3. Searching for Constraints on Starobinsky's Model with a Disappearing Cosmological Constant on Galaxy Cluster Scales

    NASA Astrophysics Data System (ADS)

    Alexeyev, S. O.; Latosh, B. N.; Echeistov, V. A.

    2017-12-01

    Predictions of the f( R)-gravity model with a disappearing cosmological constant (Starobinsky's model) on scales characteristic of galaxies and their clusters are considered. The absence of a difference in the mass dependence of the turnaround radius between Starobinsky's model and General Relativity accessible to observation at the current accuracy of measurements has been established. This is true both for small masses (from 109 M Sun) corresponding to an individual galaxy and for masses corresponding to large galaxy clusters (up to 1015 M Sun). The turnaround radius increases with parameter n for all masses. Despite the fact that some models give a considerably smaller turnaround radius than does General Relativity, none of the models goes beyond the bounds specified by the observational data.

  4. Robot-assisted approach improves surgical outcomes in obese patients undergoing partial nephrectomy.

    PubMed

    Malkoc, Ercan; Maurice, Matthew J; Kara, Onder; Ramirez, Daniel; Nelson, Ryan J; Caputo, Peter A; Mouracade, Pascal; Stein, Robert; Kaouk, Jihad H

    2017-02-01

    To assess the impact of approach on surgical outcomes in otherwise healthy obese patients undergoing partial nephrectomy for small renal masses. Using our institutional partial nephrectomy database, we abstracted data on otherwise healthy (Charlson comorbidity score ≤1 and bilateral kidneys), obese patients (body mass index >30 kg/m 2 ) with small renal masses (<4 cm) treated between 2011 and 2015. The primary outcomes were intra-operative transfusion, operating time, length of hospital stay (LOS), and postoperative complications. The association between approach, open (OPN) vs robot-assisted partial nephrectomy (RAPN), and outcomes was assessed by univariable and multivariable logistic regression analyses. Covariates included age, gender, obesity severity, tumour size and tumour complexity. Of 237 obese patients undergoing partial nephrectomy, 25% underwent OPN and 75% underwent RAPN. Apart from larger tumour size in the OPN group (2.8 vs 2.5 cm; P = 0.02), there was no significant difference between groups. The rate of intra-operative blood transfusion (1.1 vs 10%; P = 0.01), the median operating time (180 vs 207 min; P < 0.01) and the median ischaemia time (19.5 vs 27 min; P < 0.01) were all greater for OPN. The LOS was significantly shorter for RAPN (3 vs 4 days; P < 0.01). While the overall complication rate was higher for OPN (15.8 vs 31.7%; P < 0.01), major complications were not significantly different (5.6 vs 1.7%; P = 0.20). On multivariable analyses, OPN independently predicted longer operating time, longer length of stay, and more overall complications. At a high-volume centre, the robot-assisted approach offers less blood transfusion, shorter operating time, faster recovery, and fewer peri-operative complications compared with the open approach in obese patients undergoing partial nephrectomy for small renal masses. In this setting, RAPN may be a preferable treatment option. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  5. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    PubMed

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the investigation of underlying mechanism of therapeutic strategies. © 2017 Wiley Periodicals, Inc.

  6. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    Researchers summarize previous Raman spectroscopic results and discuss important structural differences in the various phases of active mass and active mass precursors. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to x rays (i.e., does not scatter x rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging are discussed. The oxidation states and dopant contents are explained in terms of the nonstoichiometric structures.

  7. A study of the feasibility of mechanical pumps for use with the Pioneer-Venus probe mass spectrometer inlet system

    NASA Technical Reports Server (NTRS)

    Thomas, N. C.; Crosmer, W. E.; Nowak, D.

    1973-01-01

    A survey of mechanical vacuum pumps was completed. A small Roots blower for flight mass spectrometer applications was evaluated with respect to system operating parameters in a number of different modes of operation. The survey indicated that a metal bellows pump might be a viable alternative for the systems requirements. The results of the study are given, including current status of possible flight-type pumps, a systems analysis using available pumps, and recommendations for fabrication and tests of a potential flight-type pump.

  8. Extending the ICRF into the Infrared: 2MASS - UCAC Astrometry

    NASA Technical Reports Server (NTRS)

    Zacharias, Norbert; McCallon, Howard L.; Kopan, Eugene; Cutri, Roc M.

    2000-01-01

    An external comparison between the infrared 2MASS and the optical UCAC positions was performed, both being on the same system, the ICRS. About 48 million sources in common were identified. Random errors of the 2MASS catalog positions are about 60 to 70 mas per coordinate for the Ks = 4 to 14 range, increasing to about 100 to 150 mas for saturated and very faint stars. Systematic position differences between the 2 catalogs are very small, about 5 to 10 mas as a function of magnitude and color, with somewhat larger errors as a function of right ascension and declination. The extension of the ICRF into the infrared has become a reality.

  9. A Label-Free Detection of Biomolecules Using Micromechanical Biosensors

    NASA Astrophysics Data System (ADS)

    Meisam, Omidi; A. Malakoutian, M.; Mohammadmehdi, Choolaei; Oroojalian, F.; Haghiralsadat, F.; Yazdian, F.

    2013-06-01

    A Microcantilevers resonator is used to detect a protein biomarker called prostate specific antigen (PSA), which is associated with prostate cancer. Different concentrations of PSA in a buffer solution are detected as a function of deflection of the beams. For this purpose, we use a surface micromachined, antibody-coated polycrystalline silicon micromechanical cantilever beam. Cantilevers have mass sensitivities of the order of 10-17 g/Hz, which result from their small mass. This matter allows them to detect an immobilized antibody monolayer corresponding to a mass of about 70 fg. With these devices, concentrations as low as 150 fg/mL, or 4.5 fM, could be detected from the realistic samples.

  10. Multi-Component Molecular-Level Body Composition Reference Methods: Evolving Concepts and Future Directions

    PubMed Central

    Heymsfield, Steven B.; Ebbeling, Cara B.; Zheng, Jolene; Pietrobelli, Angelo; Strauss, Boyd J.; Silva, Analiza M.; Ludwig, David S.

    2015-01-01

    Excess adiposity is the main phenotypic feature that defines human obesity and that plays a pathophysiological role in most chronic diseases. Measuring the amount of fat mass present is thus a central aspect of studying obesity at the individual and population levels. Nevertheless, a consensus is lacking among investigators on a single accepted “reference” approach for quantifying fat mass in vivo. While the research community generally relies on the multicomponent body-volume class of “reference” models for quantifying fat mass, no definable guide discerns among different applied equations for partitioning the four (fat, water, protein, and mineral mass) or more quantified components, standardizes “adjustment” or measurement system approaches for model-required labeled water dilution volumes and bone mineral mass estimates, or firmly establishes the body temperature at which model physical properties are assumed. The resulting differing reference strategies for quantifying body composition in vivo leads to small but under some circumstances important differences in the amount of measured body fat. Recent technological advances highlight opportunities to expand model applications to new subject groups and measured components such as total body protein. The current report reviews the historical evolution of multicomponent body volume-based methods in the context of prevailing uncertainties and future potential. PMID:25645009

  11. Almost-dispersionless pulse transport in long quasiuniform spring-mass chains: A different kind of Newton's cradle

    NASA Astrophysics Data System (ADS)

    Vaia, Ruggero

    2018-04-01

    Almost-dispersionless pulse transfer between the extremal masses of a uniform harmonic spring-mass chain of arbitrary length can be induced by suitably modifying two masses and their spring's elastic constant at both extrema of the chain. It is shown that a deviation (or a pulse) imposed to the first mass gives rise to a wave packet that, after a time of the order of the chain length, almost perfectly reproduces the same deviation (pulse) at the opposite end, with an amplitude loss that is as small as 1.3% in the infinite-length limit; such a dynamics can continue back and forth again for several times before dispersion cleared the effect. The underlying coherence mechanism is that the initial condition excites a bunch of normal modes with almost equal frequency spacing. This constitutes a possible mechanism for efficient energy transfer, e.g., in nanofabricated structures.

  12. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation.

    PubMed

    Fang, Mingliang; Ivanisevic, Julijana; Benton, H Paul; Johnson, Caroline H; Patti, Gary J; Hoang, Linh T; Uritboonthai, Winnie; Kurczy, Michael E; Siuzdak, Gary

    2015-11-03

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.

  13. Mass loading in the solar wind interaction with Venus and Mars

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Bauer, S. J.; Krymskii, A. M.; Mitnitskii, V. Ya.

    1989-03-01

    An analysis of available experimental data and theoretical concepts indicates that the interaction of the solar wind (SW) on the subsolar side with Venus, which has no intrinsic magnetic field, and with Mars, which has a small intrinsic magnetic field, is determined by the solar wind dynamic pressure with a contribution from the neutral planetary atmosphere to this interaction. The pattern of the SW interaction with these planets is different in principle for high and low dynamic pressures of the SW and is related to the varying intensity of ion formation processes (the SW Mass loading effect) in the vicinity of the SW obstacle boundary, which moves for different SW dynamic pressures into regions of different neutral atmosphere density. For moderate or high SW dynamic pressures, the subsolar Martian magnetosphere is also affected by this process. Results of numerical simulations of the SW-Mars interaction for a magnetospheric obstacle boundary at an altitude of 300 km are presented. To estimate the relative role of photoionization and charge exchange processes and their effect on the shock front position, different versions of the mass loading effect were separately calculated.

  14. Preferences for body type and body characteristics associated with attractive and unattractive bodies: Jackson and McGill revisited.

    PubMed

    Rosenfeld, L B; Stewart, S C; Stinnett, H J; Jackson, L A

    1999-10-01

    The present investigation replicates Jackson and McGill's study (1996) and extends it by considering the effects of respondents' own height, weight, and body mass on perceptions of attractiveness. Results, although generally supportive of those found by Jackson and McGill, point to the influence of respondents' own physical characteristics in the process of perceptions of attractiveness: only 1 of Jackson and McGill's 3 (of a possible 19) differences between responses of African- and Euro-American women was corroborated (the importance of silky hair for Euro-American women), whereas a second difference (the importance of round buttocks for African-American women) disappeared when controlling for respondents' weight, height, and body mass. Although differences between the two investigations may be attributed to regional differences in the surveyed students (Michigan and North Carolina), the small effect of one's own weight, height, and body mass in assessing an other-sex person's attractiveness may reflect adherence to norms learned very early in life that are subject to regional variations.

  15. Body fat and blood pressure: comparison of blood pressure measurements in Chinese children with different body fat levels.

    PubMed

    Ma, Jun; Wang, Zhiqiang; Dong, Bin; Song, Yi; Hu, Peijin; Zhang, Bing

    2012-11-14

    Children in China are experiencing a rapid increase in the prevalence of obesity, which is associated with hypertension. To compare the effect of body fat on blood pressure (BP) with that of the normal physical growth, we compared BP levels in Chinese children with different body fat levels. In the present population-based study, 13 972 children in the highest-skinfold-thickness-quartile group were individually matched to 13 972 children in the lowest-skinfold-thickness-quartile group by height and weight. Similarly, 5103 children in the highest-waist-circumference-quartile group were matched to the same number of children in the lowest-waist-circumference-quartile group. The high- and low-fat groups had similar height and weight but the high-fat group had significantly higher skinfold and waist circumference measurements. The differences in systolic BP (SBP) between the high- and low-skinfold-thickness groups were small: 0·01 (95 % CI -0·41, 0·44) mmHg in boys and 0·20 (95 % CI -0·15, 0·54) mmHg in girls. The differences in diastolic BP (DBP) were also small (0·39 and 0·38 mmHg for boys and girls, respectively) but were statistically significant. The differences in both SBP and DBP between the high- and low-waist-circumference groups were small but not statistically significant. For a given body size as measured by height and weight, relative body fat had little impact on BP levels in these children. Fat mass and lean mass may have a similar quantitative impact on BP in healthy-weight children.

  16. Gaps to "Working" on the Surface of Small Bodies

    NASA Astrophysics Data System (ADS)

    Bellerose, J.

    2012-12-01

    Upcoming goals for human spaceflight include sending a crewed mission to a near-Earth asteroid (NEA) by 2025. As an alternative to this, a spacecraft could be sent to capture a small NEA, and return it to cislunar orbit where astronauts could take it apart (Brophy, 2012). In parallel, plans are also to take the next big step in resources utilization, and mine those NEAs (Lewicki, 2012). Although these exciting concepts are very different in scope, they share the same environment they will need to interact with. In this work, we discuss the required techniques for exploring and exploiting small bodies, and compare with the available tools and the current knowledge of small bodies. To support these types of missions, a number of in-situ data are required prior to start surface operations: the body shape and mass, the presence of volatiles and metals, the asteroid morphology, the internal structural properties, the surface and near-surface environments, the existence of hazards, and the time-evolution dynamics. Products obtained from remote sensing - maps, mosaics, shape models - are critical in selecting the locations to be investigated in more details, or the locations to be excavated. Composition measurements become especially important for mining, as it requires appropriate tools and techniques. Although spectrometers can be used in orbit and on the surface to determine elemental composition, the fine scale structure and mineralogical composition can only be done using surface probes or through a close-up camera. Those remote sensing images are also critical in planning the very close approaches by the spacecraft, as the small body environment is one of the most perturbed environments (Scheeres, 2000). Being able to recreate the small body dynamics is necessary to mitigate risks and to enable spacecraft docking. The navigation system, vision tools, and planning software become critical as the spacecraft will need to track features on the surface under different light conditions. Perhaps the most difficult data to obtain is the mass of the NEA, where the resolution depends on the NEA size, and the internal structure and stability of the body. It can be shown that current mass determination techniques easily result in 50% resolution on mass estimation. Secondary or surface probes released from a main spacecraft can increase resolution by one order of magnitude compared to traditional methods (Bellerose, 2012). A volume estimate combined with the overall mass of the small body results in a bulk density estimate. The bulk density is a direct insight into surface and sub-surface mechanical stability, and properties such as compaction and porosity. A number of remote sensing and surface instruments are now available for NEA applications, from past missions to new technology developments. We give a quick review of the data and instruments now available. We also identify existing gaps between the available data and requirements associated with surface interacting mission concepts. Finally, we discuss transient dynamical effects due to surface disturbances, and how these effects can put constraints on a mission concept and feed in operational strategies.

  17. Geometrical influence of a deposited particle on the performance of bridged carbon nanotube-based mass detectors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A.

    2017-10-01

    A nonlocal continuum-based model is derived to simulate the dynamic behavior of bridged carbon nanotube-based nano-scale mass detectors. The carbon nanotube (CNT) is modeled as an elastic Euler-Bernoulli beam considering von-Kármán type geometric nonlinearity. In order to achieve better accuracy in characterization of the CNTs, the geometrical properties of an attached nano-scale particle are introduced into the model by its moment of inertia with respect to the central axis of the beam. The inter-atomic long-range interactions within the structure of the CNT are incorporated into the model using Eringen's nonlocal elastic field theory. In this model, the mass can be deposited along an arbitrary length of the CNT. After deriving the full nonlinear equations of motion, the natural frequencies and corresponding mode shapes are extracted based on a linear eigenvalue problem analysis. The results show that the geometry of the attached particle has a significant impact on the dynamic behavior of the CNT-based mechanical resonator, especially, for those with small aspect ratios. The developed model and analysis are beneficial for nano-scale mass identification when a CNT-based mechanical resonator is utilized as a small-scale bio-mass sensor and the deposited particles are those, such as proteins, enzymes, cancer cells, DNA and other nano-scale biological objects with different and complex shapes.

  18. Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients

    NASA Technical Reports Server (NTRS)

    Robbins, E.; Martone, M.

    1993-01-01

    In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.

  19. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  20. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  1. Propellant combustion product analyses on an M16 rifle and a 105 mm caliber gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ase, P.; Eisenberg, W.; Gordon, S.

    1985-01-01

    Some of the propellant combustion products (particulates and gases) that are formed on firing an M16 rifle and 105 mm caliber gun have been subjected to qualitative, and to a more limited extent, quantitative chemical analyses. For both weapons, large numbers of trace gas species, 90 to 70 respectively, were identified in the combustion effluents from the small large bore weapons. Quantifiable data were obtained for 15 of these species in terms of mass of compound formed per unit mass of propellant burned. Polynuclear aromatic hydrocarbons, 11 and 4 respectively, were identified and quantified in the combustion products from themore » small and large bore weapons. Metal particulates in the respirable range in the combustion products from the M16 rifle were analyzed and quantified. Many of the chemical species identified in the study have known toxicological properties. Although the data base is limited, it appears that within the confines of the different propellants' stoichiometries, the amounts of combustion products formed are approximately directly proportional to the masses of propellant burned.« less

  2. system aspects of optical LEO-to-ground links

    NASA Astrophysics Data System (ADS)

    Giggenbach, D.; Shrestha, A.; Fuchs, C.; Schmidt, C.; Moll, F.

    2017-09-01

    Optical Direct-to-Ground data links for earth-observation satellites will offer channel rates of several Gbps, together with low transmit powers and small terminal mass and also rather small ground receiver antennas. The avoidance of any signal spectrum limitation issues might be the most important advantage versus classical RF-technology. The effects of optical atmospheric signal attenuation, and the fast signal fluctuations induced by atmospheric index-of-refraction turbulence and sporadic miss-pointing-fading, require the use of adaptive signal formats together with fading mitigation techniques. We describe the typical downlink scenario, introduce the four different modes of data rate variation, and evaluate different methods of rate-adaptive modulation formats and repetition coding techniques.

  3. Navigation for Rendezvous and Orbit Missions to Small Solar-System Bodies

    NASA Technical Reports Server (NTRS)

    Helfrich, C. E.; Scheeres, D. J.; Williams, B. G.; Bollman, W. E.; Davis, R. P.; Synnott, S. P.; Yeomans, D. K.

    1994-01-01

    All previous spacecraft encounters with small solar-system bodies, such as asteroids and comets, have been flybys (e.g. Galileo's flybys of the asteroids Gaspra and Ida). Several future projects plan to build on the flyby experience and progress to the next level with rendezvous and orbit missions to small bodies. This presents several new issues and challenges for navigation which have never been considered before. This paper addresses these challenges by characterizing the different phases of a small body rendezvous and by describing the navigation requirements and goals of each phase. Prior to the encounter with the small body, improvements to its ephemeris and initial estimates of its physical parameters, e.g. size, shape, mass, rotation rate, rotation pole, and possibly outgassing, are made as accurately as ground-based measurements allow. This characterization can take place over years...

  4. Morphometric attributes to understand palaeogeomorphological controls on mass-transport deposits offshore Brazil

    NASA Astrophysics Data System (ADS)

    Piedade, Aldina; Alves, Tiago; Luís Zêzere, José

    2017-04-01

    Mass-transport deposits form a significant part of the stratigraphic record of ancient and modern deep-water basins worldwide. Three-dimensional (3D) seismic data is used to analyse two different types of buried mass-transport deposits offshore Espírito Santo Basin (SE Brazil. Both types are developed within Early Miocene to Holocene stratigraphic units composed of sandstones, calcarenites, turbidite sands and marls. The high resolution images provided by the interpreted 3D seismic data allowed a detailed analysis of the seismic stratigraphy and internal structure of mass-transport deposits. In addition, improvements in visualisation techniques were used to compute simple morphometric attributes of buried mass-transport deposits in continental slopes. This study classifies the interpreted mass-transport deposits in two different types according to the relationship between the morphology of mass-transport deposits and the surrounding topography. Locally confined mass-transport deposits are laterally constrained by non-deformed strata that surrounds the mass-transport deposit and by the local topography of the depositional surface. Their dimensions are relatively small (area of 5.251 km2). Unconfined mass-transport deposits show a much larger volume compared to the previously type ( 87.180 km2), and local topography does not have control on their geometry. The analysis proves that local topography and geometry of the depositional surface are key controlling factors on the spatial distribution and dimensions of the two types of mass-transport deposits. However, the two types differ in size, geomorphological expression, local structural controls and run-out distance. This work importance is relate variations in the character of the depositional surface with the morphology mass-transport deposits and run-out distance. As a result of the methodology used, two different styles of mass-transport run-out are identified and local factors controlling their morphology are addressed, such as roughness and local morphology of the depositional surface. Separating these two styles, or types, of mass-transport deposits it is of critical importance to understand their mechanisms of gliding, downslope spreading and emplacement.

  5. How does the isomerization rate affect the photoisomerization-induced transport properties of a doped molecular glass-former?

    NASA Astrophysics Data System (ADS)

    Accary, J.-B.; Teboul, V.

    2013-07-01

    We investigate the effect of the isomerization rate f on the microscopic mechanisms at the origin of the massive mass transport found in glass-formers doped with isomerizing azobenzene molecules that result in surface relief gratings formation. To this end we simulate the isomerization of dispersed probe molecules embedded into a molecular host glass-former. The host diffusion coefficient first increases linearly with f and then saturates. The saturated value of the diffusion coefficient and of the viscosity does not depend on f but increases with temperature while the linear response for these transport coefficients depends only slightly on the temperature. We interpret this saturation as arising from the appearance of increasingly soft regions around the probes for high isomerization rates, a result in qualitative agreement with experiments. These two different physical behaviors, linear response and saturation, are reminiscent of the two different unexplained mass transport mechanisms observed for small or large light intensities (for small intensities the molecules move towards the dark regions while for large intensities they move towards the illuminated regions).

  6. Simultaneous Profiling of Lysoglycerophospholipids in Rice (Oryza sativa L.) Using Direct Infusion-Tandem Mass Spectrometry with Multiple Reaction Monitoring.

    PubMed

    Lim, Dong Kyu; Mo, Changyeun; Long, Nguyen Phuoc; Kim, Giyoung; Kwon, Sung Won

    2017-03-29

    White rice is the final product after the hull and bran layers have been removed during the milling process. Although lysoglycerophospholipids (lysoGPLs) only occupy a small proportion in white rice, they are essential for evaluating rice authenticity and quality. In this study, we developed a high-throughput and targeted lipidomics approach that involved direct infusion-tandem mass spectrometry with multiple reaction monitoring to simultaneously profile lysoGPLs in white rice. The method is capable of characterizing 17 lysoGPLs within 1 min. In addition, unsupervised and supervised analyses exhibited a considerably large diversity of lysoGPL concentrations in white rice from different origins. In particular, a classification model was built using identified lysoGPLs that can differentiate white rice from Korea, China, and Japan. Among the discriminatory lysoGPLs, for the lysoPE(16:0) and lysoPE(18:2) compositions, there were relatively small within-group variations, and they were considerably different among the three countries. In conclusion, our proposed method provides a rapid, high-throughput, and comprehensive format for profiling lysoGPLs in rice samples.

  7. Structural features of Fab fragments of rheumatoid factor IgM-RF in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V., E-mail: vvo@ns.crys.ras.ru; Lapuk, V. A.; Shtykova, E. V.

    The structural features of the Fab fragments of monoclonal (Waldenstroem's disease) immunoglobulin M (IgM) and rheumatoid immunoglobulin M (IgM-RF) were studied by a complex of methods, including small-angle X-ray scattering (SAXS), electron spin resonance (ESR), and mass spectrometry (MS). The Fab-RF fragment was demonstrated to be much more flexible in the region of interdomain contacts, the molecular weights and the shapes of the Fab and Fab-RF macromolecules in solution being only slightly different. According to the ESR data, the rotational correlation time for a spin label introduced into the peptide sequence for Fab is twice as large as that formore » Fab-RF (21{+-}2 and 11{+-}1 ns, respectively), whereas the molecular weights of these fragments differ by only 0.5% (mass-spectrometric data), which correlates with the results of molecular-shape modeling by small-angle X-ray scattering. The conclusion about the higher flexibility of the Fab-RF fragment contributes to an understanding of the specificity of interactions between the rheumatoid factor and the antigens of the own organism.« less

  8. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    PubMed

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The Frequency of Low-Mass Exoplanets

    NASA Astrophysics Data System (ADS)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.; Wittenmyer, R. A.

    2009-08-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search—an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ~ -1 (for dN/dM vprop M α) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M ⊕.

  10. Microlensing of an extended source by a power-law mass distribution

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Osmer, S. J.

    2007-03-01

    Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.

  11. Influence of iterative reconstruction on coronary calcium scores at multiple heart rates: a multivendor phantom study on state-of-the-art CT systems.

    PubMed

    van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T

    2017-12-28

    The objective of this study was to evaluate the influence of iterative reconstruction on coronary calcium scores (CCS) at different heart rates for four state-of-the-art CT systems. Within an anthropomorphic chest phantom, artificial coronary arteries were translated in a water-filled compartment. The arteries contained three different calcifications with low (38 mg), medium (80 mg) and high (157 mg) mass. Linear velocities were applied, corresponding to heart rates of 0, < 60, 60-75 and > 75 bpm. Data were acquired on four state-of-the-art CT systems (CT1-CT4) with routinely used CCS protocols. Filtered back projection (FBP) and three increasing levels of iterative reconstruction (L1-L3) were used for reconstruction. CCS were quantified as Agatston score and mass score. An iterative reconstruction susceptibility (IRS) index was used to assess susceptibility of Agatston score (IRS AS ) and mass score (IRS MS ) to iterative reconstruction. IRS values were compared between CT systems and between calcification masses. For each heart rate, differences in CCS of iterative reconstructed images were evaluated with CCS of FBP images as reference, and indicated as small (< 5%), medium (5-10%) or large (> 10%). Statistical analysis was performed with repeated measures ANOVA tests. While subtle differences were found for Agatston scores of low mass calcification, medium and high mass calcifications showed increased CCS up to 77% with increasing heart rates. IRS AS of CT1-T4 were 17, 41, 130 and 22% higher than IRS MS . Not only were IRS significantly different between all CT systems, but also between calcification masses. Up to a fourfold increase in IRS was found for the low mass calcification in comparison with the high mass calcification. With increasing iterative reconstruction strength, maximum decreases of 21 and 13% for Agatston and mass score were found. In total, 21 large differences between Agatston scores from FBP and iterative reconstruction were found, while only five large differences were found between FBP and iterative reconstruction mass scores. Iterative reconstruction results in reduced CCS. The effect of iterative reconstruction on CCS is more prominent with low-density calcifications, high heart rates and increasing iterative reconstruction strength.

  12. Direct Analysis in Real Time Mass Spectrometry for Characterization of Large Saccharides.

    PubMed

    Ma, Huiying; Jiang, Qing; Dai, Diya; Li, Hongli; Bi, Wentao; Da Yong Chen, David

    2018-03-06

    Polysaccharide characterization posts the most difficult challenge to available analytical technologies compared to other types of biomolecules. Plant polysaccharides are reported to have numerous medicinal values, but their effect can be different based on the types of plants, and even regions of productions and conditions of cultivation. However, the molecular basis of the differences of these polysaccharides is largely unknown. In this study, direct analysis in real time mass spectrometry (DART-MS) was used to generate polysaccharide fingerprints. Large saccharides can break down into characteristic small fragments in the DART source via pyrolysis, and the products are then detected by high resolution MS. Temperature was shown to be a crucial parameter for the decomposition of large polysaccharide. The general behavior of carbohydrates in DART-MS was also studied through the investigation of a number of mono- and oligosaccharide standards. The chemical formula and putative ionic forms of the fragments were proposed based on accurate mass with less than 10 ppm mass errors. Multivariate data analysis shows the clear differentiation of different plant species. Intensities of marker ions compared among samples also showed obvious differences. The combination of DART-MS analysis and mechanochemical extraction method used in this work demonstrates a simple, fast, and high throughput analytical protocol for the efficient evaluation of molecular features in plant polysaccharides.

  13. Anisotropic polaron localization and spontaneous symmetry breaking: Comparison of cation-site acceptors in GaN and ZnO

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, S. B.

    2014-10-01

    The behavior of cation substitutional hole doping in GaN and ZnO is investigated using hybrid density functional calculations. Our results reveal that Mg substitution for Ga (MgGa) in GaN can assume three different configurations. Two of the configurations are characterized by the formation of defect-bound small polaron (i.e., a large structural distortion accompanied by hole localization on one of the neighboring N atoms). The third one has a relatively small but significant distortion that is characterized by highly anisotropic polaron localization. In this third configuration, MgGa exhibits both effective-mass-like and noneffective-mass-like characters. In contrast, a similar defect in ZnO, LiZn, cannot sustain the anisotropic polaron in the hybrid functional calculation, but undergoes spontaneous breaking of a mirror symmetry through a mechanism driven by the hole localization. Finally, using NaZn in ZnO as an example, we show that the deep acceptor levels of the small-polaron defects could be made shallower by applying compressive strain to the material.

  14. Mass-induced sea level variations in the Red Sea from steric-corrected altimetry, GRACE, in-situ bottom pressure records, and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Lemoine, Jean-Michel; Zhong, Min; Xu, Houze

    2014-05-01

    An annual amplitude of ~18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from steric-corrected altimetry and the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 to 2011, which dominates the mean sea level in the region. Seawater mass variations here generally reach maximum in late January/early February. The steric component of SLV calculated from oceanographic temperature and salinity data is relatively small and peaks about seven months later than mass variations. The phase difference between the steric SLV and the mass-induced SLV indicates that when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice versa in summer. In-situ bottom pressure records in the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. Furthermore, we compare the horizontal water mass flux in the Red Sea from steric-corrected altimetry and GRACE with that estimated from hydrographic observations.

  15. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    PubMed

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Wave propagation in elastic and damped structures with stabilized negative-stiffness components

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    2017-09-01

    Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.

  17. Observations and light curve solutions of a selection of shallow-contact W UMa binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Popov, Velimir A.; Vasileva, Doroteya L.; Petrov, Nikola I.

    2018-07-01

    Photometric observations in Sloan g‧ and i‧ bands of the W UMa binaries V0951 Per, CSS J062803.2+571604, CSS J222157.2+275308, CSS J075135.6+382028, V0338 Dra, NSVS 2256852, NSVS 4666412, V1355 Tau, NSVS 4808227, NSVS 4726498, CSS J075350.1+264830 and HL Lyn are presented. The light curve solutions revealed that these binaries have overcontact configurations with small fillout factors (within 0.1-0.2). Seven of them undergo total eclipses and their photometric mass ratios should be accepted with confidence. The temperature differences of the components of CSS J062803.2+571604 and NSVS 2256852 exceed 1100 K which is unusual for overcontact binaries. We suspect that NSVS 2256852 is a probable candidate for merger due to its small mass ratio of q = 0.16 and to the registered decreasing of the orbital period.

  18. Launching rockets and small satellites from the lunar surface

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Dougherty, W. M.; Pankow, D. H.

    1985-01-01

    Scientific payloads and their propulsion systems optimized for launch from the lunar surface differ considerably from their counterparts for use on earth. For spin-stabilized payloads, the preferred shape is a large diameter-to-length ratio to provide stability during the thrust phase. The rocket motor required for a 50-kg payload to reach an altitude of one lunar radius would have a mass of about 41 kg. To place spin-stabilized vehicles into low altitude circular orbits, they are first launched into an elliptical orbit with altitude about 840 km at aposelene. When the spacecraft crosses the desired circular orbit, small retro-rockets are fired to attain the appropriate direction and speed. Values of the launch angle, velocity increments, and other parameters for circular orbits of several altitudes are tabulated. To boost a 50-kg payload into a 100-km altitude circular orbit requires a total rocket motor mass of about 90 kg.

  19. Launching rockets and small satellites from the lunar surface

    NASA Astrophysics Data System (ADS)

    Anderson, K. A.; Dougherty, W. M.; Pankow, D. H.

    Scientific payloads and their propulsion systems optimized for launch from the lunar surface differ considerably from their counterparts for use on earth. For spin-stabilized payloads, the preferred shape is a large diameter-to-length ratio to provide stability during the thrust phase. The rocket motor required for a 50-kg payload to reach an altitude of one lunar radius would have a mass of about 41 kg. To place spin-stabilized vehicles into low altitude circular orbits, they are first launched into an elliptical orbit with altitude about 840 km at aposelene. When the spacecraft crosses the desired circular orbit, small retro-rockets are fired to attain the appropriate direction and speed. Values of the launch angle, velocity increments, and other parameters for circular orbits of several altitudes are tabulated. To boost a 50-kg payload into a 100-km altitude circular orbit requires a total rocket motor mass of about 90 kg.

  20. KRAS G12C Drug Development: Discrimination between Switch II Pocket Configurations Using Hydrogen/Deuterium-Exchange Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jia; Harrison, Rane A.; Li, Lianbo

    KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basismore » for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.« less

  1. Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells

    NASA Astrophysics Data System (ADS)

    Koshkin, Sergiy; Jovanovic, Vojin

    2017-10-01

    We study the dynamics of pairs of connected masses in the plane, when nonholonomic (knife-edge) constraints are realized by forces of viscous friction, in particular its relation to constrained dynamics, and its approximation by the method of matching asymptotics of singular perturbation theory when the mass to friction ratio is taken as the small parameter. It turns out that long term behaviors of the frictional and constrained systems may differ dramatically no matter how small the perturbation is, and when this happens is not determined by any transparent feature of the equations of motion. The choice of effective time scales for matching asymptotics is also subtle and non-obvious, and secular terms appearing in them can not be dealt with by the classical methods. Our analysis is based on comparison to analytic solutions, and we present a reduction procedure for plane dumbbells that leads to them in some cases.

  2. Study of body composition in small animals by a multifrequency impedancemeter

    NASA Astrophysics Data System (ADS)

    Ribbe, E.; Khider, N.; Moreno, M. V.

    2010-04-01

    Bioimpedance is essentially used today to study the body composition in the human body but not really in small animals. The aim of this paper is to develop a model for body composition in rats to help pharmaceutical labs assessing effects of medicine on rats. We propose a non invasive, rapid and scientific method. With a multifrequency impedancemeter, Z-Métrix® (BioparHom© Company France), resistances and reactances are measured at 55 frequencies for a population of 40 rats (males and females). With our model, derived from Cole-Cole model, resistances of extracellular (Re) and total body (Rinf) compartment are extrapolated. Three methods were applied: posterior to posterior leg, anterior to posterior leg on the left and on the right side. Measurements by CT imaging were performed on the anesthetized population to determine Fat Mass (FM), Lean Body Mass (LBM) and Bone Mineral Content (BMC), as our reference measurements. With electrical data, age, sex and weight, equations are created to calculate FM, LBM and BMC with the three methods. Graphs of correlation, between tissue masses calculated by bioimpedance and obtained with scanner, indicate that measurements with posterior to posterior leg are better. Moreover, there is no significantly difference between tissue masses measured by bioimpedance and with the scanner.

  3. Bounds on neutrino mass in viscous cosmology

    NASA Astrophysics Data System (ADS)

    Anand, Sampurn; Chaubal, Prakrut; Mazumdar, Arindam; Mohanty, Subhendra; Parashari, Priyank

    2018-05-01

    Effective field theoretic description of dark matter fluid on large scales predicts viscosity of the order 10‑6 H0 MP2. Recently, it has been shown that the same magnitude of viscosity can resolve the discordance between large scale structure observations and Planck CMB data in the σ8-Ωm0 and H0-Ωm0 parameters space. On the other hand, massive neutrinos suppresses the matter power spectrum on the small length scales similar to the viscosities. Therefore, it is expected that the viscous dark matter setup along with massive neutrinos can provide stringent constraint on neutrino mass. In this article, we show that the inclusion of effective viscosity, which arises from summing over non linear perturbations at small length scales, indeed severely constrains the cosmological bound on neutrino masses. Under a joint analysis of Planck CMB and different large scale observation data, we find that upper bound on the sum of the neutrino masses, at 2-σ level, decreases respectively from ∑ mν <= 0.396 eV (for normal hierarchy) and ∑ mν <= 0.378 eV (for inverted hierarchy) to ∑ mν <= 0.267 eV (for normal hierarchy) and ∑ mν <= 0.146 eV (for inverted hierarchy).

  4. Body composition measured by dual-energy X-ray absorptiometry in patients who have undergone small-intestinal resection.

    PubMed

    Haderslev, Kent Valentin; Jeppesen, Paller Bekker; Sorensen, Henrik Ancher; Mortensen, Per Brobech; Staun, Michael

    2003-07-01

    Patients who have undergone resection of the small intestine have lower body weight than do healthy persons. It remains unclear whether it is the body fat mass or the lean tissue mass that is reduced. We compared body-composition values in patients who had undergone small-intestinal resection with reference values obtained in healthy volunteers, and we studied the relation between body-composition estimates and the net intestinal absorption of energy. In a cross-sectional study, we included 20 men and 24 women who had undergone small-intestinal resection and had malabsorption of energy > 2000 kJ/d. Diagnoses were Crohn disease (n = 37) and other conditions (n = 7). Body composition was estimated by dual-energy X-ray absorptiometry, and data were compared with those from a reference group of 173 healthy volunteers. Energy absorption was measured during 48-h balance studies by using bomb calorimetry, and individual values were expressed relative to the basal metabolic rate. Body weight and body mass index in patients were significantly (P < 0.05) lower than the reference values. Fat mass was 6.4 kg (30%) lower (95% CI: -8.8, -3.9 kg), but lean tissue mass was only slightly and insignificantly lower (1.5 kg, or 3.3%; 95% CI: -3.7, 0.60 kg). Weight, body mass index, and body-composition estimates by dual-energy X-ray absorptiometry did not correlate significantly with the net energy absorption relative to the basal metabolic rate, expressed as a percentage. Patients who had undergone small-intestinal resection had significantly lower body weights and body mass indexes than did healthy persons, and they had significant changes in body composition, mainly decreased body fat mass.

  5. Small renal mass biopsy--how, what and when: report from an international consensus panel.

    PubMed

    Tsivian, Matvey; Rampersaud, Edward N; del Pilar Laguna Pes, Maria; Joniau, Steven; Leveillee, Raymond J; Shingleton, William B; Aron, Monish; Kim, Charles Y; DeMarzo, Angelo M; Desai, Mihir M; Meler, James D; Donovan, James F; Klingler, Hans Christoph; Sopko, David R; Madden, John F; Marberger, Michael; Ferrandino, Michael N; Polascik, Thomas J

    2014-06-01

    To discuss the use of renal mass biopsy (RMB) for small renal masses (SRMs), formulate technical aspects, outline potential pitfalls and provide recommendations for the practicing clinician. The meeting was conducted as an informal consensus process and no scoring system was used to measure the levels of agreement on the different topics. A moderated general discussion was used as the basis for consensus and arising issues were resolved at this point. A consensus was established and lack of agreement to topics or specific items was noted at this point. Recommended biopsy technique: at least two cores, sampling different tumour regions with ultrasonography being the preferred method of image guidance. Pathological interpretation: 'non-diagnostic samples' should refer to insufficient material, inconclusive and normal renal parenchyma. For non-diagnostic samples, a repeat biopsy is recommended. Fine-needle aspiration may provide additional information but cannot substitute for core biopsy. Indications for RMB: biopsy is recommended in most cases except in patients with imaging or clinical characteristics indicative of pathology (syndromes, imaging characteristics) and cases whereby conservative management is not contemplated. RMB is recommended for active surveillance but not for watchful-waiting candidates. We report the results of an international consensus meeting on the use of RMB for SRMs, defining the technique, pathological interpretation and indications. © 2013 The Authors. BJU International © 2013 BJU International.

  6. Anthropometry profiles of elite rugby players: quantifying changes in lean mass.

    PubMed

    Duthie, G M; Pyne, D B; Hopkins, W G; Livingstone, S; Hooper, S L

    2006-03-01

    To demonstrate the utility of a practical measure of lean mass for monitoring changes in the body composition of athletes. Between 1999 and 2003 body mass and sum of seven skinfolds were recorded for 40 forwards and 32 backs from one Super 12 rugby union franchise. Players were assessed on 13 (7) occasions (mean (SD)) over 1.9 (1.3) years. Mixed modelling of log transformed variables provided a lean mass index (LMI) of the form mass/skinfolds(x), for monitoring changes in mass controlled for changes in skinfold thickness. Mean effects of phase of season and time in programme were modelled as percentage changes. Effects were standardised for interpretation of magnitudes. The exponent x was 0.13 for forwards and 0.14 for backs (90% confidence limits +/-0.03). The forwards had a small decrease in skinfolds (5.3%, 90% confidence limits +/-2.2%) between preseason and competition phases, and a small increase (7.8%, 90% confidence limits +/-3.1%) during the club season. A small decrease in LMI (approximately 1.5%) occurred after one year in the programme for forwards and backs, whereas increases in skinfolds for forwards became substantial (4.3%, 90% confidence limits +/-2.2%) after three years. Individual variation in body composition was small within a season (within subject SD: body mass, 1.6%; skinfolds, 6.8%; LMI, 1.1%) and somewhat greater for body mass (2.1%) and LMI (1.7%) between seasons. Despite a lack of substantial mean changes, there was substantial individual variation in lean mass within and between seasons. An index of lean mass based on body mass and skinfolds is a potentially useful tool for assessing body composition of athletes.

  7. Anthropometry profiles of elite rugby players: quantifying changes in lean mass

    PubMed Central

    Duthie, G M; Pyne, D B; Hopkins, W G; Livingstone, S; Hooper, S L

    2006-01-01

    Objective To demonstrate the utility of a practical measure of lean mass for monitoring changes in the body composition of athletes. Methods Between 1999 and 2003 body mass and sum of seven skinfolds were recorded for 40 forwards and 32 backs from one Super 12 rugby union franchise. Players were assessed on 13 (7) occasions (mean (SD)) over 1.9 (1.3) years. Mixed modelling of log transformed variables provided a lean mass index (LMI) of the form mass/skinfoldsx, for monitoring changes in mass controlled for changes in skinfold thickness. Mean effects of phase of season and time in programme were modelled as percentage changes. Effects were standardised for interpretation of magnitudes. Results The exponent x was 0.13 for forwards and 0.14 for backs (90% confidence limits ±0.03). The forwards had a small decrease in skinfolds (5.3%, 90% confidence limits ±2.2%) between preseason and competition phases, and a small increase (7.8%, 90% confidence limits ±3.1%) during the club season. A small decrease in LMI (∼1.5%) occurred after one year in the programme for forwards and backs, whereas increases in skinfolds for forwards became substantial (4.3%, 90% confidence limits ±2.2%) after three years. Individual variation in body composition was small within a season (within subject SD: body mass, 1.6%; skinfolds, 6.8%; LMI, 1.1%) and somewhat greater for body mass (2.1%) and LMI (1.7%) between seasons. Conclusions Despite a lack of substantial mean changes, there was substantial individual variation in lean mass within and between seasons. An index of lean mass based on body mass and skinfolds is a potentially useful tool for assessing body composition of athletes. PMID:16505074

  8. Mesenteric lipoblastoma presenting as a small intestinal volvulus in an infant: A case report and literature review.

    PubMed

    Nagano, Yuka; Uchida, Keiichi; Inoue, Mikihiro; Ide, Shozo; Shimura, Tadanobu; Hashimoto, Kiyoshi; Koike, Yuki; Kusunoki, Masato

    2017-01-01

    A 1-year-old boy with no underlying disorder presented with non-bilious vomiting since 4 days before admission. He was referred to our hospital and was diagnosed with a small bowel obstruction due to an intraabdominal tumor. Laparotomy revealed an intestinal volvulus with a soft and lobulated tumor arising from the mesentery. The resected tumor with a small part of the small bowel was diagnosed as lipoblastoma histologically. From a literature review, mesenteric lipoblastoma with an intestinal volvulus showed different characteristics such as greater frequency of vomiting and less frequency of abdominal mass as clinical symptoms, and the size of the tumor was smaller than that of the tumor without the intestinal volvulus. Copyright © 2013. Published by Elsevier Taiwan.

  9. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose properties are not well known.

  10. Incomplete mass transfer processes in 28Si +93Nb reaction

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Ramachandran, K.; Sharma, S. K.; Pujari, P. K.

    Cross sections of reaction products were measured in 28Si +93Nb reaction using recoil catcher technique involving by off-line gamma-ray spectrometry at beam energies of 105 and 155MeV. At Elab = 155MeV, the contribution from different incomplete mass transfer processes is investigated. Results of the present studies show the contribution from deep inelastic collision (DIC), massive transfer or incomplete fusion (ICF) and quasi-elastic transfer (QET). The contribution from massive transfer reactions was confirmed from the fractional yield of the reaction products in the forward catcher foil. The present results are different from those from the reactions with comparatively higher entrance channel mass asymmetry with lighter projectiles, for which dominant transfer processes are ICF and QET which involve mass transfer predominantly from projectile to target. The N/Z values of the products close to the target mass were observed to be in a wide range, starting from N/Z of the target (93Nb) and extending slightly below the N/Z of the composite system, consistent with the contribution from DIC and QET reactions. At Elab = 105MeV, a small contribution from QET was observed in addition to complete fusion.

  11. Source identification of western Oregon Douglas-fir wood cores using mass spectrometry and random forest classification.

    PubMed

    Finch, Kristen; Espinoza, Edgard; Jones, F Andrew; Cronn, Richard

    2017-05-01

    We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two regions in western Oregon, USA. Three annual ring mass spectra were obtained from 188 adult Douglas-fir trees, and these were analyzed using random forest models to determine whether samples could be classified to geographic origin, growth year, or growth year and geographic origin. Specific wood molecules that contributed to geographic discrimination were identified. Douglas-fir mass spectra could be differentiated into two geographic classes with an accuracy between 70% and 76%. Classification models could not accurately classify sample mass spectra based on growth year. Thirty-two molecules were identified as key for classifying western Oregon Douglas-fir wood cores to geographic origin. DART-TOFMS is capable of detecting minute but regionally informative differences in wood molecules over a small geographic scale, and these differences made it possible to predict the geographic origin of Douglas-fir wood with moderate accuracy. Studies involving DART-TOFMS, alone and in combination with other technologies, will be relevant for identifying the geographic origin of illegally harvested wood.

  12. Precision Determination of the Small-x Gluon from Charm Production at LHCb.

    PubMed

    Gauld, Rhorry; Rojo, Juan

    2017-02-17

    The small-x gluon in global fits of parton distributions is affected by large uncertainties from the lack of direct experimental constraints. In this Letter, we provide a precision determination of the small-x gluon from the exploitation of forward charm production data provided by LHCb for three different center-of-mass (c.m.) energies: 5 TeV, 7 TeV, and 13 TeV. The LHCb measurements are included in the parton distribution function (PDF) fit by means of normalized distributions and cross-section ratios between data taken at different c.m. values, R_{13/7} and R_{13/5}. We demonstrate that forward charm production leads to a reduction of the PDF uncertainties of the gluon down to x≃10^{-6} by up to an order of magnitude, with implications for high-energy colliders, cosmic ray physics, and neutrino astronomy.

  13. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria.

    PubMed

    Puttick, Mark N; Thomas, Gavin H

    2015-12-22

    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. © 2015 The Authors.

  14. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria

    PubMed Central

    Puttick, Mark N.; Thomas, Gavin H.

    2015-01-01

    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. PMID:26674947

  15. Numerical study of heat transfer characteristics in BOG heat exchanger

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  16. Sensitivity to detect small coronary artery calcium lesions with varying slice thickness using electron beam tomography.

    PubMed

    Mao, Songshou; Child, Janis; Carson, Sivi; Liu, Steve C K; Oudiz, Ronald J; Budoff, Matthew J

    2003-03-01

    To estimate the sensitivity to find small coronary artery calcium lesions with use of different slice widths with electron beam tomography. Two studies were performed. Study 1 utilized double scanning of a stationary cork phantom with three different slice thickness (1.5, 3, and 6 mm). Fifty different calcific lesions (all <20 mm2 in area) fitted in 10 cork coronary arteries were utilized. The calcium foci area, peak value and score were measured and compared. In group 2, 30 patients underwent coronary artery calcium (CAC) screen studies. Each patient was scanned with both 3-mm and 6-mm scan widths in a same study time. Lesions with < 20 mm2 of area of CAC were measured on both 3-mm and 6-mm images. The mean and peak Hounsfield unit measure, and Agatston score were compared between both images. In the cork study, the sensitivity to detect small calcium foci were 96% (48/50), 82% (41/50), and 34% (17/50) in images with 1.5-, 3-, and 6-mm slice thickness, respectively. There is a smaller value in mass, and calcium volume in 6-mm images than 1.5-mm and 3-mm images ( P< 0.001). There was no significant difference between the true value and measured value from 1.5-mm and 3-mm images. In the human study, 18 (30%) of 60 CAC lesions with an area < 20 mm2 defined on 3 mm images were not visible on 6-mm images. Sensitivity of small lesions (P< 5 mm2) was 48% using 6-mm slices. There was a smaller value in CAC area, mean and peak Hounsfield units and score measured from 6-mm images, as compared with 3 mm slices ( P< 0.05). Thinner slice imaging has a higher sensitivity to detect small calcium focus. There was no significant change in score between 3 mm and 1.5 mm on the cork phantom study. However, the use of 6-mm slices should be discouraged, as this protocol both underestimates calcific mass and misses a significant number of calcific lesions in both a phantom and human study.

  17. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  18. Case A and B evolution towards electron capture supernova

    NASA Astrophysics Data System (ADS)

    Siess, L.; Lebreuilly, U.

    2018-06-01

    Context. Most super-asymptotic giant branch (SAGB) stars are expected to end their life as oxygen-neon white dwarfs rather than electron capture supernovae (ECSN). The reason is ascribed to the ability of the second dredge-up to significantly reduce the mass of the He core and of the efficient AGB winds to remove the stellar envelope before the degenerate core reaches the critical mass for the activation of electron capture reactions. Aims: In this study, we investigate the formation of ECSN through case A and case B mass transfer. In these scenarios, when Roche lobe overflow stops, the primary has become a helium star. With a small envelope left, the second dredge-up is prevented, potentially opening new paths to ECSN. Methods: We compute binary models using our stellar evolution code BINSTAR. We consider three different secondary masses of 8, 9, and 10 M⊙ and explore the parameter space, varying the companion mass, orbital period, and input physics. Results: Assuming conservative mass transfer, with our choice of secondary masses all case A systems enter contact either during the main sequence or as a consequence of reversed mass transfer when the secondary overtakes its companion during core helium burning. Case B systems are able to produce ECSN progenitors in a relatively small range of periods (3 ≲ P(d) ≤ 30) and primary masses (10.9 ≤ M/M⊙≤ 11.5). Changing the companion mass has little impact on the primary's fate as long as the mass ratio M1/M2 remains less than 1.4-1.5, above which evolution to contact becomes unavoidable. We also find that allowing for systemic mass loss substantially increases the period interval over which ECSN can occur. This change in the binary physics does not however affect the primary mass range. We finally stress that the formation of ECSN progenitors through case A and B mass transfer is very sensitive to adopted binary and stellar physics. Conclusions: Close binaries provide additional channels for ECSN but the parameter space is rather constrained likely making ECSN a rare event.

  19. Differences in skeletal muscle loss caused by cytotoxic chemotherapy and molecular targeted therapy in patients with advanced non‐small cell lung cancer

    PubMed Central

    Tsuruoka, Hazime; Morikawa, Kei; Furuya, Naoki; Inoue, Takeo; Miyazawa, Teruomi; Mineshita, Masamichi

    2017-01-01

    Background Recent studies have revealed a reduction in the skeletal muscle area in patients with advanced non‐small cell lung cancer (NSCLC) after chemotherapy. EGFR and ALK tyrosine kinase inhibitor (TKI)‐based therapies are less cytotoxic than chemotherapy, but differences in skeletal muscle mass between patients receiving EGFR and ALK TKI therapies and patients receiving cytotoxic chemotherapy have not yet been reported. Methods Data of pathologically proven NSCLC patients were reviewed, and chest computed tomography and/or positron emission tomography‐computed tomography images obtained from January 2012 to December 2014 were selected. Patients were divided into two groups: cytotoxic chemotherapy (CG) and molecular targeted (MG). Muscle mass was measured with a single cross‐sectional area of the muscle at the third lumber vertebra (L3MA). To estimate skeletal muscle changes during chemotherapy, we defined the following L3 skeletal muscle index (L3SMI) ratio: post L3SMI/pre L3SMI. Differences in the SMI ratio between the groups were evaluated using the Wilcoxon signed‐rank test. Results Sixty‐five patients were included in this study: 44 patients received cytotoxic chemotherapy and 21 received molecular targeted therapy (EGFR and ALK TKI). The loss of L3MA in the CG was higher than in the MG (P = 0.03). In the CG, the L3SMI ratio defined to evaluate skeletal muscle mass changes was significantly lower than in the MG (P = 0.0188). Conclusion Our results suggest that skeletal muscle loss during first‐line therapy was significantly different between patients receiving cytotoxic chemotherapy and those receiving TKIs. Specifically, skeletal muscle loss was lower in patients receiving TKIs than in patients receiving cytotoxic chemotherapy. PMID:29067769

  20. Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects

    PubMed Central

    Kimura, Daisuke; Kadota, Koji; Ito, Taro

    2015-01-01

    Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function. PMID:26376484

  1. Evidence for Universality in the Initial Planetesimal Mass Function

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin

    2017-10-01

    Planetesimals may form from the gravitational collapse of dense particle clumps initiated by the streaming instability. We use simulations of aerodynamically coupled gas-particle mixtures to investigate whether the properties of planetesimals formed in this way depend upon the sizes of the particles that participate in the instability. Based on three high-resolution simulations that span a range of dimensionless stopping times 6× {10}-3≤slant τ ≤slant 2, no statistically significant differences in the initial planetesimal mass function are found. The mass functions are fit by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p = 1.5-1.7 and errors of {{Δ }}p≈ 0.1. Comparing the particle density fields prior to collapse, we find that the high-wavenumber power spectra are similarly indistinguishable, though the large-scale geometry of structures induced via the streaming instability is significantly different between all three cases. We interpret the results as evidence for a near-universal slope to the mass function, arising from the small-scale structure of streaming-induced turbulence.

  2. A classification tree for the prediction of benign versus malignant disease in patients with small renal masses.

    PubMed

    Rendon, Ricardo A; Mason, Ross J; Kirkland, Susan; Lawen, Joseph G; Abdolell, Mohamed

    2014-08-01

    To develop a classification tree for the preoperative prediction of benign versus malignant disease in patients with small renal masses. This is a retrospective study including 395 consecutive patients who underwent surgical treatment for a renal mass < 5 cm in maximum diameter between July 1st 2001 and June 30th 2010. A classification tree to predict the risk of having a benign renal mass preoperatively was developed using recursive partitioning analysis for repeated measures outcomes. Age, sex, volume on preoperative imaging, tumor location (central/peripheral), degree of endophytic component (1%-100%), and tumor axis position were used as potential predictors to develop the model. Forty-five patients (11.4%) were found to have a benign mass postoperatively. A classification tree has been developed which can predict the risk of benign disease with an accuracy of 88.9% (95% CI: 85.3 to 91.8). The significant prognostic factors in the classification tree are tumor volume, degree of endophytic component and symptoms at diagnosis. As an example of its utilization, a renal mass with a volume of < 5.67 cm3 that is < 45% endophytic has a 52.6% chance of having benign pathology. Conversely, a renal mass with a volume ≥ 5.67 cm3 that is ≥ 35% endophytic has only a 5.3% possibility of being benign. A classification tree to predict the risk of benign disease in small renal masses has been developed to aid the clinician when deciding on treatment strategies for small renal masses.

  3. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, Mauro; Huss, Matthias; Kummert, Mario; Hoelzle, Martin

    2016-06-01

    Due to the relative lack of empirical field data, the response of very small glaciers (here defined as being smaller than 0.5 km2) to current atmospheric warming is not fully understood yet. Investigating their mass balance, e.g. using the direct glaciological method, is a prerequisite to fill this knowledge gap. Terrestrial laser scanning (TLS) techniques operating in the near infrared range can be applied for the creation of repeated high-resolution digital elevation models and consecutive derivation of annual geodetic mass balances of very small glaciers. This method is promising, as laborious and potentially dangerous field measurements as well as the inter- and extrapolation of point measurements can be circumvented. However, it still needs to be validated. Here, we present TLS-derived annual surface elevation and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn, and Pizolgletscher) and two consecutive years (2013/14-2014/15). The scans were acquired with a long-range Riegl -6000 especially designed for surveying snow- and ice-covered terrain. Zonally variable conversion factors for firn and bare ice surfaces were applied to convert geodetic volume to mass changes. We compare the geodetic results to direct glaciological mass balance measurements coinciding with the TLS surveys and assess the uncertainties and errors included in both methods. Average glacier-wide mass balances were negative in both years, showing stronger mass losses in 2014/15 (-1.65 m w.e.) compared to 2013/14 (-0.59 m w.e.). Geodetic mass balances were slightly less negative but in close agreement with the direct glaciological ones (R2 = 0.91). Due to the dense in situ measurements, the uncertainties in the direct glaciological mass balances were small compared to the majority of measured glaciers worldwide (±0.09 m w.e. yr-1 on average), and similar to uncertainties in the TLS-derived geodetic mass balances (±0.13 m w.e. yr-1).

  4. What would you do? Managing a metro network during mass crowd events.

    PubMed

    Barr, Andy C; Lau, Raymond C M; Ng, Nelson W H; da Silva, Marco Antônio; Baptista, Marcia; Oliveira, Vinícius Floriano; Barbosa, Maria Beatriz; Batistini, Estela; de Toledo Ramos, Nancy

    2010-03-01

    Major public events, such as sporting events, carnivals and festivals, are common occurrences in urban and city environments. They are characterised by the mass movement of people in relatively small areas, far in excess of normal daily activity. This section reviews how different metro systems across the globe respond to such peaks of activity, ensuring that people are moved swiftly, efficiently and safely. To this end, representatives from four major public metro systems (London, Hong Kong, Rio de Janeiro and São Paulo) describe how their respective metro systems respond to the capacity demands of a major annual event.

  5. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels.

    PubMed

    Sun, Na; Walch, Axel

    2013-08-01

    Mass spectrometry imaging (MSI) is a rapidly evolving technology that yields qualitative and quantitative distribution maps of small pharmaceutical-active molecules and their metabolites in tissue sections in situ. The simplicity, high sensitivity and ability to provide comprehensive spatial distribution maps of different classes of biomolecules make MSI a valuable tool to complement histopathology for diagnostics and biomarker discovery. In this review, qualitative and quantitative MSI of drugs and metabolites in tissue at therapeutic levels are discussed and the impact of this technique in drug discovery and clinical research is highlighted.

  6. Multipoint connectivity analysis of the May 2007 solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Chollet, E. E.; Mewaldt, R. A.; Cummings, A. C.; Gosling, J. T.; Haggerty, D. K.; Hu, Q.; Larson, D.; Lavraud, B.; Leske, R. A.; Opitz, A.; Roelof, E. C.; Russell, C. T.; Sauvaud, J.-A.

    2010-12-01

    In May of 2007, the STEREO Ahead and Behind spacecraft, along with the ACE spacecraft situated between the two STEREO spacecraft, observed two small solar energetic particle (SEP) events. STEREO-A and -B observed nearly identical time profiles in the 19 May event, but in the 23 May event, the protons arrived significantly earlier at STEREO-A than at STEREO-B and the time-intensity profiles were markedly different. We present SEP anisotropy, suprathermal electron pitch angle and solar wind data to demonstrate distortion in the magnetic field topology produced by the passage of multiple interplanetary coronal mass ejections on 22 and 23 May, causing the two spacecraft to magnetically connect to different points back at the Sun. This pair of events illustrates the power of multipoint observations in detailed interpretation of complex events, since only a small shift in observer location results in different magnetic field line connections and different SEP time-intensity profiles.

  7. Scaling of the Propulsive Capability of Aluminized Gelled Nitromethane

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Higgins, Andrew; Frost, David; Zhang, Fan

    2017-06-01

    It is well accepted that small mass fractions (<20%) of micron-scale aluminum particles added to a high explosive can react quickly and with sufficient exothermicity to improve metal-acceleration ability (AA) relative to an equal volume of only the base explosive. In order for the aluminum to increase AA, exothermicity must more than offset losses in gas-production and from heating and accelerating the solid particle in the flow. Furthermore, particles must react promptly to deliver this energy prior to loss in driving pressure with product expansion or acoustic decoupling from the driven material. For these reasons many aluminized formulations exhibit slight or no increase in AA ability. Furthermore, AA ability is typically studied using the cylinder test, which specifies a fixed, heavy copper wall. In the present study the authors have used symmetric sandwiches of flyer plates of varying thicknesses to examine how charge scaling and plate acceleration timescales influence the enhancement in AA for different mass fractions and sizes of aluminum particles. Nitromethane gelled with 4% Poly(methyl methacrylate) by mass was used as the base explosive. 3M K1 microballoons were added at a mass fraction of 0.5% to sensitize the mixture. Mass fraction of aluminum was varied between 10% and 40% and particle size was varied from 2 μm to 100 μm. For small mass fractions of alumimum, an enhancement in AA was observed for all particle sizes and flyer configurations and indicated an onset of reaction very close to the sonic plane of the detonation wave.

  8. Peritoneal fluid transport in CAPD patients with different transport rates of small solutes.

    PubMed

    Sobiecka, Danuta; Waniewski, Jacek; Weryński, Andrzej; Lindholm, Bengt

    2004-01-01

    Continuous ambulatory peritoneal dialysis (CAPD) patients with high peritoneal solute transport rate often have inadequate peritoneal fluid transport. It is not known whether this inadequate fluid transport is due solely to a too rapid fall of osmotic pressure, or if the decreased effectiveness of fluid transport is also a contributing factor. To analyze fluid transport parameters and the effectiveness of dialysis fluid osmotic pressure in the induction of fluid flow in CAPD patients with different small solute transport rates. 44 CAPD patients were placed in low (n = 6), low-average (n = 13), high-average (n = 19), and high (n = 6) transport groups according to a modified peritoneal equilibration test (PET). The study involved a 6-hour peritoneal dialysis dwell with 2 L 3.86% glucose dialysis fluid for each patient. Radioisotopically labeled serum albumin was added as a volume marker.The fluid transport parameters (osmotic conductance and fluid absorption rate) were estimated using three mathematical models of fluid transport: (1) Pyle model (model P), which describes ultrafiltration rate as an exponential function of time; (2) model OS, which is based on the linear relationship of ultrafiltration rate and overall osmolality gradient between dialysis fluid and blood; and (3) model G, which is based on the linear relationship between ultrafiltration rate and glucose concentration gradient between dialysis fluid and blood. Diffusive mass transport coefficients (K(BD)) for glucose, urea, creatinine, potassium, and sodium were estimated using the modified Babb-Randerson-Farrell model. The high transport group had significantly lower dialysate volume and glucose and osmolality gradients between dialysate and blood, but significantly higher K(BD) for small solutes compared with the other transport groups. Osmotic conductance, fluid absorption rate, and initial ultrafiltration rate did not differ among the transport groups for model OS and model P. Model G yielded unrealistic values of fluid transport parameters that differed from those estimated by models OS and P. The K(BD) values for small solutes were significantly different among the groups, and did not correlate with fluid transport parameters for model OS. The difference in fluid transport between the different transport groups was due only to the differences in the rate of disappearance of the overall osmotic pressure of the dialysate, which was a combined result of the transport rate of glucose and other small solutes. Although the glucose gradient is the major factor influencing ultrafiltration rate, other solutes, such as urea, are also of importance. The counteractive effect of plasma small solutes on transcapillary ultrafiltration was found to be especially notable in low transport patients. Thus, glucose gradient alone should not be considered the only force that shapes the ultrafiltration profile during peritoneal dialysis. We did not find any correlations between diffusive mass transport coefficients for small solutes and fluid transport parameters such as osmotic conductance or fluid and volume marker absorption. We may thus conclude that the pathway(s) for fluid transport appears to be partly independent from the pathway(s) for small solute transport, which supports the hypothesis of different pore types for fluid and solute transport.

  9. Antimatter Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Zichichi, Antonino

    2001-11-01

    In order to have matter we need fundamental fermions (quarks and leptons), particles (mesons and baryons) and nuclei. For antimatter to exist, the antifundamental fermions, as well as the antiparticles and the antinuclei, are needed. The masses associated with these components of matter are the "intrinsic" (quarks and leptons), the "confinement" (mesons and baryons) and the "binding" [either nuclear (nuclei), or electromagnetic (atoms)]. The first two are positive, the two "binding" ones are negative. These masses have different origins. No one has been able to establish the origin of the "intrinsic" masses (it could be the Higgs mechanism, but this lacks experimental confirmation so far). The "confinement" masses are QCD non-perturbative effects. The nuclear "binding" masses are QCD-induced colour neutral effects; the electromagnetic "binding" is due to QED and, since QED is the best experimentally checked RQFT, its validity in terms of the CPT symmetry cannot easily be questioned and this is why the electromagnetic "binding" is not included in this review. If CPT were theoretically well established as it was when discovered, all mass differences, between any matter and its antimatter partner, should be zero. The best limits for the validity of CPT invariance in the field of masses are two: i) the determination of a very small upper limit on Δ {m}{{Kbar K}} (the mass difference between a meson and an antimeson) derived from the mass difference between the long- and the short-lived K-mesons, ΔmKLKS ii) the measurements of the charge over mass ratio ({{Q} / {M}}) for protons and antiprotons. These experimental results are discussed in terms of their relevance to check CPT invariance for the "intrinsic" and for the "confinement" masses. It is pointed out that the value of Δ {m}{{Kbar K}} could be totally insensitive to a large CPT breaking in the intrinsic quark masses. Furthermore, the physics of "intrinsic" and "confinement" masses has nothing to do with the nuclear "binding" masses, where the limits are very poor. A deuteron-antideuteron mass difference Δ {m}{{Dbar D}} , many orders of magnitude larger than the present limits in the "confinement" and in the "intrinsic" masses, could exist and have no effects on the CPT limits known so far, including the very high precision measurements on Δ {m}{{Kbar K}} and on ({{Q} / {M}}). New experiments need to be performed in nuclear matter-antimatter in order to establish the validity of CPT invariance in non-perturbative - colour neutral - QCD effects, such as the nuclear binding forces which no one is able to describe in terms of a fundamental RQFT.

  10. The marine diversity spectrum

    PubMed Central

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-01-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the ‘diversity spectrum’, which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope −0·5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between −0·5 and −0·1. Slopes of −0·5 and −0·1 represent markedly different communities: a slope of −0·5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of −0·1 depicts a 1·6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on body mass, and a neutral assumption about speciation and extinction. PMID:24588547

  11. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    PubMed

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  12. Deceptively Small

    NASA Image and Video Library

    2015-02-02

    Tiny Epimetheus is dwarfed by adjacent slivers of the A and F rings. But is it really? Looks can be deceiving! There is approximately 10 to 20 times more mass in that tiny dot than in the piece of the A ring visible in this image! In total, Saturn's rings have about as much mass as a few times the mass of the moon Mimas. (This mass estimate comes from measuring the waves raised in the rings by moons like Epimetheus.) The rings look physically larger than any moon because the individual ring particles are very small, giving them a large surface area for a given mass. Epimetheus (70 miles or 113 kilometers across), on the other hand, has a small surface area per mass compared to the rings, making it look deceptively small. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Dec. 5, 2014. The view was obtained at a distance of approximately 1.2 million miles (2 million kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 40 degrees. Image scale is 7 miles (12 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18302

  13. Combination of Mass Signal Amplification and Isotope-Labeled Alkanethiols for the Multiplexed Detection of miRNAs.

    PubMed

    Kang, Hyunook; Hong, Seol-Hye; Sung, Jiha; Yeo, Woon-Seok

    2017-08-04

    We report a fast and sensitive method for the multiplexed detection of miRNAs by combining mass signal amplification and isotope-labeled signal reporter molecules. In our strategy, target miRNAs are captured specifically by immobilized DNAs on gold nanoparticles (AuNPs), which carry a large number of small molecules, called amplification tags (Am-tags), as the reporter for the detection of target miRNAs. For multiplexed detection, we designed and synthesized four Am-tags containing 0, 4, 8, 12 isotopes so that they had same molecular properties but different molecular weights. By observing the mass signals of the Am-tags on AuNPs decorated along with different probe DNAs, four types of miRNAs in a sample could be easily discriminated, and the relative amounts of these miRNAs could be quantified. The practicability of our strategy was further verified by measuring the expression levels of two miRNAs in HUVECs in response to different CuSO 4 concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical classification of iron meteorites. XI. Multi-element studies of 38 new irons and the high abundance of ungrouped irons from Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasson, J.T.; Ouyang, Xinwei; Wang, Jianmin

    1989-03-01

    The authors report concentrations of 14 elements in the metal of 38 iron meteorites and a pallasite. The meteorites are classified based on these data and on structural observations. Three samples are paired with previously classified irons; thus, these additional 35 irons raise the number of well-classified, independent iron meteorites to 598. One Yamato iron contains 342 mg/g Ni, the second highest Ni content in an IAB iron after Oktibbeha County. Two small irons from Western Australia appear to be metal nodules from mesosiderites. Several of the new irons are from Antarctica. Of 24 independent irons from Antarctica, 8 aremore » ungrouped. The fraction, 0.333, is much higher than the fraction 0.161 among all 598 classified irons. Statistical tests show that it is highly improbably ({approximately}2.9% probability) that the Antarctic population is a random sample of the larger population. The difference is probably related to the fact that the median mass of Antarctic irons is about two orders of magnitude smaller than that of non-Antarctic irons. It is doubtful that the difference results from fragmentation patterns yielding different size distributions favoring smaller masses among ungrouped irons. More likely is the possibility that smaller meteoroids tend to sample a larger number of asteroidal source regions, perhaps because small meteoroids tend to have higher ejection velocities or because small meteoroids have random-walked a greater increment of orbital semimajor axis away from that of the parent body.« less

  15. A Flight Dynamics Model for a Small Glider in Ambient Winds

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.

    2003-01-01

    In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find the aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.

  16. A Flight Dynamics Model for a Small Glider in Ambient Winds

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.

    2003-01-01

    In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.

  17. Entry descent and landing systems for small planetary missions: Parametric comparison of parachutes and inflatable systems for the proposed Vanguard Mars mission

    NASA Astrophysics Data System (ADS)

    Allouis, E.; Ellery, A.; Welch, C. S.

    2006-10-01

    Here, the feasibility of a post-Beagle2 robotic Mars mission of modest size, mass and cost with a high scientific return is assessed. Based on a triad of robotics comprising a lander, a rover and three penetrating moles, the mission is astrobiology focussed, but also provides a platform for technology demonstration. The study is investigating two Entry, Descent and Landing Systems (EDLS) for the 120 kg—mission based on the conventional heatshield/parachute duo and on the use of inflatable technologies as demonstrated by the IRDT/IRDT2 projects. Moreover, to make use of existing aerodynamic databases, both EDLS are considered with two geometries: the Mars pathfinder (MPF) and Huygens/Beagle2 (B2) configurations. A versatile EDL model has been developed to provide a preliminary sizing for the different EDL systems such as heatshield, parachute, and inflatables for small to medium planetary missions. With a landed mass of 65 kg, a preliminary mass is derived for each system of the mission to provide a terminal velocity compatible with the use of airbags. On both conventional and inflatable options, the MPF configuration performs slightly better mass-wise since its cone half-angle is flatter at 70. Overall, the inflatable braking device (IBD) option performs better than the conventional one and would provide in this particular case a decrease in mass of the EDLS of about 15 18% that can be redistributed to the payload.

  18. Entry Descent and Landing Systems for small planetary missions: parametric comparison of parachutes and inflatable systems for the proposed Vanguard Mars mission

    NASA Astrophysics Data System (ADS)

    Allouis, E.; Ellery, A.; Welch, C. S.

    2003-11-01

    Here the feasibility of a post-Beagle2 robotic Mars mission of modest size, mass and cost with a high scientific return is assessed. Based on a triad of robotics comprising a lander, a rover and three penetrating moles, the mission is astrobiology focussed, but also provides a platform for technology demonstration. The study is investigating two Entry, Descent and Landing Systems (EDLS) for the 120kg - mission based on the conventional heatshield/parachute duo and on the use of inflatable technologies as demonstrated by the IRDT/IRDT2 projects. Moreover, to make use of existing aerodynamic databases, both EDLS are considered with two geometries: the Mars Pathfinder (MPF) and Huygens/Beagle2 (B2) configurations. A versatile EDL model has been developed to provide a preliminary sizing for the different EDL systems such as heatshield, parachute, and inflatables for small to medium planetary missions. With a landed mass of 65 kg, a preliminary mass is derived for each system of the mission to provide a terminal velocity compatible with the use of airbags. On both conventional and inflatable options, the MPF configuration performs slightly better mass-wise since its cone half-angle is flatter at 70 degrees. Overall, the Inflatable Braking Device (IBD) option performs better than the conventional one and would provide in this particular case a decrease in mass of the EDLS of about 15-18% that can be redistributed to the payload.

  19. Geosynchronous earth orbit/low earth orbit space object inspection and debris disposal: A preliminary analysis using a carrier satellite with deployable small satellites

    NASA Astrophysics Data System (ADS)

    Crockett, Derick

    Detailed observations of geosynchronous satellites from earth are very limited. To better inspect these high altitude satellites, the use of small, refuelable satellites is proposed. The small satellites are stationed on a carrier platform in an orbit near the population of geosynchronous satellites. A carrier platform equipped with deployable, refuelable SmallSats is a viable option to inspect geosynchronous satellites. The propellant requirement to transfer to a targeted geosynchronous satellite, perform a proximity inspection mission, and transfer back to the carrier platform in a nearby orbit is determined. Convex optimization and traditional optimization techniques are explored, determining minimum propellant trajectories. Propellant is measured by the total required change in velocity, delta-v. The trajectories were modeled in a relative reference frame using the Clohessy-Wiltshire equations. Mass estimations for the carrier platform and the SmallSat were determined by using the rocket equation. The mass estimates were compared to the mass of a single, non-refuelable satellite performing the same geosynchronous satellite inspection missions. From the minimum delta-v trajectories and the mass analysis, it is determined that using refuelable SmallSats and a carrier platform in a nearby orbit can be more efficient than using a single non-refuelable satellite to perform multiple geosynchronous satellite inspections.

  20. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    PubMed

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P < 0.05), which was largely due to a 6.4-7.8 % (P < 0.05) greater cortical mass in the posterior-lateral, medial and posterior-medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive-fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior-medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  1. Comparison of Optimal Small Spacecraft Micro Electric Propulsion Technologies for Mission Opportunities

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara

    2015-01-01

    The goal of this paper is to explore the mission opportunities that are uniquely enabled by U-class Solar Electric Propulsion (SEP) technologies. Small SEP thrusters offers significant advantages relative to existing technologies and will revolutionize the class of mission architectures that small spacecraft can accomplish by enabling trajectory maneuvers with significant change in velocity requirements and reaction wheel-free attitude control. This paper aims to develop and apply a common system-level modeling framework to evaluate these thrusters for relevant upcoming mission scenarios, taking into account the mass, power, volume, and operational constraints of small highly-constrained missions. We will identify the optimal technology for broad classes of mission applications for different U-class spacecraft sizes and provide insights into what constrains the system performance to identify technology areas where improvements are needed.

  2. Mass hierarchy and energy scaling of the Tsallis - Pareto parameters in hadron productions at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Bíró, Gábor; Barnaföldi, Gergely Gábor; Biró, Tamás Sándor; Shen, Keming

    2018-02-01

    The latest, high-accuracy identified hadron spectra measurements in highenergy nuclear collisions led us to the investigation of the strongly interacting particles and collective effects in small systems. Since microscopical processes result in a statistical Tsallis - Pareto distribution, the fit parameters q and T are well suited for identifying system size scalings and initial conditions. Moreover, parameter values provide information on the deviation from the extensive, Boltzmann - Gibbs statistics in finite-volumes. We apply here the fit procedure developed in our earlier study for proton-proton collisions [1, 2]. The observed mass and center-of-mass energy trends in the hadron production are compared to RHIC dAu and LHC pPb data in different centrality/multiplicity classes. Here we present new results on mass hierarchy in pp and pA from light to heavy hadrons.

  3. Increased Brownian Force Noise from Molecular Impacts in a Constrained Volume

    NASA Astrophysics Data System (ADS)

    Cavalleri, A.; Ciani, G.; Dolesi, R.; Heptonstall, A.; Hueller, M.; Nicolodi, D.; Rowan, S.; Tombolato, D.; Vitale, S.; Wass, P. J.; Weber, W. J.

    2009-10-01

    We report on residual-gas damping of the motion of a macroscopic test mass enclosed in a nearby housing in the molecular flow regime. The damping coefficient, and thus the associated thermal force noise, is found to increase significantly when the distance between the test mass and surrounding walls is smaller than the test mass itself. The effect has been investigated with two torsion pendulums of different geometry and has been modeled in a numerical simulation whose predictions are in good agreement with the measurements. Relevant to a wide variety of small-force experiments, the residual-gas force noise power for the test masses in the LISA gravitational wave observatory is roughly a factor 15 larger than in an infinite gas volume, though still compatible with the target acceleration noise of 3fms-2Hz-1/2 at the foreseen pressure below 10-6Pa.

  4. Dimensional crossover in fragmentation

    NASA Astrophysics Data System (ADS)

    Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.

    2000-11-01

    Experiments in which thick clay plates and glass rods are fractured have revealed different behavior of fragment mass distribution function in the small and large fragment regions. In this paper we explain this behavior using non-extensive Tsallis statistics and show how the crossover between the two regions is caused by the change in the fragments’ dimensionality during the fracture process. We obtain a physical criterion for the position of this crossover and an expression for the change in the power-law exponent between the small and large fragment regions. These predictions are in good agreement with the experiments on thick clay plates.

  5. Review of Kaufman thruster development at the Lewis Research Center, 1973

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1973-01-01

    Two thruster sizes are studied. One, a small 5-cm or 8-cm size is for spacecraft station keeping. The other, 30-cm (130 mN thrust), is for a thruster array to do primary solar electric propulsion. A 5-cm thruster (1.8 mN) has recently completed 9715 hr of life testing. Use of dished grids in the 30-cm thruster has increased beam current from 2 to 5 A. The total thrust system mass is compared for present small thrusters at different operating conditions for station keeping of synchronous satellites.

  6. Brief Report: A mass spectrometry assay to simultaneously analyze ROS1 and RET fusion gene expression in non-small cell lung cancer

    PubMed Central

    Wijesinghe, Priyanga; Bepler, Gerold

    2014-01-01

    Introduction ROS1 and RET gene fusions were recently discovered in non-small cell lung cancer (NSCLC) as potential therapeutic targets with small molecule kinase inhibitors. The conventional screening methods of these fusions are time consuming and require samples of high quality and quantity. Here, we describe a novel and efficient method by coupling the power of multiplexing PCR and the sensitivity of mass spectrometry. Methods The multiplex mass spectrometry platform simultaneously tests samples for the expression of nine ROS1 and six RET fusion genes. The assay incorporates detection of wild-type exon junctions immediately upstream and downstream of the fusion junction to exclude false negative results. To flag false positives, the system also comprises two independent assays for each fusion gene junction. Results The characteristic mass spectrometric peaks of the gene fusions were obtained using engineered plasmid constructs. Specific assays targeting the wild-type gene exon junctions were validated using cDNA from lung tissue of healthy individuals. The system was further validated using cDNA derived from NSCLC cell lines that express endogenous fusion genes. The expressed ROS1-SLC34A2 and CCDC6-RET gene fusions from the NSCLC cell lines HCC78 and LC-2/ad, respectively, were accurately detected by the novel assay. The assay is extremely sensitive, capable of detecting an event in test specimens containing 0.5% positive tumors. Conclusion The novel multiplexed assay is robustly capable of detecting 15 different clinically relevant RET and ROS1 fusion variants. The benefits of this detection method include exceptionally low sample input, high cost efficiency, flexibility, and rapid turnover. PMID:25384172

  7. Resolving the problem of galaxy clustering on small scales: any new physics needed?

    NASA Astrophysics Data System (ADS)

    Kang, X.

    2014-02-01

    Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.

  8. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles

    PubMed Central

    Banks, R W

    2006-01-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g−1 of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976

  9. Comparative analyses of basal rate of metabolism in mammals: data selection does matter.

    PubMed

    Genoud, Michel; Isler, Karin; Martin, Robert D

    2018-02-01

    Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes. © 2017 Cambridge Philosophical Society.

  10. A Procedure to Simultaneously Determine the Calcium, Chromium, and Titanium Isotopic Compositions of Astromaterials

    NASA Technical Reports Server (NTRS)

    Tappa, M. J.; Simon, J. I; Jordan, M. K.; Young, E. D.

    2015-01-01

    Many elements display both linear (mass-dependent) and non-linear (mass-independent) isotope anomalies (relative to a common reservoir). In early Solar System objects, with the exception of oxygen, mass-dependent isotope anomalies are most commonly thought to result from phase separation processes such as evaporation and condensation, whereas many mass-independent isotope anomalies likely reflect radiogenic ingrowth or incomplete mixing of presolar components in the proto-planetary disk. Coupling the isotopic characterization of multiple elements with differing volatilities in single objects may provide information regarding the location, source material, and/or processes involved in the formation of early Solar System solids. Here, we follow up on the work presented in, and detail new procedures developed to make high-precision multi-isotope measurements of Calcium, Chromium, and Titanium with small or limited amounts of sample using thermal ionization mass spectrometry and multi-collector ICP-MS, and characterize a suite of chondritic and terrestrial standards.

  11. Mass spectrometric detection of siRNA in plasma samples for doping control purposes.

    PubMed

    Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Schänzer, Wilhelm; Thevis, Mario

    2010-10-01

    Small interfering ribonucleic acid (siRNA) molecules can effect the expression of any gene by inducing the degradation of mRNA. Therefore, these molecules can be of interest for illicit performance enhancement in sports by affecting different metabolic pathways. An example of an efficient performance-enhancing gene knockdown is the myostatin gene that regulates muscle growth. This study was carried out to provide a tool for the mass spectrometric detection of modified and unmodified siRNA from plasma samples. The oligonucleotides are purified by centrifugal filtration and the use of an miRNA purification kit, followed by flow-injection analysis using an Exactive mass spectrometer to yield the accurate masses of the sense and antisense strands. Although chromatography and sensitive mass spectrometric analysis of oligonucleotides are still challenging, a method was developed and validated that has adequate sensitivity (limit of detection 0.25-1 nmol mL(-1)) and performance (precision 11-21%, recovery 23-67%) for typical antisense oligonucleotides currently used in clinical studies.

  12. Gaugino and scalar masses in the landscape

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Quevedo, Fernando

    2006-06-01

    In this letter we demonstrate the genericity of suppressed gaugino masses Ma ~ m3/2/ln (MPlanck/m3/2) in the IIB string landscape, by showing that this relation holds for D7-brane gauginos whenever the associated modulus is stabilised by nonperturbative effects. Although m3/2 and Ma take many different values across the landscape, the above small mass hierarchy is maintained. We show that it is valid for models with an arbitrary number of moduli and applies to both the KKLT and exponentially large volume approaches to Kähler moduli stabilisation. In the latter case we explicitly calculate gaugino and moduli masses for compactifications on the two-modulus Calabi-Yau Bbb P4[1,1,1,6,9]. In the large-volume scenario we also show that soft scalar masses are approximately universal with mi2 ~ m3/22(1+epsiloni), with the non-universality parametrised by epsiloni ~ 1/ln (MP/m3/2)2 ~ (1/1000). We briefly discuss possible phenomenological implications of our results.

  13. Estimation of the auto frequency response function at unexcited points using dummy masses

    NASA Astrophysics Data System (ADS)

    Hosoya, Naoki; Yaginuma, Shinji; Onodera, Hiroshi; Yoshimura, Takuya

    2015-02-01

    If structures with complex shapes have space limitations, vibration tests using an exciter or impact hammer for the excitation are difficult. Although measuring the auto frequency response function at an unexcited point may not be practical via a vibration test, it can be obtained by assuming that the inertia acting on a dummy mass is an external force on the target structure upon exciting a different excitation point. We propose a method to estimate the auto frequency response functions at unexcited points by attaching a small mass (dummy mass), which is comparable to the accelerometer mass. The validity of the proposed method is demonstrated by comparing the auto frequency response functions estimated at unexcited points in a beam structure to those obtained from numerical simulations. We also consider random measurement errors by finite element analysis and vibration tests, but not bias errors. Additionally, the applicability of the proposed method is demonstrated by applying it to estimate the auto frequency response function of the lower arm in a car suspension.

  14. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy

    PubMed Central

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-01-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047

  15. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternativemore » assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.« less

  16. Friends With Health Benefits: The Long-Term Benefits of Early Peer Social Integration for Blood Pressure and Obesity in Midlife.

    PubMed

    Cundiff, Jenny M; Matthews, Karen A

    2018-05-01

    In adults, greater social integration is associated with reduced risk of cardiovascular disease, including hypertension. Social integration earlier in life may be similarly associated with cardiovascular risk. Using a longitudinal sample of 267 Black and White men, we examined whether greater social integration with peers during childhood and adolescence, assessed by parent report, prospectively predicts lower blood pressure and body mass index two decades later in adulthood and whether these effects differ by race, given well-documented racial disparities in hypertension. Boys who were reported by their parents to be more socially integrated with peers evidenced lower blood pressure and body mass index in adulthood, and this effect was not accounted for by body mass index in childhood, childhood socioeconomic status, childhood hostility, childhood physical health, extraversion measured in adolescence, or concurrent adult self-reports of social integration. Results did not differ by race, but analyses were not powered to detect interactions of small effect size.

  17. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems.

    PubMed

    Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman

    2016-10-28

    Metabolome analyses are a suite of analytical approaches that enable us to capture changes in the metabolome (small molecular weight components, typically less than 1500 Da) in biological systems. Mass spectrometry (MS) has been widely used for this purpose. The key challenge here is to be able to capture changes in a reproducible and reliant manner that is representative of the events that take place in vivo Typically, the analysis is carried out in vitro, by isolating the system and extracting the metabolome. MS-based approaches enable us to capture metabolomic changes with high sensitivity and resolution. When developing the technique for different biological systems, there are similarities in challenges and differences that are specific to the system under investigation. Here, we review some of the challenges in capturing quantitative changes in the metabolome with MS based approaches, primarily in microbial and mammalian systems.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  18. Effects of age and body mass index on breast characteristics: A cluster analysis.

    PubMed

    Coltman, Celeste E; Steele, Julie R; McGhee, Deirdre E

    2018-05-24

    Limited research has quantified variation in the characteristics of the breasts among women and determined how these breast characteristics are influenced by age and body mass. The aim of this study was to classify the breasts of women in the community into different categories based on comprehensive and objective measurements of the characteristics of their breasts and torsos, and to determine the effect of age and body mass index (BMI) on the prevalence of these breast categories. Four breast characteristic clusters were identified (X-Large, Very-ptotic & Splayed; Large, Ptotic & Splayed; Medium & Mildly-ptotic; and Small & Non-ptotic), with age and BMI shown to significantly affect the breast characteristic clusters. These results highlight the difference in breast characteristics exhibited among women and how these clusters are affected by age and BMI. The breast characteristic clusters identified in this study could be used as a basis for future bra designs and sizing systems in order to improve bra fit for women.

  19. Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry.

    PubMed

    Kind, Tobias; Fiehn, Oliver

    2017-09-01

    Complete structural elucidation of natural products is commonly performed by nuclear magnetic resonance spectroscopy (NMR), but annotating compounds to most likely structures using high-resolution tandem mass spectrometry is a faster and feasible first step. The CASMI contest 2016 (Critical Assessment of Small Molecule Identification) provided spectra of eighteen compounds for the best manual structure identification in the natural products category. High resolution precursor and tandem mass spectra (MS/MS) were available to characterize the compounds. We used the Seven Golden Rules, Sirius2 and MS-FINDER software for determination of molecular formulas, and then we queried the formulas in different natural product databases including DNP, UNPD, ChemSpider and REAXYS to obtain molecular structures. We used different in-silico fragmentation tools including CFM-ID, CSI:FingerID and MS-FINDER to rank these compounds. Additional neutral losses and product ion peaks were manually investigated. This manual and time consuming approach allowed for the correct dereplication of thirteen of the eighteen natural products.

  20. THE DEPENDENCE OF STELLAR MASS AND ANGULAR MOMENTUM LOSSES ON LATITUDE AND THE INTERACTION OF ACTIVE REGION AND DIPOLAR MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less

  1. Time-resolved analysis of primary volatile emissions and secondary aerosol formation potential from a small-scale pellet boiler

    NASA Astrophysics Data System (ADS)

    Czech, Hendryk; Pieber, Simone M.; Tiitta, Petri; Sippula, Olli; Kortelainen, Miika; Lamberg, Heikki; Grigonyte, Julija; Streibel, Thorsten; Prévôt, André S. H.; Jokiniemi, Jorma; Zimmermann, Ralf

    2017-06-01

    Small-scale pellet boilers and stoves became popular as a wood combustion appliance for domestic heating in Europe, North America and Asia due to economic and environmental aspects. Therefore, an increasing contribution of pellet boilers to air pollution is expected despite their general high combustion efficiency. As emissions of primary organic aerosol (POA) and permanent gases of pellet boilers are well investigated, the scope of this study was to investigate the volatile organic emissions and the formation potential of secondary aerosols for this type of appliance. Fresh and aged emissions were analysed by a soot-particle aerosol time-of-flight mass spectrometry (SP-AMS) and the molecular composition of the volatile precursors with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) at different pellet boiler operation conditions. Organic emissions in the gas phase were dominated by unsaturated hydrocarbons while wood-specific VOCs, e.g. phenolic species or substituted furans, were only detected during the starting phase. Furthermore, organic emissions in the gas phase were found to correlate with fuel grade and combustion technology in terms of secondary air supply. Secondary organic aerosols of optimised pellet boiler conditions (OPT, state-of-the-art combustion appliance) and reduced secondary air supply (RSA, used as a proxy for pellet boilers of older type) were studied by simulating atmospheric ageing in a Potential Aerosol Mass (PAM) flow reactor. Different increases in OA mass (55% for OPT, 102% for RSA), associated with higher average carbon oxidation state and O:C, could be observed in a PAM chamber experiment. Finally, it was found that derived SOA yields and emission factors were distinctly lower than reported for log wood stoves.

  2. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets--a systematic review and meta analysis.

    PubMed

    Clifton, P M; Condo, D; Keogh, J B

    2014-03-01

    Meta analysis of short term trials indicates that a higher protein, lower carbohydrate weight loss diet enhances fat mass loss and limits lean mass loss compared with a normal protein weight loss diet. Whether this benefit persists long term is not clear. We selected weight loss studies in adults with at least a 12 month follow up in which a higher percentage protein/lower carbohydrate diet was either planned or would be expected for either weight loss or weight maintenance. Studies were selected regardless of the success of the advice but difference in absolute and percentage protein intake at 12 months was used as a moderator in the analysis. Data was analysed using Comprehensive Meta analysis V2 using a random effects analysis. As many as 32 studies with 3492 individuals were analysed with data on fat and lean mass, glucose and insulin from 18 to 22 studies and lipids from 28 studies. A recommendation to consume a lower carbohydrate, higher protein diet in mostly short term intensive interventions with long term follow up was associated with better weight and fat loss but the effect size was small-standardised means of 0.14 and 0.22, p = 0.008 and p < 0.001 respectively (equivalent to 0.4 kg for both). A difference of 5% or greater in percentage protein between diets at 12 mo was associated with a 3 fold greater effect size compared with <5% (p = 0.038) in fat mass (0.9 vs. 0.3 kg). Fasting triglyceride and insulin were also lower with high protein diets with effect sizes of 0.17 and 0.22, p = 0.003 and p = 0.042 respectively. Other lipids and glucose were not different. The short term benefit of higher protein diets appears to persist to a small degree long term. Benefits are greater with better compliance to the diet. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  4. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloudmore » structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.« less

  5. The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud

    NASA Astrophysics Data System (ADS)

    Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle & Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle & Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root {\\cal N} statistical fluctuations, increasing with H.

  6. Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species of north-east India

    NASA Astrophysics Data System (ADS)

    Khan, M. L.

    2004-03-01

    I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.

  7. Development of a Small Area Sniffer

    NASA Technical Reports Server (NTRS)

    Meade, Laurie A.

    1995-01-01

    The aim of this project is to develop and implement a sniffer that is capable of measuring the mass flow rate of air through a small area of pinholes whose diameters are on the magnitude of thousandths of an inch. The sniffer is used to scan a strip of a leading edge panel, which is being used in a hybrid laminar flow control experiment, in order to survey the variations in the amount of air that passes through the porous surface at different locations. Spanwise scans are taken at different chord locations by increasing the pressure in a control volume that is connected to the sniffer head, and recording the drop in pressure as the air is allowed to flow through the tiny holes. This information is used to obtain the mass flow through the structure. More importantly, the deviations from the mean flow rate are found and used to determine whether there are any significant variations in the flow rate from one area to the next. The preliminary results show little deviation in the spanwise direction. These results are important when dealing with the location and amount of suction that will be applied to the leading edge in the active laminar flow control experiment.

  8. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  9. A Statistical Study of the Mass Distribution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Cheng, Zheng; Zhang, Cheng-Min; Zhao, Yong-Heng; Wang, De-Hua; Pan, Yuan-Yue; Lei, Ya-Juan

    2014-07-01

    By reviewing the methods of mass measurements of neutron stars in four different kinds of systems, i.e., the high-mass X-ray binaries (HMXBs), low-mass X-ray binaries (LMXBs), double neutron star systems (DNSs) and neutron star-white dwarf (NS-WD) binary systems, we have collected the orbital parameters of 40 systems. By using the boot-strap method and the Monte-Carlo method, we have rebuilt the likelihood probability curves of the measured masses of 46 neutron stars. The statistical analysis of the simulation results shows that the masses of neutron stars in the X-ray neutron star systems and those in the radio pulsar systems exhibit different distributions. Besides, the Bayes statistics of these four different kind systems yields the most-probable probability density distributions of these four kind systems to be (1.340 ± 0.230)M8, (1, 505 ± 0.125)M8,(1.335 ± 0.055)M8 and (1.495 ± 0.225)M8, respectively. It is noteworthy that the masses of neutron stars in the HMXB and DNS systems are smaller than those in the other two kind systems by approximately 0.16M8. This result is consistent with the theoretical model of the pulsar to be accelerated to the millisecond order of magnitude via accretion of approximately 0.2M8. If the HMXBs and LMXBs are respectively taken to be the precursors of the BNS and NS-WD systems, then the influence of the accretion effect on the masses of neutron stars in the HMXB systems should be exceedingly small. Their mass distributions should be very close to the initial one during the formation of neutron stars. As for the LMXB and NS-WD systems, they should have already under- gone the process of suffcient accretion, hence there arises rather large deviation from the initial mass distribution.

  10. Tackling saponin diversity in marine animals by mass spectrometry: data acquisition and integration.

    PubMed

    Decroo, Corentin; Colson, Emmanuel; Demeyer, Marie; Lemaur, Vincent; Caulier, Guillaume; Eeckhaut, Igor; Cornil, Jérôme; Flammang, Patrick; Gerbaux, Pascal

    2017-05-01

    Saponin analysis by mass spectrometry methods is nowadays progressively supplementing other analytical methods such as nuclear magnetic resonance (NMR). Indeed, saponin extracts from plant or marine animals are often constituted by a complex mixture of (slightly) different saponin molecules that requires extensive purification and separation steps to meet the requirement for NMR spectroscopy measurements. Based on its intrinsic features, mass spectrometry represents an inescapable tool to access the structures of saponins within extracts by using LC-MS, MALDI-MS, and tandem mass spectrometry experiments. The combination of different MS methods nowadays allows for a nice description of saponin structures, without extensive purification. However, the structural characterization process is based on low kinetic energy CID which cannot afford a total structure elucidation as far as stereochemistry is concerned. Moreover, the structural difference between saponins in a same extract is often so small that coelution upon LC-MS analysis is unavoidable, rendering the isomeric distinction and characterization by CID challenging or impossible. In the present paper, we introduce ion mobility in combination with liquid chromatography to better tackle the structural complexity of saponin congeners. When analyzing saponin extracts with MS-based methods, handling the data remains problematic for the comprehensive report of the results, but also for their efficient comparison. We here introduce an original schematic representation using sector diagrams that are constructed from mass spectrometry data. We strongly believe that the proposed data integration could be useful for data interpretation since it allows for a direct and fast comparison, both in terms of composition and relative proportion of the saponin contents in different extracts. Graphical Abstract A combination of state-of-the-art mass spectrometry methods, including ion mobility spectroscopy, is developed to afford a complete description of the saponin molecules in natural extracts.

  11. Low-scale seesaw and the CP violation in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Penedo, J. T.; Petcov, S. T.; Yanagida, Tsutomu T.

    2018-04-01

    We consider a version of the low-scale type I seesaw mechanism for generating small neutrino masses, as an alternative to the standard seesaw scenario. It involves two right-handed (RH) neutrinos ν1R and ν2R having a Majorana mass term with mass M, which conserves the lepton charge L. The RH neutrino ν2R has lepton-charge conserving Yukawa couplings gℓ2 to the lepton and Higgs doublet fields, while small lepton-charge breaking effects are assumed to induce tiny lepton-charge violating Yukawa couplings gℓ1 for ν1R, l = e , μ , τ. In this approach the smallness of neutrino masses is related to the smallness of the Yukawa coupling of ν1R and not to the large value of M: the RH neutrinos can have masses in the few GeV to a few TeV range. The Yukawa couplings |gℓ2 | can be much larger than |gℓ1 |, of the order |gℓ2 | ∼10-4-10-2, leading to interesting low-energy phenomenology. We consider a specific realisation of this scenario within the Froggatt-Nielsen approach to fermion masses. In this model the Dirac CP violation phase δ is predicted to have approximately one of the values δ ≃ π / 4 , 3 π / 4, or 5 π / 4 , 7 π / 4, or to lie in a narrow interval around one of these values. The low-energy phenomenology of the considered low-scale seesaw scenario of neutrino mass generation is also briefly discussed.

  12. Diet and gut morphology of male mallards during winter in North Dakota

    USGS Publications Warehouse

    Olsen, R.E.; Cox, R.R.; Afton, A.D.; Ankney, C.D.

    2011-01-01

    A free-ranging Mallard (Anas platyrhynchos) population was investigated during winter (December-January 1996-1999) below the Garrison Dam, North Dakota, USA, to relate diet to gut morphology variation in males. Four explanatory variables (fish consumption, male age, winter, and body size) were evaluated as to whether they influenced five response variables associated with gut characteristics of Mallards. Response variables were lower gastro-intestinal tract mass (LGIT), dry liver mass, dry gizzard mass, small intestine length, and ceca length. Diets of Mallards were comprised primarily of Rainbow Smelt (Osmerus mordax) and concomitantly variation in gizzard mass was small. LGIT mass of juveniles was larger than that of adults, greater for those that consumed fish, and greater during the coldest and snowiest winter. Liver mass and small intestine length of Mallards that consumed fish were greater than those that did not. Mallards may maintain lengthy intestines to increase digestive efficiency. Gut size variation was not entirely attributable to dietary composition but also influenced by body size and environmental conditions such that over-winter survival is maximized.

  13. Spacecraft Applications of Compact Optical and Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Davinic, N. M.; Nagel, D. J.

    1995-01-01

    Optical spectrometers, and mass spectrometers to a lesser extent, have a long and rich history of use aboard spacecraft. Space mission applications include deep space science spacecraft, earth orbiting satellites, atmospheric probes, and surface landers, rovers, and penetrators. The large size of capable instruments limited their use to large, expensive spacecraft. Because of the novel application of micro-fabrication technologies, compact optical and mass spectrometers are now available. The new compact devices are especially attractive for spacecraft because of their small mass and volume, as well as their low power consumption. Dispersive optical multi-channel analyzers which cover the 0.4-1.1 micrometer wavelength are now commercially available in packages as small as 3 x 6 x 18 mm exclusive of drive and recording electronics. Mass spectrometers as small as 3 x 3 mm, again without electronics, are under development. A variety of compact optical and mass spectrometers are reviewed in this paper. A number of past space applications are described, along with some upcoming opportunities that are likely candidate missions to fly this new class of compact spectrometers.

  14. Incompletely characterized incidental renal masses: emerging data support conservative management.

    PubMed

    Silverman, Stuart G; Israel, Gary M; Trinh, Quoc-Dien

    2015-04-01

    With imaging, most incidental renal masses can be diagnosed promptly and with confidence as being either benign or malignant. For those that cannot, management recommendations can be devised on the basis of a thorough evaluation of imaging features. However, most renal masses are either too small to characterize completely or are detected initially in imaging examinations that are not designed for full evaluation of them. These masses constitute a group of masses that are considered incompletely characterized. On the basis of current published guidelines, many masses warrant additional imaging. However, while the diagnosis of renal cancer at a curable stage remains the first priority, there is the additional need to reduce unnecessary healthcare costs and radiation exposure. As such, emerging data now support foregoing additional imaging for many incompletely characterized renal masses. These data include the low risk of progression to metastases or death for small renal masses that have undergone active surveillance (including biopsy-proven cancers) and a better understanding of how specific imaging features can be used to diagnose their origins. These developments support (a) avoidance of imaging entirely for those incompletely characterized renal masses that are highly likely to be benign cysts and (b) delay of further imaging of small solid masses in selected patients. Although more evidence-based data are needed and comprehensive management algorithms have yet to be defined, these recommendations are medically appropriate and practical, while limiting the imaging of many incompletely characterized incidental renal masses.

  15. Exoplanet exploration for brown dwarfs with infrared astrometry

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki

    The astrometry is one of the oldest method for the exoplanet exploration. However, only one exoplanet has been found with the method. This is because the planet mass is sufficiently smaller than the mass of the central star, so that it is hard to observe the fluctuation of the central star by the planet. Therefore, we investigate the orbital period and mass of planets which we can discover by the future astrometric satellites for brown dwarfs, with the mass less than a tenth of the solar mass. So far five planetary systems of brown dwarfs have been found, whose mass ratios are larger than a tenth. For example, for the system whose distance, orbital period and mass ratio are 10 pc, 1 year and a tenth, respectively, the apparent semi-major axis reaches 3 milli-arcsecond, which can be well detected with the future astrometric satellites such as Small-JASMINE and Gaia. With these satellite, we can discover even super-Earth for the above system. We further investigate where in the period-mass plane we can explore the planet for individual brown dwarf with Small-JASMINE and Gaia. As a result, we find that we can explore a wide region where period and mass are within 5 years and larger than 3 earth mass. In addition, we can explore the region around 0.1 day and 10 Jovian mass, where planets have never found for any central star, and where we can explore only with Small-JASMINE for most target brown dwarfs.

  16. Application of ion mobility-mass spectrometry to microRNA analysis.

    PubMed

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  17. Quantifying Uncertainties in Mass-Dimensional Relationships Through a Comparison Between CloudSat and SPartICus Reflectivity Factors

    NASA Astrophysics Data System (ADS)

    Mascio, J.; Mace, G. G.

    2015-12-01

    CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.

  18. A New Framework to Compare Mass-Flux Schemes Within the AROME Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Riette, Sébastien; Lac, Christine

    2016-08-01

    In the Application of Research to Operations at Mesoscale (AROME) numerical weather forecast model used in operations at Météo-France, five mass-flux schemes are available to parametrize shallow convection at kilometre resolution. All but one are based on the eddy-diffusivity-mass-flux approach, and differ in entrainment/detrainment, the updraft vertical velocity equation and the closure assumption. The fifth is based on a more classical mass-flux approach. Screen-level scores obtained with these schemes show few discrepancies and are not sufficient to highlight behaviour differences. Here, we describe and use a new experimental framework, able to compare and discriminate among different schemes. For a year, daily forecast experiments were conducted over small domains centred on the five French metropolitan radio-sounding locations. Cloud base, planetary boundary-layer height and normalized vertical profiles of specific humidity, potential temperature, wind speed and cloud condensate were compared with observations, and with each other. The framework allowed the behaviour of the different schemes in and above the boundary layer to be characterized. In particular, the impact of the entrainment/detrainment formulation, closure assumption and cloud scheme were clearly visible. Differences mainly concerned the transport intensity thus allowing schemes to be separated into two groups, with stronger or weaker updrafts. In the AROME model (with all interactions and the possible existence of compensating errors), evaluation diagnostics gave the advantage to the first group.

  19. Quantifying substructures in Hubble Frontier Field clusters: comparison with ΛCDM simulations

    DOE PAGES

    Mohammed, Irshad; Saha, Prasenjit; Williams, Liliya L. R.; ...

    2016-04-13

    The Hubble Frontier Fields (HFF) are six clusters of galaxies, all showing indications of recent mergers, which have recently been observed for lensed images. As such they are the natural laboratories to study the merging history of galaxy clusters. In this work, we explore the 2D power spectrum of the mass distributionmore » $$P_{\\rm M}(k)$$ as a measure of substructure. We compare $$P_{\\rm M}(k)$$ of these clusters (obtained using strong gravitational lensing) to that of $$\\Lambda$$CDM simulated clusters of similar mass. In order to compute lensing $$P_{\\rm M}(k)$$, we produced free-form lensing mass reconstructions of HFF clusters, without any light traces mass (LTM) assumption. Moreover, the inferred power at small scales tends to be larger if (i)~the cluster is at lower redshift, and/or (ii)~there are deeper observations and hence more lensed images. In contrast, lens reconstructions assuming LTM show higher power at small scales even with fewer lensed images; it appears the small scale power in the LTM reconstructions is dominated by light information, rather than the lensing data. The average lensing derived $$P_{\\rm M}(k)$$ shows lower power at small scales as compared to that of simulated clusters at redshift zero, both dark-matter only and hydrodynamical. The possible reasons are: (i)~the available strong lensing data are limited in their effective spatial resolution on the mass distribution, (ii)~HFF clusters have yet to build the small scale power they would have at $$z\\sim 0$$, or (iii)~simulations are somehow overestimating the small scale power.« less

  20. Fine and ultrafine particles in small cities. A case study in the south of Europe.

    PubMed

    Aranda, A; Díaz-de-Mera, Y; Notario, A; Rodríguez, D; Rodríguez, A

    2015-12-01

    Ultrafine particles, PM2.5 and PM10 mass concentration, NO(x), Ozone, SO2, back-trajectories of air masses and meteorological parameters were studied in a small city over the period February, 2013 to June, 2014. The profiles of PM2.5 and PM10 particles are provided, showing averaged values of 16.6 and 21.6 μg m(-3), respectively. The average number concentration of particles in the range of diameters 5.6-560 nm was 1.2 × 10(4)#/ cm(3) with contributions of 42, 51 and 7% from the nucleation, Aitken, and accumulation modes, respectively. The average number concentration of ultrafine particles was 1.1 × 10(4)#/ cm(3). The results obtained are evidence for some differences in the pollution of ambient air by particles in the studied town in comparison to bigger cities. Nucleation events due to emissions from the city were not observed, and traffic emissions amount to a small contribution to PM2.5 and PM10 particles which are mainly due to crustal origin from the arid surroundings and long-range transport from the Sahara Desert.

  1. Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters.

    PubMed

    Makhoul, Salim; Romano, Andrea; Cappellin, Luca; Spano, Giuseppe; Capozzi, Vittorio; Benozzi, Elisabetta; Märk, Tilmann D; Aprea, Eugenio; Gasperi, Flavia; El-Nakat, Hanna; Guzzo, Jean; Biasioli, Franco

    2014-09-01

    The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds. Copyright © 2014 John Wiley & Sons, Ltd.

  2. 3-flavor oscillations with current and future reactor experiments

    NASA Astrophysics Data System (ADS)

    Dwyer, Dan

    2017-01-01

    Nuclear reactors have been a crucial tool for our understanding of neutrinos. The disappearance of electron antineutrinos emitted by nuclear reactors has firmly established that neutrino flavor oscillates, and that neutrinos consequently have mass. The current generation of precision measurements rely on some of the world's most intense reactor facilities to demonstrate that the electron antineutrino mixes with the third antineutrino mass eigenstate (v3-). Accurate measurements of antineutrino energies robustly determine the tiny difference between the masses-squared of the v3- state and the two more closely-spaced v1- and v2- states. These results have given us a much clearer picture of neutrino mass and mixing, yet at the same time open major questions about how to account for these small but non-zero masses in or beyond the Standard Model. These observations have also opened the door for a new generation of experiments which aim to measure the ordering of neutrino masses and search for potential violation of CP symmetry by neutrinos. I will provide a brief overview of this exciting field. Work supported under DOE OHEP DE-AC02-05CH11231.

  3. A universal model for solar eruptions.

    PubMed

    Wyper, Peter F; Antiochos, Spiro K; DeVore, C Richard

    2017-04-26

    Magnetically driven eruptions on the Sun, from stellar-scale coronal mass ejections to small-scale coronal X-ray and extreme-ultraviolet jets, have frequently been observed to involve the ejection of the highly stressed magnetic flux of a filament. Theoretically, these two phenomena have been thought to arise through very different mechanisms: coronal mass ejections from an ideal (non-dissipative) process, whereby the energy release does not require a change in the magnetic topology, as in the kink or torus instability; and coronal jets from a resistive process involving magnetic reconnection. However, it was recently concluded from new observations that all coronal jets are driven by filament ejection, just like large mass ejections. This suggests that the two phenomena have physically identical origin and hence that a single mechanism may be responsible, that is, either mass ejections arise from reconnection, or jets arise from an ideal instability. Here we report simulations of a coronal jet driven by filament ejection, whereby a region of highly sheared magnetic field near the solar surface becomes unstable and erupts. The results show that magnetic reconnection causes the energy release via 'magnetic breakout'-a positive-feedback mechanism between filament ejection and reconnection. We conclude that if coronal mass ejections and jets are indeed of physically identical origin (although on different spatial scales) then magnetic reconnection (rather than an ideal process) must also underlie mass ejections, and that magnetic breakout is a universal model for solar eruptions.

  4. Fundamental Stellar Parameters with HST/FGS Dynamical Masses and HST/STIS Spectroscopy of M Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio; Henry, Todd J.; Benedict, George Fritz; Jao, Wei-Chun; White, Russel; RECONS Team

    2017-01-01

    Mass is the most fundamental stellar parameter, and yet model independent dynamical masses can only be obtained for a small subset of closely separated binaries. The high angular resolution needed to characterize individual components of those systems means that little is known about the details of their atmospheric properties. We discuss the results of HST/STIS observations yielding spatially resolved optical spectra for six closely separated M dwarf systems, all of which have HST/FGS precision dynamical masses for the individual components ranging from 0.4 to 0.076 MSol. We assume coevality and equal metallicity for the components of each system and use those constraints to perform stringent tests of the leading atmospheric and evolutionary model families throughout the M dwarf mass range. We find the latest models to be in good agreement with observations. We discuss specific spectral diagnostic features such as the well-known gravity sensitive Na and K lines and address ways to break the temperature-metallicity-gravity degeneracy that often hinders the interpretation of these features. We single out a comparison between the systems GJ 469 AB and G 250-29 AB, which have nearly identical mass configurations but different metallicities, thus causing marked differences in atmospheric properties and overall luminosities.This work is funded by NASA grant HST-GO-12938. and By the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through NSF grant AST-1400680.

  5. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C.; Laughlin, Gregory, E-mail: kcs@ucolick.org, E-mail: laughlin@ucolick.org

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the {approx}150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars,more » the average g-r color of stars that host giant ECs is 4{sigma} redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4{sigma} redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M{sub *} {approx} 1 M{sub sun}, while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M{sub *} {approx} 0.7 M{sub sun}. These correlations are a natural consequence of the core-accretion model of planet formation.« less

  6. Numerical study of heat and mass transfer in inertial suspensions in pipes.

    NASA Astrophysics Data System (ADS)

    Niazi Ardekani, Mehdi; Brandt, Luca

    2017-11-01

    Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  7. Symmetry energy in cold dense matter

    NASA Astrophysics Data System (ADS)

    Jeong, Kie Sang; Lee, Su Houng

    2016-01-01

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

  8. Source identification of western Oregon Douglas-fir wood cores using mass spectrometry and random forest classification1

    PubMed Central

    Finch, Kristen; Espinoza, Edgard; Jones, F. Andrew; Cronn, Richard

    2017-01-01

    Premise of the study: We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two regions in western Oregon, USA. Methods: Three annual ring mass spectra were obtained from 188 adult Douglas-fir trees, and these were analyzed using random forest models to determine whether samples could be classified to geographic origin, growth year, or growth year and geographic origin. Specific wood molecules that contributed to geographic discrimination were identified. Results: Douglas-fir mass spectra could be differentiated into two geographic classes with an accuracy between 70% and 76%. Classification models could not accurately classify sample mass spectra based on growth year. Thirty-two molecules were identified as key for classifying western Oregon Douglas-fir wood cores to geographic origin. Discussion: DART-TOFMS is capable of detecting minute but regionally informative differences in wood molecules over a small geographic scale, and these differences made it possible to predict the geographic origin of Douglas-fir wood with moderate accuracy. Studies involving DART-TOFMS, alone and in combination with other technologies, will be relevant for identifying the geographic origin of illegally harvested wood. PMID:28529831

  9. Protein metabolism in the small intestine during cancer cachexia and chemotherapy in mice.

    PubMed

    Samuels, S E; Knowles, A L; Tilignac, T; Debiton, E; Madelmont, J C; Attaix, D

    2000-09-01

    The impact of cancer cachexia and chemotherapy on small intestinal protein metabolism and its subsequent recovery was investigated. Cancer cachexia was induced in mice with colon 26 adenocarcinoma, which is a small and slow-growing tumor characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C6H12ClN3O4S). Both healthy mice and tumor-bearing mice were given a single i.p. injection of cystemustine (20 mg/kg) 3 days after the onset of cachexia. Cancer cachexia led to a reduced in vivo rate of protein synthesis in the small intestine relative to healthy mice (-13 to -34%; P < 0.05), resulting in a 25% loss of protein mass (P < 0.05), and decreased villus width and crypt depth (P < 0.05). In treated mice, acute cytotoxicity of chemotherapy did not promote further wasting of small intestinal protein mass, nor did it result in further damage to intestinal morphology. In contrast, mucosal damage and a 17% reduction in small intestinal protein mass (P < 0.05) were evident in healthy mice treated with cystemustine, suggesting that the effects of chemotherapy on the small intestine in a state of cancer cachexia are not additive, which was an unexpected finding. Complete and rapid recovery of small intestinal protein mass in cured mice resulted from an increase in the rate of protein synthesis compared with healthy mice (23-34%; P < 0.05). Northern hybridizations of mRNA encoding components of the major proteolytic systems suggested that proteolysis may not have mediated intestinal wasting or recovery. A major clinical goal should be to design methods to improve small intestinal protein metabolism before the initiation of chemotherapy.

  10. Giant dedifferentiated liposarcoma of small bowel mesentery: a case report.

    PubMed

    Meher, Susanta; Mishra, Tushar Subhadarshan; Rath, Satyajit; Sasmal, Prakash Kumar; Mishra, Pritinanda; Patra, Susama

    2016-09-21

    Dedifferentiated liposarcoma is an uncommon variant of liposarcoma, with poor prognosis and higher preponderance to local recurrence. Only nine cases of dedifferentiated liposarcoma of small bowel mesentery have been reported till now. This is a case of giant dedifferentiated liposarcoma of the small bowel mesentery, weighing nearly 9 kg (19.8 lbs), with synchronous lesions in the extraperitoneal space, which is the first such case to be reported. We report a case of a 62-year-old man, who presented with a huge abdominal mass occupying nearly the entire abdomen. A contrast enhanced computed tomography of abdomen and pelvis revealed a large, poorly enhancing, heterogeneous, lobulated mass of size 27 × 16 cm, displacing the bowel loops peripherally. At laparotomy, a large mass arising from the small bowel mesentery was found. In addition, many other smaller synchronous lesions were studded in the entire small bowel mesentery and a couple more in the extraperitoneal space. A palliative excision of the giant mass along with the adjacent small bowel was done. The other smaller swellings were not causing any mass effect and were left behind as they were numerous, virtually ruling out any possibility of a curative excision. The histopathological examination suggested the diagnosis of dedifferentiated liposarcoma. On immunohistochemistry, S-100 was positive in the well-differentiated sarcomatous areas. The CD 117 and SMA were strongly negative ruling out the possibility of a gastrointestinal stromal tumour. The CD 34 however was positive in the tumour cells. Dedifferentiated liposarcoma of the small bowel mesentery is rare. Involvement of nearly whole of the small bowel mesentery in the disease process virtually rules out the possibility of a curative resection, the mainstay of management. This report would add to the knowledge of this rare disease and the possible therapeutic problem that may be encountered in case of multifocal disease.

  11. Evaluation of the Mg doping approach for Si mass fractionation correction on Nu Instruments MC-ICP Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Hsieh, Yu-Te; Belshaw, Nick

    2015-04-01

    Silicon (Si) stable isotopes have been used in a broad range of geochemical and cosmochemical applications. A precise and accurate determination of Si isotopes is desirable to distinguish their small natural variations (< 0.2‰) in many of these studies. In the past decade, the advent of the MC-ICP-MS has spurred a remarkable improvement in the precision and accuracy of Si isotopic analysis. The instrumental mass fractionation correction is one crucial aspect of the analysis of Si isotopes. Two options are currently available: the sample-standard bracketing approach and the Mg doping approach. However, there has been a debate over the validity of the Mg doping approach. Some studies (Cardinal et al., 2003; Engström et al., 2006) favoured it compared to the sample-standard bracketing approach, whereas some other studies (e.g. De La Rocha, 2002) considered it unsuitable. This study investigates the Mg doping approach on both the Nu Plasma II and the Nu Plasma 1700. Experiments were performed in both the wet plasma and the dry plasma modes, using a number of different combinations of cones. A range of different Mg to Si ratios as well as different matrices have been used in the experiments. A sample-standard bracketing approach has also been adopted for the Si mass fractionation correction to compare with the Mg doping approach. Through assessing the mass fractionation behaviours of both Si and Mg under different instrument settings, this study aims to identity the factors which may affect the Mg doping approach and answer some key questions to the debate.

  12. Secondary Ion Mass Spectrometry Imaging of Tissues, Cells, and Microbial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderton, Christopher R.; Gamble, Lara J.

    2016-03-01

    Mass spectrometry imaging (MSI) techniques are increasingly being utilized within many biological fields, including medicine, pathology, microbial ecology, and more. Of the MSI methods available, secondary ion mass spectrometry (SIMS) offers the highest lateral resolution of any technique. Moreover, SIMS versatility in the number of different operating modes and types of mass spectrometers available has made it an increasing popular method for bio-related measurements. Here, we discuss SIMS ability to image tissues, single cells, and microbes with a particular emphasis on the types chemical and spatial information that can be ascertained by the different types of SIMS instruments and methods.more » The recently developed Fourier transform ion cyclotron resonance (FTICR) SIMS located at PNNL is capable of generating molecular maps of tissues with an unprecedented mass resolving power and mass accuracy, with respect to SIMS measurements. ToF-SIMS can generate chemical maps, where detection of small molecules and fragments can be acquired with an order of magnitude better lateral resolution than the FTICR-SIMS. Furthermore, many of commercially available ToF-SIMS instruments are capable of depth profiling measurements, offering the ability to attain three-dimensional information of one’s sample. The NanoSIMS instrument offers the highest lateral resolution of any MSI method available. In practice, NanoSIMS regularly achieves sub-100 nm resolution of atomic and diatomic secondary ions within biological samples. The strengths of the different SIMS methods are more and more being leveraged in both multimodal-imaging endeavors that use complementary MSI techniques as well with optical, fluorescence, and force microscopy methods.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variabilitymore » of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.« less

  14. Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model--when shake flasks mimic 15,000-L bioreactors better.

    PubMed

    Ahuja, Sanjeev; Jain, Shilpa; Ram, Kripa

    2015-01-01

    Characterization of manufacturing processes is key to understanding the effects of process parameters on process performance and product quality. These studies are generally conducted using small-scale model systems. Because of the importance of the results derived from these studies, the small-scale model should be predictive of large scale. Typically, small-scale bioreactors, which are considered superior to shake flasks in simulating large-scale bioreactors, are used as the scale-down models for characterizing mammalian cell culture processes. In this article, we describe a case study where a cell culture unit operation in bioreactors using one-sided pH control and their satellites (small-scale runs conducted using the same post-inoculation cultures and nutrient feeds) in 3-L bioreactors and shake flasks indicated that shake flasks mimicked the large-scale performance better than 3-L bioreactors. We detail here how multivariate analysis was used to make the pertinent assessment and to generate the hypothesis for refining the existing 3-L scale-down model. Relevant statistical techniques such as principal component analysis, partial least square, orthogonal partial least square, and discriminant analysis were used to identify the outliers and to determine the discriminatory variables responsible for performance differences at different scales. The resulting analysis, in combination with mass transfer principles, led to the hypothesis that observed similarities between 15,000-L and shake flask runs, and differences between 15,000-L and 3-L runs, were due to pCO2 and pH values. This hypothesis was confirmed by changing the aeration strategy at 3-L scale. By reducing the initial sparge rate in 3-L bioreactor, process performance and product quality data moved closer to that of large scale. © 2015 American Institute of Chemical Engineers.

  15. The mass distribution of coarse particulate organic matter exported from an alpine headwater stream

    NASA Astrophysics Data System (ADS)

    Turowski, J. M.; Badoux, A.; Bunte, K.; Rickli, C.; Federspiel, N.; Jochner, M.

    2013-05-01

    Coarse particulate organic matter (CPOM) particles span sizes from 1 mm, with masses less than 1 mg, to large logs and whole trees, which may have masses of several hundred kilograms. Different size and mass classes play different roles in stream environments, from being the prime source of energy in stream ecosystems to macroscopically determining channel morphology and local hydraulics. We show that a single scaling exponent can describe the mass distribution of CPOM transported in the Erlenbach, a steep mountain stream in the Swiss Prealps. This exponent takes an average value of -1.8, is independent of discharge and valid for particle masses spanning almost seven orders of magnitude. Together with a rating curve of CPOM transport rates with discharge, we discuss the importance of the scaling exponent for measuring strategies and natural hazard mitigation. Similar to CPOM, the mass distribution of in-stream large woody debris can likewise be described by power law scaling distributions, with exponents varying between -1.8 and -2.0, if all in-stream material is considered, and between -1.4 and -1.8 for material locked in log jams. We expect that scaling exponents are determined by stream type, vegetation, climate, substrate properties, and the connectivity between channels and hillslopes. However, none of the descriptor variables tested here, including drainage area, channel bed slope and forested area, show a strong control on exponent value. The number of streams studied in this paper is too small to make final conclusions.

  16. Quark ACM with topologically generated gluon mass

    NASA Astrophysics Data System (ADS)

    Choudhury, Ishita Dutta; Lahiri, Amitabha

    2016-03-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.

  17. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos.

    PubMed

    Swanson, David; Zhang, Yufeng; Liu, Jin-Song; Merkord, Christopher L; King, Marisa O

    2014-03-15

    Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle masses and activities of key catabolic enzymes in winter dark-eyed juncos (Junco hyemalis). We randomly assigned birds to four treatment groups varying in temperature (cold=3°C; warm=24°C) and photoperiod [short day (SD)=8 h:16 h light:dark; long day (LD)=16 h:8 h light:dark] in a two-by-two design. We measured body mass (Mb), flight muscle width and Msum before and after 3 and 6 weeks of acclimation, and flight muscle and heart masses after 6 weeks. Msum increased for cold-exposed, but not for warm-exposed, birds. LD birds gained more Mb than SD birds, irrespective of temperature. Flight muscle size and mass did not differ significantly among groups, but heart mass was larger in cold-exposed birds. Citrate synthase, carnitine palmitoyl transferase and β-hydroxyacyl Co-A dehydrogenase activities in the pectoralis were generally higher for LD and cold groups. The cold-induced changes in Msum and heart mass parallel winter changes for small birds, but the larger Mb and higher catabolic enzyme activities in LD birds suggest photoperiod-induced changes associated with migratory disposition. Temperature appears to be a primary driver of flexibility in Msum in juncos, but photoperiod-induced changes in Mb and catabolic enzyme activities, likely associated with migratory disposition, interact with temperature to contribute to seasonal phenotypes.

  18. Halo assembly bias and the tidal anisotropy of the local halo environment

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  19. Unruh thermal hadronization and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Frassino, Antonia M.; Bleicher, Marcus; Mann, Robert B.

    2018-05-01

    We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.

  20. Small Flare and a Coronal Mass Ejection

    NASA Image and Video Library

    2018-01-31

    The sun shot out a small coronal mass ejection that was also associated with a small flare (Jan. 22, 2018). The video, which covers about 5 hours, shows the burst of plasma as the magnetic loops break apart. Immediately the magnetic fields brighten intensely and begin to reorganize themselves in coils above the active region. The images were taken in a wavelength of extreme ultraviolet light. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA22184

  1. Sensitivity tests and ensemble hazard assessment for tephra fallout at Campi Flegrei, Italy

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Costa, Antonio; De Natale, Giuseppe; Di Vito, Mauro; Isaia, Roberto; Macedonio, Giovanni

    2017-04-01

    We present the results of a statistical study on tephra dispersion in the case of reactivation of the Campi Flegrei volcano. We considered the full spectrum of possible eruptions, in terms of size and position of eruptive vents. To represent the spectrum of possible eruptive sizes, four classes of eruptions were considered. Of those only three are explosive (small, medium, and large) and can produce a significant quantity of volcanic ash. Hazard assessments are made through dispersion simulations of ash and lapilli, considering the full variability of winds, eruptive vents, and eruptive sizes. The results are presented in form of four families of hazard curves conditioned to the occurrence of an eruption: 1) small eruptive size from any vent; 2) medium eruptive size from any vent; 3) large eruptive size from any vent; 4) any size from any vent. The epistemic uncertainty (i.e. associated with the level of scientific knowledge of phenomena) on the estimation of hazard curves was quantified making use of alternative scientifically acceptable approaches. The choice of such alternative models is made after a comprehensive sensitivity analysis which considered different weather databases, alternative modelling of the possible opening of eruptive vents, tephra total grain-size distributions (TGSD), relative mass of fine particles, and the effect of aggregation. The results of this sensitivity analyses show that the dominant uncertainty is related to the choice of TGSD, mass of fine ash, and potential effects of ash aggregation. The latter is particularly relevant in case of magma-water interaction during an eruptive phase, when most of the fine ash can form accretionary lapilli that could contribute significantly in increasing the tephra load in the proximal region. Relatively insignificant is the variability induced by the use of different weather databases. The hazard curves, together with the quantification of epistemic uncertainty, were finally calculated through a statistical model based on ensemble mixing of selected alternative models, e.g. different choices on the estimate of the total erupted mass, mass of fine ash, effects of aggregation, etc. Hazard and probability maps were produced at different confidence levels compared to the epistemic uncertainty (mean, median, 16th percentile, and 84th percentile).

  2. Fruits and vegetables dehydration

    NASA Astrophysics Data System (ADS)

    de Ita, A.; Flores, G.; Franco, F.

    2015-01-01

    Dehydration diagrams were determined by means of Differential Thermal Analysis, DTA, and Thermo Gravimetric Analysis, TGA, curves of several simultaneous fruits and vegetables, all under the same conditions. The greater mass loss is associated with water containing in the structure of the investigated materials at low temperature. In poblano chile water is lost in a single step. The banana shows a very sharply two stages, while jicama can be observed although with a little difficulty three stages. The major mass loss occurs in the poblano chile and the lower in banana. The velocity and temperature of dehydration vary within a small range for most materials investigated, except for banana and cactus how are very different.

  3. Variety in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1993-01-01

    Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.

  4. Prevalence of high body mass index among children and adolescents at a US military treatment facility, 2008-2009.

    PubMed

    Choi, Y Sammy; Berry-Caban, Cristobal; Stratman, Rachel; Fleming, Jill H

    2012-01-01

    We assessed the prevalence of high body mass index (BMI) in a large cohort of military children. We compared BMI data from electronic medical records of military children aged 2 to 18 years with BMI data from the National Health and Nutrition Examination Survey (NHANES). The 23,778 military children studied were significantly less likely than the NHANES children to be overweight (27.1% vs 31.8%) or obese (11.9% vs 16.9%). Even though military parents are required to maintain fitness and weight standards, the absolute difference between military and civilian children was small.

  5. Small Business Innovations (Mass Microbalance)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Femtometrics of Costa Mesa, CA, developed the Model 200-1 SAW Mass Microbalance under a NASA Small Business Innovation Research (SBIR) contract with Langley Research Center. The product is described as "the next generation of aerosol mass microbalance technology," because a new type of sensor, the Surface Acoustic Wave (SAW) piezoelectric crystal, offers mass resolution two orders of magnitude greater than the Quartz Crystal Microbalance cascade impactor (QCM) (used at Langley since 1979 for collection and measurement of aerosol particles in the upper atmosphere). The Model 200-1 SAW Mass Microbalance, which provides a 400-fold increase in mass sensitivity per unit area over the QCM, can be used for real-time particle monitoring in clean rooms, measuring chemical vapors in very low concentrations, measuring target chemicals in the stratosphere and in industry as a toxic vapor monitor.

  6. Measuring Very Small Quantities: Fascinating Suggestions for Math or Science.

    ERIC Educational Resources Information Center

    Thompson, John Taylor

    1989-01-01

    Described are several activities for teaching children to determine mass and volume. Included are the masses of a water drop and a grain of rice; the volume of a water drop and small solids; and measuring the width of a hair. Procedures and materials for the activities are discussed. (CW)

  7. Architecture Of A Sciencecraft To Fly Past Pluto

    NASA Technical Reports Server (NTRS)

    Price, Humphrey W.; Staehle, Robert L.; Alkalaj, Leon; Terrile, Richard J.; Miyake, Robert N.

    1995-01-01

    Two reports discuss architecture of proposed small sciencecraft carrying scientific instruments on trajectory passing near Pluto and continuing into interstellar space. Emphasizes those aspects of design pertaining to compactness, efficiency, and small mass (dry mass less than 100 kg). System block diagram of sciencecraft divided into blocks for sensors, integrated microelectronics, and motive effectors.

  8. Refined gravity determination at small bodies through landing probes

    NASA Astrophysics Data System (ADS)

    Bellerose, J.

    2012-02-01

    Very small objects of the near-Earth population have not been visited to date, and may be among the next targets for human exploration. As density is a strong indication of the body origin and intrinsic properties, determining the mass is one of the most important goals. The past missions to Eros and Itokawa resulted in mass and density estimates to less than five percent error, allowing precise mission planning while giving new insights on the body structure. Current mass determination techniques have limitations in the low gravity regime, and spacecraft tracking at very small asteroids is challenging. We investigate the constraints on measuring the mass at very small near-Earth objects, and their consequences on proximity operation planning. An alternative option to spacecraft radio tracking is to use surface probes. The near-surface and landing dynamics can be observed and tracked by the host spacecraft, providing higher resolution measurements of the NEA gravity pull. We show analytical methods to estimate the performance of given proximity operations, and simulations of spacecraft and probe dynamics at NEAs less than 100 m in diameter.

  9. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion

    NASA Astrophysics Data System (ADS)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh

    2017-04-01

    Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be useful for organic aerosol emissions. The two different phases producing organic aerosol, pyrolysis and smouldering, were observed to have different mass spectra. In previous ambient experiments, two organic factors with very comparable signatures to these have been identified using positive matrix factorisation (Young et al., 2015). As such, it is postulated that these ambient organic factors are likely associated with the two combustion phases identified here. References: Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D. and Wennberg, P. O., Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 4039-4072 (2011) Young, D. E., Allan, J. D., Williams, P. I., Green, D. C., Harrison, R. M., Yin, J., Flynn, M. J., Gallagher, M. W., Coe, H., Investigating a two-component model of solid fuel organic aerosol in London: processes, PM1 contribution, and seasonality. Atmos. Chem. Phys, 15, 2429-2443 (2015)

  10. Method and apparatus for measuring the state of charge in a battery based on volume of battery components

    DOEpatents

    Rouhani, S. Zia

    1996-10-22

    The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.

  11. Compression Frequency Choice for Compression Mass Gauge Method and Effect on Measurement Accuracy

    NASA Astrophysics Data System (ADS)

    Fu, Juan; Chen, Xiaoqian; Huang, Yiyong

    2013-12-01

    It is a difficult job to gauge the liquid fuel mass in a tank on spacecrafts under microgravity condition. Without the presence of strong buoyancy, the configuration of the liquid and gas in the tank is uncertain and more than one bubble may exist in the liquid part. All these will affect the measure accuracy of liquid mass gauge, especially for a method called Compression Mass Gauge (CMG). Four resonance resources affect the choice of compression frequency for CMG method. There are the structure resonance, liquid sloshing, transducer resonance and bubble resonance. Ground experimental apparatus are designed and built to validate the gauging method and the influence of different compression frequencies at different fill levels on the measurement accuracy. Harmonic phenomenon should be considered during filter design when processing test data. Results demonstrate the ground experiment system performances well with high accuracy and the measurement accuracy increases as the compression frequency climbs in low fill levels. But low compression frequencies should be the better choice for high fill levels. Liquid sloshing induces the measurement accuracy to degrade when the surface is excited to wave by external disturbance at the liquid natural frequency. The measurement accuracy is still acceptable at small amplitude vibration.

  12. Velocity-induced collapses of stable neutron stars

    NASA Astrophysics Data System (ADS)

    Novak, J.

    2001-09-01

    The collapse of spherical neutron stars is studied in General Relativity. The initial state is a stable neutron star to which an inward radial kinetic energy has been added through some velocity profile. For two different equations of state and two different shapes of velocity profiles, it is found that neutron stars can collapse to black holes for high enough inward velocities, provided that their masses are higher than some minimal value, depending on the equation of state. For a polytropic equation of state of the form p=Krho gamma, with gamma = 2 it is found to be 1.16 ( (K)/(0.1) right )0.5 Msun, whereas for a more realistic one (described in Pons et al. \\cite{PonREPL00}), it is 0.36 Msun . In some cases of collapse forming a black hole, part of the matter composing the initial neutron star can be ejected through a shock, leaving only a fraction of the initial mass to form a black hole. Therefore, black holes of very small masses can be formed and, in particular, the mass scaling relation, as a function of initial velocity, takes the form discovered by Choptuik (\\cite{Cho93}) for critical collapses.

  13. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    PubMed

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  14. A Universal Spin–Mass Relation for Brown Dwarfs and Planets

    NASA Astrophysics Data System (ADS)

    Scholz, Aleks; Moore, Keavin; Jayawardhana, Ray; Aigrain, Suzanne; Peterson, Dawn; Stelzer, Beate

    2018-06-01

    While brown dwarfs show similarities to stars early in their lives, their spin evolutions are much more akin to those of planets. We have used light curves from the K2 mission to measure new rotation periods for 18 young brown dwarfs in the Taurus star-forming region. Our sample spans masses from 0.02 to 0.08 M ⊙ and has been characterized extensively in the past. To search for periods, we utilize three different methods (autocorrelation, periodogram, Gaussian processes). The median period for brown dwarfs with disks is twice as long as for those without (3.1 versus 1.6 days), a signature of rotational braking by the disk, albeit with small numbers. With an overall median period of 1.9 days, brown dwarfs in Taurus rotate slower than their counterparts in somewhat older (3–10 Myr) star-forming regions, consistent with spin-up of the latter due to contraction and angular momentum conservation, a clear sign that disk braking overall is inefficient and/or temporary in this mass domain. We confirm the presence of a linear increase of the typical rotation period as a function of mass in the substellar regime. The rotational velocities, when calculated forward to the age of the solar system, assuming angular momentum conservation, fit the known spin–mass relation for solar system planets and extra-solar planetary-mass objects. This spin–mass trend holds over six orders of magnitude in mass, including objects from several different formation paths. Our result implies that brown dwarfs by and large retain their primordial angular momentum through the first few Myr of their evolution.

  15. Small Systems and Limitations on the Use of Chemical Thermodynamics

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-01-01

    Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.

  16. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    PubMed

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so.

  17. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds

    PubMed Central

    2014-01-01

    Introduction In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses – thigh, shank, pes, tarsometatarsal segment, and digits – from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel’s λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. Results All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel’s λ) and increasing or decreasing rates of trait change over time (i.e., Pagel’s δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. Conclusions The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so. PMID:24876886

  18. Brain mass estimation by head circumference and body mass methods in neonatal glycaemic modelling and control.

    PubMed

    Gunn, Cameron Allan; Dickson, Jennifer L; Pretty, Christopher G; Alsweiler, Jane M; Lynn, Adrienne; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-07-01

    Hyperglycaemia is a common complication of stress and prematurity in extremely low-birth-weight infants. Model-based insulin therapy protocols have the ability to safely improve glycaemic control for this group. Estimating non-insulin-mediated brain glucose uptake by the central nervous system in these models is typically done using population-based body weight models, which may not be ideal. A head circumference-based model that separately treats small-for-gestational-age (SGA) and appropriate-for-gestational-age (AGA) infants is compared to a body weight model in a retrospective analysis of 48 patients with a median birth weight of 750g and median gestational age of 25 weeks. Estimated brain mass, model-based insulin sensitivity (SI) profiles, and projected glycaemic control outcomes are investigated. SGA infants (5) are also analyzed as a separate cohort. Across the entire cohort, estimated brain mass deviated by a median 10% between models, with a per-patient median difference in SI of 3.5%. For the SGA group, brain mass deviation was 42%, and per-patient SI deviation 13.7%. In virtual trials, 87-93% of recommended insulin rates were equal or slightly reduced (Δ<0.16mU/h) under the head circumference method, while glycaemic control outcomes showed little change. The results suggest that body weight methods are not as accurate as head circumference methods. Head circumference-based estimates may offer improved modelling accuracy and a small reduction in insulin administration, particularly for SGA infants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Minimizing marker mass and handling time when attaching radio-transmitters and geolocators to small songbirds

    USGS Publications Warehouse

    Streby, Henry M.; McAllister, Tara L.; Peterson, Sean M.; Kramer, Gunnar R.; Lehman, Justin A.; Andersen, David E.

    2015-01-01

    Radio-transmitters and light-level geolocators are currently small enough for use on songbirds weighing <15 g. Various methods are used to attach these markers to larger songbirds, but with small birds it becomes especially important to minimize marker mass and bird handling time. Here, we offer modifications to harness materials and marker preparation for transmitters and geolocators, and we describe deployment methods that can be safely completed in 20–60 s per bird. We describe a 0.5-mm elastic sewing thread harness for radio-transmitters that allows nestlings, fledglings, and adults to be marked with the same harness size and reliably falls off to avoid poststudy effects. We also describe a 0.5-mm jewelry cord harness for geolocators that provides a firm fit for >1 yr. Neither harness type requires plastic or metal tubes, rings, or other attachment fixtures on the marker, nor do they require crimping beads, epoxy, scissors, or tying knots while handling birds. Both harnesses add 0.03 g to the mass of markers for small wood-warblers (Parulidae). This minimal additional mass is offset by trimming transmitter antennas or geolocator connection nodes, resulting in no net mass gain for transmitters and 0.02 g added for geolocators compared with conventional harness methods that add >0.40 g. We and others have used this transmitter attachment method with several small songbird species, with no effects on adult and fledgling behavior and survival. We have used this geolocator attachment method on 9-g wood-warblers with no effects on return rates, return dates, territory fidelity, and body mass. We hope that these improvements to the design and deployment of the leg-loop harness method will enable the safe and successful use of these markers, and eventually GPS and other tags, on similarly small songbirds.

  20. Using mass spectrometry and small molecule reagents to detect distinctive structural features of different prion conformations (strains)

    USDA-ARS?s Scientific Manuscript database

    A prion (PrPSc) is a conformer of a normal cellular prion protein (PrPC). Although they are isosequential, PrPSc is an infectious protein able to convert PrPC into the prion conformation and thereby propagate an infection. PrPC is monomeric while PrPSc is a multimer. PrPSc can adopt more than one co...

  1. Lymphangioma of the jejunal mesentery and jejunal polyps presenting as an acute abdomen in a teenager.

    PubMed

    Jayasundara, Jasb; Perera, E; Chandu de Silva, M V; Pathirana, A A

    2017-03-01

    Cystic lymphangioma of the small bowel mesentery is a rare clinical entity, especially after childhood. Medical literature reveals a limited number of such cases presenting as acute abdomen due to bowel obstruction, small bowel volvulus and bleeding into the tumour. We present the management experience of an 18-year-old woman who presented with rapid onset diffuse peritonism and raised inflammatory markers. Computed tomography showed a mass in the small bowel mesentery with suspicion of segmental bowel ischaemia. Emergency laparotomy revealed a mass in the mid-jejunal mesentery close to the bowel wall with no bowel ischaemia. The patient made an uncomplicated recovery after segmental bowel resection and end-to-end anastomosis. Histology confirmed the mass as a cystic lymphangioma involving the jejunal mesentery and two small jejunal polyps. Lymphangioma could be considered in the differential diagnosis of an acute abdomen in a young adult when the presentation is atypical.

  2. Effects of Strength Training Sessions Performed with Different Exercise Orders and Intervals on Blood Pressure and Heart Rate Variability.

    PubMed

    Lemos, Sandro; Figueiredo, Tiago; Marques, Silvio; Leite, Thalita; Cardozo, Diogo; Willardson, Jeffrey M; Simão, Roberto

    2018-01-01

    This study compared the effect of a strength training session performed at different exercise orders and rest intervals on blood pressure and heart rate variability (HRV). Fifteen trained men performed different upper body exercise sequences [large to small muscle mass (SEQA) and small to large muscle mass (SEQB)] in randomized order with rest intervals between sets and exercises of 40 or 90 seconds. Fifteen repetition maximum loads were tested to control the training intensity and the total volume load. The results showed, significant reductions for systolic blood pressure (SBP) for all sequences compared to baseline and, post-exercise: SEQA90 at 20, 30, 40, 50 and 60 minutes; SEQA40 and SEQB40 at 20 minutes and SEQB90 at 10, 20, 30, 40, 50 and 60 minutes. For diastolic blood pressure (DBP), significant reductions were found for three sequences compared to baseline and, post-exercise: SEQA90 and SEQA40 at 50 and 60 minutes; SEQB40 at 10, 30 and 60 minutes. For HRV, there were significant differences in frequency domain for all sequences compared to baseline. In conclusion, when performing upper body strength training sessions, it is suggested that 90 second rest intervals between sets and exercises promotes a post-exercise hypotensive response in SBP. The 40 second rest interval between sets and exercises was associated with greater cardiac stress, and might be contraindicated when working with individuals that exhibit symptoms of cardiovascular disease.

  3. Twisting/Swirling Motions during a Prominence Eruption as Seen from SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pant, V.; Datta, A.; Banerjee, D.; Chandrashekhar, K.; Ray, S.

    2018-06-01

    A quiescent prominence was observed at the northwest limb of the Sun using different channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We report and analyze twisting/swirling motions during and after the prominence eruption. We segregate the observed rotational motions into small and large scales. Small-scale rotational motions manifest in the barbs of the prominence, while the large-scale rotation manifests as the roll motion during the prominence eruption. We noticed that both footpoints of the prominence rotate in the counterclockwise direction. We propose that a similar sense of rotation in both footpoints leads to a prominence eruption. The prominence erupted asymmetrically near the southern footpoint, which may be due to an uneven mass distribution and location of the cavity near the southern footpoint. Furthermore, we study the swirling motion of the plasma along different circular paths in the cavity of the prominence after the prominence eruption. The rotational velocities of the plasma moving along different circular paths are estimated to be ∼9–40 km s‑1. These swirling motions can be explained in terms of twisted magnetic field lines in the prominence cavity. Finally we observe the twist built up in the prominence, being carried away by the coronal mass ejection, as seen in the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory.

  4. Film bulk acoustic resonators (FBARs) as biosensors: A review.

    PubMed

    Zhang, Yi; Luo, Jikui; Flewitt, Andrew J; Cai, Zhiqiang; Zhao, Xiubo

    2018-09-30

    Biosensors play important roles in different applications such as medical diagnostics, environmental monitoring, food safety, and the study of biomolecular interactions. Highly sensitive, label-free and disposable biosensors are particularly desired for many clinical applications. In the past decade, film bulk acoustic resonators (FBARs) have been developed as biosensors because of their high resonant frequency and small base mass (hence greater sensitivity), lower cost, label-free capability and small size. This paper reviews the piezoelectric materials used for FBARs, the optimisation of device structures, and their applications as biosensors in a wide range of biological applications such as the detection of antigens, DNAs and small biomolecules. Their integration with microfluidic devices and high-throughput detection are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Subaru Weak-Lensing Survey II: Multi-Object Spectroscopy and Cluster Masses

    NASA Astrophysics Data System (ADS)

    Hamana, Takashi; Miyazaki, Satoshi; Kashikawa, Nobunari; Ellis, Richard S.; Massey, Richard J.; Refregier, Alexandre; Taylor, James E.

    2009-08-01

    We present the first results of a multi-object spectroscopic campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak-lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtained 15-32 galaxy redshifts. For 28 of these targets, we confirmed a secure cluster identification, with more than five spectroscopic galaxies within a velocity of ±3000km s-1. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we found multiple small galaxy concentrations at different redshifts, each containing at least three spectroscopic galaxies. The weak-lensing signal around those systems was thus probably created by the projection of groups or small clusters along the same line-of-sight. In both of the remaining two targets, a single small galaxy concentration was found. In some candidate super-cluster systems, we found additional evidence of filaments connecting the main density peak to an additional nearby structure. For a subsample of our most cleanly measured clusters, we investigated the statistical relation between their weak-lensing mass (MNFW, σSIS) and the velocity dispersion of their member galaxies (σv), comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with σv = σSIS, with a similar scatter to that of optically and X-ray selected clusters. We also derived an empirical relation between the cluster mass and the galaxy velocity dispersion, M200E(z) = 11.0 × 1014 × (σv/1000km s-1)3.0 h-1 Modot, which is in reasonable agreement with predictions of N-body simulations in the Λ CDM cosmology.

  6. Nature of very small grains - PAH molecules or silicates?. [Polycyclic Aromatic Hydrocarbon in interstellar dust

    NASA Technical Reports Server (NTRS)

    Desert, F. X.; Leger, A.; Puget, J. L.; Boulanger, F.; Sellgren, K.

    1986-01-01

    The predictions of the model of Puget et al. (1985) for the emission from Very Small Grains (VSGs) including both graphitic and silicate components are compared with published 8-13-micron observations of astronomical sources. The VSGs are found to be mainly graphitic and an upper limit is placed on the relative mass of silicates based on lack of the 9.7-micron silicate emission feature on M 82 and NGC 2023. This dissymetry in the composition of VSGs supports the suggestion that they are formed in grain-grain collisions where the behaviors of graphite and silicate grains are expected to be quite different.

  7. Solid renal masses in adults

    PubMed Central

    Mittal, Mahesh Kumar; Sureka, Binit

    2016-01-01

    With the ever increasing trend of using cross-section imaging in today's era, incidental detection of small solid renal masses has dramatically multiplied. Coincidentally, the number of asymptomatic benign lesions being detected has also increased. The role of radiologists is not only to identify these lesions, but also go a one step further and accurately characterize various renal masses. Earlier detection of small renal cell carcinomas means identifying at the initial stage which has an impact on prognosis, patient management and healthcare costs. In this review article we share our experience with the typical and atypical solid renal masses encountered in adults in routine daily practice. PMID:28104933

  8. Galaxy and mass assembly (GAMA): the consistency of GAMA and WISE derived mass-to-light ratios

    NASA Astrophysics Data System (ADS)

    Kettlety, T.; Hesling, J.; Phillipps, S.; Bremer, M. N.; Cluver, M. E.; Taylor, E. N.; Bland-Hawthorn, J.; Brough, S.; De Propris, R.; Driver, S. P.; Holwerda, B. W.; Kelvin, L. S.; Sutherland, W.; Wright, A. H.

    2018-01-01

    Recent work has suggested that mid-IR wavelengths are optimal for estimating the mass-to-light ratios of stellar populations and hence the stellar masses of galaxies. We compare stellar masses deduced from spectral energy distribution (SED) models, fitted to multiwavelength optical-NIR photometry, to luminosities derived from WISE photometry in the W1 and W2 bands at 3.6 and 4.5 μm for non-star forming galaxies. The SED-derived masses for a carefully selected sample of low-redshift (z ≤ 0.15) passive galaxies agree with the prediction from stellar population synthesis models such that M*/LW1 ≃ 0.6 for all such galaxies, independent of other stellar population parameters. The small scatter between masses predicted from the optical SED and from the WISE measurements implies that random errors (as opposed to systematic ones such as the use of different initial mass functions) are smaller than previous, deliberately conservative, estimates for the SED fits. This test is subtly different from simultaneously fitting at a wide range of optical and mid-IR wavelengths, which may just generate a compromised fit: we are directly checking that the best-fitting model to the optical data generates an SED whose M*/LW1 is also consistent with separate mid-IR data. We confirm that for passive low-redshift galaxies a fixed M*/LW1 = 0.65 can generate masses at least as accurate as those obtained from more complex methods. Going beyond the mean value, in agreement with expectations from the models, we see a modest change in M*/LW1 with SED fitted stellar population age but an insignificant one with metallicity.

  9. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  10. IMS - MS Data Extractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.

  11. A Case of Desmoplastic Small Round Cell Tumor.

    PubMed

    Reisner, David; Brahee, Deborah; Patel, Shweta; Hartman, Matthew

    2015-08-01

    Desmoplastic small round cell tumor is a rare, aggressive tumor primarily affecting young males. It is considered a childhood cancer, and is characterized by a unique chromosomal translocation which leads to failure to suppress tumor growth. It is classified as a soft tissue sarcoma, sharing some features with other small round cell tumors such as Ewing's Sarcoma and primitive neuroectodermal tumor. Typical imaging findings include multiple heterogeneous, lobular abdominal masses, which can grow very large. Often there is a dominant mass with additional peritoneal, omental, retroperitoneal and retrovesical masses. Prognosis is relatively poor with a 3 year survival rate of 50% in those treated aggressively with surgical resection, chemotherapy, and radiation therapy. The clinical presentation, imaging characteristics and pathology are discussed in regards to a recent case.

  12. Physics of chewing in terrestrial mammals.

    PubMed

    Virot, Emmanuel; Ma, Grace; Clanet, Christophe; Jung, Sunghwan

    2017-03-07

    Previous studies on chewing frequency across animal species have focused on finding a single universal scaling law. Controversy between the different models has been aroused without elucidating the variations in chewing frequency. In the present study we show that vigorous chewing is limited by the maximum force of muscle, so that the upper chewing frequency scales as the -1/3 power of body mass for large animals and as a constant frequency for small animals. On the other hand, gentle chewing to mix food uniformly without excess of saliva describes the lower limit of chewing frequency, scaling approximately as the -1/6 power of body mass. These physical constraints frame the -1/4 power law classically inferred from allometry of animal metabolic rates. All of our experimental data stay within these physical boundaries over six orders of magnitude of body mass regardless of food types.

  13. The 1984 Mauna Loa eruption and planetary geolgoy

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.

    1987-01-01

    In planetary geology, lava flows on the Moon and Mars are commonly treated as relatively simple systems. Some of the complexities of actual lava flows are illustrated using the main flow system of the 1984 Mauna Loa eruption. The outline, brief narrative, and results given are based on a number of sources. The implications of the results to planetary geology are clear. Volume flow rates during an eruption depend, in part, on the volatile content of the lava. These differ from the volume flow rates calculated from post eruption flow dimensions and the duration of the eruption and from those using models that assume a constant density. Mass flow rates might be more appropriate because the masses of volatiles in lavas are usually small, but variable and sometimes unknown densities impose severe restrictions on mass estimates.

  14. Physics of chewing in terrestrial mammals

    NASA Astrophysics Data System (ADS)

    Virot, Emmanuel; Ma, Grace; Clanet, Christophe; Jung, Sunghwan

    2017-03-01

    Previous studies on chewing frequency across animal species have focused on finding a single universal scaling law. Controversy between the different models has been aroused without elucidating the variations in chewing frequency. In the present study we show that vigorous chewing is limited by the maximum force of muscle, so that the upper chewing frequency scales as the -1/3 power of body mass for large animals and as a constant frequency for small animals. On the other hand, gentle chewing to mix food uniformly without excess of saliva describes the lower limit of chewing frequency, scaling approximately as the -1/6 power of body mass. These physical constraints frame the -1/4 power law classically inferred from allometry of animal metabolic rates. All of our experimental data stay within these physical boundaries over six orders of magnitude of body mass regardless of food types.

  15. Response to competition of bulbous geophyte Allium oleraceum differing in ploidy level.

    PubMed

    Fialová, M; Duchoslav, M

    2014-01-01

    Experimental studies that explore the possible causes of ploidy distributions and niche differentiation are rare. Increased competitive ability may be advantageous for survival in dense vegetation and may strongly affect local and regional abundances of cytotypes and potentially contribute to invasion success. We compared survival, growth and reproduction of plants originating from bulbils of three cytotypes (2n = 4x, 5x, 6x) of Allium oleraceum growing with and without a competitor (Arrhenatherum elatius). There was a strong negative effect of competition but no effect of ploidy or ploidy × competition on survivorship, height and total dry mass of A. oleraceum, i.e. no support for different competitive abilities of the ploidy levels. However, slightly different responses of populations to competition treatments within all cytotypes suggest differentiation within cytotypes. Under competition, plant survivorship was low, surviving plants were small, had low dry mass and produced neither sexual nor asexual propagules. Without competition, plant survivorship was high, and cytotypes differed in three traits after 2 year's growth: dry mass of flowers, number of flowers and ratio of the dry mass of sexual to asexual propagules all decreased with increasing ploidy level. We additionally tested tetra- and pentaploids as to whether plants originating from different types of propagule (bulbils, seeds) differ in survivorship, growth and reproduction when growing with and without a competitor. Plants originating from bulbils had higher survivorship, were more robust, flowered earlier and produced more propagules when compared to plants originating from seeds and grown without competition. Under competition, differences in performance between plants originating from seeds and bulbils mostly disappeared, with higher survivorship only for plants originating from bulbils. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  17. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  18. Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.; Zukovic, M.

    2017-10-01

    In this paper the dynamics of the nonlinear mass-in-mass system as the basic subsystem of the acoustic metamaterial is investigated. The excitation of the system is in the form of the Jacobi elliptic function. The corresponding model to this forcing is the mass-in-mass system with cubic nonlinearity of the Duffing type. Mathematical model of the motion is a system of two coupled strong nonlinear and nonhomogeneous second order differential equations. Particular solution to the system is obtained. The analytical solution of the problem is based on the simple and double integral of the cosine Jacobi function. In the paper the integrals are given in the form of series of trigonometric functions. These results are new one. After some modification the simplified solution in the first approximation is obtained. The result is convenient for discussion. Conditions for elimination of the motion of the mass 1 by connection of the nonlinear dynamic absorber (mass - spring system) are defined. In the consideration the effective mass ratio is introduced in the nonlinear mass-in-mass system. Negative effective mass ratio gives the absorption of vibrations with certain frequencies. The advantage of the nonlinear subunit in comparison to the linear one is that the frequency gap is significantly wider. Nevertheless, it has to be mentioned that the amplitude of vibration differs from zero for a small value. In the paper the analytical results are compared with numerical one and are in agreement.

  19. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

    PubMed

    Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

  20. Assessing the accuracy of body mass estimation equations from pelvic and femoral variables among modern British women of known mass.

    PubMed

    Young, Mariel; Johannesdottir, Fjola; Poole, Ken; Shaw, Colin; Stock, J T

    2018-02-01

    Femoral head diameter is commonly used to estimate body mass from the skeleton. The three most frequently employed methods, designed by Ruff, Grine, and McHenry, were developed using different populations to address different research questions. They were not specifically designed for application to female remains, and their accuracy for this purpose has rarely been assessed or compared in living populations. This study analyzes the accuracy of these methods using a sample of modern British women through the use of pelvic CT scans (n = 97) and corresponding information about the individuals' known height and weight. Results showed that all methods provided reasonably accurate body mass estimates (average percent prediction errors under 20%) for the normal weight and overweight subsamples, but were inaccurate for the obese and underweight subsamples (average percent prediction errors over 20%). When women of all body mass categories were combined, the methods provided reasonable estimates (average percent prediction errors between 16 and 18%). The results demonstrate that different methods provide more accurate results within specific body mass index (BMI) ranges. The McHenry Equation provided the most accurate estimation for women of small body size, while the original Ruff Equation is most likely to be accurate if the individual was obese or severely obese. The refined Ruff Equation was the most accurate predictor of body mass on average for the entire sample, indicating that it should be utilized when there is no knowledge of the individual's body size or if the individual is assumed to be of a normal body size. The study also revealed a correlation between pubis length and body mass, and an equation for body mass estimation using pubis length was accurate in a dummy sample, suggesting that pubis length can also be used to acquire reliable body mass estimates. This has implications for how we interpret body mass in fossil hominins and has particular relevance to the interpretation of the long pubic ramus that is characteristic of Neandertals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evolving practice patterns for the management of small renal masses in the USA.

    PubMed

    Yang, Glen; Villalta, Jacqueline D; Meng, Maxwell V; Whitson, Jared M

    2012-10-01

    What's known on the subject? and What does the study add? Treatment options for small renal masses include radical nephrectomy (RN), partial nephrectomy (PN), ablation, and surveillance. PN provides equivalent oncological as RN for small tumours, but long-term outcomes for ablation and surveillance are poorly defined. Due to changing techniques and technology, treatment patterns for small renal masses are rapidly developing. Prior studies had analysed utilisation trends for PN and RN to 2006, revealing a relative rise in the rate of PN. However, overall treatment trends including surveillance and ablation had not been studied using a population-based cohort. It has become increasingly clear that RN is associated with greater renal and cardiovascular deterioration than nephron-sparing treatments. Thus, it is important to understand current population-based practice patterns for the treatment of small renal masses to assess whether practitioners are adhering to ever-changing principles in this field. The present study provides up-to-date treatment trends in the USA using a large population-based cohort. To describe the changing practice patterns in the management of small renal masses, including the use of surveillance and ablative techniques. All patients in the Surveillance, Epidemiology and End Results (SEER) registry treated for renal masses of ≤7 cm in diameter, from 1998 to 2008, were included for analysis. Annual trends in the use of surveillance, ablation, partial nephrectomy (PN), and radical nephrectomy (RN) were calculated. Multinomial logistic regression was used to determine the association of demographic and clinical characteristics with treatment method. In all, 48 148 patients from 17 registry sites with a mean age of 63.4 years were included for analysis. Between 1998 and 2008, for masses of <2 cm and 2.1-4 cm, there was a dramatic increase in the proportion of patients undergoing PN (31% vs 50%, 16% vs 33%, respectively) and ablation (1% vs 11%, 2% vs 9%, respectively). In multivariable analysis, later year of diagnosis, male gender, being married, clinically localised disease, and smaller tumours were associated with increased use of PN vs RN. Later year of diagnosis, male gender, being unmarried, smaller tumour, and the presence of bilateral masses were associated with increased use of ablation and surveillance vs RN. PN is now used in half of all patients with the smallest renal masses, and its use continues to increase over time. Ablation and surveillance are less common overall, but there is increased usage over time in select populations. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  2. May the Best Molecule Win: Competition ESI Mass Spectrometry

    PubMed Central

    Laughlin, Sarah; Wilson, W. David

    2015-01-01

    Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262

  3. A Remote Laser Mass Spectrometer for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Williams, M. D.

    1992-01-01

    The use of lasers as a source of excitation for surface mass spectroscopy has been investigated for some time. Since the laser can be focused to a small spot with intensity, it can vaporize and accelerate atoms of material. Using this phenomenon with a time-of-flight mass spectrometer allows a surface elemental mass analysis of a small region with each laser pulse. While the technique has been well developed for Earth applications, space applications are less developed. NASA Langley recently began a research program to investigate the use of a laser to create ions from the lunar surface and to analyze the ions at an orbiting spacecraft. A multijoule, Q-switched Nd:YAG laser would be focused to a small spot on the lunar surface, creating a dense plasma. This plasma would eject high-energy ions, as well as neutrals, electrons, and photons. An experiment is being set up to determine the characteristics of such a laser mass spectrometer at long flight distances. This experiment will determine the character of a future flight instrument for lunar resource assessment.

  4. Size distribution of salbutamol/ipratropium aerosols produced by different nebulizers in the absence and presence of heat and humidification.

    PubMed

    Yang, Ssu-Han; Yang, Tsung-Ming; Lin, Hui-Ling; Tsai, Ying-Huang; Fang, Tien-Pei; Wan, Gwo-Hwa

    2018-02-01

    Few studies have evaluated the size distribution of inhaled and exhaled aerosolized drugs, or the effect of heated humidification on particle size and lung deposition. The present study evaluated these aspects of bronchodilator (salbutamol/ipratropium) delivery using a lung model in the absence and presence of heat and humidification. We positioned filters to collect and measure the initial drug, inhaled drug, and exhaled drug. Particle size distribution was evaluated using an 8-stage Marple personal cascade impactor with 0.2-μm polycarbonate filters. A greater inhaled drug mass was delivered using a vibrating mesh nebulizer (VMN) than by using a small volume nebulizer (SVN), when heated humidifiers were not employed. When heated and humidified medical gas was used, there was no significant difference between the inhaled drug mass delivered by the VMN and that delivered by the SVN. A significantly greater mass of inhaled 1.55-μm drug particles was produced by the VMN than with the SVN, under heated and humidified conditions. However, the mass median aerodynamic diameters (MMADs) of the aerosolized drug produced by the SVN and VMN did not differ significantly under the same conditions. The VMN produced more fine particles of salbutamol/ipratropium, and the drug particle size clearly increased in the presence of heat and humidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    ERIC Educational Resources Information Center

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  6. Atmosphere Impact Losses

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2} ρ0 (π h R)^{3/2}, r_{cap}˜25 km for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (m_{min}>4 πρ0 h3, r_{min}˜ 1 km for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with r_{min} < r < r_{cap} are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is 'wasted' by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% M_{\\oplus } is able to erode the entire current Earth's atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.

  7. Differences in skeletal muscle loss caused by cytotoxic chemotherapy and molecular targeted therapy in patients with advanced non-small cell lung cancer.

    PubMed

    Kakinuma, Kazutaka; Tsuruoka, Hazime; Morikawa, Kei; Furuya, Naoki; Inoue, Takeo; Miyazawa, Teruomi; Mineshita, Masamichi

    2018-01-01

    Recent studies have revealed a reduction in the skeletal muscle area in patients with advanced non-small cell lung cancer (NSCLC) after chemotherapy. EGFR and ALK tyrosine kinase inhibitor (TKI)-based therapies are less cytotoxic than chemotherapy, but differences in skeletal muscle mass between patients receiving EGFR and ALK TKI therapies and patients receiving cytotoxic chemotherapy have not yet been reported. Data of pathologically proven NSCLC patients were reviewed, and chest computed tomography and/or positron emission tomography-computed tomography images obtained from January 2012 to December 2014 were selected. Patients were divided into two groups: cytotoxic chemotherapy (CG) and molecular targeted (MG). Muscle mass was measured with a single cross-sectional area of the muscle at the third lumber vertebra (L3MA). To estimate skeletal muscle changes during chemotherapy, we defined the following L3 skeletal muscle index (L3SMI) ratio: post L3SMI/pre L3SMI. Differences in the SMI ratio between the groups were evaluated using the Wilcoxon signed-rank test. Sixty-five patients were included in this study: 44 patients received cytotoxic chemotherapy and 21 received molecular targeted therapy (EGFR and ALK TKI). The loss of L3MA in the CG was higher than in the MG (P = 0.03). In the CG, the L3SMI ratio defined to evaluate skeletal muscle mass changes was significantly lower than in the MG (P = 0.0188). Our results suggest that skeletal muscle loss during first-line therapy was significantly different between patients receiving cytotoxic chemotherapy and those receiving TKIs. Specifically, skeletal muscle loss was lower in patients receiving TKIs than in patients receiving cytotoxic chemotherapy. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  8. Direct analysis of hCGβcf glycosylation in normal and aberrant pregnancy by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Iles, Ray K; Cole, Laurence A; Butler, Stephen A

    2014-06-05

    The analysis of human chorionic gonadotropin (hCG) in clinical chemistry laboratories by specific immunoassay is well established. However, changes in glycosylation are not as easily assayed and yet alterations in hCG glycosylation is associated with abnormal pregnancy. hCGβ-core fragment (hCGβcf) was isolated from the urine of women, pregnant with normal, molar and hyperemesis gravidarum pregnancies. Each sample was subjected to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis following dithiothreitol (DTT) reduction and fingerprint spectra of peptide hCGβ 6-40 were analyzed. Samples were variably glycosylated, where most structures were small, core and largely mono-antennary. Larger single bi-antennary and mixtures of larger mono-antennary and bi-antennary moieties were also observed in some samples. Larger glycoforms were more abundant in the abnormal pregnancies and tri-antennary carbohydrate moieties were only observed in the samples from molar and hyperemesis gravidarum pregnancies. Given that such spectral profiling differences may be characteristic, development of small sample preparation for mass spectral analysis of hCG may lead to a simpler and faster approach to glycostructural analysis and potentially a novel clinical diagnostic test.

  9. Getting the sigma in the M_BH - sigma relation right

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland

    2017-08-01

    The relation between the mass of the central supermassive black hole (M_BH) and the velocity dispersion of its host spheroid (sigma) is fundamental for our understanding of galaxy evolution and its relation to their nuclei. Correspondingly many HST orbits have been invested in determining accurate M_BH masses. Surprisingly little has been done on standardizing the other axis, i.e. sigma measurements. These values are often derived from various long-slit datasets at different physical radii of the galaxy and no homogeneous definition has been given. We propose to remedy this situation by using our dataset of MUSE and PPAK kinematic maps out to 1 R_e of galaxies with a secure black hole mass. These data are useful for large scale kinematics, however, obtaining velocity dispersions at small radii is not possible. To measure velocity dispersions at small radii we require high-spatial resolution spectroscopy as provided by HST/STIS. In addtion, high-resolution photometric data is needed to define consistent apertures in each galaxy. We therefore propose to use the unique capabilities of HST and harvest years of efforts to collect archival spectroscopic and imaging data for BH host galaxies. This will allow creating a catalog of sigma values, calculated in various ways and at various radii and to re-calibrate the M_BH - sigma relation.

  10. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-12-20

    ISS018-E-014770 (20 Dec. 2008) --- Sand dunes in the Marzuq Sand Sea, southwest Libya are featured in this image photographed by an Expedition 18 crewmember on the International Space Station. This detailed view, taken from low Earth orbit, shows classic large and small sand masses of the Central Sahara where wind is a more powerful land-forming agent than water. ?Draa? dunes (from the Arabic for ?arm?) are very large masses of sand and appear here as the broad network of yellow-orange sand masses (the image covers a region approximately 9.4 kilometers wide), with smooth-floored, almost sand-free basins between them. These sand masses lie in the western part of Libya?s vast Marzuq Sand Sea (greater than 60,000 square kilometers, centered at 24.5N 12W). Geologists think that the draa of the Marzuq have probably been formed by winds different from the dominant north/northeast winds of today. Numerous smaller dunes can be seen developed on the backs of the draa. Three distinct dune types can be identified: longitudinal dunes (formed essentially parallel with formative winds from the north); transverse dunes, usually more curved, formed at right angles to the formative wind; and star dunes, in which several linear arms converge towards a single peak. The upwind side of the sand masses appears smoother than the more rippled downwind side. Wind is moving sand grains almost all the time. This means that the draa and the dunes are all moving -- as sand is added on the upwind side and blown off the downwind side. It is well known that small sand masses move much faster than large sand masses. This means that the draa are almost stationary, but that the smaller dunes are moving relatively quickly across their backs. When the dunes reach the downwind side of the draa they are obliterated, their sand being blown across the basins as individual grains.

  11. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise.

    PubMed

    Hiramatsu, Layla; Garland, Theodore

    2018-04-20

    Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  13. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  14. MALDI-TOF mass spectrometry analysis of small molecular weight compounds (under 10 KDa) as biomarkers of rat hearts undergoing arecoline challenge.

    PubMed

    Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2013-04-01

    Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).

  15. Treatment management of small renal masses in the 21st century: a paradigm shift.

    PubMed

    Sun, Maxine; Abdollah, Firas; Bianchi, Marco; Trinh, Quoc-Dien; Jeldres, Claudio; Thuret, Rodolphe; Tian, Zhe; Shariat, Shahrokh F; Montorsi, Francesco; Perrotte, Paul; Karakiewicz, Pierre I

    2012-07-01

    Partial (PN) or radical nephrectomy (RN) represents the standard of care for patients with small renal masses. Active surveillance (AS) also may be considered. We examined the rates of PN, RN, and AS within a contemporary population-based cohort. Using the surveillance, epidemiology and end results database, we identified 26,468 patients diagnosed with T1aN0M0 renal cell carcinoma, between years 1988 and 2008. Determinants of PN and AS were assessed using logistic regression analyses within surgically managed patients and within the entire cohort, respectively. Overall, 8,966 (34%), 14,705 (56%), and 2,797 (11%) patients underwent PN, RN, and AS, respectively. The rate of PN increased (4.7% in 1988 to 40.4% in 2008, P<0.001), whereas the rate of RN decreased over time (92.9% in 1988 to 41.4% in 2008, P<0.001). The rate of AS increased over time (2.4% in 1988 to 18.2% in 2008, P<0.001). In multivariable analyses, the determinants for PN consisted of more contemporary year of diagnosis, younger patient age, male gender, Caucasian race, married status, and decreasing tumor size (all P≤0.003). The determinants of AS consisted of more contemporary year of diagnosis, more advanced age, male gender, decreasing tumor size, and unmarried marital status (all P≤0.001). Regional differences for management of localized RCC were detected. It is encouraging that PN rates have increased in an eightfold fashion. Moreover, a fivefold increase was recorded for AS. These figures show a paradigm shift in the management of small renal masses.

  16. An inexpensive light-scattering particle monitor: field validation

    PubMed Central

    Edwards, Rufus D.; Johnson, Michael; Shields, Kyra Naumoff; Allen, Tracy; Canuz, Eduardo; Smith, Kirk R.

    2014-01-01

    We have developed a small, light, passive, inexpensive, datalogging particle monitor called the “UCB” (University of California Berkeley particle monitor). Following previously published laboratory assessments, we present here results of tests of its performance in field settings at high particle concentrations. We demonstrate the mass sensitivity of the UCB in relation to gravimetric filter-based PM2.5 mass estimates as well as commercial light-scattering instruments co-located in field chamber tests and in kitchens of wood-burning households. The coefficient of variation of the unadjusted UCB mass response in relation to gravimetric estimates was 15%. Although requiring adjustment for differences in sensitivity, inter-monitor performance was consistently high (r2 > 0.99). Moreover, the UCB can consistently estimate PM2.5 mass concentrations in wood-burning kitchens (Pearson r2 = 0.89; N = 99), with good agreement between duplicate measures (Pearson r2 = 0.94; N = 88). In addition, with appropriate cleaning of the sensing chamber, UCB mass sensitivity does not decrease with time when used intensively in open woodfire kitchens, demonstrating the significant potential of this monitor. PMID:17909644

  17. Pelvic kinematic method for determining vertical jump height.

    PubMed

    Chiu, Loren Z F; Salem, George J

    2010-11-01

    Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R² = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.

  18. Tidal oscillation of sediment between a river and a bay: A conceptual model

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.

    2004-01-01

    A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Drag-Free Control and Drag Force Recovery of Small Satellites

    NASA Technical Reports Server (NTRS)

    Nguyen, Anh N.; Conklin, John W.

    2017-01-01

    Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag-free control systems for passive satellites. In both cases, the test mass position, GPS tracking data, and commanded actuation, either thrust or suspension system, can be analyzed to estimate the 3-axis drag forces acting on the satellite. The data produces the most precise maps of upper atmospheric drag forces and with additional information, detailed models that describe the dynamics of the upper atmosphere and its impact on all satellites that orbit the Earth. This paper highlights the history, applications, design, laboratory technology development and highly detailed simulation results of each control system.

  20. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  1. A Universal Model for Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Wyper, Peter F.; Antiochos, Spiro K.; Devore, C. Richard

    2017-01-01

    Magnetically driven eruptions on the Sun, from stellar-scale coronal mass ejections1 to small-scale coronal X-ray and extreme-ultraviolet jets, have frequently been observed to involve the ejection of the highly stressed magnetic flux of a filament. Theoretically, these two phenomena have been thought to arise through very different mechanisms: coronal mass ejections from an ideal (non-dissipative) process, whereby the energy release does not require a change in the magnetic topology, as in the kink or torus instability; and coronal jets from a resistive process, involving magnetic reconnection. However, it was recently concluded from new observations that all coronal jets are driven by filament ejection, just like large mass ejections. This suggests that the two phenomena have physically identical origin and hence that a single mechanism may be responsible, that is, either mass ejections arise from reconnection, or jets arise from an ideal instability. Here we report simulations of a coronal jet driven by filament ejection, whereby a region of highly sheared magnetic field near the solar surface becomes unstable and erupts. The results show that magnetic reconnection causes the energy release via 'magnetic breakout', a positive feedback mechanism between filament ejection and reconnection. We conclude that if coronal mass ejections and jets are indeed of physically identical origin (although on different spatial scales) then magnetic reconnection (rather than an ideal process) must also underlie mass ejections, and that magnetic breakout is a universal model for solar eruptions.

  2. Bats: Body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes

    PubMed Central

    Meng, Fanxing; Zhu, Lei; Huang, Wenjie; Irwin, David M.; Zhang, Shuyi

    2016-01-01

    Bats have an unusually large volume of endocrine tissue, with a large population of beta cells, and an elevated sensitivity to glucose and insulin. This makes them excellent animal models for studying diabetes mellitus. We evaluated bats as models for diabetes in terms of lifestyle and genetic factors. For lifestyle factors, we generated data sets of 149 body mass index (BMI) and 860 forearm mass index (FMI) measurements for different species of bats. Both showed negative inter-species correlations with blood glucose levels in sixteen bats examined. The negative inter-species correlations may reflect adaptation of a small insectivorous ancestor to a larger frugivore. We identified an 11 bp deletion in the proximal promoter of SLC2A2 that we predicted would disrupt binding sites for the transcription repressor ZNF354C. In frugivorous bats this could explain the relatively high expression of this gene, resulting in a better capacity to absorb glucose and decrease blood glucose levels. PMID:27439361

  3. Quantification of Endogenous Cholesterol in Human Serum on Paper Using Direct Analysis in Real Time Mass Spectrometry.

    PubMed

    Hsieh, Hua-Yi; Li, Li-Hua; Hsu, Ren-Yu; Kao, Wei-Fong; Huang, Ying-Chen; Hsu, Cheng-Chih

    2017-06-06

    Blood testing for endogenous small metabolites to determine physiological and biochemical states is routine for laboratory analysis. Here we demonstrate that by combining the commercial direct analysis in real time (DART) ion source with an ion trap mass spectrometer, native cholesterol in its free alcohol form is readily detected from a few hundred nanoliters of human serum loaded onto chromatography paper. Deuterium-labeled cholesterol was used as the internal standard to obtain the absolute quantity of the endogenous cholesterol. The amount of the cholesterol measured by this paper-loaded DART mass spectrometry (pDART-MS) is statistically comparable with that obtained by using commercially available fluorometric-enzymatic assay and liquid chromatography/mass spectrometry. Furthermore, sera from 21 participants at three different time points in an ultramarathon were collected to obtain their cholesterol levels. The test requires only very minimal sample preparation, and the concentrations of cholesterol in each sample were acquired within a minute.

  4. Isolating Added Mass Load Components of CPAS Main Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2017-01-01

    The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.

  5. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  6. Giant moving vortex mass in thick magnetic nanodots.

    PubMed

    Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O

    2015-09-10

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  7. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis.

    PubMed

    Rafiei, Atefeh; Sleno, Lekha

    2015-01-15

    Data analysis is a key step in mass spectrometry based untargeted metabolomics, starting with the generation of generic peak lists from raw liquid chromatography/mass spectrometry (LC/MS) data. Due to the use of various algorithms by different workflows, the results of different peak-picking strategies often differ widely. Raw LC/HRMS data from two types of biological samples (bile and urine), as well as a standard mixture of 84 metabolites, were processed with four peak-picking softwares: Peakview®, Markerview™, MetabolitePilot™ and XCMS Online. The overlaps between the results of each peak-generating method were then investigated. To gauge the relevance of peak lists, a database search using the METLIN online database was performed to determine which features had accurate masses matching known metabolites as well as a secondary filtering based on MS/MS spectral matching. In this study, only a small proportion of all peaks (less than 10%) were common to all four software programs. Comparison of database searching results showed peaks found uniquely by one workflow have less chance of being found in the METLIN metabolomics database and are even less likely to be confirmed by MS/MS. It was shown that the performance of peak-generating workflows has a direct impact on untargeted metabolomics results. As it was demonstrated that the peaks found in more than one peak detection workflow have higher potential to be identified by accurate mass as well as MS/MS spectrum matching, it is suggested to use the overlap of different peak-picking workflows as preliminary peak lists for more rugged statistical analysis in global metabolomics investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Systematic investigation of non-Boussinesq effects in variable-density groundwater flow simulations.

    PubMed

    Guevara Morel, Carlos R; van Reeuwijk, Maarten; Graf, Thomas

    2015-12-01

    The validity of three mathematical models describing variable-density groundwater flow is systematically evaluated: (i) a model which invokes the Oberbeck-Boussinesq approximation (OB approximation), (ii) a model of intermediate complexity (NOB1) and (iii) a model which solves the full set of equations (NOB2). The NOB1 and NOB2 descriptions have been added to the HydroGeoSphere (HGS) model, which originally contained an implementation of the OB description. We define the Boussinesq parameter ερ=βω Δω where βω is the solutal expansivity and Δω is the characteristic difference in solute mass fraction. The Boussinesq parameter ερ is used to systematically investigate three flow scenarios covering a range of free and mixed convection problems: 1) the low Rayleigh number Elder problem (Van Reeuwijk et al., 2009), 2) a convective fingering problem (Xie et al., 2011) and 3) a mixed convective problem (Schincariol et al., 1994). Results indicate that small density differences (ερ≤ 0.05) produce no apparent changes in the total solute mass in the system, plume penetration depth, center of mass and mass flux independent of the mathematical model used. Deviations between OB, NOB1 and NOB2 occur for large density differences (ερ>0.12), where lower description levels will underestimate the vertical plume position and overestimate mass flux. Based on the cases considered here, we suggest the following guidelines for saline convection: the OB approximation is valid for cases with ερ<0.05, and the full NOB set of equations needs to be used for cases with ερ>0.10. Whether NOB effects are important in the intermediate region differ from case to case. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    PubMed

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  10. Novel Equations for Estimating Lean Body Mass in Patients With Chronic Kidney Disease.

    PubMed

    Tian, Xue; Chen, Yuan; Yang, Zhi-Kai; Qu, Zhen; Dong, Jie

    2018-05-01

    Simplified methods to estimate lean body mass (LBM), an important nutritional measure representing muscle mass and somatic protein, are lacking in nondialyzed patients with chronic kidney disease (CKD). We developed and tested 2 reliable equations for estimation of LBM in daily clinical practice. The development and validation groups both included 150 nondialyzed patients with CKD Stages 3 to 5. Two equations for estimating LBM based on mid-arm muscle circumference (MAMC) or handgrip strength (HGS) were developed and validated in CKD patients with dual-energy x-ray absorptiometry as referenced gold method. We developed and validated 2 equations for estimating LBM based on HGS and MAMC. These equations, which also incorporated sex, height, and weight, were developed and validated in CKD patients. The new equations were found to exhibit only small biases when compared with dual-energy x-ray absorptiometry, with median differences of 0.94 and 0.46 kg observed in the HGS and MAMC equations, respectively. Good precision and accuracy were achieved for both equations, as reflected by small interquartile ranges in the differences and in the percentages of estimates that were 20% of measured LBM. The bias, precision, and accuracy of each equation were found to be similar when it was applied to groups of patients divided by the median measured LBM, the median ratio of extracellular to total body water, and the stages of CKD. LBM estimated from MAMC or HGS were found to provide accurate estimates of LBM in nondialyzed patients with CKD. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    PubMed

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers.

  12. Use of high-resolution mass spectrometry to investigate a metabolite interference during liquid chromatography/tandem mass spectrometric quantification of a small molecule in toxicokinetic study samples.

    PubMed

    Furlong, Michael; Bessire, Andrew; Song, Wei; Huntington, Christopher; Groeber, Elizabeth

    2010-07-15

    During routine liquid chromatography/tandem mass spectrometric (LC/MS/MS) bioanalysis of a small molecule analyte in rat serum samples from a toxicokinetic study, an unexpected interfering peak was observed in the extracted ion chromatogram of the internal standard. No interfering peaks were observed in the extracted ion chromatogram of the analyte. The dose-dependent peak area response and peak area response versus time profiles of the interfering peak suggested that it might have been related to a metabolite of the dosed compound. Further investigation using high-resolution mass spectrometry led to unequivocal identification of the interfering peak as an N-desmethyl metabolite of the parent analyte. High-resolution mass spectrometry (HRMS) was also used to demonstrate that the interfering response of the metabolite in the multiple reaction monitoring (MRM) channel of the internal standard was due to an isobaric relationship between the (13)C-isotope of the metabolite and the internal standard (i.e., common precursor ion mass), coupled with a metabolite product ion with identical mass to the product ion used in the MRM transition of the internal standard. These results emphasize (1) the need to carefully evaluate internal standard candidates with regard to potential interferences from metabolites during LC/MS/MS method development, validation and bioanalysis of small molecule analytes in biological matrices; (2) the value of HRMS as a tool to investigate unexpected interferences encountered during LC/MS/MS analysis of small molecules in biological matrices; and (3) the potential for interference regardless of choice of IS and therefore the importance of conducting assay robustness on incurred in vitro or in vivo study samples. Copyright 2010 John Wiley & Sons, Ltd.

  13. Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio

    NASA Astrophysics Data System (ADS)

    Hoffman, Aaron; Wright, J. Douglas

    2017-11-01

    Consider an infinite chain of masses, each connected to its nearest neighbors by a (nonlinear) spring. This is a Fermi-Pasta-Ulam-Tsingou lattice. We prove the existence of traveling waves in the setting where the masses alternate in size. In particular we address the limit where the mass ratio tends to zero. The problem is inherently singular and we find that the traveling waves are not true solitary waves but rather ;nanopterons;, which is to say, waves which are asymptotic at spatial infinity to very small amplitude periodic waves. Moreover, we can only find solutions when the mass ratio lies in a certain open set. The difficulties in the problem all revolve around understanding Jost solutions of a nonlocal Schrödinger operator in its semi-classical limit.

  14. Prevalence of sarcopenia in elderly maintenance hemodialysis patients: the impact of different diagnostic criteria.

    PubMed

    Lamarca, F; Carrero, J J; Rodrigues, J C D; Bigogno, F G; Fetter, R L; Avesani, C M

    2014-07-01

    The prevalence of sarcopenia on elderly maintenance hemodialysis (MHD) has been scarcely investigated. To investigate the prevalence of decreased muscle mass and strength alone or combined (true sarcopenia) in elderly patients on MHD according to different methods and cutoff limits. Additionally, we evaluated the agreement between dual energy x-ray absorptiometry (DXA) and surrogate methods for the assessment of muscle mass. Observational and cross-sectional study. Non-institutionalized 102 elderly (age > 60 years) patients on MHD. Sarcopenia was considered when the patient fit one criteria for low muscle mass assessed by DXA, bioelectrical impedance (BIA), sum of skinfold thicknesses (SKF), calf circumference and mid-arm muscle circumference (MAMC) and one for low muscle strength evaluated by handgrip dynamometer. Decreased muscle strength was found in 85% of the patients. The prevalence of decreased muscle mass varied from 4 to 73.5% and of sarcopenia (decreased muscle mass and strength combined) from 4 to 63%, depending on the method and cutoff limit applied. A small percentage of patients (2 to 15%) were classified as sarcopenic by more than one diagnostic criteria. The agreement between DXA and the surrogate methods to assess muscle mass showed better kappa coefficients with BIA (r=0.36; P<0.01) and SKF (r=0.40; P<0.01). A wide prevalence of sarcopenia is observed depending on the method and cutoff limit applied. This may limit extrapolate on to clinical practice. BIA and SKF were the surrogate methods to assess muscle mass with the best concordance with DXA in elderly MHD patients.

  15. Small-Item Contact Test Method, FY11 Release

    DTIC Science & Technology

    2012-07-01

    the exposure mass of the agent. APPENDIX 8 Comparison of data using different contact swabs should include consideration for the material- uptake ...Terminology specific to this test procedure is provided alphabetically in the following list. • absorption: The uptake of a contaminant INTO the...substance with the ability to remove and/or neutralize chemical agents on/in surfaces of interest. The decontaminant can be liquid, solid ( powders , wipes

  16. Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance.

    PubMed

    Avelange-Macherel, Marie-Hélène; Payet, Nicole; Lalanne, David; Neveu, Martine; Tolleter, Dimitri; Burstin, Judith; Macherel, David

    2015-07-01

    LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms. © 2014 John Wiley & Sons Ltd.

  17. Body image and body composition: comparisons of young male elite soccer players and controls.

    PubMed

    Arroyo, Marta; Gonzalez-de-Suso, Jose Manuel; Sanchez, Celia; Ansotegui, Laura; Rocandio, Ana M

    2008-12-01

    The purpose of this study was to evaluate body composition and body image (perception and satisfaction) in a group of young elite soccer players and to compare the data with those of a control group (age and BMI matched). Participants were 56 volunteer males whose mean age and BMI were 19.6 (SD 1.3) years and 23.3 (SD 1.1) kg/m2, respectively. Results showed that soccer players have a higher lean mass and lower fat mass than controls. Moreover, body perception (difference between current and actual image) was more accurate in controls than in soccer players, and the results suggest a tendency for soccer players to aspire to have more muscle mass and body fat. Soccer players perceived an ideal image with significantly higher body-fat percentage than their current and actual images. There were no body-dissatisfaction differences between groups, however. Although the results are necessarily limited by the small sample size, the findings should be of interest to coaches of young elite soccer teams.

  18. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  19. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sheng; Ji, Jianghui; Mordasini, Christoph

    2014-11-01

    We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on the core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 R {sub ⊕}. We find that evaporation can lead to a bimodal distribution of planetary sizes and to anmore » 'evaporation valley' running diagonally downward in the orbital distance—planetary radius plane, separating bare cores from low-mass planets that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only accrete small primordial H/He envelopes and their envelope masses are proportional to their core masses. We also find that the population-wide effect of evaporation is not sensitive to the heating efficiency of energy-limited description. However, in two extreme cases, namely without evaporation or with a 100% heating efficiency in an evaporation model, the final size distributions show significant differences; these two scenarios can be ruled out from the size distribution of Kepler candidates.« less

  20. A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim

    2015-10-15

    A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is aroundmore » 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.« less

  1. Infiltration and Evaporation of Diesel and Gasoline Droplets Spilled onto Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Adria-Mora, B.

    2015-12-01

    Pollution at gas stations due to small spills that occur during refueling of customer vehicles has received little attention. We have performed laboratory experiments in order to assess the processes of evaporation and infiltration of fuel spilled onto concrete samples. Changes in mass of both spilled diesel and gasoline droplets as a function of time have been analyzed. The infiltrated mass is affected by variations in humidity, among other parameters, which influence the amount of water condensed onto the concrete. Therefore, we used a humidity data logger and statistical tools to predict the evolution of the real mass of infiltrated fuel. The infiltrated mass roughly decreases exponentially, but the difference in behavior between both fuel types is important. The percentage of evaporated mass is much larger for gasoline, while infiltration is more significant for diesel. Also, the percentage of infiltrated liquid depends on the initial droplet mass. We also developed a multiphysics model, which couples pore-scale infiltration to turbulent atmospheric transport, to explain the experimental data. In conclusion, a substantial amount of fuel could both seep into the ground to contaminate groundwater and be released to the atmosphere. More studies are needed to quantify the public health implications of the released pollutants.

  2. Effects of egg size, parental quality and hatch-date on growth and survival of Common Tern Sterna hirundo chicks

    USGS Publications Warehouse

    Arnold, J.M.; Hatch, J.J.; Nisbet, I.C.T.

    2006-01-01

    We examined the relative contributions of egg size, parental quality and hatch-date to growth and survival of second-hatched chicks (those chicks making the greatest contribution to differences in productivity among pairs) by exchanging clutches among nests of Common Terns Sterna hirundo matched for lay-date (range 13 May to 9 June). The mass of a second-laid egg in an exchanged clutch ranged from 17.70 to 23.80 g. Growth and survival were studied during three periods: early (days 0-3), middle (days 3-12) and late (days 12-25). Both egg mass and hatch-date were important predictors of hatchling mass (positive relationships), although there was no seasonal trend in egg mass. During the middle period, hatch-date was a significant predictor of mass gain and survival (inverse relationships). After controlling for hatch-date, other indices of parental quality made only small contributions to chick mass gain and survival. Our results suggest that although breeding early generally leads to greater overall survival of chicks, several important interactions among egg 'quality', parental quality and early laying may affect breeding success under specific conditions. ?? 2006 British Ornithologists' Union.

  3. Examination of the Mass Transfer of Additive Elements in Barium Titanate Ceramics during Sintering Process by Laser Ablation ICP-MS.

    PubMed

    Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki

    2018-01-01

    The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.

  4. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes

    NASA Technical Reports Server (NTRS)

    Chase, P. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Bands 6 and 7 have fine structure as obtained by proper selection of digital levels in processing the CCT's. This is contrary to the imagery density received. This means that the small lakes can be classified in IR for different types of water masses. At least four distinct water masses have been determined for test lakes. They are shoreline, shallow water, and two deep waters. One deep water is patchy and presents difficulty in training set selection. The excellent weather and a completely successful field test form a significant happening. It required 12 orbits over the test area before perfect weather occurred.

  5. System Modeling of Lunar Oxygen Production: Mass and Power Requirements

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J.; Freeh, Joshua E.; Linne, Diane L.; Faykus, Eric W.; Gallo, Christopher A.; Green, Robert D.

    2007-01-01

    A systems analysis tool for estimating the mass and power requirements for a lunar oxygen production facility is introduced. The individual modeling components involve the chemical processing and cryogenic storage subsystems needed to process a beneficiated regolith stream into liquid oxygen via ilmenite reduction. The power can be supplied from one of six different fission reactor-converter systems. A baseline system analysis, capable of producing 15 metric tons of oxygen per annum, is presented. The influence of reactor-converter choice was seen to have a small but measurable impact on the system configuration and performance. Finally, the mission concept of operations can have a substantial impact upon individual component size and power requirements.

  6. A small porous-plug burner for studies of combustion chemistry and soot formation

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  7. A small porous-plug burner for studies of combustion chemistry and soot formation.

    PubMed

    Campbell, M F; Schrader, P E; Catalano, A L; Johansson, K O; Bohlin, G A; Richards-Henderson, N K; Kliewer, C J; Michelsen, H A

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  8. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  9. Search for supersymmetry in events with soft leptons, low jet multiplicity, and missing transverse energy in proton-proton collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-08-01

    Results are presented from a search for supersymmetric particles in scenarios with small mass splittings. The data sample corresponds to 19.7 fb-1 of proton-proton collisions recorded by the CMS experiment at √{ s} = 8 TeV. The search targets top squark (t ˜) pair production in scenarios with mass differences Δm = m (t ˜) - m ( χ˜10) below the W-boson mass and with top-squark decays in the four-body mode (t ˜ → bℓν χ˜10), where the neutralino (χ˜10) is assumed to be the lightest supersymmetric particle (LSP). The signature includes a high transverse momentum (pT) jet associated with initial-state radiation, one or two low-pT leptons, and significant missing transverse energy. The event yields observed in data are consistent with the expected background contributions from standard model processes. Limits are set on the cross section for top squark pair production as a function of the t ˜ and LSP masses. Assuming a 100% branching fraction for the four-body decay mode, top-squark masses below 316 GeV are excluded for Δm = 25 GeV at 95% CL. The dilepton data are also interpreted under the assumption of chargino-neutralino production, with subsequent decays to sleptons or sneutrinos. Assuming a difference between the common χ˜1+/χ˜20 mass and the LSP mass of 20 GeV and a τ-enriched decay scenario, masses in the range m (χ˜1+) < 307 GeV are excluded at 95% CL.

  10. Scaling of adult regional body mass and body composition as a whole to height: Relevance to body shape and body mass index.

    PubMed

    Schuna, John M; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B

    2015-01-01

    Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht(2) ), but does regional body mass and body composition as a whole also scale as Ht(2) ? This question is relevant to a wide range of biological topics, including interpretation of body mass index (BMI). Dual-energy X-ray absorptiometry (DXA) was used to quantify regional body mass [head (MH), trunk, arms, and legs] and whole-body composition [fat, lean soft tissue (LST), and bone mineral content (BMC)] in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n = 17,126) and Korean NHANES (n = 8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Exploratory analyses revealed a consistent scaling pattern across men and women of the four population groups: regional mass powers, head (∼0.8-1) < arms and trunk (∼1.8-2.3) < legs (∼2.3-2.6); and body composition, LST (∼2.0-2.3) < BMC (∼2.1-2.4). Small sex and population differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and population groups as Ht(∼2) , tall and short subjects differed in body shape (e.g., MH/MB ∝ Ht(-∼1) ) and composition. Adult human body shape and relative composition are a function of body size as represented by stature, a finding that reveals a previously unrecognized phenotypic heterogeneity as defined by BMI. These observations provide new pathways for exploring mechanisms governing the interrelations between adult stature, body morphology, biomechanics, and metabolism. © 2014 Wiley Periodicals, Inc.

  11. Scaling of Adult Regional Body Mass and Body Composition as a Whole to Height: Relevance to Body Shape and Body Mass Index

    PubMed Central

    Schuna, John M.; Peterson, Courtney M.; Thomas, Diana M.; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B.

    2015-01-01

    Objectives Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht2), but does regional body mass and body composition as a whole also scale as Ht2? This question is relevant to a wide range of biological topics, including interpretation of body mass index. Methods Dual-energy x-ray absorptiometry (DXA) was used to quantify regional body mass (head [MH], trunk, arms, legs) and whole-body composition (fat, lean soft tissue [LST], and bone mineral content [BMC]) in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n=17,126) and Korean NHANES (n=8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Results Exploratory analyses revealed a consistent scaling pattern across men and women of the four race/ethnic groups: regional mass powers, head (~0.8-1) < arms and trunk (~1.8-2.3) < legs (~2.3-2.6); and body composition, LST (~2.0-2.3) < BMC (~2.1-2.4). Small sex and race/ethnic differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and race/ethnic groups as Ht~2, tall and short subjects differed in body shape (e.g., Mh/Mb ∝ Ht−~1) and composition. Conclusions Adult human body shape and relative composition are a function of body size as defined by stature, a finding that has important implications in multiple areas of biological research. PMID:25381999

  12. Primordial Black Holes as Generators of Cosmic Structures

    NASA Astrophysics Data System (ADS)

    Carr, Bernard; Silk, Joseph

    2018-05-01

    Primordial black holes (PBHs) could provide the dark matter in various mass windows below 102M⊙ and those of 30M⊙ might explain the LIGO events. PBHs much larger than this might have important consequences even if they provide only a small fraction of the dark matter. In particular, they could generate cosmological structure either individually through the `seed' effect or collectively through the `Poisson' effect, thereby alleviating some problems associated with the standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the dark matter, then the seed effect dominates on small scales, in which case PBHs could generate the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar mass and provide the dark matter, the Poisson effect dominates on all scales and the first bound clouds would form earlier than in the usual scenario, with interesting observational consequences. If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles - providing the dark matter, binding the first bound clouds and generating galaxies. In this case, the galactic mass function naturally has the observed form, with the galaxy mass being simply related to the black hole mass. The stochastic gravitational wave background from the PBHs in this scenario would extend continuously from the LIGO frequency to the LISA frequency, offering a potential goal for future surveys.

  13. Revisiting the cost of carnivory in mammals.

    PubMed

    Tucker, M A; Ord, T J; Rogers, T L

    2016-11-01

    Predator-prey relationships play a key role in the evolution and ecology of carnivores. An understanding of predator-prey relationships and how this differs across species and environments provides information on how carnivorous strategies have evolved and how they may change in response to environmental change. We aim to determine how mammals overcame the challenges of living within the marine environment; specifically, how this altered predator-prey body mass relationships relative to terrestrial mammals. Using predator and prey mass data collected from the literature, we applied phylogenetic piecewise regressions to investigate the relationship between predator and prey size across carnivorous mammals (51 terrestrial and 56 marine mammals). We demonstrate that carnivorous mammals have four broad dietary groups: small marine carnivores (< 11 000 kg) and small terrestrial carnivores (< 11 kg) feed on prey less than 5 kg and 2 kg, respectively. On average, large marine carnivores (> 11 000 kg) feed on prey equal to 0.01% of the carnivore's body size, compared to 45% or greater in large terrestrial carnivores (> 11 kg). We propose that differences in prey availability, and the relative ease of processing large prey in the terrestrial environment and small prey in marine environment, have led to the evolution of these novel foraging behaviours. Our results provide important insights into the selection pressures that may have been faced by early marine mammals and ultimately led to the evolution of a range of feeding strategies and predatory behaviours. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. The potential of GRACE gravimetry to detect the heavy rainfall-induced impoundment of a small reservoir in the upper Yellow River

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Song, Chunqiao; Wang, Qiuyu; Wang, Linsong; Heki, Kosuke; Sun, Wenke

    2017-08-01

    Artificial reservoirs are important indicators of anthropogenic impacts on environments, and their cumulative influences on the local water storage will change the gravity signal. However, because of their small signal size, such gravity changes are seldom studied using satellite gravimetry from the Gravity Recovery and Climate Experiment (GRACE). Here we investigate the ability of GRACE to detect water storage changes in the Longyangxia Reservoir (LR), which is situated in the upper main stem of the Yellow River. Three different GRACE solutions from the CSR, GFZ, and JPL with three different processing filters are compared here. We find that heavy precipitation in the summer of 2005 caused the LR water storage to increase by 37.9 m in height, which is equivalent to 13.0 Gt in mass, and that the CSR solutions with a DDK4 filter show the best performance in revealing the synthetic gravity signals. We also obtain 109 pairs of reservoir inundation area measurements from satellite imagery and water level changes from laser altimetry and in situ observations to derive the area-height ratios for the LR. The root mean square of GRACE series in the LR is reduced by 39% after removing synthetic signals caused by mass changes in the LR or by 62% if the GRACE series is further smoothed. We conclude that GRACE data show promising potential in detecting water storage changes in this ˜400 km2 reservoir and that a small signal size is not a restricting factor for detection using GRACE data.

  15. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI modemore » was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.« less

  16. Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √{s }=13 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allaire, C.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Ambroz, L.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Araujo Pereira, R.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkin, R. J.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Avramidou, R.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Bakshi Gupta, D.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bauer, K. T.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behera, A.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, Dr.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Bonilla, J. S.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Buschmann, E.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; C.-Q., Changqiao; Cabras, G.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, I.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Cinca, D.; Cindro, V.; Cioarǎ, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Clark, A.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corrigan, E. E.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dahbi, S.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dreyer, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feickert, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, M.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Fomin, N.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Freund, W. S.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gasnikova, K.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giulini, M.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonnella, F.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Goy, C.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Graham, E. C.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guerguichon, A.; Guescini, F.; Guest, D.; Gueta, O.; Gugel, R.; Gui, B.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Han, K.; Han, L.; Han, S.; Hanagaki, K.; Hance, M.; Handl, D. M.; Haney, B.; Hankache, R.; Hanke, P.; Hansen, E.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellesund, S.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Hohov, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Horyn, L. A.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Hupe, A. M.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jacka, P.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakel, G.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanjir, L.; Kano, Y.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kiehn, M.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laudrain, A.; Law, A. T.; Laycock, P.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Leight, W. A.; Leisos, A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J. B.; Liu, K.; Liu, M.; Liu, P.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Luise, I.; Lukas, W.; Luminari, L.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McKay, M. A.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meadows, Z. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murin, P.; Murray, W. J.; Murrone, A.; Muškinja, M.; Mwewa, C.; Myagkov, A. G.; Myers, J.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen, H. D. N.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novak, T.; Novgorodova, O.; Novotny, R.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver, J. L.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orgill, E. C.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parida, B.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Pham, T.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pitt, M.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Qureshi, A.; Radeka, V.; Radhakrishnan, S. K.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rivera Vergara, J. C.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Rodríguez Vera, A. M.; Roe, S.; Rogan, C. S.; Røhne, O.; Röhrig, R.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rossini, L.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Pineda, A.; Sandaker, H.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sasaki, O.; Sato, K.; Sauvan, E.; Savard, P.; Savic, N.; Sawada, R.; Sawyer, C.; Sawyer, L.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaeffer, J.; Schaepe, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillaci, Z. M.; Schillo, C.; Schioppa, E. J.; Schioppa, M.; Schleicher, K. E.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultz-Coulon, H.-C.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Scyboz, L. M.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shahinian, J. D.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Sharma, A. S.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silva, M.; Silverstein, S. B.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffa, A. M.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, W.; Sopczak, A.; Sopkova, F.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoicea, G.; Stolte, P.; Stonjek, S.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sydorenko, A.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarek Abouelfadl Mohamed, A. T.; Tarem, S.; Tarna, G.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von Buddenbrock, S. E.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, A. M.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yajima, K.; Yallup, D. P.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, S.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zhulanov, V.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zorbas, T. G.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-03-01

    A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb-1 of integrated luminosity at √{s }=13 TeV . Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R -parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.

  17. Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs

    NASA Astrophysics Data System (ADS)

    Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.

    2018-01-01

    We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.

  18. On p-mode oscillations in stars from 1 solar mass to 2 solar masses

    NASA Astrophysics Data System (ADS)

    Audard, N.; Provost, J.

    1994-06-01

    The structure of stars more massive than about 1.2 solar masses is characterized by a convective core. We have studied the evolution with age and mass of acoustic frequencies of high radical order n and low degree l for models of stars of 1, 1.5 and 2 solar masses. Using a polynomial approximation for the frequency, the p-mode spectrum can be characterized by derived global asteroseismic coefficients, i.e. the mean separation nu0 is approximately equal to nun, l - nun - 1, l and the small frequency separation Delta nu0, 2 is approximately equal to nun, l = 0 - nun - 1, l = 2. The diagram (nu0, delta nu0, 2/nu0) plotted along the evolutionary tracks would help to separate the effects of age and mass. We study the sensitivity of these coefficients and other observable quantities, like the radius and luminosity, to stellar parameters in the vicinity of 1 solar mass and 2 solar masses; this sensitivity substantially depends on the stellar mass and must be taken into account for asteroseismic calibration of stellar clusters. Considering finally some rapid variations of the internal structure, we show that the second frequency difference delta2 nu = nu(subn, l) - 2 nun - 1, l + nun - 2, l exponent gamma in the He II ionization zone.

  19. THERMOGRAVIMETRIC CHARACTERIZATION OF GLOVEBOX GLOVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P.

    An experimental project was initiated to characterize mass loss when heating different polymer glovebox glove material samples to three elevated temperatures, 90, 120, and 150 C. Samples from ten different polymeric gloves that are being considered for use in the tritium gloveboxes were tested. The intent of the study was to determine the amount of material lost. These data will be used in a subsequent study to characterize the composition of the material lost. One goal of the study was to determine which glove composition would least affect the glovebox atmosphere stripper system. Samples lost most of the mass inmore » the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The most mass loss was experienced by Jung butyl-Hypalon{reg_sign} at 146 C with 12.9% mass loss followed by Piercan Hypalon{reg_sign} at 144 C with 11.4 % mass loss and Jung butyl-Viton{reg_sign} at 140 C with 5.2% mass loss. The least mass loss was experienced by the Jung Viton{reg_sign} and the Piercan polyurethane. Unlike the permeation testing (1) the vendor and fabrication route influences the amount of gaseous species that is evolved. Additional testing to characterize these products is recommended. Savannah River Site (SRS) has many gloveboxes deployed in the Tritium Facility. These gloveboxes are used to protect the workers and to ensure a suitable environment in which to handle tritium gas products. The gas atmosphere in the gloveboxes is purified using a stripper system. The process gas strippers collect molecules that may have hydrogen or its isotopes attached, e.g., waters of hydration, acids, etc. Recently, sulfur containing compounds were detected in the stripper system and the presence of these compounds accelerates the stripper system's aging process. This accelerated aging requires the strippers to be replaced more often which can impact the facility's schedule and operational cost. It was posited that sulfur bearing and other volatile compounds were derived from glove off-gassing. Due to the large number of gloves in the facility, small mass loss from each glove could result in a significant total mass of undesirable material entering the glovebox atmosphere and subsequently the stripper system. A thermogravimetric analysis (TGA) study was conducted to determine the amount of low temperature volatiles that may be expected to offgas from the gloves. The data were taken on relatively small samples but are normalized with respect to the sample's surface area. Additional testing is needed to determine the composition of the off-gassing species. The TGA study was conducted to ascertain the magnitude of the issue and to determine if further experimentation is warranted or necessary.« less

  20. Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2014-12-01

    The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.

  1. Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos.

    PubMed

    Ludlow, Aaron D; Benítez-Llambay, Alejandro; Schaller, Matthieu; Theuns, Tom; Frenk, Carlos S; Bower, Richard; Schaye, Joop; Crain, Robert A; Navarro, Julio F; Fattahi, Azadeh; Oman, Kyle A

    2017-04-21

    We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the eagle suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different prescriptions for unresolved stellar and active galactic nuclei feedback, resulting in diverse populations of galaxies by the present day. Some of them reproduce observed galaxy scaling relations, while others do not. However, regardless of the feedback implementation, all of our galaxies follow closely a simple relationship between the total and baryonic acceleration profiles, consistent with recent observations of rotationally supported galaxies. The relation has small scatter: Different feedback implementations-which produce different galaxy populations-mainly shift galaxies along the relation rather than perpendicular to it. Furthermore, galaxies exhibit a characteristic acceleration g_{†}, above which baryons dominate the mass budget, as observed. These observations, consistent with simple modified Newtonian dynamics, can be accommodated within the standard cold dark matter paradigm.

  2. Galaxy interactions and strength of nuclear activity

    NASA Technical Reports Server (NTRS)

    Simkin, S. M.

    1990-01-01

    Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.

  3. Oxidation of laser-induced plasma species in different background conditions

    NASA Astrophysics Data System (ADS)

    Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    The evolution of Lu and LuO species in a laser ablation plasma from different targets has been investigated by simultaneously performing mass spectrometry and plasma imaging. Ablation was achieved with a 248 nm KrF laser from a Lu, a Lu2O5 and a LuMnO3 target under different background gas conditions. Mass spectrometry measurements show very similar intensities and ratios for the respective species for all three targets under the same ablation conditions. This indicates only a small influence of the target on the final Lu and LuO contents in the plasma, with the major influence coming from collisions with the background gas. Furthermore, spatially, timely and spectrally resolved plasma imaging was utilized to clearly identify the shockwave at the plasma front as the main region for Lu oxidation. A strong decrease of Lu intensities together with a directly correlated increase of LuO was observed toward the outer regions of the plasma.

  4. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    PubMed Central

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-01-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804

  5. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

    PubMed

    Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  6. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  7. Body mass reduction markedly improves muscle performance and body composition in obese females aged 61-75 years: comparison between the effects exerted by energy-restricted diet plus moderate aerobic-strength training alone or associated with rGH or nandrolone undecanoate.

    PubMed

    Sartorio, Alessandro; Maffiuletti, Nicola A; Agosti, Fiorenza; Marinone, Pier Giulio; Ottolini, Saverio; Lafortuna, Claudio L

    2004-04-01

    To investigate the effectiveness of a body mass reduction programme entailing diet caloric restriction and moderate physical activity with or without supplementary treatment with recombinant (r) GH or steroids to improve body composition and muscle performance in severely obese women aged 61-75 years. Twenty women were randomly assigned to one of three groups: body mass reduction alone; body mass reduction plus rGH; body mass reduction plus nandrolone undecanoate. Body composition, isotonic muscle strength and anaerobic power output during jumping were determined before and after the 3-week period. Whatever the experimental group considered, body mass (P<0.01), body mass index (P<0.05) and fat mass (P<0.05) decreased significantly, whereas muscle strength and power increased significantly (P<0.05) after the intervention. Small body mass reductions after 3 weeks of energy-restricted diet combined with moderate aerobic and strength exercise are associated with significant improvements in upper and lower limb muscle strength and power and reduction of fat mass in severely obese women aged 61-75 years. Although the association of rGH or nandrolone undecanoate does not appear to exert additional effects on body composition and muscle performance attained by body mass reduction alone, further additional studies with larger study groups, different dosages and more prolonged periods are required for definitive conclusions to be drawn.

  8. Results from the HARPS-N 2014 Campaign to Estimate Accurately the Densities of Planets Smaller than 2.5 Earth Radii

    NASA Astrophysics Data System (ADS)

    Charbonneau, David; Harps-N Collaboration

    2015-01-01

    Although the NASA Kepler Mission has determined the physical sizes of hundreds of small planets, and we have in many cases characterized the star in detail, we know virtually nothing about the planetary masses: There are only 7 planets smaller than 2.5 Earth radii for which there exist published mass estimates with a precision better than 20 percent, the bare minimum value required to begin to distinguish between different models of composition.HARPS-N is an ultra-stable fiber-fed high-resolution spectrograph optimized for the measurement of very precise radial velocities. We have 80 nights of guaranteed time per year, of which half are dedicated to the study of small Kepler planets.In preparation for the 2014 season, we compared all available Kepler Objects of Interest to identify the ones for which our 40 nights could be used most profitably. We analyzed the Kepler light curves to constrain the stellar rotation periods, the lifetimes of active regions on the stellar surface, and the noise that would result in our radial velocities. We assumed various mass-radius relations to estimate the observing time required to achieve a mass measurement with a precision of 15%, giving preference to stars that had been well characterized through asteroseismology. We began by monitoring our long list of targets. Based on preliminary results we then selected our final short list, gathering typically 70 observations per target during summer 2014.These resulting mass measurements will have a signifcant impact on our understanding of these so-called super-Earths and small Neptunes. They would form a core dataset with which the international astronomical community can meaningfully seek to understand these objects and their formation in a quantitative fashion.HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh. This work was made possible through a grant from the John Templeton Foundation.

  9. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6]phenylalanine incorporation into mixed muscle proteins

    PubMed Central

    Zabielski, Piotr; Ford, G. Charles; Persson, X. Mai; Jaleel, Abdul; Dewey, Jerry D.; Nair, K Sreekumaran

    2013-01-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 hour intravenous infusion of L-[ring-13C6]phenylalanine and a bolus dose of L-[ring-13C6]phenylalanine in a mouse were utilized. Liquid Chromatography tandem mass spectrometry (LC/MS/MS), Gas Chromatography tandem mass spectrometry (GC/MS/MS) and Gas Chromatography/Mass spectrometry (GC/MS) were compared to the Gas Chromatography-Combustion-Isotope Ratio mass spectrometry (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 Molar Percent excess (MPE). As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS respectively. The muscle sample sizes required to obtain these results were 8μg, 0.8μg, 3μg and 3μg for GC/C/IRMS, LC/MS/MS, GC/MS/MS, and GC/MS respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  10. The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise.

    PubMed

    Rossman, Matthew J; Garten, Ryan S; Venturelli, Massimo; Amann, Markus; Richardson, Russell S

    2014-06-15

    Greater peripheral quadriceps fatigue at the voluntary termination of single-leg knee-extensor exercise (KE), compared with whole-body cycling, has been attributed to confining group III and IV skeletal muscle afferent feedback to a small muscle mass, enabling the central nervous system (CNS) to tolerate greater peripheral fatigue. However, as task specificity and vastly differing systemic challenges may have complicated this interpretation, eight males were studied during constant workload trials to exhaustion at 85% of peak workload during single-leg and double-leg KE. It was hypothesized that because of the smaller muscle mass engaged during single-leg KE, a greater magnitude of peripheral quadriceps fatigue would be present at exhaustion. Vastus lateralis integrated electromyogram (iEMG) signal relative to the first minute of exercise, preexercise to postexercise maximal voluntary contractions (MVCs) of the quadriceps, and twitch-force evoked by supramaximal magnetic femoral nerve stimulation (Qtw,pot) quantified peripheral quadriceps fatigue. Trials performed with single-leg KE (8.1 ± 1.2 min; 45 ± 4 W) resulted in significantly greater peripheral quadriceps fatigue than double-leg KE (10 ± 1.3 min; 83 ± 7 W), as documented by changes in the iEMG signal (147 ± 24 vs. 85 ± 13%), MVC (-25 ± 3 vs. -12 ± 3%), and Qtw,pot (-44 ± 6 vs. -33 ± 7%), for single-leg and double-leg KE, respectively. Therefore, avoiding concerns over task specificity and cardiorespiratory limitations, this study reveals that a reduction in muscle mass permits the development of greater peripheral muscle fatigue and supports the concept that the CNS tolerates a greater magnitude of peripheral fatigue when the source of group III/IV afferent feedback is limited to a small muscle mass.

  11. Formation of Plasma Around a Small Meteoroid: Simulation and Theory

    NASA Astrophysics Data System (ADS)

    Sugar, G.; Oppenheim, M. M.; Dimant, Y. S.; Close, S.

    2018-05-01

    High-power large-aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R2 directly behind the meteoroid, 1/R3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp[-1.5(R/λT2/3)]/R in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.

  12. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use of biological isotope fractionation in medical studies, paleoclimatic and paleoceanographic, and other terrestrial as well as extraterrestrial investigations. 2009 Wiley Periodicals, Inc.

  13. ACTOMP - AUTOCAD TO MASS PROPERTIES

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1994-01-01

    AutoCAD to Mass Properties was developed to facilitate quick mass properties calculations of structures having many simple elements in a complex configuration such as trusses or metal sheet containers. Calculating the mass properties of structures of this type can be a tedious and repetitive process, but ACTOMP helps automate the calculations. The structure can be modelled in AutoCAD or a compatible CAD system in a matter of minutes using the 3-Dimensional elements. This model provides all the geometric data necessary to make a mass properties calculation of the structure. ACTOMP reads the geometric data of a drawing from the Drawing Interchange File (DXF) used in AutoCAD. The geometric entities recognized by ACTOMP include POINTs, 3DLINEs, and 3DFACEs. ACTOMP requests mass, linear density, or area density of the elements for each layer, sums all the elements and calculates the total mass, center of mass (CM) and the mass moments of inertia (MOI). AutoCAD utilizes layers to define separate drawing planes. ACTOMP uses layers to differentiate between multiple types of similar elements. For example if a structure is made of various types of beams, modeled as 3DLINEs, each with a different linear density, the beams can be grouped by linear density and each group placed on a separate layer. The program will request the linear density of 3DLINEs for each new layer it finds as it processes the drawing information. The same is true with POINTs and 3DFACEs. By using layers this way a very complex model can be created. POINTs are used for point masses such as bolts, small machine parts, or small electronic boxes. 3DLINEs are used for beams, bars, rods, cables, and other similarly slender elements. 3DFACEs are used for planar elements. 3DFACEs may be created as 3 or 4 Point faces. Some examples of elements that might be modelled using 3DFACEs are plates, sheet metal, fabric, boxes, large diameter hollow cylinders and evenly distributed masses. ACTOMP was written in Microsoft QuickBasic (Version 2.0). It was developed for the IBM PC microcomputer and has been implemented on an IBM PC compatible under DOS 3.21. ACTOMP was developed in 1988 and requires approximately 5K bytes to operate.

  14. The peak bone mass concept: is it still relevant?

    PubMed

    Schönau, Eckhard

    2004-08-01

    The peak bone mass concept implies that optimal skeletal development during childhood and adolescence will prevent fractures in late adulthood. This concept is based on the observation that areal bone density increases with growth during childhood, is highest around 20 years of age and declines thereafter. However, it is now clear that strong bones in the youngster do not necessarily lead to a fracture-free old age. In the recent bone densitometric literature, the terms bone mass and bone density are typically used synonymously. In physics, density has been defined as the mass of a body divided by its volume. In clinical practice and science, "bone density" usually has a different meaning-the degree to which a radiation beam is attenuated by a bone, as judged from a two-dimensional projection image (areal bone density). The attenuation of a radiation beam does not only depend on physical density, but also on bone size. A small bone therefore has a lower areal bone density than a larger bone, even if the physical density is the same. Consequently, a low areal bone density value can simply reflect the small size of an otherwise normal bone. At present, bone mass analysis is very useful for epidemiological studies on factors that may have an impact on bone development. There is an ongoing discussion about whether the World Health Organization (WHO) definition of osteoporosis is over-simplistic and requires upgrading to include indices representing the distribution of bone and mineral (bone strength indices). The following suggestions and recommendations outline a new concept: bone mass should not be related to age. There is now more and more evidence that bone mass should be related to bone size or muscle function. Thus analyzed, there is no such entity as a "peak bone mass". Many studies are currently under way to evaluate whether these novel approaches increase sensitivity and specificity of fracture prediction in an individual. Furthermore, the focus of many bone researchers is shifting away from bone mass to bone geometry or bone strength. Bone mass is one surrogate marker of bone strength. Widely available techniques for measurement of bone mass, such as dual-energy X-ray absorptiometry, radiogrammetry, and computed tomography, can also be used to measure variables of bone geometry such as cortical thickness, cortical area, and moment of inertia.

  15. The STEP mission - Satellite test of the equivalence principle

    NASA Technical Reports Server (NTRS)

    Atzei, A.; Swanson, P.; Anselmi, A.

    1992-01-01

    The STEP experiment is a joint ESA/NASA mission candidate for selection as the next medium science project in the ESA scientific program. ESA and NASA have undertaken a joint feasibility study of STEP. The principles of STEP and details of the mission are presented and the mission and spacecraft are described. The primary objective of STEP is to measure differences in the rate of fall of test masses of different compositions to one part in 10 exp 17 of the total gravitational acceleration, a factor of 10 exp 8 improvement in sensitivity over previous experiments. STEP constitutes a comparison of gravitational and inertial mass or a test of the weak equivalence principle (WEP). A test of WEP that is six orders of magnitude more accurate than previous tests will reveal whether the underlying structure of the universe is filled with undiscovered small forces, necessitating a fundamental change in our theories of matter on all scales.

  16. Optimization of growth for the hyperthermophilic archaeon Aeropyrum pernix on a small-batch scale.

    PubMed

    Milek, Igor; Cigic, Blaz; Skrt, Mihaela; Kaletunç, Gönül; Ulrih, Natasa Poklar

    2005-09-01

    Growth of Aeropyrum pernix, the first reported aerobic neutrophilic hyperthermophilic archaeon, was investigated under different cultivation parameters. Different sources of seawater, pH, and the cultivation methods were tested with the aim to improve the biomass production. A 1-L glass flask fitted with a condenser and air diffuser was used as a bioreactor. The optimum conditions for maximizing A. pernix biomass were obtained when Na2S2O3.5H2O (1 g/L) with added marine broth 2216 at pH 7.0 (20 mmol HEPES buffer/L) was used as a growing medium in a 1-L flask. The biomass production was 0.45 g dry cell mass/L in 40 h under the optimum conditions, which is more than the 0.42 g dry cell mass/L in 60 h previously obtained.

  17. Simulating nonlinear neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  18. Mass Measurement of 56Sc Reveals a Small A=56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust

    DOE PAGES

    Meisel, Z.; George, S.; Ahn, S.; ...

    2015-10-16

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)((+0)(-54)) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted bymore » the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A approximate to 56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.« less

  19. Mass Measurement of 56Sc Reveals a Small A =56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Meisel, Z.; George, S.; Ahn, S.; Bazin, D.; Brown, B. A.; Browne, J.; Carpino, J. F.; Chung, H.; Cole, A. L.; Cyburt, R. H.; Estradé, A.; Famiano, M.; Gade, A.; Langer, C.; Matoš, M.; Mittig, W.; Montes, F.; Morrissey, D. J.; Pereira, J.; Schatz, H.; Schatz, J.; Scott, M.; Shapira, D.; Smith, K.; Stevens, J.; Tan, W.; Tarasov, O.; Towers, S.; Wimmer, K.; Winkelbauer, J. R.; Yurkon, J.; Zegers, R. G. T.

    2015-10-01

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85 (59 )(-54+0) MeV and -21.0 (1.3 ) MeV , respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A =56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A ≈56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.

  20. ALMA Observations of N83C in the Early Stage of Star Formation in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Homma, Aya; Onishi, Toshikazu; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Zahorecz, Sarolta; Saigo, Kazuya; Kawamura, Akiko; Mizuno, Norikazu; Minamidani, Tetsuhiro; Muller, Erik; Fukui, Yasuo; Meixner, Margaret; Indebetouw, Remy; Sewiło, Marta; Bolatto, Alberto

    2017-08-01

    We have performed Atacama Large Millimeter/submillimeter Array (ALMA) observations in the 12CO(J=2-1), 13CO(J=2-1), C18O(J=2-1), 12CO(J=3-2), 13CO(J=3-2), and CS(J=7-6) lines toward the active star-forming region N83C in the Small Magellanic Cloud (SMC), whose metallicity is about one-fifth of the Milky Way (MW). The ALMA observations first reveal subparsec-scale molecular structures in 12CO(J=2-1) and 13CO(J=2-1) emissions. We found strong CO peaks associated with young stellar objects (YSOs) identified by the Spitzer Space Telescope, and we also found that overall molecular gas is distributed along the edge of the neighboring {{H}} II region. We derived a gas density of ˜ {10}4 cm-3 in molecular clouds associated with YSOs based on the virial mass estimated from the 12CO(J=2-1) emission. This high gas density is presumably due to the effect of the {{H}} II region under the low-metallicity (and accordingly small-dust content) environment in the SMC; far-UV radiation from the {{H}} II region can easily penetrate and photodissociate the outer layer of 12CO molecules in the molecular clouds, and thus only the innermost parts of the molecular clouds are observed even in 12CO emission. We obtained the CO-to-H2 conversion factor {X}{CO} of 7.5× {10}20 cm-2 (K km s-1)-1 in N83C based on virial masses and CO luminosities, and it is four times larger than that in the MW, 2 × {10}20 cm-2 (K km s-1)-1. We also discuss the difference in the nature between two high-mass YSOs, each of which is associated with a molecular clump with a mass of about a few × {10}3 {M}⊙ .

  1. Star Masses and Star-Planet Distances for Earth-like Habitability.

    PubMed

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ < M < 1.04 M ⊙ , and the range for planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  2. Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.

  3. Star Masses and Star-Planet Distances for Earth-like Habitability

    PubMed Central

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  4. A spectroscopic and photometric study of 12 BM Camelopardalis

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.; Fekel, Francis C.; Henry, Gregory W.; Eaton, Joel A.; Barksdale, William S.; Dadonas, Virgiluus; Eker, Zeki; Kalv, Peep; Chambliss, Carlson R.; Fried, Robert E.

    1995-01-01

    Radial velocities from 1916.95 to 1991.95 and photometry from l979.25, both published and new in this paper, are presented and analyzed. A new solution of the radial velocity curve reveals a new period of 80.90 days and an eccentricity of e = 0.05 +/- 0.02, both very different from the 80.17 days and 0.35 found by Abt et al. (1969). An alternative solution with e = 0 is given because we cannot decide firmly whether or not the small eccentricity is real. We find V sin i = 11.3 +/- 0.3 km/s from Maidanak and 10 unequal depth. 0.048 mins and 0.026 mins. The orbital ephemeris for conjunction (K gisnt behind) is JD(hel.) 2,448,111.1 (+/- 0.4 days ) + 80.898 days (+/- 0.004 days ) E, consistent with both the radial velocities and the photometry. With the ellipticity effect removed, the light curve shows residual variability which we fit with a two-spot model. During the 13 years covered by photometry there were nine different starspots, the largest one producing a light loss of 0.19 mins. Rotation periods for the nine spots ranged from 78.6 +/- 0.5 days to 83.7 +/- 0.4 days from which we concluded that the K giant does rotate synchronously but with a differential rotation coefficient of k = 0.06 +/- 0.01. Lifetimes for the nine spots ranged from 1.1 to greater than 4.2 yr and were consistent with the empirical spot lifetime laws of Hall & Henry (1994). Use of the mass function, the orbital period, the V sin i, the two different ellipticity effect amplitudes, and various logical constraints led to ranges of possible masses, radii and inclinations. The most believable solution was around i = 90 deg, R(sub 1) = 24 solar radii, M(sub 1) = 1.1 solar mass, and M(sub 2) = 0.6 solar mass. THe Rossby number for the K giant is 0.48, small enough compared to the critical value of 0.65 to explain why, though rotating 'slowly', it does have large spots.

  5. Extreme current fluctuations in lattice gases: Beyond nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Sasorov, Pavel V.

    2014-01-01

    We use the macroscopic fluctuation theory (MFT) to study large current fluctuations in nonstationary diffusive lattice gases. We identify two universality classes of these fluctuations, which we call elliptic and hyperbolic. They emerge in the limit when the deterministic mass flux is small compared to the mass flux due to the shot noise. The two classes are determined by the sign of compressibility of effective fluid, obtained by mapping the MFT into an inviscid hydrodynamics. An example of the elliptic class is the symmetric simple exclusion process, where, for some initial conditions, we can solve the effective hydrodynamics exactly. This leads to a super-Gaussian extreme current statistics conjectured by Derrida and Gerschenfeld [J. Stat. Phys. 137, 978 (2009), 10.1007/s10955-009-9830-1] and yields the optimal path of the system. For models of the hyperbolic class, the deterministic mass flux cannot be neglected, leading to a different extreme current statistics.

  6. Surfactant effects on alpha-factors in aeration systems.

    PubMed

    Rosso, Diego; Stenstrom, Michael K

    2006-04-01

    Aeration in wastewater treatment processes accounts for the largest fraction of plant energy costs. Aeration systems function by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactant accumulation on gas-liquid interfaces reduces mass transfer rates, and this reduction in general is larger for fine-bubble aerators. This study evaluates mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes show higher gas transfer depression for lower turbulence regimes. Contamination effects can be offset at the expense of operating efficiency, which is characteristic of surface aerators and coarse-bubble diffusers. Results describe the variability of alpha-factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations describing mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.

  7. World Epidemiology Review, Number 91

    DTIC Science & Technology

    1978-02-09

    50 LIBYA 53 MALAYSIA 54 MEXICO 54 MOZAMBIQUE 55 NEW ZEALAND 57 NIGERIA. 58 a - [III - INT - 134] CONTENTS (Continued) Page...Editorial: "Mass Immunization"] [Text] Afghanistan was declared a small- pox free country at the begin- ning of this year after the assessment and...Afghanistan and inter- national organisations. For eradication of small- pox mass immunisation was a major weapon and the program was implemented in most

  8. Portable Tandem Mass Spectrometer Analyzer

    DTIC Science & Technology

    1991-07-01

    The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional

  9. Thermal cracking of poly α-olefin aviation lubricating base oil

    NASA Astrophysics Data System (ADS)

    Fei, Yiwei; Wu, Nan; Ma, Jun; Hao, Jingtuan

    2018-02-01

    Thermal cracking of poly α-olefin (PAO) was conducted under different temperatures among 190 °C to 300 °C. The reacted mixtures were sequentially detected by gas chromatography-mass spectrometer (GC/MS). A series of small molecular normal alkanes, branched alkanes and olefins were identified. PAO perfect structure of aligned comb-likely side-chains has been seriously cracked under high temperatures. Property changes about kinematic viscosity and pour point of PAO samples reacted under high temperatures were also investigated. The appearance of small molecular compounds weakened the thermal stability, viscosity temperature performance and low temperature fluidity of PAO samples. Property of PAO samples was deteriorated due to thermal cracking under high temperatures.

  10. Evidence for extreme Ti-50 enrichments in primitive meteorites

    NASA Technical Reports Server (NTRS)

    Fahey, A.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.

    1985-01-01

    The results of the first high mass resolution ion microprobe study of Ti isotopic compositions in individual refractory grains from primitive carbonaceous meteorites are reported. One hibonite from the Murray carbonaceous chondrite has a 10 percent excess of Ti-50, 25 times higher than the maximum value previously reported for bulk samples of refractory inclusions from carbonaceous chondrites. The variation of the Ti compositions between different hibonite grains, and among pyroxenes from a single Allende refractory inclusion, indicates isotopic inhomogeneities over small scale lengths in the solar nebula and emphasizes the importance of the analysis of small individual phases. This heterogeneity makes it unlikely that the isotopic anomalies were carried into the solar system in the gas phase.

  11. Can the graviton have a large mass near black holes?

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhou, Shuang-Yong

    2018-04-01

    The mass of the graviton, if nonzero, is usually considered to be very small, e.g., of the Hubble scale, from several observational constraints. In this paper, we propose a gravity model where the graviton mass is very small in the usual weak gravity environments, below all the current graviton mass bounds, but becomes much larger in the strong gravity regime such as a black hole's vicinity. For black holes in this model, significant deviations from general relativity emerge very close to the black hole horizon and alter the black hole quasinormal modes, which can be extracted from the ringdown wave form of black hole binary mergers. Also, the enhancement of the graviton mass near the horizon can result in echoes in the late-time ringdown, which can be verified in the upcoming gravitational wave observations of higher sensitivity.

  12. Effect of body mass and clothing on decomposition of pig carcasses.

    PubMed

    Matuszewski, Szymon; Konwerski, Szymon; Frątczak, Katarzyna; Szafałowicz, Michał

    2014-11-01

    Carcass mass and carcass clothing are factors of potential high forensic importance. In casework, corpses differ in mass and kind or extent of clothing; hence, a question arises whether methods for post-mortem interval estimation should take these differences into account. Unfortunately, effects of carcass mass and clothing on specific processes in decomposition and related entomological phenomena are unclear. In this article, simultaneous effects of these factors are analysed. The experiment followed a complete factorial block design with four levels of carcass mass (small carcasses 5-15 kg, medium carcasses 15.1-30 kg, medium/large carcasses 35-50 kg, large carcasses 55-70 kg) and two levels of carcass clothing (clothed and unclothed). Pig carcasses (N = 24) were grouped into three blocks, which were separated in time. Generally, carcass mass revealed significant and frequently large effects in almost all analyses, whereas carcass clothing had only minor influence on some phenomena related to the advanced decay. Carcass mass differently affected particular gross processes in decomposition. Putrefaction was more efficient in larger carcasses, which manifested itself through earlier onset and longer duration of bloating. On the other hand, active decay was less efficient in these carcasses, with relatively low average rate, resulting in slower mass loss and later onset of advanced decay. The average rate of active decay showed a significant, logarithmic increase with an increase in carcass mass, but only in these carcasses on which active decay was driven solely by larval blowflies. If a blowfly-driven active decay was followed by active decay driven by larval Necrodes littoralis (Coleoptera: Silphidae), which was regularly found in medium/large and large carcasses, the average rate showed only a slight and insignificant increase with an increase in carcass mass. These results indicate that lower efficiency of active decay in larger carcasses is a consequence of a multi-guild and competition-related pattern of this process. Pattern of mass loss in large and medium/large carcasses was not sigmoidal, but rather exponential. The overall rate of decomposition was strongly, but not linearly, related to carcass mass. In a range of low mass decomposition rate increased with an increase in mass, then at about 30 kg, there was a distinct decrease in rate, and again at about 50 kg, the rate slightly increased. Until about 100 accumulated degree-days larger carcasses gained higher total body scores than smaller carcasses. Afterwards, the pattern was reversed; moreover, differences between classes of carcasses enlarged with the progress of decomposition. In conclusion, current results demonstrate that cadaver mass is a factor of key importance for decomposition, and as such, it should be taken into account by decomposition-related methods for post-mortem interval estimation.

  13. Recurrent Crohn's disease in the duodenum and jejunum following extensive small bowel resection and jejunocolonic anastamosis: radiologic findings in twenty-five patients.

    PubMed

    Zalev, A H; Prokipchuk, E J; Jeejeebhoy, K N; Gardiner, G W; Pron, G

    1999-01-01

    To evaluate the radiologic features of recurrent Crohn's disease after extensive enteric resection and jejunocolostomy. We reviewed the small bowel studies of 25 patients with recurrent enteritis and less than 125 cm of jejunum following enteric resection and jejunocolostomy and the studies of 27 patients with jejunitis in an intact jejunum. Twenty-three patients with recurrences had neoterminal jejunitis, six under 10 cm, 10 over 10 cm and continuous, and seven with skip lesions (six jejunal, one duodenal). Two had isolated jejunitis or duodenitis. Three with continuous disease had lengthy recurrences. Enteritis showed only one or two abnormalities in 12 of 25 patients with recurrences and in two of 27 with disease in the intact jejunum. Recurrent jejunitis and jejunitis in the intact jejunum showed similar frequencies of mucosal thickening, strictures, ulceration and its complications, skip lesions, sacculation, obstructive dilatation, featureless mucosa, and polyps, and significantly different frequencies only of mesenteric masses. Recurrent jejunitis and terminal ileitis showed significantly different frequencies of mucosal thickening, strictures, ulceration and its complications, skip lesions, sacculation, obstructive dilatation, and mesenteric masses, and similar frequencies only of a featureless mucosa. The neoterminal jejunum is the most common site of recurrence and the only site in almost 25%. Jejunitis remote from the fecal stream is also frequent, but duodenitis is not. Recurrences are seldom extensive and often show only one or two radiographic findings. The frequencies of most lesions in recurrent jejunitis do not differ significantly from those in jejunitis in the intact jejunum but do differ from those in terminal ileitis.

  14. Neutrino mass as the probe of intermediate mass scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observationmore » would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.« less

  15. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling

    NASA Astrophysics Data System (ADS)

    Schilling, Oleg; Mueschke, Nicholas J.

    2017-12-01

    Data from a 1152 ×760 ×1280 direct numerical simulation [N. J. Mueschke and O. Schilling, Phys. Fluids 21, 014106 (2009), 10.1063/1.3064120] of a Rayleigh-Taylor mixing layer modeled after a small-Atwood-number water-channel experiment is used to investigate the validity of gradient diffusion and similarity closures a priori. The budgets of the mean flow, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate transport equations across the mixing layer were previously analyzed [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] at different evolution times to identify the most important transport and mixing mechanisms. Here a methodology is introduced to systematically estimate model coefficients as a function of time in the closures of the dynamically significant terms in the transport equations by minimizing the L2 norm of the difference between the model and correlations constructed using the simulation data. It is shown that gradient-diffusion and similarity closures used for the turbulent kinetic energy K , turbulent kinetic energy dissipation rate ɛ , heavy-fluid mass fraction variance S , and heavy-fluid mass fraction variance dissipation rate χ equations capture the shape of the exact, unclosed profiles well over the nonlinear and turbulent evolution regimes. Using order-of-magnitude estimates [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] for the terms in the exact transport equations and their closure models, it is shown that several of the standard closures for the turbulent production and dissipation (destruction) must be modified to include Reynolds-number scalings appropriate for Rayleigh-Taylor flow at small to intermediate Reynolds numbers. The late-time, large Reynolds number coefficients are determined to be different from those used in shear flow applications and largely adopted in two-equation Reynolds-averaged Navier-Stokes (RANS) models of Rayleigh-Taylor turbulent mixing. In addition, it is shown that the predictions of the Boussinesq model for the Reynolds stress agree better with the data when additional buoyancy-related terms are included. It is shown that an unsteady RANS paradigm is needed to predict the transitional flow dynamics from early evolution times, analogous to the small Reynolds number modifications in RANS models of wall-bounded flows in which the production-to-dissipation ratio is far from equilibrium. Although the present study is specific to one particular flow and one set of initial conditions, the methodology could be applied to calibrations of other Rayleigh-Taylor flows with different initial conditions (which may give different results during the early-time, transitional flow stages, and perhaps asymptotic stage). The implications of these findings for developing high-fidelity eddy viscosity-based turbulent transport and mixing models of Rayleigh-Taylor turbulence are discussed.

  16. Energy metabolism, body composition, and urea generation rate in hemodialysis patients.

    PubMed

    Sridharan, Sivakumar; Vilar, Enric; Berdeprado, Jocelyn; Farrington, Ken

    2013-10-01

    Hemodialysis (HD) adequacy is currently assessed using normalized urea clearance (Kt/V), although scaling based on Watson volume (V) may disadvantage women and men with low body weight. Alternative scaling factors such as resting energy expenditure and high metabolic rate organ mass have been suggested. The relationship between such factors and uremic toxin generation has not been established. We aimed to study the relationship between body size, energy metabolism, and urea generation rate. A cross-sectional cohort of 166 HD patients was studied. Anthropometric measurements were carried on all. Resting energy expenditure was measured by indirect calorimetry, fat-free mass by bio-impedance and total energy expenditure by combining resting energy expenditure with a questionnaire-derived physical activity data. High metabolic rate organ mass was calculated using a published equation and urea generation rate using formal urea kinetic modeling. Metabolic factors including resting energy expenditure, total energy expenditure and fat-free mass correlated better with urea generation rate than did Watson volume. Total energy expenditure and fat-free mass (but not Watson Volume) were independent predictors of urea generation rate, the model explaining 42% of its variation. Small women (

  17. How good is μ- τ symmetry after results on non-zero θ 13?

    NASA Astrophysics Data System (ADS)

    Gupta, Shivani; Joshipura, Anjan S.; Patel, Ketan M.

    2013-09-01

    Viability of the μ- τ interchange symmetry imposed as an approximate symmetry (1) on the neutrino mass matrix in the flavour basis (2) simultaneously on the charged lepton mass matrix M l and the neutrino mass matrix M ν and (3) on the underlying Lagrangian is discussed in the light of recent observation of a non-zero reactor mixing angle θ 13. In case (1), μ- τ symmetry breaking may be regarded as small (less than 20-30%) only for the inverted or quasidegenerate neutrino mass spectrum and the normal hierarchy would violate it by a large amount. The case (2) is more restrictive and the requirement of relatively small breaking allows only the quasidegenerate spectrum. If neutrinos obtain their masses from the type-I seesaw mechanism then small breaking of the μ- τ symmetry in the underlying Lagrangian may result in a large breaking in and even the hierarchical neutrino spectrum may also be consistent with mildly broken μ- τ symmetry of the Lagrangian. Neutrinoless double beta decay provides a good means of distinguishing above scenarios. In particular, non-observation of signal in future experiments such as GERDA would rule out scenarios (1) and (2).

  18. Five-class height-weight model for systematization of seventeen-year-old recruits' anthropometric data.

    PubMed

    Lintsi, Mart; Kaarma, Helje

    2003-12-01

    An anthropometric study of 552 Tartu city and Tartu county recruits aged 17 years was carried out. Height and weight, 33 anthropometric measurements and 12 skinfolds were measured. Body fat percentage was assessed by Omron BF 300 hand-held segmental body fat analyzer. From anthropometric measurements bone mass was derived by the Drink-water et al. (1986) equation, and total skeletal muscle mass by the Lee et al. (2000) equation. The data were systematized into five height-weight SD-classes. There were 3 classes with harmony between height and weight class: 1--small (small height and small weight), 2--medium (medium height and medium weight), 3--large (large height and large weight), 4--weight class dominating (pyknomorphic) and 5--height class dominating (leptomorphic). It was revealed that in classes 1, 2 and 3 the height and weight increase corresponded to the increase in all heights, breadths and depths, circumferences, skinfolds, body fat, muscle and bone mass. In class 4 circumferences, skinfolds, body fat and muscle mass were bigger. In class 5 all heights and the relative bone mass were bigger. The present investigation confirms the hypothesis that the five height-weight class system is applicable to seventeen-year-old recruits.

  19. Human brain mass: similar body composition associations as observed across mammals.

    PubMed

    Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei

    2012-01-01

    A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P < 0.001) while liver mass/FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P < 0.001) in men than in women, even after controlling for age and FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.

  20. Diagnostic accuracy of contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging of small renal masses in real practice: sensitivity and specificity according to subjective radiologic interpretation.

    PubMed

    Kim, Jae Heon; Sun, Hwa Yeon; Hwang, Jiyoung; Hong, Seong Sook; Cho, Yong Jin; Doo, Seung Whan; Yang, Won Jae; Song, Yun Seob

    2016-10-12

    The aim of this study was to investigate the diagnostic accuracy of contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of small renal masses in real practice. Contrast-enhanced CT and MRI were performed between February 2008 and February 2013 on 68 patients who had suspected small (≤4 cm) renal cell carcinoma (RCC) based on ultrasonographic measurements. CT and MRI radiographs were reviewed, and the findings of small renal masses were re-categorized into five dichotomized scales by the same two radiologists who had interpreted the original images. Receiver operating characteristics curve analysis was performed, and sensitivity and specificity were determined. Among the 68 patients, 60 (88.2 %) had RCC and eight had benign disease. The diagnostic accuracy rates of contrast-enhanced CT and MRI were 79.41 and 88.23 %, respectively. Diagnostic accuracy was greater when using contrast-enhanced MRI because too many masses (67.6 %) were characterized as "4 (probably solid cancer) or 5 (definitely solid cancer)." The sensitivity of contrast-enhanced CT and MRI for predicting RCC were 79.7 and 88.1 %, respectively. The specificities of contrast-enhanced CT and MRI for predicting RCC were 44.4 and 33.3 %, respectively. Fourteen diagnoses (20.5 %) were missed or inconsistent compared with the final pathological diagnoses. One appropriate nephroureterectomy and five unnecessary percutaneous biopsies were performed for RCC. Seven unnecessary partial nephrectomies were performed for benign disease. Although contrast-enhanced CT and MRI showed high sensitivity for detecting small renal masses, specificity remained low.

  1. Improving the numerical integration solution of satellite orbits in the presence of solar radiation pressure using modified back differences

    NASA Technical Reports Server (NTRS)

    Lundberg, J. B.; Feulner, M. R.; Abusali, P. A. M.; Ho, C. S.

    1991-01-01

    The method of modified back differences, a technique that significantly reduces the numerical integration errors associated with crossing shadow boundaries using a fixed-mesh multistep integrator without a significant increase in computer run time, is presented. While Hubbard's integral approach can produce significant improvements to the trajectory solution, the interpolation method provides the best overall results. It is demonstrated that iterating on the point mass term correction is also important for achieving the best overall results. It is also shown that the method of modified back differences can be implemented with only a small increase in execution time.

  2. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  3. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    PubMed

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  4. A wide variety of injection molding technologies is now applicable to small series and mass production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de

    2014-05-15

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved.more » Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.« less

  5. THE IMPACT OF MOLECULAR GAS ON MASS MODELS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, B. S.; Blok, W. J. G. de; Walter, F.

    2016-04-15

    We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in themore » inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors α{sub CO} to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro–Frenk–White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of α{sub CO} can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.« less

  6. Organic aerosol evaporation and formation in biomass-burning plumes: The competition between dilution and chemistry

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Kreidenweis, S. M.; Bian, Q.; Jathar, S.; Kodros, J.; Barsanti, K.; Hatch, L. E.; May, A.

    2017-12-01

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in ambient plumes. The plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We use an aerosol microphysics model that includes representations of volatility and oxidation chemistry to estimate SOA formation in the smoke emitted into the atmosphere. We add Gaussian dispersion to our aerosol microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g. fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. Normalized OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.

  7. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  8. Topical report on sources and systems for aquatic plant biomass as an energy resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, J.C.; Ryther, J.H.; Waaland, R.

    1977-10-21

    Background information is documented on the mass cultivation of aquatic plants and systems design that is available from the literature and through consultation with active research scientists and engineers. The biology of microalgae, macroalgae, and aquatic angiosperms is discussed in terms of morphology, life history, mode of existence, and ecological significance, as they relate to cultivation. The requirements for growth of these plants, which are outlined in the test, suggest that productivity rates are dependent primarily on the availability of light and nutrients. It is concluded that the systems should be run with an excess of nutrients and with lightmore » as the limiting factor. A historical review of the mass cultivation of aquatic plants describes the techniques used in commercial large-scale operations throughout the world and recent small-scale research efforts. This review presents information on the biomass yields that have been attained to date in various geographical locations with different plant species and culture conditions, emphasizing the contrast between high yields in small-scale operations and lower yields in large-scale operations.« less

  9. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-06-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  10. System design of the Pioneer Venus spacecraft. Volume 11: Launch vehicle utilization

    NASA Technical Reports Server (NTRS)

    Varga, R. J.

    1973-01-01

    A summary of the spacecraft descriptions; the probe bus, large probe, small probe, and orbiter is presented. The highlights on the designs of the Atlas/Centaur spacecraft as compared to the corresponding Thor/Delta spacecraft designs are contained. A comparison is made of the two Atlas/Centaur spacecraft for reference. The major differences are the replacement of the probes of the forward end of the probe bus with the mechanically despun antenna of the orbiter and the replacement of the bicone antenna on the aft end with the orbit insertion motor. The cross sections of the large and small probes are compared. The major features of each probe are described. The Thor/Delta and Atlas/Centaur designs for the probe bus and orbiter are analyzed. The usable spacecraft mass for the Atlas/Centaur is roughly twice that for the Thor/Delta if the Type I trajectory is assumed. It is somewhat less for the Type II trajectory in the designated launch years. This additional mass capability leads to cost savings in many areas which are described.

  11. Gravity, Body Mass and Composition, and Metabolic Rate

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1985-01-01

    Metabolic rate and body composition as a function of sex and age were defined in 5 species of common laboratory mammals, the mouse, hamster, rat, guinea pig and rabbit. Oxygen consumption and carbon dioxide production rates were measured individually in 6 male and 6 female animals for each of 8 age cohorts ranging from 1 month to 2 years, and for each of the species. From the results it is evident that among these small mammals there is no indication of scaling of muscularity to body size, despite the 100-fold difference in body mass represented by the skeletal musculature seems to reach a pronounced peak value at age 2 to 3 months and then declines, the fraction of the fat-free body represented by other body components in older animals must increase complementarily. Under normal gravity conditions muscularity in small laboratory mammals displays large, systematic variation as a function both of species and age. This variation must be considered when such animals are subjects of experiments to study the effects of altered gravitational loading on the skeletal musculature of the mammal.

  12. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  13. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry.

    PubMed

    Kang, Dukjin; Oh, Sunok; Ahn, Sung-Min; Lee, Bong-Hee; Moon, Myeong Hee

    2008-08-01

    Exosomes, small membrane vesicles secreted by a multitude of cell types, are involved in a wide range of physiological roles such as intercellular communication, membrane exchange between cells, and degradation as an alternative to lysosomes. Because of the small size of exosomes (30-100 nm) and the limitations of common separation procedures including ultracentrifugation and flow cytometry, size-based fractionation of exosomes has been challenging. In this study, we used flow field-flow fractionation (FlFFF) to fractionate exosomes according to differences in hydrodynamic diameter. The exosome fractions collected from FlFFF runs were examined by transmission electron microscopy (TEM) to morphologically confirm their identification as exosomes. Exosomal lysates of each fraction were digested and analyzed using nanoflow LC-ESI-MS-MS for protein identification. FIFFF, coupled with mass spectrometry, allows nanoscale size-based fractionation of exosomes and is more applicable to primary cells and stem cells since it requires much less starting material than conventional gel-based separation, in-gel digestion and the MS-MS method.

  14. The different types of sperm morphology and behavior within a single species

    PubMed Central

    Hirohashi, Noritaka; Iwata, Yoko

    2013-01-01

    Some coastal squids exhibit male dimorphism (large and small body size) that is linked to mating behaviors. Large “consort” males compete with other, rival males to copulate with a female, and thereby transfer their spermatophores to her internal site around the oviduct. Small “sneaker” males rush to a single female or copulating pair and transfer spermatophores to her external body surface around the seminal receptacle near the mouth. We previously found that in Loligo bleekeri, sneaker sperm are ~50% longer than consort sperm, and only the sneaker sperm, once ejaculated from the spermatophore (sperm mass), form a cluster because of chemoattraction toward their own respiratory CO2. Here, we report that sperm clusters are able to move en masse. Because a fraction of ejaculated sperm from a sneaker’s spermatophore are eventually located in the female’s seminal receptacle, we hypothesize that sperm clustering facilitates collective migration to the seminal receptacle or an egg micropyle. Sperm clustering is regarded as a cooperative behavior that may have evolved by sperm competition and/or physical and physiological constraints imposed by male mating tactics. PMID:24567779

  15. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    PubMed

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.

  16. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  17. Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue

    PubMed Central

    Knights, Andrew J.; Abreu-Goodger, Cei; van de Bunt, Martijn; Guerra-Assunção, José Afonso; Bartonicek, Nenad; van Dongen, Stijn; Mägi, Reedik; Nisbet, James; Barrett, Amy; Rantalainen, Mattias; Nica, Alexandra C.; Quail, Michael A.; Small, Kerrin S.; Glass, Daniel; Enright, Anton J.; Winn, John; Deloukas, Panos; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Spector, Timothy D.; Durbin, Richard; Lindgren, Cecilia M.

    2012-01-01

    Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population. PMID:22589741

  18. Firn Thickness Changes (1982-2015) Driven by SMB from MERRA-2, RACMO2.3, ERA-Int and AVHRR Surface Temperature and the Impacts to Greenland Ice Sheet Mass Balance

    NASA Astrophysics Data System (ADS)

    Li, J.; Medley, B.; Neumann, T.; Smith, B. E.; Luthcke, S. B.; Zwally, H. J.

    2016-12-01

    Surface mass balance (SMB) data are essential in the derivation of ice sheet mass balance. This is because ice sheet mass change consists of short-term and long-term variations. The short-term variations are directly given by the SMB data. For altimetry based ice sheet mass balance studies, these short-term mass changes are converted to firn thickness changes by using a firn densification-elevation model, and then the variations are subtracted from the altimetry measurements to give the long-term ice thickness changes that are associated with the density of ice. So far various SMB data sets such as ERA-Interim, RACMO and MERRA are available and some have been widely used in large number of ice sheet mass balance studies. However theses data sets exhibit the clear discrepancies in both random and systematic manner. In this study, we use our time dependent firn densification- elevation model, driven by the SMB data from MERRA-2, RACMO2.3 and ERA-Int for the period of 1982-2015 and the temperature variations from AVHRR for the same period to examine the corresponding firn thickness variations and the impacts to the mass changes over the Greenland ice sheet. The model was initialized with the1980's climate. Our results show that the relative smaller (centimeter level) differences in the firn thickness driven by the different data set occur at the early stage (1980's) of the model run. As the time progressing, the discrepancies between the SMB data sets accumulate, and the corresponding firn thickness differences quickly become larger with the value > 2m at the end of the period. Although the overall rates for the whole period driven by each of the three data sets are small ranging -0.2 - 0.2 cm a-1 (-3.0-2.7 Gt a-1), the decadal rates can vary greatly with magnitude > 3 cm a-1 and the impact to the Greenland mass change exceeds 30 Gt a-1.

  19. Dark matter contraction and stellar-mass-to-light ratio gradients in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oldham, Lindsay J.; Auger, Matthew W.

    2018-05-01

    We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies. We combine pixel-based modelling of multiband Hubble Space Telescope imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle the dark and luminous contributions to the mass. Assuming a generalised NFW (gNFW) profile for the dark matter halo and a spatially constant stellar-mass-to-light ratio ϒ⋆ for the baryonic mass, we infer distributions for ϒ⋆ consistent with initial mass functions (IMFs) that are heavier than the Milky Way's (with a global mean mismatch parameter relative to a Chabrier IMF μαc = 1.80 ± 0.14) and halo inner density slopes that span a large range but are generally cuspier than the dark-matter-only prediction (μ _{γ ^' }} = 2.01_{-0.22}^{+0.19}). We investigate possible reasons for overestimating the halo slope, including the neglect of spatially varying stellar-mass-to-light ratios and/or stellar orbital anisotropy, and find that a quarter of the systems prefer radially declining stellar-mass-to-light ratio gradients, but that the overall effect on our inference on the halo slope is small. We suggest a coherent explanation of these results in the context of inside-out galaxy growth, and that the relative importance of different baryonic processes in shaping the dark halo may depend on halo environment.

  20. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

Top